
Chapter XIII
Some Elements of the Theory of Markov
Processes and Their Convergence
to Equilibrium

Special examples of Markov processes, such as random walks in discrete time and
Brownian motion in continuous time, have occurred many times in preceding chap-
ters as illustrative examples of martingales and Markov processes. There has also
been an emphasis on their recurrence and transience properties. Moreover general
discrete parameter Markov processes, also called Markov chains, were introduced
in Chapter IX, and their important strong Markov property is derived in Chapter XI.
In the present chapter, we begin afresh and somewhat differently with a focus on the
existence of, and convergence to, a unique steady state distribution.

Suppose that X = {X0, X1, X2, . . . } is a (discrete parameter) sequence of ran-
dom variables on a probability space (Ω,F , P) taking values in a measurable
space (S,S). The Markov property refers to the special type of statistical depen-
dence that arises when the conditional distribution of the after-n sequence Xn+ =
{Xn, Xn+1, . . . } given σ(X0, X1, . . . , Xn) coincides with that given σ(Xn). If the
sequence X has the Markov property then we refer to it as a Markov chain with
state space (S,S). The initial distribution μ of the initial state X0 is a probability
on (S,S), and the one-step transition probabilities are defined by

pn(x, B) = P(Xn+1 ∈ B|X0, . . . , Xn), x ∈ S, B ∈ S, on [Xn = x], n ≥ 0.
(13.1)

The case in which these transition probabilities do not depend explicitly on n is
referred to as that of homogeneous or stationary transition probabilities. Unless
otherwise specified, we only consider Markov chains with homogeneous transition
probabilities in this chapter.

Suppose X is a Markov chain having stationary one-step transition probabilities
p(x, B) ≡ pn(x, B). Then, when the initial distribution is μ,

P(Xn ∈ B) =
∫
S
p(n)(x, B)μ(dx), B ∈ S, (13.2)
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where p(n)(x, B) is then-step transitionprobabilitydefined recursively as p(1)(x, B)

= p(x, B), and

p(n+1)(x, B) =
∫
S
p(n)(y, B)p(x, dy), B ∈ S, x ∈ S, (n = 1, 2, . . . ). (13.3)

Given an initial distribution μ and a transition probability p(x, B), (x ∈ S, B ∈ S),
a canonical construction of the Markov chain on the sequence space (S∞,S⊗∞)

is discussed in Chapter IX. We denote this distribution by Qμ, and write Qx in
place of Qδx , x ∈ S. The Markov property may then be stated as: The conditional
distribution ofXn+ given σ(X0, X1, . . . , Xn) is QXn . That is, on the subset [Xn = x],
this conditional distribution is Qx , namely, the distribution of the Markov chain
starting at x ∈ S.

Definition 13.1 A probability π on (S,S) is said to be an invariant distribution if

∫
S
p(x, B)π(dx) = π(B), ∀B ∈ S. (13.4)

This Definition 13.1 says that if X0 has distribution π then so does X1 and, by
iteration, Xn has distribution π for all n ≥ 1. In fact the initial distribution π makes
the Markov chain a stationary process in the sense that the processXn+ has the same
distribution as X for each n ≥ 1; Exercise 11.

Two of the most familiar examples of Markov chains are the following:

Example 1 (Independent Sequence) Let X1, X2, . . . be an i.i.d. sequence of S-
valued random variables with common distribution π, and let X0 be an S-valued
random variable, independent of this sequence, and having distribution μ. Then
X = {X0, X1, X2, . . . } is aMarkov chainwith initial distributionμ and one-step tran-
sition probabilities p(x, B) = π(B), B ∈ S, x ∈ S. Clearly π is the unique invariant
distribution defined by (13.4).

Example 2 (General Random Walk on R
k) Let {Yn : n ≥ 1} be an i.i.d. sequence

with common distribution π onRk , and let Y0 be anRk-valued random variable inde-
pendent of this sequence. These define the displacements of the random walk. The
position process for the random walk is defined by X0 = Y0, Xn = Y0 + Y1 + · · · +
Yn, n ≥ 1. Then X = {X0, X1, X2, . . . } is a Markov chain with initial distribution
that of Y0 and transition probabilities p(x, B) = π(B − x), x ∈ S, B ∈ B(S). This
Markov chain has no invariant probability if π({0}) < 1.

The following are some basic issues concerning invariant probabilities.

