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Abstract 

Numerical simulations of component behavior and performance is critical to develop optimized 
and robust load-bearing components. The reliability of these simulations depend on the description 
of the components material behavior, which for e.g. cast and polymeric materials exhibit 
component specific local variations depending on geometry and manufacturing parameters. Here 
an extension of a previously presented strategy, the closed chain of simulations for cast 
components, to predict and incorporate local material data into Finite Element Method (FEM) 
simulations on multiple scales is shown. Manufacturing process simulation, solidification 
modelling, material characterization and representative volume elements (RVE) provides the basis 
for a microstructure-based FEM analysis of component behavior and a simulation of the 
mechanical behavior of the local microstructure in a critical region. It is discussed that the strategy 
is applicable not only to cast materials but also to injection molded polymeric materials, and 
enables a common integrated computational microstructure-based approach to optimized 
components. 

Introduction 

In the automotive and transportation areas, the request and legislation demands for reduced 
emissions and fuel consumption drives the need for designing and manufacturing components with 
high mechanical performance and low weight. In this process, both materials with a low density, 
e.g. polymeric materials, aluminium and magnesium, and materials with higher density and higher 
strength, as e.g. cast irons and steel, has to be considered. A material with higher strength may 
compensate for its higher density by requiring a lower volume material, and a high density material 
may thus be found to be the optimal selection for producing a light component. Numerical 
structural analysis and optimization methods as FEM simulations, topology optimization and 
shape optimization has been proven to be important tools for finding the optimal geometry with 
respect to complex load cases, significantly reducing the weight of components while 
simultaneously maintaining or even increasing their mechanical performance in terms of e.g. stress 
distribution, fatigue life or damage. These numerical tools are typically based on the assumption 
that the material behavior throughout a given component is homogeneous. For many 
manufacturing methods, this is not in agreement with the underlying physics of the manufacturing 
process. For cast materials, as well as for many polymeric materials, the mechanical behavior and 
performance of the material is highly dependent on parameters as component design and 
manufacturing conditions. Here we study Spheroidal Graphite Iron (SGI), also known as ductile 
iron, a cast iron with more or less rounded graphite particles. The industrial request for SGI 
components is increasing, partly due to its highly attractive mechanical properties, as high strength 

TMS (The Minerals, Metals & Materials Society), 2015



and ductility, in combination with excellent castability. This enables the production of products 
with high-performance and complex geometries near net shape in large series.  
In SGI, the local mechanical response of the material is highly dependent on the microstructure 
formed during the manufacturing process [1]. The microstructure is here a complex combination 
of different phases, where the amount and morphology of the graphite particles [2] and the 
fractions of ferrite and pearlite and have been identified as important factors determining the 
mechanical performance of the material [1]. The formation mechanisms of these microstructural 
features are in turn highly dependent on several factors which are controlled by both manufacturing 
process parameters and component geometry, e.g. the local cooling rate which is controlled by 
both process-specific heat extraction conditions and the local section thickness [1]. These 
parameters all, to different extents, varies throughout the component and have complex 
interactions. This results in a variation in microstructure, and thus mechanical behavior, throughout 
a SGI component, which to a large extent is affected by the design of the component [3]. This 
needs to be considered in order to find the optimal geometry of a SGI component. The assumption 
of homogeneous behavior throughout the component will not provide an adequate description of 
the behavior of the material in the component [3]. Similar effects of process and design on material 
behavior are found in as well other cast materials, e.g. cast aluminium, but also in polymeric 
materials. Here the local material behavior depends on local microstructural features as e.g. 
crystallization, morphology, molecular orientation and reinforcement fiber orientation, which all 
in turn depend on both component geometry and injection molding process parameters [4]. For 
both these types of materials, there is a complex interaction between manufacturing parameters, 
component design and material behavior. From the industrial organizational standpoint, there is 
thus a mutual dependency between product design and production which needs to be considered 
to ensure a successful and efficient product realization process [5]. 

