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Abstract 

In order to describe continuous optimization tasks for the efficient design of materials 
and production processes from a reasonable data sample size, we propose an integrated 
surrogate modeling approach. We show the proof of concept by application to a draw 
bending simulation that describes the relation between the process parameters and the 
spring-back as the process result. The introduced concept can also be directly applied 
to experimental data while taking into account the process noise as uncertainty ( e.g. for 
process control). The integrated approach combines three components: Design of Exper­
iments, surrogate process modeling (based on function approximation by regression, e.g. 
Artificial Neural Networks) and optimization of process or material parameters. The 
identified parameters enable to rapidly find the optimal operating conditions for real 
experiments or to constrain them for further detailed simulation studies. Future work 
involves applications to more complex experiments or simulations to efficiently determine 
the optimal process or material parameters by sparse and adaptive data samples. 

Introduction 

Process and materials design requires a high effort when all possible parameter combi­
nations have to be executed (high complexity). Instead, a systematic procedure such 
as Design of Experiments (DoE) is needed to select a reasonable number of runs from 
experiments or simulations in order to gain the most information for a selected sample 
size. Hence, the effort of material and personnel cost in case of experiments as well as 
computational cost in case of simulations can be reduced. However, the selected data 
sample only represents discrete candidates and the optimal solution might lie somewhere 
in between. Surrogate models created from the data sample allow continuous and fast 
predictions that span the entire search space (by interpolation). The optimal material 
or process parameters can be determined with respect to a desired result using the sur­
rogate process model. With our proposed integrated surrogate modeling approach, we 
concentrate on solving continuous optimization tasks from a reasonable data sample size. 

Our previous work deals with statistical process control in deep drawing. The force as 
a time-dependent parameter for the sheet metal forming process is optimized to reach a 
given final stress state in the sheet under consideration of uncertainty during processing 
(overview [I], control details [2]). We have generated the underlying data sample from 
basic deep drawing simulations superimposed by artificially created, normally distributed 
process noise. Since the data sampling does not induce high computational cost in this 
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Figure 1: Integrated approach for rapid prototyping with interconnected components 

particular case, we have created an extensive sample (with all parameter combinations) 
to establish the process model in a next step. 

In contrast to conventional DoE, Sequential DoE is not limited to a data sample 
size that is fixed in advance. Instead, Sequential DoE enables the adaption of the data 
sample during processing taking into account already existing information. [3] points out 
the application of Sequential DoE with generalized linear models. [4] compares different 
sequential design methods for global surrogate modeling on a real-world electronics prob­
lem. [5] builds a surrogate model by adaptive sampling. These three Sequential DoE 
approaches have in common that the data sampling and modeling is interconnected and 
adaptive which is a big advantage for complex tasks that are difficult or even impossible 
to handle with conventional DoE. 

In this paper, we do not focus on process models and control, but on connecting DoE, 
process modeling and process optimization to realize rapid prototyping for materials and 
process design on the one hand, and to handle more complex tasks with Sequential DoE 
and adaptive learning models on the other hand. We exemplify the introduced concept 
with data from a draw bending simulation. 

Integrated Surrogate Modeling Approach 

Our integrated surrogate modeling approach combines three components as depicted 
in Figure 1. The single components are exchangeable ( e.g. different designs or model 
types) and the integrat ed procedure enables a forward and backward adaption of the 
individual components. This enables rapid prototyping for materials and process design 
as described hereinafter. A data sample is created by DoE from simulations or experi­
ments. The data serves as a base for surrogate modeling to describe the relation between 
process parameters (input) and result (output). The established process model allows to 
determine the optimal parameters with respect to a desired result (process optimization). 

Design of Experiments 

Design of Experiments [6] allows to plan runs of simulations or experiments to gain the 
most information about a process with reasonable effort. Additional runs are required to 
quantify the uncertainty in real experiments compared to deterministic simulations. It is 
possible to determine the sample size beforehand if the variance in the process is known. 
Instead of using a fixed sample size, the data sample can be adapted by Sequential DoE 
such that individual runs are added incrementally unt il a stopping criterion is reached 
(e.g. based on the distance of parameter combinations). 
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Process Modeling 

