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Preface to Second Edition

This second edition continues to serve primarily as a text for a lively two-quarter or
one-semester course in probability theory for students from diverse disciplines,
including mathematics and statistics. Exercises have been added and reorganized
(i) for reinforcement in the use of techniques, and (ii) to complement some results.
Sufficient material has been added so that in its entirety the book may also be used
for a two-semester course in basic probability theory. The authors have reorganized
material to make Chapters III–XIII as self-contained as possible. This will aid
instructors of one semester (or two quarter) courses in picking and choosing some
material, while omitting some other. Material from a former chapter on Laplace
transforms has been redistributed to parts of the text where it is used.

The early introduction of conditional expectation and conditional probability
maintains the pedagogic innovation of the first edition. This enables the student to
quickly move to the fundamentally important notions of modern probability besides
independence, namely, martingale dependence and Markov dependence, where
new theory and examples have been added to the text. The former includes Doob’s
upcrossing inequality, the submartingale convergence theorem, and reverse
martingales, and the (reverse) martingale proof of the strong law of large numbers,
while retaining important earlier approaches such as those of Kolmogorov,
Etemadi, and of Marcinkiewicz–Zygmund.

A theorem of Polya is added to the chapter on weak convergence to show that
the convergence to the normal distribution function in the central limit theorem is
uniform.

The Cramér–Chernoff large deviation theory in Chapter V is sharpened by the
addition of a large deviation theorem of Bahadur and Ranga Rao using the Berry–
Esseen convergence rate in the central limit theorem. Also added in Chapter V is a
concentration of measure type inequality due to Hoeffding. The proof of the
aforementioned Berry–Esseen bound is deferred to Chapter VI on Fourier series
and Fourier transform. The Chung–Fuchs transience/recurrence criteria for ran-
dom walk based on Fourier analysis is a new addition to the text.

Special examples of Markov processes such as Brownian motion, and random
walks appear throughout the text to illustrate applications of (i) martingale theory
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and stopping times in computations of certain important probabilities.
A culmination of the theory developed in the text occurs in Chapters XI and XII on
Brownian motion. This continues to rank among the primary goals attainable for a
course based on the text.

General Markov dependent sequences and their convergence to equilibrium is
the subject matter of the entirely new Chapter XIII. Illustrative examples are pro-
vided, including some of historical importance to the development of the kinetic
theory of matter in physics due to Boltzmann, Einstein, and Smoluchowski. The
treatment centers on describing a prototypical framework, namely Doeblin’s
theorem, for existence and convergence to a unique invariant probability for
Markov processes, together with illustrative examples for students with diverse
interests ranging from mathematics and statistics to contemporary mathematical
finance or biology. Examples include iterated random maps, the Ehrenfest model,
and products of random matrices. The Ornstein–Uhlenbeck process is shown to be
obtained as the unique solution to a stochastic differential equation, namely the
Langevin equation, using Picard iteration. This provides students with a glimpse
into the broad scope and utility of the probability that they have learned, while
motivating continued study of stochastic processes.

Complete references to authors of books cited in footnotes are provided in a
closing list of references. This also includes other textbook resources covering the
same topics and/or further applications.

The authors are grateful to William Faris, University of Arizona, and to Enrique
Thomann, Oregon State University, for providing comments and corrections to an
earlier draft based on their teaching of the course. Partial support from the National
Science Foundation under grants DMS 1406872 and DMS1408947, respectively, is
gratefully acknowledged by the authors.

Tucson, AZ, USA Rabi Bhattacharya
Corvallis, OR, USA Edward C. Waymire
September 2016
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Preface to First Edition

In 1937, A.N. Kolmogorov introduced a measure-theoretic mathematical frame-
work for probability theory in response to David Hilbert’s Sixth Problem. This text
provides the basic elements of probability within this framework. It may be used for
a one-semester course in probability, or as a reference to prerequisite material in a
course on stochastic processes. Our pedagogical view is that the subsequent
applications to stochastic processes provide a continued opportunity to motivate
and reinforce these important mathematical foundations. The book is best suited for
students with some prior, or at least concurrent, exposure to measure theory and
analysis. But it also provides a fairly detailed overview, with proofs given in
appendices, of the measure theory and analysis used.

The selection of material presented in this text grew out of our effort to provide a
self-contained reference to foundational material that would facilitate a companion
treatise on stochastic processes that Theory and Applications of Stochastic
Processes we have been developing.1 While there are many excellent textbooks
available that provide the probability background for various continued studies of
stochastic processes, the present treatment was designed with this as an explicit
goal. This led to some unique features from the perspective of the ordering and
selection of material.

We begin with Chapter I on various measure-theoretic concepts and results
required for the proper mathematical formulation of a probability space, random
maps, distributions, and expected values. Standard results from measure theory are
motivated and explained with detailed proofs left to an appendix.

Chapter II is devoted to two of the most fundamental concepts in probability
theory: independence and conditional expectation (and/or conditional probability).
This continues to build upon, reinforce, and motivate basic ideas from real analysis
and measure theory that are regularly employed in probability theory, such as
Carathéodory constructions, the Radon–Nikodym theorem, and the Fubini–Tonelli

1Bhattacharya, R. and E. Waymire (2007): Theory and Applications of Stochastic Processes,
Springer-Verlag, Graduate Texts in Mathematics.
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theorem. A careful proof of the Markov property is given for discrete-parameter
random walks on ℝk to illustrate conditional probability calculations in some
generality.

Chapter III provides some basic elements of martingale theory that have evolved
to occupy a significant foundational role in probability theory. In particular,
optional stopping and maximal inequalities are cornerstone elements. This chapter
provides sufficient martingale background, for example, to take up a course in
stochastic differential equations developed in a chapter of our text on stochastic
processes. A more comprehensive treatment of martingale theory is deferred to
stochastic processes with further applications there as well.

The various laws of large numbers and elements of large deviation theory are
developed in Chapter IV. This includes the classical 0–1 laws of Kolmogorov and
Hewitt–Savage. Some emphasis is given to size-biasing in large deviation calcu-
lations which are of contemporary interest.

Chapter V analyzes in detail the topology of weak convergence of probabilities
defined on metric spaces, culminating in the notion of tightness and a proof of
Prohorov’s theorem.

The characteristic function is introduced in Chapter VI via a first principles
development of Fourier series and the Fourier transform. In addition to the oper-
ational calculus and inversion theorem, Herglotz’s theorem, Bochner’s theorem,
and the Cramér–Lévy continuity theorem are given. Probabilistic applications
include the Chung–Fuchs criterion for recurrence of random walks on ℝk, and the
classical central limit theorem for i.i.d. random vectors with finite second moments.
The law of rare events (i.e., Poisson approximation to binomial) is also included as
a simple illustration of the continuity theorem, although simple direct calculations
are also possible.

In Chapter VII, central limit theorems of Lindeberg and Lyapounov are derived.
Although there is some mention of stable and infinitely divisible laws, the full
treatment of infinite divisibility and Lévy–Khinchine representation is more prop-
erly deferred to a study of stochastic processes with independent increments.

The Laplace transform is developed in Chapter VIII with Karamata’s Tauberian
theorem as the main goal. This includes a heavy dose of exponential size-biasing
techniques to go from probabilistic considerations to general Radon measures. The
standard operational calculus for the Laplace transform is developed along the way.

Random series of independent summands are treated in Chapter IX. This
includes the mean square summability criterion and Kolmogorov’s three series
criteria based on Kolmogorov’s maximal inequality. An alternative proof to that
presented in Chapter IV for Kolmogorov’s strong law of large numbers is given,
together with the Marcinkiewicz and Zygmund extension, based on these criteria
and Kronecker’s lemma. The equivalence of a.s. convergence, convergence in
probability, and convergence in distribution for series of independent summands is
also included.

In Chapter X, Kolmogorov’s consistency conditions lead to the construction of
probability measures on the Cartesian product of infinitelymany spaces. Applications
include a construction of Gaussian random fields and discrete-parameter Markov

viii Preface to First Edition



processes. The deficiency of Kolmogorov’s construction of a model for Brownian
motion is described, and the Lévy–Ciesielski “wavelet” construction is provided.

Basic properties of Brownian motion are taken up in Chapter XI. Included are
various rescalings and time inversion properties, together with the fine-scale
structure embodied in the law of the iterated logarithm for Brownian motion.

