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Abstract In this work, we address the problem of human skeleton estimation when

multiple depth cameras are available. We propose a system that takes advantage of

the knowledge of the camera poses to create a collaborative virtual depth image of the

person in the scene which consists of points from all the cameras and that represents

the person in a frontal pose. This depth image is fed as input to the open-source

body part detector in the Point Cloud Library. A further contribution of this work is

the improvement of this detector obtained by introducing two new components: as a

pre-processing, a people detector is applied to remove the background from the depth

map before estimating the skeleton, while an alpha-beta tracking is added as a post-

processing step for filtering the obtained joint positions over time. The overall system

has been proven to effectively improve the skeleton estimation on two sequences of

people in different poses acquired from two first-generation Microsoft Kinect.
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1 Introduction

The capability to segment the body parts or, more generally, to estimate a skeleton of

a person in an unsupervised way is fundamental for many applications: from health-

care to ambient assisted living, from surveillance to action-recognition and people

re-identification. The introduction of affordable RGB-D cameras as the Microsoft

Kinect, has given a boost to the research in this area and many marker-less skeleton

estimation algorithms were born, as Shotton’s human pose recognition [1] and Buys’

body pose detection [2]. However, all these systems perform better when the subject

is seen frontally with respect to the depth camera, mainly because most of the train-

ing examples they were trained with referred to this pose. In this work, we want to

overcome this problem when multiple cameras are available, thus generating a vir-

tual depth image of the subject warped in frontal view after having fused the depth

information coming from the cameras. Moreover, we propose an improvement to

Buys’ body pose detector [2], here used for skeleton estimation, by adding a prelim-

inary people detection phase for background removal and performing an alpha-beta

tracking on the final skeleton joints. The system has been tested on sequences of

two freely moving persons imaged by a network composed of two first-generation

Microsoft Kinect sensors. Summarizing, the contribution of this work is two-fold:

∙ We introduce a novel multi-view method to estimate the skeleton of a person based

on the fusion of the 3D information coming from all the sensors in the network

and a subsequent warping to a frontal pose;

∙ We improve the body pose detector in [2] by removing background points from

the input depth image with a people detection phase and by adding a joint tracking

filter to the output of the detector.

The remainder of the paper is organized as follows: Sect. 2, reviews the state-of-

the-art of both single-camera and multi-camera skeleton tracking algorithms, while

Sect. 3 gives an overview of our system. In Sect. 4, we describe the multi-view data

fusion part of our system, while in Sect. 5 we describe the skeleton estimation algo-

rithm we used and how we improved it. Finally, Sect. 6 details the experiments we

performed and the results we achieved and in Sect. 7 conclusions are drawn.

2 Related Work

The skeleton of a person gives important cues on what the person is doing (action-

recognition) [3, 4], who is the person viewed (people re-identification) [5–7], what

are her intentions (surveillance) [8] and how are her health conditions (health-care)

[9]. Furthermore, the wide literature on people tracking [10–12] demonstrates its

usefulness for both security applications and human-robot interaction. One of the

most important works on skeleton tracking is the one by Shotton et al. [1], which

trains a random forest to recognize the body parts of a person with a huge train-
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ing dataset composed of real and synthetic depth images of people. The classifier,

licensed by Microsoft for entertainment applications, achieves good performance

and works in real-time. The system is released within the Microsoft Kinect SDK

and only works with Windows-based computers. Another work released as open-

source within the Point Cloud Library [13] is the work of Buys et al. [2], which uses

an approach similar to Shotton’s. In our work, we use this latter body-part detector,

that we also improved by adding a people detection pre-processing phase and an

alpha-beta tracking algorithm.

Intelligent surveillance systems rely more and more on camera network cooper-

ation. Indeed, more cameras are able to cover more space and from multiple views,

obtaining better 3D shapes of the subject and decreasing the probability of occlu-

sions. Recent works relies on camera collaboration in network to enhance skeletal

estimation. In [14], the skeleton obtained by single RGB images is fused with the

skeleton estimated from a 3D model composed with the visual hull technique. The

visual hull is used for refining the pose obtained from the single images. In [15], a

skeleton is computed for every camera from a single image and then these estimated

are projected to 3D and intersected in space. The work by Gao et al. [16] addresses

this problem by registering a 3D model to the scanned point cloud obtained by two

Kinects. This work is very accurate but unfeasible for real-time purposes given the

6 seconds needed to process each frame. The work of Yeung et al. [17] proposes a

solution to the same problem with two Kinects that can be used in real-time. In par-

ticular, they uses two orthogonal Kinects and fuse the skeletons obtained from the

Microsoft SDK with a constrained optimized framework.

