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LAMINAR FLOW AND 
THE MOMENTUM EQUATION 

In discussing Newton's law of viscosity, we have described fluid motion as flowing parallel 
layers which, because of viscosity, establish a velocity gradient dependent upon the shear 
stress applied to the fluid. This velocity gradient has been regarded as a potential or a 
"reason" for momentum transport from layer to layer. 

In this chapter, we shall first derive simple differential equations of momentum for special 
cases of flow, for example, flow of a falling film, flow between two parallel plates, and flow 
through tubes. To make it possible for the student to participate in developing complex 
formulas, these derivations make use of the concept of a momentum balance and the 
definition of viscosity. These classic examples of viscous flow patterns certainly apply to 
rather simplified and idealized conditions. You may be tempted, therefore, to disregard the 
importance of thoroughly understanding these examples; however, we should point out that 
despite the simplicity of the following calculations, you will gain an appreciation of the 
variables involved. Also, you will obtain a basic tool for analyzing engineering problems: 
the ability to arrive at pertinent differential equations. 

2.1 MOMENTUM BALANCE* 

A momentum balance is applied to a small control volume of fluid to develop a differential 
equation. The differential equations, when their solutions comply with the physical 
restrictions (boundary conditions), yield the algebraic relationships which can be used to 
determine the engineering characteristics of the system. The solutions give the velocity 
distributions from which other characteristics, including the shear stress at the fluid-solid 
interface, are developed. As we shall see in Chapter 3, the shear stress at the fluid-solid 

"The general aspects of the developments in Sections 2.1-2.6 are similar to those found in Chapters 2-3 
in R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, 1960. 
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40 Laminar Flow and the Momentum Equation 

interface is very important in analyzing the disposition of energy flowing through a system. 
For steady state flow, the momentum balance is 

( rate of ) ( rate of ) ( sum of forces ) _ 0 (2.1) 
momentum in - momentum out + acting on system - · 

Momentum in (or out) may enter a system by momentum transfer according to Newton's 
equation of viscosity (if the fluid is Newtonian; otherwise various equations for 
non-Newtonian fluids are used), or it may enter due to the overall fluid motion. The forces 
applied to the balance are pressure forces and/or gravity forces. 

The momentum balance is actually a force balance because we are concerned with the rate 
of momentum that enters and leaves the unit volume. Units of momentum are MLT 1 

(M = mass, L = length, T = time), whereas a rate of momentum is MLT-2. Classical 
physics states clearly that forces (F = rna) are involved when we consider momentum rates. 
Thus, if the term momentum balance confuses the reader, he or she is reassured that a force 
balance is being applied. 

2.2 FLOW OF A FALLING FILM 

Consider the flow of a liquid at steady state along an inclined plane (Fig. 2.1). The liquid 
is at a constant temperature, and therefore its density and viscosity are constant. 
Furthem10re, we consider only that portion of the plane where the entrance and exit of the 
liquid to the plane are sufficiently remote so as not to influence the velocity v,. In this 
situation, v, is not a function of z but obviously a function of x.* Figure 2.1 also depicts the 
unit volume as a "shell" with a thickness Ax and length L; the width of the shell extends a 
distance W, perpendicular to the page. The terms used in Eq. (2.1) are as follows: 

Rate of momentum in 
across surface at x 
(moment transport due to viscosity) 

Rate of momentum out 
across surface at x + Ax 
(due to viscosity) 

Rate of momentum in 
across surface at z = 0 
(due to fluid motion) 

Rate of momentum out 
across surface at z = L 
(due to fluid motion) 

Gravity force acting on fluid (LWAx)(pg cos {3) 

In this particular problem, the pressure forces are irrelevant because the pressure does not 
vary with z. Also note that all terms in the list, including the first two, are z-directed forces. 
Figure 2.1 shows that momentum in by viscous transport is x-directed, but if we think of 

"In the region where u, = f(x) and u, ;o! f(z), we say that the flow is fully developed. 
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Liquid in 

Momentum 
in by now 

Direction 
or gravily 

Fig. 2.1 Flow of a falling film. 

interpreting T-"' in an alternative way-namely, as a shear stress-we certainly realize that we 
are dealing with a z-directed force. 

When all these terms are s11bstituted into the momentum balance, we get 

Because we are restricted to that part of the inclined plane which does not feel the effects of 
the exit and entrance, u, is independent of z. Therefore, the third and fourth terms cancel one 
another out. Equation (2.2) is now divided by LWAx and, if Ax is allowed to be infinitely 
small, we obtain 

lim r ... l. +box - r ... l. Q 
A = pg COS 1.1• 

D.x-o ... x 
(2.3) 

We have now recognized the definition of the first derivative of r., with respect to x, and 
have thus developed the differential equation pertinent to our system: 

dr ... 
dX = pg cos {3. (2.4) 

This equation is integrated to yield 

pgx cos {3 + C1• (2.5) 
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Equation (2.5) describes the momentum flux (or alternatively the shear-stress distribution), 
but contains an integration constant C1• This constant is evaluated by recognizing that the 
shear stress in the liquid is very nearly zero at a liquid-gas interface. In other words, the gas 
phase, in this instance, offers little resistance to liquid flow, which results in a realistic 
boundary condition: 

B.C.1 at x = 0, T xz = 0. (2.6) 

Substitution of this boundary condition into Eq. (2.5) requires that C1 = 0; hence the 
momentum flux is 

r., = pgx cos {3. (2.7) 

If the fluid is Newtonian, then we know that the momentum flux is related to the velocity 
gradient according to 

(2.8) 

Substituting this expression for r., in Eq. (2. 7) gives the distribution of the velocity gradient: 

Integrating Eq. (2.9), we have 

dv, 
dx 

pg cos {3 
- X 

1] 

u, = - ( pg ~~s {3) x2 + C2 • 

(2.9) 

(2.10) 

Another integration constant has evolved which is evaluated by examining the other boundary 
condition, namely, that at the fluid-solid interface the fluid clings to the wall; that is, 

B.C.2 at x = l), v, = 0. (2.11) 

Substituting this into Eq. (2 .10), we determine the constant of integration; C2 = 
(pg cos {3121JW. Therefore the velocity distribution is 

= pgl)2 cos {3 [ - [~] 2] v, 21] 1 {j . 
(2.12) 

and is parabolic. Once the velocity profile has been found, a number of quantities may be 
calculated. 

i) The maximum velocity, v,max, is that velocity at x = 0: 

vmax z 

ii) The average velocity, ii,, is simply 

u, 
1 a 
5 J v,dx 

0 

pgl) cos {3 
21] 

pgl)2 cos {3 
21] 

(2.13) 

(2.14) 
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iii) The volume flow rate, Q, is given by the product of the average velocity and the cross-
section of flow: 

Q = u,<M> (2.15) 

The foregoing analytical results are valid only when the film is falling in laminar flow 
(straight streamlines). This condition can easily be satisfied for the slow flow of viscous 
films, but experimentally, it has been found that as the film velocity increases, the film 
thickness increases (according to Eq. (2.14)) to a critical value, depending on the liquid's 
kinematic viscosity, where turbulence replaces laminar flow. Of course, when turbulent flow 
develops, Eqs. (2.12)-(2.15) are no longer valid. 

