Analysis of Risk Factors of ERP (Enterprise Resource
Planning) Systems Information Technologies

William Baza’m@), Teresa Samaniego, Abel Alarcén, and Ana Rodriguez

School of Computer and Information Science, Agrarian University of Ecuador,
Guayaquil, Ecuador
{wbazan, tsamaniego, jalarcon, arodriguez}@uagraria.edu.ec

Abstract. The present paper is about collected information on software devel-
opment and the implementation of the ERP system. It aims to get to know the
perception on the given and installed system as well as the factors that were
introduced after the system implementation.

The study explores the critical factors that were found in the implementa-
tion of ERP systems, which invites to delve into the review of these systems.
The last part of the study presents conclusions and recommendations to take
into consideration by enterprises about the elements which make the ERP
system become successful. They allow us to classify it into each of the main
aspects. The reason is that they have a positive impact on the project. In other
words, they offer a series of parameters for software development of commer-
cial organizations such as industry, which should think about the implemen-
tation of an ERP system.

Keywords: Critical factors - ERP system - Impact - Integrated systems

1 Introduction

Systems enterprise resource planning (ERP) software systems are considered software
systems of a general kind, which contain modules that aid in the differentiation of areas
such as production, sales, distribution, finance, human resources, and maintenance
amongst others.

ERP systems are currently used to help us in order to manage any company more
successfully. Within the study of ERP systems, we must not forget the existing critical
risk factors of this software system, since it does not allow us to change decisions so we
should try to ensure that the decisions we make are the most appropriate ones.

First of all, we face the arduous and expensive task of approving and implementing
it, which requires much effort, commitment and a fully designed, planned study.

We can mention the following critical factors found:

Transition to the new system
Work overload

Difficulty of estimating costs
Rotation of key personnel
Adjustment legislation

© Springer International Publishing AG 2016
R. Valencia-Garcia et al. (Eds.): CITI 2016, CCIS 658, pp. 131-142, 2016.
DOI: 10.1007/978-3-319-48024-4_11

132 W. Bazan et al.

e Lack of technically trained personnel
e Lack of written procedures
e Adaptation of hardware and telecommunications

It is noteworthy that these can be improved with the aid of reengineering business
processes, which will proceed to address the points of failure through continued appli-
cation of feedback, which could be found before in other cases of application of ERP
systems, allowing us to find the maximum benefits of these systems. It should also be
taken into account that in the process of implementation of ERP systems, the provider
should become the implementation consultant with possible solutions.

ERP systems are an evolution of systems Production Resource Planning, MRP
(Manufacturing Resources Planning), which focus on the planning of activities of manu-
facturing companies. Before 1960, the main focus of the systems inventory control was
based on the basics of inventory [1].

During the 1960s, the first computers and the first MRP first appeared. Planning
Material Requirements (MRP-I) was one of the first applications for these businesses [2].

The MRP software supported the creation and maintenance of material master data
and bills of materials across all products and parts, in one or more manufacturing
plants [1].

During the 1970s some of the major software vendors such as SAP, J.D. Edwards
and Oracle with its renowned Structured Query Language (SQL) appeared.

After a general overview of the article, presented in the introduction, we present
a brief description of the literature review divided into three main points. Later, the
article presents the methodology used. Finally, the main conclusions reached are
presented.

2 Quality Software Metrics, Measurement and Indicators

We begin by defining the different concepts presented in the introduction, facilitating
the understanding of the subject by the reader.

Tejerina, [3] states that Quality Software is the fulfillment of the requirements of
functionality and performance explicitly established, explicitly documented develop-
ment standards and implicit characteristics expected of all professionally developed
software. Software quality is a complex mix of factors that may vary across different
applications and according to customers who request them.

The success of the software depends on a set of qualities, which are designed to give
a high degree of customer satisfaction: to the revisions of comprehensive techniques
before testing, to quantitatively determine what is important for a product before starting
the tests, to provide assurance and reliability to have a test plan and to list the objectives
of the test concisely. To produce quality software is the major goal for engineers.

