
Chapter X
Brownian Motion: The LIL and Some
Fine-Scale Properties

In this chapter, we analyze the growth of the Brownian paths t �→ Bt as t → ∞.
We will see by a property of “time inversion” of Brownian motion that this leads to
small-scale properties as well. First, however, let us record some basic properties of
the Brownian motion that follow somewhat directly from its definition.

Theorem 10.1 Let B = {Bt : t ≥ 0} be a standard one-dimensional Brownian mo-
tion starting at 0. Then

1. (Symmetry) Wt := −Bt , t ≥ 0, is a standard Brownian motion starting at 0.
2. (Homogeneity and Independent Increments) {Bt+s − Bs : t ≥ 0} is a standard

Brownian motion independent of {Bu : 0 ≤ u ≤ s}, for every s ≥ 0.
3. (Scale-Change Invariance). For every λ > 0, {B(λ)

t := λ− 1
2 Bλt : t ≥ 0} is a stan-

dard Brownian motion starting at 0.
4. (Time-Inversion Invariance) Wt := t B1/t , t > 0,W0 = 0, is a standard Brownian

motion starting at 0.

Proof Each of these is obtained by showing that the conditions defining a Brownian
motion are satisfied. In the case of the time-inversion property, one may apply the
strong law of large numbers to obtain continuity at t = 0. That is, if 0 < tn → 0
then write sn = 1/tn → ∞ and Nn := [sn], where [·] denotes the greatest integer
function, so that by the strong law of large numbers, with probability one

Wtn = 1

sn
Bsn = Nn

sn

1

Nn

Nn∑

j=1

(Bi − Bi−1) + 1

sn
(Bsn − BNn ) → 0,

since Bi − Bi−1, i ≥ 1, is an i.i.d. mean-zero sequence, Nn/sn → 1, and (Bsn −
BNn )/sn → 0 a.s. as n → ∞ (see Exercise 2). �

Although the Brownian motion paths cannot be differentiable, it is possible to
determine an order of continuity using the next general theorem.
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180 X Brownian Motion: The LIL and Some Fine-Scale Properties

Definition 10.1 A stochastic process (or random field) Y = {Yu : u ∈ Λ} is a ver-
sion of X = {Xu : u ∈ Λ} taking values in a metric space if Y has the same finite
dimensional distributions as X .

Theorem 10.2 (Kolmogorov-Chentsov Theorem) Suppose X = {Xu : u ∈ Λ} is a
stochastic process (or random field) with values in a complete metric space (S, ρ),
indexed by a bounded rectangle Λ ⊂ R

k and satisfying

Eρα(Xu, Xv) ≤ c|u − v|k+β, for all u, v ∈ Λ,

where c,α,β are positive numbers. Then there is a version Y = {Yu : u ∈ Λ} of X
which is a.s. Hölder continuous of any exponent γ such that 0 < γ <

β
α
.

Proof Without essential loss of generality we take Λ = [0, 1]k and the norm | · |
to be the maximum norm given by |u| = max{|ui | : 1 ≤ i ≤ k}, u = (u1, . . . , uk).
For each N = 1, 2, . . . , let LN be the finite lattice { j2−N : j = 0, 1, . . . 2N }k . Write
L = ∪∞

N=1LN . Define MN = max{ρ(Xu, Xv) : (u, v) ∈ L2
N , |u − v| ≤ 2−N }. Since

(i) for a givenu ∈ LN there are nomore than 3k points in LN such that |u − v| ≤ 2−N ,
(i i) there are (2N + 1)k points in LN , and (i i i) for every given pair (u, v), the
condition of the theorem holds, one has by Chebyshev’s inequality that

P(MN > 2−γN ) ≤ c3k(2N + 1)k(
2−N (k+β)

2−αγN
). (10.1)

In particular, since γ < β/α,

∞∑

N=1

P(MN > 2−γN ) < ∞. (10.2)

Thus there is a random positive integer N ∗ ≡ N ∗(ω) and a set Ω∗ with P(Ω∗) = 1,
such that

MN (ω) ≤ 2−γN for all N ≥ N ∗(ω),ω ∈ Ω∗. (10.3)

Fix ω ∈ Ω∗ and let N ≥ N ∗(ω). By exactly the same induction argument as used
for the proof of Lemma 3 in Chapter VII, one has for all m ≥ N + 1,

ρ(Xu, Xv) ≤ 2
m∑

j=N

2−γ j , for all u, v ∈ Lm, |u − v| ≤ 2−N . (10.4)

