
Cloud-Based Task Planning
for Smart Robots

Elisa Tosello, Zhengjie Fan, Alejandro Gatto Castro and Enrico Pagello

Abstract This paper proposes an Open Semantic Framework for knowledge acqui-

sition of cognitive robots performing manipulation tasks. It integrates a Cloud-

based Engine, which extracts discriminative features from the objects and generates

their manipulation actions, and an Ontology, where the Engine saves data for future

accesses. The Engine offloads robots by transferring computation on the Cloud. The

Ontology favors knowledge sharing among manipulator robots by defining a com-

mon manipulation vocabulary. It extends the work proposed by the IEEE RAS Ontol-

ogy for Robotics and Automation Working Group by covering the manipulation task

domain. During ontological data insertion, data duplication is avoided by providing

a novel efficient interlinking algorithm. During their retrieval, visual data process-

ing is optimized by using a cascade hashing algorithm that intelligently accesses

data. No training is required for object recognition and manipulation because of the

adoption of a human-robot cooperation. The framework is based on the open-source

Robot Operating System.

Keywords Cognitive robotics ⋅ Task planning ⋅ Cloud-based object manipulation

engine ⋅ Ontology ⋅ Core ontology ⋅ ROS

E. Tosello (✉) ⋅ A.G. Castro ⋅ E. Pagello (✉)

Intelligent Autonomous Systems Lab (IAS-Lab) Department of Information

Engineering (DEI), University of Padova, Via Gradenigo 6/B, 35131 Padova, Italy

e-mail: toselloe@dei.unipd.it

A.G. Castro

e-mail: alejandro.gattocastro@studenti.unipd.it

E. Pagello

e-mail: epv@dei.unipd.it; zepv@dei.unipd.it

Z. Fan

Big Data Team Department of Big Data and IT Technology,

China Mobile Research Institute (CMRI), Innovation Building, No. 32, Xuanwumen West

Avenue, 100053 Beijing, Xicheng District, People’s Republic of China

e-mail: fanzhengjie@chinamobile.com

© Springer International Publishing AG 2017

W. Chen et al. (eds.), Intelligent Autonomous Systems 14,

Advances in Intelligent Systems and Computing 531,

DOI 10.1007/978-3-319-48036-7_21

285

286 E. Tosello et al.

1 Introduction

Robots of the future should be Smart: versatile and efficient Artificial Intelligence

systems able to perform behaviors of growing complexity, adapt to changes, collab-

orate with humans and other robots, learn from the past and from action performed

by other agents, and build on their capabilities based on that knowledge. Two are the

reasons that limit robots intelligence: the limited capacity of on board data elabora-

tion and the absence of a common medium to communicate and share knowledge.

Tapping into the Cloud is the solution. A Cloud server allows to offload robots from

CPU-heavy tasks and to perform intensive computation while meeting the hard real-

time constraints of operations. A Web Ontology lets the definition of a common

vocabulary that ensures a common understanding during the interaction as well as

an efficient data transfer and integration.

In automation, a large amount of objects should be real-time manipulated. Fail-

ures can led to high costs. Moving data and computation to the Cloud favors data

sharing [1], enables robots learning the stability of finger contacts from previous

manipulations on the same object [2], and lets the application of strategies used on

some objects on similar parts encountered later [3].

This paper proposes an Open Semantic Framework for knowledge acquisition of

cognitive robots performing manipulation tasks. An Ontology and a Cloud-based

Engine have been implemented. The former stores data about objects and actions

necessary to manipulate them. The latter detects objects in the scene and retrieves

their manipulation actions from the Ontology. If no ontological data exists, the

Engine generates and stores it on the Ontology.

The rest of the paper is organized as follows. Section 2 details researches done

in this context and compares existing works with the one proposed by this paper.

Section 3 describes the Ontology design and its implementation details. Section 4

shows the Cloud-based Engine focusing on the intelligent ontological data insertion

and retrieval. It also highlights how the elimination of the training phase for object

recognition and manipulation and its substitution with a human-robot cooperation

makes gradual the robots knowledge growth. Section 5 proves the good performances

of the proposed system by discussing the experiments done. Section 6 presents con-

clusions and future work.