The closed chain of simulations for cast components 

Two of the current authors, Olofsson and Svensson, have previously presented a simulation 
strategy to address this mutual dependency for cast components [6]. The simulation strategy is 
called the closed chain of simulations for cast components, schematically illustrated in Figure 1. 

Figure 1. Schematic illustration of the closed chain of simulations 
for cast components [6]. Figure reprinted with permission from 
Elsevier.



The simulation strategy is based on a manufacturing process simulation, where in the case of 
casting the entire casting process, from chemical composition to mold filling, phase diagram 
calculations and models for solidification microstructure formation, is simulated. This simulation 
provides the local distribution of important microstructural features, e.g. the amount and 
morphology of the graphite and the local ferrite and pearlite content of the matrix. By using 
microstructure-based characterization models, the local elasto-plastic tensile behavior of the 
material can be predicted, e.g. using Hooke’s law and the Young’s modulus [2] for the elastic 
contribution and the Hollomon equation, , for the plastic contribution [7]. This local 
material behavior is then implemented into the macro-scale FEM simulation of component 
behavior using element-specific material definitions [6]. Physical observations using Digital 
Image Correlation (DIC) [8] as well as numerical experiments [3] have been performed to verify 
the simulation strategy. Figure 2 shows the strain field during tensile testing of a cast aluminium 
sample observed using DIC, and a comparison with the FEM simulation results obtained using 
local material behavior and homogeneous material behavior. It is clearly seen that the local 
variations in microstructure causes a redistribution of strains within the sample that a homogeneous 
FEM model fails to predict. Using the closed chain of simulations and local material behavior, this 
effect is however very well predicted [8].  

Figure 2. Comparison between strain fields observed using 
Digital Image Correlation (DIC) and FEM simulation results 
using local material behavior and homogeneous material behavior 
[8]. Figure reprinted with permission from Elsevier. 

In a general perspective, each element of the FEM mesh is in the simulation strategy considered 
as a representative volume for the material contained in that specific volume, with its own unique 
elasto-plastic behavior based on the micro-structural characteristics within the volume. The 
general approach is applicable not only to SGI, but has previously been applied to cast aluminium 
components [9], and is also applicable to components in polymeric materials. 



Micro-scale simulation of microstructure behavior 

Typically, experiments are performed on a structural length scale to determine material properties 
as Young’s modulus and yield stress of a specific material. These properties are most commonly 
used in FEM analyses to analyze structural performance of the product of interest. Furthermore, 
the material model is typically incorporated as an isotropic material model. However, in light of 
the demand of accuracy in virtual experiments of today, variations in the microstructure of the 
material has to be taken into account.  One way of dealing with variations in micro structure is to 
divide the product in isotropic regions with whilst varying the material properties in each region, 
e.g. using the previously outlined simulation strategy by Olofsson and Svensson, the closed chain 
of simulations [6]. Extending the ideas of Olofsson and Svensson, critical regions of interest can 
be modeled by a semi-multiscale approach where the strain field from the structural simulation is 
used as a boundary condition of a unit cell of the actual microstructure to study events of e.g. crack 
initiation.  
The identification of microstructures have been proven useful when determining volume fractions 
for different phases. Commonly the volume fractions are measured by means of image processing 
of SEM images on the surface of the specimen. Velichko et al. [10] used SEM images in 
combination with Focused Ion Beam (FIB) slicing to generate 3D microstructural cells to identify 
the volume fractions. In order to use the 3D structures in FEA, a huge number of finite elements 
have to be used to obtain the resolution needed. This motivates the choice to in the current work 
use SEM images of the surface of SGI to do the analysis on. Nevertheless, in order to get an idea 
about the complexity of the SGI we have used 3D X-ray tomography to capture the volume fraction 
of each individual phase, i.e. pearlite, ferrite and graphite. The Representative Volume Element 
(RVE) finite element model, see Figure 3, is then generated where the volume fraction of the RVE 
is chosen so that it corresponds to the 3D microstructure. The numerical model is utilized to reverse 
engineer the material properties of the different phases within the microstructure, and is correlated 
with experimental data on a structural scale, see Figure 4. The process of identifying the material 
properties of the individual phases is vital when determining e.g. crack initiation or properties of 
heat transfer within the alloy.  

