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DIFFUSION IN SOLIDS 

This chapter, in which the primary aim is to obtain solutions to Pick's laws of diffusion, is 
similar to Chapter 9 where we presented solutions to heat conduction problems. Therefore, 
much of the groundwork laid in Chapter 9 reappears in the following discussions. We begin 
by presenting some classical approaches used for determining diffusion coefficients in solids, 
and then consider some applied problems involving diffusion in solids as the rate-limiting 
step. 

13.1 STEADY-STATE DIFFUSION EXPERIMENTS 

As an example of the application of Pick's first law, consider an iron tube held in the 
isothermal part of a furnace. A carburizing gas is passed through the inside of the tube, and 
a gas of a different composition is passed over the outside. The carbon activity, thus has a 
gradient from the inside surface to the outside surface. Steady state is reached when the 
carbon concentration at each point in the tube wall no longer changes with time. By this 
time, the appropriate differential equation for steady-state diffusion through a cylinder can 
be derived from shell balances. If the diffusion coefficient of carbon in iron is a constant, 
independent of composition, then by analogy with Eq. (9.13), 

}_ !!_ [r dC] = 0. 
r dr dr 

The solution to this equation is given by its heat transfer analog from Eq. (7.51): 

In (rlr2) 

In (r/r2)' 

(13.1) 

(13.2) 
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464 Diffusion in Solids 

where r1 and r2 are the inside and outside radii of the tube, and C1 and C2 are the 
corresponding concentrations of carbon at these surfaces. Thus a plot of C versus In r should 
be a straight line. However, for carbon diffusing in -y-iron, the slope of such a plot, as 
shown in Fig. 13.1, becomes smaller on passing from the low-carbon side to the high-carbon 
side. Therefore, the diffusion coefficient must be a function of composition, Eqs. (13.1) and 
(13.2) do not apply, and we must approach the problem somewhat differently . 
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Fig. 13.1 Steady-state carbon concentration profile through a hollow cylinder of iron 
at lOoo•c. (From R. P. Smith, Acta Met. 1, 578 (1953).) 

In addition to the fact that iJC/iJt = 0, steady state also means that the quantity of carbon 
passing through the tube per unit time is constant and independent of r. Thus 

J = 2?rrlj,. (13.3) 

where l = length of the cylinder,j, = local flux, and J = quantity of carbon passing through 
the tube wall per unit time. Since 

we may express Eq. (13.3) as 

or 

dC 
j, = -D dr' 

r [ -D ~;] J 
27rl' 

-1 
27rlD. 

(13.4) 

(13.5) 

For a given experiment, we can measure J and l, and if the carbon concentrations within the 
tube wall are determined by chemical analyses, then we can determineD from the slope of 
the plot of C versus In r. 
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Similar experiments have also been performed for determining the diffusion coefficient 
of gases through metals such as, for example, the diffusion of hydrogen through a metal foil 
in Fig. 13.2. According to Fick's first law, the flux of hydrogen through the metal is 

Glass 

dC 
jx = -D dx · 

Fig. 13.2 Experiment for diffusion of hydrogen through metal foils. 

(13.6) 

The foils are very thin, and so it is extremely difficult to determine the concentration as a 
function of distance through the foil. The experimental results therefore consist of a 
measured steady-state flux, the hydrogen pressure drop across the foil, and the foil's 
thickness. To obtain D from the data, we take the value of C in the metal at each gas-metal 
interface as the solubility S that would exist in equilibrium with the gas: From Sievert's law, 
we know that for equilibrium between gas and the metal 

(13. 7a) 

and 

(13. 7b) 

in which K is the equilibrium constant for the reaction 

~ Hig) = H (in solution), (13.8) 

and p1 and p 2 are the partial pressures of hydrogen on both sides of the foil with a thickness o, as shown in Fig. 13.2. 
The gradient dC!dx can then be expressed in terms of the pressures: 

(13.9) 

Combining Eqs. (13.6) and (13.9), we obtain the tlux: 

(13.10) 

"This is true under the conditions when the solution of gas in the surface of the metal occurs much 
more rapidly than the rate at which the diffusing species leaves the surface and enters the bulk metal. 
Experimentally, we check this assumption by determining the fluxes for two thicknesses of foil under 
the same pressure drop and temperature. If equilibrium does exist at the interface, then !lC is the 
same for both cases, and the flux is inversely proportional to the thickness. 
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In relation to the diffusion of gases through solids, the term permeability, P, is often used 
and defined by 

P = DS = DK{iJ, 

so that 

and permeability is then given by an equation of the form 

p = Ap 112e -Q,JKF, 

(13.11) 

(13.12) 

(13.13) 

which includes the temperature dependence of both Sand D, with A and QP as constants. 
Unfortunately, there are also other ways to define permeability, which is rather confusing. 
For example, using a different definition, we obtain the flux: 

jx = - p; (v;: - {P;), (13.14) 

so that P* = P = DS only at 1 atm pressure, or 0.1013 MPa: 

P* = DK. (13.15) 

In this case, we have 

(13.16) 

The units given to P* and Pt are not typically S.I. units; rather pt = cm3(STP) s·1 cm-2 

measured for 1 em thickness and at 1 atm pressure, and QP = cal mol-1 (activation energy 
for permeation). 

There are other sets of units which apply to Pt as well, and therefore one should be 
extremely careful of the term permeability because different definitions and units are used. 
Table 13.1 gives some representative data for various systems, using Eqs. (13.15) and (13.16) 
to define permeability. For data on permeability of gases through polymers, refer to Pauly .1 

Table 13.1 Permeability data for gas-metal systems 

Gas Metal 

Ni 
Cu 
a-Fe 
AI 
Fe 
Ag 

Pt, 
em3(STP) s·1 em·1 atm-"21 

1.2 x w-3 

1.5-2.3 x w-4 

2.9 x w-3 

3.3-4.2 x w-l 
4.5 x w-3 

2.9 x w-3 

13 850 
16 000-18 700 

8400 
30 800 
23 800 
22 550 

'The units in Eq. (13.14) are: li = em, p = atm, andj, = em3(STP) s·1 em·2• 

1S. Pauly, "Permeability and Diffusion Data," in J. Brandrup and E. H. Immergut, editors, Polymer 
Handbook, third edition, John Wiley & Sons, New York, NY, 1989, pages Vl/435 to Vl/449. 
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Example 13.1 The solubility of hydrogen dissolved in aluminum at 873 K is 2.5 x 1Q-4 
cm3(STP) g-1• Assume that Sievert's law holds. a) Calculate the equilibrium constant, b) the 
solubility in g cm-3, and c) the diffusion coefficient for hydrogen in aluminum at 873 K. 

Solution. a) When solubility data are given in this manner, it is assumed that the condensed 
phase has been equilibrated with the gas at 1 standard atm of pressure. Then, according to 
Eq. (13.8), the equilibrium constant is 

Therefore, K is simply 

s 
K = p112. 

2.5 x 10-4 em 3(STP) 
K = = 2.5 x 10-4 em 3(STP) atm -112 g -1 

1 atm 112 g 

b) Notice the curious units for the atomic hydrogen dissolved in the aluminum (i.e., the 
solubility). The solubility is the mass of molecular hydrogen, expressed as a volume at 
standard temperature and pressure (STP). We did not invent these units, but they are the 
units most often given. Let's calculate a concentration in more familiar units. The density 
of AI at 873 K is 2.55 g cm-3• 

S= 
2.5 X 10-4 cm 3(STP) 1 mol (II:z) 2 g (H) 2.55 g (AI) 

g (AI) 22 400 em 3(STP) 1 mol (H2) cm 3 (AI) 

= 5.69 X 10-8 g em -3• 

c) From Table 13.1, Pt == 0.37 cm3(STP) s-1 cm-1 atm-112 and QP = 30 800 cal moi-1• 

Then with Eq. (3.16) we calculate 

- [ 30 800 J - -9 3 -1 -1 -112 P* - 0.37 exp - (1. 987)(873) - 7.19 x 10 em (STP) s em atm , 

and 

D 
P* 

K 
7.19 X 10-9 cm 3(STP) g(Al) atm 112 

s em atm 112 2.5 X w-4 em 3(STP) 2.55 g(Al) 

or D = 1.13 X 10-9 m2 s-1• 

Example 13.2 A pilot plant for hydrogenation of hydrocarbon vapor is to be constructed of 
a low-aHoy steel. In designing, the question of the effect of waH thickness on the rate of 
hydrogen loss through the wall is raised. If the inside diameter of a vessel 1 m long is 
10 em, calculate the rate of hydrogen loss as a function of wall thickness at 723 K and a 
pressure of 75 atm hydrogen, assuming that the gas diffusing through the wall is co11ected and 
removed at 1 atm. 
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Solution. Combining Eqs. (13.2), (13.3), and (13.4), and assuming that D is constant, we 
have 

In terms of permeability 

j 
-21r1DK([P: - JP:) 

In (r/r2) 

-hlP* (v;;: - JP:) 
In (r/r2) 

From Table 13.1 and Eq. (13.16), P* = 8.4 x 10-6 cm3(STP) s-1 cm-1 atm-112 • Therefore 

-0.0404 
1.609 - In r2 ' 

with the outside radius given in em. In more general terms, where r1 is not specified, but 
I is still 1 m, 

-0.0404 3 I 
J = I ( I ) , em (STP) s · . n r 1 r 2 

Both results are shown below: r, /r, 
1.0 
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It probably makes sense to design the vessel with a 6 or 7 em wall thickness. 