Since 2
∑∞

ν=N 2−γν = 2−γN+1(1 − 2−γ)−1, and L = ∪∞
m=N+1Lm for all N ≥

N ∗(ω), it follows that

http://dx.doi.org/10.1007/978-3-319-47974-3_7
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sup{ρ(Xu, Xv) : u, v ∈ L , |u − v| ≤ 2−N }
= sup{ρ(Xu, Xv) : u, v ∈ ∪∞

m=N+1Lm, |u − v| ≤ 2−N }
≤ 2−γN+1(1 − 2−γ)−1, N ≥ N ∗(ω),ω ∈ Ω∗. (10.5)

This proves that on Ω∗, u → Xu is uniformly continuous (from L into (S, ρ)), and
is Hölder continuous with exponent γ. Now define Yu := Xu if u ∈ L and otherwise
Yu := lim XuN , with uN ∈ L and uN → u, if u /∈ L . Because of uniform continuity
of u → Xu on L (for ω ∈ Ω∗), and completeness of (S, ρ), the last limit is well-
defined. For all ω /∈ Ω∗, let Yu be a fixed element of S for all u ∈ [0, 1]k . Finally,
letting γ j ↑ β/α, γ j < β/α, j ≥ 1, and denoting the exceptional set above as Ω∗

j ,
one has the Hölder continuity of Y for every γ < β/α on Ω∗∗ := ∩∞

j=1Ω
∗
j with

P(Ω∗∗) = 1.
That Y is a version of X may be seen as follows. For any r ≥ 1 and r vec-

tors u1, . . . , ur ∈ [0, 1]k , there exist u jN ∈ L , u jN → u j as N → ∞ (1 ≤ j ≤ r ).
Then (Xu1N , . . . , XurN ) = (Yu1N , . . . ,YurN ) a.s., and (Xu1N , . . . , XurN ) → (Xu1 , . . . ,

Xur ) in probability, (Yu1N , . . . ,YurN ) → (Yu1 , . . . ,Yur ) almost surely. �

Corollary 10.3 (Brownian Motion) Let X = {Xt : t ≥ 0} be a real-valued Gaussian
process defined on (Ω,F , P), with X0 = 0,EXt = 0, and Cov(Xs, Xt ) = s ∧ t , for
all s, t ≥ 0. Then X has a version B = {Bt : t ≥ 0} with continuous sample paths,
which are Hölder continuous on every bounded interval with exponent γ for every
γ ∈ (0, 1

2 ).

Proof Since E|Xt − Xs |2m = c(m)(t − s)m , 0 ≤ s ≤ t , for some constant c(m), for
every m > 0, the Kolmogorov–Chentsov Theorem 10.2 implies the existence of a
version B(0) = {B(0)

t : 0 ≤ t ≤ 1}with the desired properties on [0, 1]. Let B(n), n ≥
1, be independent copies of B(0), indedpendent of B(0). Define Bt = B(0)

t , 0 ≤ t ≤ 1,
and Bt = B(0)

1 + · · · + B(n−1)
1 + B(n)

t−[t], for t ∈ [n, n + 1), n = 1, 2, . . . . �

Corollary 10.4 (Brownian Sheet) Let X = {Xu : u ∈ [0,∞)2} be a real-valued
Guassian random field satisfying EXu = 0, Cov(Xu, Xv) = (u1 ∧ v1)(u2 ∧ v2) for
all u = (u1, u2), v = (v1, v2). Then X has a continuous version on [0,∞)2, which is
Hölder continuous on every bounded rectangle contained in [0,∞)2 with exponent
γ for every γ ∈ (0, 1

2 ).

Proof First let us note that on every compact rectangle [0, M]2, E|Xu − Xv|2m ≤
c(M)|u − v|m , for all m = 1, 2, . . . . For this it is enough to check that on each
horizontal line u = (u1, c), 0 ≤ u1 < ∞, Xu is a one-dimensional Brownian mo-
tion with mean zero and variance parameter σ2 = c for c ≥ 0. The same holds
on vertical lines. Hence E|X(u1,u2) − X(v1,v2)|2m ≤ 22m−1

(
E|X(u1,u2) − X(v1,u2)|2m +

E|X(v1,u2) − X(v1,v2)|2m
) ≤ 2m−1c(m)

(
um2 |u1 − v1|m + vm

1 |u2 − v2|m
) ≤ 2m−1c(m)