Example 2.1 A viscous molten glass covers a molten metal, and together they flow slowly 
down an inclined plane that makes an angle (3 with the vertical. The thickness of the glass 
is o1, and the combined thickness of both layers is ~- Of course, each layer has its own 
viscosity. For a plane of length L, assume laminar flow that is fully developed and derive 
an equation for the velocity distribution in each layer. 

Solution. We should recognize that Eq. (2.4) applies to both layers. In the glass (i.e., the 
top layer), rxz = 0 at x = 0. Therefore, after integrating Eq. (2.4) the shear stress in the 
glass is 

Txz = Pg X g COS (3 

or 

dv, _ x g cos (3 
dx - vg 

where the subscript g is for glass. Another integration gives: 

x 2 g cos (3 
If= - 2vg 

In the metal, we rewrite Eq. (2.4) as 

and integrate twice. The result is 

where the subscript m is for metal. 

g cos (3 ----

In order to evaluate the three constants, c1, c2 and c3, we apply the following conditions: 

B.C. 1: v, = 0 atx = o2, 

B.C. 2: v, (metal) = v, (glass) at x = O~o 
B.C. 3: rxz (metal) = Txz (glass) at X = o1• 
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From these three conditions (and lines and lines of algebra), the three constants can be 
determined so that the velocity distribution in both layers can be found. The results are 

and 

c = 2 

(Pg - Pm) ol g cos {3 

17, 

oi. g cos {3 

2.3 FULLY DEVELOPED FLOW BETWEEN PARALLEL PLATES 

Consider the flow of fluid between parallel plates in Fig. 2.2. The velocity at the entrance 
is uniform and, as the flow progresses, velocity gradients must form because the fluid clings 
to the wall. At some distance downstream from the entrance, the velocity profile becomes 
independent of the distance from the entrance, and the flow is then fully developed. Let this 
region of fully developed flow start at x = 0 and consider the unit volume in Fig. 2.2 with 
a thickness oily, width W, and length L. 

Rate of momentum in 
across surface at y 
(momentum transport due to viscosity) 

Rate of momentum out 
across surface at y + D.y 
(due to viscosity) 

Rate of momentum in 
across surface at x = 0 
(due to fluid motion) 

Rate of momentum out 
across surface at x = L 
(due to fluid motion) 

Pressure force on liquid at x = 0 
Pressure force on liquid at x = L 

D.yW[P(x = 0)] = P0.6.yW 

-.6-yW[P(x = L)] = -PLD.yW 

/ 
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Again, the momentum in and out of the system due to the fluid motion are equal. We are 
left with 

(2.16) 

Dividing through by L W .iy and letting .iy approach zero, we develop the differential equation 

(2.17) 

The boundary conditions are described at the centerline (y = 0) and at the solid wall (y = li) 
as follows: 

B.C. 1 at y = 0, Tyx = 0; (2.18) 

B.C. 2 aty = li, 

It is left as an exercise for the reader to show that the shear stress distribution is given by 

(2.19) 

and the velocity distribution (for a Newtonian fluid) by 

(2.20) 

We determine other characteristics of the system by the method shown in Section 2.2. These 
are: 

i) The maximum velocity 

vmax 
X 

(2.21) 

ii) The average velocity 

{j f ux dy (2.22) 
0 

iii) The volume flow rate 

(2.23) 

On looking back through this example, we note that in this instance the fluid flows 
because of the pressure drop (P0 - PL). For horizontal flow, such a pressure drop would be 
necessary to make the fluid flow, in contrast to the flow down an inclined plane (Section 2.2) 
on which gravity exerts the necessary force for fluid motion. 
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2.4 FULLY DEVELOPED FLOW THROUGH A CIRCULAR TUBE 

In this section we derive the momentum balance for steady flow through a long cylindrical 
tube for a Newtonian fluid and then for a non-Newtonian fluid, using an empirical equation 
that is often applied to polymeric melts. 

2.4.1 Newtonian Fluids 

Consider the fully developed flow of a fluid in a long tube of length L and radius R; we 
specify fully developed flow so that end effects are negligible. Since we are dealing with a 
pipe, it is convenient to work with cylindrical coordinates. Therefore the shell in Fig. 2.3 
is cylindrical, of thickness !J.r and length L. 

Momentum in by flow Pressure P0 

wall 

Momentum out by flow Pressure PL 

Fig. 2.3 Cylindrical shell chosen for momentum balance in tubes. 

Rate of momentum in 
across surface at r 
(due to viscosity) 

Note that here we include the area factor (Z1rrL) in parentheses. This is because the area 
as well as the shear stress is a function of r. 

Rate of momentum out 
across surface at r + !J.r 
(due to viscosity) 

Since we are considering fully developed flow, the momentum fluxes due to flow are equal; 
hence these terms are omitted. 

Gravity force acting on the cylindrical shell (Z1rr!J.rL)pg 
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Pressure force acting on surface at z = 0 

Pressure force acting on surface at z = L 

We now add up the contributions to the momentum balance: 

(27rrl1r)P0 

(2'11"rLT,.) I r - (211-rLT ,.) I r + 4r + 2'11"r11rLpg + 2'11"r11r(Po - PL) = 0. (2.24) 

Note that all terms contain the factor r; however, since r is a variable, it should not be 
used as a common divisor. By dividing through by 21rLI1r and taking the limit as t..r goes 
to zero, we develop the differential equation 

Integration yields 

d [Po - PL l dr (n,.) = -L- + pg r. 

[ P0 - PL l r 
T rz = --L- + pg 2 

c. 
+-r 

(2.25) 

(2.26) 

At r = 0, the velocity gradient (hence, the shear stress) equals zero; this can be realized 
because of the symmetry of flow. 

Thus for this case, 

B.C. 1 at r = 0, T,. = 0. (2.27) 

Therefore, C1 = 0, and the momentum flux is given by 

[Po - PL l r 
T,. = --L- + pg 2" (2.28) 

Substituting Newton's law· of viscosity 

(2.29) 

and noting 

B.C. 2 at r = R, Vz = 0, (2.30) 

we obtain the solution for the velocity distribution: 

[P0 - PL l [Rz) [ [r) 2
] v. = L + pg 411 1 - R . 

(2.31) 

As before: 
i) The maximum velocity is at r = 0, and is given by 

(2.32) 
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ii) The average velocity is 

2T R 

v, = 1rR2 J J vl dr dO = 
0 0 

iii) The volume flow rate is 

[ P - P l R2 
~ +pg 81j" 

[ P0 - PL l [ 1rR4
] Q = --L- + pg 87/ . 

(2.33) 

(2.34) 

This latter result, which is commonly referred to as the Hagen-Poiseuille law, is valid for 
laminar steady-state flow of incompressible fluids in tubes having sufficient length to make 
end effects negligible. An entrance length given by L, = 0.035 DRe is required before we 
can establish fully developed parabolic velocity distribution. 

Example 2.2 Water at 290 K flows through a horizontal tube of diameter 1.6 mm with a 
pressure drop of 900 N m·3• Find the mass flow rate through the tube. 

