
Chapter VI
Fourier Series, Fourier Transform,
and Characteristic Functions

Fourier series andFourier transformprovide oneof themost important tools for analy-
sis and partial differential equations, with widespread applications to physics in par-
ticular and science in general. This is (up to a scalar multiple) a norm-preserving (i.e.,
isometry), linear transformation on the Hilbert space of square-integrable complex-
valued functions. It turns the integral operation of convolution of functions into the
elementary algebraic operation of the product of the transformed functions, and that
of differentiation of a function into multiplication by its Fourier frequency.

Although beyond our scope, this powerful and elegant theory extends beyond
functions on finite-dimensional Euclidean space to infinite-dimensional spaces and
locally compact abelian groups.1 From this point of view, Fourier series is the Fourier
transform on the circle group.

This chapter develops the basic properties of Fourier series and the Fourier trans-
form with applications to the central limit theorem and to transience and recurrence
of random walks.

Consider a real- or complex-valued periodic function on the real line. By changing
the scale if necessary, onemay take the period to be2π. Is it possible to represent f as a
superposition of the periodic functions (“waves”) cos nx , sin nx of frequency n (n =
0, 1, 2, . . .)? In view of Weierstrass approximation theorem, every continuous
periodic function f of period 2π is the limit (in the sense of uniform convergence of
functions) of a sequence of trigonometric polynomials, i.e., functions of the form

T∑

n=−T

cne
inx = c0 +

T∑

n=1

(an cos nx + bn sin nx);

the Bernstein polynomials in eix illustrate one such approximation.

1Extensions of the theory can be found in the following standard references, among others: Rudin
(1967), Grenander (1963), Parthasarathy (1967).
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104 VI Fourier Series, Fourier Transform, and Characteristic Functions

As will be seen, Theorem 6.1 below gives an especially useful version of the
approximation from the perspective of Fourier series. In a Fourier series, the
coefficients of the polynomials are especially defined according to an L2[−π,π]-
orthogonality of the complex exponentials einx = cos(nx) + i sin(nx) as explained
below. For this special choice of coefficients the theory of Fourier series yields,
among other things, that with the weaker notion of L2-convergence the approxi-
mation holds for a wider class of functions, namely for all square-integrable func-
tions f on [−π,π]; here square integrability means that f is measurable and that∫ π

−π | f (x)|2 dx < ∞; denoted f ∈ L2[−π,π]. It should be noted that in general, we
consider integrals of complex-valued functions in this section, and the L p = L p(dx)
spaces are those of complex-valued functions (see Exercise 36 of Chapter I).

The successive coefficients cn for this approximation are the so-called Fourier
coefficients:

cn = 1

2π

∫ π

−π

f (x)e−inx dx (n = 0,±1,±2, . . .). (6.1)

The main point of Theorem 6.1 in this context is to provide a tool for uniformly
approximating continuous functions by trigonometric polynomials whose coeffi-
cients more closely approximate Fourier coefficients than alternatives such as Bern-
stein polynomials.

As remarked above, the functions einx (n = 0,±1,±2, . . .) form an orthonormal
set:

1

2π

∫ π

−π

einxe−imx dx =
{
0, for n �= m,
1 for n = m,

(6.2)

so that the Fourier series of f is written formally, without regard to convergence
for the time being, as

∞∑

n=−∞
cne

inx . (6.3)

As such, this is a representation of f as a superposition of orthogonal components. To
make matters precise we first prove the following useful class of Fejér polynomials;
see Exercise 1 for an alternative approach.

Theorem 6.1 Let f be a continuous periodic function of period 2π. Then, given
δ > 0, there exists a trigonometric polynomial, specifically a Fejér average∑N

n=−N dneinx , where

dn = (1 − |n|
N + 1

)
1

2π

∫ π

−π

f (x)e−inxdx, n = 0,±1,±2, . . . ,

such that

sup
x∈R1

∣∣∣∣∣ f (x) −
N∑

n=−N

dne
inx

∣∣∣∣∣ < δ.

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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Proof For each positive integer N , introduce the Fejér kernel

kN (x) := 1

2π

N∑

n=−N

(
1 − |n|

N + 1

)
einx . (6.4)

This may also be expressed as

2π(N + 1)kN (x) =
∑

0≤ j,k≤N

ei( j−k)x =
∣∣∣∣∣∣

N∑

j=0

ei j x

∣∣∣∣∣∣

2

= 2{1 − (cos(N + 1)x}
2(1 − cos x)

=
(
sin{ 12 (N + 1)x}

sin 1
2 x

)2

. (6.5)

At x = 2nπ (n = 0,±1,±2, . . . ), the right side is taken to be (N + 1)2. The first
equality in (6.5) follows from the fact that there are N +1−|n| pairs ( j, k) in the sum
such that j − k = n. It follows from (6.5) that kN is a positive continuous periodic
function with period 2π. Also, kN is a pdf on [−π,π], since nonnegativity follows
from (6.5) and normalization from (6.4) on integration. For every ε > 0 it follows
from (6.5) that kN (x) goes to zero uniformly on [−π,−ε] ∪ [ε,π], so that

∫

[−π,−ε]∪[ε,π]
kN (x)dx → 0 as N → ∞. (6.6)

In otherwords, kN (x)dx convergesweakly to δ0(dx), the pointmass at 0, as N → ∞.
Consider now the approximation fN of f defined by

fN (x) :=
∫ π

−π

f (y)kN (x − y)dy =
N∑

n=−N

(
1 − |n|

N + 1

)
cne

inx , (6.7)

where cn is the nth Fourier coefficient of f . By changing variables and using the
periodicity of f and kN , one may express fN as

fN (x) =
∫ π

−π

f (x − y)kN (y)dy.

Therefore, writing M = sup{| f (x)| : x ∈ R
k}, and δε = sup{| f (y) − f (y′)| :

|y − y′| < ε}, one has

| f (x)− fN (x)| ≤
∫ π

−π

| f (x− y)− f (x)|kN (y)dy ≤ 2M
∫

[−π,−ε]∪[ε,π]
kN (y)dy+δε.

(6.8)
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It now follows from (6.6) that f − fN converges to zero uniformly as N → ∞. Now
write dn = (1 − |n|/(N + 1))cn . �

Remark 6.1 The representation of the approximating trigonometric polynomial for
f as a convolution f ∗ kN , where kN is a nonegative kernel such that kN ⇒ δ0
is a noteworthy consequence of the proof of Theorem 6.1. The advantages of such
polynomials over an approximation by Bernstein polynomials will become evident
in the context of unique determination of an integrable periodic function, or even a
finite measure on the circle, from its Fourier coefficients; see Proposition 6.3 and
Theorem 6.4 below.

The first task is to establish the convergence of the Fourier series (6.3) to f in L2.
Here the norm ‖ · ‖ is ‖ · ‖2 as defined by (6.10) below. If f (x) = ∑N

n=−N aneinx is a
trigonometric polynomial then the proof is immediate. The general case follows by
a uniform approximation of 2π-periodic continuous function by such trigonometric
polynomials, and finally the density of such continuous functions in L2[−π,π].
Theorem 6.2

a. For every f in L2[−π,π], the Fourier series of f converges to f in L2-norm,
and the identity ‖ f ‖ = (

∑∞
−∞ |cn|2)1/2 holds for its Fourier coefficients cn . Here

‖ · ‖ is defined in (6.10).
b. If (i) f is differentiable, (ii) f (−π) = f (π), and (iii) f ′ is square-integrable,

then the Fourier series of f also converges uniformly to f on [−π,π].
Proof (a) Note that for every square-integrable f and all positive integers N ,

1

2π

∫ π

−π

(
f (x) −

N∑

−N

cne
inx

)
e−imxdx = cm − cm = 0 (m = 0,±1, . . . ,±N ).

(6.9)
Therefore, if one defines the norm (or “length”) of a function g in L2[−π,π] by

‖g‖ =
(

1

2π

∫ π

−π

|g(x)|2dx
)1/2

≡ ‖g‖2, (6.10)

then, writing z̄ for the complex conjugate of z,

0 ≤ ‖ f −
N∑

−N

cne
in·‖2

= 1

2π

∫ π

−π

(
f (x) −

N∑

−N

cne
inx

)(
f̄ (x) −

N∑

−N

c̄ne
−inx

)
dx
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= 1

2π

∫ π

−π

( f (x) −
N∑

−N

cne
inx ) f̄ (x)dx

= ‖ f ‖2 −
N∑

−N

cnc̄n = ‖ f ‖2 −
N∑

−N

|cn|2. (6.11)

This shows that ‖ f − ∑N
−N cnein·‖2 decreases as N increases and that

lim
N→∞ ‖ f −

N∑

−N

cne
in·‖2 = ‖ f ‖2 −

∞∑

−∞
|cn|2. (6.12)

To prove that the right side of (6.12) vanishes, first assume that f is continuous
and f (−π) = f (π). Given ε > 0, there exists, by Theorem 6.1, a trigonometric
polynomial

∑N0
−N0

dneinx such that

max
x

∣∣∣∣∣ f (x) −
N0∑

−N0

dne
inx

∣∣∣∣∣ < ε.

This implies

1

2π

∫ π

−π

∣∣∣∣∣ f (x) −
N0∑

−N0

dne
inx

∣∣∣∣∣

2

dx < ε2. (6.13)

But by (6.9), f (x)−∑N0
−N0

cn exp{inx} is orthogonal to eimx (m = 0,±1, . . . ,±N0),
so that

1

2π

∫ π

−π

∣∣∣∣∣ f (x) −
N0∑

−N0

dne
inx

∣∣∣∣∣

2

dx

= 1

2π

∫ π

−π

∣∣∣∣∣ f (x) −
N0∑

−N0

cne
inx +

N0∑

−N0

(cn − dn)e
inx

∣∣∣∣∣

2

dx

= 1

2π

∫ π

−π

∣∣∣∣∣ f (x) −
N0∑

−N0

cne
inx

∣∣∣∣∣

2

dx

+ 1

2π

∫ π

−π

∣∣∣∣∣

N0∑

−N0

(cn − dn)e
inx

∣∣∣∣∣

2

dx . (6.14)

Hence, by (6.13), (6.14), and (6.11),
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1

2π

∫ π

−π

∣∣∣∣∣ f (x) −
N0∑

−N0

cne
inx

∣∣∣∣∣

2

dx < ε2, lim
N→∞

∥∥∥∥∥ f −
N∑

−N

cne
in·

∥∥∥∥∥

2

≤ ε2. (6.15)

Since ε > 0 is arbitrary, it follows that

lim
N→∞

∥∥∥∥∥ f (x) −
N∑

−N

cne
inx

∥∥∥∥∥ = 0, (6.16)

and by (6.12),

‖ f ‖2 =
∞∑

−∞
|cn|2. (6.17)

This completes the proof of convergence for continuous periodic f . Now it may be
shown that given a square-integrable f and ε > 0, there exists a continuous periodic
g such that ‖ f − g‖ < ε/2 (Exercise 1). Also, letting

∑
aneinx ,

∑
cneinx be the

Fourier series of g, f , respectively, there exists N1 such that

∥∥∥∥∥g −
N1∑

−N1

ane
in·

∥∥∥∥∥ <
ε

2
.