• Existence; not always, S = {1, 2, . . . }, p(x, {x + 1}) = 1, x = 1, 2 . . . . (also see
Exercise 1)

• Uniqueness; not always, S = {1, 2}, p(x, {x}) = 1, x = 1, 2. (also seeExercise 5).
• Convergence; not always S = {1, 2}, p(1, {2}) = p(2, {1}) = 1. (also see Exam-
ple 3 and Exercises 3).
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• Rates of convergence; e.g., exponential versus algebraic bounds on an appropriate
metric? (see Theorem 13.1 below, Exercise 3(d)).

The following theorem provides a benchmark result that eliminates the obstruc-
tions captured by the counterexamples. It covers a broad range of examples but is far
from exhaustive.

Theorem 13.1 (Doeblin Minorization) Assume that there is a nonzero measure λ
on (S,S) and an integer N ≥ 1 such that

p(N )(x, B) ≥ λ(B), ∀x ∈ S, B ∈ S.

Then, there is a unique invariant probability π such that

sup
x∈S

sup
B∈S

|p(n)(x, B) − π(B)| ≤ (1 − δ)[
n
N ], n = 1, 2, . . . , (13.5)

where δ = λ(S).

Proof Notice that if λ(S) = 1 then, considering that the minorization inequal-
ity applies to both B and Bc, it follows that p(N )(x, B) = λ(B), x ∈ S, B ∈ S
is the invariant probability; use (13.3) to see p(n)(x, B) = λ(B) does not depend
on x ∈ S, and both sides of (13.5) are zero. Now assume δ = λ(S) < 1. Let d
denote the total variation metric on P(S). Then recall Proposition 1.9 of Chapter I
that (P(S), d) is a complete metric space and d1(μ, ν) := sup{| ∫S f dμ − ∫

S f dν| :
f ∈ B(S), | f | ≤ 1} = 2d(μ, ν), for all μ, ν ∈ P(S). Define T ∗ : P(S) → P(S) by
T ∗μ(B) = ∫

S p(x, B)μ(dx), B ∈ B(S). One may use (13.5) to write

p(N )(x, B) = δγ(B) + (1 − δ)q(x, B), (13.6)

where γ(B) := λ(B)

δ
, and q(x, B) := p(N )(x,B)−λ(B)

1−δ
are both probability measures. It

follows that for all measurable f, | f | ≤ 1, and μ, ν ∈ P(S),

∫
S
f (y)T ∗Nμ(dy) −

∫
S
f (y)T ∗Nν(dy)

=
∫
S

∫
S
f (y)p(N )(x, dy)μ(dx) −

∫
S

∫
S
f (y)p(N )(x, dy)ν(dx)

= (1 − δ)[
∫
S

∫
S
f (y)q(x, dy)μ(dx) −

∫
S

∫
S
f (y)q(x, dy)ν(dx). (13.7)

This implies d1(T ∗Nμ, T ∗Nν) ≤ (1 − δ)d1(μ, ν). Iterating this one obtains (by
induction)

d1(T
∗Nkμ, T ∗Nkν) ≤ (1 − δ)kd1(μ, ν), k ≥ 1. (13.8)

Next observe that ∀μ ∈ P(S), the sequence {T ∗Nkμ : k ≥ 1} is Cauchy for the met-
ric d1 since T ∗N (k+r)μ = T ∗Nk(T ∗Nrμ), and therefore has a limit π which is the

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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unique invariant probability. Takeμ(·) = p(x, ·), and ν = π in (13.8) to complete the
proof. �

The following is a simple consequence.

Corollary 13.2 Suppose that S = {1, 2, . . . , M} is a finite set and {X0, X1, . . . } is
a Markov chain on S with one-step transition probabilities P(Xn+1 = j |Xn = i)
given by the transition probability matrix p = ((pi j ))i, j∈S . If there is an N such
that all entries of pN = ((p(N )

i j ))1≤i, j≤M are positive, then there is a unique invariant

probability π on S, and p(n)
i · converges to π exponentially fast and uniformly for all

i ∈ S.

Proof Define λ(B) = ∑
j∈B λ({ j}),where λ({ j}) = mini∈S p(N )

i j , j ∈ S, and the
empty sum is defined to be zero. Then for each B ⊂ S,

p(N )(i, B) =
∑
j∈B

p(N )
i j ≥ λ(B).

