
ASASPXL: New Clother for Analysing
ARBAC Policies

Anh Truong1(B) and Silvio Ranise2

1 Faculty of Computer Science and Engineering,
Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam

anhtt@hcmut.edu.vn
2 Security and Trust Unit, FBK-Irst, Trento, Italy

ranise@fbk.eu

Abstract. Access Control is becoming increasingly important for
today’s ubiquitous systems. In access control models, the administration
of access control policies is an important task that raises a crucial analysis
problem: if a set of administrators can give a user an unauthorized access
permission. In this paper, we consider the analysis problem in the con-
text of the Administrative Role-Based Access Control (ARBAC), one of
the most widespread administrative models. We describe how we design
heuristics to enable an analysis tool, called asaspXL, to scale up to han-
dle large and complex ARBAC policies. An extensive experimentation
shows that the proposed heuristics play a key role in the success of the
analysis tool over the state-of-the-art analysis tools.

Keywords: User-role reachability problem · Administration · Safety
analysis · Access control · Model checking · Heuristics · Security

1 Introduction

Modern information systems contain sensitive information and resources that
need to be protected against unauthorized users who want to steal it. The most
important mechanism to prevent this is Access Control [7] which is thus becom-
ing increasingly important for today’s ubiquitous systems. In general, access
control policies protect the resources of the systems by controlling who has per-
mission to access what objects/resources.

Role-Based Access Control (RBAC) [14] is one of the most widely adopted
access control models in the real world. In RBAC, access control policies specify
which users can be assigned to roles which, in turn, are granted permissions
to perform certain operations in the system. Usually, RBAC policies need to be
evolved according to the rapidly changing environments and thus, it is demanded
to have some mechanisms to control the modification of the policies. Administra-
tive RBAC [6] is the corresponding widely used administrative model for RBAC
policies. The main idea of ARBAC is to provide certain specific users, called
administrators, some permissions to execute operations, called administrative
c© Springer International Publishing AG 2016
T.K. Dang et al. (Eds.): FDSE 2016, LNCS 10018, pp. 267–284, 2016.
DOI: 10.1007/978-3-319-48057-2 19

268 A. Truong and S. Ranise

actions, to modify the RBAC policies. In fact, permissions to perform admin-
istrative actions must be restricted since administrators can only be partially
trusted. For instances, some of them may collude to, inadvertently or maliciously,
modify the policies (by sequences of administrative actions) so that untrusted
users can get sensitive permissions. Thus, automated analysis techniques taking
into consideration the effect of all possible sequences of administrative actions to
identify the safety issues, i.e. administrative actions generating policies by which
a user can acquire permissions that may compromise some security goals, are
needed.

Several automated analysis techniques (see, e.g., [4,8,11,12,16,17]) have been
developed for solving the user-role reachability problem, an instance of the
safety issues, in the ARBAC model. Recently, a tool called asaspXL [13] has
been shown to perform better than the state-of-the-art tools on sets of bench-
mark problems in [10,16]. The main advantage of the analysis technique inside
asaspXL over the state-of-the-art techniques is that the tool can solve the user-
role reachability problem with respect to a finite but unknown number of users in
the policies manipulated by the administrative actions. However, asaspXL does
not scale to solve problems in some recently proposed benchmarks in [17]. This
is because the so-called state explosion problem has not been handled carefully
and thus, prevent asaspXL to tackle such benchmarks.

In this paper, we study how to design heuristics to enable asaspXL to ana-
lyze large and complex instances of user-role reachability problems. The main
idea is to try to alleviate the state explosion problem, which is well-known
problem in model checking techniques, in the analysis of ARBAC policies. We
also perform an exhaustive experiment to conduct the effectiveness of proposed
heuristics and compare asaspXL’s performance with the state-of-the-art analy-
sis tools.

The paper is organized as follows. Section 2 introduces the RBAC, ARBAC
models, and the related analysis problem. Section 3 briefly introduces the auto-
mated analysis tool asaspXL and the model checking technique underlying it.
The proposed heuristics to enable asaspXL to scale to solve user-role reachabil-
ity problem are described in Sect. 4. Section 5 summarizes our experiments and
Sect. 6 concludes the paper.

2 RBAC, ARBAC, and the Reachability Problem

In Role-Based Access Control (RBAC), access decisions are based on the roles
that individual users have as part of an organization. The process of defining
roles is based on a careful analysis of how an organization operates. Permissions
are grouped by role name and correspond to various uses of a resource. A per-
mission is restricted to individuals authorized to assume the associated role and
represents a unit of control, subject to regulatory constraints within the RBAC
model. For example, within a hospital, the role of doctor can include operations
to perform diagnosis, prescribe medication, and order laboratory tests; the role
of nurse can be limited to a strict subset of the permissions assigned to a doctor
such as order laboratory tests.

ASASPXL: New Clother for Analysing ARBAC Policies 269

Fig. 1. User and Permission Assignments; and Role Hierarchies

We formalize a RBAC policy as a tuple (U,R, P, UA, PA,�) where U is
a set of users, R a set of roles, and P a set of permissions. A binary relation
UA ⊆ U ×R represents a user-role assignment and a binary relation PA ⊆ R×P
represents a role-permission assignment. A user-role assignment specifies the
roles to which the user has been assigned while a role-permission assignment
specifies the permissions that have been granted to a role. A partial order � on
R is a role hierarchy of the policy, where r1 � r2 means that r1 is more senior
than r2 for r1, r2 ∈ R, i.e., every permission assigned to r2 is also available to r1.

A user u is an explicit member of role r when (u, r) ∈ UA while the user
u is an implicit member of role r if there exists r′ ∈ R such that r′ � r and
(u, r′) ∈ UA. A user u has permission p if there exists a role r ∈ R such that
(r, p) ∈ PA and u is a (explicit or implicit) member of r.

