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Abstract

The similarities between self-experienced and vicarious pain have led
research to suggest that both experiences may be facilitated by shared
neural representations. Indeed, neuroimaging evidence demonstrates an
overlap in neural patterns during self- and other-pain. Such comparable
brain activity may facilitate an empathic understanding of the current state
of the individual in pain by stimulating relevant pain associations in the
own sensory, affective and cognitive systems. However, research further
shows the distinct contributions of neural activity during vicarious pain
processing, in particular in brain regions related to perspective-taking,
attention and top-down response regulation. Likewise, such activity may
underpin response formation to the observed pain, such as empathic or
withdrawal behaviors. This chapter reviews 31 fMRI, six EEG/MEG and
four TMS studies exploring the neural correlates of vicarious pain in
healthy individuals. Both shared and distinct neural contributions to
stimulus and response processing during vicarious pain are discussed.
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Notably, an integrative model of vicarious pain is introduced which brings
such contributions together in a comprehensive manner. Moreover, the
chapter highlights inconsistencies and research gaps in current literature
with the aim of stimulating further scientific investigation. This is
pertinent to the detection of neurobiological markers and intervention
targets for empathic deficits which characterize a wide variety of clinical
health issues.
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Abbreviations

Brain Regions

IFG Inferior Frontal Gyrus

IPL Inferior Parietal Lobule

SI, SII Primary Somatosensory Cortex, Secondary
Somatosensory Cortex

PEC Prefrontal Cortex

INS Insula

aINS, mINS, pINS Anterior Insula, Mid-Insula, Posterior Insula

CC, ACC, PCC Cingulate Cortex, Anterior Cingulate Cortex,
Posterior Cingulate Cortex

sgACC, rACC subgenual ACC, rostral ACC

MCC, aMCC Midcingulate Cortex, Anterior MCC

dIPFC, dmPFC, dorsolateral PFC, dorsomedial PFC, medial PFC,

mPFC, rIPFC rostrolateral PFC

SMA Supplementary Motor Area

Neuroimaging Methods

fMRI functional Magnetic Resonance Imaging
EEG  Electroencephalography

MEG Magnetoencephalography

TMS  Transcranial Magnetic Stimulation

Models
PAM  Perception Action Model

1 Introduction

Vicarious pain is characterized by the observa-
tion of individuals who are experiencing acute
pain [48, 110]. The empathic ability to relate to
the affective state of these individuals has social
and physical benefits as it enables observes to

adjust their behavior according to the context
[156]. Not only can this enhance social rela-
tionships through the display of compassion, but
it also promotes adequate assessment of situa-
tional cues that require prompt withdrawal
responses. Thus, stimuli that are potentially
threatening can be removed before causing
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further harm to either the individual in pain or the
observer [14, 61, 62, 75]. In line with those
essential survival functions, evidence from
imaging studies using electroencephalography
(EEG), magnetoencephalography (MEG), tran-
scranial magnetic stimulation (TMS), and func-
tional magnetic resonance imaging (fMRI)
suggests that the human brain is wired to facili-
tate empathic understanding through shared and
distinct neural representations of
self-experienced and observed pain [4, 67, 78,
81, 105, 110, 111, 178, 205]. Nonetheless,
inconsistencies in current literature highlight that
further exploration is critical to acquiring a
complete understanding of the neural mecha-
nisms underpinning vicarious pain and empathy.
Research in this area is pertinent to the detection
of neurobiological markers and intervention tar-
gets for empathic deficits which characterize a
wide variety of clinical health issues, such as
autism, schizophrenia and motor neuron disease
[12, 18, 35, 172].

2 \Vicarious Pain, Empathy
and the Perception-Action Model

Acute self-pain is experienced in the own body
directly as an “unpleasant sensory and emotional
experience” of sharp quality “associated with
(...) tissue damage” [94, p. 5]. In contrast,
although vicarious pain is defined as the obser-
vation of pain in others, the affective, cognitive,
and sensory aspects that accompany this experi-
ence are challenging to pinpoint. Particularly,
empathic responding to such pain observation
has not yet been clearly defined [155]. It is
generally described as an understanding of
affective states in others. However, more narrow
definitions of empathy have specified that the
platform for such understanding arises when
observation or imagination of a person in a par-
ticular emotional state elicits a similar emotion in
the self that remains conceptually separate from
personal distress [74, 98]. Furthermore, empathy
has been associated not only with emotional
relatedness, but also a cognitive and somatosen-
sory understanding of the observed pain. In line
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with this, research suggests that empathizing
with vicarious pain can have affective, cognitive
and sensory effects for an individual that are
similar to self-pain [67, 156]. Reflecting this
similarity, the Perception-Action Model (PAM)
of empathy advances that vicarious processing is
subserved by shared neural representations
underlying self- and observed pain [81, 110, 111,
155, 156, 178]. It relies on the mirror neuron
system which is characterized by neurons that
respond both when an action is actively per-
formed and passively observed [158]. More
explicitly, during pain observation motor mirror
neurons are activated that correspond to muscle
groups involved in acute self-pain. This activa-
tion promotes understanding of vicarious pain
through the mirroring of such pain within the
own motor system [160]. In consequence, a
neural network is automatically stimulated, con-
taining learned sensory and affective information
for self-pain which can be used to predict and
evaluate the suffering of others. This may facil-
itate other-oriented empathy as well as
self-oriented distress and withdrawal responses
[81]. Moreover, the PAM advocates indirect
sensory, affective and cognitive mirroring in pain
processing regions which are not directly impli-
cated in the mirror neuron system, such as the
cingulate and prefrontal cortices. Among those,
similar neural patterns during self- and vicarious
pain may reflect comparable stimulus processing,
resulting in shared neural pain representations.
Such representations also trigger an associative
pain network and facilitate a swift, concurrent
holistic appraisal of the observed pain [110, 155].

Research provides evidence for both motor
mirror neurons and shared neural representations
in vicarious pain processing. First, studies have
shown neural activity in the inferior frontal gyrus
(IFG) and inferior parietal lobule (IPL) during
pain observation, which are considered core
regions of the human mirror neuron system [14,
65, 77, 110, 158, 171, 178, 193]. Second, brain
activation in the well-established pain matrix has
been reported to overlap for self- and vicarious
pain forming shared neural representations of
these pain experiences [48, 110]. As shown in
Fig. 1, the pain matrix includes the primary
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Fig. 1 Pain matrix. Abbreviations: ACC cingulate cor-
tex; PAG periaqueductal gray; PFC prefrontal cortex;
SMA supplementary motor area; S/, primary somatosen-
sory cortex; S2 secondary somatosensory cortex; PPC
posterior parietal cortex [120, 121]

(ST) and secondary somatosensory cortices (SII),
thalamus, prefrontal cortex (PFC), insula (INS),
and cingulate cortex (CC).

It is suggested that SI, SII and the thalamus
encode the sensory aspects of noxious stimuli,
including location and intensity. In contrast, INS,
CC and PFC play a role in cognitive—affective
evaluation and top-down control [42, 43, 151,
186]. These regions are comparably implicated in
vicarious pain. However, current methodological
issues, such as coarse spatial neuroimaging res-
olution, prevent firm conclusions to which extent
the neural patterns of self- and other-pain are
identical [86, 111]. On the contrary, Zaki et al.
[205] had indicated that self- and vicarious pain
have differed functional connectivities across
brain regions and thus, unique inter-regional
communication may reflect the qualitative dif-
ferences between these pain experiences. Like-
wise, activity in the same brain regions as
self-pain may nonetheless make distinct contri-
butions to other-pain processing [110]. Research
suggests that mirroring may be neither necessary
nor sufficient for empathy induction (for a critical
review, see [l111]. For example, individuals
reported empathic distress upon learning that their
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partner was in pain without activation in the IFG
or IPL, deeming these regions unnecessary for
affective empathy [179]. Furthermore, individuals
tend to exhibit appropriate empathic responses
in situations where individuals are in pain, even
though mirroring alone would imply that they are
not [57, 112]. Accordingly, additional neural
activity is required for adequate appraisal of
vicarious pain [111, 149]. Thus, the involvement
of aforementioned brain regions in vicarious pain
is likely to go beyond mirroring [77].