13.2 TRANSIENT DIFFUSION EXPERIMENTS 

Under many circumstances it is not possible to carry out steady-state experiments in order 
to determine diffusion coefficients in solids. This means that we must use the results of 
transient experiments and solve Eq. (12.18) in its general form 

ac 
7ft = V(DVC) (13.17) 
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for various boundary conditions. In correspondence with heat conduction, a solution to 
Eq. (13.17) is usually either a series of error functions, which converge rapidly for short 
times, or a trigonometric series which converges rapidly for long times. In the following 
sections, we examine several solutions to Eq. (13.17) and their applications.' 

13.2.1 Thin film source: infinite and semi-infinite sink 

The solution and procedure that follow have been used in self-diffusion studies of 
substitutional atoms. Radioactive tracers are used as solutes since their concentration can be 
determined quite accurately, even at low concentrations. A small quantity fJ of the tracer is 
plated as a thin film .::U' thick on one end of a long rod of tracer-free material. The rod is 
then annealed at the diffusion temperature of interest. Since D* is a self-diffusion coefficient 
and does not depend on position for such an application, Fick's second law is 

ac o2C 
Tt = D* iJx2. 

(13.18) 

Suppose we take a second tracer-free rod and butt-weld it to the plated end (without any 
diffusion occurring), and then carry out the diffusion anneal. According to Eq. (9.45), we 
see that the solution is 

C [ -x2 ) C(x,t) = ~ exp 4D*t dx'. 
2 1rD*t 

(13.19) 

Here C; is the concentration of the tracer in the plated material whose thickness is dx'. 
Since C; .::U' is the quantity of tracer material plated as the thin film, we write the solution 

fJ [ -x2 ] C(x,t) = en;;:- exp 4D*t , 
Zy1rD*t 

(13.20) 

which describes the spreading by diffusion of a thin plate source into an infinite sink. This 
is illustrated in Fig. 13.3. 
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Fig. 13.3 Spreading of concentration from a plane source at x = 0. 

"Extensive compilations of solutions are presented in J. Crank, 1he Mathematics of Diffusion, Oxford 
University Press, London, 1956, and W. Jost, Diffusion in Solids, Liquids, and Gases, Academic 
Press, 1960. With appropriate change of variables, one can also refer to H. S. Carslaw and J. C. 
Jaeger, Conduction of Heat in Solids, second edition, Oxford University Press, 1959. 
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Note that we may determine D* without measurement or control of {3, since a plot of 
log C versus x2 at time t yields D* directly. 

Now suppose that the second bar has not been welded to the first. Then a semi-infinite 
bar would extend over the region x > 0 with an impermeable barrier at x = 0. In either 
case, infinite or semi-infinite, 

ac 
ax = 0 at x = 0. (13.21) 

If diffusion is allowed, the material that would normally diffuse in the negative x-direction 
is reflected at the x = 0 plane, and moves in the positive x-direction. The concentration at 
any x in the + x domain is then given by the superposition of the original solution for x > 0 
and the reflected solution for x < 0, or 

{3 [ -x2 ] C(x,t) = en;;;- exp 4D*t . v 1rD*t 
(13.22) 

13.2.2 Diffusion couple with constant D 
This case is exemplified in Fig. 13.4(a) by butt-welding two bars of A-B alloy of 
concentrations C, and C2 • If i5 is independent of composition, and the bars extend far 
enough in the positive and negative domains to be considered infinite, then Eq. (13.18) 
applies with the boundary conditions: 

C(x,O) = C1 

C(x,O) = C2 

C(-oo,t) = C1, 

q oo ,t) = C2• 

at x < 0, 

at x > 0, 

(13.23a) 

(13.23b) 

(13.23c) 

(13.23d) 

Due to symmetry, the concentration at x = 0 immediately takes on the average value of C, 
and C2• Let this average be C,; then it is easy to see that in the positive x-domain, the 
solution is directly analogous to the temperature distribution of the semi-infinite solid, as 
discussed in Section 9.4.2 culminating in Eq. (9.62). Appropriately changing the symbols, 
we can write the solution: 

c- c, 
C2 - c, 

X 
erf 2Wt. 

(13.24) 

Figure 13.4(b) illustrates this result in a general form, from which one may obtain 
i5 -values from measurements of C, x, and t. Since erf x = -erf( -x), the concentration 
profile given by Eq. (13.24) is symmetrical about x = 0. This is known as the Grube 
solution, and applies when i5 is not a function of concentration. Since i5 is usually a 
function of composition, the use of Eq. (13.24) is restricted to small differences between C, 
and C2• For example, a good value for the diffusion coefficient of A in 50A-50B alloy could 
be determined from a couple of 45% A alloy welded to a 55% A alloy. 

Apart from application to diffusion couples, we can use Eq. (13.24) to predict 
concentration-time curves for situations where the part in which diffusion occurs is thick 
enough so that, within the time for diffusion, there is still a region of the part unchanged in 
composition. 
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Fig. 13.4 Interdiffusion between an alloy of composition C1 and an alloy of composition C2• 
a) Initial distribution. b) Diffusion profile when the initial distribution is as in a). 

Example 13.3 A piece of AISI 1020 steel is heated to 1255 K (in the austenite region) and 
subjected to a carburizing atmosphere such that the reaction 

2CO = C02 + k. 
is in equilibrium with 1.0% C in solution at the surface. Calculate the carbon profile after 
1, 3, and 10 hours, assuming that diffusion within the solid is the rate-limiting step. 

Solution. The initial condition is C2 = 0.2% C, and the boundary condition at the surface 
is C, = 1.0% C. 

At 1255 K, DC = 2.0 X w-ll m2 s-1• Therefore, Eq. (13.24) for the distribution after 1 hour 
is 

C(x,3600) X 1.0 + (0.2 - 1.0) erf . 
2V(2 x w-")(3.6 x 103) 
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Specifically at x = 5 X 10-4 m, C = 0.35% C. The results for various locations as well as 
for the longer times are: 

0.3 
x,cm 

13.2.3 Diffusion couple with variable D 
The analysis in Section 13.2.2 is valid only for i5 independent of concentration. In general, 
however, the diffusion coefficient varies with composition, and since there is a concentration 
gradient, this means that i5 changes with position. This variation in i5 is particularly evident 
in diffusion couple experiments in which pure A is joined. to pure B, and a continuous solid 
solution is formed. Pick's second law must be written over all compositions between A and 
B, and for such situations this is 

ac = _!_._ [ - ac J 
at ax D ax · 

(13.25) 

The solution to Eq. (13.25) that follows is useful for obtaining i5 over a range of 
compositions, but not for the a priori task of predicting a concentration profile for a diffusion 
anneal. In other words, it does not give a solution C(x,t), which is usually sought, but rather 
allows D(C) to be calculated from an experimental plot of C(x). This method of analyzing 
experimental data is called the Boltzmann-Matano technique. 

We combine the position variable x and the time variable t into one variable \ = xl.[t: 
so that we consider C to be a function of only the one variable, \. Using this definition of 
\, we transform Eq. (13.25) into an ordinary differential equation: 

and 

ac _ a>- [ dC] 
ax - ax dA 

Substituting into Eq. (13.25), we obtain 

or finally we can get 

[ dC] = _ ~ [ dC] 
dA 2t dA' 

1 d 
tdA 

(13.26a) 

(13.26b) 

(13.27) 
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Consider the diffusion couple depicted in Fig. 13.5(a). Then for C(A), we recognize that 

for A = -oo, (13.28a) 

for A= +oo. (13.28b) 

'= 0 c I 

c, 
I Origmal interface 

I= I 
c, 

x=O 
(b) 

X 

X 

(c) 

Fig. 13.5 a) Initial conditions. b) Definition of location of Matano interface after 
diffusion has taken place for a time t. c) The integral and the slope obtained in order 
to calculate D at composition C. 
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We then solve Eq. (13.27) by integrating between C = C1 and C = C: 

(13.29) 

Since the concentration gradient goes to zero as C approaches C1, the right-hand side of 
Eq. (13.29) is simply D(dC/dA). Then 

jj (13.30) 

From Eq. (13.29), we obtain the definition of the Matano interface; since the concentration 
gradient also goes to zero as C approaches C2, Eq. (13.29) gives us the additional condition 
that 

(13.31) 

Since experimental data are available only at some constant time t, Eqs. (13.30) and 
(13.31) can be written in terms of x and t, and the relationships used for calculating i5 from 
the measured concentration profile are 

c 
jj = 1 1 I 

- 2t [ ~) ct xdC' 

and we choose the plane defining x = 0 such that 

'2 I xdC = 0. 
ct 

(13.32) 

(13.33) 

In Fig. 13.5(b), the planex = 0 is given by the line that makes the two hatched areas equal. 
We calculate the value of i5 at a given C by measuring the cross-hatched area, which is the 
integral in Eq. (13.32), and the reciprocal slope at that point, dxldC. The diffusion 
coefficient i5, found by applying Eq. (13.32) in this manner, is the interdiffusion coefficient 
discussed in Section 13.2.3. 

In addition, if we place inert markers at the original plane of welding, we can also 
determine the intrinsic diffusion coefficients. This is left for the reader to do in 
Problem 13.9. Furthermore, Jost2 pointed out that it is not necessary for a sin~e phase to 
exist over the entire range of the diffusion region. A discontinuity in C(x) and D(C) exists 
where an intermediate phase is formed. The only condition required when applying the 
Boltzmann-Matano technique is that the concentrations in both phases on either side of the 
interface between the phases are independent of time. 