Hence (see (6.14))

∥∥∥∥∥ f −
N1∑

−N1

cne
in·

∥∥∥∥∥ ≤
∥∥∥∥∥ f −

N1∑

−N1

ane
in·

∥∥∥∥∥ ≤ ‖ f − g‖ +
∥∥∥∥∥g −

N1∑

−N1

ane
in·

∥∥∥∥∥

<
ε

2
+ ε

2
= ε. (6.18)

Since ε > 0 is arbitrary and ‖ f (·) − ∑N
−N cnein.‖2 decreases to ‖ f ‖2 − ∑∞

−∞ |cn|2
as N ↑ ∞ (see (6.12)), one has

lim
N→∞

∥∥∥∥∥ f −
N∑

−N

cne
in·

∥∥∥∥∥ = 0; ‖ f ‖2 =
∞∑

−∞
|cn|2. (6.19)

To prove part (b), let f be as specified. Let
∑

cneinx be the Fourier series of f , and∑
c(1)
n einx that of f ′. Then

c(1)
n = 1

2π

∫ π

−π

f ′(x)e−inx dx = 1

2π
f (x)e−inx

∣∣∣∣
π

−π

+ in

2π

∫ π

−π

f (x)e−inx dx

= 0 − incn = −incn . (6.20)

Since f ′ is square-integrable,
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∞∑

−∞
|ncn|2 =

∞∑

−∞
|c(1)

n |2 < ∞. (6.21)

Therefore, by the Cauchy–Schwarz inequality,

∞∑

−∞
|cn| = |c0| +

∑

n �=0

1

|n| |ncn| ≤ |c0| +
⎛

⎝
∑

n �=0

1

n2

⎞

⎠
1/2 ⎛

⎝
∑

n �=0

|ncn|2
⎞

⎠
1/2

< ∞.

(6.22)
But this means that

∑
cneinx is uniformly absolutely convergent, since

max
x

∣∣∣∣∣∣

∑

|n|>N

cne
inx

∣∣∣∣∣∣
≤

∑

|n|>N

|cn| → 0 as N → ∞.

Since the continuous functions
∑N

−N cneinx converge uniformly (as N → ∞) to∑∞
−∞ cneinx , the latter must be a continuous function, say h. Uniform convergence

to h also implies convergence in norm to h. Since
∑∞

−∞ cneinx also converges in
norm to f , f (x) = h(x) for all x . If the two continuous functions f and h are not
identically equal, then

∫ π

−π

| f (x) − h(x)|2dx > 0.

�

Definition 6.1 For a finite measure (or a finite-signed measure) μ on the circle
[−π,π) (identifying −π and π), the nth Fourier coefficient of μ is defined by

cn = 1

2π

∫

[−π,π)

e−inxμ(dx) (n = 0,±1, . . .). (6.23)

If μ has a density f , then (6.23) is the same as the nth Fourier coefficient of f
given by (6.1).

Proposition 6.3 A finite measure μ on the circle is determined by its Fourier coef-
ficients.

Proof Approximate the measure μ(dx) by gN (x) dx , where

gN (x) :=
∫

[−π,π)

kN (x − y)μ(dy) =
N∑

−N

(
1 − |n|

N + 1

)
cne

inx , (6.24)

with cn defined by (6.23). For every continuous periodic function h (i.e., for every
continuous function on the circle),
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∫

[−π,π)

h(x)gN (x) dx =
∫

[−π,π)

(∫

[−π,π)

h(x)kN (x − y) dx

)
μ(dy). (6.25)

As N → ∞, the probability measure kN (x − y) dx = kN (y − x) dx on the circle
converges weakly to δy(dx). Hence, the inner integral on the right side of (6.25)
converges to h(y). Since the inner integral is bounded by sup{|h(y)| : y ∈ R},
Lebesgue’s dominated convergence theorem implies that

lim
N→∞

∫

[−π,π)

h(x)gN (x) dx =
∫

[−π,π)

h(y)μ (dy). (6.26)

This means that μ is determined by {gN : N ≥ 1}. The latter in turn are determined
by {cn}n∈Z. �

We are now ready to answer an important question: When is a given sequence
{cn : n = 0,±1, . . .} the sequence of Fourier coefficients of a finite measure on
the circle? A sequence of complex numbers {cn : n = 0,±1,±2, . . .} is said to be
positive-definite if for any finite sequence of complex numbers {z j : 1 ≤ j ≤ N },
one has

∑

1≤ j,k≤N

c j−k z j z̄k ≥ 0. (6.27)

Theorem 6.4 (Herglotz Theorem) {cn : n = 0,±1, . . .} is the sequence of Fourier
coefficients of a probability measure on the circle if and only if it is positive-definite,
and c0 = 1

2π .

Proof Necessity If μ is a probability measure on the circle, and {z j : 1 ≤ j ≤ N } a
given finite sequence of complex numbers, then

∑

1≤ j,k≤N

c j−k z j z̄k = 1

2π

∑

1≤ j,k≤N

z j z̄k

∫

[−π,π)

ei( j−k)xμ(dx)

= 1

2π

∫

[−π,π)

(
N∑

1

z j e
i j x

) (
N∑

1

z̄ke
−ikx

)
μ(dx)

= 1

2π

∫

[−π,π)

∣∣∣∣∣

N∑

1

z j e
i j x

∣∣∣∣∣

2

μ(dx) ≥ 0. (6.28)

Also,

c0 = 1

2π

∫

[−π,π)

μ(dx) = 1

2π
.
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Sufficiency. Take z j = ei( j−1)x , j = 1, 2, . . . , N + 1, in (6.27) to get

gN (x) := 1

N + 1

∑

0≤ j,k≤N

c j−ke
i( j−k)x ≥ 0. (6.29)

Again, since there are N + 1 − |n| pairs ( j, k) such that j − k = n (−N ≤ n ≤ N )

it follows that (6.29) becomes

0 ≤ gN (x) =
N∑

−N

(
1 − |n|

N + 1

)
einxcn. (6.30)

In particular, using (6.2),

∫

[−π,π)

gN (x)dx = 2πc0 = 1. (6.31)

Hence gN is a pdf on [−π,π]. By Proposition 7.6, there exists a subsequence {gN ′ }
such that gN ′(x) dx converges weakly to a probability measure μ(dx) on [−π,π] as
N ′ → ∞. Also, again using (6.2) yields

∫

[−π,π)

e−inxgN (x)dx = 2π

(
1 − |n|

N + 1

)
cn (n = 0,±1, . . . ,±N ). (6.32)

For each fixed n, restrict to the subsequence N = N ′ in (6.32) and let N ′ → ∞.
Then, since for each n, cos(nx), sin(nx) are bounded continuous functions,

2πcn = lim
N ′→∞ 2π

(
1 − |n|

N ′ + 1

)
cn =

∫

[−π,π)

e−inxμ(dx) (n = 0,±1, . . .).

(6.33)
In other words, cn is the nth Fourier coefficient of μ. �

Corollary 6.5 Asequence {cn : n = 0,±1, . . . }of complex numbers is the sequence
of Fourier coefficients of a finite measure on the circle [−π,π) if and only if {cn :
n = 0,±1, . . . } is positive-definite.
Proof Since the measure μ = 0 has Fourier coefficients cn = 0 for all n, and the
latter is trivially a positive-definite sequence, it is enough to prove the correspon-
dence between nonzero positive-definite sequences and nonzero finite measures. It
follows fromTheorem6.4, by normalization, that this correspondence is 1–1 between
positive-definite sequences {cn : n = 0,±1, . . . } with c0 = c > 0 and measures on
the circle having total mass 2π. �

It is instructive to consider the Fourier transform f̂ of an integrable function f
on R, defined by

http://dx.doi.org/10.1007/978-3-319-47974-3_7
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f̂ (ξ) =
∫ ∞

−∞
eiξy f (y) dy, ξ ∈ R. (6.34)

as a limiting version of a Fourier series. In particular, if f is differentiable and
vanishes outside a finite interval, and if f ′ is square-integrable, then one may use the
Fourier series of f (scaled to be defined on (−π,π]) to obtain (see Exercise 6) the
Fourier inversion formula,

f (z) = 1

2π

∫ ∞

−∞
f̂ (y)e−i zy dy. (6.35)

Moreover, any f that vanishes outside a finite interval and is square-integrable is
automatically integrable, and for such an f one has the Plancherel identity (see
Exercise 6)

‖ f̂ ‖22 :=
∫ ∞

−∞
| f̂ (ξ)|2 dξ = 2π

∫ ∞

−∞
| f (y)|2 dy = 2π‖ f ‖22. (6.36)

The extension of this theory relating to Fourier series and Fourier transforms in
higher dimensions is straightforward along the following lines. The Fourier series of
a square-integrable function f on [−π,π) × [−π,π) × · · · × [−π,π) = [−π,π)k

is defined by
∑

v cv exp{iv · x}, where the summation is over all integral vectors
(or multi-indices) v = (v(1), v(2), . . . , v(k)), each v(i) being an integer. Also, v ·
x = ∑k

i=1 v(i)x (i) is the usual Euclidean inner product on R
k between two vectors

v = (v(1), . . . , v(k)) and x = (x (1), x (2), . . . , x (k)). The Fourier coefficients are given
by

cv = 1

(2π)k

∫ π

−π

· · ·
∫ π

−π

f (x)e−iv·x dx . (6.37)

The extensions of Theorems (and Proposition) 6.1–6.4 are fairly obvious. Similarly,
the Fourier transform of an integrable function (with respect to Lebesgue measure
on R

k) f is defined by

f̂ (ξ) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
eiξ·y f (y) dy (ξ ∈ R

k), (6.38)

the Fourier inversion formula becomes

f (z) = 1

(2π)k

∫ ∞

−∞
· · ·

∫ ∞

−∞
f̂ (ξ)e−i z·ξ dξ, (6.39)

which holds when f (x) and f̂ (ξ) are integrable. The Plancherel identity (6.36)
becomes

∫ ∞

−∞
· · ·

∫ ∞

−∞
| f̂ (ξ)|2 dξ = (2π)k

∫ ∞

−∞
· · ·

∫ ∞

−∞
| f (y)|2 dy, (6.40)
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which holds whenever f is integrable and square-integrable, i.e., Theorem 6.7 below.

Definition 6.2 The Fourier transform2 of an integrable (real- or complex-valued)
function f on R

k is the function f̂ on R
k defined by

f̂ (ξ) =
∫

Rk

eiξ·y f (y) dy, ξ ∈ R
k . (6.41)

As a special case, take k = 1, f = 1(c,d]. Then,

f̂ (ξ) = eiξd − eiξc

iξ
, (6.42)

so that f̂ (ξ) → 0 as |ξ| → ∞. Such “decay”in the Fourier transform is to be
generally expected for integrable functions as follows.