Solution. In this situation, the force of gravity does not act on the fluid in the direction of 
flow, so according to Eq. (2.34) the volume flow rate is 

The viscosity and density of water at 290 K are 1.080 x 10·3 N s m·2 and 103 kg m·3, 

respectively. Substituting in values, we obtain: 

= 900 N I 1r I (0.8 x 10-3t m4 1 m2 
Q m3 8 1.080 X I0-3 N s 

Thus we see that the mass flow rate is 

pQ = (103 }{1.34 x w-1 ) = 1.34 x 10-4 kg s·' 

We should then check if the flow is laminar, by evaluating the Reynolds number. As 
mentioned in Chapter 1, the criterion is Re < 2100: 

Also 

-
Re = 

DV DVp 
v 11 

pQ 
pV = 1rD214. 
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so that the Reynolds number may be written in the alternative form 

Therefore, 

4 1.34 x 10-4 kg m2 1 N s2 
Re = ---+----------~~~--~~--~~=---~~~-+~~--s 1.6 X 10-3 m 1.080 X 10-3 N s 1 kg m 

= 77.6 

Because Re < 2100, the flow is laminar. 

2.4.2 Power law non-Newtonian fluids 

Now we consider the isothermal flow of a non-Newtonian fluid through the circular tube of 
Fig. 2.3. The momentum balance is precisely the same as in Section 2.4.1 up to Eq. (2.28). 
We assume that the relationship between the shear stress and the shear rate is given by a 
power law, Eq. (1.32), as is often used for polymeric melts. Then 

(2.35) 

and by combining Eqs. (2.28) and (2.35), we obtain 

[ au, ] [ 1 [ P0 - PL ]]
11

" - - - --- + pg ,u. or 2770 L 
(2.36) 

Integrating with u, = 0 at r = R, the velocity distribution is obtained: 

[ R<••t>t• _ r<••t>t•]. 
(2.37) 

The maximum velocity is at r = 0 and is given by 

R(n+l)ln 
(2.38) 

so that Eq. (2.37) can be written in a simpler form: 

u. = v ..... [ 1 _ [ _Rr ](n•l)ln l (2.39) 
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The volume flow rate is 

R JRo r [ 1 [ _Rr )(n•t)/nl dr Q J 27r r uz dr = 27r v,-
0 

or 

(2.40) 

The average velocity is simply 

or 

[ n+1) max 
3n + 1 Vz · 

(2.41) 

2.5 EQUATION OF CONTINUITY AND THE MOMENTUM EQUATION 

In the previous sections of this chapter, we determined velocity distributions for some simple 
flow systems by applying differential momentum balances. The balances for these systems 
served to illustrate the application of the momentum equation. In general, when dealing with 
isothermal fluid systems which do not involve changes in compositions, we can solve 
problems by starting with general expressions. This method is better than developing 
formulations peculiar to the specific problem at hand. The general momentum equation is 
also called the equation of motion or the Navier-Stokes' equation; in addition the equation of 
continuity is frequently used in conjunction with the momentum equation. 

The continuity equation is developed simply by applying the law of conservation of mass 
to a small volume element within a flowing fluid. The principle of conservation of mass is 
quite simple to apply and we assume that the reader has used it in developing material 
balances. We develop the momentum equation by applying the momentum balance which, 
in its general form, is an extension of Eq. (2.1). With the aid of these two equations, we can 
mathematically describe the problems encountered in the previous section, as well as more 
complicated problems. However, as we shall see, these expressions are rather cumbersome, 
and exact solutions can be found only in very limited cases. Hence these equations are used 
primarily as starting points for solving problems. The equations of continuity and motion are 
simplified to fit the problem at hand. Although theoretically these equations are valid for 
both laminar and turbulent flows, in practice they are applied only to laminar flow. 

2.5.1 Equation of continuity 

Consider the stationary volume element within a fluid moving with a velocity having the 
components ux, uY, and uz, as shown in Fig. 2.4. We begin with the basic representation of 
the conservation of mass: 

( rate of mass ) ( rate of ) ( rate of ) 
accumulation = mass in - mass out · 

(2.42) 
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(x + t!.x.y + ~y.z + ~z) 

.. 
<I 

y 

X 

Fig. 2.4 Volume element fixed in space with fluid flowing through it. 

First, look at the faces perpendicular to the x-axis. The volume flow rate of fluid in 
across the face at x is simply the product of the velocity (x-component) and the cross-sectional 
area, yielding AyAzvxlx- The rate of mass in through the face at x is then AyAz(pux)lr 
Similarly, the rate of mass out through the face at x + Ax is AyAz;(pvx) I x +Ax· We may write 
analogous expressions for the other two pairs of faces, and then enter all the terms that 
account for the fluid entering and leaving the system into the mass balance, and leave the 
accumulation term to be developed. 

The accumulation is the rate of change of mass within the control volume 

The mass balance thus becomes 

(2.43) 

Then, dividing through by AxAyAz, and taking the limit as these dimensions approach zero, 
we get the equation of continuity: 

~ = - [ :x PVx + ~ PVy + :Z PV,] · (2.44) 

A very important form of Eq. (2. 44) is the form that applies to a fluid of constant density. 
For this case, which frequently occurs in engineering problems, the continuity equation 
reduces to 

iJvx iJvY iJv, 
0 iJx 

+- +Tz iJy 

or in vector notation 

V·v 0. (2.45) 
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2.5.2 The momentum equation 

When Eq. (2.1) is extended to include unsteady-state systems, the momentum balance takes 
the form: 

[ rate of l [ rate of l [ rate of l [ sum of l momen~ = moiii:entum - momentum + forces acting . 
accumulatiOn m out on system 

(2.46) 

For simplicity, we begin by considering only the x-component of each term in Eq. (2.46); 
they- and z-components may be handled in the same manner. 

Figure 2.5(a) shows the x-components of r as if they were made up of viscous momentum 
fluxes rather than shear stresses. On the other hand Fig. 2.5(b) shows the x-component of 
T as stresses. Note the appearance of r xx• which by the scheme of subscripts represents the 
transport of x-momentum in the x-direction. Alternatively, we view r xx as the x-directed 
normal stress on the x-face, in contrast to ryx which we view as the x-directed shear stress on 
they-face. 

y 

X X 

(al (b) 

Fig. 2.5 Momentum transport (x-component) due to viscosity into the volume element. (a) Directions 
of viscous momentum transport. (b) Directions of stresses. 