~. Jost, Diffusion in Solids, Liquids, and Gases, Academic Press, New York, 1960, page 76, and 
also W. Jost, Z. Physik 127, 163 (1950). 
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Example 13.4 A diffusion couple made of pure Nb welded to pure U is held at 800°C for 
49 days. The resulting concentration profile, shown below, is obtained with a microprobe 
analyzer. Note that an intermediate phase li is formed between the two solid solution, -y1 and 
'Yz· CalculateD at 90 at.% U. 
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(From N. L. Peterson and R. F. Ogilvie, Trans. A/ME 218, 439 (1960).) 

Solution. Let C represent the composition of U. First, the Matano interface is chosen, such 
that 

0 

J xdC = J xdC. 
0 

This is found by trial" and error, and placed on the figure as shown. 
At 90% U, dC!dx is evaluated: 

Also 

Thus 

dC/dx = 4.60 x 103 at.% in-1 = 1.81 x lOS at.% m-1• 

C-90 

J xdC = -1.32 x IQ-3 m at.%, by graphical means; 
C-100 

t = 49 days I 3~ s 24 h 
day 

D (90% U) 
-( -1.32 X IQ-3) 

2(4.23 X 106)(1.810 X lOS) 

4.23 X 106 S. 

8.6 x 10-16 m 2 s -1 • 
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13.3 FINITE SYSTEM SOLUTIONS 

The solutions to Fick's laws presented thus far represent useful cases in many situations when 
the sink cannot be considered infinite or semi-infinite. On the other hand, there are many 
situations in which the effect of the diffusion process on the composition is felt at the furthest 
point in the material prior to the end of the diffusion treatment. This condition can arise 
quite often when small parts are exposed to a gaseous environment, and there is diffusion of 
the gas species into the part. Conversely, metal and ceramic parts must often be degassed. 
When dealing with these situations, it is usually safe to assume that the rate-limiting step of 
the overall mass transfer is the diffusion of the gas species into the solid. Hence, we seek 
solutions of Fick's second law with a surface concentration imposed at time zero and 
maintained constant. 

To illustrate this case, consider the diffusion into or out of a slab of infinite length and 
thickness 2L. Initially the slab has a uniform concentration C;, and then its surfaces are 
raised or lowered to C, and maintained constant. Hence, we are seeking a solution to Fick's 
second law with const~nt i5 (or simply D): 

ac iJ2C at = D axz. (13.34) 

The initial and boundary conditions of interest are 

C(x,O) = C;, (13.35a) 

and at the slab center, 

ac 
dx (O,t) 0, (13.35b) 

and at the surface, 

C(L,t) = C,. (l3.35c) 

The solution to this problem can be determined in the same manner as the solution of the 
heat conduction equation in Section 9.4.2. By separation of variables it has the form: 

fJ = X(x)G(t), 

where (J is (C- C,), and all the boundary conditions can be written in a homogeneous form. 
According to Eqs. (9.34) and (9.35), we see that 

X = c1 cos Ax + c2 sin Ax, (13.36) 

and 

G = exp (->-.2 Dt). (13.37) 

Boundarycondition(l3.35b)requiresthatc2 = O,andwhenweapply(l3.35c)cl cos >.L = 0 
results. This is satisfied by ).. = (2n + 1)1ri2L, where n is any integer from 0 to oo. Hence 

(J = "L 
n=O 

[ -(2n + 1 )2r Dt] [ (2n + 1 )1r ::] An exp 4 L 2 cos 2 L , (13.38) 
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where the A"s are now the constants involved. The initial condition, ll(x,O) = II; = C; - C" 
remains to be satisfied and when substituted into Eq. (13.38), it yields: 

II, E 
n= l.odd 

(2n + 1)7r x 
An COS 

(13.39) 
2 

If we apply Fourier's analysis to Eq. (13.39) as we demonstrated previously for Eq. (9.38), 
then we obtain 

A, 
( -1)" 4 

(2n + 1) 1r II, · 
(13.40) 

Thus the solution we seek is 

!!_ _ c. - c, _ ~ ~ J.=__!L [ -(2n + 1fr Dt] (2n + 1)7r .:: 
II, - C, - C, - 1r f;:, 2n + 1 exp 4 Lz cos 2 L · 

(13.41) 

Equation (13.41) is useful for describing concentration profiles as a function of time. 
However, the total amount of material that diffuses into or out of the slab is often of more 
interest, particularly when this is the only measurable quantity. So, the average concentration 
C is required: 

L 

c=lfcdx. (13.42) 
(I 

Carrying out this operation, using Eq. (13.41) for C, we obtain the relative change in average 
composition for diffusion into a slab: 

-
C - C, 8 "" 1 [ -(2n + 1 )21r2 Dt] c--=-c = __2 L (2 + 1)2 exp 4 L1 . 

1 J 7[- fl-0 n 
(13.43) 

This expression is good for diffusion into or out of a slab. If we take the first term in the 
series, then 

c-c 
' C-C 

I J 

8 
2 exp ( -t/7), 
7r 

(13.44) 

where T is the time constant for the diffusion process (T = 4L2/r D). It is apparent that a 
graph of log 7f versus (t/7) is a straight line and that we can obtain D from the slope. We 
plot Eq. (13.43) in Fig. 13.6, along with diffusion into or out of cylinders and spheres (see 
Table 13.2). For long times (Dt/L2 > 0.05), the first term of the series is sufficient, and a 
straight line relationship is obeyed. 

For diffusion into or out of simple multidimensional shapes other than the infinite plate, 
infinite cylinder, or sphere, we handle the problem in the same manner as we treated heat 
transfer to or from these shapes in Section 9.5. We can combine product solutions to yield 
the solution for the shape of interest. 
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Table 13.2 The relative change in average composition for the basic shapes 

Diffusion in a slab of semithickness, L 

I.C.: C(x,O) = C,. 

B.C.: C(L,t) = C,, 

ac ax (O,t) = o. 
Solution: 

-c- c, 
c,- c, [ -(2n + I )21r2 Dt] 

(2n + 1)2 exp 4 U · 

Diffusion in solid circular cylinder of radius, R 

I. C.: C(r,O) = C,, 

B.C.: C(R,t) = C,. 

ac Tr (O,t) = 0. 

Solution: 

c-c s 

c,- c, =L 
n=l 

4 
- exp 
~~ 

where~.= 2.405, 5.520, 8.654, 11.792, 14.931, when n = 1, 2, 3, 4, 5, etc: 

Diffusion in spheres of radius, R 

The same set of initial and boundary conditions as for the cylinder above: 

C - C, 6 ~ 1 [ -n 2~Dt] 
C - C = 2 L 2 exp -R2 . 

i s 1r n""'l n 

·~.are roots of the equation J0(x) = 0, where l 0(x) is the Bessel function of zero order. 

(13.43) 

(13.45) 

(13.46) 
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Fig. 13.6 The relative change in average composition for the basic 
shapes. R = radius, and L = semithickness. 

Example 13.5 Calculate the fraction of hydrogen remaining in a) a 100 mm thick slab of 
steel, 3 m long x 1.2 m wide, b) a 100 mm square billet of steel, 4 m long, and c) a 
100 mm square billet of steel, 200 mm long, after 40 hours of vacuum outgassing treatment 
at a temperature where D8 = 1.0 x lQ-9 m2 s-1, assuming an initially uniform distribution. 

Solution. a) Consider this to be an infinite plate. Then 

Dt 
L2 

From Fig. 13.6, we have 

(1 X 10-9)(40 X 3600) 
= 5.76 x w-2 • 

(5 x w-2)2 

C-C 
c. - d = 0.74. 

I S 
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b) The desired solution can be obtained as the product of the infinite plate solutions for the 
two 100 mm dimensions: 

-
C-C 
c - d = (0. 74)(0. 74) = 0.55. 

I S 

c) In this case, first evaluate Dt/L2 for the 200 mm dimension: 

Dt 
u 

From Fig. 13.6, we get 

Therefore, 

(1 X 10-9)(40 X 3600) 
= 1.44 x w-z. 

[ c- c l s 0.90. c - c 
i s 200mm 

(0. 90)(0. 74)(0. 74) 0.49. 

13.4 MICROELECTRONIC DIFFUSION PROCESSING 

Some materials result from processes in which alloying elements or dopants are diffused into 
a hot matrix to change electronic or magnetic properties. This is particularly true of silicon 
processed into devices. Frequently, a junction is fabricated by using two steps, each 
involving diffusion. The two steps are predeposition and drive-in diffusion. 

In predeposition, a silicon wafer is placed in a high-temperature furnace and exposed to 
a gas that contains the dopant. Depending on the gas and the temperature, a constant 
concentration of the dopant is established at the surface. The goal of the predeposit step is 
to diffuse a small amount of the dopant into a fraction of a micrometer at the surface. 
Obviously, the silicon matrix is semi-infinite so the concentration profile of the dopant is 

C - Cs [ X l ~ = erf rn:- , 
o s 2yDt 

(13.47) 

where Cs is the constant surface concentration, C0 is the initial concentration (assumed to be 
uniform), xis distance measured from the surface at x = 0, Dis the diffusion coefficient of 
the dopant in the silicon, and tis time. The situation is depicted in Fig. 13.7. 