Pressman, (2010) in [4] mentions that Software Quality should be added in all
product life-cycle management. The various tasks for inserting a quality control in soft-
ware development in this analysis are:

Analysis of Risk Factors of ERP Systems Information Technologies 133

Use of methodologies and development methods.

Reuse formal review procedure.

Constant testing of software development.

Adjustments to set standards for software development.

Verification of changes, measurable calculations and accumulation of information.
Managing reports about development in software quality.

AN

There are dozens of metrics or measures exclusively oriented towards product devel-
opment, as it is the case with this quality software, the life cycle from its design, coding,
testing and maintenance is related to the need to control different attributes, structure,
accuracy, coupling and complexity of it being difficult to have a single quality value [4].
Different types of metrics allow for the quantification and qualification needed to
improve the final software, with different criteria according to the appearance, technol-
ogies, and functionalities depending on user requirements, this allows for the quality to
be valued from the moment we plan to develop any software.

A measure provides a quantitative indication of the amount, full, extension, size,
capacity or size of some attribute of a product or process [4]. A measure is an indication
of amount and size of a product, applying it in its development.

A metric is an assessment of the degree to which a system, component or process
has a specific tribute (extension, quantity, dimensions, capacity or size). A software
engineer collects measures and develops metrics in order to obtain indicators [4].

The metric is more directed to the evaluation factors of the system, component or
procedure for a given attribute, where a group of measures exist, and they become
metrics that provide us with indicators.

An indicator is a metric, or a metric combination that provides us with unknown
information. This knowledge will allow the project manager or software engineers to
prepare the process, project or product for it to work better [4, 5].

All these products are based on several parameters which lead software development.
These parameters are required by organizations so that their applications can be efficient.
They are all related: software quality, metrics, indicators.

2.1 Quality Management Software

The objective of managing software quality is to understand what the customer expect-
ations for quality are, and to implement and plan in order to meet these expectations.
After all, as we know the customer defines quality. Therefore, it is necessary to evaluate
each individual quality of the software, in order to be able to determine one or more
metrics that can be obtained to reflect these properties. One example of this could be the
creation of a quality characteristic that guarantees that lesser amounts of errors occur.
It can be measured by counting errors which are defects of a solution [6].

134 W. Bazan et al.

2.2 Risk Management Errors

“For a long time, the software projects have been considered high-risk projects prone
to failure” as stated [7], and “recognizes that risk management is one of the best practices
in the software industry to reduce the surprise factor” according to [8].

2.3 Errors Management

A key aspect, important in developing reliable software, is the phase analysis of error
distribution as proposed in fault types defined in IEEE (1998) [9].

This analysis reveals the existence of procedures for data acquisition and technical
checks, regular checks of a software product made by a team or qualified personnel,
which determines its ability to use, try and recognized specifications and standards, that
can be classified in requirements for reviews, analysis, design and documentation to be
established at the time of the proposal with the client [8].

2.4 Maeasures for Error Handling

There are many techniques for the revision of a software product from its development
stage, in addition to this, they give us a future vision of the results of a product.

Verification and validation can be defined as the process of ensuring that each phase
of the life cycle development correctly implements the specifications of the previous
phase, and that the software obtained meets its requirements. The tests imply the
controlled execution of the code program looking for errors. Formal reviews are planned
and periodic reviews of the products obtained carried out by developers, customers,
users and managers to assess progress. Inspections and walk-throughs are systematic
reviews of software products obtained by the pairs made with the purpose of finding
errors [10].

2.5 Systemic Quality Model

Systemic Model of Quality in software development allows us to measure the Systemic
Quality of a developer of software, which starts off with the quality of the product at the
time it occurs and the quality of the process of its production. The model provides
verification of a level of quality that will change between None, Basic, Intermediate and
Advanced [11].

Systemic Quality Models indicate which processes need to be improved in the
company and properties that have not been fulfilled in the software product developed [11].

3 Model for Defining Stages in Metric

The proposed model for defining stages in metric is shown in Fig. 1. This model is based
on the work presented in [12]. As it can be seen the process consists of five different
steps that are described below:

Analysis of Risk Factors of ERP Systems Information Technologies 135

1. Identification - Stage in which the scope is defined when creating metrics, as well
as asking hypothesis to carry out measurement software during its development.
Obtaining information about the main requirements to be met by the metric.

