
Chapter XI
Strong Markov Property, Skorokhod
Embedding, and Donsker’s Invariance
Principle

This chapter ties together a number of the topics introduced in the text via applica-
tions to the further analysis of Brownian motion, a fundamentally important stochas-
tic process whose existence was established in Chapter VII and, independently, in
Chapter IX.

The discrete-parameter random walk was introduced in Chapter II, where it was
shown to have theMarkov property.Markov processes on a general state space Swith
a given transition probability p(x, dy) were introduced in Chapter IX (see Example
1 and Remark 9.4 in Chapter IX). Generalizing from this example, a sequence of
random variables {Xn : n ≥ 0} defined on a probability space (Ω,F , P)with values
in a measurable space (S,S) has the Markov property if for every m ≥ 0, the
conditional distribution of Xm+1 given Fm := σ(X j , 0 ≤ j ≤ m) is the same as its
conditional distribution given σ(Xm). In particular, the conditional distribution is a
function of Xm , denoted by pm(Xm, dy), where pm(x, dy), x ∈ S is referred to as
the (one-step) transition probability at time m and satisfies the following:

1. For x ∈ S, pm(x, dy) is a probability on (S,S).
2. For B ∈ S, the function x → pm(x, B) is a real-valuedmeasurable function on S.

In the special case that pm(x, dy) = p(x, dy), for every m ≥ 0, the transition
probabilities are said to be homogeneous or stationary. Unless stated otherwise,
Markov processes considered in this book are homogenous.

With the randomwalk example as background, let us recall some basic definitions.
Let Pz denote the distribution of a discrete-parameter stochastic process X = {Xn :
n ≥ 0}, i.e., a probability on the product space (S∞,S⊗∞), with transition probability
p(x, dy) and initial distribution P(X0 = z) = 1. The notation Ez is used to denote
expectations with respect to the probability Pz .

Definition 11.1 Fix m ≥ 0. The after-m (future) process is defined by X+
m :=

{Xn+m : n ≥ 0}.

© Springer International Publishing AG 2016
R. Bhattacharya and E.C. Waymire, A Basic Course in Probability Theory,
Universitext, DOI 10.1007/978-3-319-47974-3_XI

187

http://dx.doi.org/10.1007/978-3-319-47974-3_7
http://dx.doi.org/10.1007/978-3-319-47974-3_9
http://dx.doi.org/10.1007/978-3-319-47974-3_2
http://dx.doi.org/10.1007/978-3-319-47974-3_9
http://dx.doi.org/10.1007/978-3-319-47974-3_9


188 XI Strong Markov Property, Skorokhod Embedding …

It follows from the definition of a Markov process {Xn : n = 0, 1, 2, . . . } with
a stationary transition probability given above that for every n ≥ 0 the conditional
distribution of (Xm, Xm+1, . . . , Xm+n), given σ(X0, . . . , Xm) is the same as the Px -
distribution of (X0, . . . , Xn), evaluated at x = Xm . To see this, let f be a bounded
measurable function on (Sn+1,S⊗(n+1)). Then the claim is that

E
(
f (Xm, Xm+1, . . . , Xm+n)|σ(X0, . . . , Xm)

) = g0(Xm), (11.1)

where given X0 = x ,
g0(x) := Ex f (X0, X1, . . . , Xn). (11.2)

For n = 0 this is trivial. For n ≥ 1, first take the conditional expectation of
f (Xm, Xm+1, . . . , Xm+n), given σ(X0, . . . , Xm, . . . , Xm+n−1) to get, by theMarkov
property, that

E
(
f (Xm, Xm+1, . . . , Xm+n) |σ(X0, . . . , Xm, . . . , Xm+n−1)

)

= E
(
f (xm, . . . , xm+n−1, Xm+n)|σ(Xm+n−1)

)|xm=Xm ,...,xm+n−1=Xm+n−1

=
∫

S
f (Xm, . . . , Xm+n−1, xm+n)p(Xm+n−1, dxm+n)

= gn−1(Xm, . . . , Xm+n−1), say. (11.3)

Next take the conditional expectationof the abovewith respect toσ(X0, . . . , Xm+n−2)

to get

E
(
f (Xm, Xm+1, . . . , Xm+n) |σ(X0, . . . , Xm, . . . , Xm+n−2)

)

= E
(
gn−1(Xm, . . . , Xm+n−1)|σ(X0, . . . , Xm+n−2)

)

= E
(
gn−1(xm, . . . , xm+n−2, Xm+n−1)|σ(Xm+n−2)

)|xm=Xm ,...,xm+n−2=Xm+n−2

= E

∫

S
gn−1(Xm, . . . , Xm+n−2, xm+n−1)p(Xm+n−2, dxm+n−1)

= gn−2(Xm, . . . , Xm+n−2), say. (11.4)

Continuing in this manner one finally arrives at

E
(
f (Xm, Xm+1, . . . , Xm+n) |σ(X0, . . . , . . . , Xm)

)

= E
(
g1(Xm, Xm+1)|σ(X0, . . . , . . . , Xm)

)

=
∫

S
g1(Xm, xm+1)p(Xm, dxm+1) = g0(Xm), say. (11.5)

Now, on the other hand, let us compute Ex f (X0, X1, . . . , Xn). For this, one fol-
lows the same steps as above, but with m = 0. That is, first take the con-
ditional expectation of f (X0, X1, . . . , Xn), given σ(X0, X1, . . . , Xn−1), arriving
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at gn−1(X0, X1, . . . , Xn−1). Then take the conditional expectation of this given
σ(X0, X1, . . . , Xn−2), arriving at gn−2(X0, . . . , Xn−2), and so on. In this way one
again arrives at g0(X0), which is (11.1) with m = 0, or (11.2) with x = Xm .

Since finite-dimensional cylinders C = B × S∞, B ∈ S⊗(n+1) (n = 0, 1, 2, . . . )
constitute a π-system, and taking f = 1B in (11.1), (11.2), one has, for every
A ∈ σ(X0, . . . , Xm),

E
(
1A1[X+

m∈C]
) = E

(
1A1[(Xm ,Xm+1,...,Xm+n)∈B]

) = E
(
1APx (C)|x=Xm

)
, (11.6)

it follows from the π-λ theorem that

E
(
1A1[X+

m∈C]
) = E

(
1APx (C)|x=Xm

)
, (11.7)

for all C ∈ S∞; here Px (C)|x=Xm denotes the (composite) evaluation of the function
x �→ Px (C) at x = Xm . Thus, we have arrived at the following equivalent, but
seemingly stronger, definition of the Markov property.