Moreover, aside from appraising observed
pain by means of shared and distinct neural
correlates, neural patterns in observers may
underpin distinct responses to the pain. The PAM
predicts other-oriented empathic understanding
to automatically arise from shared pain repre-
sentations. Indeed, ample papers supporting the
PAM report an association between empathic
abilities and neural mirroring activity, proposing
that the evaluation of observed pain through
bottom-up mirroring induces empathy (e.g. [158,
160]). Empathy has been shown to elicit altruistic
behaviors that have the aim of helping the indi-
vidual in pain. These promote social relation-
ships and their protective benefits [155, 156].
However, vicarious pain perception has also been
found to induce self-oriented distress and with-
drawal behaviors to the observed pain threat [65,
110, 111]. In line with this, brain regions active
during pain observation have also been associ-
ated with emotional contagion, which is mea-
sured by affective distress ratings. Such
contagion may elicit avoidance when observing
negative affect in others and, thus, stands in
opposition to the altruistic acts induced by
empathy [60, 111]. While Preston and Hofelich
[157] recently speculated that these concepts may
also be evoked by neural mirroring, they did not
extensively elaborate on the mechanisms behind
this. Further contrasting the PAM, recent evi-
dence suggests that neural activity during vicar-
ious pain reflects top-down sensorimotor pain
predictions based on higher cortical analysis
rather than bottom-up mirroring. These predic-
tions are dynamically compared with the pain
observation and may evoke self-oriented motor
withdrawal preparation [54, 111, 200].
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Accordingly, brain responses to vicarious pain
may reflect other-oriented empathy or
self-oriented ~ withdrawal. =~ Notably, neural
responses to empathy and distress have not yet
been reliably teased apart. Given these issues,
current findings of shared and distinct neural
activation between self- and vicarious pain
should be interpreted with caution [111]. At this
time, the roles of each brain region involved in
pain observation are not clearly established.
However, this chapter will present noteworthy
speculations that have been made and lend
themselves to extensive future research.

The following sections will provide an over-
view of brain regions associated with vicarious
pain processing. The chapter will first discuss
evidence for shared and distinct neural substrates
of self- and other-pain before exploring corre-
lates underpinning empathic understanding and
self-oriented behaviors. An integrative model
will be presented that extends the
well-established PAM with the aim of incorpo-
rating recent findings that offer a more rounded
understanding of the complexity of vicarious
pain processing. A summary of studies and
reported brain activity appears in Table 1. This
table presents only research directly exploring
the neural correlates of vicarious pain in the
healthy population and in absence of modulating
factors, such as group membership [7, 91]. As
can be inferred, the majority of research in this
field utilizes fMRI for brain investigations (for
details on fMRI methods, see [84]. To date, there
are only four TMS studies [4-6, 128]; for details
on TMS methods, see Rossi et al. [126, 162] and
two EEG studies [27, 194]; for details on EEG
methods, see [183] that investigate the neural
activity during pain observation.

3 Neural Responses to Vicarious
Pain

Across neuroimaging research, the most consis-
tent brain activations during vicarious pain
experience lie in the INS, CC and PFC. These
regions have been implicated in the affective—
cognitive processing of self- and observed pain
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(e.g. [49, 89, 147, 163, 179, 192]). In contrast,
findings for the motor regions have been less
consistent. While several studies report IFG, IPL
and motor cortical activity in response to pain
observation [113, 137, 193], many find none [48,
89, 179]. Likewise, activation in the somatosen-
sory cortices remains variable [28]. Nonetheless,
when contrasting brain responses to videos of
limbs and objects subjected to equivalent nox-
ious stimulation, the motor and somatosensory
cortices responded exclusively to painful limbs,
suggesting that sensorimotor mirroring may play
an essential role in the identification of human
pain [49]. Contradictory neuroimaging findings
may result from the sensitivity of vicarious pain
correlates to attentional focus. In an image- and
coordinate-based meta-analysis, Lamm et al.
[110] propose that the distinct recruitment of
sensorimotor compared to affective brain areas
depends on which pain components the observer
highlights. Accordingly, attending to sensory
factors, such as pain intensity, should be sub-
served by neural correlates of sensorimotor pro-
cessing. On the other hand, an affective focus,
such as rating pain unpleasantness, should acti-
vate affective pain substrates [110, 113]. In both
cases, increased stimulus complexity should be
associated with cognitive regions [88, 112, 149].

The common stimuli used to induce empathy
for vicarious pain allow for such differentiation
(Fig. 2). Most typically, participants are pre-
sented with images of hands or feet in painful or
non-painful scenarios that are likely to evoke a
sensory focus as the emphasis is on the body part
(e.g., [6, 89, 98, 137]). In contrast, requiring
participants to infer pain from facial expressions,
abstract cues or imagination taps into affective
processing [22, 98]. Furthermore, complex pain
scenarios entail greater cognitive analysis of the
presented context [149]. The corresponding
effects of focus have been reflected in neu-
roimaging findings with sensory focus activating
areas IFG, IPL, SI, SII and motor cortices,
affective focus correlating with anterior cingulate
cortex (ACC) and anterior INS (aINS) activity
[4, 136, 179], and cognitive involvement elicit-
ing anterior midcingulate cortex (aMCC) and
PFC activity [88, 110]. Notably, most studies
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with sensory-focused stimuli reveal activity in
both sensory and affective brain areas, suggesting
that affective processing of observed pain is more
readily activated than sensory processing [105,
110, 111].

4 Shared Neural Representations

As proposed by the PAM, shared neural repre-
sentations of self- and vicarious pain arise from
neural mirroring and facilitate an accelerated
understanding of the sensory, affective and cog-
nitive experience of the individual in pain [155,
156]. While motor and somatosensory neural
activity may underpin direct pain mirroring,
affective—cognitive activity reflects indirect mir-
roring evoked through the similar processing
requirements of self- and other-pain features.
Due to the current lack of evidence for cognitive
mirroring, the PFC is not included in this section
and its distinct contributions to vicarious pain
processing will be discussed at a later point.

4.1 The Sensorimotor Regions

4.1.1 The Mirror Neuron System:
Inferior Parietal Lobule
and Inferior Frontal Gyrus
During vicarious pain, the IPL and IFG have been
respectively implicated in sensory [131, 158] and
affective mirroring [171]. Identical neurons in the
IPL and IFG respond to self-performed and
observed actions, thus reflecting motor mirroring
of observed pain [26, 39, 45, 163, 171, 193].
Supporting this, both regions react to physical
rather than abstract pain cues, indicating that they
require visual perception of relevant motor
information [110, 179]. Vachon-Presseau et al.
[193] report greater IPL responsiveness to body
parts in pain and consistent bilateral IFG activa-
tion to both facial and bodily pain cues (Fig. 3).
Furthermore, the IPL is associated with motor
movement, spatial processing and increased
intensity ratings of observed pain [26, 163]. As
such functions require the analysis of sensory pain
components, this suggests that the IPL mirrors

Fig. 2 Typical stimuli in vicarious pain research. facial pain and neutral expressions and hands and feet in non-painful

and painful scenarios [193]



424

(A) Images of hand and foot > face

x=-52

Fig. 3 a Observing body limbs is associated with
increased activation in sensorimotor regions compared
to facial expressions. b Observing facial expressions is
associated with increased activation in medial PFC
(mPFC) and Superior temporal sulcus (STS) (associated
with perspective-taking) compared to limbs. ¢ Vicarious

sensorimotor aspects of vicarious pain [26, 113,
137, 146, 193]. In contrast, the IFG is involved in
the extraction of affective meaning from faces,
including anger and happiness expressions [141].
Correspondingly, studies indicated greater IFG
activation during pain observation when partici-
pants were required to attend to the emotional
meaning of pain [26, 196]. Such activity has been
associated with higher self-rated affective empa-
thy but shows no correlation with sensory pain
intensity ratings, substantiating the role of the IFG
in affective pain processing during vicarious pain
[22, 163, 192, 193, 196]. Notably, IFG responses
to pain observation can modulate higher cortical
emotion centers, such as the aINS [31], suggesting
that the IFG identifies motor activity in observed
pain and communicates associated affective
meanings to higher regions for further analysis

E.L. Terrighena and TM.C. Lee

(B) Images of face > hand and foot
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0
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pain is associated with increased activation in IFG, IPL
and EBA compared to neutral images. d Increased
activation of IPL during vicarious pain observed in limbs
compared to vicarious facial pain expressions. For all
images p < 0.001, uncorrected; error bars represent
standard error of mean; **p < 0.01; ***p < 0.001 [193]

[158]. Accordingly, the PAM advocates that
motor mirroring in the IPL stimulates sensory pain
associations while IFG mirroring activates affec-
tive pain associations. Thus, both provide a neural
base for translating observed facial and bodily
pain cues into self-correlates, creating shared
representations of self- and other-pain observation
[31, 147, 155, 156, 158]. This may facilitate rapid
appraisal of the observed pain and corresponding
emotional contagion or empathic understanding
of the suffering individual [82, 171, 192].
Nonetheless, at present no intracellular recordings
of human IPL or IFG neurons during pain obser-
vation exist. Reliance on vague spatial resolution
of noninvasive neuroimaging techniques make it
challenging to confirm that IPL and IFG activity
occurs in the same neurons involved in self-pain.
Thus, motor mirroring of pain in these regions is
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derived from previous research that is not specific
to vicarious pain. Further pain-related research is
needed to verify such a notion.