In Chapter XII many of the basic notions introduced in the text are tied together
via further considerations of Brownian motion. In particular, this chapter revisits
conditional probabilities in terms of the Markov and strong Markov properties for
Brownian motion, stopping times, and the optional stopping and/or sampling the-
orems for Brownian motion and related martingales, and leads to weak convergence
of rescaled random walks with finite second moments to Brownian motion, i.e.,
Donsker’s invariance principle or the functional central limit theorem, via the
Skorokhod embedding theorem.

The text is concluded with a historical overview, Chapter XIII, on Brownian
motion and its fundamental role in applications to physics, financial mathematics,
and partial differential equations, which inspired its creation.

Most of the material in this book has been used by us in graduate probability
courses taught at the University of Arizona, Indiana University, and Oregon State
University. The authors are grateful to Virginia Jones for superb word processing
skills that went into the preparation of this text. Also, two Oregon State University
graduate students, Jorge Ramirez and David Wing, did an outstanding job in
uncovering and reporting various bugs in earlier drafts of this text. Thanks go to the
editorial staff at Springer and anonymous referees for their insightful remarks.

March 2007 Rabi Bhattacharya
Edward C. Waymire

NOTE: Some of the first edition chapter numbers have changed in the second
edition. First edition Chapter VII was moved to Chapter IV, and the material in the
first edition Chapter VIII has been redistributed into other chapters. An entirely new
Chapter XIII was added to the second edition.

Preface to First Edition ix
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Chapter I
Random Maps, Distribution,
and Mathematical Expectation

In the spirit of a refresher, we begin with an overview of the measure–theoretic
framework for probability. Readers for whom this is entirely new material may
wish to consult the appendices for statements and proofs of basic theorems from
analysis. A measure space is a triple (S,S,μ), where S is a nonempty set; S is a
collection of subsets of S, referred to as a σ-field, which includes ∅ and is closed
under complements and countable unions; andμ : S → [0,∞] satisfies (i)μ(∅) = 0,
(ii) (countable additivity) μ(∪∞

n=1 An) = ∑∞
n=1 μ(An) if A1, A2, . . . is a sequence

of disjoint sets in S. Subsets of S belonging to S are called measurable sets. The
pair (S,S) is referred to as a measurable space, and the set function μ is called a
measure. Familiar examples from real analysis areLebesguemeasureμ on S = R

k ,
equipped with a σ-field S containing the class of all k-dimensional rectangles, say
R = (a1, b1] × · · · × (ak, bk], of “volume” measure μ(R) = ∏k

j=1(b j − a j ); or
Dirac point mass measure μ = δx at x ∈ S defined by δx (B) = 1 if x ∈ B,
δx (B) = 0 if x ∈ Bc, for B ∈ S. Such examples should suffice for the present,
but see Appendix A for constructions of these and related measures based on the
Carathéodory extension theorem. If μ(S) < ∞ then μ is referred to as a finite
measure. If one may write S = ∪∞

n=1Sn , where each Sn ∈ S(n ≥ 1) and μ(Sn) <

∞,∀n, then μ is said to be a σ-finite measure.
A probability space is a triple (Ω,F , P), where Ω is a nonempty set, F is a

σ-field of subsets ofΩ , and P is a finitemeasure on themeasurable space (Ω,F)with
P(Ω) = 1. The measure P is referred to as a probability. Intuitively, Ω represents
the set of all possible “outcomes” of a random experiment, real or conceptual, for
some given coding of the results of the experiment. The set Ω is referred to as the
sample space and the elements ω ∈ Ω as sample points or possible outcomes. The
σ-field F comprises “events” A ⊂ Ω whose probability P(A) of occurrence is well
defined.

The finite total probability and countable additivity of a probability have many
important consequences, such as finite additivity, finite and countable subad-
ditivity, inclusion–exclusion, monotonicity, and the formulas for both relative

© Springer International Publishing AG 2016
R. Bhattacharya and E.C. Waymire, A Basic Course in Probability Theory,
Universitext, DOI 10.1007/978-3-319-47974-3_I
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2 I Random Maps, Distribution, and Mathematical Expectation

complements and universal complements. Proofs of these properties are left to the
reader and included among the exercises.

Example 1 (Finite Sampling of a Fair Coin) Consider m repeated tosses of a fair
coin. Coding the individual outcomes as 1 or 0 (or, say, H, T), the possible outcomes
maybe represented as sequences of binary digits of lengthm. LetΩ = {0, 1}m denote
the set of all such sequences and F = 2Ω , the power set of Ω . The condition that
the coin be fair may be defined by the requirement that P({ω}) is the same for each
sequence ω ∈ Ω . Since Ω has cardinality |Ω| = 2m , it follows from the finite
additivity and total probability requirements that

P({ω}) = 1

2m
= 1

|Ω| , ω ∈ Ω.

Using finite additivity this completely and explicitly specifies the model (Ω,F , P)

with

P(A) =
∑

ω∈A

P({ω}) = |A|
|Ω| , A ⊂ Ω.

The so-called continuity properties also follow from the definition as follows:
A sequence of events An, n ≥ 1, is said to be increasing (respectively, decreasing)
with respect to set inclusion if An ⊂ An+1,∀n ≥ 1 (respectively An ⊃ An+1∀n ≥ 1).
In the former case one defines limn An := ∪n An , while for decreasing measurable
events limn An := ∩n An . In either case the continuity of a probability, from below
or above, respectively, is the following consequence of countable additivity1 (Exer-
cise 1):

P(lim
n

An) = lim
n

P(An). (1.1)

A bit more generally, if {An}∞n=1 is a sequence of measurable events one defines

lim sup
n

An := ∩n=1 ∪m≥n Am (1.2)

and
lim inf

n
An := ∪∞

n=1 ∩m≥n Am . (1.3)

The event lim supn An denotes the collection of outcomes ω ∈ Ω that correspond
to the occurrences of An for infinitely many n; i.e., the events An occur infinitely
often This event is also commonly denoted by [An i.o.] := lim supn An . On the other
hand, lim infn An is the set of outcomes ω that belong to An for all but finitely many
n. Note that [An i.o.]c is the event that the complementary event Ac

n occurs for all
but finitely many n and equals lim infn Ac

n .

1With the exception of properties for “complements” and “continuity from above,” these and the
aforementioned consequences can be checked to hold for any measure.



I Random Maps, Distribution, and Mathematical Expectation 3

Lemma 1 (Borel–Cantelli I)Let (Ω,F , P) be a probability space and An ∈ F , n =
1, 2, . . . . If

∑∞
n=1 P(An) < ∞ then P(An i.o.) = 0.

Proof Apply (1.1) to the decreasing sequence of events

∪∞
m=1 Am ⊃ ∪∞

m=2 Am ⊃ · · · ,

followed by subadditivity of the probability to get

P(lim sup
n

An) = lim
n→∞ P(∪∞

m=n Am) ≤ lim
n→∞

∞∑

m=n

P(Am) = 0.

�

A partial converse (Borel–Cantelli II) will be given in the next chapter.

Example 2 Suppose that T1, T2, . . . is a sequence of positive random variables
definedonaprobability space (Ω,F , P) such that for someconstantλ > 0, P(Tn > t)
= e−λt , t ≥ 0, for n = 1, 2, . . . . Then P(Tn > n i.o.) = 0. In fact, P(Tn > θ log
n i.o.) = 0 for any value of θ > 1

λ
. This may also be expressed as P(Tn ≤ θ log n

eventually for all n) = 1 if θ > 1
λ
.