Definition 11.2 (Markov Property) We say that X = {Xn : n ≥ 0} has the (homo-
geneous) Markov Property if for every m ≥ 0, the conditional distribution of X+

m ,
given the σ-field Fm = σ(X0, . . . , Xm), is PXm , i.e., equals Py on the set [Xm = y].

This notion may be significantly strengthened by considering the future evolution
given its history up to and including a random stopping time. Let us recall that given
a stopping time τ , the pre-τ σ-field Fτ is defined by

Fτ = {A ∈ F : A ∩ [τ = m] ∈ Fm,∀m ≥ 0}. (11.8)

Definition 11.3 The after-τ process X+
τ = {Xτ , Xτ+1, Xτ+2, . . . } is well defined

on the set [τ < ∞] by X+
τ = X+

m on [τ = m].
The following theorem shows that for discrete-parameter Markov processes, this

stronger (Markov) property that “conditionally given the past and the present the
future starts afresh at the present state” holds more generally for a stopping time τ
in place of a constant “present time” m.

Theorem 11.1 (Strong Markov Property) Let τ be a stopping time for the process
{Xn : n ≥ 0}. If this process has the Markov property of Definition 11.2, then on
[τ < ∞] the conditional distribution of the after −τ process X+

τ , given the pre-τ
σ-field Fτ , is PXτ

.

Proof Let f be a real-valued bounded measurable function on (S∞,S⊗∞), and let
A ∈ Fτ . Then
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E(1[τ<∞]1A f (X
+
τ )) =

∞∑

m=0

E(1[τ=m]1A f (X
+
m ))

=
∞∑

m=0

E(1[τ=m]∩AEXm f )

=
∞∑

m=0

E(1[τ=m]∩AEXτ
f ) = E(1[τ<∞]1AEXτ

f ).

The second equality follows from the Markov property in Definition 11.2 since
A ∩ [τ = m] ∈ Fm . �

Let us now consider the continuous-parameter Brownian motion process along
similar lines. It is technically convenient to consider the canonical model of standard
Brownian motion {Bt : t ≥ 0} started at 0 on Ω = C[0,∞) with B the Borel σ-field
on C[0,∞), P0, referred to as Wiener measure, and Bt (ω) := ω(t), t ≥ 0,ω ∈ Ω,

the coordinate projections. However, for continuous-parameter processes it is often
useful tomake sure that all events that have probability zero are included in theσ-field
forΩ. For example, in the analysis of fine-scale structure of Brownianmotion certain
sets D may arise that imply events E ∈ B,D ⊂ E, for which one is able to compute
P(E) = 0. In particular, then, one would want to conclude that D is measurable
(and hence assigned P(D) = 0 too). For this it may be necessary to replace B by its
σ-field completionF = B. We have seen that this can always be achieved, and there
is no loss in generality in assuming that the underlying probability space (Ω,F , P)

is complete from the outset (see Appendix A).
Although the focus is on Brownian motion, just as for the above discussion of

random walk, some of the definitions apply more generally and will be so stated
in terms of a generic continuous-parameter stochastic process {Zt : t ≥ 0}, having
continuous sample paths (outside a P-null set).

Definition 11.4 For fixed s > 0 the after-s process is defined by Z+
s := {Zs+t : t ≥

0}.
Definition 11.5 A continuous-parameter stochastic process {Zt : t ≥ 0}, with a.s.
continuous sample paths, such that for each s > 0, the conditional distribution of
the after-s process Z+

s given σ(Zt , t ≤ s) coincides with its conditional distribution
given σ(Zs) is said to have the Markov property.

Aswill become evident from the calculations in the proof below, theMarkov prop-
erty of a Brownian motion {Bt : t ≥ 0} follows from the fact that it has independent
increments.

Proposition 11.2 (Markov Property of Brownian Motion) Let Px denote the dis-
tribution on C[0,∞) of standard Brownian motion Bx = {Bx

t = x + Bt : t ≥ 0}
started at x . For every s ≥ 0, the conditional distribution of (Bx

s )+ := {Bx
s+t : t ≥ 0}

given σ(Bx
u : 0 ≤ u ≤ s) is PBx

s
.
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Proof Write G := σ(Bx
u : 0 ≤ u ≤ s). Let f be a real-valued bounded measurable

function onC[0,∞). Then E
(
f ((Bx

s )+)|G) = E
(
ψ(U, V )|G)

, whereU = Bx
s , V =

{Bx
s+t − Bx

s : t ≥ 0}, ψ(y,ω) := f (ωy), y ∈ R, ω ∈ C[0,∞), and ωy ∈ C[0,∞) is
given by ωy(t) = ω(t) + y. By the substitution property for conditional expectation
(Theorem 2.10), one has

E
(
ψ(U, V )|G) = h(U ) = h(Bx

s ),

where simplifying notation by writing Bt = B0
t and, in turn, {Bt : t ≥ 0} for a

standard Brownian motion starting at 0,

h(y) = Eψ(y, V ) = Eψ(y, {Bt : t ≥ 0}) = E f (By) =
∫

C[0,∞)

f d Py .

�
It is sometimes useful to extend the definition of standard Brownian motion as

follows.

Definition 11.6 Let (Ω,F , P) be a probability space and Ft , t ≥ 0, a filtration.
The k-dimensional standard Brownian motion with respect to this filtration is
a stochastic process {Bt : t ≥ 0} on (Ω,F , P) having (i) stationary, Gaussian
increments Bt+s − Bs with mean zero and covariance matrix t Ik; (ii) a.s. continuous
sample paths t �→ Bt on [0,∞) → R

k; and (iii) for each t ≥ 0, Bt isFt -measurable
and Bt−Bs is independent ofFs , 0 ≤ s < t.Taking B0 = 0 a.s., then Bx := {x+Bt :
t ≥ 0}, is referred to as the standard Brownian motion started at x ∈ R

k (with
respect to the given filtration). The stochastic process Xt = x + μt + σBt , t ≥ 0,
where x,μ ∈ R

k , and σ is a k×k matrix defines the k-dimensional Brownian motion
started at x and having drift coefficient μ and diffusion coefficient D = σtσ.

For example, one may take the completion Ft = σ(Bs : s ≤ t), t ≥ 0, of the σ-field
generated by the coordinate projections t �→ ω(t), ω ∈ C[0,∞). Alternatively, one
mayhave occasion to useFt = σ(Bs, s ≤ t)∨G, whereG is someσ-field independent
ofF . The definition of the Markov property can be modified accordingly as follows.