Proposition 6.6 (Riemann–Lebesgue Lemma) The Fourier transform f̂ (ξ) of an
integrable function f on R

k tends to zero in the limit as |ξ| → ∞.

Proof The convergence to zero as ξ → ±∞ illustrated by (6.42) is clearly valid for
arbitrary step functions, i.e., finite linear combinations of indicator functions of finite
rectangles. Now let f be an arbitrary integrable function. Given ε > 0 there exists a
step function fε such that (see Remark following Proposition 2.5)

‖ fε − f ‖1 :=
∫

Rk

| fε(y) − f (y)| dy < ε. (6.43)

Now it follows from (6.41) that | f̂ ε(ξ)− f̂ (ξ)| ≤ ‖ fε− f ‖1 for all ξ. Since f̂ ε(ξ) → 0
as |ξ| → ∞, one has lim sup|ξ|→∞ | f̂ (ξ)| ≤ ε. Since ε > 0 is arbitrary,

f̂ (ξ) → 0 as|ξ| → ∞.

�

Let us now check that (6.35), (6.36), in fact, hold under the followingmore general
conditions

Theorem 6.7 a. If f and f̂ are both integrable, then the Fourier inversion formula
(6.35) holds.

b. If f is integrable as well as square-integrable, then the Plancherel identity (6.36)
holds.

2There are several different ways in which Fourier transforms can be parameterized and/or nor-
malized by extra constant factors and/or a different sign in the exponent. The definition given here
follows the standard conventions of probability theory.

http://dx.doi.org/10.1007/978-3-319-47974-3_2
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Proof (a) Let f, f̂ be integrable. Assume for simplicity that f is continuous. Note
that this assumption is innocuous since the inversion formula yields a continuous
(version of) f (see Exercise 7(i) for the steps of the proof without this a priori
continuity assumption for f ). Let ϕε2 denote the pdf of the Gaussian distribution
with mean zero and variance ε2 > 0. Then writing Z to denote a standard normal
random variable,

f ∗ ϕε2(x) =
∫

R

f (x − y)ϕε2(y)dy = E f (x − εZ) → f (x), (6.44)

as ε → 0. On the other hand (see Exercise 3),

f ∗ ϕε2(x) =
∫

R

f (x − y)ϕε2(y)dy =
∫

R

f (x − y)

{
1

2π

∫

R

e−iξye−ε2ξ2/2dξ

}
dy

= 1

2π

∫

R

e−ε2ξ2/2

{∫

R

eiξ(x−y) f (x − y)dy

}
e−iξxdξ

= 1

2π

∫

R

e−iξxe−ε2ξ2/2 f̂ (ξ)dξ → 1

2π

∫

R

e−iξx f̂ (ξ)dξ (6.45)

as ε → 0. The inversion formula (6.35) follows from (6.44), (6.45). For part (b) see
Exercise 7(ii). �

Remark 6.2 Since L1(R, dx) ∩ L2(R, dx) is dense in L2(R, dx) in the L2-metric,
the Plancheral identity (6.36) may be extended to all of L2(R, dx), extending in this
process the definition of the Fourier transform f̂ of f ∈ L2(R, dx). However, we
do not make use of this extension in this text.

Suppose k = 1 to start. If f is continuously differentiable and f , f ′ are both
integrable, then integration by parts yields (Exercise 2(b))

f̂ ′(ξ) = −iξ f̂ (ξ). (6.46)

The boundary terms in deriving (6.46) vanish, if f ′ is integrable (as well as f ) then
f (x) → 0 as x → ±∞. More generally, if f is r -times continuously differentiable
and f ( j), 0 ≤ j ≤ r , are all integrable, then one may repeat the relation (6.46) to get
by induction (Exercise 2(b))

f̂ (r)(ξ) = (−iξ)r f̂ (ξ). (6.47)

In particular, (6.47) implies that if f , f ′, f ′′ are integrable then f̂ is integrable. Similar
formulae are readily obtained for dimensions k > 1 using integration by parts. From
this and the Riemann–Lebesgue lemma one may therefore observe a clear sense in
which the smoothness of the function f is related to the rate of decay of the Fourier
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transform at ∞. The statements of smoothness in higher dimensions use the multi-
index notation for derivatives: For a k-tuple of positive integersα = (α1, . . . ,αk)

|α| = ∑k
j=1 α j , ∂α = ∂α1

∂x
α1
1

· · · ∂αk

∂x
αk
k

.

Theorem 6.8

a. Suppose f in L1(Rk). For |α| ≤ m, f̂ ∈ Cm , and ∂α f̂ = (i x)α f̂ ).
b. If (i) xα f ∈ Cm , (ii) ∂α f ∈ L1 for α ≤ m, and (iii) ∂α f ∈ C0 for |α| ≤ m − 1,

then ˆ∂α f (ξ) = (iξ)α f̂ (ξ).

Proof To establish part (i) requires differentiation under the integral and induction
on |α|. The differentiation is justified by the dominated convergence theorem. Inte-
gration by parts yields part (ii) in the case |α| = 1, as indicated above. The result
then follows by induction on |α|. �

Definition 6.3 The Fourier transform μ̂ of a finite measure μ on R
k , with Borel

σ-field Bk , is defined by

μ̂(ξ) =
∫

Rk

eiξ·x dμ(x). (6.48)

If μ is a finite-signed measure, i.e., μ = μ1 − μ2 where μ1, μ2 are finite measures,
then also one defines μ̂ by (6.48) directly, or by setting μ̂ = μ̂1 − μ̂2. In particular,
if μ(dx) = f (x) dx , where f is real-valued and integrable, then μ̂ = f̂ . If μ is a
probability measure, then μ̂ is also called the characteristic function of μ, or of any
random vector X = (X1, . . . , Xk) on (Ω,F , P) whose distribution is μ = P ◦ X−1.
In this case, by the change of variable formula, one has the equivalent definition

μ̂(ξ) = Eeiξ·X , ξ ∈ R
k . (6.49)

In the case that Q̂ ∈ L1(Rk) the Fourier inversion formula yields a density function
for Q(dx), i.e., integrability of Q̂ implies absolute continuity of Q with respect to
Lebesgue measure.

We next consider the convolution of two integrable functions f , g:

f ∗ g(x) =
∫

Rk

f (x − y)g(y) dy (x ∈ R
k). (6.50)

Since by the Tonelli part of the Fubini–Tonelli theorem,

∫

Rk

| f ∗ g(x)| dx =
∫

Rk

∫

Rk

| f (x − y)||g(y)| dy dx

=
∫

Rk

| f (x)| dx
∫ ∞

−∞
|g(y)| dy, (6.51)

f ∗ g is integrable. Its Fourier transform is
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( f ∗ g) ˆ(ξ) =
∫

Rk

eiξ·x
(∫

Rk

f (x − y)g(y) dy

)
dx

=
∫

Rk

∫

Rk

eiξ·(x−y)eiξ·y f (x − y)g(y) dy dx

=
∫

Rk

∫

Rk

eiξ·zeiξ·y f (z)g(y) dy dz = f̂ (ξ)ĝ(ξ), (6.52)

a result of importance in both probability and analysis. By iteration, one defines the
n-fold convolution f1 ∗ · · · ∗ fn of n integrable functions f1, . . . , fn and it follows
from (6.52) that ( f1 ∗ · · · ∗ fn) ˆ = f̂ 1 f̂ 2 · · · f̂ n . Note also that if f , g are real-
valued integrable functions and one defines the measures μ, ν by μ(dx) = f (x) dx ,
ν(dx) = g(x) dx , and μ ∗ ν by ( f ∗ g)(x) dx , then

(μ ∗ ν)(B) =
∫

B
( f ∗ g)(x) dx =

∫

Rk

(∫

B
f (x − y) dx

)
g(y) dy

=
∫

Rk

μ(B − y)g(y) dy
∫

Rk

μ(B − y)dν(y), (6.53)

for every interval (or, more generally, for every Borel set) B. Here B − y is the
translate of B by −y, obtained by subtracting from each point in B the number
y. Also (μ ∗ ν) ˆ = ( f ∗ g) ˆ = f̂ ĝ = μ̂ν̂. In general (i.e., whether or not finite-
signed measures μ and/or ν have densities), the last expression in (6.53) defines
the convolution μ ∗ ν of finite-signed measures μ and ν. The Fourier transform of
this finite-signed measure is still given by (μ ∗ ν) ˆ = μ̂ν̂. Recall that if X1, X2 are
independent k-dimensional random vectors on some probability space (Ω,A, P)

and have distributions Q1, Q2, respectively, then the distribution of X1 + X2 is
Q1 ∗ Q2. The characteristic function (i.e., Fourier transform) may also be computed
from

(Q1 ∗ Q2) ˆ(ξ) = Eeiξ·(X1+X2) = Eeiξ·X1Eeiξ·X2 = Q̂1(ξ)Q̂2(ξ). (6.54)

This argument extends to finite-signedmeasures, and is an alternativeway of thinking
about (or deriving) the result (μ ∗ ν) ˆ = μ̂ν̂.

Theorem 6.9 (Uniqueness) Let Q1, Q2 be probabilities on the Borel σ-field of R
k .

Then Q̂1(ξ) = Q̂2(ξ) for all ξ ∈ R
k if and only if Q1 = Q2.

Proof For each ξ ∈ R
k , one has by definition of the characteristic function that

e−iξ·x Q̂1(ξ) = ∫
Rk eiξ(y−x)Q1(dy). Thus, integrating with respect to Q2, one obtains

the duality relation

∫

Rk

e−iξ·x Q̂1(ξ)Q2(dξ) =
∫

Rk

Q̂2(y − x)Q1(dy). (6.55)
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Let ϕ1/σ2(x) = σ√
2π
e− σ2x2

2 , x ∈ R, denote the Gaussian pdf with variance 1/σ2

centered at 0, and take Q2(dx) ≡ Φ1/σ2(dx) := ∏k
j=1 ϕ1/σ2(x j )dx1 · · · dxk in (6.55).

Then Q̂2(ξ) = Φ̂1/σ2(ξ) = e− ∑k
j=1

ξ2j
2σ2 = (

√
2πσ2)k

∏k
j=1 ϕσ2(ξ j ) so that the right-

hand side may be expressed as (
√
2πσ2)k times the pdf of Φσ2 ∗ Q1. In particular,

one has

1

2π

∫

R j

e−iξ·x Q̂1(ξ)e
− ∑k

j=1

σ2ξ2j
2 dξ j =

∫

Rk

k∏

j=1

ϕσ2(y j − x j )Q1(dy).

The right-hand side may be viewed as the pdf of the distribution of the sum of
independent random vectors Xσ2 + Y with respective distributions Φσ2 and Q1.
Also, by the Chebyshev inequality, Xσ2 → 0 in probability as σ2 → 0. Thus the
distribution of X2

σ + Y converges weakly to Q1. Equivalently, the pdf of Xσ2 + Y is
given by the expression on the left side, involving Q1 only through Q̂1. In this way
Q̂1 uniquely determines Q1. �

Remark 6.3 Equation (6.55) may be viewed as a form of Parseval’s relation.