Mm2|u − v|m , where u = (u1, u2), v = (v1, v2). �

Remark 10.1 One may define the Brownian sheet on the index set ΛR of all rec-
tangles R = [u, v), with u = (u1, u2), v = (v1, v2), 0 ≤ ui ≤ vi < ∞ (i = 1, 2), by
setting
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XR ≡ X [u,v) := X(v1,v2) − X(v1,u2) − X(u1,v2) + X(u1,u2). (10.6)

Then XR is Gaussian with mean zero and variance |R|, the area of R. Moreover,
if R1 and R2 are nonoverlapping rectangles, then XR1 and XR2 are independent.
More generally, Cov(XR1 , XR2) = |R1 ∩ R2|. Conversely, given a Gaussian fam-
ily {XR : R ∈ ΛR} with these properties, one can restrict it to the class of rec-
tangles {R = [0, u) : u = (u1, u2) ∈ [0,∞)2} and identify this with the Brownian
sheet in Corollary 10.4. It is simple to check that for all n-tuples of rectangles
R1, R2, . . . , Rn ⊂ [0,∞)2, the matrix ((|Ri − R j |))1≤i, j≤n is symmetric and non-
negative definite. So the finite dimensional distributions of {XR : R ∈ ΛR} satisfy
Kolmogorov’s consistency condition.

In order to prove our main result of this section, we will make use of the following
important inequality due to Paul Lévy.

Proposition 10.5 (Lévy’s Inequality) Let X j , j = 1, . . . , N , be independent and
symmetrically distributed (about zero) random variables. Write Sj = ∑ j

i=1 Xi , 1 ≤
j ≤ N . Then, for every y > 0,

P

(
max
1≤ j≤N

Sj ≥ y

)
≤ 2P(SN ≥ y) − P(SN = y) ≤ 2P(SN ≥ y).

Proof Write A j = [S1 < y, . . . , Sj−1 < y, Sj ≥ y], for 1 ≤ j ≤ N . The events
[SN − Sj < 0] and [SN − Sj > 0] have the same probability and are independent
of A j . Therefore

P

(
max
1≤ j≤N

Sj ≥ y

)
= P(SN ≥ y) +

N−1∑

j=1

P(A j ∩ [SN < y])

≤ P(SN ≥ y) +
N−1∑

j=1

P(A j ∩ [SN − Sj < 0])

= P(SN ≥ y) +
N−1∑

j=1

P(A j )P([SN − Sj < 0])

= P(SN ≥ y) +
N−1∑

j=1

P(A j ∩ [SN − Sj > 0])

≤ P(SN ≥ y) +
N−1∑

j=1

P(A j ∩ [SN > y])

≤ P(SN ≥ y) + P(SN > y)

= 2P(SN ≥ y) − P(SN = y). (10.7)

This establishes the basic inequality. �
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Corollary 10.6 For every y > 0 one has for any t > 0,

P

(
max
0≤s≤t

Bs ≥ y

)
≤ 2P(Bt ≥ y).

Proof Partition [0, t] by equidistant points 0 < u1 < u2 < · · · < uN = t , and let
X1 = Bu1 , X j+1 = Bu j+1 − Bu j , 1 ≤ j ≤ N − 1, in the proposition. Now let N →
∞, and use the continuity of Brownian motion. �

In fact one may use a reflection principle argument (strong Markov property) to
see that this inequality is sharp for Brownian motion

P(max
0≤s≤t

Bs ≥ y) = 2P(Bt ≥ y). (10.8)

Alternatively, the following proposition concerns the simple symmetric random
walk defined by S0 = 0, Sj = X1 + · · · + X j , j ≥ 1, with X1, X2, . . . i.i.d. ±1-
valued with equal probabilities. It also demonstrates the remarkable strength of the
reflectionmethod, allowing one in particular to compute the distribution of themax-
imum of a random walk over a finite time. The above-indicated equality (10.8) then
becomes a consequence of the functional central limit theorem proved in Section1.8,
(Theorem 7.15); especially see (9.27).

Proposition 10.7 For the simple symmetric random walk one has for every positive
integer y,

P

(
max
0≤ j≤N

Sj ≥ y

)
= 2P(SN ≥ y) − P(SN = y).