2 Related Work

Different Cloud Platforms exist. Their inadequacy for robotics scenario is mainly due

to the difference in Web applications and robotics applications. Many Web appli-

cations are stateless, single processes that use a request-response model to talk to

the client. Robotic applications are state-full, multi-processed, and require a bidirec-

tional communication with the client. An example of efficient and widespread Cloud

Platform which, however, is not suited for robotics applications, is the Google App

Cloud-Based Task Planning for Smart Robots 287

Engine.
1

It exposes only a limited subset of program APIs tailored specifically for

Web applications, allows only a single process, and does not expose sockets, which

are indispensable for robotic middlewares such as the open-source Robot Operat-

ing System (ROS) [4]. In order to overcome these limitations, some Cloud Robotics

Platforms have been implemented. An example is Rapyuta, the RoboEarth Cloud

Engine [5], a platform designed for robots to share data and action experiences with

each other. With respect to Rapyuta, the proposed Engine focuses only on the robot-

ics sharing of manipulation data and actions, but guarantees an efficient Cloud data

access by adopting a cascade hashing algorithm [6]. Moreover, it avoids data dupli-

cation during the insertion of new data by using a novel powerful interlinking algo-

rithm [7]. The algorithm finds the interlinking pattern of two data sets by applying

two machine learning methods: the K-medoids [8] and the Version Space [9].

Focusing on the Knowledge Base to which the Engine accesses, many exist-

ing works are available online. Examples are the Columbia Grasp dataset [10], the

KIT object dataset [11], and the Willow Garage Household Objects Database [12].

KnowRob [13], the knowledge base of RoboEarth [14], is the most widespread.

They stores information about objects in the environment and their grasp poses. The

Household object database is a simple SQL database: the SQL format does not favor

robotics knowledge scalability. The others are well-defined by an Ontology. Robot-

Earth models objects as 3D colored Point Clouds [15], the others store objects as

triangular meshes. Stored items are of high quality but each object model consists of

several recordings from different point of views; thus requiring either a lot of manual

work or expensive scanning equipments.

With respect to the existing Knowledge Bases, the one proposed, named RTASK,

is scalable because of the adoption of an Ontology that defines data. It guarantees an

intelligent data storage and access because of the type of data saved. Every object is

characterized by multiple visual features (2D Images, B-Splines, and Point Clouds).

When detecting an object, the recognition process starts the comparison of the small-

est features (e.g. the ones representing the 2D Images), and eventually expands to the

others (B-Splines and Point Clouds, in increasing order). No onerous manual work is

required to store objects from different view points: an object is stored even if there

exists only a single registration of one its views. A human teacher helps robots in

recognizing objects when viewed from other orientations. The teacher exploits the

connection between the new view point and other object properties, e.g., name and

function. These new features will be stored in the Ontology gradually incrementing

robots knowledge about the object itself. Moreover, the proposed Ontology observes

the IEEE standards proposed by the IEEE Robotics and Automation Society (RAS)’s

Ontology for Robotics and Automation (ORA) Working Group (WG) by extend-

ing the Knowledge Base it proposed (see Fig. 1) [16–18]. Respecting the standard,

Balakirsky et al. [19] proposed a kitting ontology. RTASK generalizes the manipula-

tion concept by introducing the notions of manipulation task and action. This means

that any manipulation task can be represented, e.g., grasps and pushes.

1
Google, Inc. “Google App Engine”. Online: https://cloud.google.com/appengine/ (2014).

https://cloud.google.com/appengine/

288 E. Tosello et al.

Fig. 1 The RTASK

extension to the IEEE

ontology for robotics and

automation

3 The Ontology

RTASK formulates a common vocabulary for robotics manipulation. As proposed

in [20], it separates the concepts of tasks and tasks executions. Tasks are abstract
entities that describe goals to be reached; while tasks executions are events composed

of actions that are performed by robots in order to reach goals.

3.1 Design

Figure 2 depicts the Ontology design: a Task is assigned to an Agent, e.g., a Robot.
It should be executed within a certain time interval and requires the fulfillment of a

certain Motion in order to be performed. Manipulation is a sub-class of Task. Sev-

eral types of manipulations exist, e.g., grasps and pushes. They involve the handling

of an Object located at a certain Pose (Position and Orientation) through the exec-

tution of a Manipulating action. If the Task is assigned to a Robot, then the Motion
will be represented by a Robot Action. In detail, the Robot Manipulation Action
involves the activation of the robot End Effector. Studies have demonstrated that:

(i) placing the arm in front of the object before acting improves actions; (ii) humans

typically simplify the manipulation tasks by selecting one of only a few different pre-

hensile postures based on the object geometry [21]. On this view, the End Effector
is first placed at a Pose p’ at a distance d from the Object, with its actuable Joints
at a certain Pre manipulation Posture. Then, the End Effector is placed at a Pose p
close to the Object and the effective manipulation Posture is assigned to its Joints.