The following version of Parseval relation is easily established by an application
of the Fubini–Tonelli theorem and definition of characteristic function.

Proposition 6.10 (Parseval Relation) Let Q1 and Q2 be probabilities on R
k with

characteristic functions Q̂1 and Q̂2, respectively. Then

∫

Rk

Q̂1(ξ)Q2(dξ) =
∫

Rk

Q̂2(ξ)Q1(dξ).

At this point we have established that the map Q ∈ P(Rk) → Q̂ ∈ P̂(Rk) is
one to one, and transforms convolution as pointwise multiplication. Some additional
basic properties of this map are presented in the exercises. We next consider impor-
tant special cases of an inversion formula for absolutely continuous finite (signed)
measures μ(dx) = f (x)dx on R

k . This is followed by a result on the continuity of
the map Q → Q̂ for respectively the weak topology on P(Rk) and the topology
of pointwise convergence on P̂(Rk). Finally the identification of the range of the
Fourier transform of finite positive measures is provided. Such results are of notable
theoretical and practical value.

Next we will see that the correspondence Q �→ Q̂, on the set of probability
measures with the weak topology onto the set of characteristic functions with the
topology of pointwise convergence is continuous, thus providing a basic tool for
obtaining weak convergence of probabilities on the finite-dimensional space R

k .

Theorem 6.11 (Cramér–Lévy Continuity Theorem) Let Pn(n ≥ 1) be probability
measures on (Rk,Bk).

a. If Pn converges weakly to P , then P̂n(ξ) converges to P̂(ξ) for every ξ ∈ R
k .
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b. If for some continuous function ϕ one has P̂n(ξ) → ϕ(ξ) for every ξ, then ϕ is
the characteristic function of a probability P , and Pn converges weakly to P .

Proof (a) Since P̂n(ξ), P̂(ξ) are the integrals of the bounded continuous function
exp{iξ·x}with respect to Pn and P , it follows from the definition ofweak convergence
that P̂n(ξ) → P̂(ξ). (b) We will show that {Pn : n ≥ 1} is tight. First, let k = 1. For
δ > 0 one has

1

2δ

∫ δ

−δ

(1 − P̂n(ξ))dξ = 1

2δ

∫

R

{∫ δ

−δ

(1 − eiξx )dξ

}
Pn(dx)

= 1

2δ

∫

R

(2δ − ξ[
sin(ξx)

ξx

∣∣δ−δ

)
Pn(dx)

= 1

2δ

∫

R

(
2δ − 2δ

sin(δx)

δx

)
Pn(dx)

=
∫

R

(
1 − sin(δx)

δx

)
Pn(dx)

≥ 1

2
Pn({x : |δx | ≥ 2}) = 1

2
Pn

({
x : |x | ≥ 2

δ

})
.

Hence, by assumption,

Pn

({
x : |x | ≥ 2

δ

})
≤ 2

2δ

∫ δ

−δ

(1 − P̂n(ξ))dξ → 2

2δ

∫ δ

−δ

(1 − ϕ(ξ))dξ,

as n → ∞. Since ϕ is continuous and ϕ(0) = 1, given any ε > 0 one may choose
δ > 0 such that (1 − ϕ(ξ)) ≤ ε/4 for |ξ| ≤ δ. Then the limit in (6.56) is no more
than ε/2, proving tightness. For k > 1, consider the distribution Pj,n under Pn of the
one-dimensional projections x = (x1, . . . , xk) �→ x j for each j = 1, . . . , k. Then
P̂j,n(ξ j ) = P̂n(0, . . . , 0, ξ j , 0, . . . , 0) → ϕ j (ξ j ) := ϕ(0, . . . , 0, ξ j , 0, . . . , 0) for
all ξ j ∈ R

1. The previous argument shows that {Pj,n : n ≥ 1} is a tight family for
each j = 1, . . . , k. Hence there is a δ > 0 such that Pn({x ∈ R

k : |x j | ≤ 2/δ, j =
1, . . . , k}) ≥ 1 − ∑k

j=1 Pj,n({x j : |x j | ≥ 2/δ}) ≥ 1 − kε/2 for all sufficiently
large n, establishing the desired tightness. By Prohorov’s Theorem (Theorem 7.11),
there exists a subsequence of {Pn}∞n=1, say {Pnm }∞m=1, that converges weakly to some
probability P . By part (a), P̂nm (ξ) → P̂(ξ), so that P̂(ξ) = ϕ(ξ) for all ξ ∈ R

k .
Since the limit characteristic functionϕ(ξ) is the same regardless of the subsequence
{Pnm }∞m=1, it follows that Pn converges weakly to P as n → ∞. �

The law of rare events, orPoisson approximation to the binomial distribution,
provides a simple illustration of the Cramér–Lévy continuity Theorem 6.11.

Proposition 6.12 (Law of Rare Events) For each n ≥ 1, suppose that Xn,1, . . . , Xn,n

is a sequence of n i.i.d. 0 or 1-valued random variables with pn = P(Xn,k = 1),
qn = P(Xn,k = 0),where limn→∞ npn = λ > 0,qn = 1−pn . ThenYn = ∑n

k=1 Xn,k

converges in distribution to Y , where Y is distributed by the Poisson law

http://dx.doi.org/10.1007/978-3-319-47974-3_7
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P(Y = m) = λm

m! e
−λ,

m = 0, 1, 2, . . . .

Proof Using the basic fact that limn→∞(1 + an
n )n = elimn an whenever {an}∞n=1 is a

sequence of complex numbers such that limn an exists, one has by independence,
and in the limit as n → ∞,

EeiξYn = (
qn + pne

iξ
)n =

(
1 + npn(eiξ − 1)

n

)n

→ exp(λ(eiξ − 1)), ξ ∈ R.

One may simply check that this is the characteristic function of the asserted limiting
Poisson distribution. �

The development of tools for Fourier analysis of probabilities is concluded with
an application of the Herglotz theorem (Theorem 6.4) to identify the range of the
Fourier transform of finite positive measures.

Definition 6.4 A complex-valued function ϕ on R
k is said to be positive-definite

if for every positive integer n and finite sequences {ξ1, ξ2, . . . , ξn} ⊂ R
k and

{z1, z2, . . . , zn} ⊂ C (the set of complex numbers), one has

∑

1≤ j,k≤n

z j z̄kϕ(ξ j − ξk) ≥ 0. (6.56)

Theorem 6.13 (Bochner’s theorem) A function ϕ on R
k is the Fourier transform of

a finite measure on R
k if and only if it is positive-definite and continuous.

Proof We give the proof in the case k = 1 and leave k > 1 to the reader. The proof of
necessity is entirely analogous to (6.28). It is sufficient to consider the caseϕ(0) = 1.
For each positive integer N , c j,N := ϕ(− j2−N )), j = 0,±1,±2, . . . , is positive-
definite in the sense of (6.27). Hence, by the Herglotz theorem, there exists a proba-
bility γN on [−π,π) such that c j,N = (2π)−1

∫
[−π,π)

e−i j xγN (dx) for each j . By the

change of variable x → 2N x , one has ϕ( j2−N ) = (2π)−1
∫
[−2Nπ,2Nπ)

ei j2
−N xμN (dx)

for some probability μN (dx) on [−2Nπ, 2Nπ). The characteristic function μ̂N (ξ) :=∫
R1 eiξxμN (dx) agrees with ϕ at all dyadic rational points j2−N , j ∈ Z, dense in R.
To conclude the proof we note that one may use the continuity of ϕ(ξ) to see that
the family of functions μ̂N (ξ) is equicontinuous by the lemma below. With this it
will follow by the Arzelà–Ascoli theorem (Appendix B) that there is a subsequence
that converges pointwise to a continuous function g on R. Since g and ϕ agree on a
dense subset of R, it follows that g = ϕ. �

Lemma 1 (An Equicontinuity Lemma)

a. Let ϕN , N ≥ 1, be a sequence of characteristic functions of probabilities μN . If
the sequence is equicontinuous at ξ = 0 then it is equicontinuous at all ξ ∈ R.
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b. In the notation of the above proof of Bochner’s theorem, let μN be the probability
on [−2Nπ, 2Nπ] with characteristic function ϕN = μ̂N , where ϕN (ξ) = ϕ(ξ)
for ξ = j2−N , j ∈ Z. Then, (i) for h ∈ [−1, 1], 0 ≤ 1 − ReϕN (h2−N ) ≤
1 − Reϕ(2−N ). (ii) ϕN is equicontinuous at 0, and hence at all points of R

(by (i)).

Proof For the first assertion (a) simply use the Cauchy–Schwarz inequality to check
that |ϕN (ξ) − ϕN (ξ + η)|2 ≤ 2|ϕN (0) − ReϕN (η)|.

For (i) of the second assertion (b), write the formula and note that 1− cos(hx) ≤
1 − cos(x) for −π ≤ x ≤ π, 0 ≤ h ≤ 1. For (ii), given ε > 0 find δ > 0, (0 <

δ < 1) such that |1 − ϕ(θ)| < ε for all |θ| < δ. Now express each such θ as
θ = (hN + kN )2−N , where kN = [2Nθ] is the integer part of 2Nθ, and hN =
2Nθ−[2Nθ] ∈ [−1, 1].Using the inequality |a+b|2 ≤ 2|a|2+2|b|2 togetherwith the
inequality in the proof of (a), one has that |1−ϕN (θ)|2 = |1−ϕN ((hN+kN )2−N )|2 ≤
2|1 − ϕ(kN2−N )|2 + 4|1 − Reϕ(2−N )| ≤ 2ε2 + 4ε. �

Wewill illustrate the useof characteristic functions in twoprobability applications.
For the first, let us recall the general random walk on R

k from Chapter II. A basic
consideration in the probabilistic analysis of the long-run behavior of a stochastic
evolution involves frequencies of visits to specific states.

Let us consider the random walk Sn := Z1 + · · · + Zn, n ≥ 1, starting at S0 = 0.
The state 0 is said to be neighborhood recurrent if for every ε > 0, P(Sn ∈
Bε i.o.) = 1, where Bε = {x ∈ R

k : |x | < ε}. It will be convenient for the
calculations to use the rectangular norm |x | := max{|x j | : j = 1, . . . , k}, for
x = (x1, . . . , xk). All finite-dimensional norms being equivalent, there is no loss of
generality in this choice.

Observe that if 0 is not neighborhood recurrent, then for some ε > 0, P(Sn ∈
Bε i.o.) < 1, and therefore by the Hewitt–Savage 0-1 law, P(Sn ∈ Bε i.o.) = 0.
Much more may be obtained with regard to recurrence dichotomies, expected return
times, nonrecurrence, etc., which is postponed to a fuller treatment of stochastic
processes. However, the following lemma is required for the result given here. As a
warm-up, note that by the Borel–Cantelli lemma I, if

∑∞
n=1 P(Sn ∈ Bε) < ∞ for

some ε > 0 then 0 cannot be neighborhood recurrent. In fact one has the following
basic result.