The uniform exponential convergence follows from (13.5). �
Example 3 (Simple Symmetric Random Walk with Reflection) Here S = {0, 1, . . . ,
d − 1} for somed > 2, and pi,i+1 ≡ p(i, {i + 1}) = 1

2 = p(i, {i − 1}) ≡ pi,i−1, 1 ≤
i ≤ d − 2, and p0,1 = pd−1,d−2 = 1. The unique solution to (13.4) is π({0}) =
π({d − 1}) = 1

2(d−1) , and π({i}) = 1/(d − 1), 1 ≤ i ≤ d − 2. However, the hypoth-

esis of Corollary 13.2, (or that of Theorem 13.1), does not hold. Indeed p(N )
i j = 0 if

N and |i − j | have opposite parity; also see Exercise 4 in this regard.
Example 4 (Fluctuation-Dissipation Effects) Let θ ∈ (0, 1) and let ε1, ε2, . . . be
an i.i.d. sequence of Gaussian mean zero, variance σ2 random variables. Define a
Markov process on S = R by Xn+1 = θXn + εn+1, n = 0, 1, 2, . . . for an initial state
X0 = x ∈ S. Then

Xn =
n−1∑
j=0

θ jεn− j =dist
n−1∑
j=0

θ jε j , n = 1, 2, . . . .

In particular, the limit distribution is Gaussian with mean zero and variance 1
1−θ2

σ2.

Remark 13.1 Theorem 13.1, Corollary 13.2, and Example 4 concern so-called irre-
ducible Markov chains, in the sense that for each x ∈ S there is a positive integer
n = n(x) such that the n-step transition probability p(n)(x, B) is positive for every
B ∈ S such that λ(B) > 0, for some nonzero reference measure λ on (S,S). On the
other hand, the Markov chain in Example 3 is not irreducible.

While the time asymptotic theory for irreducible Markov processes is quite well-
developed, there are important examples for which irreducibility is too strong an
hypothesis. The following example is presented to illustrate some useful theory in
cases of non-irreducible Markov processes.
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Example 5 (A Fractional Linear Dynamical System; Products of RandomMatrices)
Let S = [0,∞) and let An, Bn, n = 1, 2, . . . be an i.i.d. sequence positive random
variables with E log A1 < 0. Define a Markov chain on S by X0 = x ∈ S, and

Xn+1 = An+1Xn

An+1Xn + Bn+1
, n = 0, 1, 2 . . . .

Then π = δ0 is the unique invariant distribution. To see this observe that the compo-
sition of two fractional linear maps α1 ◦ α2(x) = α1(α2(x)), α j (x) = a j x

a j x+b j
, x ≥

0, j = 1, 2, may be identified with the result of matrix multiplications of the two

matrices

(
a j 0
a j b j

)
, j = 1, 2, to compute the composite coefficients.1 In particular,

Xn may be identified as an n-foldmatrix product whose diagonal entries are each dis-

tributed as
∏n

j=1 A j = exp{n
∑n

j=1 log A j

n } ∼ exp{nE log A1} → 0 almost surely, and
hence in distribution, as n → ∞. The upper off-diagonal entry is zero, and the
lower off-diagonal entry is

∑n
j=1

∏ j−1
i=1 Bi

∏n
i= j Ai . Since E log A1 < 0, one has

d
dhEAh

1 = EAh
1 log A1 = E log A1 < 0 at h = 0, and EAh

1 = 1 at h = 0. One may
choose sufficiently smallh ∈ (0, 1) such thatEAh

1 < 1. For such a choice one thenhas

from sublinearity that E
( ∑n

j=1

∏ j−1
i=1 Bi

∏n
i= j Ai

)h ≤ n(EAh
1)

n = nen logEAh
1 → 0

as n → ∞. In fact by this, Chebyshev’s inequality and the Borel–Cantelli argument∑n
j=1

∏ j−1
i=1 Bi

∏n
i= j Ai → 0 a.s. as n → ∞, as well.

The previous two examples are illustrations of Markov processes that arise as
iterations of i.i.d. random maps, or so-called random dynamical systems.2

Example 6 (Ehrenfest urnmodel)The followingmodel for heat exchangewas intro-
duced by P. and T. Ehrenfest in 1907, and later by Smoluchowski in 1916, to explain
an apparent paradox that threatened to destroy the basis of Boltzmann’s kinetic the-
ory of matter. In the kinetic theory, heat exchange between two bodies in contact is a
random process involving the exchange of energetic molecules, while in thermody-
namics it is an orderly irreversible progression toward an equilibrium state in which
the (macroscopic) temperatures of two bodies in contact become (approximately)
equal. The main objective of kinetic theory was to explain how the larger scale ther-
modynamic equilibrium could be achieved, while allowing for statistical recurrence
of the random process. In fact, Zermelo argued forcefully that recurrence would
contradict thermodynamic irreversibility. However, Boltzmann was of the view that
the time required by the random process to pass from the equilibrium state to one of