In order to retrieve the manipulation data of an object in the scene, the object

should be recognized as an instance previously stored in the Ontology. For this pur-

pose, every Object is characterized by an id, name, function, and the visual features

obtained by the Sensors. For every Object, RTASK stores multiple types of visual

features: 2D Images, B-Splines, and Point Clouds.

Cloud-Based Task Planning for Smart Robots 289

Fi
g.

2
R

T
A

S
K

:
T

h
e

o
n
to

lo
g
y

290 E. Tosello et al.

3.2 Implementation Details

RTASK is represented through the union of the Resource Description Format (RDF)
2

and the Web Ontology Language (OWL),
3

namely OWL Full. RDF is used to define

the structure of the data, OWL adds semantic to the schema and allows the user

to specify relationships among data. OWL Full allows an ontology to augment the

meaning of the RDF vocabulary guaranteeing the maximum expressiveness of OWL

and the syntactic freedom of RDF. Indeed, OWL is adopted by the World Wide Web

Consortium (W3C)
4

and it is the representation language used by the RAS ORA

WG. Protégé is used as ontology editor.
5

Queries allow robots to investigate the knowledge base and retrieve existing data.

A robot able to query the database has the capability of efficiently and intelligently

perform tasks. In our case, a C++ interface lets ROS users query RTASK using

SPARQL.
6

Apache Jena Fuseki is used as SPARQL server.
7

4 The Cloud-Based Engine

The current implementation of the Cloud-based Engine is based on a Cloud-based

Object Recognition Engine for robotics (CORE) [22]. The robot has an internal ROS
node that receives the segmented objects (objects are segmented using the functions

offered by the Point Cloud Library [23]) and sends them to the Cloud-based Engine.

The Engine is composed on another ROS node capable of reading the content of

received messages. The communication is based on the ros_bridge interface, which

provides a web socket channel between nodes.

4.1 Data Retrieval

4.1.1 Objects Manipulation Data Request

The robot asks the Cloud Server for the retrieval of the manipulation data of an

object. It sends a message containing the type of its gripper and the compressed

Point Cloud of the manipulable object. The compressed Point Cloud representation

saves space and connection time. The compressed Point Cloud is encoded in order to

2
Resource Description Format (RDF). Online: http://www.w3.org/RDF.

3
Web Ontology Language (OWL). Online: http://www.w3g/TR/owl-features.

4
World Wide Web Consortium (W3C). Online: http://www.w3c.com.

5
Protégé. Online: http://protege.stanford.edu/.

6
Simple Protocol and RDF Query Language (SPARQL). Online: http://www.w3.org/TR/sparql11-

query.

7
Apache Jena Fuseki. Online: https://jena.apache.org/documentation/fuseki2/index.html.

http://www.w3.org/RDF
http://www.w3g/TR/owl-features
http://www.w3c.com
http://protege.stanford.edu/
http://www.w3.org/TR/sparql11-query
http://www.w3.org/TR/sparql11-query
https://jena.apache.org/documentation/fuseki2/index.html

Cloud-Based Task Planning for Smart Robots 291

Fig. 3 Image processing

pipeline of the matching

phase

be transmitted over the Web Socket channel. After the encoding, the whole message

is represented as a JavaScript Object Notation (JSON) object. The ROS message

being encoded on the Web Socket request follows.

Task name (p ick , p l a c e f o r example)

s t r i n g t a s k

G r i p p e r name

s t r i n g g r i p p e r _ i d

Compressed P o i n t Cloud (o b j e c t r e p r e s e n t a t i o n)

s t r i n g d a t a

The Server receives the Client request and performs a super-fast search of the

object inside RTASK. The search starts from the comparison of the object 2D Images

features (SIFT, Scale Invariant Feature Transform) [24] and, in case of mismatch,

ends with the comparison of its Point Clouds features (HOG, Histogram of Oriented

Gradients) [25]. Steps of the super-fast search of SIFT features follow (see Fig. 3).