Let us now develop the terms that enter into Eq. (2.46). First, the net rate at which the 
x-component of the convective momentum enters the unit volume, is 

.1y.1z(Pvxvx ix - pvxvx ix • 4.1:) + .1x.1z(pv,vx IY - PVyVx IY • ay) 

(2.47) 
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Similarly, the net rate of viscous momentum flow into the unit volume across the six faces 
is 

(2.48) 

The reader who has not come in contact with this development before might find a brief 
explanation of the meaning of puyux and pu,ux useful. Remember that we are applying the law 
of conservation of momentum to the x-component of momentum. Thus ux represents the 
x-velocity, and the rate at which mass enters the system through the y-face is given by 
iixAzPuylr Hence the rate at which x-momentum enters through they-face is simply the 
product of mass-flow rate and velocity: 

iixAzPVyvxly· 

In most cases, the forces acting on the system are those arising from the pressure P and 
the gravitational force per unit mass g. In the x-direction, these forces are 

(2.49) 

and 

respectively. Here gx is the x-component of g. Finally, the rate of accumulation of 
x-momentum within the element is 

AXAYAZ [ :t pvx] . (2.51) 

Entering Eqs. (2.47)-(2.51) into the momentum balance, dividing through by i:UAyAz, and 
taking the limit as all three approach zero, we obtain the x-component of the momentum 
equation: 

(2.52) 

They- and z-components, which we obtain in a similar manner, are 

aP 
- iJy + pgy, (2.53) 



54 Laminar Flow and the Momentum Equation 

and 

- [ ~ T + ~ T + ~ T ] - aP + pg,. ax xz iJy yz az u az • 
(2.54) 

To describe the general case, all three Equations (2.52), (2.53), and (2.54) are needed. 
Vector notation can reduce these to one equation which is just as meaningful as all three. 
The quantities pv,, pvy, and pv, are the components of the mass velocity pv; similarly g,, gY, 
and g, are the components of g. Vectorial representation of a velocity and an acceleration 
is familiar to most readers. However, the terms iJP/ax, aP!ay, and aPJaz all represent 
pressure gradients. By itself, pressure is a scalar quantity, but the gradient of pressure is a 
vector denoted, in general, by VP (sometimes written grad P). Therefore 

a a a 
VP = ax p + ay p + az P, 

and V can be thought to be an operator, such that 

a a a 
V=ax+ay+az· 

The terms pv,v,, pv,vy, pv,v,, pvyv,, etc., are the nine components of the convective 
momentum flux pvv, which is the dyadic product of pv and v. Also, rxx, Txy, etc., are the nine 
components of r. 

The vector equation representing Eqs. (2.52)-(2.54) is finally written: 

a 
at pv = - [V·pvv] - VP- [V·r] + pg. (2.55) 

To interpret the mathematical nature of V·pvv and V·r in physical terms is difficult. 
However, for sufficient understanding of this text it is enough if the reader accepts them as 
mathematical shorthands of the appropriate terms in Eqs. (2.52)-(2.54). 

So far we have developed a general expression, namely, Eq. (2.55) for the law of 
conservation of momentum. However, in order to use this equation for the determination of 
velocity distributions, it is necessary to insert expressions for the various stresses in terms of 
velocity gradients and fluid properties. The following equations are presented without proof 
because the arguments involved are quite lengthy. For Newtonian fluids, the nine components 
of r are written as follows. 1 

au, 2 
(2.56) Txx -271 - + - 71(V·v) ax 3 

Normal iJvY 2 
(2.57) stresses Tyy -271 - + 3 71(V·v) ay 

au, 2 
(2.58) Tu -271- + 3 71(V·v) iJz 

1V. L. Streeter, Fluid Dynamics, McGraw-Hill, New York, 1948, Chapter 10. 
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_11 [avx + ovY] oy ax (2.59) 

Shear 
stresses ryz (2.60) 

(2.61) 

These equations constitute a more general statement of Newton's law of viscosity than that 
given in Eq. (1.2), and apply to complex flow situations. When the fluid flows between two 
parallel plates in the x-direction so that vx is a function of y alone, where they-direction is 
perpendicular to the plates' surfaces (Fig. 1.4), then Eqs.(2.56)-(2.61) yield 

and 

which is the same as the simple relationship previously used to describe Newton's law of 
viscosity. Also in many other problems of physical significance in which vx is recognized as 
a function of both y and x, we find that ov)oy » ov)ox, and the simple rate Eq. (1.2) can 
be used for ryx as an example with a high degree of accuracy rather than Eq. (2.59). 

2.5.3 Navier-Stokes' equation, constant p and 11 

The continuity equation for constant density is given by Eq. (2.45) or in vector notation, 

V·v = 0. (2.62) 

Regarding the momentum equation, we can write Eqs. (2.52)-(2.54) with constant p and 71:' 

avy] 
+u-

l oz 

'This development is the subject of Problem 2 .II. 

(2.63) 

+ pgy, 
(2.64) 

(2.65) 
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The bracketed terms on the left side of these equations merit attention. Consider a control 
volume of fluid moving in space with no mass flow across its surface. The change in the 
x-component of its velocity with time and position is given by 

av, av, av, av, 
Av, = Tt At + ax Ax + 8y Ay + Tz AZ, (2.66) 

and since the x-component of acceleration is defined as 

(2.67) 

then we obtain 

av, av, av, av, 
a, = Tt + v, ax + v, ay + "• Tz 

Dv, 
Dt" 

(2.68) 

This is the acceleration one would feel if riding with the control volume of fluid. We also 
refer to this time derivative of velocity, Dv,/Dt, as the substantial derivative. Analogous 
expressions exist for they- and z-directions. In general, one notation can represent all three 
substantial derivatives, so that Eqs. (2.63)-(2.65) become 

Dv 
p Dt = -VP + .,vz., + pg. (2.69) 

Equation (2.69), or Eqs. (2.63)-(2.65) which taken together represent the expansion of 
Eq. (2.69), is often referred to as the Navier-Stokes' equation. In the form of Eq. (2.69), 
we can recognize it as a statement of Newton's law in the form mass (p) X acceleration 
(Dv/Dt) equals the sum of forces, namely, the pressure force (-VP), the viscous force (7JVZv), 
and the gravity or body force pg. 

2.6 THE MOMENTUM EQUATION IN RECTANGULAR AND CURVILINEAR 
COORDINATES 

In many instances rectangular coordinates are not useful for analyzing problems. For 
example, in the Hagen-Poiseuille problem discussed in Section 2.4, we described the axial 
velocity "• as a function of only a single variable r by employing cylindrical coordinates. If 
rectangular coordinates had been used instead, "• would have been a very complicated 
function of x and y. Similarly, it would have been difficult to describe and apply the 
boundary condition at the tube wall. 

The equations of continuity and motion in Section 2.5 were given in rectangular 
coordinates and are repeated here, along with spherical or cylindrical coordinates in 
Tables 2.1-2.7. 
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Table 2.1 The continuity equation in different coordinates systems 

Rectangular coordinates (x, y, z): 

(A) 

Cylindrical coordinates (r, 9, z): 

op 1 a 1 a a - +- -(prv,) +- -(pv1) + -(pv,) = 0 
ot r or r o9 oz 

(B) 

Spherical coordinates (r, 9, c/>): 

op t a 2 1 a . 1 a _ 0 :;- + 2 "(pr v,) + -. -9 , 9 (pv9 sm 9) + -. -9 =>.J. (pv.,.) -ut r ur r sm u r sm u'f' 
(C) 

'Tables 2.1-2.7 are from R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 
Wiley, New York, 1960, pages 83-91. Reprinted by permission. 
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Table 2.2 The momentum equation in rectangular coordinates (x, y, z) 

In terms of r: 

( ov, ov, ov, ov,) _ 
x-component p ot + v, ox + v,. oy + v, oz -

i)p 

ox 
( 0T XX Oryx Orzx) - -+-+- +pg, ox oy oz 

(ov, ov, ov, ov,) c!P y-component p - + v - + v - + v - = --ot X OX y oy ' oz oy 

(or,, or, or,,) - -+-+- +pg ox oy oz ' 
z-component ( ov, ov, ov, ov,) ciP p - + v - + v - + v - = --ot X OX y oy % 0Z OZ 