The amount of dopant predeposited, usually expressed in terms of the number of dopant 
atoms, is 

1 = A J fx~o dt, (13.48) 
0 

where A is the surface area of the silicon wafer and fx~o is the flux of dopant atoms at the 
surface (x = 0). It can be shown that the flux at the surface is 

(13.49) 
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Gas 
c 

Fig. 13.7 The concentration of dopant at the surface of a silicon wafer during the 
predeposition step; t2 > t 1• 

then by combining Eqs. (13.48) and (13.49) and carrying out the integration, we get the 
amount predeposited. It is 

_2A ) l/2 J - 11'112 (C, - C0 (Dt) . (13.50) 

During predeposition, we also calculate the diffusion depth of the dopant profile; it is 

f = (Dt) 112 • (13.51) 

Values of diffusion coefficients and approximate surface concentrations for two dopants, 
boron and phosphorus, are given in Table 13.3. The units are those most likely to be 
encountered in device fabrication technology. 

Table 13.3 Surface concentrations and diffusion coefficients for boron and phosphorus 
Boron Phosphorus 

T,K C,, atoms cm-3 D, J.Lm2 h-' C,, atoms cm-3 D, J.Lm2 h-1 

1223 4.5 X lOW 1.6 X w-3 9 X 10W 1.1 x w-3 
1273 4.8 X lOW 5.2 X w-3 1.0 X lOZ' 6.4 x w-3 
1323 5.0 X 10Z0 1.7 X w-2 1.1 X lOZ' 2.0 x w-2 

1373 5.1 X lOW 5.8 x w-2 1.2 X lOZ' 7.3 x w-2 

1423 5.2 X lOW 1.6 x w-' 1.2 X lOZ' 1.8 x w-' 

Example 13.6 Boron is predeposited on a silicon wafer with an initial concentration of 
5 x 1015 atoms cm-3• Conditions are 30 minutes at 1223 K. Calculate a) the amount 
deposited; b) the diffusion length; c) the concentration at the diffusion length. 



482 Diffusion in Solids 

Solution. a) From Table 13.3, C, = 4.5 X 1020 atoms cm-3 and D = 1.6 x 10-3 p.m2 h-1. 
Equation (13.50) applies, so that 

J 2 2 
A = 11'112 (C, - Co)(Dt)112 = 11'112 (4.5 X 10ZO - 5 X 1015)(1.6 X w-3) 112(0.5)112 

1.44 x 1019 atoms p.m 1 em 
1.44 x 1015 atoms em -2. 

b) Equation (13.51) is used. 

£ = (1.6 X 10-3 X 0.5)112 

Notice how small £ is; this is typical. 

2.83 X 10-2 p.m 2.83 X 10-6 em. 

c) Equation (13.47) applies with x = £ = (Dt)112. Thus, with Table 9.3 we get 

~ ~ ~s = erf [~] = 0.5205, 

and 

C = (0.5205)(5 X 1015 - 4.5 X 1Q2°) + 4.5 X 10Z0 

= 2.16 x 1020 atoms em -3 • 

From the above example we see that a very thin layer of the dopant is deposited on to the 
surface of the silicon matrix. This was done by the chemical reaction with the gas and 
allowing a small amount of diffusion to occur. Another method of producing a high 
concentration of dopant at the surface is ion implantation. In this method a beam of ions is 
accelerated into a mass-separating magnetic field, which selects the dopant ions from 
unwanted ions, similar to the separation in a mass spectrometer. The beam of dopant ions 
is aimed at the silicon target, where the ions come to rest after colliding with the nuclei and 
electrons in the surface layer of the target, which also tends to create vacancies in the host 
la~e. Ion implantation can be controlled better than predeposition through the gas, both in 
t~ uf minimizing lateral spread and in establishing a very sharp definition of the dopant 
aqhe surface. A very high density of crystalline defects, especially vacancies, however, IS 

a disadvantage because they can reduce the electronic performance of the device. 
After the predeposition step, drive-in diffusion is done to allow diffusion from the surface 

further into the silicon. This is illustrated by Fig. 13.S. To prevent escape of the dopant, 
a very thin layer of silica (Si~) is made on the surface. During the drive-in, the boundary 
conditions and the initial condition for C(x,t) are 

and 

ilC(O,t) ---ax = 0, 

C(oo ,t) 

C(x,O) = f(x'). 

(13.52a) 

(13.52b) 

(13.52c) 
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Fig. 13.8 The concentration of dopant near the surface of a silicon wafer during the 
drive-in step. The distribution at t = 0 is that from the predeposition step. 

Equation (13.52a) applies at the surface, Eq. (13.52b) simply gives the concentration in the 
interior, and Eq. (13.52c) represents the distribution of dopant that results from the 
predeposition. 

The solution which satisfies Fick's second law of diffusion and Eqs. (13.52a,b,c) can be 
deduced from Appendix G. Then 

C - C = f., f(x') - Co { [ -(x - x')z ] - [ -(x + x')z] } dx' (13.53) 
o en.- exp 4Dt exp 4Dt ' 

x·~o 2y7rDt 

where f(x ') is the distribution of the solute from the predeposition step and given by 
Eq. (13.47). By combining Eqs. (13.47) and (13.53), we get 

C - Co _ f., erfc (x' /2£) { [ -(x - x')2] _ [ -(x + x')2] } , ( 13 _54) 
C - C - en.- exp 4Dt exp 4Dt dx · 

s 0 x·~o 2y 1rDt 

Equation (13.54) is the solution, but, unfortunately, it is cumbersome and requires a 
numerical integration. Therefore, an approximate solution is often invoked. 

The dopant taken up by the silicon in the predeposit step is approximated to be a thin 
source on the surface of the silicon. The strength of the source is given by the amount 
deposited per unit area. Thus, Eq. (13.22) applies with C relative to C0 and the source 
strength (/3) given by 1/A, Eq. (13.50). 

2 [ £2 ] I/2 [ X 2 ] 
C, - C0 = 1r Dt exp - 4Dt · 

(13.55) 

Notice that C, and f are from the predeposit step, but D and tare for the drive-in step. 
The so-called "junction depth" (x) is important because it is a measure of the depth of 

diffusion after drive-in diffusion. The junction depth is defined as follows. 
Since C, » C0, Eq. (13.55) is approximated by 

c 2 [ e ] 112 
[ xz ] C, - 1r Dt exp - 4Dt ' (13.56) 
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and xi is that value of x where C = C0• Then 

x. = 
J 

(13.57) 

Example 13.7 After the predeposit step, the wafer of Example 13.6 is subjected to drive-in 
at 1423 K for 2 h. Calculate: a) the junction depth; b) the concentration at that depth; and 
c) the surface concentration. 

Solution. a) Equation (13.57) applies with£, C, and C0 given in Example 13.6. From Table 
13.3 D = 1.6 X 10-1 JLm2 h-1 = 4.44 X 10-13 Cm2 s-1; also t = 7200 s. 

x, ~ !· X 4.44 X JO·" 

[ [ ~] [ 4.5 X 1()20] [ 2.832 X 10-12 ] 1' 2] )

112 

X 7200 In 1f 5 X lQIS 4.44 X lQ-13 X 7200 

xi = 3.19 X 10-<~ em = 3.19 JLm. 

b) C == C0 = 5 x 101s atoms cm-3• We obtain an exact result by using Eq. (13.55). 

c- C0 _ ~ [ 2.832 x w-12 ) 112 [ 3.1~ x w-s ) 
C, - C0 - 1f 4.44 X 10-13 X 7200 exp - 4 X 4.44 X 10-13 X 7200 

= 1.115 X 10-s. 

Therefore, 

C = (1.115 X IQ-sx4.5 X 1Q2° - 5 X 101s) + 5 X 101s 

= 1.00 x 1016 atoms em -3 • 

c) We use Eq. (13.55) with x = 0. 

C - 5 X 101s 2 [ 2.832 X 10-12 ] 112 

4.5 X 1020 - 5 X 1015 = 1f 4.44 X lQ-13 X 7200 = 0·0319· 

C = 1.43 x 1019 atoms em -3 • 
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13.5 HOMOGENIZATION OF ALLOYS 

During solidification of alloys, coring occurs, because the rate of diffusion for most alloying 
elements in the solid state is too slow to maintain a solid of uniform concentration in 
equilibrium with the liquid. A cast structure is exemplified in Fig. 13.9 showing the 
repetitive pattern of microsegregation. In the case at hand we presume the alloy to be a 
single phase. Dendrite arms 

~ 

c 

0 ~ 
II .. .. 

Fig. 13.9 A dendritic structure showing the coring or microsegregation of the 
alloying element. Lis one-half of the dendrite arm spacing. 

The dendrite arms develop during solidification and their spacing depends upon the alloy 
and the rate of cooling from the liquidus temperature to the nonequilibrium solidus 
temperature. Depending on the cooling rate, the dendritic arm spacing can be between 5 1.1m 
and 400 J.!m, with typical values ranging from 50 1.1m to 200 J.lm. 

Dendritic structures occur in cast products that encompass ingots, shaped castings, 
continuous castings, and weldments. The coring, or microsegregation, is coincidental with 
the growth of the dendrites. Imagine a local region in a solidifying casting that comprises 
several to many dendrite arms. As solidification proceeds within the local region, solute is 
rejected to the interdendritic liquid, when the concentration of solute in the solid is less than 
that of the interdendritic liquid. The microsegregation can be closely approximated by a 
simple solute balance. 3 That is, the solute rejected from the dendritic solid equals the 
increase of solute in the interdendritic liquid. Therefore, within a local region undergoing 
solidification we have 

(1 - f,)dCL, 

where 
CL = weight percent of solute in the interdendritic liquid; 

Cs* = weight percent of solute in the dendritic solid at the solid-liquid interface; 
and 

J, = local weight fraction of solid. 