4.1.2 The Motor Cortices

The premotor cortex and Supplementary Motor
Area (SMA) have been associated with action
understanding of vicarious pain [100, 134, 163,
186]. In line with the PAM, the premotor cortex
has been pinpointed as a neural correlate of
motor imitation and is suggested to encode
observed actions via motor mirroring (for a
meta-analysis on the mirror neuron system in
imitation, see [130]). Notably, somatotopical
organizations within the premotor cortex facili-
tate the localization of perceived body parts [25].
Furthermore, the SMA has been implicated in

(a)

130 ~
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event sequencing for the analysis and under-
standing of witnessed behaviors [112, 113, 136,
163]. Accordingly, these regions may analyze the
motor cues of facial and bodily pain expressions,
creating shared neural representations of self-
and other-pain and activating relevant associa-
tions for pain evaluation [130, 155, 159]. The
role of the motor cortex in motor mirroring is
substantiated by TMS research. All three avail-
able TMS studies recorded an inhibition of
motor-evoked potentials in participants watching
videos of hands or feet being deeply penetrated
by needles. This inhibition was specific to the
muscle subjected to noxious stimulation. In
contrast, gentle touch of humans or needle pen-
etration of nonhuman objects had no such effect
(Fig. 4) [4, 6, 128].

120 A

110 4
100 4

i

\

90 A
80 A

MEP amplitude (% of baseline)

70 -

(b)

130 7

120 4
.|.

110 4

W,

100
90 A

80 -

MEP amplitude (% of baseline)

Fig. 4 Suppression of MEP amplitude in response to
vicarious pain [4]. Abbreviations: MEP motor-evoked
potentials; FDI first dorsal interosseous; ADM abductor
digiti minimis. a MEPs recorded from FDI muscle that
was penetrated by needle or touched by Q-tip. Significant
amplitude decrease occurred for specific FDI when
penetrated by needle compared to Q-tip (p = 0.01) or

compared to non-corporeal object (p = 0.01). b MEPs
collected from ADM muscle which was not stimulated.
No significant effect was found for ADM muscle,
indicating that motor suppression was specific to the
muscle targeted by the observed noxious stimulation. (¥)
identify significant post hoc comparisons (p < 0.02) [4]
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As equivalent motor inhibition has been noted
in response to self-pain [79], these findings have
been interpreted as evidence for motor mirroring
that reflects a direct resonance of the witnessed
pain in the motor system of the observer [5].
Furthermore, the revealed neural inhibition was
associated with increased pain intensity ratings,
but not with affective measures of pain or
empathy measures, implicating it exclusively in
sensory processing of vicarious pain [3, 4]. Such
findings support the PAM, substantiating the
formation of shared neural representations within
the motor cortices during vicarious pain.

4.1.3 The Somatosensory Cortices
Although the involvement of the somatosensory
cortices is well-established for self-pain, findings
are less robust for vicarious pain. The majority of
vicarious pain studies do not include somatosen-
sory areas in regions of interest analyses, making
it challenging to determine how frequently such
activation takes place. Of those that do, some
studies find no activation in the somatosensory
areas during pain observation [22, 48, 89, 134,
135, 179], while others report neural activity in at
least one of the two regions [49, 98, 137, 147,
148]. Contradicting the PAM, both Singer et al.
[179] and Morrison et al. [135] reported that the
somatosensory cortices were only active when
participants received painful electric shocks on
their own hand, but not when abstract or visual
cues informed them that another individual
received equivalent stimulation.

However, both a systematic review [105] and a
comprehensive meta-analysis [110] highlight the
need to focus on sensory aspects of vicarious pain
in order to engage somatosensory processing.
Evidence is provided that presenting participants
with limbs in pain is more likely to activate ST and
SII than using faces or abstract pain cues [110,
113]. Indeed, Bufalari et al. [27] recorded
increased SI activity while witnessing body parts
in pain which concurred with higher pain inten-
sity but not unpleasantness ratings, confirming
that the SI specifically encodes sensory pain
components. As demonstrated in Fig. 5, such
activity dissociated painful from non-painful
vicarious tactile stimulation. Specifically, gentle
touch decreased amplitudes in the SI, while

E.L. Terrighena and TM.C. Lee

painful touch increased them [27]. Nonetheless,
SI and SII have also been implicated in the
undifferentiated mirroring of sensory cues, inde-
pendent from whether stimulation is noxious or
not, contesting that their activity is specific to
pain (for a review, see [28, 110, 165]). As
fine-grained MEG analysis can differentiate
painful and non-painful self-touching, such
methods may aid in clarifying the pain-specificity
of vicarious somatosensory responses [153].

As similar activity has been noted during
self-pain, the PAM interprets SI and SII activation
during vicarious pain as bottom-up sensory mir-
roring [158]. In line with this, the SII has been
implicated in the mirror neuron system due to its
connections to the IPL [194]. Furthermore, the SI
and SII contain somatosensory maps that may
enhance the identification of observed body parts
[16, 122]. Likewise, infrequent reports of thala-
mus activity suggest that this region may con-
tribute to vicarious pain processing in its role in
the transmission of mirrored sensory input to the
cortex [98]. These findings support the notion of
shared neural pain representations which provide
a reference point from which individuals interpret
the pain they observe in others [16, 44]. Corre-
spondingly, Valeriani et al. [194] found that par-
ticipants rated their own heat pain higher when
simultaneously witnessing other individuals
receiving pain stimulation. It was suggested that
pain observers map the viewed pain onto the own
body, intensifying self-experienced pain. Like-
wise, Osborn and Derbyshire [148] found that
somatosensory activity during vicarious pain was
associated with subjective reports of feeling pain
sensations within the own body, substantiating the
concept of shared sensory pain experiences.
Notably, this neural activity was absent in par-
ticipants who did not report similar sensations.
Activation in affective pain areas, such as aINS§,
was similar across groups, suggesting that sensory
and affective pain mirroring are dissociable [148].

Research has yet to reveal which factors
mediate the group differences in somatosensory
responsiveness to observed pain. Such factors
may be of significant clinical relevance as they
may underpin sources of empathic deficits in
clinical disorders as well as dysfunctional pain
behaviors. However, at present such research is in
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Fig. 5 Change in P45 Amplitude during vicarious pain
compared to baseline according to condition. a P45
amplitude during vicarious pain (red), vicarious gentle
touch (blue) and static hand (green). Significant increase
of P45 amplitude during vicarious pain compared to hand

its infancy [7, 8]. Moreover, although evidence for
sensory mirroring in the somatosensory cortices,
and tentatively the thalamus, during vicarious pain
is provided, this neural activity is neither con-
firmed to unambiguously overlap with self-pain
activations nor to be pain-specific. Likewise, the
functions subserved by SI and SII have not been
differentiated, although these regions are dissim-
ilarly implicated in self-pain processing [184].
Thus, more research is needed to establish the
manner in which shared sensory representations
arise from such activation during observed pain.

4.2 The Affective Regions

4.2.1 The Insula

INS activation has been proposed to subserve
interoception and affective vicarious pain pro-
cessing [22, 51, 72,98, 166, 175, 179, 192, 203].

—_—
(2]
S

120
’,_‘—‘ *4

110

100 l

90
&

P45 Amplitude Change (%)

or touch (p = 0.0001). b Topographic distribution of P45
during each condition. ¢ Percentage change in P45
amplitude compared to baseline according to condition.
*p < 0.05; **p < 0.001 [27]

Interoception is defined as a process by which
several sources of information are integrated to
form an internal representation of the current
bodily state and corresponding emotional
responses [50]. This is pertinent for self-pain as it
allows individuals to assess their physical state.
Given the comparable affective processing
requirements of self- and other-pain, it is likely
that the INS may play a similar role in pain
observation [89, 113]. Indeed, Gu et al. [87]
highlight that the INS is essential for empathy
induction, having found INS lesions to inhibit
empathic responding. In line with the PAM, there
is evidence for an overlap in increased aINS
activation during self- and vicarious pain when
comparing brain activity within the same indi-
viduals [48, 146]. Likewise, between-subject
paradigms have revealed consistent aINS activ-
ity during pain observation within established INS
correlates of the pain matrix [88, 89, 98, 99, 112,
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113, 186]. These findings provide support for
indirect affective pain mirroring from which
shared neural pain representations arise [22, 146,
179, 205].