1The authors thank our colleague Yevgeniy Kovchegov for suggesting this example to illustrate
products of random matrices. Such examples as this, including the positivity constraints, arise
naturally in the context of mathematical biology.
2A comprehensive treatment of such Markov processes can be found in Bhattacharya, R., and M.
Majumdar (2007). Limit distributions of products of random matrices has been treated in some
generality by Kaijser, T.(1978): A limit theorem for Markov chains on compact metric spaces
with applications to randommatrices,Duke Math. J. 45, 311–349; Kesten, H. and F. Spitzer (1984):
Convergence in distribution of products of randommatrices, Z.Wahrsch. Verw. Gebiete 67 363–386.



216 XIII Some Elements of the Theory of Markov …

macroscopic nonequilibrium would be so large that such recurrence would be of no
physical significance. Not all physicists were convinced of this reasoning.

So enter the Ehrenfests. Suppose that 2d balls labelled 1, 2, . . . 2d are distrib-
uted between two boxes A and B at time zero. At each instant of time, a ball label
is randomly selected, independently of the number of balls in either box, and that
ball is moved from its current box to the other box. Suppose that there are ini-
tially Y0 balls in box A, and let Yn denote the number of balls in box A at the
nth stage of this process. Then one may check that Y = {Y0,Y1, . . . } is a Markov
chain on the state space S = {0, 1, 2, . . . , 2d} with one-step transition probabilities
p(y, y + 1) = 2d−y

2d , p(y, y − 1) = y
2d , p(y, z) = 0 otherwise. Moreover, Y has a

unique invariant probability π with mean d, given by the binomial distribution with
parameters 1

2 , 2d, i.e.,

π j =
(
2d

j

)
2−2d , j = 0, 1, . . . , 2d.

Viewing the average state d of the invariant distribution π as thermodynamic
equilibrium, the paradox is that, as a result of recurrence of the Markov chain, the
state j = 0 of extreme disequilibrium is certain to eventually occur. The paradox can
be resolved by calculating the average length of time to pass from j = d to j = 0 in
this kinetic theoretical model.3

The following proposition provides a general framework for such calculations.

Proposition 13.3 (Birth–Death Markov Chain with Reflection) Let Y = {Yn : n =
0, 1, 2, . . . }be aMarkov chain on the state space S = {0, 1, . . . , N }having stationary
one-step transition probabilities pi,i+1 = βi , i = 0, 1, . . . , N − 1, pi,i−1 = δi , i =
1, 2, . . . , N , p0,1 = pN ,N−1 = 1, and pi j = 0 otherwise, where 0 < βi = 1 − δi <

1. Let
Tj = inf{n ≥ 0 : Yn = j}, j ∈ S,

denote the first-passage time to state j ∈ S. Then

mi = Ei T0 =
i∑

j=1

β jβ j+1 · · · βN−1

δ jδ j+1 · · · δN−1
+

i∑
j=1

N−1∑
k= j

β j · · ·βk−1βk

δ jδ j+1 · · · δkβk
, 1 ≤ i ≤ N − 1.

Proof The idea for the proof involves a scale-change technique that is useful for
manyMarkov chains that do not skip over adjacent states; including one-dimensional
diffusions having continuous paths. Specifically, one relabels the states j → u j by

3The original calculations of the Ehrenfests and Smoluchowski were for the mean recurrence times.
Such calculations are easily made from the general mean return-time formula Ei τi = 1

πi
, where

τi = inf{n ≥ 1 : Yn = i}, i ∈ S, for irreducible, ergodic Markov chains. In particular, using the
formula for π and Stirling’s formula, E0τ0 ∼ 220,000, Edτd ∼ 100

√
π, for the same numerical

values for the number of balls and transition rate; e.g., see Kac (1947): Randomwalk and the theory
of Brownian motion, Am. Math. Monthly, 54(7), 369–391. The mean-return time formula and more
general theory can be found in standard treatments of discrete parameter Markov processes.
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an increasing sequence 0 = u0 < u1 < · · · < uN = 1 determined by the requirement
that the probabilities of reaching one boundary before another, starting in-between, is
proportional to the respective distance to the boundary, as in the examples of simple
symmetric randomwalk onZ, and one-dimensional standard Brownianmotion. That
is,

ψ(i) = P(Y reaches 0 before N|Y0 = i) = uN − ui
uN − u0

, i ∈ S.