Proposition 11.3 The Markov property of Brownian motions Bx on R
k defined on

(Ω,F , P) holds with respect to (i) the right-continuous filtration defined by

Ft+ :=
⋂

ε>0

Ft+ε (t ≥ 0), (11.9)

where Ft = Gt := σ(Bu : 0 ≤ u ≤ t), or (ii) Ft is the P-completion of Gt , or (iii)
Ft = Gt ∨ G (t ≥ 0), where G is independent of F .

Proof It is enough to prove that Bt+s − Bs is independent of Fs+ for every t > 0.
Let G ∈ Fs+ and t > 0. For each ε > 0 such that t > ε, G ∈ Fs+ε, so that if
f ∈ Cb(R

k), one has

http://dx.doi.org/10.1007/978-3-319-47974-3_2
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E(1G f (Bt+s − Bs+ε)) = P(G) · E f (Bt+s − Bs+ε).

Letting ε ↓ 0 on both sides,

E(1G f (Bt+s − Bs)) = P(G)E f (Bt+s − Bs).

Since the indicator of every closed subset of Rk is a decreasing limit of continuous
functions bounded by 1 (see the proof of Alexandrov’s theorem in Chapter VII), the
last equality also holds for indicator functions f of closed sets. Since the class of
closed sets is a π-system, and the class of Borel sets whose indicator functions f
satisfy the equality is a σ-field, one can use the π-λ theorem to obtain the equality
for all B ∈ B(Rk). The proofs of (ii) and (iii) are left to Exercise 2. �

One may define the σ-field governing the “past up to time τ” as the σ-field of events
Fτ given by

Fτ := σ(Zt∧τ : t ≥ 0). (11.10)

The stochastic process {Z̃t : t ≥ 0} := {Zt∧τ : t ≥ 0} is referred to as the process
stopped at τ . Events in Fτ depend only on the process stopped at τ . The stopped
process contains no further information about the process {Zt : t ≥ 0} beyond the
time τ . Alternatively, in analogy with the discrete-parameter case, a description of
the past up to time τ that is often more useful for checking whether a particular event
belongs to it may be formulated as follows.

Definition 11.7 Let τ be a stopping time with respect to a filtration Ft , t ≥ 0. The
pre-τ σ-field is

Fτ = {F ∈ F : F ∩ [τ ≤ t] ∈ Ft for all t ≥ 0}.

For example, using this definition it is simple to check that

[τ ≤ t] ∈ Fτ ,∀t ≥ 0, [τ < ∞] ∈ Fτ . (11.11)

Remark 11.1 We will always use1 Definition 11.7, and not (11.10). Note, however,
that t ∧ τ ≤ t for all t , so that σ(Xt∧τ : t ≥ 0} is contained in Fτ (see Exercise 1).

The future relative to τ is the after-τ process Z+
τ = {(Z+

τ )t : t ≥ 0} obtained by
viewing {Zt : t ≥ 0} from time t = τ onwards, for τ < ∞. This is

(Z+
τ )t (ω) = Zτ (ω)+t (ω), t ≥ 0, on [τ < ∞]. (11.12)

1The proof of the equivalence of (11.10) and that of Definition 11.7 for processes with continuous
sample paths may be found in Stroock and Varadahn (1980), p. 30.

http://dx.doi.org/10.1007/978-3-319-47974-3_7
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Theorem 11.4 (Strong Markov Property for Brownian Motion) Let {Bt : t ≥ 0} be
a k-dimensional Brownian motion with respect to a filtration {Ft : t ≥ 0} starting at
0 and let P0 denote its distribution (Wiener measure) on C[0,∞). For x ∈ R

k let Px
denote the distribution of the Brownian motion process Bx

t := x + Bt , t ≥ 0, started
at x . Let τ be a stopping time. On [τ < ∞], the conditional distribution of B+

τ given
Fτ is the same as the distribution of {By

t : t ≥ 0} starting at y = Bτ . In other words,
this conditional distribution is PBτ

on [τ < ∞].
Proof First assume that τ has countably many values ordered as 0 ≤ s1 < s2 < · · · .
Consider a finite-dimensional function of the after-τ process of the form

h(Bτ+t ′1 , Bτ+t ′2 , . . . , Bτ+t ′r ), [τ < ∞], (11.13)

where h is a bounded continuous real-valued function on (Rk)r and 0 ≤ t ′1 < t ′2 <

· · · < t ′r . It is enough to prove

E
[
h(Bτ+t ′1 , . . . , Bτ+t ′r )1[τ<∞] | Fτ

] = [Eh(By
t ′1
, . . . , By

t ′r
)]y=Bτ

1[τ<∞]. (11.14)

That is, for every A ∈ Fτ we need to show that

E(1Ah(Bτ+t ′1 , . . . , Bτ+t ′r )1[τ<∞]) = E

(
1A

[
Eh(By

t ′1
, . . . , By

t ′r
)
]

y=Bτ

1[τ<∞]
)

.

(11.15)
Now

[τ = s j ] = [τ ≤ s j ] ∩ [τ ≤ s j−1]c ∈ Fs j ,

so that A ∩ [τ = s j ] ∈ Fs j . Express the left side of (11.15) as

∞∑

j=1

E
(
1A∩[τ=s j ]h(Bsj+t ′1 , . . . , Bsj+t ′r )

)
. (11.16)

By the Markov property, the j th summand in (11.16) equals

E(1A1[τ=s j ][Eh(By
t ′1
, . . . , By

t ′r
)]y=Bs j

) = E(1A1[τ=s j ][Eh(By
t ′1
, . . . , By

t ′r
)]y=Bτ

).

Summing this over j , one obtains the desired relation (11.15). This completes the
proof in the case that τ has countably many values 0 ≤ s1 < s2 < · · · .

The case of more general τ may be dealt with by approximating it by stopping
times assuming countablymanyvalues. Specifically, for each positive integern define

τn =
{ j

2n if j−1
2n < τ ≤ j

2n , j = 0, 1, 2, . . .
∞ if τ = ∞.

(11.17)
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Since
[
τn = j

2n

]
=

[
j − 1

2n
< τ ≤ j

2n

]
=

[
τ ≤ j

2n

]
\
[
τ ≤ j − 1

2n

]
∈ F j/2n ,

it follows that

[τn ≤ t] =
⋃

j : j/2n≤t

[
τn = j

2n

]
∈ Ft for all t ≥ 0.

Therefore, τn is a stopping time for each n and τn(ω) ↓ τ (ω) as n ↑ ∞ for each
ω ∈ Ω . Also one may easily check that Fτ ⊂ Fτn from the definition (see Exercise
1). Let h be a bounded continuous function on (Rk)r . Define

ϕ(y) ≡ Eh(By
t ′1
, . . . , By

t ′r
). (11.18)

One may also check that ϕ is continuous using the continuity of y → (By
t ′1
, . . . , By

t ′r
).