Furthermore, comparable aINS activation has
been demonstrated during both direct evaluative
pain judgments as well as identification of limb
laterality for images of limbs in pain, substanti-
ating the notion of automaticity in such mirroring
[89]. Such automatic mirroring is likely to
achieve an immediate representation of the current
state of the individual in pain [155, 156]. More-
over, Cheng et al. [36] instructed participants to
imagine observed pain from the perspective of
either a stranger or a loved one. The latter condi-
tion elicited increased aINS activation as well as
greater neural overlap for self- and other pain,
indicating that increased emotional attachment
evokes greater affective mirroring of the observed
pain within one’s own system. Notably, aINS
activity distinguishes between painful and
non-painful vicarious stimulation [112] and
responds to general negative encounters, such as
self-experienced and vicarious disgust [93, 199].
Accordingly, shared neural representations in the
INS may not be pain-specific, but instead encode
adversity [13, 48]. aINS involvement in the
anticipation of aversive stimuli and its connec-
tions to well-established emotion centers, such as
the amygdala, substantiate its likely contribution
to the affective processing of vicarious pain [110,
164, 166, 174]. Given the findings, it is plausible
that affective mirroring gives rise to shared
affective pain representations during vicarious
pain, in particular when high levels of emotions
are involved. However, further fine-grained anal-
ysis is required to assess to what extent neural
patterns during self- and other-pain are identical.

4.2.2 The Cingulate Cortex

During self- and vicarious pain, the ACC has
been has been associated with affective pain
processing, [70, 76] while the midcingulate cor-
tex (MCC) is associated with both affective and
sensory pain components [43]; for review on CC
see, [83, 110, 198]; for systematic review on CC
in vicarious pain, see [202]. The PAM suggests
that these similar roles give rise to mirroring and
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shared neural pain representations. However,
while intracellular recordings have confirmed
nociceptive neurons in the CC for self-pain, such
an investigation has not yet been performed for
vicarious pain [92]. In line with the role of the
ACC in affective processing, neural activity in
the subgenual and rostral ACC (sgACC; rACC)
as well as aMCC has been found via pain
observation in limbs, facial pain expressions and
abstract pain cues [22, 26, 134, 163]. Supporting
the PAM, the activations are reported to be
overlapping and partially anterior to those com-
monly found during self-pain [26, 134]. Nota-
bly, Singer et al. [179] revealed ACC activation
when participants received abstract information
about their significant other receiving painful
electric shocks, showing that emotional attach-
ment was sufficient to induce a neural represen-
tation of pain unpleasantness. A direct
comparison of neural activity confirmed that the
ACC regions activated during self- and
other-pain overlapped. Furthermore, similar to
self-pain, greater rACC activity during other-pain
was associated with increased other-pain evalu-
ations [179]. However, to date, no correlations
between affective pain measurements and ACC
activity have been analyzed for facial and
abstract pain cues. Thus, the extent to which the
ACC subserves affective processing of vicarious
pain is speculative. In contrast, studies presenting
limbs in pain have investigated such correlations
and confirmed that higher neural responses are
indeed associated with higher unpleasantness
ratings [113]. Furthermore, Jackson et al. [100]
reported that ACC activity is specific to imag-
ining the observed body part from an emotional
first-person perspective and correlates with rat-
ings of observed pain levels (Fig. 6). These
findings support a role of the ACC in affective
processing for vicarious pain which is compara-
ble to affective self-pain processing and thus may
contribute to shared affective pain representations
[22, 48, 193]. Notably, the revealed ACC activity
may not be pain-specific, but instead reflect the
mirroring of a general negative affect [13].

In contrast, vicarious pain research has failed
to find aMCC activity in abstract or facial cues of
pain, suggesting that it may not subserve
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Fig. 6 ACC and aINS activation during vicarious pain.
Abbreviations: AIC anterior insula. a ACC and aINS
activation while observing another individual in pain.

affective pain representations as it does for
self-pain. Instead, the aMCC has been found
explicitly responsive to images of limbs in pain,
regardless of whether individuals focused on the
sensory or affective aspects of the presented body
part [113] or imagined the pain from a first- or
third-person perspective [98]. In line with its
responsiveness to body parts, research proposes
that the aMCC may reflect sensory rather than
affective mirroring. Furthermore, it may underpin
distinct roles in pain observation [147]. Indeed,
lesion studies indicate that an intact aMCC is not
required for affective empathy [87]. Taken
together, findings for CC activation suggest that
neural patterns may overlap for self- and

429

Horizontal Section
z=2

60 70
Subjective Pain Index

b Increased ACC activity was associated with increased
subjective pain ratings (MNI Coordinates) [99]

vicarious pain, reflecting neural mirroring and
shared pain representations [48, 110, 134, 170,
195]. Nonetheless, the exact functions of the CC
in mirroring and distinct contributions to vicari-
ous pain processing need further clarification.

5 Distinct Neural Contributions

Several brain regions are implicated in making
distinct contributions to the cognitive processing
of vicarious pain. These include self-other dis-
tinction and attentional control, which are asso-
ciated with IPL, SI, SII, INS, CC and PFC, as
well as contextual pain appraisal and top-down
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regulation, which draw on the PFC. Notably,
although it is proposed that in their cognitive
roles these regions reflect processing that is
independent from shared neural representations,
the revealed activation has not been firmly
excluded from underpinning mirror processing.

5.1 Self-other Distinction

During vicarious pain, the IPL, temporoparietal
junction (TPJ), somatosensory regions, aINS and
PFC have been implicated in distinguishing one’s
own sensory and affective experiences from those
of the individual in pain. Uddin et al. [188]
demonstrated that TMS stimulation to the right
IPL disrupted the ability to discriminate self- and
other-faces, which suggests that this brain region
plays a key role in maintaining a distinct sense of
self. Likewise, the somatosensory cortices may
contribute to such a self-other distinction. Jackson
et al. [98] reported somatosensory activation
exclusive to imagining noxious stimulation from
a first-person but not a third-person perspective.
The lack of activation in the latter condition may
be a mechanism by which SI and SII separate
sensory experiences observed in others from their
own sensory state while a first-person perspective
may contribute to shared sensory experiences
[98]. Moreover, both the INS and PFC have been
associated with interoceptive self-awareness
during vicarious pain that establishes an under-
standing of the self-state as a reference point
against which to compare external pain cues
[169]. Brooks et al. [23] have provided evidence
of a somatotopic organization in the aINS that
facilitates such interoception [74, 100]. Lending
tentative support, Ebisch et al. [73] showed that
for vicarious touch the pINS is involved in dif-
ferentiating self- and other-states; however,
studies have not yet explored this specifically for
vicarious pain. Furthermore, when pain observa-
tion elicits discomfort in the observer, however
not in the observed individual, the PFC has been
proposed to promote self-other distinction for
adequate context assessment [111, 149]. Like-
wise, the TPJ, which has been associated with
perspective-taking, in particular, is responsive in
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such circumstances. Cheng et al. [37] report that
the TPJ subserves self-other distinction and aids
the understanding of individuals when the
observer does not rely on neural pain mirroring.
Substantiating this, imaging the observed pain
from the perspective of a stranger has been
associated with decreased activation of the pain
matrix and increased TPJ involvement. This
indicates that greater perspective-taking is applied
when individuals have less emotional attachment
to the individual suffering pain (Figs. 7 and 8).
Such findings are reflected in negative functional
connectivity between TPJ and aINS and positive
connectivity between TPJ and superior frontal
gyrus during pain observation from a stranger
perspective. These suggest that the aINS is less
involved in the encoding of stranger pain than of
loved-one pain [36, 37].

Self-other distinctions are an essential com-
ponent of empathy [75, 98]. Although observing
another individual in pain can have similar inter-
nal effects as self-pain for the observer, under-
standing that his or her pain is distinct from the self
is crucial for adequate empathic responses that
promote social survival. In contrast, a strong
transference of other-pain to the self may trigger
emotional contagion, thus evoking self-preserving
withdrawal responses. Forthcoming systematic
exploration may aim to further pinpoint the neural
substrates of self-other distinction in the context of
vicarious pain and empathy. Deficits in these
correlates may be of significance for dysfunctional
empathic responding [116, 197].

