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Abstract 

A comprehensive three-dimensional (3D) stochastic model for simulating the evolution of 

dendritic crystals during the solidification of binary alloys was developed.  The model includes 

time-dependent computations for temperature distribution, solute redistribution in the liquid and 

solid phases, curvature, and growth anisotropy. 3D mesoscopic computations at the dendrite tip 

length scale were performed to simulate the evolution of columnar and equiaxed dendritic 

morphologies and compared then with predictions obtained with 2D mesoscopic computations.  

Introduction 

A two-dimensional (2D) stochastic model was developed for the modelling of the evolution 

of dendritic morphologies during solidification [l].  Favorable comparison of predictions with 

measured microstructures requires the 2D stochastic model to be extended to 3D.  Several 3D 

models for simulating dendritic growth have been proposed in the literature including phase field 

approach [2, 3] and Lattice Boltzmann and Cellular Automaton approach [4].  To be efficient, 

these models require parallel computations and can be used only for relatively small domains.  A 

3D Cellular Automaton approach for modeling the evolution of dendritic grains has also been 

developed [5].  This 3D dendritic grain model is relatively fast but it cannot simulate the 

evolution of dendrites and of microsegregation patterns at the dendrite tip level.  Thus, main goal 

of the current contribution is to develop an efficient 3D stochastic mesoscale dendritic growth 

model based on the previously developed 2D stochastic mesoscale dendritic growth model 

presented in [1].  Comparisons of 2D and the 3D predictions in terms of microstructure evolution 

are also provided.  

Stochastic Dendritic Solidification Model 

The mathematical representation of the dendritic solidification process of a binary alloy is 

considered in a restricted 3-D domain (��).  A cross section of this 3D domain is shown in Fig. 1.

Here, n
�

 is the interface normal vector, K  is the mean curvature of the interface, and the curve �
represents the solid/liquid (S/L) interface which evolves in time and has to be found as part of 

the solution.  The solidification of binary alloys is governed by the evolution of the temperature (

� �t z,y,x,T ) and concentration ( � �t z,y,x,C ) fields that have to satisfy several boundary 

conditions at the moving S/L interface as well as the imposed initial and boundary conditions on 
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the computational domain. The equations that describe the physics of the solidification process in 

3-D Cartesian coordinates are as follows (see the 2D equations in [1, 6-8]).  

� Temperature (T) in �� (heat transfer equation):  
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where t is time, � is the density, K is the thermal conductivity, cp is the specific heat, L is the 

latent heat of solidification, fL is the liquid fraction, fS is the solid fraction, and x, y and z are the 

domain coordinates.  
� Concentration (C) in � (solute diffusion equation):  

In the liquid phase (CL):  

�
�



�
��



�

�



�

�
�


�
�



�
��

z
CD

zy
CD

yx
CD

xt
C L

L
L

L
L

L
L

	
	

	
	

	
	

	
	

	
	

	
	

	
	

 (2) 

In the solid phase (CS):  
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where DL and DS are the interdiffusion coefficients in the liquid and solid, respectively.  

 

 
 

Figure 1. A 3D-domain for dendritic solidification. 

 

Local equilibrium at the S/L interface on �(t) (here, “
*
” means at interface): 
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� Solute conservation at the S/L interface:  
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where *
nV  is the normal velocity of the interface and n�  denotes the normal to the S/L interface 

that is pointing into the liquid (see Fig. 1).  

� The interface temperature (T*
) is defined as (assuming local equilibrium with both phases): 

� � � �θφ,fΓmCCTT κL0
*
L

EQ
L

* ����         (6) 
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where 
EQ

LT  is the equilibrium liquidus temperature of the alloy, mL is the liquidus slope, K is the 

mean curvature of the S/L interface, � is the Gibbs-Thomson coefficient, and � �θφ,f  is a 

coefficient that accounts for growth anisotropy, where � is the growth angle (i.e., the angle 

between the normal and the growth axis) and � is the crystallographic orientation angle.  