(13.58) 

3M. C. Flemings, Solidification Processing, McGraw-Hill, New York, NY, 1974, pages 34-36, 142. 
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When we use Eq. (13.58), it is assumed that there is sufficient diffusion of solute in the liquid 
so that it is uniform. This is usually valid because the diffusion length in the liquid is many 
times greater than the dendrite arm spacing. On the other hand, the diffusion coefficient of 
the solute in the solid is typically 5 or 6 orders of magnitude less than in the liquid, so we 
assume no diffusion in the solid. Consequently, as a layer of solid with a concentration C,* 
forms, its concentration never changes as subsequent solid of different C,* grows from the 
interdendritic liquid. 

To get a quantitative picture of the microsegregation, we integrate Eq. (13.58). Then 

fs dfs 
= J ~· 

fs=O s 

or 

(13.59) 

where C0 is the concentration of solute in the unsolidified melt (i.e., the alloy composition). 
In dendritically freezing alloys, the solid-liquid interface is very close to equilibrium so that 
C,* can be taken as the solid in equilibrium with the liquid. Many binary alloys have phase 
diagrams in which the ratio C,*ICL = k can be approximated as a constant, called the 
equilibrium partition ratio. With a constant k, we can substitute C,* = kCL into Eq. (13.59) 
and carry out the integration. The result is 

CL 
= (1 - fs(l' co 

or 

C,* 
co k(l - fs)k-1. (13.60) 

As an example, suppose k = 0.3; then the microsegregation according to Eq. (13.60) is 
shown in Fig. 13.10. The first solid that forms has a concentration C,* = kC0 and then 
succeeding solid has progressively higher values of C,*. But with no diffusion in the solid, 
the microsegregation, which develops, remains. 

As /, -+ 1 , Eq. ( 13. 60) predicts C,* -+ oo . In reality, a reaction, such as a eutectic 
reaction, takes place near the end of solidification when the interdendritic liquid becomes 
sufficiently enriched in solute. In any event, after solidification is complete there is 
microsegregation, and in many applications it is necessary to subsequently heat treat the alloy 
to reduce the microsegregation by diffusion. This process is called homogenization. 

During homogenization, the alloy naturally tends toward a uniform concentration 
(Fig. 13.11). We need only examine what happens within one dendritic element since the 
profile is periodic, and there is no net flow of solute from any dendritic region to the next. 
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Fig. 13.10 Microsegregation in a dendritic solid with k = 0.3. 

c Completely 
homogenized, C = C0 

==:.::===.=-_:-_-_:Short time 

0 L 
X 

Fig. 13.11 Dendritic element, 0 < x < L, used for describing homogenization kinetics. 

To describe the homogenization kinetics, a solution to Pick's second law is needed that 
satisfies 

I. C.: C(x,O) = f(x), 

ac 
B.C.: ox (O,t) = 0, 

ac ax (L,t) = 0, 

(13.61a) 

(13.61b) 

t > 0. (13.61c) 

The solution can be obtained by applying the method of separation of variables. Here we 
simply present the solution as given by Crank": 

C(x,t) = C0 + L A. exp 
•-I [ Dt] mrx -n 2il - cos --L2 L ' 

(13.62) 

41. Crank, The Mathematics of Diffusion, Oxford University Press, London, 1957, page 58. 
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with 
L 

2 J mrx L f(x)cosydx. (13.63) 
0 

In Eq. (13.62), C0 is the overall or average alloy content, and we evaluate the A.s by 
Eq. (13.63) usingf(x) as the initial solute distribution. 

A useful parameter to describe the homogenization kinetics is the residual segregation 
index o, which is defined as 

0 = (13.64) 

where CM = maximum concentration, that is, CM = C(O,t); C~ = initial maximum 
concentration, that is, ~ = C(O,O); Cm = minimum concentration, that is, Cm = C(L,t); and 
~ = initial minimum concentration, that is,~ = C(L,O). For no homogenization, o = 1, 
and after complete homogenization, o = 0. 

We can find eM- em by applying Eq. (13.62) to X = 0 and X = L, and performing the 
indicated subtraction. The residual segregation index can then be written as 

2 •-ttodd A. exp [ -n zr ¥z) 
c~- c~ 

(13.65) 

Equation (13.65) has been used to analyze the homogenization of chromium in cast 52100 
steel (1 %C-1.5%Cr). Figure 13.12 shows the results. The practical conclusions of such 
studies show that: 

1. In commercial material, with relatively large dendrite arm spacing (200-400 JLm), 
substitutional elements do not homogenize unless excessively high temperatures and long 
diffusion times are employed. For example, in laboratory-cast 52100 ingots the dendrite 
arm spacing could typically be 300 JLm, which would have to be held at 1450 K for 
about 20 hours to reduce o to 0.2 for chromium. In large commercial ingots, dendrite 
arm spacings are larger and homogenization is even more difficult to achieve. 

2. Significant homogenization of substitutional elements is possible at reasonable 
temperatures and times only if the material has fine dendrite arm spacings (<50 JLm), 
which result from rapid solidification. 

3. Interstitial elements (such as carbon in steel) diffuse very rapidly at austenizing 
temperatures. 

" 1.0 " "" .: 0.8 
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~ 0.6 
l:! .. 0.4 
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L' 

.or-to 25 3 

36 40 44 48 

Fig. 13.12 The residual segregation index for chromium in cast 52100 steel. (From 
M. C. Flemings, D. R. Poirier, R. V. Barone, and H. D. Brody, JISI, 371, April1970.) 
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Homogenization studies have also been carried out for 4340 low-alloy steel5 and 7075 
aluminum alloy. 6 In Reference 6, the analysis and discussion of homogenization emphasizes 
the dissolution of a nonequilibrium second phase during solutionizing. 

Example 13.7 An ingot of52100 steel goes through the processing schedule indicated below. 
Estimate the residual segregation index of chromium for the material in the center and the 
outside surface of the finished bar. Neglect the small amount of diffusion that occurs during 
blooming, rolling, and final cooling. Near the surface of the original cast ingot, the dendrite 
arm spacing is 40 rm, and in the center, it is 800 ,urn. The diffusion coefficient of chromium 
in this steel at these temperatures is given by 

D = 2.35 x 10-5 exp [-17 300/T(K)], cm2 s·1• 

Ingot Billet Bar 
24 in. X 24 in. 6 in. X 6 in. l-in. diam. 

OF 

h 
--Surface 
---Center 

Reduction schedule for s: I 00 alloy steel bars. 

Solution. Before proceeding directly to the solution of this problem, we should recognize 
that, although the basis for Eq. (13.65) assumes a constant diffusion coefficient (hence 
isothermal treatment), we can apply it to non-isothermal conditions. 

For example, if a part is subjected to n heat treatment steps, each at a different 
temperature and for different times, we can compute the total magnitude of Dt!L2 as 

Dt 
u 

5T. F. Kattamis and M. C. Flemings, Trans. TMS-AIME 233, 992 (1965). 

6S. N. Singh and M. C. Flemings, Trans. TMS-AIME 245, 1803 (1969). 
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We can then use this value of Dt/L2 in Eq. (13.65). For a continuous nonisothermal 
situation, we compute the total magnitude of Dt/L2 to be used as 

t 

Dt 1 f U = U D(t)dt. 
0 

For hot-working in which D and L are both time dependent, Dt/L2 should be evaluated as 
t 

Dt f D(t) 
U = 0 [L(t)f dt. 

Now we determine D(t), given the thermal process schedule and D(T). 

~ 

a -
0 
X 

C) 

:s 

24 II 
I 
I 

20 

16 

12 

8 

4 

0 
0 

\ 
\ { / I 

\ I 
f---Center 

'~-' 

\ f-surface 

~ 

10 

i 

' 

I 
II 

! 
I 

I 
t 

: 

20 30 
Time,h 

During the processing, assume that the dendrite spacing decreases in proportion to the 
changes of linear dimensions. Based on this, L(t) is given in the table below. 

Time 

0-26 h 
26-29 h 

Center of ingot, 
L, em 

0.040 
0.010 

Surface of ingot 
L, em 

0.0020 
0.0005 
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Now Dt!L2 for the "surface" material can be evaluated by determining the area under the 
curve in the figure below. 

10 x lo·•l---1-----,r----i----t 

D/L 2 • sl---1----1---~1----t------~--~ 
s·• 

0 

Time.h 

Under area I 
Under area II 

Total 

112 X 10-5 hs-1 

141 X 10-5 h s-1 

253 X lQ-5 h s·1 

Dt U (surface) = 253 X 10·5 X 3600 = 9.10. 

According to Fig. 13 .12, this value of Dtl L2 indicates that the surface material would be 
homogeneous since fJ = 0. 

In the center of the ingot, since the dendrite spacing is 20 times the spacing of the 
surface, then (neglecting small differences in the thermal history) 

Dt Dt 1 9.10 U (center) = U (surface) x 202 = 400 = 0.0228. 

From Fig. 13.12, we see that o = 0.27, and a significant amount of microsegregation 
remains in the material. 