5.2 Salience Detection and Attention

The INS and aMCC have been associated with
salience detection and attention in self- and
vicarious pain processing [53, 104, 138]. Con-
trasting shared neural representations of the
PAM, mINS and pINS activity has been reported
more frequently for self- than other-pain [23, 80,
96]. Upon comparing brain activity in the same
individuals, Ochsner et al. [146] found that the
mINS only showed activation during application
of heat pain to one’s own skin, but not when the
same stimulus was observed on another
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Fig. 7 Double dissociation between pain matrix and TPJ
responses during vicarious pain imagined from different
perspectives. Imaging pain from the perspective of a
loved-on was associated with increased ACC, INS, SMA

individual. It was highlighted that the aINS has
connections to affective processing areas while
the mINS is linked to cognitive processing

and PAG activity during pain observation, resembling
self-perspective responses. Stranger perspective was
associated with increased TPJ activity compared to the
other two perspectives [36]

regions and is implicated in attention. As
self-pain may require increased attentional
resources due to greater stimulus salience
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Fig. 8 Negative association between TPJ and closeness
in relationships. Abbreviations: I0S Scale Inclusion of
others in self Scale; #TPJ right TPJ; SFG superior frontal
gyrus. r'TPJ, SFG and mPFC showed increased activation
when imagining observed pain from a stranger

compared to observed pain, it may specifically
draw on the mINS for attention regulation [53,
104, 125, 146]. Nevertheless, fine-grained
Multi-Pattern Variate Analysis (MPVA) has
revealed overlapping mINS patterns for self- and
vicarious pain, indicating that further research is
required to clarify the role of the INS in salience
detection and attention during pain observation
[48]. Moreover, aMCC activation in established
attention regions has been consistently reported
for vicarious pain [26, 98, 99, 135-137, 147,
163, 205]. Similar to self-pain, observed pain
signals threat and thus draws attention to the
need for prompt responses [61, 75]. In line with
the PAM, it is possible that comparable pro-
cessing requirements of self- and other-pain
stimuli may induce cognitive mirroring. How-
ever, it is equally likely that the aMCC directly
process salient environmental hazards and regu-
late attention, independent from such mirroring
[155, 156]. At present only three neuroimaging
studies have explored attention in vicarious pain
and thus no comprehensive conclusions can be
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perspective compared to self- or loved-one perspective.
Increased self-reported overlap of self and others in close
relationships was associated with decreased 1TPJ activity
during pain observation [36]

drawn [78, 88, 89]. Fan and Han [78] demon-
strated that participants identified and empa-
thized with observed pain faster when pain was
specifically attended to. In contrast, neural
activity associated with vicarious pain processing
has been found no longer significant when indi-
viduals focus away from pain cues while count-
ing the number of presented limbs in pain.
Accordingly, top-down attentional control may
modulate vicarious pain processing and accord-
ingly limit its automaticity as proposed by the
PAM [88]. Moreover, when cognitive load was
held constant and required similar attention
levels during neutral and vicarious pain tasks,
aMCC responses were equivalent for both pain-
ful and neutral images. This suggests that aMCC
activation is not pain-specific but instead under-
pins attentional control [89]. Taken together,
current research advocates that the aMCC, and
tentatively the INS, facilitate attention during
pain observation [9, 88, 89] and that vicarious
pain processing, and thus potentially empathy, is
vulnerable to resource competition from
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cognitive tasks [78, 88, 132]. Both premises have
been established for self-pain. However, whether
such processing reflects shared or distinct neural
attention correlates for self- and other-pain needs
to be disentangled in further research in order to
gain a full understanding of the effects of salience
and attention during vicarious pain [9, 59].

5.3 Context Appraisal and Top-Down
Regulation

Vicarious pain studies speculate that the PFC
subserves the assessment and cognitive integra-
tion of multiple inputs for adequate pain apprai-
sal [77, 117, 185, 195]. Furthermore, it may play
a role in top-down regulation of responses to the
observed pain [76, 85, 117, 185, 201]; for review
on PFC, see [127]. While these functions
resemble those during self-pain, it has not yet
been established whether PFC activity reflects
shared or distinct neural representations during
other-pain [26, 112, 145, 193]. Although it dif-
ferentiates between painful and non-painful
observations [26, 149], the majority of vicari-
ous pain research fails to find PFC involvement.
Such inconsistencies may be an effect of task
differences across studies, which require varying
levels of cognitive resources. For example,
Lamm et al. [112] presented participants with
images of individuals who had their hands pen-
etrated by needles or touched by Q-tips and
informed them that these individuals showed
either normal or abnormal responses corre-
sponding to a neurological condition. PFC
activity was only found for abnormal conditions,
such as when participants were told that needles
elicited no pain and Q-tips elicited pain. Like-
wise, Perry et al. [149] reported greater EEG
suppression in the frontal areas both during the
observation of painful needles as well as when
individuals responded with abnormal pain to
non-painful Q-tip stimulations. Both studies
proposed that PFC processing reflects the detec-
tion and integration of conflicts, such as pain, and
thus promotes accurate appraisal of the observed
context. This is particularly required when wit-
nessed responses fail to correspond to behaviors
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associated with noxious stimulation [112, 149].
In contrast, passive processing of straightforward
pain reactions may occur at an automatic level
without significant PFC activation [112]. Corre-
sponding to PFC involvement in more complex
encoding of pain observations, the medial PFC
has been specifically associated with the decod-
ing of facial pain expressions [26, 127, 193]. As
facial expressions convey less noxious informa-
tion than limbs in pain, greater cognitive evalu-
ation is required for pain assessments.
Accordingly, the PFC is proposed to subserve the
integration of affective pain information with
stored associations about social consequences of
the observed pain [26, 156, 169]. In line with
this, the PFC has been implicated in the analysis
of the internal states and predicted intentions of
other individuals [97, 102, 169]. More specifi-
cally, the mPFC has been associated with human
perspective-taking when imagining observed
pain from the first- or third-person perspective,
but not as an artificial object, as shown in Fig. 9
[98]. Therefore, the PFC may have the role to
complement neural pain mirroring with contex-
tual information to enable accurate response
formation. Notably, the precuneus, superior
temporal sulcus (STS) and cerebellum, which are
similarly associated with the ability to accurately
attribute internal states to others, have been
infrequently shown to respond during vicarious
pain (Fig. 3) [147, 161, 193]. Although this
tentatively suggests that these regions also con-
tribute to active understanding of the suffering
individual during pain observation, more con-
sistent findings are required to evaluate their role
in vicarious pain. Furthermore, higher functional
connectivity has been registered between dorso-
medial PFC and IFG during the complex vicar-
ious pain conditions. Given the role of the IFG in
perspective-taking and the retrieval of
pain-related memories [103], it is plausible that
the two regions work conjunctly to infer an
understanding of the current state of the indi-
vidual in pain [112].

Moreover, functional connectivity analyses
have revealed increased neural connectivity for
the PFC with the somatosensory cortices, CC and
INS, which may reflect top-down regulation of
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Fig. 9 mPFC activation
associated with
perspective-taking during
vicarious pain. a mPFC
activation when imaging
presented pain from
self-perspective compared to
object perspective. b mPFC
activation when imaging
presented pain from
other-perspective compared to
object perspective. ¢ mPFC
responses in the three
different conditions: self-pain (b)
as blue, other-pain as yellow
and artificial pain as red [98]

(@)

responses to vicarious pain [88, 205]. More
specifically, Cheng et al. [37] revealed that during
pain observation, participants who are accus-
tomed to seeing pain show greater PFC responses
and decreased activity in SI, SII, INS and CC
regions than controls (Fig. 10). Comparable to
self-pain literature, increased activation in the
PFC was associated with decreased emotional
reactivity and lower pain intensity ratings [9, 24,
29, 33, 75, 154, 195]. These results indicate that
the PFC exerts downregulatory control over
regions involved in the processing of sensory and
affective vicarious pain components.

Indeed, studies show that when cognitive
analysis of the context implies that individuals in
pain are to blame for the pain they are enduring
[66] or are unfair to others [180], INS and CC
activity is decreased and pain observers report
less empathy. Such top-down regulation may
occur at early pain processing stages [68]. Cru-
cially, the revealed functional connectivity pat-
terns between cognitive and sensory-affective
regions were specific to vicarious pain and vir-
tually absent during self-pain in the same indi-
viduals. While the role of such connectivities has
not been confirmed, this substantiates that
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although brain regions are shared with self-pain
processing, distinct neural communication may
make unique contributions to vicarious pain [76,
110, 185, 205]. Furthermore, such top-down
regulation may be a source of dysfunctional pain
and empathy expressions. Ochsner et al. [146]
advanced that the PFC encodes observed
knowledge related to pain and pain-appropriate
responses. In particular, increased activity in the
rostrolateral PFC during pain observation has
been associated with higher trait anxiety scores
(Fig. 11). Such increased neural response is
proposed to reflect increased encoding and
learning of environmental threat cues in anxious
populations, which may perpetuate dysfunctional
self-pain anxiety [32, 146, 152]. This lends itself
to future exploration of PFC substrates in mal-
adjusted pain and empathy behaviors. Taken
together, findings for PFC activation reinforce
the role of the PFC in contextual analysis and
top-down regulation during vicarious pain [2,
169]. However, as different PFC regions may
contribute distinct processes, research specific to
pain observation may reveal in which manner the
subsections of the PFC are involved [76, 117,
201]. Likewise, it has not yet been established
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Fig. 10 Neural activity for pain experts and controls
during vicarious pain through needles. a Non-experienced
controls showed INS, PAG, ACC and SMA activation
while experts showed IPL and mPFC activation. b Con-
trols showed higher pain intensity and unpleasantness

which neural patterns overlap with those during
self-pain, as suggested by the PAM, and which
activity is independent from neural mirroring
[155]; for a meta-analysis on mPFC contribution
to empathy, see [169].