Lemma 2 (Chung–Fuchs) 0 is neighborhood recurrent if and only if for all ε > 0,∑∞
n=1 P(Sn ∈ Bε) = ∞.

Proof As noted above, if for some ε > 0,
∑∞

n=1 P(Sn ∈ Bε) < ∞, then with
probability one, Sn will visit Bε at most finitely often by the Borel–Cantelli lemma
I. So it suffices to show that if

∑∞
n=1 P(Sn ∈ Bε) = ∞ for every ε > 0 then Sn will

http://dx.doi.org/10.1007/978-3-319-47974-3_2
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visit any given neighborhood of zero infinitely often with probability one. The proof
is based on establishing the following two calculations:

(A)
∞∑

n=1

P(Sn ∈ Bε) = ∞ ⇒ P(Sn ∈ B2ε i.o.) = 1,

(B)
∞∑

n=1

P(Sn ∈ Bε) ≥ 1

(2m)k

∞∑

n=1

P(Sn ∈ Bmε), m ≥ 2.

In particular,
∑∞

n=0 P(Sn ∈ Bε) = ∞ for some ε > 0, then from (B),
∑∞

n=0 P(Sn ∈
Bε′) = ∞ for all ε′ < ε. In view of (A) this would make 0 neighborhood recurrent.
To prove (A), let Nε := card{n ≥ 0 : Sn ∈ Bε} count the number of visits to Bε. Also
let Tε := sup{n : Sn ∈ Bε} denote the (possibly infinite) time of the last visit to Bε.
To prove (A) we will show that if

∑∞
m=0 P(Sm ∈ Bε) = ∞, then P(T2ε = ∞) = 1.

Let r be an arbitrary positive integer. One has

P(|Sm | < ε, |Sn| ≥ ε,∀n ≥ m + r)

= P(m ≤ Tε < m + r)

= P(Tε = m) + P(Tε = m + 1) + · · · + P(Tε = m + r − 1).

Hence,

∞∑

m=1

P(|Sm | < ε, |Sn | ≥ ε,∀n ≥ m+r) =
∞∑

m=1

P(Tε = m)+· · ·+
∞∑

m=1

P(Tε = m+r−1) ≤ r.

Thus,

r ≥
∞∑

m=0

P(Sm ∈ Bε, |Sn| ≥ ε ∀ n ≥ m + r)

≥
∞∑

m=0

P(Sm ∈ Bε, |Sn − Sm | ≥ 2ε ∀ n ≥ m + r)

=
∞∑

m=0

P(Sm ∈ Bε)P(|Sn| ≥ 2ε ∀ n ≥ r). (6.57)

Assuming
∑∞

m=0 P(Sm ∈ Bε) = ∞, one must therefore have P(T2ε ≤ r) ≤
P(|Sn| ≥ 2ε ∀ n ≥ r) = 0. Thus P(T2ε < ∞) = 0. For the proof of (B), let
m ≥ 2 and for x = (x1, . . . , xk) ∈ R

k , define τx = inf{n ≥ 0 : Sn ∈ Rε(x)}, where
Rε(x) := [0, ε)k + x := {y ∈ R

k : 0 ≤ yi − xi < ε, i = 1, . . . , k} is the translate of
[0, ε)k by x , i.e., “square with lower left corner at x of side lengths ε.” For arbitrary
fixed x ∈ {−mε,−(m − 1)ε, . . . , (m − 1)ε}k ,
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∞∑

n=0

P(Sn ∈ Rε(x)) =
∞∑

m=0

∞∑

n=m

P(Sn ∈ Rε(x), τx = m)

≤
∞∑

m=0

∞∑

n=m

P(|Sn − Sm | < ε, τx = m)

=
∞∑

m=0

P(τx = m)

∞∑

j=0

P(Sj ∈ Bε)

≤
∞∑

j=0

P(Sj ∈ Bε).

Thus, it now follow that

∞∑

n=0

P(Sn ∈ Bmε) ≤
∞∑

n=0

∑

x∈{−mε,−(m−1)ε,...,(m−1)ε}k
P(Sn ∈ Rε(x))

=
∑

x∈{−mε,−(m−1)ε,...,(m−1)ε}k

∞∑

n=0

P(Sn ∈ Rε(x))

≤ (2m)k
∞∑

n=0

P(Sn ∈ Bε).

�

Remark 6.4 On a countable state space such as Z
d , the topology is discrete and { j}

is an open neighborhood of j for every state j . Hence neighborhood recurrence is
equivalent to point recurrence. Using the so-called strongMarkov property discussed
in ChapterXI, one may show that if a state i of a Markov chain on a countable state
space is point recurrent, then the probability of reaching a state j , starting from i , is
one, provided that the n-step transition probability from i to j , p(n)

i j , is nonzero for
some n; see Example 1 below, and Exercise 5 of Chapter XI.

Example 1 (Polya’s Theorem) The simple symmetric random walk {Sn : n =
0, 1, 2, . . . } on Z

k starting at S0 = 0 is defined by the random walk with the discrete
displacement distribution Q({e j }) = Q({−e j }) = 1

2k , j = 1, 2, . . . , k, where e j
is the j th standard basis vector, i.e., j th column of the k × k identity matrix. For
k = 1 the recurrence follows easily from Lemma 2 by the combinatorial identity
P(S2n = 0) = (2n

n

)
2−2n and Stirling’s formula. For k = 2, one may rotate the

coordinate axis by π/4 to map the simple symmetric two-dimensional random walk
onto a randomwalk on the rotated lattice having independent one-dimensional simple
symmetric random walk coordinates. It then follows for the two-dimensional walk
that P(S2n = 0) = (

(2n
n

)
2−2n)2, from which the point recurrence also follows in two

dimensions. Combinatorial arguments for the transience in three or more dimensions

http://dx.doi.org/10.1007/978-3-319-47974-3_11
http://dx.doi.org/10.1007/978-3-319-47974-3_11
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are also possible, but quite a bit more involved. An alternative approach by Fourier
analysis is given below.

We turn now to conditions on the distribution of the displacements for neighbor-
hood recurrence in terms of Fourier transforms. If, for example, EZ1 exists and is
nonzero, then it follows from the strong law of large numbers that a.s. |Sn| → ∞.
The following is a complete characterization of neighborhood recurrence in terms of
the distribution of the displacements. A simpler warm-up version for random walks
on the integer lattice is given in Exercise 25. In the following theorem Re(z) refers
to the real part of a complex number z.

Theorem 6.14 (Chung–Fuchs Recurrence Criterion) Let Z1, Z2, . . . be an i.i.d.
sequence of random vectors in R

k with common distribution Q. Let {Sn = Z1 +
· · · + Zn : n ≥ 1}, S0 = 0, be a random walk on R

k starting at 0. Then 0 is a
neighborhood-recurrent state if and only if for every ε > 0,

sup
0<r<1

∫

Bε

Re

(
1

1 − r Q̂(ξ)

)
dξ = ∞.

Proof First observe that the “triangular probability density function” f̂ (ξ) = (1 −
|ξ|)+, ξ ∈ R, has the characteristic function f (x) = 21−cos(x)

x2 , x ∈ R, and therefore,
1
2π f (x) has characteristic function f̂ (ξ) (Exercise 23). One may also check that

f (x) ≥ 1/2 for |x | ≤ 1 (Exercise 23). Also f(x) := ∏k
j=1 f (x j ), x = (x1, . . . , xk),

has characteristic function f̂(ξ) = ∏k
j=1 f̂ (ξ j ), and f̂ has characteristic function

(2π)kf . In view of Parseval’s relation (Proposition 6.10), one may write

∫

Rk

f
( x
λ

)
Q∗n(dx) = λk

∫

Rk

f̂(λξ)Q̂n(ξ)dξ,

for any λ > 0, n ≥ 1. Using the Fubini–Tonelli theorem one therefore has for
0 < r < 1 that

∫

Rk

f(
x
λ

)

∞∑

n=0

rnQ∗n(dx) = λk
∫

Rk

f̂(λξ)

1 − r Q̂(ξ)
dξ.

Also, since the integral on the left is real, the right side must also be a real integral.
For what follows note that when an indicated integral is real, one may replace the
integrand by its respective real part. Suppose that for some ε > 0,

sup
0<r<1

∫

B 1
ε

Re

(
1

1 − r Q̂(ξ)

)
dξ < ∞.

Then, it follows that
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∞∑

n=1

P(Sn ∈ Bε) =
∞∑

n=1

Q∗n(Bε) ≤ 2k
∫

Rk

f(
x
ε
)

∞∑

n=0

Q∗n(dx)

≤ 2kεk sup
0<r<1

∫

Rk

f̂(εξ)

1 − r Q̂(ξ)
dξ

≤ 2kεk sup
0<r<1

∫

B 1
ε

Re

(
1

1 − r Q̂(ξ)

)
dξ < ∞.

Thus, in view of of Borel–Cantelli I, 0 cannot be neighborhood recurrent.
For the converse, suppose that 0 is not neighborhood recurrent. Then, by Lemma

2, one must have for any ε > 0 that
∑∞

n=1 Q
∗n(Bε) < ∞.

Let ε > 0. Then, again using the Parseval relation with (2π)k f̂ as the Fourier
transform of f ,

sup
0<r<1

∫

Bε

Re

(
1

1 − r Q̂(ξ)

)
dξ ≤ 2k sup

0<r<1

∫

Bε

Re

(
f( x

ε
)

1 − r Q̂(x)

)
dx

≤ 2k(2π)kεk sup
0<r<1

∫

Rk

f̂(εx)
∞∑

n=0

rnQ∗n(dx)

≤ 2k(2π)kεk
∫

Bε−1

f̂(εx)
∞∑

n=0

Q∗n(dx)

≤ (4επ)k
∞∑

n=1

Q∗n(Bε−1) < ∞.

�

Corollary 6.15 If
∫
Bε
Re

(
1

1−Q̂(ξ)

)
dξ = ∞ for ε > 0, then the random walk with

displacement distribution Q is neighborhood recurrent.3 [Hint: Pass to the limit as

r → 1 in 0 ≤ Re
(

1
1−r Q̂(ξ)

)
, using the Chung–Fuchs criterion]

Example 2 (Gaussian RandomWalk) Suppose that Q is the k-dimensional standard

normal distribution. Then Q̂(ξ) = e− |ξ|2
2 , ξ ∈ R

k .

We now turn to a hallmark application of Theorem 6.11 in probability to prove
the celebrated Theorem 6.16 below. First, we need an estimate on the error in the
Taylor polynomial approximation to the exponential function. The following lemma
exploits the special structure of the exponential to obtain two bounds: a “good small x
bound” and a “good large x bound”, each of which is valid for all x .