Since
ψ(i) = βiψ(i + 1) + δiψ(i − 1), 1 ≤ i ≤ N − 1,

and ψ(0) = 1,ψ(N ) = 0, one has

ui+1 − ui = δi

βi
(ui − ui−1) = δ1 · · · δi

β1 · · · βi
(u1 − u0). (13.9)

Thus, one obtains the appropriate scale function

u j+1 = 1 +
j∑

i=1

δ1 · · · δi
β1 · · ·βi

, 1 ≤ j ≤ N − 1.

The transformedMarkov chain uY is said to be on natural scale. Nowwritem(u j ) =
m j , j ∈ S.

{m(u j+1) − m(u j )}β j − {m(u j ) − m(u j−1)}δ j = −1, 1 ≤ j ≤ N − 1, (13.10)

with boundary conditions

m(u0) = m(0) = 0, m(uN ) − m(uN−1) = 1.

Using (13.9), one has

m(u j+1) − m(u j )

u j+1 − u j
− m(u j ) − m(u j−1)

u j − u j−1
= −β0β1 · · · β j−1

δ1δ2 · · · δ j
, 1 ≤ j ≤ N − 1.

Summing over j = i, i + 1, . . . , N − 1 and using the boundary conditions, one has

(uN − uN−1)
−1 − m(ui ) − m(ui−1)

ui − ui−1
= −

N−1∑
j=i

β0β1 · · · β j−1

δ1δ2 · · · δ j
, 1 ≤ i ≤ N − 1.

This and (13.10) lead to
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m(ui ) − m(ui−1) = βiβi+1 · · ·βN−1

δiδi+1 · · · δN−1
+

N−1∑
j=i

βi · · · β j−1β j

δi · · · δ jβ j
, 1 ≤ i ≤ N − 1.

The factor β j/β j was introduced to accommodate the term corresponding to j = i .
The asserted formula now follows by summing over i , using m(u0) = 0. �

In the application to the Ehrenfest model one obtains

md =
d∑
j=1

(2d − j)!( j − 1)!
(2d − 1)! +

d∑
j=1

2d−1∑
k= j

(2d − j)!( j − 1)!
(2d − k)!k! = 22d

2d
(1 + O(

1

d
)),

in the limit as d → ∞. For d = 10, 000 balls and an exchange rate of one ball per
second, it follows that md = 106000 years. The companion calculation of the mean
time to thermodynamic equilibrium from a state far away,

m̃0 = E0Td ≤ d + d log d + O(1), d → ∞, (13.11)

is left as Exercise 6. For the same numerical values one obtains from this that
m̃0 ≤ 29 h. In particular, it takes about a day on average for the system to reach
thermodynamic equilibrium from a state farthest away, but it takes an average time
that is inconceivably large for the system to go from a state of thermodynamic equi-
librium to the same state far from equilibrium.

We saw that Brownian motion is an example of a continuous parameter Markov
process having continuous sample paths. More generally, any right-continuous sto-
chastic process X = {X (t) : t ≥ 0} having independent increments has the Markov
property since for 0 ≤ s < t , the conditional distribution of X (t) = X (s) + X (t) −
X (s) given σ(X (u) : 0 ≤ u ≤ s) is the same as that given σ(X (s)). In view of the
independence of X (t) − X (s) and σ(X (u) : 0 ≤ u ≤ s), the former is the distribu-
tion of x + X (t) − X (s) on [X (s) = x]. If the Markov process is homogeneous, i.e.,
the conditional distribution of X (t + s) given σ(X (s)) does not depend on s, then
this distribution is the transition probability p(t; x, dy) on [X (s) = x], namely the
distribution of X (t) when X (0) = x . Exercise 12.

The following is another example of a continuous parameter Markov process.