1. Decode the message and decompress the Point Cloud;

2. Convert the Point Cloud to color image using the Open-source Computer Vision

(OpenCV) [26] (OpenCV) functions;

3. Extract the image SIFT features
8

and store them on a binary file of a Server folder;

4. Match the features with the ones stored in the Server;

5. SPARQL query RTASK;

6. The Server returns a moveit_msgs::Grasp ROS message containing the relative

manipulation data.

The search is fast because of the novel and super-fast Cascade hashing algorithm

adopted during the matching phase (Step 4) [6] and because of the way in which

features are stored. The algorithm allows constructing a dataset without a learning

phase: there is not need to train the hashing function as in other Approximate Nearest

Neighbor (ANN) methods. Given the input image, the function returns the names of

its most similar images features (according to the SIFT parameters), the names are in

the form of integer numbers. The same names define the object classes of RTASK.

Moreover, features of stored objects are precalculated and stored on a Server folder:

they are not calculated at every data set access. Thanks to the combination of these

8
Chris Sweeney, Theia Multiview Geometry Library: Tutorial & Reference. Online: http://theia-

sfm.org.

http://theia-sfm.org
http://theia-sfm.org

292 E. Tosello et al.

Algorithm 1 Interlinking Instances across Data Sets

Input: Two Data Sets

Output: Links accross Data Sets

1: The data set D, D’; /*two data sets to be interlinked*/

2: Similarity threshold T
3: for Each property/relation in the data set D do
4: for Each property/relation in the data set D’ do
5: Match properties/relations that are corresponding to each other and store as the alignment A
6: end for
7: end for
8: for Each instance in the data set D do
9: for Each instance in the data set D’ do
10: Compare instances’ property values according to the correspondences of the alignment A;

11: Aggregate all similarities between property values as a similarity value v
12: if v >= T then
13: The two compared instances are interlinked with owl:sameAs.
14: end if
15: end for
16: end for

two characteristics only one query at the end of the matching process is needed in

order to retrieve the similar objects stored on the Ontology.

4.2 Data Insertion

An example of Client message aiming to create a new Object instance follows. It is

encoded as JSON string

{ " op " : " s e n d _ n e w _ o b j e c t " ,

" s e r v i c e " : " i n s e r t " ,

" n e w _ o b j e c t " :

[

{ " n e w _ p o i n t _ c l o u d " : " zc5p81H1cO8P+Ksmfdf . . . " ,

"X" : " 0 . 5 " , "Y" : " 2 . 5 " , "Z" : " 1 . 5 " , " r a d " : " 0 .314 " } ,

]

}

When the Server receives the message, it calculates the relative SIFT features and

stores them on the features folder and on RTASK.

During the insertion of elements in RTASK, duplication avoidance is desirable.

To this end, Algorithm 1 is applied to automate the interlinking process. It was pro-

posed in [7] and finds out the interlink pattern of two data sets by applying two

machine learning methods: the K-medoids and the Version Space. Although inter-

linking algorithms require interactions with users for the sake of the interlinking pre-

cision, computations of comparing instances are largely reduced than manually inter-

linking. As the work-flow of Algorithm 1 shows, when interlinking two instances

across two data sets D and D’, the algorithm first computes property/relation corre-

spondences across two data sets (line 5). Then, instances property values are com-

pared by referring to the correspondences (line 10). A similarity value v is generated

Cloud-Based Task Planning for Smart Robots 293

upon all similarities of property values (line 11). If such a similarity is equal to or

larger than a predefined threshold T, the two compared instances can be used to build

a link with the relation owl:sameAs (line 12–14).

4.3 Human-Robot Interaction

Usually, an onerous a-priori human manual work is required to store objects visual

features on a Robotics Knowledge Base: every object is represented by a large

amount of registrations from different points of view. Objects representation is accu-

rate but the a priori work is onerous. Our approach eliminates this prerequisite by

introducing a human teacher that supports robots during their learning phase. First

registrations will not be accurate, but knowledge will gradually increase until becom-

ing absolute and giving robots autonomy.

Figure 4 highlights the reasoning at the bottom of this cooperation approach.

Robots require human intervention to confirm the identity of a recognized object

or assign one to a new object. Moreover, humans help robots in connecting visual

features of objects already stored in the Knowledge Base but seen from other points

of view. To perform the connection, other objects properties are exploited, e.g., name

and function.