Example 3 (Infinite Sampling of a Fair Coin) The possible outcomes of nontermi-
nated repeated coin tosses can be coded as infinite binary sequences of 1’s and 0’s.
Thus the sample space is the infinite product space Ω = {0, 1}∞. Observe that a
sequence ω ∈ Ω may be viewed as the digits in a binary expansion of a number x in
the unit interval. The binary expansion x = ∑∞

n=1 ωn(x)2−n , where ωn(x) ∈ {0, 1},
is not unique for binary rationals, e.g., 1

2 = .1000000 . . . = .011111 . . .. However
it may be made unique by requiring that infinitely many 0’s occur in the expansion.
Thus, up to a subset of probability zero, Ω and [0, 1) may be put in one-to-one
correspondence. Observe that for a given specification εn ∈ {0, 1}, n = 1, . . . , m,
of the first m tosses, the event A = {ω = (ω1,ω2, . . . ) ∈ Ω : ωn = εn, n ≤ m} cor-
responds to the subinterval [∑m

n=1 εn2−n,
∑m

n=1 εn2−n + 2−m) of [0, 1) of length
(Lebesgue measure) 2−m . Again modeling the repeated tosses of a fair coin by
the requirement that for each fixed m, P(A) not depend on the specified values
εn ∈ {0, 1}, 1 ≤ n ≤ m, it follows from finite additivity and total probability one
that P(A) = 2−m = |A|, where |A| denotes the one-dimensional Lebesgue measure
of A. Based on these considerations, one may use Lebesgue measure on [0, 1) to
define a probability model for infinitely many tosses of a fair coin. As we will see
below, this is an essentially unique choice. For now, let us exploit the model with
an illustration of the Borel–Cantelli Lemma 1. Fix a nondecreasing sequence rn of
positive integers and let An = {x ∈ [0, 1) : ωk(x) = 1, k = n, n +1, . . . , n +rn −1}
denote the event that a run of 1’s occurs of length at least rn starting at the nth toss.
Note that this set is a union of length 2−rn . Thus, if rn increases so quickly that∑∞

n=1 2
−rn < ∞ then the Borel–Cantelli Lemma 1 yields that P(An i.o.) = 0. For a

concrete illustration, let rn = [θ log2 n], for fixed θ > 0, with [·] denoting the integer
part. Then P(An i.o.) = 0 for θ > 1. Analysis of the case 0 < θ ≤ 1 requires more



4 I Random Maps, Distribution, and Mathematical Expectation

detailed consideration of the fundamental notion of “statistical independence” of the
outcomes of the individual tosses implicit to this model. This concept is among the
most important in all of probability theory and will be precisely defined in the next
chapter.

Remark 1.1 A detailed construction of Lebesgue measure is given in Example 1
of Appendix A. The existence of Lebsegue measure on [0, 1) plays a fundamental
role in providing the probability space for repeated unending tosses of a fair coin in
the previous example. The existence of probability models corresponding to infinite
sequences of experiments is as fundamentally important to probability as existence
of Lebesgue measure is to analysis. A general existence theorem will be given in
Chapter IX that will cover the theory developed in the chapters leading up to it. For
now we generally take such existence theory for granted.

For a given collection C of subsets ofΩ , the smallest σ-field that contains all of the
events in C is called the σ-field generated by C and is denoted by σ(C); if G is any σ-
field containing C then σ(C) ⊂ G. Note that, in general, if Fλ,λ ∈ Λ, is an arbitrary
collection of σ-fields of subsets ofΩ , then

⋂
λ∈Λ Fλ := {F ⊂ Ω : F ∈ Fλ ∀λ ∈ Λ}

is a σ-field. On the other hand
⋃

λ∈Λ Fλ := {F ⊂ Ω : F ∈ Fλ for someλ ∈ Λ}
is not generally a σ-field. Define the join σ-field, denoted by

∨
λ∈Λ Fλ, to be the

σ-field generated by
⋃

λ∈Λ Fλ.
It is not uncommon that F = σ(C) for a collection C closed under finite

intersections; such a collection C is called a π-system, e.g., Ω = (−∞,∞),
C = {(a, b] : −∞ ≤ a ≤ b < ∞}, or infinite sequence space Ω = R

∞, and
C = {(a1, b1] × · · · × (ak, bk] × R

∞ : −∞ ≤ ai ≤ bi < ∞, i = 1, . . . , k, k ≥ 1}.
Aλ-system is a collectionL of subsets ofΩ such that (i)Ω ∈ L, (ii) If A ∈ L then

Ac ∈ L, (iii) If An ∈ L, An ∩ Am = ∅, n = m, n, m = 1, 2, . . . , then ∪n An ∈ L. A
σ-field is clearly also a λ-system. The following π-λ theorem provides a very useful
tool for checking measurability.

Theorem 1.1 (Dynkin’s π-λ Theorem) If L is a λ-system containing a π-system C,
then σ(C) ⊂ L.

Proof Let L(C) = ∩F , where the intersection is over all λ-systems F containing
C. We will prove the theorem by showing (i) L(C) is a π-system, and (ii) L(C)

is a λ-system. For then L(C) is a σ-field (see Exercise 15), and by its definition
σ(C) ⊂ L(C) ⊂ L. Now (ii) is simple to check. For clearly Ω ∈ F for all F ,
and hence Ω ∈ L(C). If A ∈ L(C), then A ∈ F for all F , and since every F is a
λ-system, Ac ∈ F for every F . Thus Ac ∈ L(C). If An ∈ L(C), n ≥ 1, is a disjoint
sequence, then for each F , An ∈ F , for all n and A ≡ ∪n An ∈ F for all F . Since
this is true for every λ-system F , one has A ∈ L(C). It remains to prove (i). For
each set A, define the class LA := {B : A ∩ B ∈ L(C)}. It suffices to check that
LA ⊃ L(C) for all A ∈ L(C). First note that if A ∈ L(C), then LA is a λ-system,
by arguments along the line of (ii) above (Exercise 15). In particular, if A ∈ C, then
A ∩ B ∈ C for all B ∈ C, since C is closed under finite intersections. Thus LA ⊃ C.
This implies, in turn that L(C) ⊂ LA. This says that A ∩ B ∈ L(C) for all A ∈ C and

http://dx.doi.org/10.1007/978-3-319-47974-3_9
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for all B ∈ L(C). Thus, if we fix B ∈ L(C), then LB ≡ {A : B ∩ A ∈ L(C)} ⊃ C.
Therefore LB ⊃ L(C). In other words, for every B ∈ L(C) and A ∈ L(C), one has
A ∩ B ∈ L(C). �

In view of the additivity properties of a probability, the following is an immediate
and important corollary to the π-λ theorem.

Corollary 1.2 (Uniqueness) If P1, P2 are two probability measures such that
P1(C) = P2(C) for all events C belonging to a π-system C, then P1 = P2 on
all of F = σ(C).

Proof Check that {A ∈ F : P1(A) = P2(A)} ⊃ C is a λ-system. �

Remark 1.2 It is rather simple to construct examples of generating collections of
sets C and probability measures P1, P2 such that P1 = P2 on C, but P1 = P2

on σ(C). For example take Ω = {1, 2, 3, 4}, C = {{1, 2, 3}, {2, 3, 4}}. Then
σ(C) = {{1, 2, 3}, {2, 3, 4}, {1}, {4}, {1, 4}, {2, 3},Ω,∅}. Let P1({1}) = P2({1}) =
P1({4}) = P2({4}) = 1/8, but P1({2}) = P2({3}) = 1/8, P1({3}) = P2({2}) = 5/8.

For a related application suppose that (S, ρ) is a metric space. The Borel σ-field
of S, denoted by B(S), is defined as the σ-field generated by the collection C = T of
open subsets of S, the collection T being referred to as the topology on S specified by
the metric ρ. More generally, one may specify a topology for a set S by a collection
T of subsets of S that includes both ∅ and S, and is closed under arbitrary unions
and finite intersections. Then (S, T ) is called a topological space and members of
T define the open subsets of S. The topology is said to be metrizable when it may
be specified by a metric ρ as above. In any case, one defines the Borel σ-field by
B(S) := σ(T ).

Definition 1.1 A class C ⊂ B(S) is said to bemeasure-determining if for any two
finite measures μ, ν such that μ(C) = ν(C) ∀C ∈ C, it follows that μ = ν on B(S).

One may directly apply the π-λ theorem, noting that S is both open and closed, to
see that the class T of all open sets is measure-determining, as is the class K of all
closed sets.

If (Si ,Si ), i = 1, 2, is a pair of measurable spaces then a function f : S1 → S2
is said to be a measurable map if f −1(B) := {x ∈ S1 : f (x) ∈ B} ∈ S1 for
all B ∈ S2. In usual mathematical discourse the σ-fields required for this defini-
tion may not be explicitly mentioned and will need to be inferred from the context.
For example, if (S,S) is a measurable space, by a Borel-measurable function
f : S → R is meant measurability when R is given its Borel σ-field. A ran-
dom variable, or a random map, X is a measurable map on a probability space
(Ω,F , P) into ameasurable space (S,S).Measurability of X means that each event2

[X ∈ B] := X−1(B) belongs to F ∀ B ∈ S. The σ-field generated by X, denoted
σ(X), is the smallest σ-field of subsets ofΩ for which X : Ω → S is measurable. In

2Throughout, this square-bracket notation will be used to denote events defined by inverse images.
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particular, therefore, σ(X) = {[X ∈ A] : A ∈ S} (Exercise 11). The term random
variable is most often used to denote a real-valued random variable, i.e., where
S = R, S = B(R). When S = R

k , S = B(Rk), k > 1, one uses the term random
vector.