Example 7 (Ornstein–Uhlenbeck process) The Ornstein–Uhlenbeck process pro-
vides an alternative to the Brownian motion model for the molecular diffusion of a
suspended particle in a liquid. It is obtained by considering the particle’s velocity
rather than its position. Considering one coordinate, say V = {V (t) : t ≥ 0}, one
assumes that the motion is driven by a combination of inertial drag and the momen-
tum provided by random bombardments by surrounding molecules. Specifically, in
a small amount of time h > 0,

V (t + h) − V (t) ≈ −βV (t)h + σ(B(t + h) − B(t)), t ≥ 0,
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where β > 0 is a constant drag coefficient, σ2 > 0 is the molecular diffusion coef-
ficient, and B denotes standard Brownian motion. The frictional term embodies
Stokes law from fluid dynamics which asserts that the frictional force decelerating a
spherical particle of radius r > 0, mass m, is given by

β = 6πrη

m
,

where η > 0 is the coefficient of viscosity of the surrounding fluid. To achieve this
modeling hypothesis one may consider the integrated form in which V is specified as
a process with continuous sample paths satisfying the so-called Langevin equation

V (t) = −β

∫ t

0
V (s)ds + σB(t), V (0) = u. (13.12)

Theorem 13.4 For each initial state V (0), there is a unique Markov process V with
state space S = R having continuous sample paths defined by (13.12). Moreover, V
is Gaussian with transition probability density

p(t; u, v) = 1√
2πσ2(1 − e−2βt )

exp{− 1

2σ2(1 − e−2βt )
(v − ue−βt )2}, u, v ∈ R.

Proof The proof is by the Picard iteration method. First define a process V (0)(t) = u
for all t ≥ 0. Next recursively define V (n+1) by

V (n+1)(t) =
∫ t

0
V (n)(s)ds + σB(t), t ≥ 0, n = 0, 1, 2, . . . .

Iterating this equation for n = 1, 2, 3, changing the order of integration as it occurs,
one arrives at the following induction hypothesis

V (n)(t) = u
n∑
j=0

(−βt) j

j ! +
n−1∑
j=1

(−β) jσ

∫ t

0

(t − s) j−1

( j − 1)! B(s)ds + σB(t), t ≥ 0.

(13.13)
Letting n → ∞ one obtains sample pathwise that

V (t) := lim
n→∞ V (n)(t) = e−βt u − βσ

∫ t

0
e−β(t−s)B(s)ds + σB(t), t ≥ 0.

In particular V is a linear functional of the Brownian motion B. That V has contin-
uous paths and is Gaussian follows immediately from the corresponding properties
of Brownian motion. Moreover, this solution is unique. To prove uniqueness, sup-
pose that Y = {Y (s) : 0 ≤ s ≤ T } is another a.s. continuous solution to (13.12) and
consider



220 XIII Some Elements of the Theory of Markov …

Δ(t) = E(max
0≤s≤t

|X (s) − Y (s)|2), 0 ≤ t ≤ T .

Then,

Δ(T ) ≤ 2β2
E(

∫ T

0
|V (s) − Y (s)|ds)2 ≤ 2β2

∫ T

0
Δ(s)ds. (13.14)

Since t → Δ(t) is nondecreasing on 0 ≤ t ≤ T , applying this inequality to the inte-
grand Δ(s) and reversing the order of integration yields Δ(T ) ≤ (2β2)2

∫ T
0 (T −

s)Δ(s)ds ≤ (2β2T )2

2 Δ(T ). Iterating, one sees by induction that

Δ(T ) ≤ (2β2T )n

n! Δ(T ), n = 2, 3, . . . .

Thus Δ(T ) = 0 and Y = V a.s. on [0, T ]. Since T is arbitrary this establishes the
uniqueness. From uniqueness one may prove the Markov property holds for V as
follows. First, let us note that the solution starting at u at time s, i.e.,

V (s,u)(t) = u − β

∫ t

s
V (s,u)(s)ds + σ(B(t) − B(s)), t ≥ s, (13.15)

can be obtained by Picard iteration as a unique measurable function θ(s, t; u, B(t) −
B(s)), t ≥ s. Since V (t), t ≥ s is a solution starting at u = V (s), i.e.,

V (t) = V (s) − β

∫ t

s
V (r)dr + σ(B(t) − B(s)), 0 ≤ s < t,

it follows from uniqueness that V (t) = θ(s, t; V (s), B(t) − B(s)), t ≥ s. Thus, the
conditional distribution of V (t) given Fs = σ(B(r) : r ≤ s) is the distribution of
θ(x, t; u, B(t) − B(s)) evaluated at u = V (s). Since σ(V (r) : r ≤ s) ⊂ Fs, s ≥ 0,
this proves the Markov property.