6 Other-Oriented Empathy
and Self-oriented Withdrawal

The PAM proposes that shared neural represen-
tations of self- and other-pain evoke
other-oriented empathic understanding that initi-
ates altruistic behavior. Such behavior enhances
the protective benefits of social cooperation and
thus contributes to social survival. Nevertheless,
the inherent threat cues of observed pain may
instead induce emotional contagion and trigger
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ratings compared to experts. ¢ Compared to experts,
controls showed higher aINS activation only for needles,
but not for Q-Tips. Compared to controls, experts showed
higher mPFC activation during needles, but not for
Q-Tips [37]

self-oriented withdrawal responses. These facili-
tate physical survival. Nonetheless, research has
not only failed to tease apart the neural patterns
of these two distinct responses, but the factors
mediating which response is chosen also remain
unclear.

6.1 Motor Empathy and Motor

Preparation

In line with the PAM, motor mirroring during
vicarious pain may promote empathic response
[155, 156]. However, meta-analytic evidence
proposes that, similar to self-pain, the IPL, IFG,
motor cortices and aMCC motor zones are
actively involved in self-oriented pain predictions
as well as subsequent motor preparation and
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Correlations with FPQ and STAI Trait Scores

Fig. 11 Correlations between vicarious pain activity and
anxiety scores. Abbreviations: FPQ fear of pain ques-
tionnaire; STAI state-trait anxiety inventory; rlPFC
rostrolateral PFC. Higher rIPFC activity correlated with

coordination [40, 46, 47, 64, 77, 139, 173, 182].
Research advances that as IPL. motor mirroring
typically occurs to active movement, motionless
pain presentations require the IPL to derive
implied movement from the observed scene [34,
46]. For example when images of hands pene-
trated by needles are shown, the IPL may predict
the anticipated removal of the hand rather than
mirroring muscle cues [101]. Likewise, in line
with its involvement in serial motor prediction,
the SMA may predict the motor consequences of
observed pain [113, 163]. Csibra [54] proposes
that such predictions result from top-down anal-
ysis and are dynamically compared against the
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higher STALI scores during vicarious pain. No correlation
with FPQ during other-pain. Higher ACC activity corre-
lated with higher FPQ scores during self-pain. No effect
for STAI during self-pain [146]

concurrent pain context within the sensorimotor
regions in order to prepare motor responses such
as withdrawal. This explains findings indicating
that goal-directedness is necessary to elicit pre-
motor activity during vicarious pain as prepara-
tory actions are goal-oriented [99]. Thus
contrasting the PAM, instead of constituting the
first step in stimulus analysis through bottom-up
mirroring, sensorimotor activation during vicari-
ous pain may reflect top-down predictions sub-
sequent to higher cortical processing of the
observed pain [54, 111, 155]. Accordingly, sen-
sorimotor activity during vicarious pain may
contribute to prediction and preparation of
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withdrawal from presented threats instead of
facilitating empathy [111].

In favor of such a notion, the IPL. and aMCC
have been implicated in the priming of motor
reactions. For example, Morrison et al. [136]
displayed animations and required participants to
indicate via button press whether items struck or
missed hands. When noxious items struck hands,
participants showed increased reaction times and
increased aMCC  activity compared to
non-noxious items and noxious miss conditions.
It was concluded that voluntary movements were
facilitated when corresponding to withdrawal
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movements that have been triggered through
vicarious pain perception (Fig. 12) [21, 136,
193]. Such interference has been reported in
particular for body parts compared to faces,
indicating that greater sensorimotor relevance of
presented pain images elicits greater motor pre-
diction [191]. Notably, this contrasts studies that
have found the motor regions of the aMCC are
only responsive to self-pain [179].
Furthermore, increased IFG activation has
been reported in chronic pain patients who are
more expressive about their own pain and also

show increased vicarious pain responses.
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Fig. 12 Interaction between noxious items, hit or hiss
conditions and motor response. a /. MCC and PCC areas
of interaction associated with increased reaction times
during noxious-hit conditions. 2. Main effect of

noxiousness (yellow), main effect of motor response
(green), and interaction between noxiousness, motor
response and hit (red). b. Decreased reaction times in
milliseconds during noxious-hit conditions [136]
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Although this neural activity may underpin
greater receptiveness to the suffering of others
mediated through self-pain sensitivity [192],
alternative views propose that the overlap rep-
resents increased withdrawal urges in response to
the comparable threats of both self- and
other-pain. In line with this, IFG activity has
been associated with self-oriented distress reac-
tions to pain observation [111]. Such findings
advocate that the sensorimotor regions do not
facilitate empathy induction, but instead promote
self-oriented avoidance responses [62, 64]. Sub-
stantiating this, IFG, IPL and motor activity have
been seen in response to aversive stimuli, such as
fear-inducing weapon images, which do not
present motor cues yet trigger motor withdrawal
[60]. Furthermore, imagined motor movement
activates the premotor cortex and SMA in
absence of motor cues, indicating that this system
has functions beyond motor mirroring [118]. In
line with this, SMA activity during vicarious pain
has been associated with self-directed emotional
distress, which may reflect greater motor prepa-
ration in response to resulting self-oriented
withdrawal urges [108]. Nonetheless, Preston
[155] counters that motor imagination requires an
internal representation of the anticipated move-
ment and thus utilizes similar mirroring struc-
tures as direct observation. Moreover, Avenanti
et al. [5] highlight that not all motor inhibition in
response to vicarious pain subserves self-oriented
withdrawal responses [114, 190]. Research has
shown that motor retraction reflexes to self-pain
result in nonspecific suppression of all muscles in
the concerned limb [79, 126]. In contrast, vicar-
ious pain motor inhibition is specific to the exact
muscle underlying the observed stimulation,
corroborating its direct mirroring function. Such
motor inhibition was associated with increased
self-rated empathy and, in contrast, negatively
correlated with personal distress. This indicates
that motor inhibition reflecting bottom-up mir-
roring takes place during pain observation and
may provide a platform for empathic under-
standing [5, 6]. Nonetheless, it does not exclude
the possibility of concurrent top-down motor
predictions within IPL, IFG and motor cortices,
which facilitate self-oriented withdrawal.
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Notably, sensorimotor  bottom-up  and
top-down processing may work in conjunction.
Functional connectivity analyses have revealed
that sensory pain ratings were associated with
increased neural synchronization between the
thalamus, SI and the motor cortices during pain
observation [15, 143]. Moreover, Carr et al. [31]
report that the IFG receives somatosensory
information from the IPL upon which it encodes
the goal of the observed act. Research advances
that such circuits may present reciprocal feed-
back loops by which sensory and motor cues
mutually contribute to context-appropriate pain
responses. In line with this, increased sensory
signaling in self-pain has been attenuated by
motor cortical stimulation resulting in a
decreased pain report [19, 20, 115, 150, 187].
Likewise, similar to self-pain, increased con-
nectivity between the aMCC motor zones and
motor cortical regions during vicarious pain
implicates aMCC motor zones in preparing
withdrawal responses through projections to
motor cortices [93, 138]. The aMCC regions for
pain and motor processing have been found to lie
adjacent and interact, potentially providing a
direct feedback loop for motor and pain analysis
[136]. Therefore, recorded sensorimotor activa-
tion during vicarious pain may reflect both initial
motor mirroring and subsequent preparatory
responses based on sensory and motor feedback
[41, 105]. However, no confident conclusions
can be drawn without further systematic inves-
tigations that pinpoint the neural pathways of
these distinct functions [17, 99, 110, 111, 118,
163]. While initial motor activation may con-
tribute to action understanding via direct mir-
roring of perceived motor cues within the motor
regions [158, 160], feedback from higher cortical
structures are likely to contribute to subsequent
top-down action predictions and motor prepara-
tion [54, 119, 200].