Example 1. Consider an RBAC policy describing a department in a university as
depicted in Fig. 1. The top-left table is the user-role assignment, the top-right is
the role-permission assignment, and the bottom is an example of role hierarchies
(The role at the tail of an arrow is more senior than the one at the head).

Let us consider the user Charlie: he is an explicit member of role
Faculty because the tuple (Charlie,Faculty) is in the user-role assignment
UA. Additionally, role Faculty has been assigned to permissions AssignGrades,
ReceiveHBenefits , and UseGym. Thus, Charlie can assign grades, receive bene-
fits and use the gym through the role Faculty .

Let us consider the role hierarchy: role Faculty is more senior than role
UEmployee (i.e., Faculty � UEmployee). Therefore, Charlie is an implicit mem-
ber of the role UEmployee, and thus he can also use all permissions assigned to
the role UEmployee. ��

270 A. Truong and S. Ranise

2.1 Administrative RBAC (ARBAC)

Access control policies need to be maintained according to the evolving needs
of the organization. For flexibility and scalability in large distributed systems,
several administrators are usually required and there is a need not only to have a
consistent policy but also to ensure that the policy is modified by administrators
who are allowed to do so.

Several administrative frameworks have been proposed on top of the RBAC
model to address these issues. One of the most popular administrative frame-
works is Administrative RBAC (ARBAC) [6] that controls how RBAC policies
may evolve through administrative actions that update the UA and PA relations
(e.g., actions that update UA include assigning or revoking user memberships
into roles).

Formalization. Usually, administrators may only update the relation UA while
PA and � are assumed constant. This is because a change in PA and/or � implies
a change in the organization (see [16] for more detail). From now on, we focus on
situations where U and R are finite, P plays no role, and � can be ignored1 (and
then, we only need to process the explicit members of a role when considering
the role member relations). Thus, a RBAC policy is a tuple (U,R,UA) or for
short UA if U and R are clear from the context.

Since administrators can be only partially trusted, administration privileges
must be limited to selected parts of the RBAC policies, called administrative
domains. An administrative domain is specified by a pre-condition defined as
follows:

Definition 1. A pre-condition C is a finite set of expressions of the forms r or
r where r ∈ R.

A user u ∈ U satisfies a pre-condition C if, for each � ∈ C, u is a member of
r when � is r or u is not a member of r when � is r for r ∈ R. We also say that
r is a positive role and r is a negative role in C.

Permission to assign users to roles is specified by a ternary relation can assign
containing tuples of the form (Ca, C, r) where Ca and C are pre-conditions, and
r a role. Permission to revoke users from roles is specified by a binary relation
can revoke containing tuples of the form (Ca, r) where Ca is a pre-condition and
r a role. In both cases, we say that Ca is the administrative pre-condition, C
is a (simple) pre-condition, r is the target role, and a user ua satisfying Ca is
the administrator. The relation can revoke is only binary because simple pre-
conditions are useless when revoking roles (see, e.g., [16]). When there exist users
satisfying the administrative and the simple (if the case) pre-conditions of an
administrative action, the action is enabled.

The semantics of the administrative actions in the ARBAC policy ψ :=
(can assign, can revoke) is given by the binary relation →ψ defined as follows:

1 We can transform a policy with role hierarchies to a policy without them by pre-
processing away the role hierarchies as shown in [15].

ASASPXL: New Clother for Analysing ARBAC Policies 271

Definition 2. UA →ψ UA′ iff there exist users ua and u in U such that either:

– there exists (Ca, C, r) ∈ can assign, ua satisfies Ca, u satisfies C (i.e.
(Ca, C, r) is enabled), and UA′ = UA ∪ {(u, r)} or

– there exists (Ca, r) ∈ can revoke, ua satisfies Ca (i.e. (Ca, r) is enabled), and
UA′ = UA\{(u, r)}.
A run of the administrative actions in ψ := (can assign, can revoke) is a

possibly infinite sequence UA0, UA1, ..., UAn, ... such that UAi →ψ UAi+1 for
i ≥ 0.

Example 2. Consider the RBAC policy with the UA relation depicted in
Fig. 1 and an administrative action ({PCMember}, {Student ,TA}, PTEmpl) ∈
can assign, i.e., the administrative pre-condition is Ca = {PCMember}, the
simple pre-condition is C = {Student ,TA}, and the target role is PTEmpl .

User Alice satisfies the pre-condition Ca because (Alice,PCMember) ∈ UA.
User Fred satisfies the pre-condition C because he is a Student but not a TA
(e.g., (Fred,Student) ∈ UA and (Fred,TA) /∈ UA). As a sequence, the admin-
istrative action is enabled.

We can update the current UA to UA′ = UA∪{(Fred,PTEmpl)} by execut-
ing the following instance of the administrative action specified above: adminis-
trator Alice (who has role PCMember) assigns role PTEmpl to user Fred.

Notice that Alice cannot assign role PTEmpl to David because he is not only
a Student but also a TA (i.e., David does not satisfy the pre-condition C). ��

2.2 The User-Role Reachability Problem

Normally, policy designers and administrators want to foresee if the interactions
among administrative actions, as seen in the Example 2, can lead the system to
conflict states violating the security requirements of the organization (e.g., the
security requirements forbid a user to be assigned to some sensitive roles). Thus,
they need to analyze access control policies in order to discover such violation.
This problem is called as the user-role reachability problem and is defined as
follows.

Definition 3. A pair (ug, Rg) is called a (RBAC) goal for ug ∈ U and Rg a
finite set of roles. The cardinality |Rg| of Rg is the size of the goal.

Definition 4. Given an initial RBAC policy UA0, a goal (ug, Rg), and
administrative actions ψ = (can assign, can revoke); (an instance of) the
user-role reachability problem, identified by the tuple 〈UA,ψ, (ug, Rg)〉, con-
sists of checking if there exists a finite sequence UA0, UA1, ..., UAn (for n ≥ 0)
where (i) UAi →ψ UAi+1 for each i = 0, ..., n − 1 and (ii) ug is a member of
each role of Rg in UAn.