Let A ∈ Fτ (⊂ Fτn ). Applying (11.15) to τ = τn one has

E(1Ah(Bτn+t ′1 , . . . , Bτn+t ′r )1[τn<∞]) = E(1Aϕ(Bτn )1[τn<∞]). (11.19)

Since h,ϕ are continuous, {Bt : t ≥ 0} has continuous sample paths, and τn ↓ τ as
n → ∞, Lebesgue’s dominated convergence theorem may be used on both sides of
(11.19) to get

E(1Ah(Bτ+t ′1 , . . . , Bτ+t ′r )1[τ<∞]) = E(1Aϕ(Bτ )1[τ<∞]). (11.20)

This establishes (11.15). Since finite-dimensional distributions determine a proba-
bility on C[0,∞), the proof is complete. �

Remark 11.2 Note that the proofs of the Markov property (Proposition 11.3) and
the strong Markov property (Theorem 11.1) hold for Rk-valued Brownian motions
on Rk with arbitrary drift and positive definite diffusion matrix (Exercise 2).

The examples below illustrate the usefulness of Theorem 11.4 in typical com-
putations. In all these examples B = {Bt : t ≥ 0} is a one-dimensional standard
Brownian motion starting at zero. For ω ∈ C([0,∞) : R) define, for every a ∈ R,

τ (1)
a (ω) ≡ τ a(ω) := inf{t ≥ 0 : ω(t) = a}, (11.21)

and, recursively,

τ (r+1)
a (ω) := inf{t > τ (r)

a : ω(t) = a}, r ≥ 1, (11.22)

with the usual convention that the infimum of an empty set of numbers is ∞.
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Similarly, in the context of the simple random walk, put Ω = Z
∞ = {ω =

(ω0,ω1, . . . ) : ωn ∈ Z,∀n ≥ 1}, and define

τ (1)
a (ω) ≡ τ a(ω) := inf{n ≥ 0 : ωn = a}, (11.23)

and, recursively,

τ (r+1)
a (ω) := inf{n > τ (r)

a : ωn = a}, r ≥ 1. (11.24)

Example 1 (Recurrence of Simple Symmetric Random Walk) Consider the simple
symmetric random walk Sx := {Sx

n = x + S0n : n ≥ 0} on Z started at x . Suppose
one wishes to prove that Px (τ y < ∞) = 1 for y ∈ Z. This may be obtained from
the (ordinary) Markov property applied to ϕ(x) := Px (τ y < τ a), a ≤ x ≤ y. For
a < x < y, conditioning on Sx

1 , and writing Sx+
1 = {Sx

1+n : n ≥ 0}, we have

ϕ(x) = Px (τ y < τ a) = P(τ y ◦ Sx < τ a ◦ Sx )

= P(τ y ◦ Sx+
1 < τ a ◦ Sx+

1 )

= Ex PSx1 (τ y < τ a) = Eϕ(Sx
1 )

= E(1[Sx1 =x+1]ϕ(x + 1) + 1[Sx1 =x−1]ϕ(x − 1))

= 1

2
ϕ(x + 1) + 1

2
ϕ(x − 1), a < x < y, (11.25)

with boundary values ϕ(y) = 1, ϕ(a) = 0. Solving, one obtains ϕ(x) = (x −
a)/(y − a). Thus Px (τy < ∞) = 1 follows by letting a → −∞ using basic
“continuity properties” of probability measures. Similarly, letting y → ∞, one gets
Px (τ a < ∞) = 1. Write ηa := inf{n ≥ 1 : ωn = a} for the first return time
to a. Then ηa = τ a on {ω : ω0 �= a}, and ηa > τ a = 0 on {ω : ω0 = a}. By
conditioning on Sx

1 again, one has Px (ηx < ∞) = 1
2 Px−1(τ x < ∞) + 1

2 Px+1(τ x <

∞) = 1
2 · 1 + 1

2 · 1 = 1. While this calculation required only the Markov property,
next consider the problem of showing that the process will return to y infinitely
often. One would like to argue that, conditioning on the process up to its return
to y, it merely starts over. This of course is the strong Markov property. So let us
examine carefully the calculation to show that under Px , the r th passage time to y,
τ (r)
y , is a.s. finite for every r = 1, 2, . . . . First note that by the (ordinary) Markov

property, Px (τy < ∞) = 1 ∀x . To simplify notation, write τ (r)
y = τ (r)

y ◦ Sx , and
Sx+

τ (r)
y

= {Sx+
τ (r)
y +n

: n ≥ 0} is then the after-τ (r)
y process (for the random walk Sx ).

Applying the strong Markov property with respect to the stopping time τ (r)
y one has,

remembering that Sx
τ (r)
y

= y,
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P(τ (r+1)
y < ∞) = P(τ (r)

y < ∞, η ◦ Sx+
τ (r)
y

< ∞)

= E
(
1[τ (r)

y <∞]Py(η < ∞)
)

= E
(
1[τ (r)

y <∞]
) · 1

= P(τ (r)
y < ∞) = 1 (r = 1, 2, . . . ), (11.26)

by induction on r . If x = y, then τ (1)
x is replaced by ηx . Otherwise, the proof remains

the same. This is equivalent to the recurrence of the state y in the sense that

P(Sx
n = y for infinitely many n) = P(∩∞

r=1[τ (r)
y < ∞]) = 1.

Example 2 (Boundary Value Distribution of Brownian Motion) Let Bx = {Bx
t :=

x + Bt : t ≥ 0} be a one-dimensional standard Brownian motion started at x ∈ [c, d]
for c < d, and let τy = τ y ◦ Bx . The stopping time τc ∧ τd denotes the first time for
Bx to reach the “boundary” states {c, d}, referred to as a hitting time for Bx . Define

ψ(x) := P(Bx
τc∧τd

= c) ≡ P({Bx
t : t ≥ 0} reaches c before d), (c ≤ x ≤ d).