2. Creation - Stage in which the metric is defined according to the requirements preset
in the previous stage. You need to perform a theoretical validation based on statistical
mathematical methods, among others, that ensure that the metric used meets the
objective. An empirical validation through surveys, experiments and case studies
validated metrics are also performed.

3. Acceptance - After obtaining a valid metric it is usually necessary to go through a
stage of acceptance of the metric, testing in real environments whether the measure
meets the desired objectives.

4. Application - The metric is accepted and used for the field of application for which
it was created.

5. Accreditation - This stage runs in parallel with the implementation phase and aims
at maintaining the metric, as a result of this stage a metric can be withdrawn, as it is
no longer useful or reused to start a new process.

Reutilization
<

.
y Requirements

\
CREATION I

Metrics
Accepted

metrics

\ Valid metrics /

Fig. 1. Stages definition method metric.

One of the primary concerns among quality metrics is located in the measures of
usability of the product produced. If the product is user friendly, it can be measured
through the characteristics of how we see the end user use the system, considering the
time employed in its use, the benefits provided, and how users value subjectively the
system produced as mentioned [13].

136 W. Bazan et al.

Therefore, it is noteworthy that a product developed following the above steps will
allow us to determine whether the software has been adequately developed, if the metric
used was appropriate for the development of the product, or to identify why problems
appeared. Below you can see a table of the stages of the metric model described.

3.1 Characteristics of a Functional Metric

According to Duran Rubio (2003, p. 48) “The size of the software could be measured
in terms of bytes occupied on the disk, the number of programs, the number of lines of
code, functionality it provides, or simply the number of screens or reports you have”.
The characteristics of a functional metric are as follows:

e Technological independence. - Once we have established the required functionality
we must choose technology needed to achieve this functionality.

e Simplicity. - The metric should not require great efforts to achieve a measure. A
disadvantage of this feature would be that the software would not be as detailed for
noticeable results, such as mathematical operations.

e Focus on the functionality provided. - This refers to the advantages to be acquired
by implementing the new software, when making a technical review.

e Based on user requirements. - This gives an idea of what size the software will have
before it is finished.

e Consistency. - The results obtained in different systems and different people must be
consistent.

3.2 Metrics Function Points

This metric tries to measure the functionality that the software provides the user.
According to Duran Rubio (2003, p. 49), “It is a metric to set the size and complexity
of computer systems based on the amount of functionality required and delivered to the
users” or, “The Function Points measure the logical or functional size of projects or
software applications based on the functional requirements of the user”.

3.3 Standard Method Function Point Analysis

The method which is becoming standard in the industry is defined by the IFPUG, called
Function Point Analysis (FPA) and its authors define it as follows:

“Standard Method for measuring software development from the point of view of
the user” [14].

The selection of indicators includes efforts measurement (person-hours) and costs
(in money), both real and planned ones, number of deliverables accepted by the user
and deviations, reused effort from other projects or inactivity in human resources,
number of modifications in the product and information on its evaluation (solicited,
rejected and accepted), dedicated effort to error detection and correction, number of
completed reviews, and information on error detection to evaluate product quality
(i.e. errors detected before and after delivery). Many of the indicators also include

Analysis of Risk Factors of ERP Systems Information Technologies 137

broken down by phase measures (i.e. breakdown in requirements, design, coding and
documentation) measurements.

3.4 Steps to Determine a Function Points Metric

In this section we describe the steps to determine a function points metric, where the
method identifies the components of S.I. assigning a number of points based on the
complexity function, and the sum of this gives us the unadjusted function points. The
final adjustment is done at the end, taking into account the general characteristics of any
computer system [15]. The different stages are shown in Fig. 2 and they are explained
next in detail.

e Step 1. To determine the type of count. In this step we determine the target count,
defined if it counts in the development, maintenance or if a software is already
installed.

Step 2. To identify the scope of measurement and limits of the application.