In real scenario, subtle interactions between administrative actions in real
policies may arise that are difficult to be foreseen by policy designers and admin-
istrators. Thus, automated analysis techniques are thus of paramount impor-
tance to analyze such policies and answer the user-role reachability problem.

272 A. Truong and S. Ranise

The analysis techniques we will present in the following will be able to establish
this automatically for the problem in ARBAC.

3 Model Checking Modulo Theories and the Reachability
Problem

Model Checking Modulo Theories (MCMT). MCMT [9] is a framework
to solve reachability problems for infinite state systems that can be represented
by transition systems whose set of states and transitions are encoded as con-
straints in first-order logic. Several systems have been abstracted using such
symbolic transition system such as parametrised protocols, sequential programs
manipulating arrays, timed system, etc. (see again [9] for an overview).

MCMT framework uses a backward reachability procedure that repeatedly
computes the so-called pre-images of the set of goal states, that is usually
obtained by complementing a certain safety property that the system should
satisfy. Then, the set of backward reachable states of the system is obtained by
taking the union of the pre-images. At each iteration of the procedure, the pro-
cedure checks whether the intersection between the set of backward reachable
states and the initial set of states is non-empty (i.e., safety test) or not (i.e., the
unsafety of the system: there exists a (finite) sequence of transitions that leads
the system from an initial state to one satisfying the goal). Otherwise, when
the intersection is empty, the procedure checks if the set of backward reachable
states is contained in the set computed at the previous iteration (fix-point test)
and, if yes, the safety of the system (i.e. no (finite) sequence of transitions leads
the system from an initial state to one satisfying the goal) is returned. Since sets
of states and transitions are represented by first-order constraints, the computa-
tion of pre-images reduces to simple symbolic manipulations and testing safety
and fix-point to solving a particular class of constraint satisfiability problems,
called Satisfiability Modulo Theories (SMT) problems, for which scalable and
efficient SMT solvers are currently available (e.g., Z3 [2]).

ASASPXL. In [3,5], it is studied how the MCMT approach can be used to
solve (variants of) the user-role reachability problem. On the theoretical side,
it is shown that the backward reachability procedure described above decides
(variants of) the user-role reachability problem. On the practical side, extensive
experiments have shown that an automated tool, called asasp [4] implement-
ing (a refinement of) the backward reachability procedure, has a good trade-off
between scalability and expressiveness. Immediately after asasp, a set of much
larger instances of the user-role reachability problem has been considered in [10].
Unfortunately, asasp does not scale to solve the set of problem. This is in line
with the following observation of [10]: “model checking does not scale adequately
for verifying policies of very large sizes.” Then, in [13], a new tool based on the
MCMT approach, called asaspXL, has been proposed to efficiently solve much
larger instances of the user-role reachability problem. The new analysis tool
asaspXL is build on top of mcmt, the first implementation of the MCMT app-
roach. The choice of building a new analysis tool instead of modifying asasp

ASASPXL: New Clother for Analysing ARBAC Policies 273

Fig. 2. asaspXL architecture

gives some advantage. First, we only need to write a translator from instances
of the user-role reachability problem to reachability problems in mcmt input
language, a routine programming task. Second, mcmt has been developed and
extensively used for the past years. It is thus more robust and offers a high degree
of confidence. Third, we can re-use some features of a better engineered incar-
nation of the MCMT approach that can be exploited to significantly improve
performances, as shown in [13].

The structure of asaspXL is depicted in Fig. 2. It takes as input an instance
of the user-role reachability problem and returns reachable, when there exists a
finite sequence of administrative operations that leads from the initial RBAC pol-
icy to one satisfying the goal, and unreachable otherwise. To give such results,
asaspXL firstly translates the user-role reachability problem to the reachabil-
ity problem in mcmt input language (module Translator). Then, it calls the
model checker mcmt to verify the reachability of the problem. Finally, accord-
ing to the answer returned by the model checker (in the data storage Explored
Policies), asaspXL refines it and returns reachable or unreachable as its
output (module Refinement).

To keep technicalities to a minimum, we illustrate the translation on an
instance of the user-role reachability problem as follows.

Example 3. Let U = {u1, u2, u3, u4, u5}, R = {r1, ..., r8}, initially UA :=
{(u1, r1), (u2, r2), (u5, r5)}, and

({r1}, {r2}, r3) ∈ can assign (1)
({r3}, {r4, r5}, r6) ∈ can assign (2)

({r4}, {r5}, r7) ∈ can assign (3)
({r2}, {r7}, r8) ∈ can assign (4)

({r2}, r3) ∈ can revoke (5)
({r5}, r4) ∈ can revoke (6)

The goal of the problem is (u5, {r8}).

274 A. Truong and S. Ranise

To formalize this problem instance in mcmt, asaspXL firstly generates an
unary relation ur per role r ∈ R. The initial relation UA can thus be expressed
as

∀x.
[
(ur1 (x) ↔ x = u1) ∧ (ur2 (x) ↔ x = u2) ∧ (ur5 (x) ↔ x = u5) ∧ ¬ur2 (x) ∧ ¬ur3 (x)∧
¬ur4 (x) ∧ ¬ur6 (x) ∧ ¬ur7 (x) ∧ ¬ur8 (x)

]
.

A tuple, for instance, ({r3}, {r4, r5}, r6) in can assign is formalized as

∃x∃y.
[
ur3(x) ∧ ur4(y) ∧ ¬ur5(y) ∧ ∀λ.(u′

r6(λ) ↔ (λ = y ∨ ur6(λ)))
]

and a tuple, for example, ({r2}, r3) in can revoke can be expressed as

∃x∃y.
[
ur2(x) ∧ ur3(y) ∧ ∀λ.(u′

r3(λ) ↔ (λ �= y ∧ ur3(λ)))
]

where ur and u′
r indicate the value of Ur immediately before and after, respec-

tively, the execution of the administrative action (we also have omitted—for the
sake of compactness—identical updates, i.e. a conjunct ∀λ.(u′

r(λ) ↔ ur(λ)) for
each role r distinct from the target role in the tuple of can assign or can revoke).
The other administrative actions are translated in a similar way.