3That the converse is also true was independently established in Stone, C. J. (1969): On the potential
operator for one-dimensional recurrent random walks, Trans. AMS, 136 427–445, and Ornstein, D.
(1969): Random walks, Trans. AMS, 138, 1–60.



VI Fourier Series, Fourier Transform, and Characteristic Functions 125

Lemma 3 (Taylor Expansion of Characteristic Functions) Suppose that X is a ran-
dom variable defined on a probability space (Ω,F , P) such that E|X |m < ∞. Then

∣∣∣∣∣Ee
iξX −

m∑

k=0

(iξ)k

k! EXk

∣∣∣∣∣ ≤ Emin

{ |ξ|m+1|X |m+1

(m + 1)! , 2
|ξ|m |X |m

m!
}

, ξ ∈ R.

Proof Let fm(x) = eix − ∑m
j=0

(i x) j

j ! . Note that fm(x) = i
∫ x
0 fm−1(y)dy. Iteration

yields a succession ofm−1 iterated integralswith integrand ofmodulus | f0(ym−1)| =
|eiym−1 − 1| ≤ 2. The iteration of the integrals is therefore at most 2 |x |m

m! . To obtain
the other bound note the following integration by parts identity:

∫ x

0
(x − y)meiydy = xm+1

m + 1
+ i

m + 1

∫ x

0
(x − y)m+1eiydy.

This defines a recursive formula that by induction leads to the expansion

eix =
m∑

j=0

(i x) j

j ! + im+1

m!
∫ x

0
(x − y)meiydy. (6.58)

For x ≥ 0, bound the modulus of the integrand by |x − y|m ≤ ym to get the bound on
the modulus of the integral term by |x |m+1

(m+1)! . Similarly for x < 0. Since both bounds
hold for all x , the smaller of the two also holds for all x . Now replace x by |ξX | and
take expected values to complete the proof. �

Theorem 6.16 (The Classical Central Limit Theorem) Let Xn, n ≥ 1, be i.i.d. k-
dimensional random vectors with (common) mean μ and a finite covariance matrix
D. Then the distribution of (X1 + · · · +Xn − nμ)/

√
n converges weakly to ΦD , the

normal distribution on R
k with mean zero and covariance matrix D.

Proof It is enough to prove the result for μ = 0 and D = I , the k× k identity matrix
I , since the general result then follows by an affine linear (and hence continuous)
transformation. First, consider the case k = 1, {Xn : n ≥ 1} i.i.d.EXn = 0,EX2

n = 1.
Let ϕ denote the (common) characteristic function of Xn . Then the characteristic
function, say ϕn , of (X1 + · · · + Xn)/

√
n is given at a fixed ξ by

ϕn(ξ) = ϕn(ξ/
√
n) =

(
1 − ξ2

2n
+ o

(
1

n

))n

, (6.59)

where no( 1n ) = o(1) → 0 as n → ∞. The limit of (6.59) is e− ξ2

2 , the characteristic
function of the standard normal distribution, which proves the theorem for the case
k = 1, using Theorem 6.11(b).

For k > 1, letXn, n ≥ 1, be i.i.d.withmean zero and covariancematrix I . Then for
each fixed ξ ∈ R

k , ξ �= 0, Yn = ξ ·Xn , n ≥ 1, defines an i.i.d. sequence of real-valued
random variables with mean zero and variance σ2

ξ = ξ · ξ. Hence by the preceding,
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Zn := (Y1 + · · · + Yn)/
√
n converges in distribution to the one-dimensional normal

distribution with mean zero and variance ξ · ξ, so that the characteristic function of
Zn converges to the function η �→ exp{−(ξ · ξ)η2/2}, η ∈ R. In particular, at η = 1,
the characteristic function of Zn is

Eeiξ·(X1+···+Xn)/
√
n → e−ξ·ξ/2. (6.60)

Since (6.60) holds for every ξ ∈ R
k , the proof is complete by the Cramér–Lévy

continuity theorem. �

Let us now establish the Berry–Esseen bound on the rate of convergence first
noted in Chapter IV.4

Theorem 6.17 (Berry–Esseen Convergence Rate) Let X1, X2, . . . be an i.i.d.
sequence of random variables having finite third moments ρ = E|X1|3 < ∞, with
mean μ and variance σ2. Then, for Sn = X1 + · · · + Xn, n ≥ 1, one has

sup
x∈R

|P(
Sn − nμ

σ
√
n

≤ x) − Φ(x)| ≤ 3E|X1|3
σ3

√
n

.

The proof rests on the following lemma5 exploiting the fact that for any T > 0,
the clearly integrable function ωT (ξ) := 1− |ξ|

T , |ξ| ≤ T , and zero on |ξ| ≥ T , is by
Bochner’s theorem the characteristic function of a probability distribution. In fact,
one can exhibit this distribution as vT (x) := 1

π
1−cos(T x)

T x2 , x ∈ R.

Lemma 4 Let F be a distribution function on R, and G any function on R such that
limx→−∞ G(x) = 0, limx→∞ G(x) = 1, and having bounded derivative |G ′(x)| ≤
m < ∞. Then, for T > 0,

sup
y∈R

|
∫

R

(F(y − x) −G(y − x))
1

π

1 − cos(T x)

T x2
dx | ≥ 1

2
sup
x∈R

|F(x) −G(x)| − 12m

πT
.

Proof Let Δ(x) = F(x) − G(x), x ∈ R. Since G is continuous and F has left
and right limits at any point x ∈ R, so does Δ(x). Also Δ(x) → 0 asx → ±∞.
So there is an x0 such that either |Δ(x+

0 )| or |Δ(x−
0 )| takes the maximum value

η = supx∈R |Δ(x)|. Say |Δ(x0)| = η. We take Δ(x0) = η, by changing F − G to
G − F in the desired inequality, if necessary. Since F is nondecreasing |G ′(x)| is
bounded bym,Δ(x0+s) ≥ η−ms, s > 0. Taking h = η/2m, y = x0+h, x = h−s,
for |x | ≤ h one has

Δ(y − x) ≥ η

2
+ mx .

4A comprehensive account of errors of normal approximation for the clt in general multidimensions
may be found in Bhattacharya, R. and R. Ranga Rao (2010).
5The proof given here follows that given in Feller, W. (1971), vol 2. Feller refers to this particular
estimate, attributed to A.C. Berry, as the smoothing inequality.

http://dx.doi.org/10.1007/978-3-319-47974-3_4
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For |x | > h, Δ(y − x) ≥ −η. This, and the properties that vT is symmetric about
x = 0, and

∫
|x |>h vT (x)dx ≤ 4

πTh , provides the asserted bounds as follows:

sup
y∈R

|
∫

R

(F(y − x) − G(y − x))
1

π

1 − cos(T x)

T x2
dx |

≥
∫

R

Δ(y − x)vT (x)dx

≥ η

2
(1 − 4

πTh
) − η

4

πTh
. (6.61)

This is the asserted lower bound. �

Proof of Berry–Esseen theorem Let Q(dx) denote the distribution of X1. Apply
Lemma 4 to F(x) = Fn(x) = P(

Sn−nμ
σ
√
n

≤ x), x ∈ R, and G(x) = Φ(x), x ∈ R,

with, using Liapounov inequality,

T = 4

3

σ3

ρ

√
n ≤ 4

3

√
n.

The integral on the left side of Lemma 4 is the distribution function of the signed
measure (Fn − Φ) ∗ vT whose density is given by Fourier inversion as

1

2π

∫

R

e−iξx (ϕn(
ξ

σ
√
n

) − e− ξ2

2 )v̂T (ξ)dξ = d

dx

∫

R

e−iξx

−iξ
(ϕn(

ξ

σ
√
n

) − e− ξ2

2 )v̂T (ξ)dξ.

Thus the integral on the right equals the integral on the left in the lemma. Since
|Φ ′(x)| = m < 2/5, the smoothing lemma now yields

π|Fn(x) − Φ(x)| ≤
∫ T

−T
|ϕn(

ξ

σn
) − e− ξ2

2 |dξ

|ξ| + 9.6

T
. (6.62)

Recall (6.58) from which it follows that |eix − ∑n−1
j=0

(i x) j

j ! | ≤ xn

n! , x > 0, n =
1, 2, . . . . Thus,

|ϕ(x) − 1 + 1

2
σ2x2| = |

∫

R

(eixy − 1 − i xy + 1

2
y2x2)Q(dy)| ≤ 1

6
ρ|x |3. (6.63)

Since e−x − 1 + x ≤ x2

2 , x > 0, one has
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|ϕ(
ξ

σ
√
n
) − e− ξ2

2n | ≤ |ϕ(
ξ

σ
√
n
) − 1 + ξ2

2n
|

+ |1 − ξ2

2n
− e− ξ2

2n |

≤ 1

6σ3n
3
2

|ξ|3 + |ξ|4
8n2

. (6.64)

Also from (6.63), |ϕ(x)| ≤ 1 − 1
2σ

2x2 + ρ
6 |x |3, for 1

2σ
2x2 ≤ 1. So for |ξ| ≤ T one

has

|ϕ(
ξ

σ
√
n
)| ≤ 1 − 1

2n
ξ2 + ρ

6σ3n
3
2

|ξ|3 ≤ 1 − 5

18n
ξ2 ≤ e− 5

18n ξ2 .

Since σ3 < ρ, assume n ≥ 10; otherwise the theorem is clearly true for
√
n ≤ 3. In

this case, |ϕ(
ξ

σ
√
n
)|n−1 ≤ e− 1

4 ξ2 . These estimates can be used to bound the integrand

on the right side of (6.62) based on the simple inequality |an−bn| ≤ n|a−b|cn−1, for

|a| ≤ c, |b| ≤ c, with a = ϕ(
ξ

σ
√
n
), b = e− ξ2

2n , c = e− ξ2

4 . In particular, for
√
n > 3,

one obtains using this inequality that

|ϕn(
ξ

σn
) − e− ξ2

2 | ≤ 1

T
(
2

9
ξ2 + 1

18
|ξ|3)e− 1

4 ξ2 .

Inserting this (integrable) bound on the integrand in (6.62) and integrating by parts,
yields

π|Fn(x) − Φ(x)| ≤ 8

9

√
π + 98

99
.

The assertion follows since
√

π < 9
5 making the right side smaller than 4π. �

Remark 6.5 After a rather long succession of careful estimates, the constant c = 3
in Feller’s bound cρ/σ3√n has been reduced6 to c = 0.5600 as best to date.

Definition 6.5 A nondegenerate distribution Q on R, i.e., Q �= δ{c}, is said to be
stable if for every integer n there is a centering constant cn and a scaling index α > 0
such that n− 1

α (X1 +· · ·+ Xn − cn) has distribution Q whenever X j , j ≥ 1, are i.i.d.
with distribution Q.

It is straightforward to check that the normal distribution and Cauchy distribution
are both stable with respective indices α = 2 and α = 1. Notice also that it follows
directly from the definition that every stable distribution Q is infinitely divisible in
the sense that for any integer n ≥ 1, there is a probability distribution Qn such that
Q may be exposed as an n-fold convolution Q = Q∗n

n .