Figure 3. The microstructure of the SGI alloy (left), 2D 
representation of the microstructure (middle) and the RVE finite 
element model (right). 



Figure 4. Schematic cycle of the reversed engineering strategy 
applied on a critical microstructural region identified from the 
macro-scale FEM simulation performed using microstructure-
based mechanical behavior. 

Since the homogenized behavior of the RVE depends on the choice of material properties within 
each phase, it is essential that an approximate material model is chosen to which a reversed 
engineering scheme can be applied. In the current work, we have chosen to use the Ramberg-
Osgood material model, see Eq. 1, for the pearlite. An example of the plastic strain distribution in 
the pearlite can be seen in Figure 5. For simplicity, the ferrite and the graphite phases are initially
assumed to be elastic. 

(1) 

In Eq. 1,  is the Cauchy stress,  is the yield stress, is the Young’s modulus, is the strain 
and  and  are material specific constants.  
The reversed engineering strategy is based on minimizing an objective function in the form of a 
fitness functional according to Eq. 2. As consequence of the chosen material model to approximate, 
there are three variables in the objective function, namely ,  and .

(2) 

Here is the simulated homogenized stress on the top boundary of the RVE, see Figure 5, and 
the corresponding experimentally measured stress is given by . The -norm is denoted by 
||…|| and  denotes a weight factor.  



Figure 5. Example of the plastic strain distribution in the RVE. 

As is seen in Eq. 2, the difference between the numerical and experimental stress-strain relations 
will provide the fitness response for each combination of variables. A composite Design Of
Experiment (DOE) scheme is used to initiate the optimization process by providing combinations 
of variables. In order to reduce the number of simulations needed to find an optimal set of 
variables, a surrogate model is generated by use of a Radial Basis Function (RBF), see e.g. the 
work by Amouzgar and Strömberg [11]. The RBF is in the form of  

(3)  

where the first term is the RBF and the second term is the augmented bias. The optimal point of 
the surrogate model generated from the first set of DOE is established by the Hooke and Jeeves 
pattern search method and is then used as input to the next set of DOE:s in an iterative manner, 
thus localizing as well as increasing the accuracy of the response surface. Figure 6 shows an 
example of the surrogate model using RBF. 

Figure 6. Example of the surrogate model using RBF with a priori
bias. 



(a)                                                                                                 (b) 

Figure 7. Stress (MPa) as a function of strain (-). The blue curves 
correspond to simulated results and the circle marked red curves 
corresponds to experimental data for (a) initial iterations and (b) 
the converged result. 

Figure 7 illustrates the optimization process. In Figure 7b, the converged simulated stress-strain 
curve is shown together with the corresponding experimental curve. As is seen, the structural 
behavior on a macroscopic length scale is well captured by an optimization of an approximated 
material model for the pearlite on a microscopic length scale. It should be noted that the ferrite and 
graphite are in this example modeled as elastic. However, the implementation of a non-linear 
ferritic phase and/or non-isotropic graphite phase into the present methodology is straight forward. 

Conclusions 

We have presented a framework for a multi-scale closed chain of simulations to predict the 
structural behavior of cast iron components with microstructure-based mechanical behavior. In 
essence, the framework enables microstructural design to obtain specific properties for special 
purpose products. Even though the framework in the present study is applied on cast iron 
components, it can also be applied to e.g. aluminium components or fiber reinforced plastics 
products as well. The approach is thus highly applicable to approach the dependency between 
product development and manufacturing aspects of the microstructure-based mechanical behavior 
and performance for a wide range of industrial components. By adopting a common and general 
perspective on microstructure-based product behavior of components, new aspects of geometry 
and material optimization methods can be revealed. Future work in this area will be aimed at 
exploring further aspects of microstructure-based product performance and optimization. 
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