The relation between process input and output can be described with surrogate models [7] 
based on function approximation by regression. There exist linear regression models such 
as Partial Least Squares Regression (PLS) [8]. PLS combines regression with dimension 
reduction by decreasing the dimensionality of the input and output space, and at the 
same time, maximizing the covariance between the reduced quantities. This procedure 
is suitable for models with many input and output dimensions, since the complexity 
(in terms of model degrees of freedom) is decreased by dimension reduction. However, 
PLS does not consider nonlinearities that can on the other hand be addressed with 
Artificial Neural Networks (ANNs) [9]. A typical feed-forward ANN consists of three 
interconnected layers: input, hidden and output. The input nodes are connected with 
the hidden nodes which are again connected with the output nodes. The connections are 
associated with weight factors. In the hidden and output layer, for each node, the sum 
of all incoming connections multiplied with the connection weights is calculated and sub­
ject to an activation function (hidden layer: hyperbolic tangent or linear, output layer: 
linear). The training of an ANN involves the adjustment of the connection weights such 
that its prediction approximates the output from the given data sample (by error mini­
mization). The underlying data set is divided into training data (to establish the model) 
and test data (to validate the model). One distinguishes between batch and incremental 
learning of ANNs. In batch learning, all runs of the training data are used to update the 
connection weights simultaneously (by taking the average), while in incremental learning 
the connection weights are updated step by step according to each single run. 

Process Optimization 

We define process optimization as the task to determine optimal process parameters 
( control variables or constant operating conditions as input) with respect to a desired 
process result (output). We distinguish between offiine and online optimization. In the 
first case, the parameters to be optimized are constant over time, while in the second case, 
the parameters are time-dependent and have to be optimized for each single time step 
(also taking into account uncertainties in the result). Examples for process optimization 
are given as follows. The local blank holder forces of a deep drawing process are optimized 
over segments and time from simulations in [10]. A (bio)chemical process with time­
dependent behavior is optimized considering uncertainties in [ 11]. 

Draw Bending Simulation 

The two-dimensional draw bending example process is visualized in Figure 2. A metal 
sheet is clamped between a blank holder and a die. A punch presses the sheet into the 
die opening such that it is subject to bending. When the bent sheet is unloaded, it 
undergoes an elastic spring-back that results from the residual stresses in the sheet. We 
simulate the process with SIMULIA Abaqus according to [12]. The process parameters 
with their lower and upper limits and the process result are summarized in Table I. 
The parameters that influence the draw bending process comprise: Young's modulus, 
Poisson's ratio, blank geometry (width and length), coefficient of friction, blank holder 
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Figure 2: Two-dimensional draw bending process (left) with resulting spring-back (right) 

Table I: Process parameters and result 
Parameter Result Name ID Lower Upper Unit 

(input) (output) limit limit 
X Young's modulus X 1 165 247 GPa 
X Poisson's ratio X2 0.24 0.36 -

X blank width X3 4 6 mm 
X blank length X4 140 210 mm 
X coefficient of friction X5 0.115 0.173 -

X blank holder force X5 -210 -140 N 
X punch velocity X7 -18 -12 m/ s 

X spring-back angle y 0 

force and punch velocity. The spring-back angle is the result. 

R esults 

We have implemented the proposed concept in Mathworks MATLAB (with toolboxes: 
optimization, global optimization, neural network, stat istics) and SIMULIA Abaqus (Fi­
nite Element Analysis software) with Python scripting. We use deterministic simulations 
without taking into account uncertainty. We optimize seven time-independent parame­
ters to minimize spring-back in the draw bending process. 

Design of Experiments 

We create a screening design for all seven process parameters at two levels t hat cor­
respond to the lower and upper parameter limits (see Table I): a full factorial of all 
possible parameter combinations with 128 = 27 samples. The screening corresponds to 
a sensitivity analysis of the process parameters on the result and reveals the relevant 
parameters. The box plots in Figure 3 indicate a high influence for the Young's modulus 
(x1) and the punch velocity (x7), and a low influence for the coefficient of friction (x5 ) 

and the blank holder force (x6 ). The parameters x 5 and x6 are neglected in the following. 
For the ensuing process modeling, we create three advanced designs for the five se­

lected parameters (with fix values for x5 = 0.173 and x6 = - 210 N) at three levels 
(for nonlinearities): full factorial with 243 = 35 samples, d-optimal with 81 samples and 
central composite wit h 43 samples. The two latter are ( extended) subsets of the former. 
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Figure 3: Influence of process parameters on result (full factorial screening design) 

Table II: Goodness of fit for approximation models R2 

PLS ANN batch ANN incremental 
Design linear nonlinear linear nonlinear linear 

full factorial (243 samples) 0.9739 0.9946 0.9739 0.9811 0.9703 
d-optimal (81 samples) 0.9747 0.9954 0.9747 0.9874 0.9744 

central composite ( 43 samples) 0.9738 0.9599 0.9735 0.9502 0.9739 

Process Modeling 

For the three advanced modeling designs, we compare linear PLS (five components) with 
linear and nonlinear ANNs (five nodes in the hidden layer) with batch and incremental 
learning in Table II. The goodness of fit for the surrogate process model is quantified by 
the coefficient of determination: 

(1) 

The sum of squared errors (SSE) is the sum of the squared deviations between the 
test data set y and the associated predicted results fj calculated over all N samples: 

N 

SSE= L (y - fi )n2 . (2) 
n=l 

The SST is the total variation in the test data set calculated by the summed squared 
deviations of the test data from their means. The R2 (typically between 0.0 and 1.0) 
has a high value for a good model fit and a low value for a poor fit. For our results, it 
is averaged over five independent modeling runs with varying random init ial condit ions. 