The goal (u5, {r8}) can be represented as:

∃x.ur8(x) ∧ x = u5

The pre-image of the goal, that is computed by the model checker mcmt, with
respect to ({r2}, {r7}, r8) is the set of states from which it is possible to reach
the goal by using the administrative action ({r2}, {r7}, r8). This is formalized as
the formula (see [5] for details)

∃x∃y.((ur7(y) ∧ y = u5) ∧ ur2(x)),

On this problem, mcmt returns unreachable (i.e., there does not exist a finite
sequence of administrative operations that lead from the initial policy UA to
one satisfying the goal). ��

Recently, a tool named Vac has been proposed in [8] for solving the user-role
reachability problem of ARBAC policies. In [8], it is shown that Vac outperforms
rbac-pat [16], mohawk [10], and asaspXL on the problems in [16] and on a new
set of complex instances of the user-role reachability problem. It was natural to
run asaspXL on these new benchmark problems: rather disappointingly, it could
tackle such problem instances, however, its performance cannot be comparable
with the new tool Vac (e.g., asaspXL returns time-out in some problems). The
reason of the bad scalability of asaspXL is that asaspXL does not work well
on the user-role reachability problems with some specific features such as the
problem containing some sub-problems having same structure of administrative
actions; and the problems in which no state can be reached from the initial
state. These and other problems have lead us to design new heuristics to make
asaspXL more scalable, as we will see in the next sections.

ASASPXL: New Clother for Analysing ARBAC Policies 275

4 ASASPXL with new Heuristics

To enable asaspXL to scale up to analyze the complex instances of the user-role
reachability problem as shown in the previous section, our main idea is to design
heuristics that help to alleviate the so-called state explosion problem, one of the
commonly known problems in model checking techniques that must be addressed
to solve most real-world problems. One of the main source of complexity is the
large number of administrative actions; thus, for scalability, the original set of
actions must be refined by using heuristics that tries to eliminate administrative
actions that do not contribute to the analysis of RBAC policy. This and other
techniques to control the state explosion problem will be detailed in the following
(sub-)sections. Before going to the details of heuristics, we emphasize that all
heuristics in the following will be implemented in a module named Heuristics
and will be put before module Translator in the architecture of asaspXL in
Fig. 2. The asaspXL’s input, a user-role reachability problem, will be processed
by module Heuristics before being forwarded to module Translator and then
to module mcmt as described in Sect. 3.

4.1 Backward Useful Actions

The main idea to alleviate the state explosion problem is to eliminate as much as
possible administrative actions that is useless to the analysis of ARBAC policy.
This is done by extracting increasingly larger sub-sets of the tuples in the origi-
nal set of administrative actions ψ so as to generate a sequence of increasingly
more precise approximations of the original instance of the user-role reachabil-
ity problem. The heuristics to do this is based on the following notion of an
administrative action being useful.

Definition 5. Let ψ be the set of administrative actions and Rg a set of roles
in an ARBAC policy:

– A tuple in ψ is 0-useful iff its target role is in Rg.
– A tuple in ψ is k-useful (for k > 0) iff it is (k−1)-useful or its target role occurs

(possibly negated) in either the simple pre-condition or the administrative
pre-condition of a (k − 1)-useful transition.

A tuple t in ψ is useful iff there exists k ≥ 0 such that t is k-useful.

Let ψ≤k = (can assign≤k, can revoke≤k) denote the set of all k-useful
tuples in ψ = (can assign, can revoke). It is easy to see that can assign≤k ⊆
can assign≤k+1 and can revoke≤k ⊆ can revoke≤k+1 (abbreviated by ψ≤k ⊆
ψ≤k+1) for k ≥ 0. Since the sets can assign and can revoke in ψ are bounded,
there must exist a value k̃ ≥ 0 such that ψ≤k̃ = ψ≤k̃+1 (that abbreviates
ψ≤k̃ ⊆ ψ≤k̃+1 and ψ≤k̃+1 ⊆ ψ≤k̃) or, equivalently, ψ≤k̃ is the (least) fix-point,
also denoted with lfp(ψ), of useful tuples in ψ. Indeed, a tuple in ψ is useful iff
it is in lfp(ψ).

276 A. Truong and S. Ranise

Example 4. Let ψ be the administrative actions in Example 3 and Rg := {r8}.
The sets of k-useful tuples for k ≥ 0 are the following:

ψ≤0 := ({({r2}, {r7}, r8)}, ∅)
ψ≤1 := ψ≤0 ∪ ({({r4}, {r5}, r7)}, ∅)
ψ≤2 := ψ≤1 ∪ (∅, {({r5}, r4)})

ψ≤k := ψ≤2 for k > 2

Now, we run the user-role reachability problem: 〈UA, ψ≤2, (u5, {r8})〉.
asaspXL returns unreachable on this problem instance. We obtain the same
result if we run the tool on the translation of the following problem instance:
〈UA, ψ, (u5, {r8})〉. This leads to the following proposition. ��
Proposition 1. A goal (ug, Rg) is unreachable from an initial user-role assign-
ment relation UA by using the administrative operations in ψ iff (ug, Rg) is
unreachable from UA by using the administrative operations in lfp(ψ).

The proof of this fact can be obtained by slightly adapting the proof for the
proposition in [13] and is thus omitted here.