6See Shevtsova, I. G. (2010): An Improvement of Convergence Rate Estimates in the Lyapunov
Theorem, Doklady Math. 82(3), 862–864.
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The following example7 illustrates a general framework inwhich symmetric stable
laws arise naturally.

Example 3 (One-dimensional Holtzmark problem) Consider 2n points (eg., masses
or charges) X1, . . . , X2n independently and uniformly distributed within an interval
[−n, n] so that the density of points is one. Suppose that there is a fixed point (mass,
charge) at the origin that exerts an inverse r th power force on the randomly distributed
points, where r > 1/2. That is, the force exerted by the point at the origin on amass at
location x is −sgn(x)|x |−r . Let Fn = −∑2n

j=1
sgn(X j )

|X j |r denote the total force exerted
by the origin on the 2n points. The characteristic function of the limit distribution
Qr of Fn as n → ∞ may be calculated as follows: For ξ > 0, using an indicated
change of variable,

EeiξFn =
(

E cos(
ξsgn(X1)

|X1|r )

)2n

=
(
1 − ξ

1
r

nr

∫ ∞

ξ( 1
n )r

(1 − cos(y))y− r+1
r dy

)2n

→ e−aξα

,

where α = 1/r . This calculation uses the fact that |1 − cos(y)| ≤ 2 to obtain
integrability on [1,∞). Also 1−cos(y)

y2 → 1 as y ↓ 0 on (0, 1). So one has 0 < a < ∞
for 0 < 1

r < 2. Similar calculation holds for ξ < 0 to obtain e−a|ξ| 1r . In particular
Qr is a so-called symmetric stable distribution with index α = 1

r ∈ (0, 2) in the

following sense: If F (∞)
1 , F (∞)

2 , . . . are i.i.d. with distribution Qr , then m−r (F (∞)
1 +

· · · + F (∞)
m ) has distribution Qr . This example includes all such one-dimensional

symmetric stable distributions with the notable exception ofα = 2, corresponding to
the normal distribution. The caseα = 2 represents a different phenomena covered by
the central limit theorem in Chapter IV and to be expanded upon in the next chapter.

Exercise Set VI

1. Prove that given f ∈ L2[−π,π] and ε > 0, there exists a continuous function
g on [−π,π] such that g(−π) = g(π) and ‖ f − g‖ < ε, where ‖‖ is the L2-
norm defined by (6.10). [Hint: By Proposition 2.6 in Appendix A, there exists
a continuous function h on [−π,π] such that ‖ f − h‖ < ε

2 . If h(−π) �= h(π),
modify it on [π − δ,π] by a linear interpolation with a value h(π − δ) at π − δ
and a value h(−π) at π, where δ > 0 is suitably small.]

2. (a) Prove that if E|X |r < ∞ for some positive integer r , then the charac-
teristic function ϕ(ξ) of X has a continuous r th order derivative ϕ(r)(ξ) =

7For a more elaborate treatment of the physics of the Holtsmark distribution in higher dimensions
see S. Chandreskhar (1943): Stochastic problems in physics and astronomy, Reviews of Modern
Physics, 15(3), reprinted in Wax (1954). The treatment provided here was inspired by Lamperti
(1996).

http://dx.doi.org/10.1007/978-3-319-47974-3_4
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ir
∫
R
xr eiξx PX (dx), where PX is the distribution of X . In particular, ϕ(r)(0) =

irEXr . (b) Prove (6.47) assuming that f and f ( j), 1 ≤ j ≤ r , are integrable.
[Hint: Prove (6.46) and use induction.] (c) If r ≥ 2 in (b), prove that f̂ is
integrable.

3. This exercise concerns the normal (or Gaussian) distribution.

(i) Prove that for every σ �= 0, ϕσ2,μ(x) = (2πσ2)− 1
2 e− (x−μ)2

2σ2 , −∞ < x <

∞, is a probability density function (pdf). The probability on (R,B(R))
with this pdf is called the normal (or Gaussian) distribution with mean
μ variance σ2, denoted by Φσ2,μ. [Hint: Let c = ∫ ∞

−∞ e−x2/2dx . Then

c2 = ∫
R2 e−(x2+y2)/2dxdy = ∫ ∞

0

∫ 2π
0 re−r2/2dθdr = 2π.]

(ii) Show that
∫ ∞
−∞ xϕσ2,μ(x)dx = μ,

∫ ∞
−∞(x − μ)2ϕσ2,μ(x)dx = σ2. [Hint:∫ ∞

−∞(x − μ)ϕσ2,μ(x)dx = 0,
∫ ∞
−∞ x2e−x2/2dx = 2

∫ ∞
0 x(−de−x2/2) =

2
∫ ∞
0 e−x2/2dx = √

2π.]
(iii) Write ϕ = ϕ1,0, the standard normal density. Show that its odd-order

moments vanish and the even-order moments are given by μ2n = ∫ ∞
−∞ x2n

ϕ(x)dx = (2n−1)·(2n−3) · · · 3·1 for n = 1, 2, . . . . [Hint: Use integration
by parts to prove the recursive relation μ2n = (2n − 1)μ2n−2, n = 1, 2 . . . ,
with μ0 = 1.]

(iv) Show Φ̂σ2,μ(ξ) = eiξμ−σ2ξ2/2, ϕ̂(ξ) = e−ξ2/2. [Hint: ϕ̂(ξ) = ∫ ∞
−∞(cos(ξx))

ϕ(x)dx . Expand cos(ξx) in a power series and integrate term by term using
(iii).]

(v) (Fourier Inversion for ϕσ2 ≡ ϕσ2,0). Show ϕσ2(x) = (2π)−1
∫ ∞
−∞ e−iξx ϕ̂σ2

(ξ)dξ. [Hint: ϕ̂σ2(ξ) =
√

2π
σ2 ϕ 1

σ2
(ξ). Now use (iv).]

(vi) Let Z = (Z1, . . . , Zk) be a random vector where Z1, Z2, . . . , Zk are i.i.d.
random variables with standard normal density ϕ. Then Z is said to have
the k-dimensional standard normal distribution. Its pdf (with respect to

Lebesgue measure on R
k) is ϕI (x) = ϕ(x1) · · · ϕ(xk) = (2π)− k

2 e− |x |2
2 , for

x = (x1, . . . , xk). IfΣ is a k×k positive-definite symmetric matrix and μ ∈
R

k , then the normal (orGaussian) distributionΦΣ,¯ with mean ¯ and disper-
sion (or covariance)matrixΣ has pdfϕΣ,μ(x) = (2π)− k

2 (detΣ)− 1
2 exp{− 1

2 (x−
μ) · Σ−1(x − ¯)}, where · denotes the inner (dot) product on R

k . (a) Show
that ϕ̂Σ,μ(ξ) = exp{iξ · μ − 1

2ξ · Σξ}, ξ ∈ R
k . (Note that the characteristic

function of any absolutely continuous distribution is the Fourier transform
of its pdf). (b) If A is a k × k matrix such that AA′ = Σ , show that for stan-
dard normal Z, AZ + μ has the distribution ΦΣ,μ. (c) Prove the inversion
formula ϕΣ,μ(x) = (2π)−k

∫
Rk ϕ̂Σ,μ(ξ)e−iξ·xdξ, x ∈ R

k .
(vii) If (X1, . . . , Xk) has a k-dimensional Gaussian distribution, show {X1, . . . ,

Xk} is a collection of independent random variables if and only if they are
uncorrelated.

4. Suppose that {Pn}∞n=1 is a sequence of Gaussian probability distributions on
(Rk,Bk) with respective mean vectors m(n) = (m(n)

1 , . . . ,m(n)
k ) and variance–
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covariance matrices Γ (n) = ((γ(n)
i, j ))1≤i, j≤k . (i) Show that if m(n) → m and

Γ (n) → Γ (componentwise) as n → ∞, then Pn ⇒ P, where P is Gaussian
with mean vector m and variance–covariance matrix Γ. [Hint: Apply the conti-
nuity theorem for characteristic functions. Note that in the case of nonsingular Γ
one may apply Scheffé’s theorem, or apply Fatou’s lemma to Pn(G),G open.]
(ii) Show that if Pn ⇒ P , then P must be Gaussian. [Hint: Consider the case
k = 1, mn = 0,σ2

n = ∫
R
x2Pn(dx). Use the continuity theorem and observe

that if σ2
n (n ≥ 1) is unbounded, then P̂n(ξ) ≡ e− σ2

2 ξ2 does not converge to a
continuous limit at ξ = 0.]

5. (Change of Location/Scale/Orientation) LetX be a k-dimensional randomvector
and compute the characteristic function of Y = AX + b, where A is a k × k
matrix and b ∈ R

k .
6. (Fourier Transform, Fourier Series, Inversion, and Plancherel) Suppose f is

differentiable and vanishes outside a finite interval, and f ′ is square-integrable.
Derive the inversion formula (6.35) by justifying the following steps. Define
gN (x) := f (Nx), vanishing outside (−π,π). Let

∑
cn,Neinx ,

∑
c(1)
n,Ne

inx be
the Fourier series of gN and its derivative g′

n , respectively.

(i) Show that cn,N = 1
2Nπ

f̂
(− n

N

)
.

(ii) Show that
∑∞

n=−∞ |cn,N | ≤ 1
2π

∣∣∫ ∞
−∞ gN (x) dx

∣∣+A
(

1
2π

∫ π

−π |g′
N (x)|2 dx)1/2

< ∞, where A = (2
∑∞

n=1 n
−2)1/2. [Hint: Split off |c0,N | and applyCauchy–

Schwarz inequality to
∑

n �=0
1
|n| (|ncn,N |). Also note that |c(1)

n,N |2 = |ncn,N |2.]
(iii) Show that for all sufficiently large N , the following convergence is uniform:

f (z) = gN
(
z
N

) = ∑∞
n=−∞ cn,Neinz/N = ∑∞

n=−∞
1

2Nπ
f̂
(− n

N

)
einz/N .

(iv) Show that (6.35) follows by letting N → ∞ in the previous step if f̂ ∈
L1(R, dx).

(v) Show that for any f that vanishes outside a finite interval and is square-

integrable, hence integrable, one has, for all sufficiently large N , 1
N

∑∞
n=−∞

∣∣∣

f̂
(
n
N

)∣∣∣
2 = 2π

∫ ∞
−∞ | f (y)|2 dy. [Hint: Check that 1

2π

∫ π

−π |gN (x)|2 dx =
1

2Nπ

∫ ∞
−∞ | f (y)|2 dy, and 1

2π

∫ π

−π |gN (x)|2 dx = ∑∞
n=−∞ |cn,N |2 = 1

4N 2π2

∑∞
n=−∞

∣∣∣ f̂
(
n
N

)∣∣∣
2
.] Show that the Plancherel identity (6.36) follows in the

limit as N → ∞.

