
Chapter III
Martingales and Stopping Times

The notion ofmartingale has proven to be among the most powerful ideas to emerge
in probability in the past century. This chapter provides a foundation for this the-
ory together with some illuminating examples and applications. For a prototypical
illustration of the martingale property, let Z1, Z2, . . . be a sequence of independent
integrable random variables and let Xn = Z1 +· · ·+ Zn, n ≥ 1. If EZ j = 0, j ≥ 1,
then one clearly has

E(Xn+1|Fn) = Xn, n ≥ 1,

where Fn := σ(X1, . . . , Xn).

Definition 3.1 (First Definition of Martingale) A sequence of integrable random
variables {Xn : n ≥ 1} on a probability space (Ω,F , P) is said to be a martingale
if, writing Fn := σ(X1, X2, . . . , Xn),

E(Xn+1|Fn) = Xn a.s. (n ≥ 1). (3.1)

This definition extends to any (finite or infinite) family of integrable randomvariables
{Xt : t ∈ T }, where T is a linearly ordered set: Let Ft = σ(Xs : s ≤ t). Then
{Xt : t ∈ T } is amartingale if

E(Xt |Fs) = Xs a.s ∀ s < t (s, t ∈ T ). (3.2)

In the previous case of a sequence {Xn : n ≥ 1}, as one can see by taking successive
conditional expectations E(Xn|Fm) = E[E(Xn|Fn+1)|Fm] = E(Xn+1|Fm) = · · · =
E(Xm+1|Fm) = Xm, (3.1) is equivalent to

E(Xn|Fm) = Xm a.s. ∀ m < n. (3.3)

© Springer International Publishing AG 2016
R. Bhattacharya and E.C. Waymire, A Basic Course in Probability Theory,
Universitext, DOI 10.1007/978-3-319-47974-3_III

53



54 III Martingales and Stopping Times

Thus, (3.1) is a special case of (3.2). Most commonly, T = N or Z+, or T = [0,∞).

Note that if {Xt : t ∈ T } is a martingale, one has the constant expectations property:
EXt = EXs ∀ s, t ∈ T .

Remark 3.1 Let {Xn : n ≥ 1} be a martingale sequence. Define its associated
martingale difference sequence by Z1 := X1, Zn+1 := Xn+1 − Xn (n ≥ 1). Note
that for Xn ∈ L2(Ω,F , P), n ≥ 1, the martingale differences are uncorrelated. In
fact, for Xn ∈ L1(Ω,F , P), n ≥ 1, one has

EZn+1 f (X1, X2, . . . , Xn) = E[E(Zn+1 f (X1, . . . , Xn)|Fn)]
= E[ f (X1, . . . , Xn)E(Zn+1|Fn)] = 0 (3.4)

for all boundedFn measurable functions f (X1, . . . , Xn). If Xn ∈ L2(Ω,F , P)∀n ≥
1, then (3.1) implies, and is equivalent to, the fact that Zn+1 ≡ Xn+1 − Xn is
orthogonal to L2(Ω,Fn, P). It is interesting to compare this orthogonality to that
of independence of Zn+1 and {Zm : m ≤ n}. Recall that Zn+1 is independent of
{Zm : 1 ≤ m ≤ n} or, equivalently, ofFn = σ(X1, . . . , Xn) if and only if g(Zn+1) is
orthogonal to L2(Ω,Fn, P) for all bounded measurable g such that Eg(Zn+1) = 0.
Thus independence translates as 0 = E{[g(Zn+1) − Eg(Zn+1)] · f (X1, . . . , Xn)} =
E{g(Zn+1) · f (X1, . . . , Xn)} − Eg(Zn+1) · E f (X1, . . . , Xn), for all bounded mea-
surable g on R and for all bounded measurable f on R

n.

Example 1 (Independent Increment Process) Let {Zn : n ≥ 1} be an independent
sequence having zero means, and X0 an integrable random variable independent of
{Zn : n ≥ 1}. Then

X0, Xn := X0 + Z1 + · · · + Zn ≡ Xn−1 + Zn (n ≥ 1) (3.5)

is a martingale sequence.

Definition 3.2 If one has inequality in place of (3.1), namely,

E(Xn+1|Fn) ≥ Xn a.s. ∀n ≥ 1, (3.6)

then {Xn : n ≥ 1} is said to be a submartingale. More generally, if the index set T is
as in (3.2), then {Xt : t ∈ T } is a submartingale if

E(Xt |Fs) ≥ Xs ∀ s < t (s, t ∈ T ). (3.7)

If instead of ≥, one has ≤ in (3.7) (3.8), the process {Xn : n ≥ 1} ({Xt : t ∈ T }) is
said to be a supermartingale.

In Example 1, if EZk ≥ 0 ∀ k, then the sequence {Xn : n ≥ 1} of partial
sums of independent random variables is a submartingale. If EZk ≤ 0 for all k,
then {Xn : n ≥ 1} is a supermartingale. In Example 3, it follows from the triangle
inequality for conditional expectations that the sequence {Yn := |Xn| : n ≥ 1} is
a submartingale. The following proposition provides an important generalization of
this latter example.
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Proposition 3.1 (a) If {Xn : n ≥ 1} is a martingale and ϕ(Xn) is a convex and
integrable function of Xn, then {ϕ(Xn) : n ≥ 1} is a submartingale. (b) If {Xn} is a
submartingale, and ϕ(Xn) is a convex and nondecreasing integrable function of Xn,

then {ϕ(Xn) : n ≥ 1} is a submartingale.

Proof The proof is obtained by an application of the conditional Jensen’s inequality
given in Theorem 2.10. In particular, for (a) one has

E(ϕ(Xn+1|Fn) ≥ ϕ(E(Xn+1|Fn)) = ϕ(Xn). (3.8)

Now take the conditional expectation of both sides with respect to Gn ≡ σ(ϕ(X1),

. . . ,ϕ(Xn)) ⊂ Fn , to get the martingale property of {ϕ(Xn) : n ≥ 1}. Similarly, for
(b), for convex and nondecreasing ϕ one has in the case of a submartingale that

E(ϕ(Xn+1|Fn) ≥ ϕ(E(Xn+1|Fn)) ≥ ϕ(Xn), (3.9)

and taking conditional expectation in (3.9), the desired submartingale property
follows. �

Proposition 3.1 immediately extends to martingales and submartingales indexed
by an arbitrary linearly ordered set T .

Example 2 (a) If {Xt : t ∈ T } is a martingale, E|Xt |p < ∞ (t ∈ T ) for some
p ≥ 1, then {|Xt |p : t ∈ T } is a submartingale. (b) If {Xt : t ∈ T } is a submartingale,
then for every real c, {Yt := max(Xt , c)} is a submartingale. In particular, {X+

t :=
max(Xt , 0)} is a submartingale.

Remark 3.2 It may be noted that in (3.8), (3.9), the σ-field Fn is σ(X1, . . . , Xn),
and not σ(ϕ(X1), . . . ,ϕ(Xn)), as seems to be required by the first definitions in
(3.1), (3.6). It is, however, more convenient to give the definition of a martingale
(or a submartingale) with respect to a filtration {Fn} for which (3.1) holds (or
respectively, (3.6) holds) assuming at the outset that Xn is Fn-measurable (n ≥ 1)
(or, as one often says, {Xn} is {Fn}-adapted). One refers to this sequence as an
{Fn}-martingale (respectively {Fn}-submartingale). An important example of an
Fn larger than σ(X1, . . . , Xn) is given by “adding independent information” via
Fn = σ(X1, . . . , Xn) ∨ G, where G is a σ-field independent of σ(X1, X2, . . . ), and
G1 ∨ G2 denotes the smallest σ-field containing G1 ∪ G2. We formalize this with the
following definition; also see Exercise 13.