6.2 Sensory Empathy and Sensory
Preparation

Contrasting the sensory mirroring of the PAM,
Morrison et al. [137] suggest that SI and SII are
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involved in integrating sensory information with
action during pain observation in order to predict
the sensory consequences of observed pain.
Thus, rather than inducing empathy, SI and SII
activity may be a product of higher cortical
output that evokes self-oriented avoidance
behaviors [54]. Such notion is supported by
self-pain research that shows high SI suscepti-
bility to top-down regulation; however, it has not
been explored for vicarious pain [30, 184].
Notably, SI and SII activations have been linked
to the bias of falsely reporting self-experienced
tactile stimulation subsequent to observing pain
in others [137]. Likewise, Valeriani et al. [194]
found that participants that were concurrently
subjected to self-pain while observing pain in
others demonstrated increased self-pain ratings.
The PAM suggests that such hypersensitivity to
tactile threat is triggered when individuals eval-
uate noxious stimuli via their own sensory neu-
rons. However, alternative views suggest that it
results from top-down somatosensory threat
predictions and facilitates both increased vigi-
lance and withdrawal from external hazards [14,
74, 111, 137, 155]. Interestingly, somatosensory
activity during pain observation also increased
when limbs in pain were presented in the context
of happy and pain faces compared to neutral
faces. Such affective faces may increase arousal,
which impacts top-down pain analysis and can
lead to increased projections of threatening pain
predictions to SI and SII [90]. Crucially,
increased tactile hypersensitivity during vicari-
ous pain is associated with withdrawal responses
rather than empathic, altruistic behaviors [63].
Nonetheless, somatosensory activity in response
to observing limbs in painful compared to
non-painful scenarios has been associated with
increased self-rated empathic abilities [38].
Accordingly, while SI and SII may underpin
threat predictions and evoke self-oriented
avoidance responses during vicarious pain, both
regions also show involvement in other-oriented
empathy. Future investigation may disentangle
the activations corresponding to distinct
bottom-up or top-down processing, instigating
empathy or withdrawal.
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6.3 Empathic Distress and Personal
Distress

aINS, ACC and amygdala involvement in affec-
tive processing is well-established, and it is par-
ticularly challenging to tease apart which neural
patterns underpin other-oriented empathy as
opposed to self-oriented affective distress during
vicarious pain. More specifically, aINS activity
has been associated with both higher
self-reported empathy and increased intensity
ratings of observed pain [95, 163, 179, 193].
Research advances that the interoceptive func-
tions of the aINS may be the mechanism by
which the state of the person suffering pain is
mapped onto the own state, intrinsically trigger-
ing empathic understanding [31, 89, 177]. In line
with this, Hein et al. [91] found increased aINS
activity during pain observation to correlate with
empathic concern and, more importantly, predict
helpful behavior. No association was found for
aINS activity and self-oriented distress, support-
ing its role in other-oriented empathy. This sug-
gests that greater responsiveness of this brain
region may be a predictor of greater empathic
response. Clinical findings for patients with
congenital insensitivity to pain further support
such a notion. This disorder is characterized by
the inability to experience pain, and, thus patients
cannot use sensory and affective pain mirroring
to evaluate the pain experienced by another
individual [57]. Alternatively, during vicarious
pain the revealed aMCC and aINS activation in
those individuals is more likely to reflect an
empathic understanding of emotionally aversive
events. However, as the stage at which deficits in
congenital pain sensitivity originate is unclear, a
form of pain mirroring may remain effective.
Further research is required to gain a compre-
hensive understanding of these mechanisms
[140]. Moreover, these findings do not exclude
that the aINS also encodes self-oriented distress
responses to observed pain [111]. The INS has
been associated with increased emotional
responses to self-pain, and, similarly activity
during vicarious pain may reflect increased
emotional distress [69, 107, 168]. Indeed,
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research has reported correlations between aINS
activity and self-rated negative affect during pain
observation, in particular when emotional
attachment to the individual in pain is high [36,
179]. Likewise, Akitsuki and Decety [1]
demonstrated a positive correlation between
activity in the left aINS and emotional contagion.
This was associated with motor preparation,
implicating the aINS in a self-oriented distress
response that instigates withdrawal. Furthermore,
compassion training, which involves the regula-
tion of self-experienced affect during empathic
response failed to elicit aINS activation, sup-
porting a role of this region in coding personal
distress responses [106]. Thus, inconsistent
findings prevent firm conclusions on whether
aINS activity during vicarious pain reflects
other-oriented empathy or self-oriented distress.
Notably, Lamm et al. [108] suggest that the role
of such activity is modulated by the perspective
from which the observed pain is imagined.
First-person perspectives may thus elicit personal
distress while third-person perspectives elicit
empathic understanding, both of which are
mediated by the aINS. Furthermore, the aINS
may moderate the separation of self- and
other-affect during pain observation rather than
underpinning one or the other [77].

Moreover, research suggests that the amyg-
dala can differentiate other-oriented empathy
from self-oriented distress during pain observa-
tion in its function in fear processing [176].
Akitsuki and Decety [1] revealed higher amyg-
dala activation when individuals viewed images
of limbs on which pain was inflicted intention-
ally, in particular when imagining the pain from a
first-person perspective [1, 108]. As the threat
value of such stimuli is high, this supports a role
of the amygdala in threat detection. Substantiat-
ing this, comparisons between self- and vicarious
pain have found amygdala activation specific to
other-pain, independent of the perspective used
to imagine the observed pain. These results
indicate that observing the administration of
noxious stimuli to other individuals arouses the
threat detection system even when individuals do
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not fear the pain itself (Fig. 13) [146]. Accord-
ingly, the danger cues of observed pain may
activate a self-oriented fear response that evokes
withdrawal behaviors [1, 142].

Interestingly, the amygdala shows such fear
processing specifically to male but not to female
pain expressions. This indicates that while male
pain may be interpreted as self-directed risk,
female pain may activate other-oriented empathic
responses [176]. Furthermore, functional con-
nectivity analyses indicate that the amygdala may
project fear information to both the somatosen-
sory cortices and the aINS, potentially con-
tributing to somatosensory predictions and
affective appraisal of the observed pain [176]. In
turn, the aINS projects information to the ACC
for further processing and response selection
[89]. Notably, the ACC has been associated with
increased personal distress responses during
vicarious pain. In line with this, activation in this
brain region decreases when pain stimulation is
presented in the context of several affective facial
expressions. Increasing levels of affective infor-
mation should increase ACC activity that
underpins empathy as this information con-
tributes to a more comprehensive emotional
appraisal of the pain observation. Thus, the
decrease may instead correspond to the decrease
in self-oriented affective processing of vicarious
pain due to the distraction value of the presented
faces [90]. Taken together, there is evidence for
an involvement of the aINS, amygdala and CC in
other-oriented empathy and self-oriented distress
processing during observed pain. In particular,
the INS may underpin empathy [31, 91, 95],
while the amygdala and CC may subserve per-
sonal distress [1, 176]. Nonetheless, future
research needs to pinpoint exact neural patterns
for firm conclusions to be drawn. Exploring
amygdala activity during vicarious pain may be
especially fruitful due to its well-known con-
nection to fear. While fear can be other-oriented,
its  strong  evolutionary  connection  to
self-oriented survival makes it likely to underpin
personal  affective  distress during pain
observation.
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7 An Integrative Model of Vicarious
Pain and Research Gaps

Available literature has demonstrated the
involvement of sensorimotor, affective and cog-
nitive processing regions in pain observation.
Notably, the PAM offers essential theoretical
insight into the mechanisms of vicarious pain and
empathy. Nonetheless, the inclusion of distinct
neural activations, empathy and withdrawal
responses in such a theoretical framework may
provide a more comprehensive account of vicar-
ious pain processing. Such an integrative model
of vicarious pain, as displayed in Fig. 14, can also

visualize current research gaps that provide a
podium for future scientific investigation.