In Eq. (6), second term in the right side is the constitutional undercooling and the last term in 

the right side is the curvature undercooling (that reduces the total undercooling at the dendrite 

tip, that is, has a stabilizing effect on the S/L interface). The interface temperature is also 

affected by the kinetic undercooling. The kinetic undercooling is not accounted for in this model 

since its effect becomes significant only at very high solidification velocities (i.e., in the rapid 

solidification regime). Also, the coefficient � �θφ,f  in Equation (6) assumes an axisymmetric 

approximation where the anisotropy and the interface shape are independent of the polar angle 

��in the x-y plane perpendicular to the growth axis [2]. 

The solidification process is governed by Eqs. (1) to (6) and a stochastic model for nucleation 

and growth. The numerical procedures for calculating the nucleation and growth, temperature 

and concentration fields as well as the growth velocity of the S/L interface are described in 

details in [9]. It consists of a regular network of cells that resembles the geometry of interest. The 

model is characterized by (a) geometry of the cell; (b) state of the cell; (c) neighborhood 

configuration; and (d) several transition rules that determine the state of the cell. In this work, the 

geometry of the cell is a cube.  Each cell has three possible states: “liquid”, “interface”, or 

“solid”. The selected neighborhood configuration is based on the cubic von Neumann's definition 

of neighborhood, that is the first order configuration and it contains the first six nearest 

neighbors. Solidification behavior depends to a great extent on the transition rules. In this model, 

the change of state of the cells from “liquid” to “interface” to “solid” is initiated either by 

nucleation or by growth of the dendrites.   

An explicit finite difference scheme is used for calculating the concentration fields in the liquid 

and solid phases. Zero-flux boundary conditions were used for cells located at the surface of the 

geometry. The solution algorithm includes the “interface” cells by multiplying the concentration 

in the liquid by the liquid fraction and the concentration in the solid by the solid fraction of the 

particular interface cell. Also, during each time-step calculation and for each “interface” cell, the 

previous values of the liquid and solid concentrations are updated to the current values of the 

interface liquid and solid concentrations calculated with Eqs. (4), (5) and (7). The calculation of 

the interface liquid concentration, *
LC  can be obtained from Eq. (6) as  

 
� �� �

L

EQ
L

*

O
*
L m

θ,fKΓTT
CC

���
��         (7) 

The procedures for calculating K  and � �θφ,f  are described below.  

The average interface curvature for a cell with the solid fraction fS is calculated with the 

following expression:  
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where N is the number of neighboring cells.  In the present 3D calculations, N = 26, that contains 

all the first order neighboring cells (including the diagonal cells).  Equation (8) is a simple 
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counting-cell technique that approximates the mean geometrical curvature (and not the local 

geometrical curvature). An improved curvature model is presented in [8]. A comparison of 2D 

simulations obtained with these curvature models was also provided in [8].  

The anisotropy of the surface tension (see Eq. (6)) is calculated as [2]:  
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where �  is  the angle between the normal direction to the solid-liquid interface and the [100] 
direction (growth axis), V is computed with Eq. [12] in [10], θ is calculated with Eq. (7) in [10] 

and � accounts for the degree of anisotropy. For cubic symmetry, � = 0.047 [2].   

The algorithm is presented in [10]. The simulation software was written in Visual Fortran 

90. The output of the model consists of screen plotting at any chosen time of C, T, or color 

indexes of all cells. Also, the final values of C, T, and color indexes of all cells are saved at the 

end of computations on the computer disk.  

 

Results and Discussion 
 

Thermo-physical properties of the alloys used in simulations are presented in Table 1. The 

dimensions of the 2D and 3D simulation domains are 2 mm x 4 mm and 2 mm x 4 mm x 1 mm, 

respectively.  The grid size is fine enough to approximately resolve the dendrite tip radius under 

the current solidification conditions.  Newton cooling boundary condition was applied only to the 

bottom of the computational domain. All other boundaries were perfectly insulated.   

The surface heat transfer coefficient used in the present simulations is h = 10
3
 W m-2 K-1.  

Zero-flux solute boundary conditions were applied at the boundaries of the computational 

domain (i.e., a closed system was assumed). The initial melt temperature was 1400 °C. Also, an 

initial concentration equal to Co was assumed everywhere on the computational domain.  
 

Table 1. Thermophysical properties of IN718-5Nb used in simulations [9, 11]. 