In this work we exploit the multi-view information at the depth level, leaving the

skeleton estimation as the last part of the pipeline. In this way, we are able to obtain

better skeletons also when the single ones are potentially noisy or when they have

some not tracked joints. Moreover, we minimize the skeleton estimation error by

warping the fused data to a frontal view, given that the skeleton estimation is best

performed from frontally viewed persons.

3 System Overview

Figure 1 provides an overview of our system. In this work, a network composed of

two first-generation Microsoft Kinect is considered, but the extension to a higher

number of cameras is straightforward. At each new frame, the Kinects compute the

3D point cloud of the scene and the people detector segments only the points belong-

ing to the persons in the scene. Afterwards, we transform the point clouds to a com-

mon reference frame given that the network is calibrated and we fuse the point cloud

data after performing a fine registration with the Iterative Closest Point (ICP) algo-

rithm [18]. The multi-view cloud obtained is then rotated and reprojected to a virtual

image plane so as to generate a depth map of the persons seen from a frontal view.

Then, body parts detection is performed on this virtual depth map and the joint posi-

tion is computed from the body segmentation and tracked with an alpha-beta tracking
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Fig. 1 Overview of the proposed system

filter. The obtained skeleton can then be reprojected to either of the original images.

In Sects. 4 and 5, we will better review each step of the proposed method.

4 Multi-view Data Fusion

State-of-the-art body part detectors [1, 2] perform poorly in presence of occlusions.

This case often occurs when a person is side-viewed by a camera, and having more

cameras in the scene does not ensure that one of them sees the person completely. For

this reason, our system exploits the perception network to perform data fusion and

frontal view generation in order to provide to the body part detector a more complete

depth image of the person in the scene, thus improving the final performance.

4.1 People Detection for Background Removal

The body part detector in [2] poorly estimates the lower body parts of a person when

the ground plane is visible under the feet of the person or when the person is too

close to the background. To overcome this problem, we added a people detection

phase as a preprocessing for background removal. In this way, we build a new depth

image where all the background points are set to a big depth value (e.g. 10 m), so that
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the Random Forest in [2] can easily discard them from belonging to the foreground

person. As for the people detector, we exploit the RGB-D people detection in [10,

11], that is publicly available in the Point Cloud Library and allows to robustly detect

people and provide the point cloud points belonging to them. Then, these 3D points

are reprojected to 2D to create a masked image which can be used instead of the

entire depth image, improving the output of the original body part detector.

4.2 Point Cloud Fusion

The information coming from multiple cameras is here exploited at the depth level,

fusing the point clouds by means of the Iterative Closest Point algorithm. In particu-

lar, considering the network of two cameras C0,C1 we used for the experiments, we

first obtain the segmented point clouds 𝑃0, 𝑃1 by means of the people detector and

then, given the extrinsic parameters of the network, we refer these point clouds to a

common world reference frame. After this transformation, the resulting point clouds

𝑃

𝑤

1

and Pw
0 are finely registered by means of an ICP algorithm in order to account

for depth estimation errors intrinsic of the sensors [19] or possible inaccuracies in

the extrinsic calibration of the network. In formulas, we obtain the point clouds:

𝑃

𝑤

0

= 𝔗w
0 (𝑃0

) (1)

𝑃

𝑤

1

= 𝔗w
1 (𝑃1

) (2)

Pw
total = 𝑃

𝑤

0

⊕𝔗ICP(𝑃𝑤

1

) (3)

where, 𝔗j
i represents the transformation from the i reference frame to the j reference

frame and 𝔗ICP is the transformation obtained by performing ICP with the point

cloud 𝑃

𝑤

0

as the target cloud and the 𝑃
𝑤

1

as the source cloud. In Fig. 2, an example of

this process is shown. In order to lower the time to compute 𝔗ICP, we calculate this

transformation by using two downsampled versions of Pw
0 and Pw

1 and by limiting to

30 the number of iterations.

4.3 Frontal View Generation

The best skeleton estimation comes from frontal-viewed persons. For this reason,

we want to warp the total point cloud 𝑃

𝑤

𝑡𝑜𝑡𝑎𝑙

obtained at Sect. 4.2 to be frontal with

respect to the camera we chose as a reference, here C0. In order to obtain this result,

as shown in Fig. 3, we project the points of Pw
total to the ground, that is the xOy plane

of the world reference frame, thus obtaining a 2D shape that usually resembles an

ellipsoid O of points. We then calculate the principal components [20] of O in order

to find a vector v̂ with the same direction of the major axis of O, that is then used to

rototranslate the original Pw
total with M:
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Fig. 2 An example of the depth data fusion process. In a the point cloud obtained from the C1
camera, in b the point cloud obtained from the C0 camera and in c the final fused cloud

