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Abstract. Intrusion detection for computer network systems is becom-
ing one of the most critical tasks for network administrators today. It
has an important role for organizations, governments and our society due
to the valuable resources hosted on computer networks. Traditional mis-
use detection strategies are unable to detect new and unknown intrusion
types. In contrast anomaly detection in network security aims to distin-
guish between illegal or malicious events and normal behavior of network
systems. Anomaly detection can be considered as a classification prob-
lem where it builds models of normal network behavior, which it uses
to detect new patterns that significantly deviate from the model. Most
of the current research on anomaly detection is based on the learning of
normal and anomaly behaviors. They have no memory that is they do
not take into account previous events classify new ones. In this paper,
we propose a real time collective anomaly detection model based on
neural network learning. Normally a Long Short-Term Memory Recur-
rent Neural Network (LSTM RNN) is trained only on normal data and
it is capable of predicting several time steps ahead of an input. In our
approach, a LSTM RNN is trained with normal time series data before
performing a live prediction for each time step. Instead of considering
each time step separately, the observation of prediction errors from a
certain number of time steps is now proposed as a new idea for detecting
collective anomalies. The prediction errors from a number of the lat-
est time steps above a threshold will indicate a collective anomaly. The
model is built on a time series version of the KDD 1999 dataset. The
experiments demonstrate that it is possible to offer reliable and efficient
collective anomaly detection.

Keywords: Long short-term memory · Recurrent neural network ·
Collective anomaly detection

1 Introduction

Network anomaly detection refers to the problem of detecting illegal or malicious
activities or events from normal connections or expected behavior of network
systems [4,5]. It has become one of the most popular subjects in the network
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security domain due to the fact that organizations and governments are now
seeking good solutions to protect valuable resources on computer networks from
unauthorized and illegal accesses, network attacks or malware. Over the last
three decades, machine learning techniques are known as a common approach for
developing network anomaly detection models [3,4]. Network anomaly detection
is usually posed as a type of classification problem: given a dataset representing
normal and anomalous examples, the goal is to build a learning classifier which
is capable of signaling when a new anomalous data sample is encountered [5].

However, most of the existing approaches consider an anomaly as a single
point: cases when they occur “individually” and “separately” [6,7,16]. In such
approaches, anomaly detection models do not have the ability to represent the
information from previous data or events for evaluating a current point. In net-
work security, some kinds of attacks, Denial of Service (DoS), usually occur for
a long period of time (several minutes) [10], and are often represented by a set
of single points. An attack should be indicated only if a set of single points are
considered as an attack. In order to detect this kind of attack, anomaly detec-
tion models should be capable of remembering the information from a number of
previous events, and representing the relationship between them and the current
event. To avoid important mistakes, one must always consider every outcome:
in this sense a highly anomalous value may still be linked to a perfectly normal
condition, and conversely. In this work, we aim to build an anomaly detection
model for this kind of attacks (known as collective anomaly detection in [5]).

Collective anomaly is the term to refer to a collection of related anomalous
data instances with respect to the whole dataset [5]. The single data points in
a collective anomaly may not be considered as anomalies by themselves, but
the occurrence of these single points together indicates an anomaly. Long Short-
Term Memory Recurrent Neural Network (LSTM RNN) is known as a powerful
technique to represent the relationship between a current event and previous
events, and handles time series problems [12,14]. Thus, it is employed to develop
an anomaly detection model in this paper.

In this paper, we will propose a collective anomaly detection model by using
the predictive power of LSTM RNN [8]. Firstly, LSTM RNN is applied as a time
series anomaly detection model. The prediction of a current event will depend
on both the current event and its previous events. Secondly, the model will be
adapted to detect collective anomalies by proposing a circular array. The circular
array contains the prediction errors from a certain number of recent time steps.
If the prediction errors in the circular array are higher than a predetermined
threshold and last for a certain time steps, it will indicate a collective anomaly.
More details will be described in Sect. 4.