A common alternative to the use of a metric to define a metric space topology, is
to indirectly characterize the topology by specifying what it means for a sequence to
converge in the metric. That is, if T is a topology on S, then a sequence {xn}∞n=1 in S
converges to x ∈ S with respect to the topology T if for arbitrary U ∈ T such that
x ∈ U , there is an N such that xn ∈ U for all n ≥ N . A topological space (S, T ),
or a topology T , is said to be metrizable if T coincides with the class of open sets
defined by a metric ρ on S. Alternatively, by specifying the meaning of convergence
in the metric, one has that closed sets, and therefore open sets via complements,
can also be defined. Using this notion, other commonly occurring measurable image
spaces may be described as follows: (i) S = R

∞—the space of all sequences of
reals with the (metrizable) topology of pointwise convergence, and S = B(R∞),
(ii) S = C[0, 1]—the space of all real-valued continuous functions on the interval
[0, 1]with the (metrizable) topology of uniform convergence, and S = B(C[0, 1]),
and (iii) S = C([0,∞) : Rk)—the space of all continuous functions on [0,∞) into
R

k , with the (metrizable) topology of uniform convergence on compact subsets of
[0,∞), S = B(S) (see Exercise 10).

The relevant quantities for a random map X on a probability space (Ω,F , P) are
the probabilities with which X takes sets of values. In this regard, P determines the
most important aspect of X , namely, its distribution Q ≡ P ◦ X−1 defined on the
image space (S,S) by

Q(B) := P(X−1(B)) ≡ P(X ∈ B), B ∈ S. (1.4)

The distribution is sometimes referred to as the induced measure of X under P .
For random vectors X = (X1, . . . , Xk) with values in R

k , it is often convenient to
restrict consideration to the (multivariate) distribution function defined by F(x) =
P(X ≤ x) ≡ P(X1 ≤ x1, . . . , Xk ≤ xk), x = (x1, . . . , xk) ∈ R

k ; see Exercise 16. A
familiar and important special case is that of an absolutely continuous distribution
function given by

F(x) =
∫ xk

−∞
· · ·

∫ x1

−∞
g(u)du, x ∈ R

k,

for a nonnegative density function g with respect to Lebesgue measure on R
k ; here

we have used the convention of representing Lebesgue measure as du. In an abuse of
terminology, a random variable with an absolutely continuous distribution is often
referred to as a continuous random variable.

If a real-valued random variable X has the distribution function F , then P(X ∈
(a, b]) = P(a < X ≤ b) = F(b)−F(a).Moreover, P(X ∈ (a, b)) = P(a < X < b)

= F(b−) − F(a). Since the collection C of all open intervals (a, b),−∞ < a ≤ b <
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∞ is closed under finite intersections, and every open subset of R can be expressed
as a countable disjoint union of sets in C, the collection C is measure-determining (cf.
Exercise 19). One may similarly check that the (multivariate) distribution function of
a probability Q on the Borel sigma-field of Rk uniquely determines Q; cf. Exercise
19.

In general, let us also note that given any probability measure Q on a measurable
space (S,S)one can construct a probability space (Ω,F , P) and a random map X on
(Ω,F)withdistribution Q. The simplest such construction is givenby lettingΩ = S,
F = S, P = Q, and X the identity map, X (ω) = ω, ω ∈ S. This is often called a
canonical construction, and (S,S, Q)with the identity map X is called a canonical
model. Note that any canonical model for X will generally be a noncanonical model
for a function of X . So it would not be prudent to restrict the theoretical development
to canonical models alone!

Before proceeding, it is of value to review the manner in which abstract Lebesgue
integration and,more specifically,mathematical expectation is defined. Throughout
1A denotes the indicator function of the set A, i.e., 1A(x) = 1 if x ∈ A, and is zero
otherwise. If X = ∑m

j=1 a j1A j , A j ∈ F , Ai ∩ A j = ∅(i = j), is a discrete random
variable or, equivalently, a simple random variable, then EX ≡ ∫

Ω
Xd P :=∑m

j=1 a j P(A j ). If X : Ω → [0,∞) is a random variable, then EX , expected
is defined by the “simple function approximation” EX ≡ ∫

Ω
Xd P := sup{EY :

0 ≤ Y ≤ X, Y simple}. In particular, one may apply the standard simple function
approximations X = limn→∞ Xn given by the nondecreasing sequence

Xn :=
n2n−1∑

j=0

j

2n
1[ j2−n≤X<( j+1)2−n ] + n1[X≥n], n = 1, 2, . . . , (1.5)

to write

EX = lim
n→∞EXn = lim

n→∞

⎧
⎨

⎩

n2n−1∑

j=0

j

2n P( j2−n ≤ X < ( j + 1)2−n) + n P(X ≥ n)

⎫
⎬

⎭
.

(1.6)
Note that if EX < ∞, then n P(X > n) → 0 as n → ∞ (Exercise30). Now, more
generally, if X is a real-valued random variable, then the expected value (or,mean,
first moment) of X is defined as

E(X) ≡
∫

Ω

Xd P := EX+ − EX−, (1.7)

provided at least one of E(X+) and E(X−) is finite, where X+ = X1[X≥0] and X− =
−X1[X≤0]. If both EX+ < ∞ and EX− < ∞, or equivalently, E|X | = EX+ +
EX− < ∞, then X is said to be integrable with respect to the probability P . Note
that if X is bounded a.s., then applying (1.5) to X+ and X−, one obtains a sequence
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Xn(n ≥ 1) of simple functions that converge uniformly to X , outside a P-null set
(Exercise 1.5(i)).

If X is a random variable with values in (S,S) and if h is a real-valued Borel-
measurable function on S, then using simple function approximations to h, one may
obtain the following basic change of variables formula

E(h(X)) ≡
∫

Ω

h(X (ω))P(dω) =
∫

S
h(x)Q(dx), (1.8)

where Q is the distribution of X , provided one of the two indicated integrals may be
shown to exist.

For arbitrary p ≥ 1, the order p-moment of a random variable X on (Ω,F , P)

having distribution Q is defined by

μp := EX p =
∫

Ω

X p(ω)P(dω) =
∫

R

x p Q(dx), (1.9)

provided that X p is integrable, or nonnegative. Moments of lower order p than one,
including negative order (p < 0) moments, may be defined similarly so long as X p

is real-valued random variable. Moments of absolute values |X | are referred to as
absolutemoments of X . Let us record a useful formula for the moments of a random
variable derived from the Fubini–Tonelli theorem before proceeding. Namely,

Proposition 1.3 If X is a random variable on (Ω,F , P), then for any p > 0,

E|X |p = p
∫ ∞

0
y p−1P(|X | > y)dy. (1.10)

Proof For x ≥ 0, simply use x p = p
∫ x
0 y p−1dy in the formula

E|X |p =
∫

Ω

|X (ω)|p P(dω) =
∫

Ω

(

p
∫ |X (ω)|

0
y p−1dy

)

P(dω)

and apply the Tonelli part (a) to reverse the order of integration. The assertion
follows. �

Example 4 As a generalization of Example 2, suppose that X1, X2, . . . is a sequence
of positive random variables, each having distribution Q, with a finite moment of
order p > 0. Then an application of Borel–Cantelli I together with Proposition 1.3

shows that P(Xn > n
1
p i.o.) = 0 (Use Exercise 29 applied to X p

1 .).