Pw
total

Z X

Y

v̂

θ

Fig. 3 The frontal view generation phase. On the left there are the reference system of our Kinects

and the common world reference system, the collaborative cloud obtained with ICP after the people

detection phase and the same cloud projected on the xy plane of the world reference frame (visible

in red). On the right is shown a top-view of the world reference frame, the vector representing the

principal component v̂ and the angle 𝜃 which is used for the frontal view warping. Best viewed in

color

M =
⎡
⎢
⎢
⎢
⎣

R T

03×1 1

⎤
⎥
⎥
⎥
⎦

(4)

where R is the rotation matrix which rotates a cloud of 𝜃 around the world z-axis and

T the translation to bring the final point cloud to be centered on the world reference
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frame. In order to compute R, we need to compute 𝜃, which is the angle between v̂
and ux = (1, 0, 0). In formulas, we have:

𝜃 = arccos
(

v̂ ⋅ ux
|̂v||ux|

)

(5)

R =
⎛
⎜
⎜
⎝

cos𝜃 sin𝜃 0
−sin𝜃 cos𝜃 0
0 0 1

⎞
⎟
⎟
⎠

(6)

T = −
⎛
⎜
⎜
⎝

kx
ky
0

⎞
⎟
⎟
⎠

, K = (kx, ky, kz) =
∑|𝑃𝑤

𝑡𝑜𝑡𝑎𝑙

|

i=0 Pw
total(i)

|Pw
total|

(7)

where K is the centroid of the total point cloud before the rototranslation. We can

now obtain the desired frontal-view point cloud as:

𝑃

𝑤

𝑓𝑣

= {p = (xp, yp, zp)T | ∃q ∈ 𝑃

𝑤

𝑡𝑜𝑡𝑎𝑙

, p = Mq} (8)

5 Body Skeleton Estimation

In this work, we use the algorithm in [2] to perform body part detection that is open

source and available in the Point Cloud Library. This detector takes as input a depth

image, that is then classified by a Random Forest. For this reason, the multi-view

and frontal point cloud 𝑃

𝑤

𝑓𝑣

obtained in Sect. 4.3 has to be projected to 2D in order to

create a virtual depth-imageDvirtual that could be processed by the body part detector.

5.1 Virtual Depth Image Generation

In this work, the virtual depth image Dvirtual is estimated by projecting the points in

𝑃

𝑤

𝑓𝑣

to the image plane of the C0 camera, that has been taken as a reference. However,

this process often leaves some holes in the generated image. We thus implemented a

hole-filling procedure that fills the holes with the nearest valid points until a threshold

distance. In formulas:

Dvirtual = {dij = (i, j) ∈ ℕ2|i ∈ (0, 480), j ∈ (0, 640)} (9)

dij =
⎧
⎪
⎨
⎪
⎩

P0
fv(i, j), (i, j) provides a valid point in P0

fv
P0
fv(i, j), (i, j) = argmin{||(i, j) − ( ̂i, j)|| < t|P0

fv( ̂i, j) is valid}
10000, otherwise

(10)
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Fig. 4 On the left, the

resultant point cloud

re-projection to the image

plane of the reference

camera. On the right, the

re-projection after the

hole-filling procedure

In Fig. 4, a comparison of a sample image with and without the hole-filling pro-

cedure is shown. This hole-filled depth map is then provided as input of the body

part detector.

5.2 Joint Estimation

The body part detector [2] assigns one of the 24 labels defined at training time to

each pixel of the depth map and calculates the blobs of the coherent voxels with the

same label.

From this preliminary segmentation, we then compute the positions of the skele-

ton joints in two steps. At first, we address the problem of the possibility of a sin-

gle label being assigned to multiple coherent groups of voxels. This issue can be

solved by combining the coherent voxel groups into a single blob or sorting them by

their size with the largest one being selected for the joint calculation. Although the

results of these simple methods were satisfying, the body part positions were impre-

cise in certain cases, especially as it comes to the smaller body parts such as hands

and elbows. An improvement was achieved by building an optimal tree of the body

parts, starting from the Neck as the root blob and further recursively estimating the

child-blobs. This method is based on a pre-defined skeleton structure, which settles

whether two body parts are connected as well as certain constraints regarding the

expected size of the limbs.
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In the second phase, the 3-D position of the joint is calculated from the selected

blob. In most cases, the 3D centroid of the corresponding blob point cloud provides

a good estimate for the joint position. An exception to this is the Hip blob, which

also contains a large part of the torso. Besides, the Shoulder and Elbow joints are

special cases which are described below.

Shoulders The shoulder position is calculated from the corresponding chest blob.

Inside the blob point cloud, we estimate the voxel Vy_max with the maximum Y-

value. We further build a sub-group of voxels belonging to the chest blob and having

the distance to the Vy_max below a certain threshold (10 cm) and use the centroid of

this sub-blob as the final position.