The rest of the paper is organized as follows. We briefly review some work
related to anomaly detection and LSTM RNN. In Sect. 3, we give a short intro-
duction to LSTM RNN. This is followed by a section proposing the collective
anomaly detection model using LSTM RNN. Experiments, Results and Dis-
cussion are presented in Sects. 5 and 6 respectively. The paper concludes with
highlights and future directions.
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2 Related Work

When considering a time series dataset, point anomalies are often directly linked
to the value of the considered sample. However, attempting real time collective
anomaly detection implies always being aware of previous samples, and more
precisely their behavior. This means that every time step should include an
evaluation of the current value combined with the evaluation of preceding infor-
mation. In this section, we briefly describe work applying LSTM RNN to time
series and collective anomaly detection problems [12,14,15].

Olsson et al. [15] proposed an unsupervised approach for detecting collective
anomalies. In order to detect a group of the anomalous examples, the “anom-
alous score” of the group of data points was probabilistically aggregated from
the contribution of each individual example. Obtaining the collective anomalous
score was carried out in an unsupervised manner, thus it is suitable for both
unsupervised and supervised approaches to scoring individual anomalies. The
model was evaluated on an artificial dataset and two industrial datasets, detect-
ing anomalies in moving cranes and anomalies in fuel consumption.

In [12], Malhotra et al. applied a LSTM network for addressing the problem of
time series anomaly detection. A stacked LSTM network trained on only normal
data was used to predict over a number of time steps. They assumed that the
resulting prediction errors have a Gaussian distribution, which was used to assess
the likelihood of anomaly behavior. Their model was demonstrated to perform
well on four datasets.

Marchi et al. [13,14] presented a novel approach by combining non-linear
predictive denoising autoencoders (DA) with LSTM for identifying abnormal
acoustic signals. Firstly, LSTM Recurrent DA was employed to predict auditory
spectral features of the next short-term frame from its previous frames. The net-
work trained on normal acoustic recorders tends to behave well on normal data,
and yields small reconstruction errors whereas the reconstruction errors from
abnormal acoustic signals are high. The reconstruction errors of the autoencoder
was used as an “anomaly score”, and a reconstruction error above a predeter-
mined threshold indicates a novel acoustic event. The model was trained on
a public dataset containing in-home sound events, and evaluated on a dataset
including new anomaly events. The results demonstrated that their model per-
formed significantly better than existing methods. The idea is also used in a
practical acoustic example [13,14], where LSTM RNNs are used to predict short-
term frames.

The core idea of this paper is to combine the previous methods, to adapt
Long Short-Term Memory to collective anomaly detection. By labelling testing
LSTM RNN outputs at every time step with a standardized error value, we shall
propose an algorithm to detect collective anomalies. This will prove very useful
in our example: First, we will train normal data on an LSTM RNN in order to
estimate the behaviour of a normal day of traffic. Then, we will use a classifier
inspired by [15] to rate the level of anomaly of each time sample. We will apply
this method to a network security problem (KDD 1999 cup), aiming to raise an
alarm in the case of DoS Neptune attacks.
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3 Preliminaries

In this section, we briefly describe a specific type of Recurrent Neural Network:
Long Short Term Memory. The structure was proposed by Hochreiter et al. [8]
in 1997, and has already proven to be a powerful technique for addressing the
problem of time series prediction.

The difference initiated by LSTM regarding other types of RNN resides in
its “smart” nodes presented in Fig. 1. Each of these cells contains three gates,
input gate, forget gate and output gate, which decide how to react to an input.
Depending on the strength of the information each node receives, it will decide
to block it or pass it on. The information is also filtered with the set of weights
associated with the cells when it is transferred through these cells.

Fig. 1. LSTM RNN Cell, figure reproduced from [1]

The LSTM node structure enables a phenomenon called backpropagation
through time. By calculating for each hidden layer the partial derivatives of
the output, weight and input values, the system can move backwards to trace
the evolving error between real output and predicted output. Afterwards, the
network uses the derivative of this evolution to adapt its weights and decrease
prediction error. This learning method is named Gradient Descent.