4.2 Forward Useful Actions

In Sect. 4.1, we have introduced a heuristics identifying the set of useful actions
(that is a subset of the original set of administrative actions) that is enough for
solving the user-role reachability. We start using the roles in the goal to identify
0-useful actions and then using roles in the pre-conditions of k-useful actions to
decide (k + 1)-useful actions. Dually, we can start from the roles in the initial
states and forwardly compute the set of useful actions. This is captured by the
notion of forward useful action as follows:

Definition 6. Let ψ be the set of administrative actions, R be the set of roles,
and Ri := {r|(u, r) ∈ UA0} ∪ {r|r ∈ R} be a set of roles occurring in the initial
policy UA0. A tuple τ ∈ ψ :

– is forward 0-useful iff its pre-condition is a subset of Ri

– is forward k-useful (for k > 0) iff it is:
• (k − 1)-useful or,
• its pre-condition is a subset of Ri = Ri ∪ {r| r is the target role of a

(k − 1)-useful action}
τ is forward useful iff there exists k ≥ 0 such that τ is forward k-useful.

Let ψ≤k
F = (can assign≤k, can revoke≤k) denote the set of forward k-useful

actions in ψ = (can assign, can revoke), it is easy to see that ψ≤k
F ⊆ ψ≤k+1

F for

k ≥ 0 and there exists a value k̃ ≥ 0 such that ψ≤k̃
F = ψ≤k̃+1

F (i.e., lfpF (ψ) =

ψ≤k̃
F). Similar to the heuristic for backward useful actions above, we conclude

the following proposition.

ASASPXL: New Clother for Analysing ARBAC Policies 277

Proposition 2. A goal (ug, Rg) is unreachable from an initial user-role assign-
ment relation UA by using the administrative operations in ψ iff (ug, Rg) is
unreachable from UA by using the administrative operations in lfpF (ψ).

Example 5. Let consider again Example 3. The set Ri of roles in UA0 is
{r1, r2, r5, r1, r2, ..., r7, r8}.

The sets of forward k-useful tuples for k ≥ 0 are the following:

ψ≤0
F := {({r1}, {r2}, r3), ({r2}, r3), ({r5}, r4),

ψ≤k
F := ψ≤0

F for k > 0,

asaspXL returns unreachable on the user-role reachability problem
〈UA, ψ≤0

F , (u1, {r8})〉 that confirms the results in Examples 3 and 4. ��
The Combination of Backward and Forward Useful Actions. The mod-
ule Heuristics in Sect. 4 works as follows to take into consideration the forward
and backward useful actions. First, the module computes ψk and ψk

F that are the
set of backward k-useful and forward k-useful actions, respectively. Then, the
module will compute the intersection ψU of the sets ψk and ψk

F that is expected
to be much smaller than ψk, ψk

F , and the original set ψ. Finally, the set of useful
actions ψU is used to replace the original set ψ in solving the user-role reachabil-
ity problem. The correctness and completeness of taking into consideration the
intersection instead of the set of forward or backward useful actions is guaranteed
by Proposition 3 that is simply a corollary of Propositions 1 and 2.

Proposition 3. A goal (ug, Rg) is unreachable from an initial user-role assign-
ment relation UA by using the administrative actions in ψ iff (ug, Rg) is unreach-
able from UA by using the administrative operations in lfp(ψ) ∩ lfpF (ψ).

4.3 Ordering Administrative Actions

We recall that the module mcmt implements the backward reachability proce-
dure that computes the sets of backward reachable states from the goal. Basi-
cally, at each iteration, the procedure takes the first administrative action in the
set ψ, computes its backward reachable states (pre-image) and then checks the
intersection between the initial state and the backward states (by using an SMT
solver to check the satisfiability). If the intersection is not empty (i.e., the goal
is reachable from the initial state), the procedure returns reachable and stops.
Otherwise, it selects the second action and repeats the process until all actions
have been considered. This idea gives two advantages: first, the procedure can
stop as soon as possible when it decides that the goal is reachable by checking
an action and thus, not necessary to check the remaining actions; second, the
fix-point formula can be divided into a set of smaller formulae, namely local
fix-points, that is easier to be checked by SMT solvers. The original fix-point is
reached when all the local fix-points are reached.

278 A. Truong and S. Ranise

Clearly, the selection of the next action for computing the pre-images should
be handled carefully since this will cause some redundant in the analysis that
may negatively affect the performances of the procedure. In fact, if the goal is
reachable and the administrative action, let us say τ , that helps the procedure
in deciding the reachability of the goal is at the end of the action list, the
current version of the backward reachability procedure must computes the pre-
images for all actions before τ that are actually redundant computations. It is
thus desirable to design a heuristics to select the next action to maximize the
possibility of picking up an action that is important to show the reachability of
the goal.

Our heuristics is based on the idea of how “close” between the set of states
produced by computing the pre-image with respect to a given action and the set
of initial states. This is because for each iteration, the procedure checks if the
intersection between the pre-image generated by the given action and the set of
initial states is empty, and then uses this check to decide the reachability of the
goal. To illustrate how an action is “closer” than another, let us consider the
following example:

Example 6. Let U = {u1, u2}, R = {ra, r1, ..., r7} initially UA := {(u1, ra), (u1,
r1), (u1, r2), (u1, r5)}, and the set ψ contains:

({ra}, {r1, r2, r4}, r7) ∈ can assign (7)
({ra}, {r1, r3}, r7) ∈ can assign (8)

The pre-images of the two actions (7) and (8) (computed by the backward
reachability procedure) are represented by formulae ∃x, y.(ra(x)∧r1(y)∧r2(y)∧
¬r4(y)) and ∃x, y.(ra(x) ∧ r1(y) ∧ r3(y)), respectively. It is easy to see that the
set of reachable states of action (7) is contained in the initial state UA (i.e., their
intersection is not empty). We also notice how all the roles in the precondition of
action (7) appear in UA while role r3 in the precondition of action (8) does not.
In this case, we say that action (7) is closer (to the initial state) than action (8).
Then, action (7) should be selected before action (8) in the backward reachability
procedure. ��

We define the function Diff calculating how “close” two sets of roles are as
follows:

Definition 7. Let C1 and C2 be pre-conditions, the difference between C1 and
C2 is:

Diff (C1, C2) := (C+
1 \C+

2) ∪ (C−
1 \C−

2)

where C+
1 and C+

2 are sets of positive roles in C1 and C2, respectively; C−
1 and

C−
2 are sets of negative roles in C1 and C2, respectively.

