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Abstract 

Multi-component magnesium alloys exhibit a complex 
constitution, requiring computational thermodynamics for a 
quantitative treatment that goes beyond "just" phase 
diagrams. The basis for this approach is a thermodynamic 
Mg alloy database, which is developed in an ongoing long­
term project in our group since many years. Three 
distinctive features of this database are highlighted in this 
report: (i) Combination of own key experimental work with 
theoretical modeling to generate consistent data, (ii) 
Systematic quality control of the database using a variety of 
elaborated cross-checks, and (iii) Complete and entire 
composition range descriptions for all pertinent binary or 
ternary subsystems whenever possible. The latter point is 
decisive for the capability to use this tool for new alloys, far 
beyond the composition limits of conventional Mg alloys. It 
is demonstrated by correctly predicting the phase formation 
in aluminum-rich six component alloys. Also, new Mg­
solder alloys can be tackled that are essentially Zn-rich. 

Introduction 

Quantitative access to all available thermodynamic and 
phase diagram data in a consistent, numerical and easily 
readable form is - at least for multicomponent alloys -
virtually impossible without the use of computational 
thermochemistry. The fundamental idea goes back to the 
introduction of the Calphad method by Larry Kaufman in 
1970 [1]. In a nutshell it is to calculate all these data, 
ranging from stable and metastable phase equilibria down 
to the chemical potentials, from a unique set of 
thermodynamic model parameters of the alloy system. A 
review of the Calphad method [2] and a recent summary on 
assessment techniques and database design [3] are given 
elsewhere. 

Major thermodynamic databases are mainly available 
from developers of commercial themlOdynamic software 
packages such as Pandat (www.computherm.com). 
Thermocalc ( www.thermocalc.com ), F actsage 
(www.factsage.com), MTDATA (www.npl.co.uk/mtdata), 
more sources are given in [3]. A specific aspect in 
developing a magnesium alloy database, in comparison to 
steel and Al alloys, is the substantially smaller pool of 
experimental data in the published literature. In addition to 
thermodynamic assessment work it is thus mandatory to 
perform original experimental work in a combined 
approach in order to generate a trustworthy Mg alloy 
database. This is the typical approach in our ongoing work 
in this field, some results of which will be shown below. 
Sample compositions for key experiments are selected by 
preliminary thermodynamic calculations. Such samples are 
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prepared in high purity and the workhorse methods to 
analyze phase equilibria or transitions are X-ray diffraction 
(XRD), metallographic analysis, scanning electron 
microscopy with energy dispersive X-ray microanalysis 
(SEMlEDX), differential thermal analysis (DTA) and 
differential scanning calorimetry (DSC). It is the purpose of 
this study to highlight some real world applications of this 
approach and also to outline the current scope and structure 
of the database and the important aspect of its validation. 

Selected applications of the Mg alloy database 

Phase equilibria in Mg-AI-Zn-Mn system provide crucial 
information for the advancement of AZ and AM alloy 
series. Specifically, the liquidus and solidus data reported 
for commercial AZ and AM alloys are generally based on 
thermal analysis. The following two points have been 
clarified by performing own experiments combined with 
computational thermodynamics [4] (i) The measured 
"liquidus" temperature generally does not represent the 
actual equilibrium one, in other words, the primary 
precipitate for these Mg-alloys cannot be detected in the 
thermal analysis. (ii) The measured "solidus" does not 
correspond to the equilibrium solidus and not even to the 
end of non-equilibrium solidification process. The 
measured "solidus" is often associated with the starting 
precipitation of Mg17AI12 phase and, importantly, the 
solidification process of these Mg-alloys ends at much 
lower temperature. This example shows that it is possible to 
predict even non-equilibrium effects [4]. 

In specific studies on AZ31 based alloys it could be 
shown that the current thermodynamic description can be 
successfully combined with a phase field simulation 
approach aiming at a microstructure control [5]. It was also 
shown helpful in better understanding the influence on 
manganese on the microstructure of AZ31 and a possible 
relation with grain refining [6j. 