Let us now compute the transition probabilities, from which we will also see that
they are homogenous in time. In view of the linearity of the functional θ of Brownian
motion it is clear that the conditional distribution is Gaussian. Thus, it is sufficient
to compute the conditional mean and variance of V (t) started at u = V (s), s < t. In
particular, one obtains

p(t; u, v) =
√

β

πσ2(1 − e−2βt )
exp

{ − β(v − ue−βt )2

σ2(1 − e−2βt )

}

is Gaussian with mean ue−βt and variance σ2

2β (1 − e−2βt ). �

Remark 13.2 A simpler construction of the Ornstein–Uhlenbeck process is given
in Exercise 8 which expresses it as a functional of Brownian motion. The Markov



XIII Some Elements of the Theory of Markov … 221

property is also immediate from this representation. However, the above derivation
is significant because of its historic relation to physics, in particular, significant in
its role as a precursor to the development of the mathematical theory of stochastic
differential equations. In this regard, the Ornstein–Uhlenbeck example provides an
example of a stochastic differential equation

dV (t) = −βV (t)dt + σdB(t), V (0) = u,

which, because σ is a constant, requires no special calculus to interpret. In fact, the
definition is provided for (13.12) using ordinary Riemann integrals

∫ t
0 V (s)ds of the

(continuous) paths of V . The extension to more general equations of the form

dV (t) = μ(V (t), t)dt + σ(V (t), t)dB(t), V (0) = 0,

in one and higher dimensions is the subject of stochastic differential equations and
Itô calculus to define integrals of the form

∫ t
0 σ(V (s), s)dB(s) for nonconstant inte-

grands σ(V (s), s). K. Itô’s development of a useful calculus in this regard provides
a striking illustration of the power of martingale theory.

Exercise Set XIII

1. (Unrestricted Simple Symmetric Random Walk on Z) Define a transition proba-
bility on S = Z by pi,i+1 = 1

2 = pi,i−1, i ∈ Z. Show that there is not an invariant
probability for this Markov chain.

2. (Uniqueness of an Invariant Probability) (a) Suppose 1
N

∑N
n=1 p

(n)(x, dy) con-
verges, for each x ∈ S, to a probability π(dy) in total variation norm as N → ∞.
Show that π is the unique invariant probability. (b) Suppose that the convergence
in (a) to π(dy) is weak convergence of the probabilities 1

N

∑N
n=1 p

(n)(x, dy) on a
metric space (S,B(S)). Show the same conclusion as in (a) holds if the transition
probability p(x, dy) has the Feller property: Namely, for each bounded, contin-
uous function f on S the function x → ∫

S f (y)p(x, dy), x ∈ S is continuous.
3. (Asymmetric SimpleRandomWalkwithReflection) Let S = {0, 1, . . . , d − 1} for

some d > 2, and for some 0 < p < 1, define pi,i+1 = p, pi,i−1 = 1 − p, 1 ≤
i ≤ d − 2, and p0,1 = 1 = pd−1,d−2. (a) Show that there is a unique invariant
probability and compute it. (b) Show that p(n)

i j = 0 if n and |i − j | have opposite
parity. (c) Show that p̃i, j := p(2)

i, j defines a transition probability on each of
the state spaces S0 = {i ∈ S : i is even}, and S1 = {i ∈ S : i is odd}, and that the
hypothesis of Corollary 13.2 holds for each of these Markov chains. (d) Show
that 1

N

∑N
n=1 p

(n)
i j converges to the unique invariant probabilityπ on S.Moreover,

show that the convergence is exponentially fast as N → ∞, and uniform over
all i, j ∈ S.

4. (Lazy RandomWalk) Suppose the transition probabilities in Exercise 3 are mod-
ified to assign positive probability pii = ε > 0 to each state in S while keeping
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pi,i+1 = pi,i−1 = (1 − ε)/2, 1 ≤ i ≤ d − 2, and p0,1 = pd−1,d−2 = 1 − ε, and
pi, j = 0 if |i − j | > 1. Show thatDoeblin’s Theorem13.1 applies to thisMarkov
chain.

5. (Simple RandomWalk with Absorption) Suppose that the transition probabilities
in Exercise 3 are modified so that p0,0 = p1,1 = 1. Show that there are two
invariant probabilities δ{0} and δ{1}, and hence infinitely many.

6. (Ehrenfest model continued) Calculate m̃0 in (13.11) for the Ehrenfest model by
the following steps:

(i) Write m̃(ui ) = m̃i , 1 ≤ i ≤ d − 1, and show that the same equations as for
m(ui ) apply with boundary conditions m̃(u0) = 1 + m̃(u1), m̃(ud) = 0.