If X = (X1, X2, . . . , Xk) is a random vector whose components are integrable
real-valued random variables, then define E(X) = (E(X1), . . . ,E(Xk)). Similarly
for complex valued random variables X = U + iV , where U, V are integrable real-
valued random variables, one defines EX = EU + iEV . In particular, for complex
valued random variables EX exists if and only if E|X | = E

√
U 2 + V 2 < ∞;

Exercise 36.
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This definition of expectation as an integral in the sense of Lebesgue is precisely
the same as that used in real analysis to define

∫
S f (x)μ(dx) for a real-valued Borel-

measurable function f on an arbitrary measure space (S,S,μ); see Appendix A.
Almost sure convergence of a sequence of random maps Xn, n ≥ 1, to X , each
defined on (Ω,F , P), is defined by Xn(ω) → X (ω) as n → ∞ for all ω ∈ Ω up to
a subset of probability zero; i.e., convergence almost everywhere with respect to P .
One may exploit standard tools of real analysis (see Appendices A and C), such as
Lebesgue’s dominated convergence theorem,Lebesgue’smonotone convergence
theorem, Fatou’s lemma, Fubini–Tonelli theorem, Radon–Nykodym theorem,
for estimates and computations involving expected values.

The following lemma and proposition illustrate the often used exchange in the
order of integration.

Lemma 2 (Integration by parts) Let μ1,μ2 be signed measures on R, which are
finite on finite intervals. Let

Fi (y) = μi (0, y], i = 1, 2, −∞ < y < ∞.

Then for any −∞ < a < b < ∞, one has

∫

(a,b]
F1(y)μ2(dy) = F1(b)F2(b) − F1(a)F2(a) −

∫

(a,b]
F2(y−)μ1(dy).

Proof Since a signed measure may be expressed as the difference of two measures,
without loss of generality it is sufficient to let both μ1 and μ2 be measures that are
finite on finite intervals. Then, using the Fubini–Tonelli theorem, one has

∫

a<u≤v,a<v≤b
μ1(du)μ2(dv) =

∫

a<v≤b
[F1(v) − F1(a)]μ2(dv)

= −F1(a)[F2(b) − F2(a)] +
∫

a<v≤b
F1(v)μ2(dv).

Also,

∫

a<u≤v,a<v≤b
μ1(du)μ2(dv) =

∫

a<u≤b
[F2(b) − F2(u−)]μ1(du)

= F2(b)[F1(b) − F1(a)] −
∫

a<u≤b
F2(u−)μ1(du).

Comparing these two iterations yields the asserted formula. �

Remark 1.3 The “distribution functions” Fi , i = 1, 2, can be defined as Fi (y) =
μi ((c, y]), i = 1, 2, y ∈ R, for any real number c in place of zero, and the lemma
still holds. This formula has special utility when applied to a nondecreasing function,
or more generally a function of bounded variation, as an integrand.
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The following is a useful version for expected values. A clever application is given
in Theorem 3.4.

Proposition 1.4 Let μ1 be an arbitrary measure on (0,∞] which is finite on finite
intervals, and such that μ1({0}) = 0. Suppose that μ2 is a probability measure on
[0,∞), and let Y be a random variable with distribution μ2. Then, with Fi (y) =
μi ((0, y]), i = 1, 2, y ≥ 0, one has

EF1(Y ) =
∫

[0,∞)

P(Y ≥ y)μ1(dy)

Proof By the lemma, for any b > 0 one has

∫

(0,b]
F1(y)μ2(dy) = F1(b)F2(b) − F1(0)F2(0) −

∫

(0,b]
F2(y−)μ1(dy)

= F1(b)F2(b) −
∫

(0,b]
F2(y−)μ1(dy)

=
∫

(0,b]
[F2(b) − F2(y−)]μ1(dy). (1.11)

The assertion follows by lettingb ↑ ∞onboth sides, and usingLebesgue’smonotone
convergence theorem to obtain

∫

(0,∞)

F1(y)μ2(dy) =
∫

(0,∞)

[1 − F2(y−)]μ1(dy).

�

Definition 1.2 A sequence {Xn}∞n=1 of random variables on a probability space
(Ω,F , P) is said to converge in probability to a random variable X if for each
ε > 0, limn→∞ P(|Xn − X | > ε) = 0. The convergence is said to be almost sure
(a.s.) if the event [Xn → X ] ≡ {ω ∈ Ω : Xn(ω) → X (ω)} has P-measure zero.

Convergence in probability is referred to as “convergence in measure” in analysis;
see Appendix A. Note that almost sure convergence always implies convergence in
probability, since for arbitrary ε > 0 one has 0 = P(∩∞

n=1 ∪∞
m=n [|Xm − X | >

ε]) = limn→∞ P(∪∞
m=n[|Xm − X | > ε]) ≥ lim supn→∞ P(|Xn − X | > ε); also see

Exercise 5. An equivalent formulation of convergence in probability can be cast in
terms of almost sure convergence as follows.

Proposition 1.5 A sequence of random variables {Xn}∞n=1 on (Ω,F , P) converges
in probability to a random variable X on (Ω,F , P) if and only if every subsequence
has an a.s. convergent subsequence to X .

Proof Suppose that Xn → X in probability as n → ∞. Let {Xnk }∞k=1 be a subse-
quence, and for eachm ≥ 1 recursively choose nk(0) = 1, nk(m) = min{nk > nk(m−1):

http://dx.doi.org/10.1007/978-3-319-47974-3_3
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P(|Xnk − X | > 1/m) ≤ 2−m}. Then it follows from the Borel–Cantelli lemma (Part
I) that Xnk(m)

→ X a.s. as m → ∞. For the converse suppose that Xn does not
converge to X in probability. Then there exists ε > 0 and a sequence n1, n2, . . . such
that limk P(|Xnk − X | > ε) = α > 0. Since a.s. convergence implies convergence
in probability (see Appendix A, Proposition2.4), there cannot be an a.s. convergent
subsequence of {Xnk }∞k=1. �

The utility of Proposition 1.5 can be seen, for example, in demonstrating that if
a sequence of random variables Xn, n ≥ 1, say, converges in probability to X , then
X2

n will converge in probability to X2 by virture of continuity of the map x → x2,
and considerations of almost sure convergence; see Exercise 6.

The notion of measure-determining classes of sets extends to classes of functions
as follows. Let μ, ν be arbitrary finite measures on the Borel σ-field of a metric space
S. A class Γ of real-valued bounded Borel-measurable functions on S is measure-
determining if

∫
S g dμ = ∫

S g dν ∀g ∈ Γ implies μ = ν.

Proposition 1.6 The class Cb(S) of real-valued bounded continuous functions on S
is measure-determining.

Proof To prove this, it is enough to show that for each (closed) F ∈ K there exists
a sequence of nonnegative functions { fn} ⊂ Cb(S) such that fn ↓ 1F as n ↑
∞. Since F is closed, one may view x ∈ F in terms of the equivalent condition
that ρ(x, F) = 0, where ρ(x, F) := inf{ρ(x, y) : y ∈ F}. Let hn(r) = 1 − nr
for 0 ≤ r ≤ 1/n, hn(r) = 0 for r ≥ 1/n. Then take fn(x) = hn(ρ(x, F)). In
particular, 1F (x) = limn fn(x), x ∈ S, and Lebesgue’s dominated convergence
theorem applies. �

Note that the functions fn in the proof of Proposition 1.6 are uniformly continu-
ous, since | fn(x) − fn(y)| ≤ (nρ(x, y)) ∧ (2 supx | fn(x)|). It follows that the set
UCb(S) of bounded uniformly continuous real-valued functions on S is measure-
determining. Measure-determining classes of functions are generally actually quite
extensive. For example, since the Borel σ-field on R can be generated by classes
of open intervals, closed intervals, half-lines etc., each of the corresponding class
of indicator functions 1(a,b),−∞ ≤ a < b < ∞, 1[a,b],−∞ < a < b < ∞,
1(−∞,x], x ∈ R, is measure-determining (see Exercises 9, 16).

Consider the L p-space L p(Ω,F , P) of (real-valued) random variables X such
that E|X |p < ∞. When random variables that differ only on a P-null set are iden-
tified, then for p ≥ 1, it follows from Theorem 1.7(e) below that L p(Ω,F , P) is a
normed linear space with norm ‖X‖p := (

∫
Ω

|X |pd P)p) ≡ (E|X |p)
1
p . It is in this

sense that elements of L p(Ω,F , P) are, strictly speaking, represented by equiva-
lence classes of random variables that are equal almost surely. It may be shown that
with this norm (and distance ‖X − Y‖p), it is a complete metric space, and therefore
a Banach space (Exercise 35). In particular, L2(Ω,F , P) is a Hilbert space with
inner product (see Appendix C)

http://dx.doi.org/10.1007/978-3-319-47974-3_2
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〈X, Y 〉 = EXY ≡
∫

Ω

XY d P, ||X ||2 = 〈X, X〉 1
2 . (1.12)

The L2(S,S,μ) spaces are the only Hilbert spaces that are required in this text,
where (S,S,μ) is a σ-finite measure space; see Appendix C for an exposition of
the essential structure of such spaces. Note that by taking S to be a countable set
with counting measure μ, this includes the l2 sequence space. Unlike the case of a
measure space (Ω,F ,μ) with an infinite measure μ, for finite measures it is always
true that

Lr (Ω,F , P) ⊂ Ls(Ω,F , P) if r > s ≥ 1, (1.13)

as can be checked using |x |s < |x |r for |x | > 1. The basic inequalities in the
following Theorem 1.7 are consequences of convexity at some level. So let us be
precise about this notion.