Brain activation during vicarious pain may
underpin stimulus and response processing. At
the stimulus processing level, the PAM suggests
that overlapping brain activation during self- and
other-pain reflects sensorimotor and affective
bottom-up pain mirroring that stimulates associ-
ations relevant for stimulus appraisal [155-157].
Extending this, such activation may also under-
pin top-down predictions about the observed
pain, which are compared against the concurrent
context and guide behavioral responses [54,
200]. Notably, the revealed bottom-up and
top-down pain processing may form a feedback
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Fig. 14 Integrative model of vicarious pain. Vicarious
pain is processed at stimulus level, including shared and
distinct neural activations underpinning bottom-up and
top-down processing of the observed pain. Two response

loop. Accordingly, two distinct, yet interactive,
mechanisms may be subserved by shared neural
pain representations. More specifically, initial
bottom-up pain processing may direct which
top-down analysis is conducted. Subsequently,
top-down predictions and corresponding motor
preparation may be adjusted according to feed-
back from context comparisons [111]. Likewise,
distinct brain activations during vicarious pain
are indicated to contribute to both bottom-up
processing as well as cognitive analysis and
top-down regulation of responses to pain obser-
vation [77, 112, 188]. In particular, the qualita-
tive differences between self-experienced and
observed pain may be reflected in unique
bottom-up neural pathways for each pain expe-
rience. Furthermore, complex pain contexts may
be decoded in distinct neural patterns to enable
individuals to adjust the representation conveyed
in bottom-up neural mirroring according to sup-
plementary cognitive information. Thus, shared
and distinct neural representations of vicarious
pain may have similar interactions within
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options may result, including empathy and distress. All
four concepts may interact, but further research is needed
to elucidate such notion

bottom-up and top-down processing as well as
with one another. Such dynamic feedback sys-
tems are reflected in increased functional con-
nectivities between corresponding brain regions;
however, they have not yet been systematically
tested [15, 143, 205]. While such interactions are
a novel theoretical extension of the PAM for
vicarious pain, these have been established in
other fields, such as visual perception. In partic-
ular, bottom-up processing has been found to
impact higher cortical activity, and top-down
processing can shape the bottom-up perception
of stimuli [10, 124]. Accordingly, it is likely to
take effect in vicarious pain experiences and
contribute to the evaluation of observed pain.
Nonetheless, while there is evidence of an
overlap in activation in the mirror neuron system
and regions of the self-pain matrix during pain
observation, the exact neural correlates have not
yet been identified. Therefore, the extent to
which neural correlates are shared or distinct is
subject to further verification. Similarly, neural
substrates of bottom-up and top-down pain
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processing have not yet been teased apart, thus
making it challenging to investigate their inter-
actions [77, 105, 110, 111].

At the response processing level, brain acti-
vation during vicarious pain may subserve
other-oriented empathic understanding and
altruistic behaviors [157] or self-oriented distress
and withdrawal behaviors [36, 136, 176, 191].
However, the neural correlates of these two dis-
tinct response options have not been directly
compared, and, thus no firm conclusions can be
drawn. Moreover, research has shown that at
early processing stages, individuals show greater
neural responses and empathic responding to
individuals with whom they can identify and feel
positively about [66, 180]. In line with this,
habituated empathic or distress responses may
shape early neural processing of the observed
pain, reinforcing neural pathways that may be
dysfunctional [7]. Nonetheless, the factors
mediating whether empathy or withdrawal is
induced remain largely under-researched. Like-
wise, it is unclear whether these responses are
evoked subsequent to the stimulus processing of
pain observation or occur concurrently [111].
Concurrent stimulus and response processing of
vicarious pain may contribute to remarkably
complex feedback interactions. Elucidating the
manner in which these responses are formed is
the first step in understanding and tackling
habitual dysfunctional empathy or avoidance
behaviors [71]. Moreover, uncovering the inter-
actions within and between stimulus and
response processing levels is likely to contribute
to a comprehensive concept of vicarious pain.

In order to shed light on the neural correlates
of pain observation and their functions, behav-
ioral and neuroimaging methods may be com-
bined. Notably, as the roles of the different brain
regions involved are not reliably confirmed for
self-pain, revealing identical neural patterns for
self- and other-pain may not enable research to
derive their corresponding functions [93, 185,
186]. Accordingly, systematic and
well-controlled paradigms may engender more
robust findings. Furthermore, regions of interest
analyses may be extended beyond the mirror and
pain system. For example, the amygdala
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responds to aversive events such as facial pain
expressions [31]. However, this region remains
largely untouched by vicarious pain research.
Pinpointing neural patterns that underlie pain
observation is challenging as present neu-
roimaging tools are subject to coarse spatial
resolution and individual brain differences can
further decrease accuracy [105, 112, 113].
Likewise, these techniques may fail to detect
weak levels of activation, and therefore activity
in other regions cannot be confidently excluded.
Ideally, single-cell recording could confirm both
identical and distinct neural activation, but this is
subject to immense practical and ethical restric-
tions [92]. Nonetheless, improvements in ana-
lytical methodology may minimize the impact of
equipment issues. For example, MPVA has
proven useful for detailed neural explorations
and is likely to contribute to teasing apart brain
responses to stimulus and response processing of
vicarious pain [48]. Moreover, functional con-
nectivity analysis as well as EEG, MEG and
TMS may collectively contribute to an under-
standing of neural communication during pain
observation. In particular, these methods can
establish temporal processing sequences and
elucidate the directions of such communication.
Such methods may shed light on the extent and
effects of shared and distinct neural activity and
interaction as well as elucidate the neural corre-
lates of empathic and withdrawal responses.
Notably, although systematic paradigms are
robust in identifying correlational and causal
relationships, they struggle with ecological
validity. Thus, findings from artificial laboratory
settings may not be directly transferred to the
complexity of vicarious pain in the natural
environment. Nevertheless, a deeper under-
standing of the various aspects of vicarious pain
will provide a solid basis in which more complex
paradigms can be confidently rooted [204].

8 C(Clinical Relevance

Elucidating the neural underpinnings of vicari-
ous pain and empathic or withdrawal responses
is of significant relevance for the detection and
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management of clinical issues that are charac-
terized by dysfunctional pain or empathy
behaviors. Structural and functional brain
abnormalities have been associated with em-
pathic deficits in clinical disorders [35, 57, 58,
129, 133, 181]. For example, Cummins et al.
[55] provided behavioral evidence for a link
between motor coordination difficulties and
decreased emotion recognition in others. As
abnormal motor processing may be associated
with defective mirror neuron systems, blunted
empathy may result from inadequate motor
mirroring that fails to engage evaluative asso-
ciations. Indeed, motor disorders have been
associated with decreased gray matter volume in
the IFG [35]. Likewise, individuals with
developmental and psychotic disorders, such as
autism and schizophrenia, have consistently
shown abnormal motor inhibition during action
observation as well as decreased empathic
abilities. This substantiates that dysfunctional
mirroring contributes to empathic deficits [123,
129, 144]. Furthermore, abnormal aINS, aMCC
and PFC functioning has been associated with
decreased empathic understanding concurrent
with deficits in attentional control in ADHD
[189], negativity biases in depression [56, 167]
and antisocial conduct [181]. Accordingly,
processing deficits in affective—cognitive sub-
strates of vicarious pain, empathy and with-
drawal may underpin dysfunctional behaviors.
While clinical research has focused on empathy
toward facial emotional expressions, investigat-
ing potential interactions between pain and
empathic understanding may provide novel
intervention targets for dysfunctions in either
domain. For example, based on shared neural
representations between self- and other-pain,
self-pain treatments may fine-tune the neural
pain mirroring system and thus have spillover
effects on increasing empathic understanding
[52]. Notably, social and physical pain have
been shown to share neural correlates during
vicarious processing. Given the strong associa-
tion between empathic deficits and social
rejection, research may further uncover factors
that perpetuate such cycles [95]. Identifying
neural and behavioral sources of dysfunctional
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empathic behaviors may enable better manage-
ment of such deficits which can increase the
quality of life for many individuals suffering
from clinical disorders. Moreover, such identi-
fication contributes to improved health care. As
accurate empathic awareness has been found to
increase diagnosis accuracy, enhanced empathic
skills may facilitate both enriched treatment and
patient-clinician relationships [11]. In line with
this, training programs teaching self-regulation
of affect during empathic understanding have
been successful. Individuals reported lower
self-oriented distress during pain observation,
but displayed greater other-oriented altruistic
behaviors than individuals without this training.
As such, emotion regulation and compassion
may be useful for enhancing context-appropriate
responses [106]. Crucially, not only can the
clinical realm benefit from establishing neu-
roimaging correlates of vicarious pain and
empathy, but vice versa, clinical research can
contribute to this by revealing dysfunctional
activity associated with deficits. Such studies
can confirm functional speculations derived
from healthy populations.

9 Conclusion

Current vicarious pain research provides tenta-
tive evidence for shared and distinct neural rep-
resentations of self- and other-pain. Nevertheless,
the neural substrates of vicarious pain experi-
ences are subject to confirmation in further sys-
tematic paradigms. These should combine
neuroimaging and behavioral methodology to
investigate brain responses and their corre-
sponding functions during pain observation.
Extending the PAM, an integrative model of
vicarious pain is recommended as a platform for
future comprehensive scientific inquiry.
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