AI-rich alloys in the system AI-Zn-Mg-Cu-Sc-Zr were 
also studied by thermodynamic calculations [7]. Phase 
formation was compared with experimental data obtained 
by DTA and microstructural analysis. Calculated phase 
diagrams, such as shown in Fig. 1, phase amount charts and 
enthalpy charts together with non-equilibrimn calculations 
under Scheil conditions reveal significant details of the 
complex phase formation. All calculated data are 
predictions irom the current thermodynamic database 
developed for Mg-alloys and not from a specialized Al­
alloy database. Our basic concept is to assess the entire 
phase equilibria in the complete composition range of each 
subsystem as far as possible. 

As a result, this database is also quite useful for Al­
alloys with adequate alloying elements. That, in tum, 
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provides support for a reasonable application of this 
database for advanced Mg-alloys beyond the conventional 
composition ranges. 
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Figure]: Calculated vertical section of the AI-Zn-A1g-Cu­
Sc-Zr phase diagram for constant 8 wt. % Zn, 2 wt. % Cu, 
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Current scope of the Mg alloy database 

The thermodynamic Mg alloy database is developed in an 
ongoing long-term project in our group since many years. 
This database currently includes most of the elements used 
in Mg-alloys including some micro-alloying elements and 
impurities, and covers most of the phases appearing in 
commercial magnesium alloys. 17 components (Ag, AI, Ca, 
Ce, Cu, Fe, Gd, Li, Mg, Mn, Nd, Sc, Si, Sr, Y, Zn and Zr) 
and a total of 285 phases are included in the current 
database. 80 of them are modeled as solution phases; the 
additional 205 phases are stoichiometric. Complete or 
partial thernlOdynamic descriptions are developed for many 
binary and ternary systems as listed in Tables I and IL This 
means the current database works in a much wider 
composition range in many sub-systems, as demonstrated 
above in Fig. I. The ongoing effort is to complete the 
description of important interactions among these elements, 
as well as the extension to new elements. 

Table I lists all the binaries in the 17-component 
system. Thermodynamic descriptions are fully developed 
for the binaries in green color, which means that there is no 
composition limits if calculations are carried out for these 
binary systems. Binaries in yellow color are also developed 
in the entire composition range, but need further 
improvements. For these binaries, phase relationships are 
calculated with larger deviation. No model parameters are 
developed for those binaries shown white. 

: Full description c::::::::J : Full description for major phases c::::::::J : Extrapolation 

In addition to the binaries, thermodynamic descriptions for 
several key ternaries are also developed. Ternary Mg­
systems containing the most important alloying elements 
AI, Ca, Ce, Li, Mn, Si and Zn are listed in Table II. 
Thermodynamic descriptions for the ternaries in green color 
are fully developed; the current database therefore works in 
the whole composition and temperature ranges in these 
ternary systems. Thermodynamic descriptions tor those in 
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the yellow color are also developed, but need further 
validation by experimental data. Thermodynamic 
descriptions for the remaining two ternaries (shown white) 
are obtained by extrapolations of the constituent binaries. 
Table II is comprehensive and shows all possible ternary 
systems for this 8 component subset of the Mg-database. 
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Mg-AI-Ca 

Additionally, other thermodynamic descriptions for ternary 
system are included in the Mg-database The Mg-containing 
systems are listed in Table III. The non-Mg-containing 

Database validation 

Some general aspects concerning the development of the Mg­
database with a larger number of additional references validating 
its content were given earlier [8]. The most important aspects of 
quality assurance were given specifically in [9] and are further 
developed in more general terms [3]. These important aspects, 
concerning artitact-tree and thermodynamically reasonable 
construction, have been used to scrutinize the Mg alloy database 
and will not be discussed further at this point. 

The current thennodynarnic database for magnesium alloys 
has furthermore been extensively tested and validated using the 
published experimental data [10, 11, 12, 13, 14, 15, 16, 17 18, 
19]. Some sub-quaternary systems of this database have been 
critically assessed: Mg-Al-Ca-Ce, Mg-AI-Ca-Li, Mg-AI-Ce-Li, 
Mg-AI-Cu-Zn, Mg-Mn-Y-Zr, but not published yet. The 
quaternary systems Mg-AI-Li-Si [20] and Mg-Ce-Mn-Sc, Mg-Gd­
Mn-Sc, Mg-Mn-Sc-Y [21,22] were thermodynamically modeled 
and used for technical applications. These comparisons are 
condensed into a small number of diagrams, highlighting 
important data, as shown below. 