Definition 1.3 A function ϕ defined on an open interval J is said to be a convex
function if ϕ(ta + (1 − t)b) ≤ tϕ(a) + (1 − t)ϕ(b), for all a, b ∈ J , 0 ≤ t ≤ 1.

If the function ϕ is sufficiently smooth, one may use calculus to check convexity, see
Exercise 24. The following lemma is required to establish a geometrically obvious
“line of support property” of convex functions.

Lemma 3 (Line of Support) Suppose ϕ is convex on an interval J . (a) If J is open,
then (i) the left-hand and right-hand derivatives ϕ− and ϕ+ exist and are finite and
nondecreasing on J , and ϕ− ≤ ϕ+. Also (ii) for each x0 ∈ J there is a constant
m = m(x0) such thatϕ(x) ≥ ϕ(x0)+m(x − x0),∀x ∈ J . (b) If J has a left (or right)
endpoint and the right-hand (left-hand) derivative is finite, then the line of support
property holds at this endpoint x0.

Proof (a) In the definition of convexity, one may take a < b, 0 < t < 1. Thus
convexity is equivalent to the following inequality with the identification a = x ,
b = z, t = (z − y)/(z − x): For any x, y, z ∈ J with x < y < z,

ϕ(y) − ϕ(x)

y − x
≤ ϕ(z) − ϕ(y)

z − y
. (1.14)

More generally, use the definition of convexity to analyze monotonicity and bounds
on the Newton quotients (slopes of secant lines) from the right and left to see that
(1.14) implies ϕ(y)−ϕ(x)

y−x ≤ ϕ(z)−ϕ(x)

z−x ≤ ϕ(z)−ϕ(y)

z−y (use the fact that c/d ≤ e/ f for
d, f > 0 implies c/d ≤ (c + e)/(d + f ) ≤ e/ f ). The first of these inequalities
shows that ϕ(y)−ϕ(x)

y−x decreases as y decreases, so that the right-hand derivativeϕ+(x)

exists and ϕ(y)−ϕ(x)

y−x ≥ ϕ+(x). Letting z ↓ y in (1.14), one gets ϕ(y)−ϕ(x)

y−x ≤ ϕ+(y)

for all y ∈ J . Hence ϕ+ is finite and nondecreasing on J . Now fix x0 ∈ J . By taking
x = x0 and y = x0 in turn in these two inequalities for ϕ+, it follows that ϕ(y) −
ϕ(x0) ≥ ϕ+(x0)(y − x0) for all y ≥ x0, and ϕ(x0) − ϕ(x) ≤ ϕ+(x0)(x0 − x) for all
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x ≤ x0. Thus the “line of support” property holds with m = ϕ+(x0). (b) If J has
a left (right) endpoint x0, and ϕ+(x0) (ϕ−(x0)) is finite, then the above argument
remains valid with m = ϕ+(x0) (ϕ−(x0)).

A similar proof applies to the left-hand derivative ϕ−(x) (Exercise 24). On letting
x ↑ y and z ↓ y in (1.14), one obtains ϕ−(y) ≤ ϕ+(y) for all y. In particular, the
line of support property now follows for ϕ−(x0) ≤ m ≤ ϕ+(x0). �

Theorem 1.7 (Basic Inequalities) Let X, Y be random variables on (Ω,F , P).

(a) (Jensen’s Inequality) Ifϕ is a convex functionon the interval J and P(X ∈ J ) = 1,
then ϕ(EX) ≤ E(ϕ(X)) provided that the indicated expectations exist. More-
over, if ϕ is strictly convex, then equality holds if and only if X is a.s. constant.

(b) (Lyapounov Inequality) If 0 < r < s then (E|X |r ) 1
r ≤ (E|X |s) 1

s .
(c) (Hölder Inequality) Let p ≥ 1. If X ∈ L p, Y ∈ Lq , 1

p + 1
q = 1, then XY ∈ L1

and E|XY | ≤ (E|X |p)
1
p (E|Y |q) 1

q .
(d) (Cauchy–Schwarz Inequality) If X, Y ∈ L2 then XY ∈ L1 and one has |E(XY )|

≤ √
EX2

√
EY 2.

(e) (Minkowski Triangle Inequality) Let p ≥ 1. If X, Y ∈ L p then ‖X + Y‖p ≤
‖X‖p + ‖Y‖p.

(f) (Markov and Chebyshev-type Inequalities) Let p ≥ 1. If X ∈ L p then P(|X | ≥
λ) ≤ E(|X |p1[|X |≥λ])

λp ≤ E|X |p

λp , λ > 0. More generally, if h is a nonnegative
increasing function on an interval containing the range of X , then P(X ≥ λ) ≤
E(h(X)1[X≥λ])/h(λ).

Proof The proof of Jensen’s inequality hinges on the line of support property of
convex functions in Lemma 3 by taking x = X (ω),ω ∈ Ω, x0 = EX . The Lya-
pounov inequality follows from Jensen’s inequality by writing |X |s = (|X |r ) s

r , for
0 < r < s, since ϕ(x) = x

s
r is convex on [0,∞). For the Hölder inequality, let

p, q > 1 be conjugate exponents in the sense that 1
p + 1

q = 1. Using convex-
ity of the function exp(x) one sees that |ab| = exp(ln(|a|p)/p + ln(|b|q)/q)) ≤
1
p |a|p + 1

q |b|q . Applying this to a = |X |
‖X‖p

, b = |Y |
‖Y‖q

and integrating, it fol-

lows that E|XY | ≤ (E|X |p)
1
p (E|Y |q) 1

q . The Cauchy–Schwarz inequality is the
Hölder inequality with p = q = 2. For the proof of Minkowski’s inequality, first
use the inequality (1.27) to see that |X + Y |p is integrable from the integrabil-
ity of |X |p and |Y |p. Applying Hölder’s inequality to each term of the expansion
E(|X | + |Y |)p = E|X |(|X | + |Y |)p−1 +E|Y |(|X | + |Y |)p−1, and solving the result-
ing inequality for E(|X | + |Y |)p (using conjugacy of exponents), it follows that
‖X + Y‖p ≤ ‖X‖p + ‖Y‖p. Finally, for the Markov and Chebyshev-type inequali-
ties simply observe that since 1{|X |≥λ} ≤ |X |p1{|X |≥λ})

λp ≤ |X |p

λp onΩ , taking expectations

yields P(|X | ≥ λ) ≤ E(|X |p1[|X |≥λ])
λp ≤ E|X |p

λp , λ > 0. More generally, for increasing
h with h(λ) > 0, one has E(h(X)1[X≥λ]) ≥ h(λ)P(X ≥ λ). �

Remark 1.4 Onemaynote that the sameproofmaybe used to check that correspond-
ing formulations of both the Hölder and the Minkowski inequality for functions on
arbitrary measure spaces can be verified with the same proof as above.
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The Markov inequality refers to the case p = 1 in (f). Observe from the proofs
that (c–e) hold with the random variables X, Y replaced by measurable functions, in
fact complex valued, on an arbitrary (not necessarily finite) measure space (S,S,μ);
see Exercise 36.