Many advantages are introduced by this approach. For example, it eliminates the

a priori work currently done by humans by introducing a cognitive and social robot

able to interact with other agents, e.g., human operators. A key outcome follows: A

robot capable of learning is a flexible, adaptable, and scalable cyber-physical system.

The message used for human-robot interaction follows.

Fig. 4 The reasoning pipeline. The blue parts represent human interventions

294 E. Tosello et al.

O p e r a t i o n t y p e

s t r i n g o p e r a t i o n

O b j e c t c l a s s name

s t r i n g c l a s s _ d e s c r i p t i o n

Compressed P o i n t Cloud (o b j e c t r e p r e s e n t a t i o n)

s t r i n g d a t a

The human operator shows an object to the robot and gives it a description (e.g., coke,

can, pen). The Server seeks for a similar object by filtering the Ontology through

the object description. If matches exist, the Server returns a message containing the

classes of the similar objects found:

{ " op " : " s e a r c h _ o b j e c t _ r e s p o n s e " ,

" s e r v i c e " : " que ry " ,

" s i m i l a r _ o b j e c t s " :

[

{ " c l a s s " : " 1 " , "X" : " 0 . 5 " , "Y" : " 2 . 5 " , "Z" : " 1 . 5 " , " r a d " : " 0 . 3 1 4 " } ,

{ " c l a s s " : " 2 " , "X" : " 0 . 1 " , "Y" : " 2 4 . 5 " , "Z" : " 1 . 3 " , " r a d " : " 0 . 2 4 " } ,

{ " c l a s s " : " 3 " , "X" : " 0 . 2 " , "Y" : " 3 . 5 " , "Z" : " 0 . 5 " , " r a d " : " 2 . 1 4 " }

]

}

a human feedback confirms the object class and visual features are added to it. Oth-

erwise, a new instance is inserted in RTASK:

{ " op " : " s e n d _ n e w _ o b j e c t " ,

" s e r v i c e " : " i n s e r t " ,

" n e w _ o b j e c t " :

[

{ " n e w _ p o i n t _ c l o u d " : " zc5p81H1cO8P+Ksmfdf . . . " ,

"X" : " 0 . 5 " , "Y" : " 2 . 5 " , "Z" : " 1 . 5 " , " r a d " : " 0 .314 " } ,

]

}

4.4 Manipulation Data Generation

Given new object, the Cloud-based manipulation planner generates a list of possible

manipulations, each consisting of a gripper pose relative to the object itself. Manipu-

lations consist of both grasps and pushes. The current version of the generator aligns

the hand with the object principal axes, starting from either the top or the side of the

object, and tries to manipulate it around its Center Of Mass through a trial-and-error

Reinforcement Learning technique. As for GraspIt! [27] and the MoveIt! Simple

Grasps tool developed by Dave T. Coleman,
9

given the safety distance d at which the

gripper must be positioned before making the manipulation, the generator returns:

9
MoveIt! Simple Grasps tool. Online: https://github.com/davetcoleman/moveit_simple_grasps.

https://github.com/davetcoleman/moveit_simple_grasps

Cloud-Based Task Planning for Smart Robots 295

∙ a pre-manipulation configuration: the gripper pose and joints configuration at the

safety distance;

∙ a manipulation configuration: the gripper pose and joints configuration to be main-

tained during the manipulation.

Experiments proposed by Dave T. Coleman demonstrate that the grasping tool he

developed does not fail because, in the scene

∙ the block to be grasped is known a priori;

∙ the configuration that the gripper has to maintain during the grasp is manually

predetermined according to the block’s dimensions;

∙ collision checking is not performed to verify the feasibility of grasps.

If we reason about arbitrary shapes, collisions or contact losses can be induced by

pre-selecting the manipulation configurations. To overcome the problem, the gener-

ator used by the Engine exploits the Reinforcement Learning benefits and generates

grasps and pushes according to the input object.

5 Experiments

Experiments aim to provide truthful temporal results on Cloud access and ontolog-

ical data retrieval. For this purpose, RTASK and the Engine have been integrated

inside the Cloud environment of CORE, which is available on the Wisconsin Cloud-

Lab cluster
10

under the project “core-robotics”. It consists of one x86 node running

Ubuntu 14.04 with ROS Indigo installed. Moreover, RTASK has been integrated

with the Object Segmentation Database (OSD)
11

: a data set of 726 MB currently

containing 111 different objects, all characterized by a 2D color Image and a Point

Cloud.