(11.27)
Fix x ∈ (c, d) and h > 0 such that [x − h, x + h] ⊂ (c, d). In contrast to the
discrete-parameter case there is no “first step” to consider. It will be convenient to
consider τ = τx−h ∧ τx+h , i.e., τ is the first time {Bx

t : t ≥ 0} reaches x −h or x +h.
Then P(τ < ∞) = 1, by the law of the iterated logarithm (see Exercise 6 for an
alternative argument). Now, by the strong Markov property (Theorem 11.4), applied
with respect to τ ,

ψ(x) = P({Bx
t : t ≥ 0} reaches c before d)

= P({(Bx+
τ )t : t ≥ 0} reaches c before d)

= E(P({(Bx+
τ )t : t ≥ 0} reaches c before d | Fτ )). (11.28)

The strong Markov property now gives that

ψ(x) = E(ψ(Bx
τ )), (11.29)

so that by symmetry of Brownian motion, i.e., B0 and −B0 have the same distribu-
tion,

ψ(x) = ψ(x − h)P(Bx
τ = x − h) + ψ(x + h)P(Bx

τ = x + h)

= ψ(x − h)
1

2
+ ψ(x + h)

1

2
, (11.30)

where, by (11.27), ψ(x) satisfies the boundary conditions ψ(c) = 1, ψ(d) = 0.
Therefore,

ψ(x) = d − x

d − c
. (11.31)
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Now, by (11.31) (see also Exercise 6),

P({Bx
t : t ≥ 0} reaches d before c) = 1 − ψ(x) = x − c

d − c
(11.32)

for c ≤ x ≤ d. It follows, on letting d ↑ ∞ in (11.31), and c ↓ −∞ in (11.32) that

P(τ y < ∞) = 1 for all x, y. (11.33)

As another illustrative application of the strong Markov property one may derive
a Cantor-like structure of the random set of zeros of Brownian motion as follows.

Example 3.

Proposition 11.5 With probability one, the set Z := {t ≥ 0 : Bt = 0} of zeros
of the sample path of a one dimensional standard Brownian motion, starting at 0,
is uncountable, closed, unbounded, and has no isolated point. Moreover, Z a.s. has
Lebesgue measure zero.

Proof The law of iterated logarithm (LIL) may be applied as t ↓ 0 to show that
with probability one, Bt = 0 for infinitely many t in every interval [0, ε]. Since
t �→ Bt (ω) is continuous, Z(ω) is closed. Applying the LIL as t ↑ ∞, it follows
that Z(ω) is unbounded a.s.

We will now show that for 0 < c < d, the probability is zero of the event
A(c, d), say, that B has a single zero in [c, d]. For this consider the stopping time
τ := inf{t ≥ c : Bt = 0}. By the strongMarkov property, B+

τ is a standard Brownian
motion, starting at zero. In particular, τ is a point of accumulation of zeros from the
right (a.s.). Also, P(Bd = 0) = 0. This implies P(A(c, d)) = 0. Considering all
pairs of rationals c, d with c < d, it follows that Z has no isolated point outside a
set of probability zero (see Exercise 4 for an alternate argument).

Finally, for each T > 0 let HT = {(t,ω) : 0 ≤ t ≤ T , Bt (ω) = 0} ⊂ [0, T ]×Ω .
By the Fubini–Tonelli theorem, denoting the Lebesgue measure on [0,∞) bym, one
has

(m×P)(HT ) =
∫ T

0

{∫

Ω

1[Bt=0](ω)P(dω)

}
dt =

∫ T

0
P(Bt = 0)dt = 0, (11.34)

so that m({t ∈ [0, T ] : Bt (ω) = 0}) = 0 for P-almost all ω. �

The following general consequence of the Markov property can also be useful in
the analysis of the (infinitesimal) fine-scale structure of Brownian motion and may
be viewed as a corollary to Proposition 11.3. As a consequence, for example, one
sees that for any given function ϕ(t), t > 0, the event

Dϕ := [Bt < ϕ(t) for all sufficiently small t] (11.35)
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will certainly occur or is certain not to occur. Functions ϕ for which P(Dϕ) = 1 are
said to belong to the upper class. Thus ϕ(t) = √

2t log log t belongs to the upper
class by the law of the iterated logarithm for Brownian motion (Theorem 10.9).

Proposition 11.6 (Blumenthal’s Zero–One Law) With the notation of Proposi-
tion 11.3,

P(A) = 0 or 1 ∀ A ∈ F0+. (11.36)

Proof It follows from (the proof of) Proposition 11.3 that Fs+ is independent of
σ{Bt+s − Bs : t ≥ 0} ∀ s ≥ 0. Set s = 0 to conclude that F0+ is independent of
σ(Bt : t ≥ 0) ⊃ F0+. Thus F0+ is independent of F0+, so that ∀ A ∈ F0+ one has
P(A) ≡ P(A ∩ A) = P(A) · P(A). �

In addition to the strongMarkov property, another powerful tool for the analysis of
Brownian motion is made available by observing that both the processes {Bt : t ≥ 0}
and {B2

t − t : t ≥ 0} are martingales. Thus one has available the optional sampling
theory.

Example 4 (Hitting by BM of a Two-Point Boundary) Let {Bx
t : t ≥ 0} be a one-

dimensional standard Brownianmotion starting at x , and let c < x < d. Let τ denote
the stopping time, τ = inf{t ≥ 0 : Bx

t = c or d}. Then writing ψ(x) := P({Bx
t }t≥0

reaches d before c), one has (see (11.31))

ψ(x) = x − c

d − c
c < x < d. (11.37)

Applying the optional sampling theorem to the martingale Xt := (Bx
t − x)2 − t ,

one gets EXτ = 0, or (d − x)2ψ(x) + (x − c)2(1 − ψ(x)) = Eτ , so that Eτ =
[(d − x)2 − (x − c)2]ψ(x) + (x − c)2, or

Eτ = (d − x)(x − c). (11.38)

Consider now a Brownian motion {Y x
t : t ≥ 0} with nonzero drift coefficient μ and

diffusion coefficient σ2 > 0, starting at x . Then {Y x
t − tμ : t ≥ 0} is a martingale, so

that (see Exercise 6) E(Y x
τ − μτ ) = x , i.e., dψ1(x) + c(1 − ψ1(x)) − μEτ = x , or

(d − c)ψ1(x) − μEτ = x − c, (11.39)

where ψ1(x) = P(Y x
τ = d), i.e., {Y x

t : t ≥ 0} reaches d before c. There are two
unknowns, ψ1 and Eτ in (11.39), so we need one more relation to solve for them.