Property 

 

C
Nμ  

[m
-2

 K
-2

] 

E
Nμ  

[m
-3

 K
-2

] 

L 
[J/kg] 

� 
[kg/m3] 

K 

[W/m/K] 

cp 
[J/kg/K] 

TL 

[°C] 

 
Value 

 
1x106 

 
5x108 

 
2.9x105 

 
7620 

 
30.1 

 
720 

 
1336 

Property Co 
[wt.% ] 

Ceut 
[wt.% ] 

ko 
- 

DL 
[m2 s-1]

DS 
[m2 s-1]

mL 
[°C %

-1
] 

� 
[K m] 

Value  
5.0 

 
19.1 

 
0.48 

 
3x10-9 

 
1x10-12 

 
-10.5 

 
3.65x10-7 

 

In Fig. 2, a comparison of 2D (a) and 3D (b) simulated microstructures (columnar dendritic 

morphologies) in unidirectional solidification of IN718-5 wt. % Nb alloy is presented.  The 2D 

computations were done by using the 2D stochastic dendritic model presented in [1, 6-8]. The 

3D simulation results are taken from the middle of the simulated sample (x-y plane with z = 0.5 

mm).  The competition between nucleation and growth of multiple columnar dendrites is evident 

in both 2D and 3D cases. The strong growth competition from the sample bottom (>20 dendrites) 

to 1/4 of the sample height (10 dendrites) to 1/2 of the sample height (5 dendrites in 2D and 7 

dendrites in 3D) to 3/4 of the sample height (3 dendrites in 2D and 4 dendrites in 3D) can be 

observed.  For 3D computations, more dendrites are observed toward the top of the sample 
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because more nucleation sites are available in 3D than in 2D and also because some dendrites 

that are visualized are cut from a different plane.  Note also that the columnar morphologies look 

different in 3D than in 2D.   

Figure 3 shows a comparison between 2D and 3D computations in terms of equiaxed 

dendritic morphologies.  The legend in Figs. 2 and 3 shows the 256 color indexes (CI, illustrated 

here in 16 classes, where each class contains 16 different color indexes) that is used for 

displaying the preferential crystallographic orientation angle.   
 

 
(a) (b)    CI 

Figure 2. Comparison of 2D (a) and 3D (b) simulated microstructures (columnar dendritic 

morphologies) in unidirectional solidification of IN718-5 wt.% Nb alloy.  
 

 
(a)    (b)      CI 

Figure 3. Comparison of 2D (a) and 3D (b) simulated microstructures (equiaxed dendritic 

morphologies) in unidirectional solidification of IN718-5 wt.% Nb alloy   
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The orientation angles (θ) can be extracted from the legend in Figs, 2 and 3 by using the 

following equation: θ = �/2*(CI/255)-�/4.  Thus, when CI/255 varies from 0 to 1, θ ranges from 

-�/4to �/4.   

The equiaxed grain density was fx10
8
 nuclei/m

2
 in 2D and 10

12
 nuclei/m

2
 in 3D.  The 

conversion factor f = �/4 [12].  Similar equiaxed morphologies can be observed from Fig. 3 for 

both 2D and 3D cases, implying that 2D computations can be used and then the grain size can be 

converted to 3D by using the “1/f” conversion factor.  

A RAM memory size of 100 bytes/cell is needed in the present 3D computations.  CPU-time 

is related to the domain size and the time-step and, for the simulation problems presented in Figs. 

2 and 3, is of the order of few hours on a Dell Precision T7500 desktop.   

 

Conclusions 
 

An efficient 3D mesoscale stochastic model was developed. The model was applied to 

simulate 3D microstructures using PCs with reasonable amount of RAM and CPU time and 

therefore no parallel computations were needed.  

It was observed that the 3D columnar dendritic morphologies look different than the 2D 

columnar dendritic morphologies. This is due to the fact that, for a 2D geometry, the grain 

growth is constrained in the x-y plane while for the 3D case it is free in the third (z) direction.  

Nevertheless, the predicted 3D equiaxed dendritic morphologies look similar to the 2D 

equiaxed dendritic morphologies.  A simple conversion factor (4/�) can be used to convert the 

2D grain size to 3D grain size. 
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