13.6 FORMATION OF SURFACE LAYERS 

The rate of formation of oxide (sulfide) layers on metals and alloys exposed to oxidizing 
(sulfidizing) conditions is a matter of considerable technological importance. In general, it 
is not possible to say a priori that the rate of formation of a nonmetallic layer will be 
controlled by diffusion. For example, the initial rate of formation of the layer is often 
determined by the rate of an interface reaction between the gas and solid. As growth 
proceeds, if the specific volume of the oxide is much larger than that of the metal substrate, 
separation of the two phases may occur, causing an interruption in the growth of the oxide 
layer. However, in many cases this separation does not occur, and growth continues by 
diffusion of either the metal out through the oxide layer, or diffusion of oxygen into the 
metal-oxide interface, or a combination of both. In the case of adherent oxides, eventually 
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the diffusion flux slows down to the point where it is considerably slower than the interface 
reaction, and diffusion controls the rate of growth of the layer from then on. 

If we consider the situation in Fig. 13 .13, we can derive an expression for the rate of 
increase in the oxide thickness M. In this example, the metal is divalent, and the oxygen 
anions, having a large ionic radius, diffuse only at a negligible rate through the oxide layer 
so thatj0 z- = 0. Thus the oxide thickens because the metal cations diffuse through the oxide 
so that the oxidation reaction can proceed. At any instant, the flux of cations through the 
oxide is given by Fick's law (Eq. (12.2)): 

-D [ ~~] . 

Metal A AO o, 

A ... A 2• + 2e 

x=O x=M 

Fig. 13.13 The oxide layer on a metal showing the direction of flow of ions and electrons. 

Here D is the diffusivity of the cation, and C is the cation concentration. If the oxide layer 
is thin, then we approximate the concentration profile of the cation as linear, and can 
integrate Fick's law as 

M eM 

j J dx J D dC. 
0 Co 

Here, C0 is the cation concentration at x = 0, and CM is that at x = M. If the boundary 
conditions CM and C0 are unchanged with time (that is, with M), then the instantaneous flux 
at any thickness M is 

co 
j M J D dC, (13.66) 

eM 

or 

j 
k 
M' 

where k is a constant, and has the units of mol m-1 s-1• 
The flux is proportional to the rate of growth of the thickness of the oxide layer: 

. dM 
1 oc ---at, 
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or 

k dM 
M ex dt' (13.67) 

so that 
M 

fMdM f k' dt, 
0 0 

or 

M 2 = 2k't, (13.68) 

where k' is a constant with units m2 s-1, known as the Tammann scaling constant7 or the 
Pilling and Bedworth constant. 8 The parabolic nature of the rate of change of the oxide 
thickness with time is apparent. 

Experimentally, it is usually more convenient to measure mass gain rather than the oxide 
thickness. Then 

(13.69) 

where Lim/A = kg (mass gained) m-2 (surface area), and Po = concentration of oxygen in the 
oxide, kg of oxygen m-3 of oxide. 

or 

If we substitute Eq. (13.69) into Eq. (13.68), we obtain 

[ Lim ) 2 = 2k' t 
A P~ , 

(13.70) 

where kP is the practical parabolic scaling constant, (kg 0 2? m-4 s-1• Usually, we obtain 
experimental data by mass gain measurements, and take straight-line behavior when we plot 
(Lim! A? versus t as an indication of diffusion-controlled oxidation. 

Such data alone, however, do not indicate which species is responsible for the major 
material flow, that is, whether the metal is diffusing out from the oxide-metal interface or the 
oxygen is diffusing in. Wagner9 has extended this simple expression to express kP in terms 
of diffusion coefficients of the migrating species. 

Combining Eqs. (12.23), (12.37), and (12.39), we obtain the relation 

(13.71) 

7G. Tammann, Z. Anorg. u. Allgem. Chern. 111, 78 (1920). 

8N. B. Pilling and R. E. Bedworth, J. Inst. Metals 29, 529 (1923). 

9C. Wagner, Atom Movements, Amer. Soc. for Metals, Cleveland, OH, 1951, page 153. 
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where n; = concentration of the migrating species, B; = mobility of the species, u = total 
electrical conductivity of the compound, t; = transference number of species i, Z; = valence, 
and e = electronic charge. Now, using Eq. (12.32) and substituting Eqs. (12.37) and 
(13.71), we obtain the flux fi;: 

(13.72) 

or in terms of the free energy for an ideal solution 

(13.73) 

where P.; is the chemical potential (per atom) of species i. If the compound formed has the 
stoichiometric composition A)Jb, where A is the cation, then the scale consists of ions 
according to the dissociation reaction: 

where the zs are the respective valences. Since the scale cannot have a net charge, the fluxes 
of individual species are related by 

(13.74) 

Using Eq. (13.73) for each flux and recalling Eq. (12.38), we obtain an expression for iJcJ>IiJx: 

(13.75) 

In order to obtain an expression for the total flux in terms that we can measure, we must 
replace the expressions involving P.A+• P.rr• and p.,. We first consider the equilibria 

(13. 76a) 

and 

B + Z# = IJ'lr (13.76b) 

At equilibrium 

(13.76c) 

and 
(13.76d) 

For the compound in general, we get 

(13.77) 
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from the Gibbs-Duhem relationship. Then, eliminating ILA+, lls-• and p., from Eqs. (13.75) 
and (13.73) and using Eqs. (13.76a,b) and (13.77), we obtain expressions for the particle 
fluxes: 

[ op.B l ax ' A ions m -2 s -1 
(13.78) 

and 

B ions m-2 s-1 • 
(13.79) 

Since the growth rate of the compound is the sum of the particle fluxes (although either may 
go to zero), we obtain 

molecules Aflb m -2 s -1 • 
(13.80) 

If we use, for some reason, Eq. (13.80), we usually convert the units to give the flux in 
g-equivalents m-2 s-1• Denoting the number of equivalents per mole by the symbol r,* we 
obtain the growth rate: 

g-equivalents AaBb m-2 s- 1 

We define the rational rate constant, k,, as I~ liAaBb dx; then 
0 

ILB 

k, = --:!--z f a(tA + t8)t, dp.8, 
e NozB ' 

ILB 

(13.81) 

(13.82) 

where p.~ and p.g are the chemical potentials of B at the inside and outside (metal and gas) 
interfaces of the oxide, respectively; k, has the units of g-equivalents m-1 s-1 and is related 
to the parabolic rate constant kP by 

2p0 (at. wt B)2 

r(mol. wt Aftb) k,. 

The Tammann scaling constant is related to k, by 

k' = 2(at. wt B) k,. 
p0bZ8 

·Note that numerically r = z8 , but that their units differ. 

(13.83) 

(13.84) 
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If we assume that the anion exists as B2 in the gaseous state, and there is ideal gas 
behavior, we can substitute 

into Eq. (13.82) and obtain 

k, (13.85) 

We note that although t, may approach 1.0, and (tA + t8 ) may approach zero, the expression 
(tA + t8 ) cannot equal zero even for an electronic oxide conductor because it would cause a 
charge imbalance. In an electronic semiconductor, the product t.(tA + t8) is a very small 
number, and k, is small. In this case, where t, = 1.0, if we assume that mobilities BA and 
B8 are equal to B1 and B:. respectively, we can substitute Eq. (12.37) into Eq. (13.85) and 
obtain 

(13.86) 

When D~ or v: are very different in magnitude, we may further simplify this expression as 
shown in the following example. 

Example 13.8 Given the diffusion data for self-diffusion of NF+ and 0 2- ions in NiO at 
ll90°C, calculate the rational rate constant and the parabolic rate constant for the oxidation 
of Ni in pure oxygen. It is known that D~ << D~i· 

Solution. Since D~ is much less than D~i> we simplify Eq. (13.86) to 

d lnp<>7.. 

The term nar!N0 has the units of equivalents m-3 • In this case, we have 

mol. w~io 
2(7.44 X 1Q3) 

74.69 = 1.99 X 1Q2 equivalents m -3 • 
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Alternatively, if we take z8 as electronic charges per B atom, and n8 is the concentration of 
B atoms m-3, then we must divide by Faraday's constant, 96 487 coulombs/equivalent, and 
multiply by the charge on an electron, 1.602 x I0-19 coulombs per charge. In this case, we 
get 

(6.00 X 1028)(2)(1.602 X 

2 X 96 487 dIn Po2· 

Thus either way 

We evaluate the integral graphically. The figure below gives D~; as a function of Pez in NiO. 
The area under the curve is equal to the integral/2.303. The area is 

"' ~ 
E 
~ -

0 
7.5 

X 
•Z 
Q 

equal to 16 X 10-15 m2 s-1• Therefore 

[ 1.99 x wz] k, = 2 (2.303)(16 X 10-15) = 3.66 X 10-12 equivalents m -I S -I. 

From Eq. (13.83), the parabolic rate constant is 

2p0 (mol. wt0 / (2)(7.44 x I03)(W) 
---,-....:__.,--.;--- k, = (3.66 x w- 12) r(mol. wtN;o) (2)(74.69) 

9.33 X 10-8 (kg 0 2)2 m -• s -I. 
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Many metals exhibit parabolic oxidation kinetics, among them iron, nickel, cobalt, 
manganese, copper, and aluminum. Table 13.4 lists some typical values of kP' Some, 
however, do not form compact, adherent oxides, and the kinetics of their oxidation are 
governed by either gas-solid reaction rates or gas-phase transport. For example, both 
molybdenum and tungsten form oxides that volatilize immediately upon reaction, and 
continually expose fresh metal to further oxidation, with no limit by solid-state diffusion on 
the rate. 