Definition 3.3 (Second General Definition) Let T be an arbitrary linearly ordered
set and suppose {Xt : t ∈ T } is a stochastic process with (integrable) values in R

and defined on a probability space (Ω,F , P). Let {Ft : t ∈ T } be a nondecreasing
collection of sub-σ-fields of F , referred to as a filtration, i.e., Fs ⊂ Ft if s ≤
t. Assume that for each t ∈ T , Xt is adapted to Ft in the sense that Xt is Ft -
measurable. We say that {Xt : t ∈ T } is amartingale, respectively submartingale,
supermartingale, with respect to the filtration {Ft } if E[Xt |Fs] = Xs, ∀s, t ∈
T, s ≤ t, respectively ≥ Xs,∀s, t ∈ T, s ≤ t, or ≤ Xs ∀s, t ∈ T, s ≤ t.

http://dx.doi.org/10.1007/978-3-319-47974-3_2
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Example 3 Let X be an integrable random variable on (Ω,F , P) and let {Fn : n ≥
1} be a filtration of F . One may check that the stochastic process defined by

Xn := E(X |Fn) (n ≥ 1) (3.10)

is an {Fn}-martingale.

Note that for submartingales the expected values are nondecreasing,while those of
supermartingales are nonincreasing.Of course,martingales continue to have constant
expected values under this more general definition.

Theorem 3.2 (Doob’s Maximal Inequality) Let {X1, X2, . . . , Xn} be an {Fk : 1 ≤
k ≤ n}-martingale, or a nonnegative submartingale, and E|Xn|p < ∞ for some
p ≥ 1. Then, for all λ > 0, Mn := max{|X1|, . . . , |Xn|} satisfies

P(Mn ≥ λ) ≤ 1

λp

∫
[Mn>λ]

|Xn|pd P ≤ 1

λp
E|Xn|p. (3.11)

Proof Let A1 = [|X1| ≥ λ], Ak = [|X1| < λ, . . . , |Xk−1| < λ, |Xk | ≥ λ]
(2 ≤ k ≤ n). Then Ak ∈ Fk and [Ak : 1 ≤ k ≤ n] is a (disjoint) partition of
[Mn ≥ λ]. Therefore,

P(Mn ≥ λ) =
n∑

k=1

P(Ak) ≤
n∑

k=1

1

λp
E(1Ak |Xk |p) ≤

n∑
k=1

1

λp
E(1Ak |Xn|p)

= 1

λp

∫
[Mn≥λ]

|Xn|pd P ≤ E|Xn|p
λp

.

�

Remark 3.3 The classicalKolmogorovmaximal inequality for sums of i.i.d. mean
zero, square-integrable random variables is a special case of Doob’s maximal
inequality obtained by taking p = 2 for the martingales of Example 1 having
square-integrable increments.

Corollary 3.3 Let {X1, X2, . . . , Xn} be an {Fk : 1 ≤ k ≤ n}-martingale such that
E|Xn|p < ∞ for some p ≥ 2, and Mn = max{|X1|, . . . , |Xn|}. Then EMp

n ≤
pqE|Xn|p.
Proof A standard application of the Fubini–Tonelli theorem (see (1.10)) provides
the second moment formula

EMp
n = p

∫ ∞

0
x p−1P(Mn > x)dx .

Noting that p − 1 ≥ 1 to first apply the Doob maximal inequality (3.11), one then
makes another application of the Fubini–Tonelli theorem, and finally the Hölder
inequality, noting pq − q = p for the conjugacy 1

p + 1
q = 1, to obtain

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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EMp
n ≤ p

∫ ∞

0
E

(|Xn|p−11[Mn≥x]
)
dx = pE

(|Xn|p−1Mn
)

≤ p(E|Xn|(p−1)q)
1
q (EMp

n )
1
p .

Divide both sides by (E|Mn|p) 1
p and use monotonicity of x → x

1
q , x ≥ 0, to

complete the proof. �

Doob also obtained a bound of this type for p > 1with a smaller constant q p ≤ pq

when p ≥ 2, but it also requires a bit more clever estimation than in the above proof.
Doob’s statement and proof are as follows.

Theorem 3.4 (Doob’sMaximal Inequality forMoments) Suppose that {X1, X2, . . . ,

Xn} is an {Fk : 1 ≤ k ≤ n}-martingale, or a nonnegative submartingale, and let
Mn = max{|X1|, . . . , |Xn|}. Then
1. EMn ≤ e

e−1

(
1 + E|Xn| log+ |Xn|

)
.

2. If E|Xn|p < ∞ for some p > 1, then EMp
n ≤ q p

E|Xn|p, where q is the
conjugate exponent defined by 1

q + 1
p = 1, i.e., q = p

p−1 .

Proof For any nondecreasing function F1 on [0,∞) with F1(0) = 0, one may
define a corresponding Lebesgue–Stieltjes measure μ1(dy). Use the integration by
parts Proposition 1.4, to get

EF1(Mn) =
∫

[0,∞)

P(Mn ≥ y)F1(dy)

≤
∫

[0,∞)

[1
y

∫
[Mn≥y]

|Xn|dP
]
F1(dy)

=
∫

Ω

|Xn|
( ∫

[0,Mn ]
1

y
F1(dy)

)
dP, (3.12)

where the integrability follows from Theorem 3.2 (with p = 1). For the first part,
consider the function F1(y) = y1[1,∞)(y). Then y − 1 ≤ F1(y), and one gets

E(Mn − 1) ≤ EF1(Mn) ≤
∫

Ω

∣∣Xn|
∫

[1,max{1,Mn}]
y
1

y
dy

)
dP

=
∫

Ω

|Xn| log(max{1, Mn})dP

=
∫

[Mn≥1]
|Xn| logMndP. (3.13)

Now use the inequality (proved in the remark below)

a log b ≤ a log+ a + b

e
, a, b ≥ 0, (3.14)

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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to further arrive at

EMn ≤ 1 + E|Xn| log+ |Xn| + EMn

e
. (3.15)

This establishes the inequality for the case p = 1. For p > 1 take F1(y) = y p. Then

EMp
n ≤ E

(|Xn|
∫

[0,Mn ]
py p−2dy

)

= E
(|Xn| p

p − 1
Mp−1

n

)

≤ p

p − 1
(E|Xn|p) 1

p (EM (p−1)q
n )

1
q

= q(E|Xn|p) 1
p (EMp

n )
1
q . (3.16)

The bound for p > 1 now follows by dividing by (EMp
n )

1
q and a little algebra. �

Remark 3.4 To prove the inequality (3.14) it is sufficient to consider the case 1 <

a < b, since it obviously holds otherwise. In this case it may be expressed as

log b ≤ log a + b

ae
,

or

log
b

a
≤ b

ae
.

But this follows from the fact that f (x) = log x
x , x > 1, has a maximum value 1

e .

Corollary 3.5 Let {Xt : t ∈ [0, T ]} be a right-continuous nonnegative {Ft }-
submartingale with E|XT |p < ∞ for some p ≥ 1. Then MT := sup{Xs : 0 ≤
s ≤ T } is FT -measurable and, for all λ > 0,

P(MT > λ) ≤ 1

λp

∫
[MT >λ]

X p
T d P ≤ 1

λp
EX p

T . (3.17)

Proof Consider the nonnegative submartingale {X0, . . . , XTi2−n , . . . , XT }, for each
n = 1, 2, . . . , and let Mn := max{XiT 2−n : 0 ≤ i ≤ 2n}. For λ > 0, [Mn > λ] ↑
[MT

> λ] as n ↑ ∞. In particular, MT is FT -measurable. By Theorem 3.2,

P(Mn > λ) ≤ 1

λp

∫
[Mn>λ]

X p
T d P ≤ 1

λp
EX p

T .

Letting n ↑ ∞, (3.17) is obtained. �
We finally come to the notions of stopping times, and optional timeswhich pro-

vide a powerful probabilistic tool to analyze processes by viewing themat appropriate
random times.
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Definition 3.4 Let {Ft : t ∈ T } be a filtration on a probability space (Ω,F , P),

with T a linearly ordered index set to which one may adjoin, if necessary, a point
‘∞’ as the largest point of T ∪ {∞}. A random variable τ : Ω → T ∪ {∞} is an
{Ft }-stopping time if [τ ≤ t] ∈ Ft ∀ t ∈ T . If [τ < t] ∈ Ft for all t ∈ T then τ is
called an optional time.

Most commonly, T in this definition is N or Z+, or [0,∞), and τ is related to an
{Ft }-adapted process {Xt : t ∈ T }.