(ii) Summing over j = 1, 3, . . . , d − 1, show that m̃0 = 1 + ∑d−1
j=1

j !
(2d−1)···(2d− j)

+ ∑d−1
j=1

∑ j
k=1

( j+1) j ···(k+2)(k+1)
(2d−k)···(2d− j)( j+1)

(iii) Verify that m̃0 ≤ d + d log d + O(1) as d → ∞.

7. (Stationary Ornstein–Uhlenbeck/Maxwell-Boltzmann Steady State) (a) Show
that the time-asymptotic distribution of the Ornstein–Uhlenbeck process is
Gaussian with mean zero and variance σ2

2β regardless of the initial distribution.

(b) Show that this is the unique invariant distribution of V .4 (c) What general
features do the Erhenfest model and Ornstein–Uhlenbeck diffusion have in com-
mon ? [Hint: Consider the conditional mean and variance of displacements of
the process vn = Yn − d, n = 0, 1, 2, . . . . Namely,E(vn+1 − vn|v0, . . . , vn) and
E((vn+1 − vn)

2|v0, . . . , vn).]
8. (Ornstein–Uhlenbeck process; Time change of Brownian Motion) Assume that

V (0) has the stationary distribution for the Ornstein–Uhlenbeck process. Then
V can be expressed as a time-change of Brownian motion as follows: V (t) =
e−βt B( σ2

2β e
2βt ), t ≥ 0. [Hint: Compute the mean and variance of the Gaussian

transition probability densities.]
9. (Poisson Process) Let T1, T2, . . . be an i.i.d. sequence of exponentially dis-

tributed random variables with intensity λ > 0, i.e., P(T1 > t) = e−λt , t ≥ 0.
Define a counting process N = {N (t) : t ≥ 0} by N (t) = max{n : T1 + · · · +
Tn ≤ t}, t ≥ 0. The random variables T1, T2, . . . are referred to as interar-
rival times of N . Show that N is a continuous parameter Markov process
on the state space S = {0, 1, 2, . . . } with transition probabilities p(t; x, y) =
(λt)y−x

(y−x)! e
−λt , y = x, x + 1, . . . , x = 0, 1, 2, . . . , t ≥ 0. [Hint: N has independent

increments.]
10. (Dilogarithmic Random Walk) The dilogarithmic random walk5 is the mul-

tiplicative random walk on the multiplicative group S = (0,∞) defined by

4The invariant distribution of the Ornstein–Uhlenbeck process is referred to as the Maxwell–
Boltzmann distribution. The physics of fluids requires that the variance be given by the physical
parameter κT

m where κ is Boltzmann constant, T is absolute temperature, and m is the mass of the
particle.
5This random walk plays a role in probabilistic analysis of the incompressible Navier–Stokes equa-
tions introduced by Y. LeJan, A. S. Sznitman (1997): Stochastic cascades and three-dimensional
Navier–Stokes equations. Probab. Theory Related Fields 109, no. 3, 343–366. This particular struc-
ture was exploited in Dascaliuc, R., N. Michalowski, E. Thomann, E. Waymire (2015): Symmetry
breaking anduniqueness for the incompressibleNavier-Stokes equations,Chaos,AmericanPhysical



Exercise Set XIII 223

Mn = R0
∏n

j=1 R j , n = 1, 2, . . . where R0 is a positive random variable inde-
pendent of the i.i.d. sequence {Rn : n ≥ 1} havingmarginal distribution given by
P(R1 ∈ dr) = 2

π2 ln
|1+r |
|1−r |

dr
r , r > 0. Show that (a) ER1 = ∞. (b) E| ln R1|m <

∞ for m = 1, 2, . . . . (c) The distribution of Mn is symmetric about 1, the iden-
tity element of the multiplicative group S, and {Mn : n ≥ 0} is 1-neighborhood
recurrent. [Hint: Show that the additive random walk Sn = lnMn, n ≥ 0, is 0-
neighborhood recurrent.]

11. Suppose that X0 has an invariant distribution π in the sense of (13.4). Show that
the Markov chain X is stationary (or translation invariant) in the sense that Xn+
and X have the same distribution for each n ≥ 1.

12. For a homogeneous continuous parameter Markov process show that the condi-
tional distribution of X (t + s) given σ(X (s)) on [X (s) = x] is the same as the
conditional distribution of of X (t) given X (0) on [X (0) = x].

(Footnote 5 continued)
Society, 25 (7). The dilogarithmic functions are well-studied and arise in a variety of unrelated
contexts.
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