Table 13.4 Parabolic oxidation constants for various metals 

Conditions 

Metal Oxide kP' (kg 0 2) 2 m_. s-1 Temp., oc p':!l., atm 

Co CoO 2.43 x w-6 1000 1.0 
Cu Cu,O 6.3 x 10-' 1000 0.083 
Ni NiO 3.8 x 10-8 1000 1.0 
Fe FeO 1.6 X 10-5 1000 3 x w-14 

Fe Fe0/Fe30iFe,03 1.4 X 10-4 1000 1.0 
Ni-10%Cr Complex 5.0 x 10-8 1000 1.0 
Cr Cr,03 1.3 x 10-9 900 0.1 
Fe-1 %Ti Complex 1.6 X 10-5 1000 1.0 
AI Al,03 8.5 x 10-14, 600 1.0 

'There is a considerable variation in this number, since the surface condition appears to have 
a strong effect. 

Certain metals absorb a significant amount of oxygen in solid solution during the process 
of oxidation; zirconium, for example, can dissolve up to 29 at.% oxygen in solid solution 
prior to the formation of Zr02• Once the oxide layer has formed, its thickness increases in 
proportion to /k'f: according to Eq. ( 13. 79), and the thickness of the oxide as measured from 
the original surface is 

M (13.87) 

where Vz, is the molar volume of Zr and VzrOz is the molar volume of Zr02 • The diffusing 
species in the oxide is the oxygen anion moving in from the gas phase to the Zr02-Zr 
interface. At the interface, some of the oxygen dissolves in the metal, and some reacts to 
form more Zr02• Beyond the interface and into the metallic phase, for x > M, we have 

oT o2C 
Tt =Do axz, (13.88) 

where C is the oxygen concentration, mol m-3 • If equilibrium is established at all times at 
the interface, and C, is the oxygen content of the metal in equilibrium with Zr02 , then 

C(M,T) c •. (13.89a) 

C(oo,t) = 0, (13.89b) 

C(x,O) = 0. (13.89c) 
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The solution to Eq. (13.88) subject to Eqs. (13.87) and (13.89a,b,c) is 

erlc [ 2~] 
(13.90) C=C e 

where x is the distance from the original interlace, and x' = x - M, where x' is the distance 
from the oxide-metal interlace. Thus 

PROBLEMS 

13.1 One side of an iron sheet, 
0.01 em thick, is subjected to a 
carburizing atmosphere at 1200 K such 
that a surface concentration of 1.2% 
carbon is maintained. The opposite 
face is maintained at 0.1% carbon. At 
steady state, determine the flux 
(mol cm-2 s-1) of carbon through the 
sheet: a) if the diffusion coefficient is 
assumed to be independent of 
concentration(D = 2 x 10-7 cm2 s-1); 

b) if the diffusion coefficient varies as 
shown to the right. 

_, 
5 X 10 

4 

3 

2 

I 

0 
0 

(13.91) 

I 
I :// i ' I 

I j/f I -- 1 

i 
I 

I 
I 
i 

0.4 0.8 1.2 
%Carbon 

13.2 A composite foil made of metal A bonded to metal B, each 0.01 em thick, is subjected 
to 0.5 atm of pure hydrogen on metal A's face; the other side, metal B's face, is subjected 
to a perlect vacuum. At the temperature of interest and 1 atm of hydrogen, the solubility of 
hydrogen in metal A is 4 X w-4 g per cm3 of A and in B it is 1 x lo-t g per cm3 of B. It 
is also known that hydrogen diffuses four times faster in A than B and that A and B do not 
diffuse in each other. Draw the concentration profile of hydrogen across the composite foil 
at steady state. 
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13.3 A thin sheet of iron at 800°C is subjected to different gaseous atmospheres on both of 
its surfaces such that the composition of one face is at 4 atom percent carbon and the other 
is at zero atom fraction carbon. At steady state~make a plot of the composition profile in 
the sample indicating clearly compositions andre pective distances. 

The thickness is 1 mm and density changes d ing the experiment may be neglected. At 
800°C, it is known that the diffusion coefficient of carbon in iron is given by: 

D = IQ-6 cm2 s-1 in ferrite (ex), 

D = IQ-8 cm2 s-1 in austenite (-y). 

}' 
... : 

a+ graphite 

0 4 

Atom percent carbon 

13.4 Often electronic packages are hermetically sealed with polymers, but after being put 
in service corrosion is sometimes observed. This happens because H20 molecules can diffuse 
through polymers. Assume that the equilibrium between water vapor and water dissolved (or 
absorbed) by the polymer is simply represented by the reaction: 

HzO(g) = H20 (dissolved), 

with the equilibrium constant 

K 
c IQ-4. 

where C is the concentration of H20 in the polymer (moles cm-3) and PH,o is the pressure of 
H20(g) in atm. 

a) Assume equilibrium at the surfaces and calculate the flux of HzO through the polymer 
(in moles cm-2 s-1); assume steady state. 



Diffusion in SoUds 501 

I''Vi··~~~1 
p820 • 0.05 atm Atmosphere 

in sealed 
package 

/ .. PHzO • O 

polymer (A) fllm, 
0.1 mm thick I 

hv\ D = 10-9 m2 s·' 
HzO 

b) Now two films, polymer A and B, are used. Each is 0.1 mm thick. 

pH10 • 0.05 atm 

A 

PH10 • O 

B 

~ 
~----gap 

Assume steady state and equilibrium at all interfaces. What is the pressure of H20(g) in the 
gap? 

13.5 Hydrogen gas is maintained at 3 bar and l bar on opposite sides of a plastic membrane 
which is 0.3 mm thick. The temperature is 25°C, and the diffusion coefficient of hydrogen 
in the plastic is 8. 7 x 10-10 m2 s-1• The solubility of hydrogen in the membrane is 1.5 
x I0-3 kmol m-3 bar'. What is the mass diffusion flux of hydrogen through the membrane? 
Give your result in kmol s-1 m-2• 

13.6 The Grube solution is used to analyze diffusion data 
for a diffusion couple in which the solid is semi-infinite 
on both sides and when the chemical diffusion coefficient 
is uniform. Now consider a diffusion couple made from 
two thin solids so that the Grube solution for semi-infinite 
solids is not applicable. Such a couple is shown to the 
right with the initial condition for CA shown. a) Assume 
that D is uniform. Write a partial differential equation 
for C . .fx,t) where x is the space coordinate and tis time. 
b) For 0 :s; x :s; L, write appropriate boundary conditions 
and an appropriate initial condition for CA. You may 
assume that component A is not volatile; i.e., no A is lost 
from the diffusion couple. 

~ v 

-L x•O 

~ 
- CA2 

+L 
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13.7 An unknown amount of radioactive gold is deposited as a thin layer on the ends of two 
rods of gold. The two rods are then joined to form a specimen having a planar source of 
radioactive gold (Au') atoms at the origin x = 0. After diffusion for 100 hours at 920°C, 
the distribution of Au' is as shown below. Calculate the self-diffusion coefficient of gold in 
pure gold, based on the data at 0.3 mm and 0.6 mm as indicated in the plot of the relative 
concentration of gold. 

1.0 

.§~ 0.8 
~;;i 8 &. 0.6 

g.~ 
~ ~ 0.4 
·.:::.a -5e 
~ '0 0.2 

0 

Gold crystal 

I 
I v 

J 

L.---" v 

Thin layer of Au* 

Gold crystal 

1/ \ 
~ 

\ 
\ 
r\ 

""" I'--

I 
I 
I 
\ 

-1.5 -1.2 -0.9 -0.6 -0.3 0 0.3 0.6 0. 9 1.2 1.5 
Dislance, x, mm 

13.8 Silicon is exposed to a gas that establishes a concentration of 1018 atoms (AI) cm-3 on 
the surface of the silicon. The process is carried out at 1473 K. a) After 30 min, at what 
depth below the surface of the Si will the concentration be 1016 atoms cm-3? b) Calculate the 
amount of AI (in atoms cm-2) that diffuses into the Si after 30 min of treatment at 1473 K. 

13.9 The Matano-Boltzmann analysis is used to calculate the interdiffusion coefficient, D, 
from diffusion couple data. It can also be used to determine the intrinsic diffusion 
coefficients in a binary by inserting inert markers at the original interface. 

a) The distance moved by the markers is proportional to the square root of time. Show 
that v, in Eq. (12.14) is given by 

where S is the distance moved by the markers and t is the diffusion time. 
b) Assuming that i5 and S are determined in a diffusion-couple, what two equations are 

needed to simultaneous) y solve for the intrinsic diffusion coefficients in the binary. 
[Hint: Review Section 12.2.2.] 

13.10 A gold-nickel diffusion couple of limiting compositions XNi = 0.0974 and XN; = 
0.4978 is heated at 925°C for 2.07 x 106 s. Layers 0.003 in. (0.0762 mm) thick and 
parallel to the original interface are machined off and analyzed. a) Using the data tabulated 
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below, calculate the diffusion coefficient at 20, 30, and 40 at.% nickel. b) Suppose that 
markers are inserted at the original interface and move along during the diffusion process at 
a composition of 0.30 atom fraction nickel. From this, determine the intrinsic coefficients 
of gold and nickel at 0.30 atom fraction nickel. 