The intuitive idea of τ as a stopping-time strategy is that to “stop by time t , or
not,” according to τ , is determined by the knowledge of the past up to time t , and
does not require “a peek into the future.”

Example 4 Let {Xt : t ∈ T } be an {Ft }-adapted process with values in a measurable
space (S,S), with a linearly ordered index set. (a) If T = N or Z+, then for every
B ∈ S,

τB := inf{t ≥ 0 : Xt ∈ B} (3.18)

is an {Ft }-stopping time. (b) If T = R+ ≡ [0,∞), S is a metric space S = B(S),

and B is closed, t 
→ Xt is continuous, then τB is an {Ft }-stopping time. (c) If
T = R+, S is a topological space, t 
→ Xt is right-continuous, and B is open, then
[τB < t] ∈ Ft for all t ≥ 0, and hence τB is an optional time; see Definition 3.4.

We leave the proofs of (a)–(c) as Exercise 11. Note that (b), (c) imply that under
the hypothesis of (b), τB is an optional time if B is open or closed; recall Definition
3.4.

Definition 3.5 Let {Ft : t ∈ T } be a filtration on (Ω,F). Suppose that τ is a {Ft }-
stopping time. The pre-τ σ-fieldFτ comprises all A ∈ F such that A∩[τ ≤ t] ∈ Ft

for all t ∈ T .

Heuristically,Fτ comprises events determined by information available only up to
time τ . For example, if T is discrete with elements t1 < t2 < · · · , and Ft = σ(Xs :
0 ≤ s ≤ t) ⊂ F ,∀t, where {Xt : t ∈ T } is a process with values in some
measurable space (S,S), then Fτ = σ(Xτ∧t : t ≥ 0); (Exercise 9). The stochastic
process {Xτ∧t : t ≥ 0} is referred to as the stopped process. The notation ∧ is
defined by a ∧ b = min{a, b}. Similarly ∨ is defined by a ∨ b = max{a, b}.

If τ1, τ2 are two {Ft }-stopping times and τ1 ≤ τ2, then it is simple to check that

Fτ1 ⊂ Fτ2 . (3.19)

Suppose {Xt } is an {Ft }-adapted processwith values in ameasurable space (S,S),

and τ is an {Ft }-stopping time. For many purposes the following notion of adapted
joint measurability of (t,ω) 
→ Xt (ω) is important.

Definition 3.6 Let T = [0,∞) or T = [0, t0] for some t0 < ∞. A stochastic process
{Xt : t ∈ T } with values in a measurable space (S,S) is progressively measurable
with respect to {Ft } if for each t ∈ T, the map (s,ω) 
→ Xs(ω), from [0, t] × Ω to
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S is measurable with respect to the σ-fields B[0, t] ⊗ Ft (on [0, t] × Ω) and S (on
S). Here B[0, t] is the Borel σ-field on [0, t], and B[0, t] ⊗ Ft is the usual product
σ-field.

Proposition 3.6 (a) Suppose {Xt : t ∈ T } is progressively measurable, and τ is a
stopping time. Then Xτ is Fτ -measurable, i.e., [Xτ ∈ B] ∩ [τ ≤ t] ∈ Ft for each
B ∈ S and each t ∈ T . (b) Suppose S is a metric space and S its Borel σ-field. If
{Xt : t ∈ T } is right-continuous, then it is progressively measurable.

Proof (a) Fix t ∈ T . On the set Ωt := [τ ≤ t], Xτ is the composition of the maps
(i) f (ω) := (τ (ω),ω), from ω ∈ Ωt into [0, t] × Ωt , and (ii) g(s,ω) = Xs(ω) on
[0, t] × Ωt into S. Now f is F̃t -measurable on Ωt , where F̃t := {A ∩ Ωt : A ∈ Ft }
is the trace σ-field on Ωt , and B[0, t] ⊗ F̃t is the σ-field on [0, t] × Ωt . Next the
map g(s,ω) = Xs(ω) on [0, t]×Ω into S isB[0, t]⊗Ft -measurable. Therefore, the
restriction of this map to the measurable subset [0, t]×Ωt is measurable on the trace
σ-field {A∩ ([0, t] × Ωt ) : A ∈ B[0, t] ⊗Ft }. Therefore, the composition Xτ is F̃t -
measurable on Ωt , i.e., [Xτ ∈ B] ∩ [τ ≤ t] ∈ F̃t ⊂ Ft and hence [Xτ ∈ B] ∈ Fτ ,

for B ∈ S.

(b) Fix t ∈ T . Define, for each positive integer n, the stochastic process {X (n)
s :

0 ≤ s ≤ t} by

X (n)
s := X j2−n t for ( j − 1)2−nt ≤ s < j2−nt (1 ≤ j ≤ 2n), X (n)

t = Xt .

Since {(s,ω) ∈ [0, t] × Ω : X (n)
s (ω) ∈ B} = ∪2n

j=1([ j − 1)2−nt, j2−nt) × {ω :
X j2−n t (ω) ∈ B}) ∪ ({t} × {ω : Xt (ω) ∈ B}) ∈ B[0, t] ⊗ Ft , it follows that {X (n)

t }
is progressively measurable. Now X (n)

t (ω) → Xt (ω) for all (t,ω) as n → ∞, in
view of the right-continuity of t 
→ Xt (ω). Hence {Xt : t ∈ T } is progressively
measurable. �

Remark 3.5 It is often important to relax the assumption of ‘right-continuity’ of
{Xt : t ∈ T } to “a.s. right-continuity.” To ensure progressive measurability in this
case, it is convenient to take F ,Ft to be P-complete, i.e., if P(A) = 0 and B ⊂ A
then B ∈ F and B ∈ Ft ∀ t. Then modify Xt to equal X0 ∀ t on the P-null set
N = {ω : t → Xt (ω) is not right-continuous}. This modified {Xt : t ∈ T }, together
with {Ft : t ∈ T } satisfy the hypothesis of part (b) of Proposition 3.6.

The following proposition is distinguished as a characterization of the uniformly
integrable martingales as conditional expectations.

Proposition 3.7 (a) Let Y be integrable and Fn(n = 1, 2, . . .) a filtration. Then the
martingale Yn = E(Y |Fn) is uniformly integrable. (b) Suppose Yn is aFn-martingale
(n = 1, 2, . . .) such that Yn → Y in L1. Then Yn = E(Y |Fn), n ≥ 1.

Proof (a) Note that P(|Yn| > λ) ≤ E|Yn |
λ

≤ E|Y |
λ

for λ > 0. Hence, given ε > 0,
there exist λ > 0 such that P(|Yn| > λ) < ε for all n. Therefore, E(1[|Yn |>λ]|Yn|) ≤
E(1[|Yn |>λ]E(|Y ||Fn)) = E(1[|Yn |>λ]|Y |) → 0 as λ → ∞ uniformly in n (see Exer-
cise 14). (b) Let A ∈ Fm . Then E(1AYm) = E(1AYn) for all n ≥ m. Taking the limit
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as n → ∞, we have E(1AYm) = E(1AY ) for all A ∈ Fm . That is, Ym = E(Y |Fm).

�

Remark 3.6 One can show that aFn-martingale {Zn : n ≥ 1} has the representation
Zn = E(Z |Fn) iff it is uniformly integrable, and then Zn → Z a.s. and in L1.
Indeed, a uniformly integrable martingale converges a.s. and in L1 by the martingale
convergence theorem; see Theorems 1.10 and 3.12.

One of the important implications of the martingale property is that of constant
expected values.Let us consider a substantially stronger property. Consider a discrete
parametermartingale sequence X0, X1, . . . , and stopping time τ with respect to some
filtration Fn, n ≥ 0. Let m be an integer and suppose that τ ≤ m. For G ∈ Fτ , write
g = 1G . One has that G ∩ [τ = k] = (G ∩ [τ ≤ k])\(G ∩ [τ ≤ k − 1]) ∈ Fk from
the definition of Fτ . It follows from the martingale property E(Xm |Fk) = Xm , one
has

E(gXτ ) =
m∑

k=0

E(g1[τ=k]Xk)

=
m∑

k=0

E(g1[τ=k]E(Xm |Fk))

=
m∑

k=0

E(g1[τ=k]Xm) = E(gXm). (3.20)

Thus the constancy of expectations EXn = EX0 property of martingales extends to
certain stopping times τ in place of n. However, as illustrated in Example 5, below,
this requires some further conditions on τ thanmerely being a stopping time to extend
to unbounded cases. The following theorem provides precisely such conditions.