Example 5 (Chebyshev Estimation of a Distribution Function) Suppose that X is a
nonnegative randomvariablewith distribution function F , and having finitemoments
μp of order p < s for some s > 1. According to the Chebyshev inequality one has

1 − F(x) = P(X > x) ≤ μp

x p
. (1.15)

By Liapounov’s inequality one also has μ
1
p
p ≤ μ

1
p+1

p+1, p = 1, 2, . . . . Since p →
logμp is convex on [0, s] (Exercise 23), it follows that μp

μp−1
≤ μp+1

μp
. So

μp

x p
≤ μp+1

x p+1
⇐⇒ x p+1

x p
≤ μp+1

μp
⇐⇒ x ≤ μp+1

μp
. (1.16)

Thus upper bound estimates of 1 − F(x) may be obtained as follows:

F(x) := 1 − F(x) ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if x ≤ μ1,
μ2

x2 if μ1 < x ≤ μ2

μ1
,

· · ·
μp

x p if μp

μp−1
< x ≤ μp+1

μp
, 1 ≤ p ≤ s − 1.

(1.17)

From here one also has Chebyshev estimated lower bounds on F(x) in terms of the
moments μp of 1

X (Exercise 2).3

Suppose that (S,S,μ) is an arbitrary measure space and g : S → [0,∞) a
Borel-measurable function, though not necessarily integrable. One may use g as a
density with respect to μ to define another measure ν on (S,S), i.e., with g as its
Radon–Nykodym derivative dν/dμ = g, also commonly denoted by dν = g dμ,
and meaning that ν(A) = ∫

A g dμ, A ∈ S; see Appendix C for a full treatment of
the Radon–Nikodym theorem.

Recall that a sequence of measurable functions {gn}∞n=1 on S is said to converge
μ-a.e. to a measurable function g on S if and only if μ({x ∈ S : limn gn(x) =
g(x)}) = 0. The following simple theorem finds diverse uses in the framework of
probability theory.

Theorem 1.8 (Scheffé) Let (S,S,μ) be ameasure space and suppose that ν, {νn}∞n=1
are measures on (S,S) with respective nonnegative densities g, {gn}∞n=1 with respect
to μ, such that

3For an application see Bhattacharya, R.N., Kim, H., Majumdar, M.K. (2015): Sustainability in the
Stochastic Ramsey Model, J. Quant. Econ. 13, 169–184.
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∫

S
gn dμ =

∫

S
g dμ < ∞, ∀n = 1, 2, . . . .

If gn → g as n → ∞, μ-a.e., then

sup
A∈S

|
∫

A
g dμ −

∫

A
gn dμ| ≤

∫

S
|g − gn| dμ → 0, as n → ∞.

Proof The indicated bound on the supremum follows from the triangle inequality
for integrals. Since

∫
S(g−gn) dμ = 0 for each n,

∫
S(g−gn)

+ dμ = ∫
Ω

(g−gn)
− dμ.

In particular, since |g − gn| = (g − gn)
+ + (g − gn)

−,
∫

S
|g − gn| dμ = 2

∫

S
(g − gn)

+ dμ.

But 0 ≤ (g − gn)
+ ≤ g. Since g is μ-integrable, one obtains

∫
S(g − gn)

+ dμ → 0 as
n → ∞ from Lebesgue’s dominated convergence theorem. �

Remark 1.5 Suppose gn, g are probability densities (with respect to a σ-finite mea-
sure μ) and gn → g in μ-measure. Then the conclusion of Theorem1.8 holds.

For a measurable space (S,S), a useful metric (see Exercise 33) defined on the
spaceP(S) of probabilities onS = B(S) is furnished by the total variation distance
defined by

dv(μ, ν) := sup{|μ(A) − ν(A)| : A ∈ B(S)}, μ, ν ∈ P(S). (1.18)

Proposition 1.9 Suppose that (S,S) is a measurable space. Then

dv(μ, ν) = 1

2
sup

{∣
∣
∣
∣

∫

S
f dμ −

∫

S
f dν

∣
∣
∣
∣ : f ∈ B(S), | f | ≤ 1

}

,

where B(S) denotes the space of bounded Borel-measurable functions on S. More-
over, (P(S), dv) is a complete metric space.

Proof Let us first establish the formula for the total variation distance. By standard
simple function approximation it suffices to consider bounded simple functions in
the supremum. Fix arbitrary μ, ν ∈ P(S). Let f = ∑k

i=1 ai1Ai ∈ B(S) with |ai | ≤
1, i = 1, . . . , k and disjoint sets Ai ∈ S, 1 ≤ i ≤ k. Let I + := {i ≤ k : μ(Ai ) ≥
ν(Ai )}. Let I − denote the complementary set of indices. Then by definition of the
integral of a simple function and splitting the sum over I ± one has upon twice using
the triangle inequality that
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∣
∣
∣
∣

∫

S
f dμ −

∫

S
f dν

∣
∣
∣
∣ ≤

∑

i∈I +
|ai |(μ(Ai ) − ν(Ai )) +

∑

i∈I −
|ai |(ν(Ai ) − μ(Ai ))

≤
∑

i∈I +
(μ(Ai ) − ν(Ai )) +

∑

i∈I −
(ν(Ai ) − μ(Ai ))

= μ(∪i∈I + Ai ) − ν(∪i∈I + Ai ) + ν(∪i∈I − Ai ) − μ(∪i∈I − Ai )

≤ 2 sup{|μ(A) − ν(A)| : A ∈ S}. (1.19)

On the other hand, taking f = 1A − 1Ac , A ∈ S, one has
∣
∣
∣
∣

∫

S
f dμ −

∫

S
f dν

∣
∣
∣
∣ = |μ(A) − μ(Ac) − ν(A) + ν(Ac)|
= |μ(A) − ν(A) − 1 + μ(A) + 1 − ν(A)|
= 2|μ(A) − ν(A)|. (1.20)

Thus, taking the supremum over sets A ∈ S establishes the asserted formula for the
total variation distance.Next, to prove that the spaceP(S) of probabilities is complete
for this metric, let {μn}∞n=1 be a Cauchy sequence in P(S). Since the closed interval
[0, 1] of real numbers is complete, one may define μ(A) := limn μn(A), A ∈ S.
Because this convergence is uniform over S, it is simple to check that μ ∈ P(S) and
μn → μ in the metric dv; see Exercise 33. �

For real-valued random variables Xn, n ≥ 1, and X , having absolutely continuous
distribution functions with densities gn , g, say, with respect to Lebesgue measure, a
notion of convergence in distribution can be defined as Fn(x) ≡ P(Xn ≤ x) →
F(x) ≡ P(X ≤ x) for all x ∈ R. It follows from Scheffé’s theorem that pointwise
convergence a.e. of the densities implies uniform convergence of the distribution
functions; Exercise 25. For contrast in the absence of a density see Exercise 26.A
treatment of convergence in distribution is the subject of Chapter V.

One may also note that Scheffé’s theorem provides conditions under which con-
vergence in measure implies L1(S,S,μ)-convergence of the densities gn to g, and
convergence in the total variation metric of the probabilities νn to ν.

We will conclude this chapter with some additional basic convergence theorems
for probability spaces. Namely, we consider L p-convergence (p ≥ 1) of a sequence
of random variables Xn, n ≥ 1 in L p(Ω,F , P), to X , i.e., E|Xn − X |p → 0 as
n → ∞. We start with p = 1. Of course |EXn − EX | ≤ E|Xn − X |, n ≥ 1, so that
L1-convergence implies convergence of the expected values.

For this purpose we require a definition.

Definition 1.4 A sequence {Xn}∞n=1 of random variables on a probability space
(Ω,F , P) is said to be uniformly integrable if

lim
λ→∞

sup
n

E{|Xn|1[|Xn |≥λ]} = 0.

http://dx.doi.org/10.1007/978-3-319-47974-3_5
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Theorem 1.10 (L1-Convergence Criterion) Let {Xn}∞n=1 be a sequence of random
variables on a probability space (Ω,F , P), Xn ∈ L1 (n ≥ 1). Then {Xn}∞n=1 con-
verges in L1 to a random variable X if and only if (i) Xn → X in probability as
n → ∞, and (ii) {Xn}∞n=1 is uniformly integrable.

Proof (Necessity) If Xn → X in L1 then convergence in probability (i) follows from
the Markov inequality. Also

∫

[|Xn |≥λ]
|Xn|d P ≤

∫

[|Xn |≥λ]
|Xn − X |d P +

∫

[|Xn |≥λ]
|X |d P

≤
∫

Ω

|Xn − X |d P +
∫

[|X |≥λ/2]
|X |d P

+
∫

[|X |<λ/2,|Xn−X |≥λ/2]
|X |d P. (1.21)

The first term of the last sum goes to zero as n → ∞ by hypothesis. For each λ > 0
the third term goes to zero by the dominated convergence theorem as n → ∞. The
second term goes to zero as λ → ∞ by the dominated convergence theorem too.
Thus, there are numbers n(ε) and λ(ε) such that for all λ ≥ λ(ε),

sup
n≥n(ε)

∫

[|Xn |≥λ]
|Xn|d P ≤ ε. (1.22)

Since a finite sequence of integrable random variables {Xn : 1 ≤ n ≤ n(ε)} is always
uniformly integrable, it follows that the full sequence {Xn} is uniformly integrable.