Consider the exponential martingale Zt := exp
{
ξ(Y x

t − tμ) − ξ2σ2

2 t
}
(t ≥ 1). Then

Z0 = eξx , so that eξx = EZτ = E exp{ξ(d − τμ)− ξ2σ2 τ/2}1[Y x
τ =d] +E[exp{ξ(c−

τμ) − ξ2σ2 τ/2}1[Y x
τ =c]]. Take ξ �= 0 such that the coefficient of τ in the exponent is

zero, i.e., ξμ + ξ2 σ2/2 = 0, or ξ = −2μ/σ2. Then optional stopping yields

http://dx.doi.org/10.1007/978-3-319-47974-3_10
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e−2μx/σ2 = exp{ξd}ψ1(x) + exp{ξc}(1 − ψ1(x)),

= ψ1(x)

[
exp

{
−2μd

σ2

}
− exp

{
−2μc

σ2

}]
+ exp

{
−2μc

σ2

}
,

or

ψ1(x) = exp{−2μx/σ2} − exp{−2μc/σ2}
exp{− 2μd

σ2 } − exp{− 2μc
σ2 } . (11.40)

One may use this to compute Eτ :

Eτ = (d − c)ψ1(x) − (x − c)

μ
. (11.41)

Checking the hypothesis of the optional sampling theorem for the validity of the
relations (11.37)–(11.41) is left to Exercise 6.

Our main goal for this chapter is to derive a beautiful result of Skorokhod (1965)
representing a general random walk (partial sum process) as values of a Brownian
motion at a sequence of successive stopping times (with respect to an enlarged
filtration). This will be followed by a proof of the functional central limit theorem
(invariance principle) based on the Skorokhod embedding representation. Recall that
for c < x < d,

P(τ x
d < τ x

c ) = x − c

d − c
, (11.42)

where τ x
a := τ a(Bx ) ≡ inf{t ≥ 0 : Bx

t = a}. Also,

E(τ x
c ∧ τ x

d ) = (d − x)(x − c). (11.43)

Write τa = τ 0
a , B

0 = B = {Bt : t ≥ 0}. Consider now a two-point distribution Fu,v

with support {u, v}, u < 0 < v, having mean zero. That is, Fu,v({u}) = v/(v − u)

and Fu,v({v}) = −u/(v − u). It follows from (11.42) that with τu,v = τu ∧ τv , Bτu,v

has distribution Fu,v and, in view of (11.43),

Eτu,v = −uv = |uv|. (11.44)

In particular, the random variable Z := Bτu,v
with distribution Fu,v is naturally

embedded in the Brownian motion. We will see by the theorem below that any
given non-degenerate distribution F with mean zero may be similarly embedded by
randomizing over such pairs (u, v) to get a random pair (U, V ) such that BτU,V has
distribution F , and EτU,V = ∫

(−∞,∞)
x2F(dx), the variance of F . Indeed, this is

achieved by the distribution γ of (U, V ) on (−∞, 0) × (0,∞) given by

γ(du dv) = θ(v − u)F−(du)F+(dv), (11.45)
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where F+ and F− are the restrictions of F to (0,∞) and (−∞, 0), respectively. Here
θ is the normalizing constant given by

1 = θ

[(∫

(0,∞)

vF+(dv)

)
F−((−∞, 0)) +

(∫

(−∞,0)
(−u)F−(du)

)
F+(0,∞)

]
,

or, noting that the two integrals are each equal to 1
2

∫ ∞
−∞ |x |F(dx) since the mean of

F is zero, one has

1/θ =
(
1

2

∫ ∞

−∞
|x |F(dx)

)
[1 − F({0})]. (11.46)

Let (Ω,F , P) be a probability space on which are defined (1) a standard Brownian
motion B ≡ B0 = {Bt : t ≥ 0}, and (2) a sequence of i.i.d. pairs (Ui , Vi ) independent
of B, with the common distribution γ above. Let Ft := σ{Bs : 0 ≤ s ≤ t} ∨
σ{(Ui , Vi ) : i ≥ 1}, t ≥ 0. Define the {Ft : t ≥ 0}-stopping times (Exercise 13)

T0 ≡ 0, T1 := inf{t ≥ 0 : Bt = U1 or V1},
Ti+1 := inf{t > Ti : Bt = BTi +Ui+1 or BTi + Vi+1} (i ≥ 1).

Theorem 11.7 (Skorokhod Embedding) Assume that F has mean zero and finite
variance. Then (a) BT1 has distribution F , and BTi+1 − BTi (i ≥ 0) are i.i.d. with
common distribution F , and (b) Ti+1 − Ti (i ≥ 0) are i.i.d. with

E (Ti+1 − Ti ) =
∫

(−∞,∞)

x2F(dx). (11.47)

Proof (a) Given (U1, V1), the conditional probability that BT1 = V1 is
−U1
V1−U1

. There-
fore, for all x > 0,

P
(
BT1 > x

) = θ

∫

{v>x}

∫

(−∞,0)

−u

v − u
· (v − u)F−(du)F+(dv)

= θ

∫

{v>x}

{∫

(−∞,0)
(−u)F−(du)

}
F+(dv)

=
∫

{v>x}
F+(dv), (11.48)

since
∫
(−∞,0)(−u)F−(du) = 1

2

∫ |x |F(dx) = 1/θ. Thus the restriction of the dis-
tribution of BT1 on (0,∞) is F+. Similarly, the restriction of the distribution of BT1
on (−∞, 0) is F−. It follows that P(BT1 = 0) = F({0}). This shows that BT1 has
distribution F . Next, by the strong Markov property, the conditional distribution
of B+

Ti
≡ {BTi+t : t ≥ 0}, given FTi , is PBTi

(where Px is the distribution of Bx ).
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Therefore, the conditional distribution of B+
Ti

−BTi ≡ {BTi+t −BTi ; t ≥ 0}, givenFTi ,
is P0. In particular, Yi := {(Tj , BTj ) : 1 ≤ j ≤ i} and Xi := B+

Ti
− BTi are indepen-

dent. Since Yi and Xi are functions of B ≡ {Bt : t ≥ 0} and {(Uj , Vj ); 1 ≤ j ≤ i},
they are both independent of (Ui+1, Vi+1). Since τ (i+1) := Ti+1−Ti is the first hitting
time of {Ui+1, Vi+1} by Xi , it now follows that (1) (Ti+1 −Ti ≡ τ (i+1), BTi+1 − BTi ≡
Xi

τ (i+1) ) is independent of {(Tj , BTj ) : 1 ≤ j ≤ i}, and (2) (Ti+1 − Ti , BTi+1 − BTi )

has the same distribution as (T1, BT1).
(b) It remains to prove (11.47). But this follows from (11.44):

ET1 = θ

∫

(0,∞)

∫

(−∞,0)
(−uv)(v − u)F−(du)F+(dv)

= θ

[∫

(0,∞)

v2F+(dv) ·
∫

(−∞,0)
(−u)F−(du) +

∫

(−∞,0)
u2F−(du) ·

∫

(0,∞)

vF+(dv)

]

=
∫

(0,∞)

v2F+(dv) +
∫

(−∞,0)
u2F−(du) =

∫

(−∞,∞)

x2F(dx).