Theorem 3.8 (Optional Stopping) Let {Xt : t ∈ T } be a right-continuous {Ft }-
martingale, where T = N or T = [0,∞). (a) If τ1 ≤ τ2 are bounded stopping times,
then

E(Xτ2 |Fτ1) = Xτ1 . (3.21)

(b) (Optional Sampling). If τ is a stopping time (not necessarily finite), then {Xτ∧t :
t ∈ T } is an {Fτ∧t }t∈T -martingale.

(c) Suppose τ1 ≤ τ2 are stopping times such that (i) P(τ2 < ∞) = 1, and (ii)
Xτ2∧t (t ∈ T ) is uniformly integrable. Then

E(Xτ2 |Fτ1) = Xτ1 . (3.22)

In particular,
E(Xτ2) = E(Xτ1) = E(X0).

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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Proof First we consider the case T = N. In the case that τ2 is bounded by some
positive integer m, it follows from the above calculation (3.20) that

E(Xm |Fτ2) = Xτ2 .

Thus if τ1 ≤ τ2 ≤ m, then one also has

E(Xm |Fτ1) = Xτ1 .

In other words, the two term sequence Xτ1 , Xτ2 is a martingale with respect to
Fτ1 ,Fτ2 . Hence it follows from the “smoothing property”of conditional expecta-
tion that Xτ1 = E(Xm |Fτ1) = E(E(Xm |Fτ2)|Fτ1) = E(Xτ2 |Fτ1). This proves (a) in
the discrete parameter case. Part (b) follows directly from (a) since τ1 := τ ∧ n ≤
τ2 := n < ∞ for any n, and both of these τ1, τ2, so-defined, are stopping times. For
(c), let G ∈ Fτ1 . Then, G ∩ [τ1 ≤ n] ∈ Fn . Also G ∩ [τ1 ≤ n] ∈ Fτ1∧n. To see this,
for m ≥ n, G ∩ [τ1 ≤ n]) ∩ [τ1 ∧ n ≤ m] = G ∩ [τ1 ≤ n] ∈ Fn ⊂ Fm , and if
m < n then (G ∩ [τ1 ≤ n]) ∩ [τ1 ∧ n ≤ m] = G ∩ [τ1 ≤ m] ∈ Fm . So in either case
G ∩ [τ1 ≤ n] ∈ Fτ1∧n. Also τ1 ∧ n ≤ τ2 ∧ n. By part (a), E(Xτ2∧n|Fτ1∧n) = Xτ1∧n .
Thus

E(g1[τ1≤n]Xτ2∧n) = E(g1τ1≤n]Xτ1∧n), g = 1G . (3.23)

So, by the uniform integrability of Xτ2∧n , and the fact that Xτ2∧n → Xτ2 a.s. as
n → ∞, one has Xτ2∧n → Xτ2 in L1. Now observe that the uniform integrability
of Xτ2∧n implies that of Xτ1∧n, n ≥ 1, as follows: Since Xτ2∧n, n ≥ 1, is uniformly
integrable, it converges in L1 (and a.s.) to Xτ2 , and Xτ2∧n = E(Xτ2 |Fτ2∧n). Therefore
Xτ1∧n = E(Xτ2∧n|Fτ1∧n) = E[E(Xτ2 |Fτ2∧n)|Fτ1∧n] = E(Xτ2 |Fτ1∧n). Uniform inte-
grability of Xτ1∧n, n ≥ 1, now follows from Proposition 3.7(a). Putting this uniform
integrability together, it follows that the left side of (3.23) converges to E(gXτ2) and
the right side to E(gXτ1). Since this is for any g = 1G,G ∈ Fτ1 , the proof of (b)
follows.

Next we consider the case T = [0,∞). Let τ1 ≤ τ2 ≤ t0 a.s. The idea for the
proof is, as above, to check that E[Xt0 |Fτi ] = Xτi , for each of the stopping times
(i = 1, 2) simply by virtue of their being bounded. Once this is established, the result
(a) follows by smoothing of conditional expectation, sinceFτ1 ⊂ Fτ2 . That is, it will
then follow that

E[Xτ2 |Fτ1] = E[E(Xt0 |Fτ2)|Fτ1] = E[Xt0 |Fτ1] = Xτ1 .

So let τ denote either of τi , i = 1, 2, and consider E[Xt0 |Fτ ]. For each n ≥ 1
consider the nth dyadic subdivision of [0, t0] and define τ (n) = (k + 1)2−nt0 if
τ ∈ [k2−nt0, (k + 1)2−nt0)(k = 0, 1, . . . , 2n − 1), and τ (n) = t0 if τ = t0. Then
τ (n) is a stopping time and Fτ ⊂ Fτ (n) (since τ ≤ τ (n)). For G ∈ Fτ , exploiting the
martingale property E[Xt0 |F(k+1)2−n t0 ] = Xt(k+1)2−n t0

, one has
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E(1G Xt0) =
2n−1∑
k=0

E(1G∩[τ (n)=(k+1)2−n t0]Xt0)

=
2n−1∑
k=0

E(1G∩[τ (n)=(k+1)2−n t0]X(k+1)2−n t0)

=
2n−1∑
k=0

E(1G∩[τ (n)=(k+1)2−n t0]Xτ (n) )

= E(1G Xτ (n) ) → E(1G Xτ ). (3.24)

The last convergence is due to the L1-convergence criterion of Theorem 1.10 in
view of the following checks: (1) Xt is right-continuous (and τ (n) ↓ τ ), so that
Xτ (n) → Xτ a.s., and (2) Xτ (n) is uniformly integrable, since by the submartingale
property of {|Xt | : t ∈ T },

E(1[|Xτ (n) |>λ]|Xτ (n) |) =
2n−1∑
k=0

E(1[τ (n)=(k+1)2−n t0]∩[|Xτ (n) |>λ]|X(k+1)2−n t0 |)

≤
2n−1∑
k=0

E(1[τ (n)=(k+1)2−n t0]∩[|Xτ (n) |>λ]|Xt0 |)

= E(1[|Xτ (n) |>λ]|Xt0 |) → E(1[|Xτ |>λ]|Xt0 |).

Since the left side of (3.24) does not depend on n, it follows that

E(1G Xt0) = E(1G Xτ ) ∀ G ∈ Fτ ,

i.e., E(Xt0 |Fτ ) = Xτ applies to both τ = τ1 and τ = τ2. The result (a) therefore
follows by the smoothing property of conditional expectations noted at the start of
the proof.

As in the discrete parameter case, (b) follows immediately from (a). For if s < t
are given, then τ ∧ s and τ ∧ t are both bounded by t , and τ ∧ s ≤ τ ∧ t.

(c) Since τ < ∞ a.s., τ ∧ t equals τ for sufficiently large t (depending on
ω), outside a P-null set. Therefore, Xτ∧t → Xτ a.s. as t → ∞. By assumption
(ii), Xτ∧t (t ≥ 0) is uniformly integrable. Hence Xτ∧t → Xτ in L1. In particular,
E(Xτ∧t ) → E(Xτ ) as t → ∞. But EXτ∧t = EX0 ∀ t , by (b). �

Remark 3.7 If {Xt : t ∈ T } in Theorem 3.8 is taken to be a submartingale, then
instead of the equality sign “=” in (3.21), (3.22), one gets “≤.”

Remark 3.8 The stopping time approximation technique used in the proof of Theo-
rem 3.8, to obtain a decreasing sequence τ (1) ≥ τ (2) ≥ · · · of discrete stopping times
converging to τ , is adaptable to any number of situations involving the analysis of
processes having right-continuous sample paths.

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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The following proposition and its corollary are often useful for verifying the
hypothesis of Theorem 3.8 in examples.