Step 3. To count Data functions. Here we determine the data storage capacity. Both,
internal logical file and the external interface are analyzed. A value of this complexity
is assigned, considering the data. This value can be high, medium or low.

e Step4. Tocount the Transactional functions. This step measures the ability to perform
operations; each component is assigned a value of complexity (high, medium or low),
considering the available data.

1
1 Count Data :
I Functions ‘ I
I Determine I
1 Unadjusted |
I = Function |
Identify the Points _ I
Determine Scope of Count Adjuste?d |
the type of — Measurement__| Transactional determine |
‘ ¢ and Functions Function !
coun Application Determine Points :
1 the Value "
| Adjustment I
I Factor |
e e e e e e e e e e o o o - -

Fig. 2. Steps to determine a function points metric [14].

Function points are calculated by using information parameters and the level of
complexity of the software. The information parameters are five:

e Number of external input (EI). This input is the information originated about the user
or the information that is transferred from other software. The input is frequently
used for the updating of logic reports.

e Number of external output (EO). This output consists of data which are generated
within the application and are transformed into information for the user.

138 W. Bazan et al.

e Number of external consults or reports (ECR). They are online information based on
a user’s requirement.

e Number of internal reports (IR). They are the data found in the database and which
are updated with external input.

e Number of external reports (ER). They are data which come from storage out of the
application.

Table 1 shows how these information parameters are related to the level of
complexity.

e Step5. To determine the unadjusted function points. In this phase the total is obtained
by adding up the number of components according to the assigned complexity.

e Step 6. To determine the value adjustment factor. The adjustment value is obtained
by adding 0.65 to the total sum of the degrees of influence of the 14 general system
characteristics multiplied by 0.01.

Table 1. Calculation of the function point

CALCULATION OF THE FUNCTION POINT

[C) Tot
2 LEVEL OF COMPLEXITY |
= al
2
INFORMATION 8 LOW MEDIUM HIGH
PARAMETERS S
< Count Fac * Count Fac T Count Fac
o . X . X . X
= ing tor ing tor ing tor
EIl: EXTERNAL
3 4 6
INPUT
EO: EXTERNAL
4 5 7
OUTPUT
EC: EXTERNAL 3 4 6
CONSULTS
IR: INTERNAL 7
REPORTS 10 15
ER: EXTERNAL 5 7
REPORTS 10

NON ADJUSTED FUNCTION POINT (NAFP):

In order to calculate the FP, we use the following formula:
FP = NAFPT[0,65 + 0,01 X SUMAF]

Where SUMAF (sum of the adjusted factor Table 2) are software technical param-
eters which are determined as it is shown in the following table. They range from 0-5,
where this value is based on certain technical conditions for the development of the
software.

e Step 7. To determine the adjusted function points. In this phase we considered the
unadjusted function points by the adjustment factor.

Analysis of Risk Factors of ERP Systems Information Technologies 139

Table 2. Adjust factor of technical complexity

ADJUST FACTOR OF TECHNICAL COMPLEXITY

FEATURE VALUE
1 Data communication
2 Distributed functions
3 Benefits
4 High use of configuration
5 Transfer speed
6 Online data input
7 Efficiency design by the end user
8 Online data updating

9 Complexity of the internal logic process of the application
10 Code reusability

11 Ease of installation
12 Ease of operation
13 Multiple localizations
14 Ease of change
SUM OF ADJUSTED FACTOR (SUMAF)

3.5 Software Project Risks

PMI (2013) mentions a temporary effort needed for the project to create a product
complying with certain objectives [16]. Similarly, we understand risk as the event which,
should it occur, produces an effect either positive or negative in any of the objectives
for creating a product. For risk management software projects, we should take into
account that for its definition and study we should identify, study, analyze and eliminate
each and every one of the possible threats before starting the project, in order to
encounter less elements of risk by the end of the project, which may impede achieving
the proposed objectives.

Spector and Gifford, (2010) indicate that risks can be caused by various reasons or
situations [17]. In order to improve the risk management in software projects, several
guides have been published: PRINCE2, ISO standards 10006: 2003, and PMI. These
guidelines provide methods and procedures focused on information systems, which help
in risk management software projects.