(or., or,, or,) - -+-+- +pg ox oy oz ' 
In terms of velocity gradients for a Newtonian fluid with constant p and 17: 

(ov, ov, ov, ov,) i)p x-component p- + v,- + v.- + v,- = --ot OX ' oy oz ox 

(A) 

(B) 

(C) 

( o2v, o2v, iJ2v,) 
+ '1 iJx2 + iJy2 + oz2 + pg. (D) 

y-component (iJv, iJv, iJv, iJv,) i)p p - + v,- + v - + v_ - = --iJt iJx ' iJy · oz iJy 

z-component 
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Table 2.3 The momentum equation in cylindrical coordinates (r, 0, z) 

In term, of r: 

r-component* 

8-component 

z-component 

iJP 
or 

( I iJ I iJr,0 too iJr") 
- - - (rr ) + - - - - + - + pg, 

r or " r DB r oz 
p(ov0 + v ilvo + ~ ov0 + v,v9 + v ilv0) = -~ iJP 

ot ' or r ao r ' oz r ao 
( I il 2 I r!r66 or9,) 

- - - (r r,o) + - - + - + pgo r2 or r ao oz 

(OV, OV, Vo OV, OV,) iJp p -+ v,-+--+ v,- = --or or r ao oz oz 

( I iJ I or0, or,.) 
- - - (rrn) + -- + - + pg, r or r i)(J oz 

In terms of velocity gradients for a Newtonian fluid with constant p and '7: 

r-component* ( ilv, iJv, Vo ilv, vi ov,) iJP 
P 8t + v,a; +-;: ao ---; + v, oz = -a, 

[ a (I a ) 1 o2v, 2 OVo o2v,J 
+ '7 & ; & (rv,) + ~ iJ82 - ~ ao + i)z2 + pg, 

8-component (avo OVo Vo OVo V,Vo OVo) I ilP 
p- + v- +--+- + v- = ---ot ' or r ao r ' oz r o8 

z-component 

(A) 

(B) 

(C) 

(D) 

(E) 

(F) 

'The term pu~ r is the centrifugal force. It gives the effective force in the r-direction resulting from 
fluid motion in the 11-direction. This term arises automatically on transformation from rectangular to 
cylindrical coordinates; it does not have to be added on physical grounds. 
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Table 2.4 The momentum equation in spherical coordinates (r, 0, ¢) 

In terms of r: 

r -component (ell', clv, v9 clv, v4> iJv, vi + v!) p - + v - + -- + --- - ---iJt ' Dr r iJ(J r sin 9 v</J r 

oP (I o 2 I iJ . = --;-- 2 ;-(r r .. ) + -. -0 ;-9 (r,9 sm 9) ur r ur r sm u 

(A) 

0-component 

r,9 cot 0 ) + - - -- '4>4> + pg. r r (B) 

tJ>-component p - + v - + -- + -- - + - + -cot(} ( OV4> OV4> V8 dV4> V.; OV4> V4>V, V.V.; ) 
ot ' or r iJ(J r sin (} iJ<P r r 

I oP ( I o 2 I or8_. I iJr4>4> 
= - r sin 0 a.p - ~ a; (r r,4>) + -;. ii8 + r sin (} a;j; 

r,4> 2 cot(} ) + --;:- + -,- .... + pg. (C) 

In terms of velocity gradients for a Newtonian fluid with constant p and '1: 

r-component P(ov, + v iJv, + ~ iJv, + ~ iJv, _ vi + v!) 
iJr ' or r o(J r sin (} a.p r 

(D) 

9-component (av. av. v. OVe v. av. v,v. v; cot (J) p -+v -+--+---+-----i!t ' or r j}(J r sin (} o<P r r 

= _ ~ iJP + ,(v2 v8 + ~ Dv, _ __ v8 _ _ 2 cos 0 ov•) + pg• (E) 
r DO r2 oO r2 sin 2 0 r2 sin 2 0 o<jJ 

</J-component p - + v - + - - + -- - + - + -cot 0 ( cJV4> cJV4> Ve llV4> V.; OV4> V.;V, V9V4> ) 
ar ' or r ao r sin 0 iJ<jJ r r 

(F) 
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Table 2.5 Components of the stress tensor in rectangular coordinates (x, y, z) 

[ avx 2 J Txx = - '1 2 ax - -:~(V. 11) !A) 

T = - ,[ 2 av, - j(V. 11)] 
yy iJy (B) 

[ av, 2 J t., = -'1 2az-- J{V • 11) (C) 

[avx av,] Txy = Tyx = -'1 OJ + OX (D) 

[av, av,J r,, = t,, = _, az + iJy (E) 

[av, avx] 
Tzx = Txz = - T/ OX + az (F) 

avx av, av, 
(G) (V•11)=-+-+-ax iJy az 

Table 2.6 Components of the stress tensor in cylindrical coordinates (r, (}, z) 

[ av, 2 J T = _, 2--J(V•11) " or (A) 

[ (liJv9 r,) 2 J r = -'1 2 -- + -- - 3(V • v) 
99 riJO- r (B) 

[ av, 2 J t = -'1 2-- J(V•v) " az (C) 

r = r = -'1[r~(~) + ~ av,J 
' 9 9' or r r i)(J 

(D) 

[iJv9 I av,J te, = t,e = _, ;;; + ~ ao (E) 

[av, av,J ... = t., = - '1 a; + az (F) 

I a I OVe av, 
(G) (V • v) = -- (rv,) + -- + -r or r iJ(J iJz 
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Table 2.7 Components of the stress tensor in spherical coordinates (r, 8, cp) 

[ I ov, o (v4>)] r4>, = r,4> = - 11 r sin 0 ocf> + r ar 7 (F) 

I o 2 I o I ov4> (V·v) = --(r v) + -- -(v6 sin0) + --- (G) r 2 ilr ' r sin (I ilO r sin (I ilf/1 

2.7 APPLICATION OF NAVIER-STOKES' EQUATION 

In this section, we show how to set up problems of viscous flow, by selecting the appropriate 
equation of motion that applies to the problem at hand and by simplifying it to manageable 
proportions so that it still relates to the given problem, and yet is not oversimplified. We do 
so by discarding those terms which are zero, and then recognizing those terms which can be 
neglected. To decide this, is, to a certain extent, a matter of experience, but in most 
instances even the novice can make intelligent decisions by making an order-of-magnitude 
estimate. For this purpose, we shall discuss below an order-of-magnitude technique that can 
be used to arrive at a more simplified, but still relevant, equation of motion. We also 
introduce other topics, such as the boundary layer and drag forces exerted by fluids on solids. 

2. 7.1 Flow over a flat plate 

Figure 2.6 depicts the velocity profile of a fluid flowing parallel to a flat plate. Before it 
meets the leading edge of the plate, we assume that the fluid has a uniform velocity V~. At 
any point x downstream from the leading edge of the plate, we observe that the velocity 
increases from zero at the wall to very near V~ at a very short distance li from the plate. The 
loci of positions where v,IV~ = 0.99, is o, and it is defined as the boundary layer. At the 
leading edge of the plate (x = 0), o is zero, and it progressively grows as flow proceeds 
down the plate. 