Proposition 3.9 Let {Zn : n ∈ N} be real-valued random variables such that for
some ε > 0, δ > 0, one has

P(Zn+1 > ε | Gn) ≥ δ a.s. ∀ n = 0, 1, 2, . . .

or
P(Zn+1 < −ε | Gn) ≥ δ a.s. ∀ n = 0, 1, 2, . . . , (3.25)

where Gn = σ{Z1, . . . , Zn} (n ≥ 1), G0 = {∅,Ω}. Let Sx
n = x + Z1 + · · · + Zn

(n ≥ 1), Sx
0 = x , and let a < x < b. Let τ be the first escape time of {Sx

n } from
(a, b), i.e., τ = τ x = inf{n ≥ 1 : Sx

n ∈ (a, b)c}. Then τ < ∞ a.s. and

sup
{x :a<x<b}

Eeτ z < ∞ for − ∞ < z <
1

n0

(
log

1

1 − δ0

)
, (3.26)

writing [y] for the integer part of y,

n0 =
[
b − a

ε

]
+ 1, δ0 = δn0 . (3.27)

Proof Suppose thefirst relation in (3.25) holds.Clearly, if Z j > ε∀ j = 1, 2, . . . , n0,
then Sx

n0 > b, so that τ ≤ n0. Therefore, P(τ ≤ n0) ≥ P(Z1 > ε, . . . , Zn0 > ε) ≥
δn0 , by taking successive conditional expectations (given Gn0−1,Gn0−2, . . . ,G0, in
that order). Hence P(τ > n0) ≤ 1 − δn0 = 1 − δ0. For every integer k ≥ 2, P(τ >

kn0) = P(τ > (k − 1)n0, τ > kn0) = E[1[τ>(k−1)n0]P(τ > kn0|G(k−1)n0)] ≤ (1 −
δ0)P(τ > (k − 1)n0), since, on the set [τ > (k − 1)n0], P(τ ≤ kn0|G(k−1)n0) ≥
P(Z(k−1)n0+1 > ε, . . . , Zkn0 > ε|G(k−1)n0) ≥ δn0 = δ0. Hence, by induction, P(τ >

kn0) ≤ (1 − δ0)
k . Hence P(τ = ∞) = 0, and for all z > 0,

Eezτ =
∞∑
r=1

ezr P(τ = r) ≤
∞∑
k=1

ezkn0
kn0∑

r=(k−1)n0+1

P(τ = r)

≤
∞∑
k=1

ezkn0 P(τ > (k − 1)n0) ≤
∞∑
k=1

ezkn0(1 − δ0)
k−1

= ezn0(1 − (1 − δ0)e
zn0)−1 if ezn0(1 − δ0) < 1.

An entirely analogous argument holds if the second relation in (3.25) holds. �

The following corollary immediately follows from Proposition 3.9.

Corollary 3.10 Let {Zn : n = 1, 2, . . .} be an i.i.d. sequence such that P(Z1 =
0) < 1. Let Snn = x + Z1 + · · · + Zn (n ≥ 1), Sx

0 = x , and a < x < b. Then the
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first escape time τ of the random walk from the interval (a, b) has a finite moment
generating function in a neighborhood of 0.

Example 5 Let Zn(n ≥ 1) be i.i.d. symmetric Bernoulli, P(Zi = +1) = P(Zi =
−1) = 1

2 , and let Sx
n = x + Z1 + · · · + Zn(n ≥ 1), Sx

0 = x , be the simple
symmetric random walk on the state space Z, starting at x . Let a ≤ x ≤ b be
integers, τy := inf{n ≥ 0 : Sx

n = y}, τ = τa ∧ τb = inf{n ≥ 0 : Sx
n ∈ {a, b}}.

Then {Sx
n : n ≥ 0} is a martingale and τ satisfies the hypothesis of Theorem 3.8(c)

(Exercise 4). Hence

x ≡ ESx
0 = ESx

τ = aP(τa < τb) + bP(τb < τa) = a + (b − a)P(τb < τa),

so that

P(τb < τa) = x − a

b − a
, P(τa < τb) = b − x

b − a
, a ≤ x ≤ b. (3.28)

Letting a ↓ −∞ in the first relation, and letting b ↑ ∞ in the second, one arrives
at the conclusion that the simple symmetric random walk reaches every state with
probability one, no mater where it starts. This property is referred to as recurrence;
also see Example 9, of Chapter II. To illustrate the importance of the hypothesis
imposed on τ in Theorem 3.8(c), one may naively try to apply (3.22) to τb (see
Exercise 4) and arrive at the silly conclusion x = b!

Example 6 One may apply Theorem 3.8(c) to a simple asymmetric random walk
with P(Zi = 1) = p, P(Zi = −1) = q ≡ 1 − p(0 < p < 1, p �= 1/2),
so that Xx

n := Sx
n − (2p − 1)n (n ≥ 1), Xx

0 ≡ x, is a martingale. Then with
τa, τb, τ = τa ∧ τb as above, one gets

x ≡ EXx
0 = EXx

τ = ESx
τ − (2p − 1)Eτ = a + (b − a)P(τb < τa) − (2p − 1)Eτ .

(3.29)
Since we do not know Eτ yet, we can not quite solve (3.29). We therefore use a sec-
ond martingale (q/p)S

x
n (n ≥ 0). Note that E[(q/p)S

x
n+1 |σ{Z1, . . . , Zn}] = (q/p)S

x
n ·

E[(q/p)Zn+1] = (q/p)S
x
n [(q/p)p + (q/p)−1q] = (q/p)S

x
n · 1 = (q/p)S

x
n , proving

themartingale property of the “exponential process”Yn := (q/p)S
x
n = exp(cSx

n ), c =
ln(q/p), n ≥ 0. Note that (q/p)S

x
τ∧n ≤ max{(q/p)y : a ≤ y ≤ b}, which is a finite

number. Hence the hypothesis of uniform integrability holds. Applying (3.22) we get

(q/p)x = (q/p)a · P(τa < τb) + (q/p)b P(τb < τa),

or

P(τb < τa) = (q/p)x − (q/p)a

(q/p)b − (q/p)a
≡ ϕ(x) (a ≤ x ≤ b). (3.30)

Using this in (3.29) we get

Eτ ≡ Eτa ∧ τb = x − a − (b − a)ϕ(x)

1 − 2p
, a ≤ x ≤ b. (3.31)

http://dx.doi.org/10.1007/978-3-319-47974-3_2


66 III Martingales and Stopping Times

Suppose now that p < q, i.e., p < 1
2 . Letting a ↓ −∞ in (3.30), one sees that the

probability of ever reaching b starting from x < b is (
p
q )b−x < 1. Similarly if p > 1

2 ,
i.e., q < p, then the probability of ever reaching a starting from x > a is (

q
p )

x−a < 1
(Exercise 6).

Very loosely speaking the submartingale and and supermartingale properties con-
vey a sense of “monotonicity”in predictions of successive terms based on the past.
This is so much so that the expected values comprise a monotone sequence of num-
bers. Recall from calculus that every sequence of real numbers bounded above (or
below) must have a limit. Perhaps some form of “boundedness”at least seems worthy
of consideration in the context of martingale convergence ? Indeed, as we now see,
the implications are striking!

Let {Zn : n = 1, 2, . . . } be a {Fn}∞n=1-submartingale, and a < b arbitrary real
numbers. Recursively define successive crossing times of (a, b) by η1 = 1, η2 =
inf{n ≥ 1 : Zn ≥ b}, η2k−1 = inf{n ≥ η2k−2 : Zn ≤ a}, η2k = inf{n ≥ η2k−1 :
Zn ≥ b}. In particular η2k is the time of the k-th upcrossing of the interval (a, b)
by the sequence {Zn : n = 1, 2, . . . }. η2k is also the time of the k-th upcrossing of
(0, b − a) by the sequence Xn = max(Zn − a, 0) = (Zn − a)+, n ≥ 1. Note that
these crossing times are in fact stopping times. Also, Xn is nonnegative and Xn = 0
if Zn ≤ a, and Xn ≥ b − a if Zn ≥ b.