In simulation, an Husky mobile robot equipped with a Universal Robot UR5

manipulator and a Robotiq 2 finger gripper has to solve a tabletop object manip-

ulation problem: it has to grasp the nearest object located on the table in front of it.

A Microsoft Kinect acquires the scene. Gazebo [28] is used as simulator. A ROS

Sense-Model-Act framework has been implemented in order to give the robot the

ability to detect objects on the table, access the Cloud server, and retrieve manipu-

lation data (see Fig. 5). Implementation details follow.

Sense The Kinect acquires the RGB-D images of the environment. From the col-

lected data, a compressed segmented 3D Point Cloud of each individual manipulable

object is computed using PCL.

Model On the Cloud, from the compressed Point Cloud, the relative 2D images is

computed together with its B-Spline [29] representation. The relative visual features

10
CloudLab. Online: http://www.cloudlab.us.

11
Object Segmentation Database. Online: http://www.acin.tuwien.ac.at/forschung/v4r/software-

tools/osd/.

http://www.cloudlab.us
http://www.acin.tuwien.ac.at/forschung/v4r/software-tools/osd/
http://www.acin.tuwien.ac.at/forschung/v4r/software-tools/osd/

296 E. Tosello et al.

Fig. 5 The sense-model-act framework

are computed, e.g., SIFTs and HOGs. The cascade hashing algorithm starts search-

ing for a match between the features of the segmented object and that saved in the

data set. The comparison starts from SIFTs and eventually expands to B-Splines (by

computing the squared distance among points) and HOGs. The reasoner accesses

RTASK in order to retrieve the manipulation actions relative to the detected fea-

tures. Again, if a match exists, together with the information relative to the assigned

manipulation action (e.g., push or grasp) and to the relative gripper joints config-

uration, then the information will be outputted. Otherwise, the Manipulation Data

Generator computes the necessary poses.

Act The module lets the robot move by activating its simulated engines. MoveIt!
12

generates the kinematic information required for the system to pass from the current

to the goal configuration. During the motion, the information acquired by the sensors

is used to compare the system final state with the expected one. In case of mismatch,

a trial and error routine starts correcting the joints configuration. The configuration

that allows the task achievement is saved in RTASK.

5.1 Results

Figure 6 shows the system in operation: the robot detects the surrounding environ-

ment, segments the objects in front of it, and grasps the nearest objects through the

manipulation configuration retrieved from the Cloud.

Tables 1 and 2 reports the most significant time data. Table 1 depicts the time

taken for the extraction of the descriptors of the 2D images stored in the data set.

The table shows two types of extraction: the extraction of descriptors of all the 111

images contained in the data set and that of descriptors of a single image. For each

type of extraction, tests were done on 1, 2, 3, and 4 threads respectively. Authors

point out the 0.387422 s used to extract descriptors of a single image through the

12
Ioan A. Sucan and Sachin Chitta, “MoveIt!”, Online: http://moveit.ros.org.

http://moveit.ros.org

Cloud-Based Task Planning for Smart Robots 297

Fig. 6 a The robot in the scene; b The detected scene; c The segmented objects; d The grasp of

the nearest object

Table 1 Elaboration time taken for features extraction

Features extraction

1 Thread (s) 2 Thread 3 Thread 4 Thread (s)

111 images 45.1554 21.8381 s 15.331 s 012.7545

1 image 0.379014 0.408295 0.396394 0.387422

Table 2 Elaboration time taken for features matching

Features matching

Time (s) Matches on 6105 possible image pairs

15 inliers 4.82 1592

300 inliers 4.48500 18

employment of 4 threads. Table 2 focuses on times taken for features matching. By

using 300 inliers, the match is accurate and the computational time does not affect

the real-time constraints of a robotics manipulation.

The reported computational times consider SIFT features. Times gradually incre-

ments if B-Splines or HOGs are considered. Moreover, the computational effort

depends on the richness of the features: the more complex the Point Cloud is, the

greater the extraction time will be. The segmentation helps maintaining computa-

tional times low.