�

We now present an elegant proof of Donsker’s invariance principle, or func-
tional central limit theorem, using Theorem 11.7. Consider a sequence of i.i.d.
random variables Zi (i ≥ 1) with common distribution having mean zero and vari-
ance 1. Let Sk = Z1 + · · · + Zk (k ≥ 1), S0 = 0, and define the polygonal random
function S(n) on [0, 1] as follows:

S(n)
t := Sk−1√

n
+ n

(
n − k − 1

n

)
Sk − Sk−1√

n

for t ∈
[
k − 1

n
,
k

n

]
, 1 ≤ k ≤ n. (11.49)

That is, S(n)
t = Sk√

n
at points t = k

n (0 ≤ k ≤ n), and t �→ S(n)
t is linearly interpolated

between the endpoints of each interval
[
k−1
n , k

n

]
.

Theorem 11.8 (Invariance Principle) S(n) converges in distribution to the standard
Brownian motion, as n → ∞.

Proof Let Tk , k ≥ 1, be as in Theorem 11.7, defined with respect to a standard
Brownian motion {Bt : t ≥ 0}. Then the random walk {Sk : k = 0, 1, 2, . . . } has the
same distribution as {S̃k := BTk : k = 0, 1, 2, . . . }, and therefore, S(n) has the same
distribution as S̃(n) defined by S̃(n)

k/n := n− 1
2 BTK (k = 0, 1, . . . , n) and with linear

interpolation between k/n and (k + 1)/n (k = 0, 1, . . . , n − 1). Also, define, for
each n = 1, 2, . . . , the standard Brownian motion B̃(n)

t := n− 1
2 Bnt , t ≥ 0. We will

show that
max
0≤t≤1

∣∣
∣S̃(n)

t − B̃(n)
t

∣∣
∣ −→ 0 in probability as n → ∞, (11.50)

which implies the desired weak convergence. Now
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max
0≤t≤1

∣
∣
∣S̃(n)

t − B̃(n)
t

∣
∣
∣ ≤ n− 1

2 max
1≤k≤n

∣
∣BTk − Bk

∣
∣

+ max
0≤k≤n−1

{

max
k
n ≤t≤ k+1

n

∣
∣∣S̃(n)

t − S̃(n)
k/n

∣
∣∣ + n− 1

2 max
k≤t≤k+1

|Bt − Bk |
}

= I (1)n + I (2)n + I (3)n , say. (11.51)

Now, writing Z̃k = S̃k − S̃k−1, it is simple to check (Exercise 14) that as n → ∞,

I (2)
n ≤ n− 1

2 max{|Z̃k | : 1 ≤ k ≤ n} → 0 in probability,

I (3)
n ≤ n− 1

2 max
0≤k≤n−1

max{|Bt − Bk | : k ≤ t ≤ k + 1} → 0 in probability.

Hence we need to prove, as n → ∞,

I (1)
n := n− 1

2 max
1≤k≤n

∣
∣BTk − Bk

∣
∣ −→ 0 in probability. (11.52)

Since Tn/n → 1 a.s., by SLLN, it follows that (Exercise 14)

εn := max
1≤k≤n

∣∣
∣∣
Tk
n

− k

n

∣∣
∣∣ −→ 0 as n → ∞ (almost surely). (11.53)

In view of (11.53), there exists for each ε > 0 an integer nε such that P(εn <

ε) > 1 − ε for all n ≥ nε. Hence with probability greater than 1 − ε one has for all
n ≥ nε the estimate

I (1)
n ≤ max

|s−t |≤nε,
0≤s,t≤n+nε

n− 1
2 |Bs − Bt | = max

|s−t |≤nε,
0≤s,t≤n(1+ε)

∣∣
∣B̃(n)

s/n − B̃(n)
t/n

∣∣
∣

= max
|s′−t ′ |≤ε,

0≤s′ ,t ′≤1+ε

∣∣∣B̃(n)
s ′ − B̃(n)

t ′

∣∣∣
d= max

|s′−t ′ |≤ε,
0≤s′ ,t ′≤1+ε

|Bs ′ − Bt ′ |

−→ 0 as ε ↓ 0,

by the continuity of t → Bt . Given δ > 0 one may then choose ε = εδ such that for
all n ≥ n(δ) := nεδ

, P(I (1)
n > δ) < δ. Hence I (1)

n → 0 in probability. �

For another application of Skorokhod embedding let us see how to obtain a law
of the iterated logarithm (LIL) for sums of i.i.d. random variables using the LIL
for Brownian motion.

Theorem 11.9 (Law of the Iterated Logarithm) Let X1, X2, . . . be an i.i.d. sequence
of random variables with EX1 = 0, 0 < σ2 := EX2

1 < ∞, and let Sn = X1 + · · · +
Xn , n ≥ 1. Then with probability one,

lim sup
n→∞

Sn√
2σ2n log log n

= 1.
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Proof By rescaling if necessary, one may take σ2 = 1 without loss of generality. In
view of the Skorokhod embedding one may replace the sequence {Sn : n ≥ 0} by
the embedded random walk {S̃n = BTn : n ≥ 0}. By the SLLN one also has Tn

n → 1
a.s. as n → ∞. In view of the law of the iterated logarithm for Brownian motion,

it is then sufficient to check that S̃[t]−Bt√
t log log t

→ 0 a.s. as t → ∞. From Tn
n → 1 a.s.,

it follows for given ε > 0 that with probability one, 1
1+ε

<
T[t]
t < 1 + ε for all t

sufficiently large. Let tn = (1 + ε)n , n = 1, 2, . . . . Then one has

Mtn := max

{
|Bs − Btn | : tn

1 + ε
≤ s ≤ tn(1 + ε)

}

≤ max

{
|Bs − Btn | : tn

1 + ε
≤ s ≤ tn

}
+ max

{|Bs − Btn | : tn ≤ s ≤ tn(1 + ε)
}

≤ Mn,1 + Mn,2, say.

Since tn − tn
1+ε

= tnε
1+ε

< tn(1+ε)− tn = tnε, Mn,2 is stochastically larger than Mn,1,
so that P(Mtn > 2

√
3εtn log log tn) ≤ 2P(Mn,2 >

√
3εtn log log tn). It follows from

the scaling property of Brownian motion, using Lévy’s Inequality and Feller’s tail
probability estimate, that

P
(
Mtn > 2

√
3εtn log log tn

)
≤ 2P

(
max
0≤u≤1

|Bu | >
√
3 log log tn

)

≤ 8P
(
B1 ≥ √

3 log log(tn)
)

≤ 8√
3 log log tn

exp

(
−3

2
log log tn

)

≤ cn− 3
2

for a constant c = (log(1 + ε))
−3
2 > 0. Summing over n, it follows from the Borel–

Cantelli lemma I that with probability one, Mtn ≤ √
3εtn log log tn for all but finitely

many n. Since a.s. 1
1+ε

<
T[t]
t < 1 + ε for all t sufficiently large, one has that

lim sup
t→∞

|S̃[t] − Bt |√
t log log t

≤ √
3ε.