For a positive integer N , consider their truncations τk = ηk ∧ N , which are also
{Fn}-stopping times, in fact, bounded stopping times. Let UN = max{k : η2k ≤ N }
denote the number of upcrossings of (a, b) by {Zn : n = 1, 2 . . . } by the time N .
ThenUN may also be viewed as the number of upcrossings of the interval (0, b− a)

by the submartingale Xn(n = 1, 2, . . . ).

Theorem 3.11 (Doob’s Upcrossing Inequality)Let {Zn : n ≥ 1} be a {Fn}-submart-
ingale, and a < b arbitrary real numbers. Then the number UN of upcrossings of
(a, b) by time N satisfies

EUN ≤ E(ZN − a)+ − E(Z1 − a)+

b − a
≤ E|ZN | + |a|

b − a
.

Proof For k > UN + 1, η2k > N , and η2k−1 > N so that τ2k = N and τ2k−1 = N .
Hence, Xτ2k = XN = Xτ2k−1 . If k ≤ UN then η2k ≤ N , and η2k−1 ≤ N so that
Xτ2k ≥ b − a, 0 = Xτ2k−1 = Xη2k−1 . Now suppose k = UN + 1. Then η2k > N and
Xτ2k = XN . Also, either η2k−1 ≥ N so that τ2k−1 = N , and Xτ2k−1 = XN , Xτ2k −
Xτ2k−1 = 0, or η2k−1 < N , in which case η2k−1 = τ2k−1 and Xτ2k−1 = 0, so that
Xτ2k − Xτ2k−1 = XN ≥ 0. Thus, in any case, if k = UN + 1, Xτ2k − Xτ2k−1 ≥ 0. Now
choose a (nonrandom) integer m > N

2 + 2. Then m > UN + 1 and one has
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XN − X1 = Xτ2m − X1 =
m∑

k=1

(Xτ2k − Xτ2k−1) +
m∑

k=2

(Xτ2k−1 − Xτ2k−2)

=
UN+1∑
k=1

(Xτ2k − Xτ2k−1) +
m∑

k=2

(Xτ2k−1 − Xτ2k−2)

≥ (b − a)UN +
m∑

k=2

(Xτ2k−1 − Xτ2k−2). (3.32)

Taking expected values and using the fact from the optional sampling theorem that
{Xτk : k ≥ 1} is a submartingale, one has

EXN − EX1 ≥ (b − a)EUN .

�
Remark 3.9 Observe that the relations (3.32) do not require the submartingale
assumption on {Zn : n ≥ 1}. It is merely a relationship among a sequence of
numbers.

One of the most significant consequences of the uncrossing inequality is the
following.

Theorem 3.12 (Submartingale Convergence Theorem) Let {Zn : n ≥ 1} be a sub-
martingale such that E(Z+

n ) is a bounded sequence. Then {Zn : n ≥ 1} converges
a.s. to a limit Z∞. If M := supn E|Zn| < ∞, then Z∞ is a.s. finite and E|Z∞| ≤ M .

Proof LetU (a, b) denote the total number of upcrossings of (a, b) by {Zn : n ≥ 1}.
Then UN (a, b) ↑ U (a, b) as N ↑ ∞. Therefore, by the monotone convergence
theorem

EU (a, b) = lim
N↑∞EUN (a, b) ≤ sup

N

EZ+
N + |a|
b − a

< ∞. (3.33)

In particular U (a, b) < ∞ almost surely, so that

P (lim inf Zn < a < b < lim sup Zn) = 0. (3.34)

Since this holds for every pair a, b = a + 1
m with aεQ and m a positive integer, and

the set of all such pairs is countable, one must have lim inf Zn = lim sup Zn almost
surely. Let Z∞ denote the a.s. limit. By Fatou’s lemma, E|Z∞| ≤
limE|Zn|. �

An immediate consequence of Theorem 3.12 is

Corollary 3.13 A nonnegative martingale {Zn : n ≥ 1} converges almost surely to
a finite limit Z∞. Also, EZ∞ ≤ EZ1.

Proof For a nonnegative martingale {Zn : n ≥ 1}, |Zn| = Zn and therefore,
supE|Zn| = supEZn = EZ1 < ∞. Hence the Corollary follows from Theorem
3.12. �
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The following Corollary provides an illustrative application of this theory.

Corollary 3.14 Suppose X1, X2, . . . is a sequence of independent, nonnegative ran-
dom variables such that

∑∞
n=1 EXn < ∞. Then

∑∞
n=1 Xn converges almost surely.

Proof Since Zn = ∑n
j=1(X j − EX j ), n ≥ 1, is a martingale with EZ+

n ≤ 2
∑∞

j=1

EX j < ∞ for all n, one has that Z∞ = limn→∞ Zn exists. Thus
∑n

j=1 X j =
Zn + ∑n

j=1 EX j has an a.s. limit as n → ∞. �

Doob’s upcrossing inequality (Theorem 3.11) also applies to the so-called reverse
martingales, submartingales defined as follows.

Definition 3.7 Let Fn, n ≥ 1, be a decreasing sequence of sub-sigmafields of F ,
i.e., F ⊃ Fn ⊃ Fn+1, n = 1, 2, . . . . A sequence {Xn : n ≥ 1} of integrable
random variables on (Ω,F , P) is said to be a reverse submartingalewith respect to
Fn, n ≥ 1, if Xn isFn-measurable and E(Xn|Fn+1) ≥ Xn+1,∀n. If one has equality
for each n then the sequence is called a reverse martingalewith respect toFn, n ≥ 1.

Theorem 3.15 (Reverse submartingale convergence theorem) Let {Xn : n ≥ 1} be
a reverse submartingale with respect to a decreasing sequence Fn, n ≥ 1. Then Xn

converges almost surely to an integrable random variable Z as n → ∞.

Proof For each N > 1, {XN , XN−1, . . . , X1} is a submartingale with respect to the
filtration {FN ,FN−1, . . . ,F1}. Thus, with UN denoting the number of up crossings
of (a, b) by {X1, . . . , XN }, Doob’s inequality yields EUN ≤ E|X1|+|a|

b−a . Arguing as in
the proof of of the submartingale convergence theorem (Theorem 3.12), the desired
result follows. �

Remark 3.10 The martingale proof of the strong law of large numbers provides a
beautiful illustration of Theorem 3.15 that will be given in Chapter V. Viewed this
way, it will follow easily from the reverse martingale convergence theorem that the
limit of the sample averages of an i.i.d. sequence of integrable random variables
exists. However something more is needed to identify the limit (as the expected
value).

Example 7 Let X be an integrable random variable on (Ω,F , P) and Fn, (n ≥ 1),
a decreasing sequence of sigmafields Fn ⊂ F , n ≥ 1. Then Xn = E(X |Fn), n ≥ 1,
is a reverse martingale. Thus Xn → Z a.s. as n → ∞, for some integrable random
variable Z . Note that {Xn : n ≥ 1} is uniformly integrable since

∫
[|Xn |>λ] |Xn|dP ≤∫

[|Xn |>λ] E(|X ||Fn)dP = ∫
[|Xn |>λ] E(|X ||F1)dP . Hence Xn → Z in L1 as well.

Example 8 It follows from the Corollary that the martingales {Zn := ∏n
j=1 X j }

converge almost surely to an integrable random variable Z∞, if {Xn}∞n=1 is an inde-
pendent nonnegative sequence with EXn = 1 for all n. In the case {Xn}∞n=1 is i.i.d.
and P(X1 = 1) < 1, it is an interesting fact that the limit of {Zn : n ≥ 1} is 0 a.s.,
as shown by the following proposition.
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Proposition 3.16 Let {Xn : n ≥ 1} be an i.i.d. sequence of nonnegative random
variables with EX1 = 1. Then {Yn := ∏n

j=1 X j } converges almost surely to 0,
provided P(X1 = 1) < 1.

Proof First assume P(X1 = 0) > 0. Then P(Xn = 0 for some n) = 1− P(Xn > 0
for all n) = 0, since P(X j > 0 for 1 ≤ j ≤ n) = (P(X1 > 0))n . But if Xm = 0
then Zn = 0 for all n ≥ m. Therefore, P(Zn = 0 for all sufficiently large n) = 1.