Whenever problems of this type are encountered, namely, in the flow of fluid past a 
stationary solid, the viscous effects are felt only within the fluid near the solid, that is, y < o. 
Of course, this is exactly where the behavior of the fluid should be analyzed, because for 
y > o, the happenings from the point of view of this discussion are essentially uneventful, 
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Fig. 2.6 Velocity profile and momentum boundary layer of flow parallel to a flat plate. 

due to the fact that in this region u, is essentially uniform and constant, being equal to V..,. 
Since u, is uniform and constant for y > o, Eq. (D) in Table 2.2 reveals that the pressure 
gradient iJP!ox is zero or, stated differently, pressure everywhere in the bulk stream is 
uniform. In tum, the pressure within the boundary layer is equal to the pressure in the bulk 
stream, so that iJP!ox is also zero within the boundary layer. We are now almost ready to 
pick out the appropriate equation of motion for the flow pattern in Fig. 2.6, but before we 
do so, let us examine which velocity components are relevant. 

As discussed above, u, is a function of y, and the determination of this functional 
relationship is indeed a major part of describing the flow and how the fluid and the solid 
surface interact. Also note that u, depends on x. This results from the fact that, as the fluid 
progresses down the plate, it is retarded more and more by the drag at the plate's surface. 
Thus ou,lox is not zero, and the equation of continuity for steady two-dimensional flow of 
fluid with constant p and 11 is 

ou, au, 
ax + ay = 0 · 

(2.70) 

Thus u, exists and we should consider both the x- andy-components in Table 2.2. 
For the steady-state case with constant density and viscosity, Eqs. (D) and (E) in 

Table 2.2 reduce to 

v [ iJ2u, + o2u, ]. axz ayz 
(2.71) 

and 

(2.72) 

When we remember that we are primarily interested in the region y :::; o, at this point it is 
convenient to define some dimensionless parameters:t 

II, 
u* = V..,, 

X 
x* = -L' o* 0 

I· 

tThe Reynolds number Reu which was briefly introduced in Chapter 1 reappears here again. Also 
the Froude number Fru is introduced. These two dimensionless numbers, which so often occur in 
engineering studies, have been given names in honor of those two early workers in fluid mechanics. 
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v* y* 
y 
I· 

V"'L 
ReL = -v-' 

Substituting these parameters into Eqs. (2.71), (2.72), and the continuity equation, we get 

Continuity: 

au* av* 
= 0. ax* + ay* 

(2.73) 

Momentum: 

au* au* [ a2u* a2u* l u* ax* + v* ay* ReL 
--+--. 
a(x*? a(y* )2 • 

(2.74) 

av* av* [ ,,,. ~·] u* ax* + v* ay* ReL a(x* )2 + a(y* )2 + FrL · 
(2. 75) 

The next step is to make order-of-magnitude estimates of the terms in Eqs. (2. 74) and (2. 75), 
realizing that we are interested only in the happenings within the boundary layer. 

Order of magnitudes: 

ill*= 0 to 

Ay* =: ll*. 

Au*= 1. 

From (2.76) and (2.78), we get 

au* 
ax* -

and from continuity, 

av* 
ay* - 1. 

From (2. 77) and (2. 78), we obtain 

au* 
ay* - F· 

1. 

1' 

(2. 76) 

(2.77) 

(2. 78) 

(2.79) 

(2.80) 

(2.81) 
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and from (2. 79) and (2.80), 

au* 
ax* -

o* 
-1- = o*. 

Now we can estimate all the second derivatives: 

a2u* a [~] a(x* )2 ax* ax* = 

a2u* a 

(2.82) 

1 
1 1. (2.83) 

a(y*? ay* [~] ay* - F [ 0~ ] ~- (2.84) 

a2u* 
a(x*? - o*. (2.85) 

a2u* 
a(y* )z - F· (2.86) 

Insertion of the various magnitudes into Eqs. (2.74) and (2.75) reveals two important 
facts: a2u*/ a(y*)2 >> a2u*/ a(x*)2 , and the equation involving the x-component of the velocity 
has much larger terms than that for uY. Hence we deal only with 

au, au, a2u, 
u, Tx + uy ay = v ay2 , (2.87) 

which is the boundary layer equation for a flat plate with zero pressure gradient. We now 
proceed to solve Eq. (2.87) for the boundary conditions 

B.C. 1 at y = 0, u, = 0, 

B.C.2 aty=oo, u,=V~. 

In order to simplify Eq. (2. 87), we define the stream junction 1/; as 

a!/; 
u =-• - ay and 

(2.88) 

(2.89) 

(2.90) 

The use of the stream functions simplifies Eq. (2.87) and automatically satisfies continuity 
(Eq. (2.70)). Substituting Eq. (2.90) into Eq. (2.87) yields: 

al/; a21/; al/; a21/; a31/; 
------=v-ay axay ax ay2 ay 3. (2.91) 

A similarity argument* shows that the stream function may be expressed as 

1/1 = Jv~ vx f(f3), (2.92) 

!Blasius showed that Eq. (2.91) could be solved in this manner. (See H. Blasius, NACA Tech. Mem., 
1949, page 1217.) 
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where 

From Eqs. (2.90), (2.92), and (2.93), 

iN v =-
X iJy 

Then Eq. (2.91) becomes 

df 
v .. d{3' 

dlj d2j 
2 d(33 + f d(32 = 0. 

(2.93) 

(2.94) 

(2.95) 

(2.96) 

Mathematically, the use of 1/1 and {3 has reduced a partial differential equation to an ordinary 
differential equation with the boundary conditions also taking equivalent forms: 

B.C. 1 at {3 = 0, != 0, 
df 
d{3 = 0; (2.97) 

B.C. 2 at{3=oo, 
df 
d{3 = 1. (2.98) 

00 

Equation (2.96) may be solved by expressing/({3) in a power series, that is, f = E ak{3k. 
0 

The technique is too involved to develop here, but the solution conforming to the boundary 
conditions becomes 

(2.99) 

where a = 0.332. Then Eqs. (2.94) and (2.95) give expressions for v, and v,; the solution 
for v, is shown graphically in Fig. 2.7. The position, where v.fV .. = 0.99, is located at 
{3 = 5.0; thus the boundary-layer thickness~ is 

[ 1
1/2 

~ = 5.0 ;: (2.100) 

Note that if we divide Eq. (2.100) by x, both sides become dimensionless: 

[ 1
1/2 

~ = 5.0 _v_ 
X XV., 

5.0 
JRe, . (2.101) 

Note also that as a result of the analysis, the Reynolds number (Re, = xV.,Iv) has evolved; 
in this instance we give Re the subscript x in order to emphasize that it is a local value with 
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1.0 

2 3 4 5 6 

P=Y ;v.:-
~~ 

Fig. 2. 7 Solution for the velocity distribution in the boundary layer over a flat plate. 
(From L. Howarth, Proc. Roy. Soc., London Al64, 547 (1938).) 

the characteristic dimension x. We can also calculate the drag force, which is exerted by the 
fluid on the plate's surface. If the plate has a length L and width W, the drag force FK is 

(2.102) 

In other words, the shear stress at the solid surface is integrated over the entire surface. 
From Fig. 2.7 we find that 

(2.103) 

Knowing the integrand in Eq. (2.102), we can now perform the integration. The result is 

FK = 0.664 Jp,.,LW2V!. (2.104) 

This is the drag force exerted by the fluid on one surface only. 