Letting ε ↓ 0 one has the desired result. �

Exercise Set XI

1. (i) If τ1, τ2 are stopping times, show that τ1 ∨ τ2 and τ1 ∧ τ2 are stopping times.
(ii) If τ1 ≤ τ2 are stopping times, show that Fτ1 ⊂ Fτ2 .
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2. (i) Extend the Markov property for one-dimensional Brownian motion (Propo-
sition 11.2) to k-dimensional Brownian motion with respect to a given filtration.
(ii) Prove parts (ii), (iii) of Proposition 11.3.

3. Suppose that X,Y, Z are three random variables with values in arbitrary measur-
able spaces (Si ,Si ), i = 1, 2, 3. Assume that regular conditional distributions
exist; see Chapter II for general conditions. Show that σ(Z) is conditionally
independent of σ(X) given σ(Y ) if and only if the conditional distribution of Z
given σ(Y ) a.s. coincides with the conditional distribution of Z given σ(X,Y ).

4. Prove that the event A(c, d) introduced in the proof of Proposition 11.5 is mea-
surable, i.e., the event [τ < d, Bt > 0 ∀τ < t ≤ d] is measurable.

5. Consider a Markov chain X = {Xn : n = 0, 1, 2 . . . } on a countable state space.
Assume i is (point) recurrent: P(Xn = i i.o.|X0 = i) = 1. If j is a state such
that p(n)

i j > 0 for some n, prove that (i) the probability that j is reached starting
from i is one, and (ii) j is (point) recurrent. [Hint: Consider visiting j between
successive returns to i as i.i.d. events.]

6. Check the conditions for the application of the optional sampling theorem
(Theorem 3.8(b)) for deriving (11.37)–(11.41). [Hint: For Brownian motion
{Y x

t : t ≥ 0} with a drift μ and diffusion coefficient σ2 > 0, let Z1 = Y x
1 − x ,

Zk = Y x
k − Y x

k−1(k ≥ 1). Then Z1, Z2, . . . are i.i.d. and Corollary 3.10 applies
with a = c, b = d. This proves P(τ < ∞) = 1. The uniform integrability of
{Y x

t∧τ : t ≥ 0} is immediate, since c ≤ Y x
t∧τ ≤ d for all t ≥ 0.]

7. Let u′ < 0 < v′. Show that if F = Fu′,v′ is the mean-zero two-point distribu-
tion concentrated at {u′, v′}, then P((U, V ) = (u′, v′)) = 1 in the Skorokhod
embedding of F defined by γ(du dv).

8. Given any distribution F on R, let τ := inf{t ≥ 0 : Bt = Z}, where Z is
independent of B = {Bt : t ≥ 0} and has distribution F . Then Bτ = Z . One can
thus embed a random walk with (a nondegenerate) step distribution F (say, with
mean zero) in different ways. However, show that Eτ = ∞. [Hint: The stable
distribution of τa := inf{t ≥ 0 : Bt = a} has infinite mean for every a �= 0. To
see this, use Corollary 10.6 to obtain P(τa > t) ≥ 1−2P(Bt > a) = P(|Bt | ≤
a) = P(|B1| ≤ a√

t
), whose integral over [0,∞) is divergent.]

9. Prove that ϕ(λ) := E exp{λτu,v} ≤ E exp{λτ−a,a} < ∞ for λ < λ0(a) for
some λ0(a) > 0, where a = max{−u, v}. Here τu,v is the first passage time of
standard Brownian motion to {u, v}, u < 0 < v. [Hint: Use Corollary 3.10 with
Xn := Bn − Bn−1 (n ≥ 1).]

10. (i) Show that for every λ ≥ 0, Xt := exp{√2λBt −λt}, t ≥ 0, is a martingale.

(ii) Use the optional sampling theorem to proveϕ(λ) = 2
(
e
√
2λ a + e−√

2λ a
)−1

,

where ϕ(λ) = E exp(λτ−a,a), in the notation of the previous exercise.
11. Refer to the notation of Theorem 11.8.

(i) Prove that Ti − Ti−1 (i ≥ 1) has a finite moment-generating function in a
neighborhood of the origin if F has compact support.

http://dx.doi.org/10.1007/978-3-319-47974-3_2
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http://dx.doi.org/10.1007/978-3-319-47974-3_3
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(ii) Prove that ET 2
1 < ∞ if

∫ |z|2F(dz) < ∞. [Hint: τu,v ≤ τ−a,a with a :=
max{−u, v} ≤ v − u and Eτ 2

U,V ≤ cθ
∫
(v − u)2F+(dv)F−(du) for some

c > 0.]

12. In Theorem 11.7 suppose F is a symmetric distribution. Let Xi (i ≥ 1) be i.i.d.
with common distribution F and independent of {Bt : t ≥ 0}. Let T̃1 := inf{t ≥
0 : Bt ∈ {−X1, X1}, T̃i := T̃i−1 + inf{t ≥ 0 : BT̃i−1+t ∈ {−Xi , Xi }} (i ≥ 1),
T̃0 = 0.

(i) Show that BT̃i − BT̃i−1
(i ≥ 1) are i.i.d. with common distribution F , and

T̃i − T̃i−1 (i ≥ 1) are i.i.d.
(ii) Prove that ET̃1 = EX2

1, and ET̃ 2
1 = cEX4

1, where c is a constant to be
computed.

(iii) Compute Ee−λT̃1 for λ ≥ 0.

13. Prove that Ti (i ≥ 0) defined by (11.47) are {Ft }–stopping times, where Ft is
as defined there.

14. (i) Let Zk , k ≥ 1, be i.i.d. with finite variance. Prove that n− 1
2 max{|Zk | :

1 ≤ k ≤ n} → 0 in probability as n → ∞. [Hint: nP(Z1 >
√
n ε) ≤

1
ε2
EZ2

11[|z : 1 ≥ √
n ε], ∀ ε > 0].

(ii) Derive (11.47). [Hint: εn = max1≤k≤n | Tkk − 1| · k
n ≤ {

max1≤k≤k0 | Tkk − 1|} ·
k0
n + maxk≥k0

∣∣ Tk
k − 1

∣∣ ∀ k0 = 1, 2, . . . .]
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