Table II shows the highest R2 for nonlinear ANNs in combination with the full fac­
torial design and the d-optimal design, whereas batch learning outperforms incremental 
learning. The models built on the central composite design are characterized by the low­
est R2 , especially in the nonlinear cases. The sample size of the central composite might 
be too small to describe the nonlinearities of the considered process relation appropri­
ately. PLS yields moderate, but robust results for all designs. We obtain comparable 
model prediction accuracy for the different designs that vary in sample size considerably. 

Process Optimization 

We implement the process optimization with the presented batch learning ANN surrogate 
model to determine the optimal values for the five selected parameters x1 , x 2 , x 3 , x4 , x7 
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Table III: Optimal process parameters x1 , x 2 , x 3 , x 4 , x7 for minimum spring-back y 
Design X1 X2 X3 X4 X7 y 

full factorial (243 samples) 247 0.36 6 210 -12 4.9726 
d-optimal (81 samples) 247 0.36 6 210 -12 4.8585 

4 
-18 

punch velocity [m/s] 

Figure 4: Optimal Young's modulus (x1 ) and punch velocity (x7 ) for minimum spring­
back y (d-optimal design) 

for minimum spring-back. We combine a Genetic Algorithm [13] with lower and upper 
parameter limits for global optimization with a gradient-based Newton algorithm [8] for 
local optimization (fine-tuning around the global solution) . 

Table III presents the optimal parameter values for the full factorial and the d-optimal 
design that match exactly for the investigated case. The spring-back predicted by the 
batch learning ANNs differs slightly due to the different designs and the resulting varied 
initial conditions. Figure 4 depicts the Young's modulus x 1 and punch velocity x7 that 
lead to minimum spring-back for the d-optimal design. The spring-back is visualized 
as a surface function over the two-dimensional parameter space with its minimum at 
x1 = 247 GPa, X7 = -12 m/s. 

Extension of the Integrated Approach 

We are currently working on extending the proposed integrated approach in view of 
Sequential DoE. This removes the limitation of initially fixed sample size by adapting 
the design during the execution of process runs (experiments or simulations) taking 
into account already existing information. Both extensions (see Figure 5 and Figure 6) 
contain an initial DoE component to create an initial space filling design ( e.g. Latin 
hypercube or grid sampling [4]). In a next step, Sequential DoE enables the extension 
of the initial design by taking into account new samples with respect to 1) the design 
(parameter) space or 2) the response (result) space. 

1) Sequential DoE with sample selection with respect to design space 
In the extension with sample selection with respect to the design space (Figure 5), 
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Figure 5: Extension of integrated approach with respect to design space 
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Figure 6: Extension of integrated approach with respect to response space 

an initial process model is implemented from the initial design and then incrementally 
adjusted by each new sample (inner loop). If the model accuracy is satisfactory, it is 
finally used for process optimization. New samples with respect to the design space 
can either be selected randomly or with a distance-based criterion. A random selection 
covers the entire design space for many runs, but does not create a sparse and adaptive 
data sample. However, this can be achieved by a distance-based sample selection with 
respect to the design space which is the common procedure in comparison to sample 
selection with respect to the response space. Nevertheless, the design space is typically 
multi-dimensional compared to the scalar response, which leads to a high complexity. 

2) Sequential DoE with sample selection with respect to response space 
The distance-based sample selection with respect to the response space (Figure 6) enables 
the generation of a sparse and adaptive data sample regarding the actual quantity of 
interest which is typically only one-dimensional. An initial process model is built from 
the initial design and then incrementally adjusted by each new sample that is selected 
with respect to the response space. A process optimization step is required to determine 
the optimal process parameters (in the design space) from the distance-based selected 
response. This (inner loop) is repeated until the model is exact enough and it can be 
applied for the final process optimization to determine the optimal parameters with 
respect to a desired result. The most crucial point in this case is to use the process 
model for optimization at an early stage ( after initial modeling). This can be addressed 
by selecting an adequate initial design. 

Conclusion 

We have introduced an integrated approach for rapid prototyping in process and materi­
als design by combining DoE, surrogate process modeling and process optimization. We 
have compared different designs and regression models. Our results show that we obtain 
the same optimal process parameter values for minimum spring-back from a detailed 
full factorial design (243 samples) as from a reduced cl-optimal design (81 samples). We 
have proposed extensions with Sequential DoE to efficiently create and handle sparse 
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and adaptive data samples for process or material optimization. Future work involves 
the refinement and evaluation of the extensions and the transfer to more complex tasks. 
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