During the experiments, MoveIt! took on average 3.765 s to find a feasible inverse

kinematics solution (best case: 0.162757 s; worst case: 7.367439 s; number of trials:

100) on a Dell Intel Core i7-4470 CPU @ 3.40 GHz x 8, 15.6 GiB Memory, 970 GB

Disk. In the best case, it completed the planning after 0.8486 s. Reported data proves

that the intelligent and efficient structure of the proposed Open Semantic Framework

does not adversely affect the time required to complete a manipulation: executing the

features extraction and matching on 4 threads off-loads robots and increases system

performances.

298 E. Tosello et al.

6 Conclusion and Future Work

This paper presented an Open Semantic Framework able to increase robots knowl-

edge and capabilities on objects manipulation. The Framework is composed of an

OWL Ontology and a Cloud-based Engine. From the study of human actions when

handling objects, the Ontology formulates a common vocabulary that encodes the

robotics manipulation domain. The Engine, instead, was developed in order to trans-

fer the computation on the Cloud: it off-loads robot CPUs and speeds up the robots

learning phase. Given an object in the scene, the Engine retrieves its visual features

and accesses the Ontology in order to extract the corresponding manipulation action.

If no information is stored, a Reinforcement Learning technique is used to generate

the gripper manipulation poses that will be stored on the Ontology. The Ontology

respects the IEEE Standard by extending the existing CORA. The Engine minimizes

visual data processing through an intelligent ontological data access and retrieval.

During ontological data retrieval, a cascade hashing algorithm is adopted in order

to optimize the comparison between saved and new visual features. Instead, in order

to avoid data duplication during the insertion of new instances in the Ontology, a

novel efficient interlinking algorithm has been adopted. Furthermore, the training

for objects recognition and manipulation is replaced by a human-robot interaction.

We proved the efficiency and effectiveness of the proposed approach by building

a ROS Sense-Model-Act framework able to associate manipulation actions to the

features of the objects in the scene. Tests were performed in simulation.

As future work, we aim to extend the proposed Ontology by defining other tasks

and actions, e.g., we would like to explore the Navigation domain. We aim to assign

robots the new tasks and execute the relative new actions in order to increase the

capabilities of the Cloud-based Engine. Moreover, we are developing a new Rein-

forcement Learning technique for the generation of the manipulation configurations.

References

1. Goldfeder, C., Allen, P.K.: Data-driven grasping. Auton. Robot. 31(1), 1–20 (2011)

2. Dang, H., Allen, P.K.: Learning grasp stability. In: Proceedings of International Conference on

Robotics and Automation (ICRA), pp. 2392–2397. Saint Paul, MN (2012)

3. Glover, J., Rus, D., Roy, N.: Probabilistic models of object geometry for grasp planning. In:

Proceedings of Robotics Science and Systems (RSS), Zurich, Switzerland (2008)

4. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.:

ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software

(2009)

5. Mohanarajah, G., Hunziker, D., D’Andrea, R., Waibel, M.: Rapyuta: a cloud robotics platform.

IEEE Trans. Autom. Sci. Eng. 12(2), 481–493 (2015)

6. Cheng, J., Leng, C., Wu, J., Cui, H., Lu, H.: Fast and accurate image matching with cas-

cade hashing for 3d reconstruction. In: The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (2014)

7. Fan, Z.: Concise Pattern Learning for RDF Data Sets Interlinking. PhD thesis, University of

Grenoble (2014)

Cloud-Based Task Planning for Smart Robots 299

8. Kaufman, L., Rousseeuw, P.J.: Statistical Data Analysis Based on the L1-Norm and Related

Methods, chapter Clustering by means of Medoids. North-Holland, pp. 405–416 (1987)

9. Dubois, V., Quafafou, M.: Concept learning with approximation: rough version spaces. In:

Rough Sets and Current Trends in Computing: Proceedings of the Third International Confer-

ence (RSCTC), Malvern, PA, USA, pp. 239–246 (2002)

10. Goldfeder, C., Ciocarlie, M., Allen, P.: The Columbia grasp dataset. In: Proceedings of Inter-

national Conference on Robotics Automation (ICRA), Kobe, Japan, pp. 1710–1716 (2009)

11. Kasper, A., Xue, Z., Dillman, R.: The KIT object models database: an object model database

for object recognition, localization and manipulation in service robotics. Int. J. Robot. Res.