2. 7.2 Flow in inlet of circular tubes 

In Section 2.4, we considered the flow of fluid in a long tube so that end effects were 
negligible. Now we wish to study the flow conditions at the inlet where the flow is not fully 
developed. The fluid enters the tube with a uniform velocity V0 in the z-direction. The 
important component for this system is the z-component, just as the x-component is most 
important for the flow past a flat plate. According to Eq. (F) in Table 2.3, the momentum 
equation with ve = 0, ov,Jot = 0, and g, = 0, reduces to 

av, av, 
v, Tr + v, az 
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Again, the viscous effect in the direction parallel to flow is negligible, so that iJ2v,Jai = 0, 
and we are left with 

(2.105) 

We can deduce the equation of continuity from Eq. (B) in Table 2.1: 

1 a au, r ar (rv,) + Tz = 0 . 
(2.106) 

The method for the solution of Eq. (2.105) is not given here, but one should understand why 
Eq. (2.105) is the starting point. Langhaar2 has developed the solution for this problem, as 
described in Fig. 2.8. His analysis shows that a fully developed flow is not established until 
vz/_RZV0 = 0.07. Thus an entrance length (z = L,) of approximately 0.035 (VZV0p)/1'f is 
required for buildup to the parabolic profile of the fully developed flow. 

1.0 

r PZ 
R 100Rll'0 

0 -- z 

-1.0 
0 0 0 v. I u, 

v;; 
Fig. 2.8 Velocity distribution for laminar flow in the inlet section of a tube. 

2. 7.3 Creeping flow around a solid sphere 

Consider the flow of an incompressible fluid about a solid sphere (Fig. 2.9). The fluid 
approaches the sphere upward along the z-axis with a uniform velocity V ~. Clearly, the 
momentum equation for this situation does not involve the ¢-component. In addition, if the 
flow is slow enough, the acceleration terms in Navier-Stokes' equation can be ignored. 
Therefore, in spherical coordinates, from Eqs. (D) and (E) in Table 2.4, we obtain for the 
r-component: 

aP [ 2 2 ave 2 l - - + 1'f V2v - - v - - - - - v cot (J + pg = 0 ar r r2 r r2 ao r2 9 r , 
(2.107) 

2H. L. Langhaar, J. Appl. Mech. 9, A55-58 (1942). 



Radius of sphere = R Laminar Flow and the Momentum Equation 69 

At every point there are 
pressure and friction 
forces acting on the 
sphere surface 

X 

t Fluid approaches 
from below with 

' .. velocity v_ 

(x,y,z) 
or 

(r.8.~) 
I 
I 
I 
I 
I 
I 
I 

Projection 
of point on 
xy-plane 

Fig. 2.9 Coordinate system used in describing the flow of a fluid about a rigid sphere. 

and for the 0-component: 

0. 
(2.108) 

The continuity equation (Eq. (C) in Table 2.1) is 

1iJ( 2 ) 1 iJ 
r 2 Or r V, + r Sin 0 iJO (ve sin O) = O. (2.109) 

The momentum flux-distribution, pressure distribution, and velocity components have 
been found analytically: 3 

3 11v"' [ ~r sin 0, Tr8 2 R 
(2.110) 

p 3 11v"' [~r cos 0, P0 - pgz - 2 R 
(2.111) 

[1 - 3 
[ ~] + 

1 
r ~rl cos 0. v, v"' 2 2 

(2.112) 

3V. L. Streeter, Fluid Dynamics, McGraw-Hill, New York, 1948, pages 235-240. 
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(2.113) 

We can check the validity of the results by showing that Eqs. (2 .1 07)-(2 .1 09) and the 
following conditions are satisfied: 

B.C. 1 at r = R, v, = 0 = v8 ; 

B.C. 2 atr = 00, Vz = V~. 

In Eq. (2.111), the quantity P0 is the pressure in the plane z = 0 far away from the 
sphere, -pgz is simply the hydrostatic effect, and the term containing V~ results from the fluid 
flow around the sphere. These equations are valid for a Reynolds number (DV~Iv) less than 
approximately unity. 

With these results, we can calculate the net force which is exerted by the fluid on the 
sphere. This force is computed by integrating the normal force and tangential force over the 
sphere surface as follows. 

The norma/force acting on the solid surface is due to the pressure given by Eq. (2.111) 
with r = R and z = R cos 8. Thus 

3 11V~ 
P(r = R) = P0 - pgR cos 8 - 2 R cos 8. 

The z-component of this pressure multiplied by the surface area on which it acts, R2 sin 8 
d(Jdfj>, is integrated over the surface of the sphere to yield the net force due to the pressure 
difference: 

2T~[ 3v ] Fn = ! ! P0 - pgR cos (J - 2 71 R ~ cos 8 

Equation (2.114), integrated, yields two terms: 

4 
Fn = 3 1rR 3pg + 211"71RV~, 

the buoyant force and form drag, respectively. 

R2 sin (J d8dfj>. (2.114) 

(2.115) 

At each point on the surface, there is also a shear stress acting tangentially, -T,8, which 
is the force acting on a unit surface area. The z-component of this force is (-7,8)(-sin (J)R2 

sin 8 d8dfj>; again, integration over the sphere's surface yields 
2T ~ 

F, J J (Trel, ~ R sin 8)R 2 sin 8 d8df/>. 
0 0 

From Eq. (2.110), we get 

so that the friction drag results: 

F, (2.116) 
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The total force F of the fluid on the sphere is given by the sum of Eqs. (2.115) and (2.116): 

(2.117) 

These two terms are designated as F, (the force exerted even if the fluid is stationary) and FK 
(the force associated with fluid movement). Thus these forces are 

(2.118) 

(2.119) 

We use Eq. (2 .119), known as Stokes' law, primarily for determining the terminal velocity, 
"r of small spherical particles moving through fluid media. The fluid media are stagnant; the 
spherical particle moves through the fluid, and V., is viewed as l'r· With this in mind, we 
may use Stokes' Jaw as the basis of a falling-sphere viscometer, in which the liquid is placed 
in a tall transparent cylinder and a sphere of known mass and diameter is dropped into it. 
The terminal velocity of the falling sphere can be measured, and this in tum relates to the 
fluid's viscosity. 

Example 2.3 Apply Stokes' Jaw to the falling sphere viscometer and write an expression for 
the viscosity of the liquid in the viscometer. 

Solution. A force balance on the sphere, as it falls through the liquid, is made according to 
the diagram: 

F, Here F, is the buoyant force exerted by the liquid 
and is therefore directed upward; FK is often called 
the drag force and as such always acts in the 
opposite direction to that of motion and is therefore 
directed upward. The only force in the downward 
direction is the weight of the sphere. The terminal 
velocity is reached when the force system is in 
equilibrium. Therefore F, + FK = Fw, and by 
substituting in expressions for each of these forces, 
we have 

4 4 3 3 1rR 3pg + 61r11RV, = 3 1rR p,g. (2.120) 

where p, is the sphere's density. 
By solving Eq. (2.120) for.,, we arrive at 

., = (2.121) 

The result is valid only if 2R\'rlv is Jess than approximately unity. 
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PROBLEMS 

2.1 Refer to the results of Example 2 .1. The viscosity of the glass is 1 N s m·2, and the 
viscosity of the metal is 3 x 10·3 N s m·2• The densities of the glass and the metal are 
3.2 kg m·3 and 7.0 kg m·3 , respectively. For {3 = 1rl8 and 01 = 1 mm and 02 = 2 mm, 
calculate the maximum velocities and average velocities of the glass and the metal. 