Assume now P(X1 > 0) = 1. Consider the i.i.d. sequence {log Xn}∞n=1. Since
x → log x is concave one has, by Jensen’s inequality, E log X1 ≤ logEX1 = 0.
Since P(X1 = 1) < 1, for any 0 < h < 1, Xh

1 is not degenerate (i.e., not almost
surely the constant 1.). Hence the Jensen inequality is strict. Therefore, EXh

1 < 1.
Thus, using Fatou’s lemma,

0 ≤ EZh
∞ ≤ lim inf

n→∞ EZh
n = lim inf

n→∞ (EXh
1 )

n = 0.

It follows that Zh∞ = 0 a.s. �

Example 9 (Binary Multiplicative Cascade Measure) Suppose that one is given
a countable collection {Xv : v ∈ ∪∞

n=1{0, 1}n} of positive, mean one random
variables indexed by the set of vertices ∂T = ∪∞

n=1{0, 1}n of a binary tree. For
v = (v1, . . . , vn) ∈ {0, 1}n we write |v| = n. For a given “generation”n ≥ 1, one
may consider a corresponding partition of the unit interval [0, 1) into 2n subinter-
vals [ k−1

2n , k
2n ), k = 1, . . . 2n , and assign mass (area) (

∏n
j=1 Xv| j )2−n to the interval

indexed by v of length 2−n , where v| j = (v1, . . . , v j ), v = (v1, . . . , vn) ∈ {0, 1}n ,
to create a random bar graph. The total area in the graph is then given by

Zn =
∑
|v|=n

n∏
j=1

Xv| j2−n, n = 1, 2, . . . . (3.35)

One may check that {Zn : n ≥ 1} is a positive martingale. Thus limn→∞ Zn = Z∞
exists almost surely. Moreover, Z∞ satisfies the recursion

Z∞ = X0Z∞(0)
1

2
+ X0Z∞(1)

1

2
, (3.36)

where Z∞(0), Z∞(1) aremutually independent, and independent of X0, X1, and have
the same distribution as Z∞. Let 0 < h ≤ 1. Then by sub-linearity of z → zh, z ≥ 0,
one has, for a generic random variable X distributed as an Xv ,

EZh
∞ ≥ 21−h

EXh
EZh

∞.

Thus, if 21−h
EXh > 1 for some 0 < h ≤ 1 then Z∞ = 0 a.s; for otherwise

EZh∞ > 0 and one gets the reverse inequality 21−h
EXh ≤ 1, or χ(h) := logEXh −

(h − 1) log 2 ≤ 0. Since h → χ(h), 0 < h ≤ 1 is convex, this is equivalent to
χ′(1−) = EX log X ≤ log 2. Thus if EX log X > log 2 then Z∞ = 0 a.s. Of course
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if X = 1 a.s. then Z∞ = 1 a.s. as well. In some contexts, the quantity EX log X
is referred to as a disorder parameter and log 2 is a branching rate. The heuristic
condition for a nonzero limit is that the branching rate be sufficiently large relative
to the disorder. This will be confirmed in Chapter V. Let us consider the case in
which X is uniform on [0, 2]. In this case, as will be verified in Chapter V, one can
solve the recursion (3.36), to obtain that Z∞ has a Gamma distribution with density
ze−z, z ≥ 0. As an alternative for now, we will apply the Chebyshev method from
(Chapter I, Example 5) to derive lower bound estimates on P(Z∞ ≤ z), z ≥ 0. One
may check that for X uniformly distributed on [0, 2], EXk = 2k

k+1 , k = 1, 2, . . . .
Moreover, using induction (on k) one sees that the unique positive solution to the
equation of moments corresponding to (3.36), namely

EZk
∞ = 2−k

k∑
j=0

(
k

j

)
2 j

j + 1
EZ j

∞
2k− j

k − j + 1
EZk− j

∞

=
k∑
j=0

(
k

j

)
EZ j

∞
1 + j

EZk− j
∞

1 + k − j
, (3.37)

is given by EZk∞ = (k + 1)!. Thus the Chebyshev method yields

P(Z∞ ≤ x) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x ≤ 2,

1 − 6
x2 if 2 < x ≤ 3,

· · ·
1 − (k+1)!

xk if k + 1 < x ≤ k + 2, k = 2, 3, . . . .

(3.38)

Example 10 (Ruin Probability in Insurance Risk) TheCramér–Lundberg, and more
generally Sparre Andersen, models of insurance markets involve insurance claims
of strictly positive random amounts X1, X2, . . . arriving at random time times
T1, T2, . . . , together with a constant premium rate c > 0 per unit time. The two
sequences {Xn : n ≥ 1} of claim sizes and arrival times {Tn : n ≥ 1} are assumed to
be independent.Moreover, the inter-arrival times An = Tn−Tn−1, n ≥ 1, T0 = 0, are
assumed to be i.i.d. positive random variables with EA1 = λ < ∞. For a company
with initial capital reserves u > 0, the probability of ruin is defined by

ψ(u) = P(∪∞
n=1[

n∑
j=1

X j > u + c
n∑
j=1

A j ]) = P(∪∞
n=1[

n∑
j=1

Y j > u]), (3.39)

where Y j := X j − cA j . The common distribution of the i.i.d. sequence {Y j : j ≥ 1}
is assumed to satisfy the so-called Net Profit Condition (NPC)

EY1 = EX1 − cA1 > 0. (3.40)

http://dx.doi.org/10.1007/978-3-319-47974-3_5
http://dx.doi.org/10.1007/978-3-319-47974-3_5
http://dx.doi.org/10.1007/978-3-319-47974-3_1
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Observe that ifEY1 is nonnegative and finite then, by the strong law of large numbers
(SLLN), one has

ψ(u) ≡ 1 ∀ u. (3.41)

To avoid the trivial case in which ψ(u) = 0 ∀ u > 0, one may assume

P(Y1 > 0) > 0. (3.42)

The Cramér–Lundberg model refers to the case in which the An, n ≥ 1, are i.i.d.
exponentially distributed, while the more general model described above is referred
to as the Sparre Andersen model. For the present let us assume that the claim size
distribution is light tailed in the sense that

EeqX1 < ∞ for some q > 0. (3.43)

With this one obtains the following bound on the ruin probability as a function of
the initial capital.

Proposition 3.17 (Lundberg Inequality) In the non-degenerate case (3.42), the
Sparre Andersen model satisfying the NPC (3.40), and the light-tailed claim size
distribution condition (3.43), there is a unique parameter q = R > 0 such that
EeqY1 = 1. Moreover

ψ(u) ≤ exp(−Ru), ∀u > 0. (3.44)

Proof Observe that the light-tailed condition (3.43) implies that there is an h, 0 <

h ≤ ∞ such that

0 < m(q) := EeqY1 < ∞, for 0 ≤ q < h, lim
q↓h m(q) = ∞.

Alsom(0) = 1,m ′(0) = EY1 < 0 (orm ′(0+) < 0 ifm(q) = ∞∀q < 0), andm ′′(q)

= EY 2
1 exp(qY1) > 0,∀q > 0, with m(q) → ∞ as q ↑ h. Thus m(q) decreases

from m(0) = 1 to a minimum in (0, 1) at some q̃ before increasing without bound
as q ↑ h. It follows that there is a unique q = R > 0 such that m(q) = 1.
To prove the asserted Lundberg bound, let τ = inf{n ≥ 1 : Sn > u}, where
Sn = Y1 + · · · + Yn, n ≥ 1, S0 = 0. Then τ is a stopping time with respect to the
filtration Fn = σ(Y1, . . . ,Yn), n ≥ 1,F0 = {Ω,∅}. Then

ψ(u) = P(τ < ∞).

Next write Wn = u − Sn, n ≥ 1,W0 = u. Then Mn = exp{−RWn}, n ≥ 0, is an
Fn-martingale since,

E(Mn+1|Fn) = E(eRYn+1Mn|Fn) = MnEe
RYn+1 = Mnm(R) = Mn.