For the reliability ofthe calculated phase diagrams the fitting 
of the invariant temperatures are of paramount importance. Since 
the measured temperatures of the invariant reactions are not 
affected by super-cooling related problems, these nonvariant data 
are perfect criteria tor comparison of experimental with calculated 
data as shown in Figure 2. 
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systems are listed in Table IV. The color code is the same 
as in Table II. 
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Figure 2: Invariant temperatures for various temary alloys 
included in PanA1agnesium 5.0: Comparison between calculated 

and expoimental data. 

For the Mg-AI-Mn system the reliability is checked in detail 
[23]. The experimental data are plotted in Figure 3a and 3b as 
comparison between calculated results and experimental data. The 
same was done for the system Mg-Mn-Zn [24]. The same 
experimental data are shown on the liquidus surface of the Mg­
rich corner in Figure 4, also indicating the primary crystallizing 
phase. 
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Figure 3: Comparison between calculated results and experimental data for all alloy samples in the Mg-AI-Mn system. (a) Liquidus 
temperature at a given composition, (b) Solubility ofjVln in liquid at a given temperature and Al composition. The straight line in Figs. (a) 

and (b) is a visual aid corresponding to peifect agreement between experimental values and the calculated results from the present 
thermodynamic model [23}. 

This comparison in Figure 3 enables easy identification of 
those groups of experimental data that are not consistent with 
the bulk of experimental work. There is a reasonable agreement 
with this bulk of experimental data and the calculated values. 
Moreover, there is a reasonable agreement with the primary 
solidifying phases as shown in figure 4. 
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in Figure F3. The primary solid phase is specified in some 
experimental data. 
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The experimental data for the commercially very important 
Mg-AI-Zn alloys are shown in Figures Sa and Sb. The liquidus 
surface of the Mg-rich comer is given in Figure Sa. The same 
experimental data is plotted in Figure Sb as comparison between 
calculated results and experimental data [25]. 
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Figure 5a: Calculated partial Mg-AI-Zn liquidus suiface and 
experimental alloy compositions. The thick lines indicate 

monovariant reaction lines and the dashed lines represent 
isotherms at an interval of 50°C [25). 
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Measmed liquidus temperatures for other ternary Mg-alloy 
systems are compared in Figme 6 with calculations from the 
magnesium database. These miscellaneous Mg-X-Y systems 
include the alloying elements AI, Ca, Ce, Gd, Li, Sc, and Si. 
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Additionally a selected comparison of experimental data and 
calculated phase equilibria is given below. This demonstrates the 
feasibility to perfornl reasonable calculations with the Mg 
database even in some very high alloyed regions ",;th vanishing 
Mg-content. For the AI-Li-Si system a comparison between 
calculated and experimentally measmed DTA data is given in 
Figme 7 [26]. Figure 8 shows a calculated vertical section in the 
AI-Ce-Si system at constant 90 at.% Al including the DSCIDTA 
signals measnred [16]. 
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Figure 7: Comparison between calculated and experimentally 
measured DTA data/or the Al-Li-Si system [6]. 
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Outlook 

The effort is ongoing in our group to complete the description of 
important interactions among the included elements, as well as the 
extension of the Mg database to new elements. This has to be 
done by perfornling original key experiments combined with 
Calphad assessments subject to quality assurance and also 
incorporating first-principle calculations where appropriate, as 
depicted in Ref. [191. Another goal is to demonstrate additional 
useful applications of this database within tile tool of 
computational thennodynanlics to Mg alloy development and the 
advancement of processing of Mg alloys. 

This study is supported in part by the Gennan Research 
Foundation (DFG) in the Priority Programme "DFG-SPP 1168: 
Inl1oMagTec" 
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