As mentioned before, Long Short-Term Memory has the power to incorporate
a behaviour into a network by training it with normal data. The system becomes
representative of the variations of the data. In other words, a prediction is made
focusing on two features: the value of a sample and its position at a specific
time. This means that two input samples at different times may have the same
value, but their outputs will very probably differ. It is because a LSTM RNN is
stateful, i.e. has a “memory”, which changes in response to inputs.

4 Proposed Approach

In this section, we are going to describe a new approach to address the problem
of collective anomaly detection. Firstly, we show the LSTM RNNs ability to
learn the behaviour of a training set, and in this stage it acts like a time series
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anomaly detection model. We will then adapt it for collective anomaly detection
by introducing terms that measure its prediction errors in a period of time steps.
Finally, we shall describe how to seek a collective anomaly by combining a LSTM
RNN with a circular array method.

4.1 LSTM RNN as a Predictive Vector

The first step is inspired by the idea presented in [12]: when trained correctly,
LSTM RNNs have the ability to learn the behavior of a training set. Intu-
itively, this means that when given certain input samples, they have the ability
to remember the context of the samples, and to predict a coherent output in
agreement with that context. In our work, we will use a simple LSTM RNN, in
contrast to a stacked LSTM in [12]. This does not change the core principle of
the method: when given sufficient training, a LSTM RNN adapts its weights,
which become characteristic of the training data.

4.2 Definitions

In order to adapt a LSTM RNN for time series data to detect collective anom-
alies, we introduce terms to measure prediction errors at each time step or in a
period of time steps. These terms are defined as below.

– Relative Error (RE): the Relative Error between two real values x and y
is given by Eq. 1:

RE (x, y) =
|x − y|

x
(1)

– Relative Error Threshold (RET): Relative Error value above a predeter-
mined threshold indicates an anomaly. This threshold, RET , is determined
by using labeled normal and attack data from a validation set.

– Minimum Attack Time (MAT): The minimum amount of recent time
steps that is used to define a collective attack.

– Danger Coefficient (DC): The density of anomalous points within the last
MAT time steps. Let N be the number of anomalous points over the last
MAT time steps, DC is defined as in Eq. 2.

DC =
N

MAT
(2)

NB: 0 < DC < 1
– The Averaged Relative Error (ARE): The Average Relative Error over

a MAT is given by Eq. 3:

ARE =
MAT∑

i=1

REi (3)

The values of two terms, Danger Coefficient and Average Relative Error, are
the key factors that will help the model to decide whether a set of inputs within
a number of the latest time steps is a collective anomaly or not as described in
Sect. 4.3. These values will be estimated by using a validation set.
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Fig. 2. Circular array for collective anomaly detection model, MAT = P

4.3 Degree of Error Evaluation

At each time step, the sample predicted by the LSTM RNN is compared with the
real future sample. This comparison is computed as a RE value. In this sense, a
“Relative Error time series” is built online. Based on the values in a validation
set, we can initialise the RET values.

At this stage, our system is theoretically capable of detecting point anomalies
at each time step. In order to adapt the model from an individual anomaly model
to a collective anomaly one, we must consider simultaneously an ensemble of
points. To do this, we propose a circular array containing the MAT latest error
values to represent the level of anomaly of the latest time steps as shown in Fig. 2.
By analyzing the circular array at every time step, we evaluate the possibility of
facing a collective anomaly. A collective anomaly will be identified if both Danger
Coefficient and Average Relative Error are higher than predefined thresholds, α
and β, respectively (α and β will be estimated by using the validation set).

5 Experiments

5.1 Datasets

In order to demonstrate the efficient performance of the proposed model,
we choose a dataset related to the network security domain, the KDD 1999
dataset [2,9], for our experiments. The dataset in tcpdump format was collected
from a simulated military-like environment over a period of 5 weeks. There are
four main groups of attacks in the dataset, but we restrict our experiments on
a specific attack, Neptune, in the Denial-of-Service (DoS) group. The dataset
is also converted into a time series version before feeding into the model. More
details about how to obtain a time series version from the original dataset, and
how to choose training, validation and testing sets are presented in the following
paragraphs.