Proof In the notation of Lévy’s inequality given in Proposition 10.5 one has, for the
present case of the random walk moving by ±1 units at a time, that A j = [S1 <

y, . . . , Sj−1 < y, Sj = y], 1 ≤ j ≤ N . Then in (10.7) the probability inequalities
are all equalities for this special case. �

Corollary 10.8 Equation (10.8) holds for every y > 0, t > 0.

Theorem 10.9 (Law of the Iterated Logarithm (LIL) for Brownian Motion) Each of
the following holds with probability one:

limt→∞
Bt√

2t log log t
= 1, limt→∞

Bt√
2t log log t

= −1.

Proof Letϕ(t) := √
2t log log t, t > 0.Let us first show that for any 0 < δ < 1, one

has with probability one that

limt→∞
Bt

ϕ(t)
≤ 1 + δ. (10.9)

http://dx.doi.org/10.1007/978-3-319-47974-3_1
http://dx.doi.org/10.1007/978-3-319-47974-3_7
http://dx.doi.org/10.1007/978-3-319-47974-3_9
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For arbitrary α > 1, partition the time interval [0,∞) into subintervals of exponen-
tially growing lengths tn+1 − tn , where tn = αn , and consider the event

En :=
[

max
tn≤t≤tn+1

Bt

(1 + δ)ϕ(t)
> 1

]
.

Since ϕ(t) is a nondecreasing function, one has, using Corollary 10.6, a scaling
property, and Lemma 2 from Chapter IV, that

P(En) ≤ P

(
max

0≤t≤tn+1

Bt > (1 + δ)ϕ(tn)

)

= 2P

(
B1 >

(1 + δ)ϕ(tn)√
tn+1

)

≤
√
2

π

√
tn+1

(1 + δ)ϕ(tn)
e
− (1+δ)2ϕ2(tn )

2tn+1 ≤ c
1

n(1+δ)2/α
(10.10)

for a constant c > 0 and all n > 1
logα

. For a given δ > 0 one may select 1 < α <

(1 + δ)2 to obtain P(En i.o.) = 0 from the Borel–Cantelli lemma (Part I). Thus we
have (10.9). Since δ > 0 is arbitrary we have with probability one that

limt→∞
Bt

ϕ(t)
≤ 1. (10.11)

Next let us show that with probability one,

limt→∞
Bt

ϕ(t)
≥ 1. (10.12)

For this consider the independent increments Btn+1 − Btn , n ≥ 1. For θ = tn+1−tn
tn+1

=
α−1
α

< 1, using Feller’s tail probability estimate (Lemma 2, Chapter IV) and Brown-
ian scale change,

P
(
Btn+1 − Btn > θϕ(tn+1)

) = P

(
B1 >

√
θ

tn+1
ϕ(tn+1)

)

≥ c′
√
2θ log log tn+1

e−θ log log tn+1

≥ c√
log n

n−θ (10.13)

for suitable positive constants c, c′ depending on α and for all n > 1
logα

. It follows
from the Borel–Cantelli Lemma (Part II) that with probability one,

http://dx.doi.org/10.1007/978-3-319-47974-3_4
http://dx.doi.org/10.1007/978-3-319-47974-3_4
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Btn+1 − Btn > θϕ(tn+1) i.o. (10.14)

Also, by (10.11) and replacing {Bt : t ≥ 0} by the standard Brownian motion {−Bt :
t ≥ 0},

limt→∞
Bt

ϕ(t)
≥ −1, a.s. (10.15)

Since tn+1 = αtn > tn , we have

Btn+1√
2tn+1 log log tn+1

= Btn+1 − Btn√
2tn+1 log log tn+1

+ 1√
α

Btn√
2tn(log log tn + log logα)

.

(10.16)
Now, using (10.14) and (10.15), it follows that with probability one,

limn→∞
Btn+1

ϕ(tn+1)
≥ θ − 1√

α
= α − 1

α
− 1√

α
. (10.17)

Since α > 1 may be selected arbitrarily large, one has with probability one that

limt→∞
Bt

ϕ(t)
≥ limn→∞

Btn+1

ϕ(tn+1)
≥ 1. (10.18)

This completes the computation of the limit superior. To get the limit inferior simply
replace {Bt : t ≥ 0} by {−Bt : t ≥ 0}. �

The time inversion property for Brownian motion turns the law of the iterated
logarithm (LIL) into a statement concerning the degree (or lack) of local smoothness.
(Also see Exercise 7).

Corollary 10.10 Each of the following holds with probability one:

limt→0
Bt√

2t log log 1
t

= 1, limt→0
Bt√

2t log log 1
t

= −1.