2.2 A continuous sheet of metal is cold-rolled by 
passing vertically between rolls. Before entering the 
rolls, the sheet passes through a tank of lubricating oil 
equipped with a squeegee device that coats both sides 
of the sheet uniformly as it exits. The amount of oil 
that is carried through can be controlled by adjusting 
the squeegee device. Prepare a control chart that can 
be used to determine the thickness of oil (in mm) on 
the plate just before it enters the roll as a function of 
the mass rate of oil (in kg per hour). Values of 
interest for the thickness of the oil film range from 
0-0.6 mm. Data: Oil density, 962 kg m·3; oil 
viscosity, 4.1 x 10·3 N s m·2 ; width of sheet, 1.5 m; 
velocity of sheet, 0.3 m s·1• 

1---.........j' Oil 

2.3 A Newtonian liquid flows simultaneously through two parallel and vertical channels of 
different geometries. Channel "A" is circular with a radius R, and "B" is a slit of thickness 
2o and width W; 2o « W. Assume fully developed flow in both channels and derive an 
equation which gives the ratio of the volume flow rate through A to that through B. 

2.4 Develop expressions for the flow of a fluid between vertical parallel plates. The plates 
are separated by a distance of 2o. Consider fully developed flow and determine 

a) the velocity distribution, 
b) the volume flow rate. 

Compare your expressions with Eqs. (2.20) and (2.23). 

2.5 Repeat Problem 2.4 but now orient the plates at an angle {3 to the direction of gravity 
and obtain expressions for 

a) the velocity distribution, 
b) the volume flow rate. 

Compare your expressions with the results of Problem 2.4 and Eqs. (2.20) and (2.23). 

2.6 A liquid is flowing through a vertical tube 0.3 m long and 2.5 mm in I.D. The density 
of the liquid is 1260 kg m·3 and the mass flow rate is 3. 8 x 10·5 kg s·1. 

a) What is the viscosity in N s m·2? 
b) Check on the validity of your results. 

2.7 Water (viscosity 10·3 N s m·2) flows parallel to a flat horizontal surface. The velocity 
profile at x = x 1 is given by 

with v, in m s·1 and y as distance from surface in mm. 



Laminar Flow and the Momentum Equation 73 

a) Find the shear stress at the wall at x1• Express results inN m·2. 
b) Farther downstream, at x = x2, the velocity profile is given by 

v, = 4 sin ( ~ ] y 

Is the flow "fully developed"? Explain. 
c) Is there a y-component to flow (i.e., v,)? Explain with the aid of the continuity 

equation. 

2.8 For a polymeric melt that follows a power law for shear stress versus shear strain rate, 
derive an equation for the velocity profile and volume flow rate for flow between parallel 
plates. 

2.9 The power law polymer of Problem 2.8 has constants 11o = 1.2 x 104 N s m·2 and 
n = 0.35. It is injected through a gate into a thin cavity, which has a thickness of 2 mm, 
a width of 10 mm and a length of 20 mm. If the injection rate is constant at 200 1I1IIT s·1, 

estimate the time to fill the cavity and the injection pressure at the gate. 

2.10 A wire is cooled after a heat treating operation by being pulled through the center of 
an open-ended, oil-filled tube which is immersed in a tank. In a region in the tube where end 
effects are negligible, obtain an expression for the velocity profile assuming steady state and 
all physical properties constant. 

Tube inner radius: R 
Wire radius: KR 
Wire velocity: U 

2.11 Starting with the x-component of the momentum equation (Eq. (2.52)), develop the 
x-component for the Navier-Stokes' equation (constant p and 11. (Eq. 2.63)). 

2.12 Air at 289 K flows over a flat plate with a velocity of 9. 75 m s·1• Assume laminar flow 
and a) calculate the boundary-layer thickness 50 mm from the leading edge; b) calculate the 
rate of growth of the boundary layer at that point; i.e., what is dfJ/dx at that point? 
Properties of air at 289 K: density: 1.22 kg m·3; viscosity: 1.78 X w-s N s m·2. 

2.13 A fluid flows upward through a vertical cylindrical annulus of length L. Assume that 
the flow is fully developed. The inner radius of the annulus is KR, and the outer radius is R. 
a) Write the momentum equation in terms of velocity. b) Solve for the velocity profile. 
c) Solve for the maximum velocity. 

2.14 In steelmaking, deoxidation of the melt is accomplished by the addition of aluminum, 
which combines with the free oxygen to form alumina, Al20 3 • It is then hoped that most of 
these alumina particles will float up to the slag layer for easy removal from the process, 
because their presence in steel can be detrimental to mechanical properties. Determine the 
size of the smallest alumina particles that will reach the slag layer from the bottom of the 
steel two minutes after the steel is deoxidized. It may be assumed that the alumina particles 
are spherical in nature. For the purpose of estimating the steel's viscosity use the data for 
Fe-0.5 wt pet C in Fig. 1.11. Data: Temperature of steel melt: 1873 K; steel melt depth: 
1.5 m; density of steel: 7600 kg m·3; density of alumina: 3320 kg m·3• 
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2.15 I .. ll a) Consider a very large flat plate bounding a liquid that extends to y = + oo. rntla Y, 
the liquid and the plate are at rest; then suddenly the plate is set into motion with 
velocity V0 as shown in the figure below. Write (1) the pertinent differential equation 
in terms of velocity, for constant properties, that applies from the instant the plate 
moves, and (2) the appropriate boundary and initial conditions. The solution to these 
equations will be discussed in Chapter 9. 

y v. = 0 

L v. v. 
X z % % 

Initially Time I 

b) A liquid flows upward through a long vertical conduit with a square cross section. With 
the aid of a clearly labeled sketch, write (1) a pertinent differential equation that 
describes the flow for constant properties, and (2) the appropriate boundary conditions. 
Consider only that portion of the conduit where flow is fully developed and be sure that 
your sketch and equations correspond to one another. 

2.16 Molten aluminum is degassed by gently bubbling a 75%N2-25%Cl2 gas through the 
melt. The gas passes through a graphite tube at a volumetric flow rate of 6.6 x 10·5 m3 s·1• 
Calculate the pressure that should be maintained at the tube entrance if the pressure over the 
bath is 1.014 x 105 N m·2 (1 atm). Data: Tube dimensions: L = 0.9 m; inside diameter 
= 2 mm. Temperature of aluminum melt is 973 K; density of aluminum is 2500 kg m·3• 

2.17 Glass flows through a small orifice by gravity to form a fiber. The free-falling fiber 
does not have a uniform diameter; furthermore as it falls through the air it cools so that its 
viscosity changes. a) Write the momentum equation for this situation. b) Write appropriate 
boundary conditions. 

2.18 A liquid flows upward through a tube, overflows, and then 
flows downward as a film on the outside. 

a) Develop the pertinent momentum balance that applies to the 
falling film, for steady-state laminar flow, neglecting end 
effects. 

b) Develop an expression for the velocity distribution. 