We illustrate how the function Diff is used in the heuristic by the following
example:

ASASPXL: New Clother for Analysing ARBAC Policies 279

Example 7. Let us consider again Example 6. First, the heuristic will calculate
Ri = {ra, r1, r2, r5, ra, r1, ..., r7} that represents all roles occurring in the initial
UA as defined in Definition 6.

Let consider action (7) with its precondition C1 = {ra, r1, r2, r4}, the heuris-
tic then computes Diff (C1, Ri) = ∅. Similarly, the precondition of action (8) is
C2 = {ra, r1, r3} and Diff (C2, Ri) = {r3}.

Since |Diff (C2, Ri)| > |Diff (C1, Ri)|, we say that action (7) is closer (to
the initial state) than action (8). In other words, the precondition C1 can be
easily satisfied by the initial UA while C2 requires more tuples, for instance
(u1, r3) ∈ UA, to be satisfied. Thus, the heuristic will select the actions (7) to
compute its pre-image before (8) ��

We add this heuristic to the tool asaspXL by adding a sub-module, namely
Ordering the Actions, to module Heuristics mentioned above. After com-
puting the set of useful actions as in Sects. 4.1 and 4.2, Heuristics will invoke
the sub-module Ordering the Actions with the set ψU of useful actions as the
parameter. The sub-module then orders the administrative actions in ψU and
returns the ordered set as workflow below:

1. Let ψU be the set of actions and Ri containing all roles occurring in the initial
state UA0.

2. For each τ = (Ca, C, r) ∈ ψU :
(a) If Ca = ∅ and C = ∅:

i. set τ be the first order in ψU (for several actions with Ca = C = ∅,
we do not care the order between them)

(b) Else:
i. Calculate Diff τ := Diff (Ca ∪ C,Ri) for τ

3. Order the actions in ψU by their |Diff τ | (from lower value to higher one)
(a) If |Diff τ1 | = |Diff τ2| where τ1 = (Ca1, C1, r1) and τ2 = (Ca2, C2, r2):

i. τ1 has higher order if |Ca1 ∪ C1| < |Ca2 ∪ C2| and vice versa

Initially, the procedure computes the set Ri containing all roles in the ini-
tial UA0. Then, it calculates the set Diff for each administrative action in ψU

(Step 2). Administrative actions of the form (∅, ∅, r) are set highest order in Step
2(a) since its pre-conditions are alway satisfied. For several actions of the form
(∅, ∅, r), we do not care about the order between them. The procedure then clas-
sifies the actions in ψU based on their Diff (Step 3). Notice how the procedure
prioritizes the action containing smaller set of pre-conditions (Step 3(a)) for the
actions having the same |Diff |. This is because the formula representing the set
of backward reachable states generated by the action (see, e.g., Example 6) may
be smaller (i.e., containing less literals) than the others and thus easier for the
SMT solver to check the satisfiability.

5 Experiments

We have implemented asaspXL and heuristics in Python and used the mcmt
model checker [1] for computing the pre-images. We have also conducted an

280 A. Truong and S. Ranise

experimental evaluation to show the scalibility of asaspXL and compare it
with state-of-the-art analysis tools such as Mohawk [10], Vac [8], and Pms [17]
on two benchmark sets from [10] and [8]. Note that Pms contains 2 versions,
namely Prl and Fwd that implement the analysis with/without applying their
parallel algorithm [17].

Remark. Sometimes, to simplify the analysis of ARBAC policies, separate
administration assumption (for short, SA) has been applied (see, e.g. [16]) which
amounts to requiring that administrative roles (i.e., roles occurring in the admin-
istrative precondition Ca) and regular roles (i.e., roles occurring in the sim-
ple precondition C) are disjoint. This permits to consider just one user, omit
administrative users and roles so that the tuples in can assign are pairs com-
posed of a simple precondition and a target role (i.e., (C, r)) and the pairs in
can revoke reduce to target roles only (i.e., (r)). In the state-of-the-art analysis
tools mentioned above, Mohawk requires this assumption while the other two
and asaspXL do not need it. The benchmarks are thus classified as either SA
benchmarks (that require SA assumption) or non-SA benchmarks (that do not
the the assumption) as in the following.

Description of Benchmarks. The first benchmark set is a SA benchmark
taken from [10]. It contains three synthetic test suites: Test suite 1 contains
policies in which roles occur only positively in the (simple) pre-conditions of
can assign rules and the set of can revoke rules is non-empty. Test suite 2 con-
tains policies in which roles occur both positively and negatively in can assign
rules and the set of can revoke rules is empty. Test suite 3 contains policies in
which roles occur both positively and negatively in can assign rules and the set
of can revoke rules is non-empty. The second benchmark set is a non-SA bench-
mark from [17]. It contains 10 instances of the user-role reachability problem
inspired by a university.

Evaluation. We perform all the experiments on an Intel Core I5 (2.6 GHz) CPU
with 4 GB Ram running Ubuntu 11.10

Table 1 reports the results of running asaspXL, Pms, Vac and Mohawk on
the first benchmark set. Notice that all problems in this benchmark are unsafe
(i.e., analysis tools returns “reachable”). Column 1 shows the name of the test
suite, column 2 contains the number of roles and administrative operations in
the policy. Columns 3, 4, 6 and 7, and 8 show the average times (in seconds)
taken by Mohawk, Vac, Pms (with two versions), and asaspXL, respectively,
to solve the instances of the user-role reachability problem associated to an
ARBAC policy. For Mohawk and Vac, the average time also include the time
spent in the slicing phase (a technique for eliminating irrelevant users, roles, and
administrative operations that are non relevant to solve a certain instance of the
user-role reachability problem, see [8,10] for more details) and the verification
phase. Column 6 and 10 represent the number of actions remaining after the
slicing phase of Vac and the useful actions obtained by asaspXL, respectively.