(IJRR) 31(8), 927–934 (2012)

12. Ciocarlie, M., Hsiao, K., Jones, E., Chitta, S., Rusu, R., Sucan, I.: Towards reliable grasping

and manipulation in household environements. In: Proceedings of International Symposium

on Experimental Robotics, Delhi, India, pp. 1–12 (2010)

13. Tenorth, M., Beetz, M.: KnowRob: a knowledge processing infrastructure for cognition-

enabled robots. Int. J. Robot. Res. (IJRR) 23(5), 566–590 (2013)

14. Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Galvez-Lopez, D., Haussermann,

K., Janssen, R., Montiel, J.M.M., Perzylo, A., Schiessle, B., Tenorth, M., Zweigle, O., van de

Molengraft, R.: RoboEarth—a world wide web for robots. IEEE Robot. Autom. Mag. 18(2),

69–82 (2011)

15. Di Marco, D., Koch, A., Zweigle, O., Haussermann, K., Schiessle, B., Levi, P., Galvez-Lopez,

D., Riazuelo, L., Civera, J., Montiel, J.M.M., Tenorth,M., Perzylo, A., Waibel, M., Van de

Molengraft, R.: Creating and using RoboEarth object models. IEEE Int. Conf. Robot. Autom.

(ICRA) 3549–3550 (2012)

16. Prestes, E., Fiorini, S.R., Carbonera, J.: Core Ontology for Robotics and Automation. Stan-

dardized Knowledge Representation and Ontologies for Robotics and Automation. Workshop

on the 18th, pp. 7–9. Illinois, USA, Chicago (2014)

17. Schlenoff, C., Prestes, E., Madhavan, R., Goncalves, P., Li, H., Balakirsky, S., Kramer, T.,

Miguelanez, E.: An IEEE standard ontology for robotics and automation. In: 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pp. 1337–1342. Vilam-

oura, Algarve, Portugal (2012)

18. Schlenoff, C.I.: An overview of the IEEE ontology for robotics and automation (ORA) stan-

dardization effort. In: Workshop on the 18th, Standardized Knowledge Representation and

Ontologies for Robotics and Automation, pp. 1–2. Illinois, USA, Chicago (2014)

19. Balakirsky, S., Kootbally, Z., T. RKramer, A. Pietromartire, C. Schlenoff, Gupta, S.: Knowl-

edge driven robotics for kitting applications. Robot. Auton. Syst. 61(11), 1205–1214 (2013)

20. Fiorini, S.R., Carbonera, J.L., Gonçalves, P., Jorge, V.A., Rey, V.F., Haidegger, T., Abel, M.,

Redfield, S.A., Balakirsky, S., Ragavan, V., Li, H., Schlenoff, C., Prestes, E.: Extensions to the

core ontology for robotics and automation. Robot. Comput.-Integr. Manuf. 33(C), 3–11 (2015)

21. Cutkosky, M.R.: On grasp choice, grasp models, and the design of hands for manufacturing

tasks. IEEE Trans. Robot. Automa. 5(3), 269–279 (1989)

22. Beksi, W.J., Spruth, J., Papanikolopoulos, N.: Core: a cloud-based object recognition engine

for robotics. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 4512–4517 (2015)

23. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: IEEE International Con-

ference on Robotics and Automation (ICRA), Shanghai, China, May 9–13 (2011)

24. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the

International Conference on Computer Vision-Volume 2–Volume 2, ICCV ’99, pp. 1150–1157

(1999)

25. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface descrip-

tion. In: 11th European Conference on Computer Vision (ECCV), Hersonissos, Greece, Sep-

tember 5–11 (2010)

26. Bradski, G.: Dr. Dobb’s Journal of Software Tools

27. Miller, A.T., Allen, P.K.: Graspit! a versatile simulator for robotic grasping. IEEE Robot.

Autom. Mag. 11(4), 110–122 (2004). Dec

300 E. Tosello et al.

28. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot

simulator. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and

Systems(IROS 2004), pp. 2149–2154 (2004)

29. Mörwald, T., Vincze, M.: Object Modelling for Cognitive Robotics. PhD Thesis, Vienna Uni-

versity of Technology (2013)

	Cloud-Based Task Planning for Smart Robots
	1 Introduction
	2 Related Work
	3 The Ontology
	3.1 Design
	3.2 Implementation Details

	4 The Cloud-Based Engine
	4.1 Data Retrieval
	4.2 Data Insertion
	4.3 Human-Robot Interaction
	4.4 Manipulation Data Generation

	5 Experiments
	5.1 Results

	6 Conclusion and Future Work
	References