By the optional sampling theorem one then has
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e−Ru = EM0 = EMτ∧n ≥ EMτ∧n1[τ≤n] = EMτ1[τ≤n],∀n. (3.45)

Noting that Mτ > 1 on [τ < ∞], it follows from (3.45) that e−Ru ≥ E1[τ≤n] =
P(τ ≤ n) for all n. Let n ↑ ∞ to obtain the asserted Lundberg bound. �
Remark 3.11 The parameter R is generally referred to as the Lundberg coefficient,
or adjustment coefficient. It can be shown that the exponential decay rate provided
by the Lundberg inequality cannot be improved under the conditions of the theorem.
In the Cramér–Lundberg model the true asymptotic rate is given by ψ(u) ∼ ce−Ru ,
as u → ∞, for a constant c < 1; here ∼ demotes asymptotic equality in the sense
that the ratio of the two sides converges to one as u → ∞.1

Exercise Set III

1. (i) If τ1 and τ2 are {Ft }-stopping times, then show that so are τ1∧τ2 and τ1∨τ2.
(ii) Show that τ +c is an {Ft }-stopping time if τ is an {Ft }-stopping time, c > 0,

and τ + c ∈ T ∪ {∞}. (iii) Show that (ii) is false if c < 0.
2. If τ is a discrete random variable with values t1 < t2 < · · · in a finite or

countable set T in R
+, then (i) τ is an {Ft }t∈T -stopping time if and only if

[τ = t] ∈ Ft ∀ t ∈ T ; (ii) τ is an {Ft }-stopping time if and only if it is an
{Ft }-optional time.

3. (Wald’s Identity) Let {Y j : j ≥ 1} be an i.i.d. sequence with finite mean μ, and
take Y0 = 0, a.s. Let τ be an {Fn}-stopping time, where Fn = σ(Y j : j ≤ n).
Write Sn = ∑n

j=0 Y j . If Eτ < ∞ and E|Sτ − Sτ∧m | → 0 as m → ∞, prove
that ESτ = μEτ . [Hint: {Sn − nμ : n ≥ 0} is a martingale.]

4. In Example 5 for τ = τa ∧ τb, show that (i) Eτ < ∞ ∀ a ≤ x ≤ b, and
|S(τ )∧n| ≤ max{|a|, |b|} ∀ n ≥ 0, is uniformly integrable, (ii) P(τa < ∞) =
1 ∀ x, a, but {Sτa∧n : n ≥ 0} is not uniformly integrable. (iii) For Example 5 also
show that Yn := S2n − n, n ≥ 0, is a martingale and {Yτ∧n : n ≥ 0} is uniformly
integrable. Use this to calculate Eτ . [Hint: Use triangle inequality estimates on
|Yτ∧n| ≤ |Sτ∧n|2 + τ ∧ n|.]

5. (A cautionary example) Let Ω = {1, 2}3, and assume all outcomes equally
likely. For ω = (ω1,ω2,ω3) ∈ Ω , let Yi (ω1,ω2,ω3) = δωi ,ωi+1 , (i = 1, 2),
and X (ω1,ω2,ω3) = δω3,ω1 . Define J (ω) = 2 if Y1(ω) = 1, and J (ω) = 1 if
Y1(ω) = 0, ω ∈ Ω . Then show that Y1 and X are independent, as are Y2 and X ,
and J and X . However YJ is not independent of X .

6. (Transienceof asymmetric simple randomwalk)Letθ(c|x)denote theprobability
that the simple random walk starting at x ever reaches c. Use (3.30) to prove (i)
θ(b|x) = (

p
q )b−x for x < b if p < 1/2, and (ii) θ(a|x) = (

q
p )

x−a for x > a if
p > 1/2.

7. Let Z1, Z2, . . . be i.i.d. ±1-valued Bernoulli random variables with P(Zn =
1) = p, P(Zn = −1) = 1 − p, n ≥ 1, where 0 < p < 1/2. Let Sn = Z1 + · · ·
+ Zn, n ≥ 1, S0 = 0.

1See Theorem 5.12 of S. Ramasubramanian (2009) for the asymptotic equality in the case of the
Cramér-Lundberg model.
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(i) Show that P(supn≥0 Sn > y) ≤ (
p
q )y, y ≥ 0. [Hint: Apply a maximal

inequality to Xn = (q/p)Sn .]
(ii) Show for p < 1/2 that E supn≥0 Sn ≤ 1

q−p . [Hint: Use (1.10), noting that
the distribution function is a step function. Also see Exercise 30 of Chapter
I.]

8. Suppose that Z1, Z2, . . . is a sequence of independent random variables with
EZn = 0 such that

∑
n EZ

2
n < ∞. Show that

∑∞
n=1 Zn := limN

∑N
n=1 Zn exists

a.s.2 [Hint: Let Sj = ∑ j
k=1 Zk and show that {Sj } is a.s. a Cauchy sequence. For

this note that Yn := maxk, j≥n |Sk − Sj | is a.s. a decreasing sequence and hence
has a limit a.s. Apply Kolmogorov’s maximal inequality to maxn≤ j≤N |Sj − Sn|
to show that the limit in probability is zero, and hence a.s. zero; also seeChapter I,
Exercise 34.]

(i) For what values of θ will
∑∞

n=1 Zn converge a.s. if P(Zn = n−θ) = P(Zn =
−n−θ) = 1/2 ?

(ii) (RandomSigns3) Suppose each Xn is symmetricBernoulli±1-valued. Show
that the series

∑∞
n=1 Xnan converges with probability one if {an} is any

square-summable sequence of real numbers.
(iii) Show that

∑∞
n=1 Xn sin(nπt)/n converges a.s. for each t if the Xn’s are i.i.d.

standard normal.

9. Let {Xt : t ∈ T } be a stochastic process on (Ω,F) with values in some mea-
surable space (S,S), T a discrete set with elements t1 < t2 < · · · . Define
Ft = σ(Xs : 0 ≤ s ≤ t) ⊂ F , t ∈ T . Assume that τ is an {Ft }-stopping time
and show that Fτ = σ(Xτ∧t : t ∈ T ); i.e., Fτ is the σ-field generated by the
stopped process {Xτ∧t : t ∈ T }.

10. Prove (3.19). Also prove that an {Ft }-stopping time is an {Ft }-optional time;
recall Definition 3.4.

11. (i) Prove that τB defined by (3.18) is an {Ft }-stopping time if B is closed and
t 
→ Xt is continuous with values in a metric space (S, ρ). [Hint: For t > 0, B
closed, [τB ≤ t] = ∩n∈N ∪r∈Q∩[0,t] [ρ(Xr , B) ≤ 1

n ], where Q is the set of
rationals.] (ii) Prove that if t 
→ Xt is right-continuous, τB is an optional time
for B open. [Hint: For B open, t > 0, [τB < t] = ∪r∈Q∩(0,t)[Xr ∈ B].] (iii) If
T = N or Z+, prove that τB is a stopping time for all B ∈ S.

12. Prove that if τ is an optional time with respect to a filtration {Ft : 0 ≤ t < ∞},
then τ is an optional time with respect to {Ft+ : 0 ≤ t < ∞}, where Ft+ :=
∩ε>0Ft+ε. Deduce that under the hypothesis of Example 4(b), if B is open or
closed, then τB is a stopping time with respect to {Ft+ : 0 ≤ t < ∞}.

13. Let {Ft : t ∈ T } and {Gt : t ∈ T } be two filtrations of (Ω,F), each adapted
to {Xt : t ∈ T }, and assume Ft ⊂ Gt ,∀t ∈ T . Show that if {Xt : t ∈ T } is a

2A more comprehensive treatment of this class of problems is given in Chapter VIII.
3Historically this is the problem that leadHugo Steinhaus to develop an axiomatic theory of repeated
coin tossing based on his reading of Lebesgue’s newly developed integral and measure on the real
number line. The problem is revisited in Chapter VIII.

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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{Gt }-martingale (or sub or super) then it is an {Ft }-martingale (or respectively
sub or super).

14. (Uniform absolute continuity) Let Y be an integrable random variable. Prove
that, given ε > 0, there is a δ > 0 such that

∫
A |Y |dP < ε for every A with

P(A) < δ. [Hint: Prove by contradiction: There cannot exist a sequence An ,
P(An) < 1

n , and
∫
An

|Y |dP > ε(n = 1, 2, . . . ).]
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