The first crucial step is to build a conveniently usable time series dataset
out of the tcpdump data, and to select the features we wish to use. We use
terminal commands and a python program to convert the original tcpdump
records in the KDD 1999 dataset into a time dependant function. This method
is a development of the proposed transformation in [11] that acts directly on the
tcpdump to obtain real time statistics of the data. Our scheme follows this step
by step transition as described below:
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tcpdump ⇒ pcap ⇒ csv (4)

Each day of records can be time-filtered and input into a new .pcap file. This
also has the advantage of giving a first approach on visualizing the data by using
Wireshark functionalities (IO graphs and filters). Once this is done, the tshark
command is adapted to select and transfer the relevant information from the
records into a .csv file. We may note that doing this is a first step towards faster
computation and better system efficiency, since all irrelevant pcap columns can
be ignored. There are two major steps for the conversion processing.

1. Store the information of a .tcpdump file into a newly generated .pcap file.
From the terminal, we use the editcap command:

editcap -A’1999-03-11 08:00:00’ -B’1999-03-11 18:00:00’
Thursday2outside.tcpdump Thursday2.pcap

2. Convert from .pcap file into .csv file by tshark command.
From the terminal again, type the command below:

tshark -r Thursday2.pcap -T fields -e frame.number -e frame.len
-e frame.time -e ip.proto -E header=y -E separator=, -E quote=d
-E occurrence=f -i netstat -f tcp[13]==12 > Thursday2.csv

tshark is a simple but powerful command, enabling the selection of columns
of interest in a .pcap file, and their output in a newly generated .csv. Once the
data is in the .csv format, python code can be implemented from the XX library
to store it and use with our classifier.

Processing the tcpdump with this method enables quick and easy manip-
ulation of the data. For example, Neptune and Smurf are both DoS attacks
characterised by a high flow of specific packets in networks (eg. SYN ACK and
ICMP echo replies). By using this simple fact, the needed records can be filtered
and counted at every time step. If we aim to detect Neptune attack, the thark
command can be implemented with the -i netstat -f tcp[13] == 2 filter, so only
SYN ACK packets from servers are counted. We observe in the case of KDD
1999 that a Neptune attack can be sought by looking for an anomalously high
number of these packets.

The KDD1999 time series is composed of a two-weeks training set n1 (weeks
1 & 3, normal data), one week of validation set v1 (week 2, both labeled normal
and anomaly data), and a two-week testing set t1 (weeks 4 & 5). The protocol
will be the following: training the network with n1, using v1 to determine our
error threshold(s), and evaluating the proposed model on t1.

5.2 Experimental Settings

In this work, we conduct two experiments, one preliminary experiment and one
main experiment. The preliminary experiment aim to estimate the parameters
for the model and set its thresholds by using the validation set whereas the main
experiment is to evaluate the proposed model.
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Fig. 3. The training errors from the model with one, two and three inputs

Preliminary Experiment: This experiment aim to select the best parameters
of our LSTM RNN model with respect to minimize its prediction error, and
determine the thresholds, α and β. Firstly, we determine how many previous
time steps should be used for predicting the current event. The hyper-parameters
of LSTM RNN, hidden size and learning rate, are then estimated. Finally, the
two thresholds, α and β, will be chosen to give the best possible classification
performance of the model on the validation set.

In order to optimize the proposed model for the main experiment, we pro-
ceed to a preliminary test to measure the influence of the number of inputs on
the prediction error of LSTM. We first focus on how many inputs will influence
the prediction of an LSTM [12]. We form the hypothesis that inserting more
values in our system may help decrease prediction errors, but it will be more
time consuming [12]. Thus, we investigate the relationship between the predic-
tion value yt+1 to three sets of the previous input examples (xt), (xt, xt−1) and
(xt, xt−1, xt−2). They are formulated in Eqs. 5, 6 and 7 below:

yt+1 = f (xt) (5)
yt+1 = f (xt, xt−1) (6)
yt+1 = f (xt, xt−1, xt−2) (7)

where xt, xt−1 and xt−2 are the input samples at times t, t − 1 and t − 2
respectively, and yt+1 is the predicted value for the input xt.