Experiments for the benchmark that does not adopt the separate admin-
istration assumption are reported in Tables 2; their columns have the same

ASASPXL: New Clother for Analysing ARBAC Policies 281

Table 1. Experimental results on the “complex” benchmarks in [10]

(Separate administration assumption)

Test suite # Roles � Mohawk Vac Pms asaspXL

Fwd Prll

#Rules Time Time # Rules Time Time Time # Rules

Test suite 1 3 � 15 0.45 0.29 1 0.38 0.45 0.09 1

5 � 25 0.53 0.35 1 0.38 0.47 0.11 1

20 � 100 0.64 0.35 1 0.35 0.39 0.12 1

40 � 200 0.97 0.69 1 0.49 0.57 0.31 2

200 � 1000 2.69 0.95 1 0.47 0.55 0.38 1

500 � 2500 4.88 1.59 1 0.97 1.16 0.70 1

4000 � 20000 16.99 1.88 1 33.55 22.39 1.27 2

20000 � 80000 51.57 2.72 1 TO TO 1.27 2

30000 � 120000 65.51 4.12 1 TO TO 1.69 2

40000 � 200000 131.17 9.94 1 TO TO 2.29 2

Test suite 2 3 � 15 0.45 0.25 1 0.36 0.37 0.15 1

5 � 25 0.55 0.39 1 0.35 0.38 0.28 1

20 � 100 0.59 0.24 1 0.32 0.49 0.16 1

40 � 200 1.21 0.56 1 0.54 0.59 0.15 1

200 � 1000 2.55 0.83 1 0.59 0.63 0.14 1

500 � 2500 6.12 1.52 1 1.54 0.83 0.47 2

4000 � 20000 15.51 1.63 1 29.17 21.39 1.18 2

20000 � 80000 26.12 5.25 1 TO TO 1.22 2

30000 � 120000 98.95 6.73 1 TO TO 1.28 2

40000 � 200000 146.84 11.89 1 TO TO 1.43 2

Test suite 3 3 � 15 0.51 0.15 1 0.37 0.35 0.08 1

5 � 25 0.45 0.19 1 0.55 0.49 0.09 1

20 � 100 0.87 0.31 1 0.42 0.62 0.16 1

40 � 200 0.99 0.67 1 0.46 0.57 0.19 2

200 � 1000 7.23 2.12 1 0.92 1.28 0.56 2

500, 2500 4.69 1.20 1 0.74 0.97 0.10 1

4000 � 20000 15.15 4.61 1 20.49 15.13 1.17 2

20000 � 80000 32.35 3.85 1 TO TO 2.25 2

30000 � 120000 115.11 9.65 1 TO TO 1.69 2

40000 � 200000 157.35 10.32 1 TO TO 2.55 2

TO: time out Err: Error m: minute

282 A. Truong and S. Ranise

Table 2. Experimental results on the benchmarks in [17]

(Non separate administration assumption)

Test case # Roles �
Rules

Answer Vac Pms asaspXL

Fwd Prll

Time # Rules Time Time Time # Rules

Test 1 40 � 487 Unsafe 17.25 3 0.83 0.68 1.15 2

Test 2 40 � 450 Safe 0.21 0 0.91 0.75 0.19 0

Test 3 40 � 462 Unsafe 9.33 3 0.92 0.93 0.71 2

Test 4 40 � 446 Unsafe 7.51 3 0.99 45.16 0.69 2

Test 5 40 � 480 Unsafe 48.31 47 1.25 0.91 2.12 9

Test 6 40 � 479 Unsafe 26.62 13 1.02 0.86 1.69 4

Test 7 40 � 467 Unsafe 1 m 12.56 101 4.22 3.26 1.85 2

Test 8 40 � 484 Unsafe 1 m 16.23 65 5.08 2 m 16.21 2.04 8

Test 9 40 � 463 Unsafe 1 m 35.11 89 5.91 6 m 35.24 2.91 11

Test 10 40 � 481 Unsafe 29.94 38 0.65 0.75 2.45 5

semantics as in previous table with additional column “Answer” reports the
results returned by analysis tools (Safe means the goal is unreachable while
Unsafe means the goal is reachable). We do not report the experimental result
of Mohawk because it cannot handle user-role reachability problems without
the separate administration assumption.

The results clearly show that asaspXL performs significantly better than
Mohawk, Pms, and Vac in the first benchmark set (Table 1). Notice that Pms
throws a time-out (that is set to 10 min) in the biggest test cases. For the sec-
ond benchmark set, asaspXL outperforms Pms and is much better than Vac.
We emphasize that the number of actions after using module Heuristics in
asaspXL is reduced significantly (column 9).

Table 3. Experimental results when turning on/off heuristics in Sect. 4

Test case # Roles � # Rules Answer asaspXL

Without Heuristic With heuristics

Test 1 40 � 487 Unsafe 2 m 52.73 1.15

Test 2 40 � 450 Safe 16.22 0.19

Test 3 40 � 462 Unsafe 1 m 1.63 0.71

Test 4 40 � 446 Unsafe 57.15 0.69

Test 5 40 � 480 Unsafe 2 m 35.87 2.12

Test 6 40 � 479 Unsafe 2 m 45.71 1.69

Test 7 40 � 467 Unsafe 3 m 17.33 1.85

Test 8 40 � 484 Unsafe TO 2.04

Test 9 40 � 463 Unsafe TO 2.91

TO: time out Err: Error m: minute

ASASPXL: New Clother for Analysing ARBAC Policies 283

Table 3 shows experimental results when we run asaspXL on the instances of
user-role reachability problem in Table 2 with/without heuristics introduced in
Sect. 4. Columns 1, 2, and 3 have the same semantic as previous tables. Column
4 reports the analysis time when turning off heuristics while column 5 shows
the performance obtained by using heuristics. The results prove the effective-
ness of heuristics on the analysis. In many cases, the analysis time is reduced
significantly, for example, from 3 min to nearly 2 s.