Alba, (2008) [18] presents the stages for risk management in software projects, each
of which focuses on the treatment of the risks mentioned below:

o Identify risks: It is about recognizing the potential risks which may cause problems
or failures in the project.

140 W. Bazan et al.

e Analyze risks: Each of the risks is analyzed and classified by groups according to
their priority.

e Assess risks: At this stage the chances of occurrence and potential grievances that
may affect the project are evaluated.

e Risk treatment: we identify methods, procedures, implementations, modifications
which may be needed to solve the potential risks in a project.

e Risk monitoring: This has to do with all the processes which are performed to address
the risks which must be monitored, in order to ensure that controls are effective and
provide valuable information to detect possible changes affecting the draft.

4 International Standard ISO

The evaluation and calculation of the functionality that a computer system has is
regarded as the anguish that the whole industry dedicates to the development of the
software. It is important to bear in mind that having a metric is not enough today, none-
theless, this metric should be standard so that it can be used in different companies,
allowing developers to have access to, and to share indicators among the industries of
software engineering products that are easy to manage and understand [19]. To compare
the productivity (Function Points per person month) of a company with the industry data
is critical in improvement plans [14].

S Methodology

This research was eminently descriptive; we provided a detailed analysis of all results
obtained in the exploratory study carried out, where in some organizations, ERP systems
were fully settled satisfactorily. This study was supported in the review of the relevant
resources available between 2013 and 2016. We examined seven implementation meth-
odologies: Total Solution, FastTrack, ASAP, AIM, SureStep, OpenERP and Openbravo.
Each of these methods was analyzed according to the proposed unified methodology of
[20], which raises the following essential elements:

1. Project Management, which holds the project planning and scheduling, monitoring
and feedback and risk management

2. Managing change as there seems to be a lack of focus on issues such as: activities,
processes, methodologies associated with the understanding of this process, which
in some cases have led to the failure of such projects.

3. Training, the complexity of these applications requires rigorous training, which if
not carried out can lead to drastic consequences and is considered one of the main
reasons for failure of ERP implementations.

4. Implementation level: Strategic, evaluation of current legacy systems; Tactical;
Operating.

The critical factors found are studied in depth in the review of these systems, which
are made including some questions about how efficient the systems are with senior
management, which is the selection process for the system, composition when choosing

Analysis of Risk Factors of ERP Systems Information Technologies 141

the team, training and user participation, and the different problems facing their organ-
izations during the implementation process and after.

This study ends by giving recommendations to companies about the issues that must
be taken into account in order to implement ERP systems successfully.

6 Conclusions

Critical risk factors are presented as part of an ERP system. This research has been
developed after a thorough exploratory study which does not transcend beyond the issue
of the ERP. The type of solution that the author provides is reasonable in terms of
representation and information shared.

Surveys, interviews and questionnaires let us know about the shortcomings of the
proposed system, and after experimentation, in some companies we were able to observe
some critical aspects of these systems. Thus, after a very detailed study, the author
proposes feedback in order to provide solutions, where the provider must go beyond the
questions raised.

Total Solutions methodologies and Fast Track, used by consulting houses, do not
endorse any particular software, thus, they are more general in its recommendations and
include considerations oriented more towards project management and change manage-
ment. Nonetheless, it should be mentioned that Deloitte Fast Track offers on its website,
its methodology focused on versions of both products SAP and Oracle.

A fully documented system with a comprehensive literature allows companies to
incorporate an ERP system and thus, providing technical information regarding the
proper use of this resource, which must be based on the implementation of the system
for its later adjustment to an existing system.

The final conclusion of this study eradicates in the importance given to the selection
process of an ERP system, taking into consideration the fact that critical risk factors can
affect my current system, which measures prevent chaos in case of replacement of the
current system, with one that provides more comfort to our company, and how reliable
this system is if we do not have the necessary data, as mentioned is an exploratory study
where the main shortcomings of these systems were found, in cases where there was not
information about problems that the use of ERP presents. Good planning and integration
with the systems fosters the necessary change in working procedures, and proper selec-
tion of the supplier, to deliver the fully integrated system to our company, provides us
with information about the process of implementation of the system with all its
resources, together with the necessary support for our organization.