The number of hidden nodes and the learning rate are the final two parame-
ters that can strongly influence the performance of a LSTM RNN. On the one
hand, the strength of a LSTM RNN resides in its hidden layer. Each synapse
of a network is weighted differently, and can be considered as a unique inter-
pretation of the input data. Each node of the hidden layer is storage space for
these interpretations. Theoretically, the higher number of hidden nodes, the more
information the network can contain. This also means more computation, and
may lead to over-fitting.
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Using the LSTM RNN error evolution curve empirically, we concluded that
the optimum number of nodes in our hidden layer to obtain good memorization
is approximately 23, but the results are not shown in this paper. The learning
rate is another factor directly linked to the speed at which a LSTM RNN can
improve its predictions. For a time step t during training, the synapse weights
of our neural network are updated. The learning rate defines how much we wish
a weight to be modified at each instant. In our experiment, we choose learning
rate equal to 0.01 that gives us a convenient error curve.

Finally, a classifier that is trained on ten days of normal data is used to
determine α and β. We observe the reaction of the system on labeled Neptune
attacks from the validation set, and set the thresholds. The values of these
thresholds is shown in Sect. 6.

Main Experiment: Our task is to use the potential speed and accuracy of
LSTM RNN to detect a disproportionate durable change in a time series. Once
the preliminary experiment is complete, we choose the most performant LSTM
RNN architecture, and train it with the normal training set n1. The classifier
is then evaluated on testing set t1 containing both normal and attack data to
investigate how efficiently our proposed classifier performs.

6 Results and Discussion

This section presents our experimental results. First, the preliminary experi-
ment evaluates two factors: computation cost and LSTM prediction error when
using one input, two inputs and three inputs respectively. Then, the general
performance in terms of classification accuracy is measured (Fig. 4).

Fig. 4. The prediction error from the model with three inputs (1500 Epochs)
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The Table 1 illustrates that the model with three inputs had less computa-
tional time than those with one or two inputs. Moreover, the Fig. 3 shows that
the model with three inputs achieves a lower training error in comparison to two
others. Thus, we use the model with three inputs for our main experiment.

Table 1. Computational time recording

Number of inputs Computational time (s)

1 645

2 652

3 642

The results from the main experiment are shown in Table 2. The experiment
is done with MAT = 12, and α = 0.66, and we also report the results on
four values of β, β = 0.69, 0.66, 0.62 and 0.52. We observe that it is possible to
obtain 100 % collective anomaly detection rate, but this implies triggering a high
amount of false alarms. Conversely, it is possible to avoid false alarms, but fewer
correct alarms will be detected. Ultimately, detecting more real attacks results
in triggering more false alarms as shown in Table 2.

Table 2. Circular array detection efficiency

Threshold β Percentage of
correct alarms
triggered

Number of
false alarms
triggered

0.69 86 % 0

0.66 94 % 2

0.62 98 % 16

0.52 100 % 63

7 Conclusion and Further Work

In this paper, we have proposed a model for collective anomaly detection based
on Long Short-Term Memory Recurrent Neural Network. We have motivated
this method through investigating LSTM RNN in the problem of time series,
and adapted it to detect collective anomalies by proposing the measurements in
Sect. 4.2. We investigated the hyper-parameters, the suitable number of inputs
and some thresholds by using the validation set.

The proposed model is evaluated by using the time series version of the KDD
1999 dataset. The results suggest that proposed model is efficiently capable
of detecting collective anomalies in the dataset. However, they must be used
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with caution. The training data fed into a network must be organized in a
coherent manner to guarantee the stability of the system. In future work, we
will focus on how to improve the classification accuracy of the model. We also
observed that implementing variations in a LSTM RNNs number of inputs might
trigger different output reactions.
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