Elbows If the elbow blob was detected, we use the normal approach calculating

the centroid of the blob. Otherwise, we estimate the point inside the arm blob, which

has the longest distance from the previously estimated Shoulder joint.

Hips We define a certain threshold and build a sub-group of voxels belonging to

the lower part of the hip blob. The centroid of this sub-group is used as the result

position.

5.3 Joint Tracking over Time

The Alpha-Beta filter detailed in Algorithm 1 was implemented on top of the stan-

dard joint calculation to assure a consistent and continuous motion over time. This

deterministic approach estimates the new position based on the predicted and mea-

sured position, with the weight of the measured position given by the parameter 𝛼,

while 𝛽 shows the weight of the velocity update.

Careful tuning of the 𝛼 and 𝛽 parameters is necessary to achieve the best results.

Additionally, we have modified the update parameters for the hand joints, which

usually have higher velocities then other body parts.

Algorithm 1 Applying the Alpha-Beta filter for joint tracking at a timestep t
1: Input: Xm = [Xm1,… ,Xmn] - measured values of m body joints; Xp = [Xp1,… ,Xpn] - previ-

ous values of m body joints; V = [V1,… ,Vn] - velocities of the body joints

Output: X = [X1,… ,Xn] - estimated joint positions; V = [V1,… ,Vn] - updated velocities

For each body joint k in {1, n}:

2: Calculate the predicted position: Xk = Xpk + Vk ∗ dt
3: Difference between measured and predicted: Rk = Xmk − Xk
4: New joint position value: Xk = Xk + 𝛼 ∗ Rk
5: New joint velocity value: Vk = Vk + (𝛽 ∗ Rk)∕dt
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6 Experiments

We tested the different steps of the proposed approach with two series of RGB-D

frames recorded from a network of two first-generation Microsoft Kinect. In these

sequences, two different freely-moving persons were performing different move-

ments. For measuring the accuracy, we considered the following skeleton estimation

error:

𝜖 =

∑
frames

∑
joints ||posestim−posactual||

Njoints

Nframes
(11)

where the ground truth for joint position posactual has been manually annotated. The

system used for testing the methods proposed is an Ubuntu 14.04 machine with an

Intel core i7-4770 CPU and a NVidia Geforce GTX 670 GPU. In Table 1, we reported

a quantitative comparison of skeleton estimation with our methods and the original

one in terms of (11). In this table, we report also a baseline multi-view approach

at the skeleton level in which each fused skeleton ̂S is the average of the single-

view skeletons S0 and S1. While the original method [2] is independent from the

background for the body pose estimation, the joint estimation algorithm is not and

this cause the large 𝜖 obtained in our tests. Adding a people detection step, thus

improve exponentially the performance gained by the joint estimator and our joint-

tracking filter maintains the performance while smoothing the joints estimated. Our

novel multi-view approach outperforms both the single-view skeleton estimation and

the baseline multi-view method we used. The results achieved are from 20 to 33 %

better than the single ones and up to 24 % better than the baseline skeleton-based

multi-view approach. Furthermore, the computational burden needed for computing

a skeleton is around 100 ms (60 ms for computing the virtual depth image plus 40

ms for the PCL skeleton computation) allowing the real-time usage of the proposed

approach. In Fig. 5, we reported a qualitative comparison of skeleton estimation with

these techniques.

Table 1 The performance achieved by the original method [2] and our method. PD stands for

people detection and JT for joint tracking

First person Second person

[2] 97.82 139.50

Ours single-view with PD 34.35 35.01

Ours single-view with PD and JT 34.50 35.35

Baseline multi-view at the skeleton level 30.50 29.65

Proposed multi-view approach at the
depth level

23.26 28.22
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Fig. 5 Some sample frames of the dataset we used for testing the proposed approach. Each row

represents a frame. The different columns represent: a [2] on the C0 stream; b ours with PD and JT

on the C0 stream; c ours with PD and JT on the C1 stream; d our multi-view approach re-projected

on the C0 camera

7 Conclusions

In this work, we addressed the problem of human skeleton estimation and tracking

in camera networks. We proposed a novel system to fuse depth data coming from

multiple cameras and to generate a frontal view of the person in order to improve

the skeleton estimation that can be obtained with state-of-the-art algorithms oper-

ating on depth data. Furthermore, we improved single-camera skeletal tracking by
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exploiting people detection for background removal and joint tracking for filtering

joint trajectories. We tested the proposed system on hundreds of frames taken from

two Kinect cameras, obtaining a great improvement with respect to state-of-the-art

skeletal tracking applied to each camera. The proposed approach can be also applied

to real-time scenarios given the low computational burden required.
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