References

1. Metaxiotis, K.S., Psarras, J.E., Ergazakis, K.A.: Production scheduling in ERP systems: an
Al based approach to face the gap. Bus. Process Manag. J. 9(2), 221-247 (2003)

2. Orlicky, J.A.: Material Requirements Planning—The New Way of Life in Production and
Inventory Management. McGraw-Hill, New York (1975)

142

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

W. Bazan et al.

Tejerina, W.C.: Product dimensions for the software. Jujuy National University of Jujuy
(2014)

Pressman, R.: Software Engineering, 5th edn. McGraw Hill, New York (2010)

Pressman, R.: Good Practices. McGraw Hill, New York (1998)

Scalone, F.: Estudio Comparativo de los Modelos y Estiandares de Calidad de Software.
Buenos Aires, pp. 22-23 (2006)

Bannerman, P.: Risk and risk management in software projects: areassessment. J. Syst. Softw.
81,2118-2133 (2008)

Dolado, J.J., Aguirregoitta, A., Presedo, C.: Study metrics for project control software. In:
Proceedings of the Conference on Software Engineering and Database, SISTEDES,
Barcelona pp. 65-72 (2010)

IEEE: Standard Dictionary of Measures to produce reliable software. IEEE (1998)

. Thayer, R.H.: Software engineering project management, 2nd edn. Wiley - IEEE Computer

Society Press, New York (2001)

Mendoza, L., Perez, M., Griman, A.: Prototype systemic quality model (MOSCA) software.
Comput. Syst. 8, 198-199 (2005)

Serrano, M., Piattini, M., Calero, C., Genero, M., Miranda, D.: A method for defining software
metrics. ALARCOS Group, University of Castilla (2010)

Gorga, G., Madoz, M., Heavy, P.: Towards a proposal of metrics for evaluating educational
software. Laboratory Research and Development in Informatics, pp. 16-18

Duran Rubio, S.E.: Points for function. Metric standard to set the size of the software. Comput.
Policy Bull. 6, 50-63 (2003)

Duran Rubio, S.E.: Puntos por funcién. Métricas estdndar para establecer el tamafio del
software. Boletin de Politica Informética, No. 6, pp. 50-63 (2003)

PMI: A Guide to the Project Management of Body (2013)

Spector, A., Gifford, D.: A computer science perspective of bridge design (2010)

Alba, C.: Prediction and classification of the risk level in systems projects. Oviedo University
(2008)

Fairley, R.: Managing and Leading Software Projects. Wiley - IEEE Computer Society Press,
New York (2009)

Al-Mudimigh, A., Zairi, M., Al-Mashari, M.: ERP software implementation: an integrative
framework. Eur. J. Inf. Syst. 10(4), 216-226 (2001)

Tomala, C., Jazmin, S.: Quality metrics information systems, application quality certification
of a company in the oil and gas sector. Guayaquil-ESPOL (2009)

Garzas, J., Irrazabal, E.: Basic metrics and analysis of open source tools to measure
maintainability. REICIS Rev. Esp. Innovacién 6(3), 55-65 (2010)

Scalone, F.: Comparative study of models and software quality standards (2006)

Kendall, K., Kendall, J.: Analysis and Design of Systems. Ed. Pearson Education, Essex
(2005)

Lafuente, G. J.: Conceptual framework for the definition and exploitation of quality metrics.
Malaga University, Malaga (2014)

	Analysis of Risk Factors of ERP (Enterprise Resource Planning) Systems Information Technologies
	Abstract
	1 Introduction
	2 Quality Software Metrics, Measurement and Indicators
	2.1 Quality Management Software
	2.2 Risk Management Errors
	2.3 Errors Management
	2.4 Measures for Error Handling
	2.5 Systemic Quality Model

	3 Model for Defining Stages in Metric
	3.1 Characteristics of a Functional Metric
	3.2 Metrics Function Points
	3.3 Standard Method Function Point Analysis
	3.4 Steps to Determine a Function Points Metric
	3.5 Software Project Risks

	4 International Standard ISO
	5 Methodology
	6 Conclusions
	References