6 Conclusions

We have presented techniques to enable the MCMT approach to solve instances
of user-role reachability problem. We have also designed a set of heuristics that
help our analysis techniques to be more scalable. The main idea is to reduce
as much as possible the number of administrative actions in the original prob-
lem. An excerpt of an exhaustive experimental evaluation has been conducted
and provided evidence that an implementation of the proposed techniques and
heuristics, called asaspXL, performs significantly better than mohawk, Vac,
and Pms on a variety of benchmarks from [8,10].

As future work, we plan to design new heuristics based on some functionalities
provided by the model checker mcmt such as the capability of tracking the
visited states for later use. Another interesting line of research for future work
is to consider the combination of backward and forward reachability procedure
to speed up the analysis of the model checker.

References

1. http://homes.di.unimi.it/∼ghilardi/mcmt
2. http://research.microsoft.com/en-us/um/redmond/projects/z3
3. Alberti, F., Armando, A., Ranise, S.: Efficient symbolic automated analysis of

administrative role-based access control policies. In: Proceeding of ASIACCS, pp.
165–175. ACM Press (2011)

4. Alberti, F., Armando, A., Ranise, S.: ASASP: automated symbolic analysis of
security policies. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 26–33. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22438-6 4

5. Armando, A., Ranise, S.: Automated symbolic analysis of ARBAC policies. In:
Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol.
6710, pp. 17–34. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22444-7 2

6. Crampton, J.: Understanding and developing role-based administrative models. In:
Proceedings of 12th CCS, pp. 158–167. ACM Press (2005)

7. Capitani, D., di Vimercati, S., Foresti, S., Jajodia, S., Samarati, P.: Access control
policies and languages. Int. J. Comput. Sci. Eng. (IJCSE) 3(2), 94–102 (2007)

8. Ferrara, A.L., Madhusudan, P., Nguyen, T.L., Parlato, G.: Vac - verifier of admin-
istrative role-based access control policies. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 184–191. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-08867-9 12

http://homes.di.unimi.it/~ghilardi/mcmt
http://research.microsoft.com/en-us/um/redmond/projects/z3
http://dx.doi.org/10.1007/978-3-642-22438-6_4
http://dx.doi.org/10.1007/978-3-642-22438-6_4
http://dx.doi.org/10.1007/978-3-642-22444-7_2
http://dx.doi.org/10.1007/978-3-319-08867-9_12
http://dx.doi.org/10.1007/978-3-319-08867-9_12

284 A. Truong and S. Ranise

9. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT solv-
ing: termination and invariant synthesis. Logical Methods Comput. Sci. (LMCS)
6(4), 1–48 (2010)

10. Jayaraman, K., Ganesh, V., Tripunitara, M., Rinard, M., Chapin, S.: Automatic
error finding for access control policies. In: Proceedings of 18th CCS, pp. 163–174.
ACM (2011)

11. Jha, S., Li, N., Tripunitara, M.V., Wang, Q., Winsborough, H.: Towards Formal
Verification of Role-Based Access Control Policies. IEEE Trans. Dependable Secure
Comput. 5(4), 242–255 (2008). IEEE

12. Li, N., Tripunitara, M.V.: Security analysis in role-based access control. ACM
Trans. Inf. Syst. Secur. (TISSEC) 9(4), 391–420 (2006). ACM Press

13. Ranise, S., Truong, A., Armando, A.: Boosting model checking to analyse
large ARBAC policies. In: Jøsang, A., Samarati, P., Petrocchi, M. (eds.) STM
2012. LNCS, vol. 7783, pp. 273–288. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38004-4 18

14. Sandhu, R., Coyne, E., Feinstein, H., Youmann, C.: Role-based access control mod-
els. IEEE Comput. 2(29), 38–47 (1996). IEEE

15. Sasturkar, A., Yang, P., Stoller, S.D., Ramakrishnan, C.: Policy analysis for admin-
istrative role-based access control. Theor. Comput. Sci. 412(44), 6208–6234 (2011).
Elsevier

16. Stoller, S.D., Yang, P., Ramakrishnan, C., Gofman, M.I.: Efficient policy analysis
for administrative role-based access control. In: Proceedings of 14th CCS, pp. 445–
455. ACM Press (2007)

17. Yang, P., Gofman, M., Yang, Z.: Policy analysis for administrative role based
access control without separate administration. In: Wang, L., Shafiq, B. (eds.)
DBSec 2013. LNCS, vol. 7964, pp. 49–64. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39256-6 4

http://dx.doi.org/10.1007/978-3-642-38004-4_18
http://dx.doi.org/10.1007/978-3-642-38004-4_18
http://dx.doi.org/10.1007/978-3-642-39256-6_4
http://dx.doi.org/10.1007/978-3-642-39256-6_4

	ASASPXL: New Clother for Analysing ARBAC Policies
	1 Introduction
	2 RBAC, ARBAC, and the Reachability Problem
	2.1 Administrative RBAC (ARBAC)
	2.2 The User-Role Reachability Problem

	3 Model Checking Modulo Theories and the Reachability Problem
	4 ASASPXL with new Heuristics
	4.1 Backward Useful Actions
	4.2 Forward Useful Actions
	4.3 Ordering Administrative Actions

	5 Experiments
	6 Conclusions
	References