7. (General Inversion Formula and Plancherel Identity)
(i) Prove (6.35) assuming only that f , f̂ are integrable. [Hint: Step 1. Contin-

uous functions with compact support are dense in L1 ≡ L1(R, dx). Step 2.
Show that translation y → g(· + y)(≡ g(x + y), x ∈ R), is continuous
on R into L1, for any g ∈ L1. For this, given δ > 0, find continuous h
with compact support such that ‖g − h‖1 < δ/3. Then find ε > 0 such that
‖h(·+y)−h(·+y′)‖1 < δ/3 if |y−y′| < ε. Thenuse‖g(·+y)−g(·+y′)‖1 ≤
‖g(·+ y)−h(·+ y)‖1+‖h(·+ y)−h(·+ y′)‖1+‖h(·+ y′)−g(·+ y′)‖1 < δ,
noting that the Lebesgue integral (measure) is translation invariant. Step 3.
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Use Step 2 to prove that E f (x + εZ) → f (x) in L1 as ε → 0, where
Z is standard normal. Step 4. Use (6.45), which does not require f to be
continuous, and Step 3, to show that the limit in (6.45) is equal a.e. to f .]

(ii) (Plancherel Identity). Let f ∈ L1 ∩ L2. Prove (6.36). [Hint: Let f̃ (x) :=
f (−x), g = f ∗ f̃ . Then g ∈ L1, |g(x)| ≤ ‖ f ‖22, g(0) = ‖ f ‖22. Also
g(x) = 〈 fx , f 〉, where fx (y) = f (x + y). Since x → fx is continuous on
R into L2 (using arguments similar to those in Step 2 of part (i) above), and
〈, 〉 is continuous on L2×L2 intoR, g is continuous onR. Apply the inversion
formula (in part (i)) to get ‖ f ‖22 = g(0) = 1

2π

∫
ĝ(ξ)dξ ≡ 1

2π

∫ | f̂ (ξ)2dξ.]
8. (Smoothing Property of Convolution) (a) Suppose μ, ν are probabilities on R

k ,
with ν absolutely continuous with pdf f ; ν(dx) = f (x)dx . Show that μ ∗ ν is
absolutely continuous and calculate its pdf. (b) If f, g ∈ L1(Rk, dx) and if g is
bounded and continuous, show that f ∗g is continuous. (c) If f, g ∈ L1(Rk, dx),
and if g and its first r derivatives g( j), j = 1, . . . , r are bounded and continuous,
show that f ∗ g is r times continuously differentiable. [Hint: Use induction.]

9. Suppose f, f̂ are integrable on (R, dx). Show ˆ̂f (x) = 2π f (−x).
10. Let Q(dx) = 1

21[−1,1](x)dx be the uniform distribution on [−1, 1].
(i) Find the characteristic functions of Q and Q∗2 ≡ Q ∗ Q.
(ii) Show that the probability with pdf c sin2 x/x2, for appropriate normalizing

constant c, has a characteristic function with compact support and compute
this characteristic function. [Hint: Use Fourier inversion for f = Q̂2.]

11. Derive the multidimensional extension of the Fourier inversion formula.
12. Show that if Q is a stable distribution symmetric about 0 with exponent α, then

cn = 0 and 0 < α ≤ 2. [Hint: Q̂(ξ) must be real by symmetry, and positivity
follows from the case n = 2 in the definition.]

13. Show that

(i) The Cauchy distribution with pdf (π(1 + x2))−1, x ∈ R, has characteristic
function e−|ξ|.

(ii) The characteristic function of the double-sided exponential distribution
1
2e

−|x |dx is (1 + ξ2)−1. [Hint: Use integration by parts twice to show∫ ∞
−∞ eiξx ( 12e

−|x |)dx ≡ ∫ ∞
0 e−x cos(ξx)dx = (1 + ξ2)−1.]

14. (i) Give an example of a pair of dependent random variables X,Y such that the
distribution of their sum is the convolution of their distributions. [Hint: Consider
the Cauchy distribution with X = Y .] (ii) Give an example of a non-Gaussian
bivariate distribution such that the marginals are Gaussian. [Hint: Extend the
proof of Theorem 6.7.]

15. Show that if ϕ is the characeristic function of a probability then ϕ must be
uniformly continuous on R.

16. (Symmetric Distributions) (i) Show that the characteristic function of X is real-
valued if and only ifX and−X have the same distribution. (ii) A symmetrization
of (the distribution of) a random variable X may be defined by (the distribution
of) X − X′, where X′ is an independent copy of X, i.e., independent of X and
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having the same distribution asX. Express symmetrization of a random variable
in terms of its characteristic function.

17. (Multidimensional Gaussian characterization) Suppose that X = (X1, . . . , Xk)

is a k-dimensional random vector having a positive pdf f (x1, . . . , xk) onR
k(k ≥

2). Assume that (a) f is differentiable, (b) X1, . . . , Xk are independent, and (c)
have an isotropic density, i.e., f (x1, . . . , xk) is a function of ‖x‖2 = x21 + · · · +
x2k , (x1, . . . , xk) ∈ R

k . Show that X1, . . . , Xk are i.i.d. normal with mean zero
and common variance. [Hint: Let f j denote the marginal pdf of X j and argue

that
f ′
j

2x j f j
must be a constant.]

18. (i) Show that the functions {eξ : ξ ∈ R
k} defined by eξ(x) := exp(iξ·x), x ∈ R

k

constitute a measure-determining class for probabilities on (Rk,Bk).[Hint:
Given two probabilities P, Q for which the integrals of the indicated func-
tions agree, construct a sequence by Pn = P ∀ n = 1, 2, . . . whose charac-
teristic functions will obviously converge to that of Q.]

(ii) Show that the closed half-spaces of R
k defined by Fa := {x ∈ R

k : x j ≤
a j , 1 ≤ j ≤ k}, a = (a1, . . . , ak) constitute a measure-determining collec-
tion of Borel subsets of R

k . [Hint: Use a trick similar to that above.]
19. Compute the distribution with characteristic function ϕ(ξ) = cos2(ξ), ξ ∈ R

1.
20. (Fourier Inversion for Lattice Random Variables)

(i) Let p j , j ∈ Z, be a probability mass function (pmf) of a probability distribu-
tion Q on the integer latticeZ. Show that the Fourier transform Q̂ is periodicwith
period 2π, and derive the inversion formula p j = (2π)−1

∫
(−π,π] e

−i jξ Q̂(ξ)dξ.
(ii) Let Q be a lattice distribution of span h > 0, i.e., for some a0, Q({a0 + jh :
j = 0,±1,±2, . . . }) = 1. Show that Q̂ is periodic with period 2π/h and write
down an inversion formula. (iii) Extend (i), (ii) to the multidimensional lattice
distributions with Z

k in place of Z.
21. (Parseval’s Relation) Let f, g,∈ L2([−π,π)), with Fourier coefficients {cn},

{dn}, respectively. Prove that
∑

n cndn = 1
2π

∫
(−π,π] f (x)g(x)dx ≡ 〈 f, g〉.

(ii) Let f, g ∈ L2(Rk, dx) with Fourier transforms f̂ , ĝ. Prove that 〈 f̂ , ĝ〉 =
2π〈 f, g〉. [Hint: Use (a) the Plancherel identity and (b) the polar identity
4〈 f, g〉 = ‖ f + g‖2 − ‖ f − g‖2.]

22. (i) Let ϕ be continuous and positive-definite on R in the sense of Bochner, and
ϕ(0) = 1. Show that the sequence {c j ≡ ϕ( j) : j ∈ Z} is positive-definite in the
sense of Herglotz (6.27). (ii) Show that there exist distinct probability measures
on R whose characteristic functions agree at all integer points.

23. Show that the “triangular function” f̂ (ξ) = (1 − |ξ|)+ is the characteristic
function of f (x) = 21−cos(x)

x2 , x ∈ R. [Hint: Consider the characteristic function
of the convolution of two uniform distributions on [−1/2, 1/2] and Fourier
inversion.] Also show that 1−cos(x) ≥ x2/4 for |x | ≤ π/3. [Hint: Use cos(y) ≥
1/2 and sin(y) ≥ y for 0 < y < π/3 in the formula 1− cos(x) = ∫ x

0 sin(y)dy.]
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24. (Chung–Fuchs) For the one-dimensional random walk show that if Sn
n → 0

in probability as n → ∞, i.e., WLLN holds, then 0 is neighborhood recurrent.
[Hint: Using the lemma for the proof of Chung–Fuchs, for any positive integerm
and δ, ε > 0,

∑∞
n=0 P(Sn ∈ Bε) ≥ 1

2m

∑∞
n=0 P(Sn ∈ Bmε) ≥ 1

2m

∑mδ−1

n=0 P(Sn ∈
Bδε), using monotonicity of r → P(Sn ∈ Br ). Let m → ∞ to obtain for the
indicated Cesàro average, using limn→∞ P(Sn ∈ Bδε) = 1 from the WLLN
hypothesis, that

∑∞
n=0 P(Sn ∈ Bε) ≥ 1

2δ . Let δ → 0 and apply the Lemma 2.]
25. This exercise provides a version of the Chung–Fuchs Fourier analysis criteria

for the case of random walks on the integer lattice. Show that

(i) P(Sn = 0) = 1
(2π)k

∫
[−π,π)k

ϕ(ξ)dξ, where ϕ(ξ) = Eeiξ·X1 . [Hint: Use
Fourier inversion formula.]

(ii)
∑∞

n=0 r
n P(Sn = 0) = 1

(2π)k

∫
[−π,π)k

Re( 1
1−rϕ(ξ)

)dξ.
(iii) The lattice random walk {Sn : n = 0, 1, 2, . . . } is recurrent if and only if

limr↑1
∫
[−π,π)k

Re( 1
1−rϕ(ξ)

)dξ = ∞. [Hint: Justify passage to the limit r ↑ 1
and use Borel–Cantelli lemma.]

26. (i) Use the Chung–Fuchs criteria, in particular Corollary 6.15 and its converse, to
determinewhether the randomwalkwith symmetric Cauchy displacement distri-
bution is recurrent or transient. (ii) Extend this to symmetric stable displacement
distributions with exponent 0 < α ≤ 2.8

27. Show that 0 is neighborhood recurrent for the random walk if and only if∑∞
n=0 P(Sn ∈ B1) = ∞.

28. Prove that the set of trigonometric polynomials is dense in L2([−π,π),μ), where
μ is a finite measure on [−π,π).

29. Establish the formula
∫
R

g(x)μ ∗ ν(dx) = ∫
R

∫
R

g(x + y)μ(dx)ν(dy) for any
bounded measurable function g.

8Surprisingly, recurrence and heavy tailsmay coexist, see Shepp, L (1964): Recurrent randomwalks
with arbitrarily large steps, Bull. Amer. Math. Soc., v. 70, 540–542; Grey, D.R. (1989): Persistent
random walks may have arbitrarily large tails, Adv. Appld. Probab. 21, 229–230.
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