Slice No. at% Ni Slice No. at% Ni Slice No. at% Ni Slice No. at% Ni 

11 49.78 21 35.10 29 21.38 38 13.26 
12 49.59 22 33.17 30 20.51 39 12.55 
14 47.45 23 31.40 31 19.12 41 11.41 
16 44.49 24 29.74 32 17.92 43 10.48 
18 40.58 26 25.87 33 16.86 45 9.99 
19 38.01 27 24.11 35 15.49 47 9.74 
20 37.01 28 22.49 37 13.90 

13.11 Metals A and B form alloys of fcc structure at l200°C. They are allowed to 
interdiffuse as a diffusion couple for lOS s, and the concentration profile obtained is given in 
the accompanying figure. Determine the value of the interdiffusion coefficient, D, at a 
concentration C8 = 0.02 mol cm-3• 

0.10 I'--
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13.12 Intrinsic silicon (i.e., pure Si) is processed in a gas which establishes a concentration 
of 10 ppm (1 ppm = w-4 wt. %) of boron at the surface of the silicon. Distances from the 
left vertical face are given in the following table. 
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_l Distance, 
lpm 
-t fQim liD 

a 0 
b 1 
c 3 
d 5 

After 10 h exposure to the gas, what are the concentrations of boron at points a, b, c and d? 
At the process temperature, the diffusion coefficient for B in Si is D = 10-•z cm2 s-• = 
1~ l'fl12 s-•. 

13.13 A fine steel wire of 0.2 wt.% C is passed through a tube furnace at 1200°C which 
contains a carburizing gas. The composition of the carburizing gas is adjusted so that it fixes 
0.8 wt.% C on the surface of the wire. By neglecting diffusion in the axial direction of the 
wire, calculate the average composition of the wire after it passes through the tube. At this 
temperature the steel is a single phase (austenite). Data: diameter of wire, O.Ql em; length 
of furnace, L, 1.5 m; velocity of wire, V, 15 em s-•. 

Gas out 

.. li~ .. 
I- Seal 

----- L -----+ 

13.14 A thin layer of Au is plated on to the end of aNi bar. The bar is annealed at 900°C 
for 10 h; at 900°C the interdiffusion coefficient of Au in Ni is m-n cm2 s-•. It is known that 
Au and Ni are completely soluble at 900°C. After the treatment, the concentration of Au at 
a distance of 0.05 em from the end is 0.1 atom fraction of Au. At what distance from the 
end is the atom fraction of Au equal to 0.05? 

13.15 A long cylindrical bar of steel which contains 3 ppm of hydrogen is dehydrogenated 
by a two-step vacuum process. The first step is treatment at 150°C for time period t1, 

followed by the second step at 300°C for time period t2 • If t1 = 2t2, calculate: a) the total 
time (t = t1 + t2) to reduce the average composition to 1.5 ppm of hydrogen, and b) the 
center composition after the two-step treatment. Data: D8 = 1.0 exp (-4000/T) with D8 
in cm2 s-• and T in K. The diameter of the bar is 2 em. 

13.16 The solubility of hydrogen in solid copper at 1000°C is 1.4 ppm (by mass) under a 
pressure of hydrogen of 1 atm. At 1000°C, D8 = 10-6 cm2 s-•. a) Determine the time for 
hydrogen to reach a concentration of 1.0 ppm-at a depth of 0.1 mm in a large chunk of 
copper initially with null hydrogen if the copper is subjected to 2 atm pressure of H2 at 
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1000°C. b) Copper foil, 0.2 mm thick, is equilibrated with hydrogen at a pressure of 4 atm 
at 1000°C. The same foil is then placed in a perfect vacuum at l000°C and held for 60s. 
Calculate the concentration of hydrogen at the center of the foil after the 60 s period. 

13.17 The term "banding" is used to describe chemical heterogeneity in rolled alloys that 
shows up as closely spaced light and dark bands in the microstructure of steel. These bands 
represent areas of segregation of alloying elements that formed during freezing of the ingot. 
During rolling the segregated areas are elongated and compressed into narrow bands. 
Assume that the alloy concentration varies sinusoidally with distance after rolling according 
to the sketch below. 

! Band spacing 

c~ . . ---:-<mmllllum concentration) x = 0 x •I 

C = C0 + ( C~ - C0 ) cos ~ 
I 

If the steel is now heated to the austenite range and held at some constant temperature, then 
a) schematically sketch the concentration profile as time passes; b) write a differential 
equation for concentration (state assumptions) and c) write the boundary conditions (for time 
and space) that apply; d) solve for the concentration as a function of time and x; e) derive an 
equation for the residual segregation index. 

13.18 Assume that the banding in a 
wrought cupronickel alloy (single 
phase) is described by the cosine 
function in Problem 13.17. The 
average composition of the alloy is 
10% Ni-90% Cu, and the segregation 
ratio before homogenization is 1.4. 
Segregation ratio is defined as 
S = C~IC!n. a) What are the 
maximum and minimum compositions 
of nickel? b) In order to homogenize 
the alloy in the shortest time possible, 
what temperature would you select? 
c) If the average distance between 
maximum compositions is 10-2 ern, 
determine the time to achieve a 
residual segregation ratio of 0.1 at 
950°C. A diffusion coefficient can be 
obtained from Fig. 12.9. d) The alloy 
is given a "step" homogenization 
treatment which consists of 10 hours 
at 700°C, 10 hours at soooc and 10 
hours at 900°C. What is the residual 
segregation index after this treatment? 
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13.19 A junction in silicon is made by doping with boron using predeposition followed by 
drive-in diffusion. a) Five minutes at 110o•c are required to deposit the dopant. At what 
distance from the surface is the concentration of boron raised to 3 X 1018 atoms cm-3 . 

Assume that the silicon is initially pure. b) How much boron (per cnr of silicon surface) will 
have been taken up by the silicon during the deposition step? c) To prevent loss of boron 
during the drive-in step, the surface is masked with silica (Si02). Now calculate the time 
required to achieve a concentration of boron equal to 3 x 1018 atoms cm3 at a depth of 6 x 
10-4 em if the drive-in treatment is carried out at 1150°C. 

13.20 By ion implantation, lithium can be concentrated in a very thin surface layer (lo-6 em) 
on a nickel substrate. After implanting the surface layer, it has a lithium concentration of 
1020 atoms cm-3 . Determine the time at 1000 K for reducing the surface concentration to 
1019 atoms cm3 • At 1000 K, the interdiffusion diffusion coefficient of lithium in nickel is 5 x 
10-8 em s-1. 

13.21 A cylindrical bar of Fe (dia. of 1 em) is suspended in a well mixed and small melt of 
Mn maintained at 13oo•c. Assume that there is local equilibrium at the solid-liquid interface 
and calculate the time required to raise the manganese composition at the center of the bar 
to 1 wt. %. The interdiffusion coefficient of Mn in Fe is given by 

[ 33 200) D = 0.49 exp - -T-

with Tin K and D in cm2 s-'. 

Iron, a/o 

u.. u 0 
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E 
Ql 

1-

Iron, w/o 

13.22 A very thin sheet of Fe-0.2 atom fraction B is "sandwiched" between two large pieces 
of iron, and then the entire assembly is heated to tooo•c. The sheet is only 5 x 10-3 em 
thick and at 1ooo•c diffusion bonding occurs as the boron diffuses into the iron. Assume 
that the boron is completely soluble and that there is only a single phase. a) Calculate the 
time required for the concentration of B to achieve its maximum at a distance of 1 mm from 
the original joint. b) What is the maximum concentration at 1 mm? c) At the time 
corresponding to part a), what is the atom fraction of B at the original joint? 

€ 
.2 
E 
Ql a. 
E 
Ql 
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13.23 A batch of steel exhibits "banding," which is a form of microsegregation in the 
wrought condition. The spacing between the bands is 50 J.tm. After 10 h of a high 
temperature homogenization treatment, the residual segregation index is 0.2 (determined by 
electron beam microanalysis). A second batch of the same type of steel has a band spacing 
of 100 J.tm. How long must this batch be maintained at the high temperature to achieve the 
same residual segregation index of 0.2? 

13.24 A melt with uniform concentration of solute, Ceo, is soliditied with a planar interface. 
Chemical equilibrium is maintained at the interface, which moves with a constant velocity V. 
The concentration profile at steady state, with no convection in the liquid, is as depicted: 

Solid Liquid 

a) Use a moving coordinate system with the origin (x = 0) at the solid-liquid interface and 
derive the differential equation for the concentration profile in the liquid. 

b) Write appropriate boundary conditions and solve for C(x). 
c) Determine the concentration gradient in the liquid at x = 0. How does the 

concentration gradient relate to the velocity of the interface? 
d) The characteristic length, lJ, defined by 

where }0 is the diffusional flux at the interface (x = 0). Determine {j in terms of the 
solidification velocity and the concentration gradient at the interface. 

13.25 A powder-ceramic compact is outgassed at 500°C in a chamber filled with pure argon 
in order to remove air before sintering. The tortuosity of the compact is 4, its porosity is 
0.2, and the average pore radius is 200 A. The compacts are 50 mm long x 25 mm 
diameter. Calculate the fraction of air remaining after 1 h of outgassing treatment. 

13.26 In order to make a transformer steel with the proper hysteresis loop, a low silicon 
steel sheet (2 mm thick) is to be exposed on both sides to an atmosphere of SiC4 which 
dissociates to Si(g) and Cl2(g). The Si(g) dissolves in the steel up to 3 wt.% at equilibrium. 
a) Indicate what partial differential equation and what boundary and initial conditions would 
apply in order to calculate the diffusion of Si into the sheet. b) Using the data in Fig. 12.11, 
calculate the time to achieve an average concentration of 2.85 wt.% Si at 1255 K. 