Exercise Set X

1. (Ornstein–Uhlenbeck Process) Fix parameters γ > 0,σ > 0, x ∈ R. Use the
Kolmogorov–Chentsov theorem to obtain the existence of a continuousGaussian
process X = {Xt : t ≥ 0} starting at X0 = x withEXt = xe−γt , andCov(Xs, Xt )

= σ2

γ
e−γt sinh(γs), 0 < s ≤ t.

2. (i) Use Feller’s tail estimate (Lemma 2, Chapter IV). to prove that max{|Bi −
Bi−1| : i = 1, 2, . . . , N + 1}/N → 0 a.s. as N → ∞.

(ii) Without using the lawof the iterated logarithm for standardBrownianmotion
B, show directly that lim supn→∞

Bn√
2n log n

≤ 1 almost surely.

http://dx.doi.org/10.1007/978-3-319-47974-3_4
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3. Show that with probability one, standard Brownian motion has arbitrarily large
zeros. [Hint: Apply the LIL.]

4. Fix t ≥ 0 and use the lawof the iterated logarithm to show that limh→0
Bt+h−Bt

h ex-
ists with probability zero. [Hint: Check that Yh := Bt+h − Bt , h ≥ 0, is distrib-
uted as standard Brownian motion starting at 0. Consider 1

h Yh = Yh√
2h log log(1/h)√

2h log log(1/h)

h .]
5. For the simple symmetric random walk, find the distributions of the extremes:

(a) MN = max{Sj : j = 0, . . . , N }, and (b) mN = min{Sj : 0 ≤ j ≤ N }.
6. Consider the simple symmetric random walk S0 = 0, Sn = X1 + · · · + Xn, n ≥

1, where Xk, k ≥ 1, are iid symmetric Bernoulli ±1 valued random variables.
Denote the range by Rn = maxm≤n Sm − minm≤n Sm, n ≥ 1. Show that Rn√

n
con-

verges in distribution to a nonnegative random variable as n → ∞.
7. (LévyModulus of Continuity1) Use thewavelet construction Bt := ∑

n,k Zn,k Sn,k

(t), 0 ≤ t ≤ 1, of standard Brownianmotion to establish the following fine-scale
properties.

(i) Let 0 < δ < 1
2 . With probability one there is a random constant K such that

if |t − s| ≤ δ then |Bt − Bs | ≤ K
√

δ log 1
δ
. [Hint: Fix N andwrite the incre-

ment as a sum of three terms: Bt − Bs = Z00(t − s) + ∑N
n=0

∑2n+1−1
k=2n Zn,k∫ t

s Hn,k(u)du + ∑∞
n=N+1

∑2n+1−1
k=2n Zn,k

∫ t
s Hn,k(u)du = a + b + c. Check

that for a suitable (random) constant K ′ one has |b| ≤ |t − s|K ′ ∑N
n=0 n

1
2 2

n
2

≤ |t − s|K ′ √
2√

2−1

√
N2

N
2 , and |c| ≤ K ′ ∑∞

n=N+1 n
1
2 2− n

2 ≤ K ′ √
2√

2−1√
N2− N

2 . Use these estimates, taking N = [− log2(δ)] such that δ2N ∼ 1, to
obtain the bound |Bt − Bs | ≤ |Z00|δ + 2K ′√−δ log2(δ). This is sufficient
since δ <

√
δ.]

(ii) The modulus of continuity is sharp in the sense that with probability one,
there is a sequence of intervals (sn, tn), n ≥ 1, of respective lengths tn −
sn → 0 as n → ∞ such that the ratio Btn −Bsn√

−(tn−sn) log(tn−sn)
is bounded below

by a positive constant. [Hint: Use Borel–Cantelli I together with Feller’s tail
probability estimate for the Gaussian distribution to show that P(An i.o.) =
0, where An := [|Bk2−n − B(k−1)2−n | ≤ c

√
n2−n, k = 1, . . . , 2n] and c is

fixed in (0,
√
2 log 2). Interpret this in terms of the certain occurrence of

the complimentary event [An i.o.]c.]
(iii) The paths of Brownian motion are a.s. nowhere differentiable.

1The calculation of the modulus of continuity for Brownian motion is due to Lévy, P. (1937). How-
ever this exercise follows Pinsky, M. (1999): Brownian continuity modulus via series expansions,
J. Theor. Probab. 14 (1), 261–266.
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