(Sufficiency) Under the hypotheses (i), (ii), given ε > 0 one has for all n that

∫

Ω

|Xn|d P ≤
∫

[|Xn |≥λ]
|Xn|d P + λ ≤ ε + λ(ε) (1.23)

for sufficiently largeλ(ε). In particular, {∫
Ω

|Xn|d P}∞n=1 is a bounded sequence. Thus∫
Ω

|X |d P < ∞ since, using Fatou’s lemma, one has
∫
Ω

|X |d P = ∫
Ω
limn |Xn|d P

≤ lim infn
∫
Ω

|Xn|d P < ∞. Now

∫

[|Xn−X |≥λ]
|Xn − X |d P =

∫

[|Xn−X |≥λ,|Xn |≥λ/2]
|Xn − X |d P

+
∫

[|Xn |<λ/2,|Xn−X |≥λ]
|Xn − X |d P

≤
∫

[|Xn |≥λ/2]
|Xn|d P +

∫

[|Xn−X |≥λ]
|X |d P

+
∫

[|Xn |<λ/2,|Xn−X |≥λ]
(
λ

2
+ |X |)d P. (1.24)
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Now, using (ii), given ε > 0, choose λ = λ(ε) > 0 so large that the first term of the
last sum is smaller than ε. With this value of λ = λ(ε) the second and third terms go
to zero as n → ∞ by Lebesgue’s dominated convergence theorem, using (i). Thus,

lim sup
n→∞

∫

[|Xn−X |≥λ(ε)]
|Xn − X |d P ≤ ε. (1.25)

But again applying the dominated convergence theorem one also has

lim sup
n→∞

∫

[|Xn−X |<λ(ε)]
|Xn − X |d P = 0. (1.26)

Thus, the conditions are also sufficient for L1 convergence to X . �

The next result follows as a corollary.

Theorem 1.11 (L p-Convergence Criterion)Let p ≥ 1. Let {Xn}∞n=1 be a sequence of
random variables on a probability space (Ω,F , P), Xn ∈ L p(n ≥ 1). Then {Xn}∞n=1
converges in L p to a random variable X if and only if (i) Xn → X in probability as
n → ∞, and (ii) {|Xn|p}∞n=1 is uniformly integrable.

Proof Apply the preceding result to the sequence {|Xn − X |p}∞n=1. The proof of
necessity is analogous to (1.21) and (1.22) using the following elementary inequali-
ties:

|a + b|p ≤ (|a| + |b|)p ≤ (2max{|a|, |b|})p ≤ 2p(|a|p + |b|p). (1.27)

For sufficiency, note as in (1.23) that (i), (ii) imply X ∈ L p, and then argue as in
(1.24) that the uniform integrability of {|Xn|p : n ≥ 1} implies that of {|Xn − X |p :
n ≥ 1}. �

Chebyshev-type inequalities often provide useful ways to check uniform integra-
bility of {|Xn|p}∞n=1 in the case that {E|Xn|m} can be shown to be a bounded sequence
for some m > p (see Exercise 28).

Exercise Set I

1. Let (Ω,F , P)be an arbitrary probability space and let A1, A2, . . . bemeasurable
events. Prove each of the following.

(i) (Finite Additivity). If A1, . . . , Am are disjoint then P(∪m
j=1 A j ) = ∑m

j=1
P(A j ).

(ii) (Monotonicity). If A1 ⊂ A2 then P(A1) ≤ P(A2).
(iii) (Inclusion–Exclusion). P(∪m

j=1 A j ) = ∑m
k=1(−1)k+1 ∑

1≤ j1<···< jk≤m P(A j1∩· · ·∩
A jk ).

(iv) (Subadditivity). P(∪ j A j ) ≤ ∑
j P(A j ).
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(v) Show that the property μ(An) ↑ μ(A) if An ↑ A, holds for all measures μ.
[Hint: A = ∪n Bn , B1 = A1, B2 = Ac

1∩ A2, . . . , Bn = Ac
1∩· · ·∩ Ac

n−1∩ An ,
so that An = ∪n

j=1B j .]
(vi) Show that the property: μ(An) ↓ μ(A) if An ↓ A holds for finite measures.

Show by counterexample that it does not, in general, hold for measures μ
that are not finite.

2. (a) Write out the corresponding lower bounds on the distribution function F in
Example 5. (b) Compute the Chebyshev bounds on the exponential distribution
F(x) = 1 − e−x , x ≥ 0, F(x) = 0, x ≤ 0.

3. (Bonferroni Inequalities)Show that for oddm ∈ {1, 2, . . . , n}, (a) P(∪n
j=1 A j ) ≤

∑m
k=1

∑
1≤ j1≤ j2≤···≤ jk≤n(−1)k+1P(A j1 ∩· · ·∩ A jk ), and for evenm ∈ {2, . . . , n},

(b) P(∪n
j=1 A j ) ≥ ∑m

k=1

∑
1≤ j1≤ j2≤···≤ jk≤n(−1)k+1P(A j1 ∩ · · · ∩ A jk ).

4. Let (Ω,F , P) be an arbitrary probability space and suppose A, B ∈ F are
independent events, i.e., P(A ∩ B) = P(A)P(B), with both P(A) ≥ 1

2 and
P(B) ≥ 1

2 . Show that P(A ∪ B) ≥ 1
4 .

5. Suppose that Xn, n ≥ 1, is a sequence of random variables that converge to
X in probability as n → ∞, “sufficiently fast” that for any ε > 0, one has∑∞

n=1 P(|Xn − X | > ε) < ∞. Show that Xn → X a.s. as n → ∞.
6. Suppose that Xn, n ≥ 1, is a sequence of random variables that converge to X in

probability as n → ∞, and g is a continuous function. Show that g(Xn), n ≥ 1,
converges in probability to g(X).

7. Suppse that Xn, n ≥ 1 and Yn, n ≥ 1, converge in probability to X and Y , and
Xn − Yn → 0 in probability as n → ∞, respectively. Show that X = Y a.s.

8. Suppose that Xn, n ≥ 1, is a sequence of real-valued random variables such that
|Xn| ≤ Y on Ω with EY < ∞. Show that if Xn → X in probability as n → ∞,
then EXn → EX as n → ∞. [Hint: Use Proposition 1.5 and the dominated
convergence theorem for almost surely convergent sequences.]

9. Show that the Borel σ-field ofR is generated by any one of the following classes
of sets: (i) C = {(a, b) : −∞ ≤ a ≤ b ≤ ∞}; (ii) C = {(a, b] : −∞ ≤ a ≤
b < ∞}; (iii) C = {(−∞, x] : x ∈ R}.

10. In each case below, show that ρ is a metric for the indicated topology.

(i) For S = R
∞, ρ(x, y) = ∑∞

k=1 2
−k |xk − yk |/(1 + |xk − yk |), for x =

(x1, x2, . . . ), y = (y1, y2, . . . ) ∈ R
∞ metrizes the topology of pointwise

convergence: x (n) → x if and only if x (n)
k → xk for each k, as n → ∞.

(ii) For S = C[0, 1], ρ( f, g) = max{| f (x) − g(x)| : x ∈ [0, 1]} metrizes the
topology of uniform convergence of continuous functions on [0, 1].

(iii) For S = C([0,∞) → R
k), ρ( f, g) = ∑∞

n=1 2
−n‖ f − g‖n/(1 + ‖ f −

g‖n), where ‖ f − g‖n := max{‖ f (x) − g(x)‖ : x ∈ [0, n]}, ‖ · ‖ denoting
the Euclidean norm on R

k , metrizes the topology of uniform convergence
on compacts.

11. Let X be a random map on (Ω,F , P) with values in a measurable space (S,S).
Show that G := {[X ∈ A] : A ∈ S} is the smallest sub-σ-field of F such that
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X : Ω → S is a random map on (Ω,G), i.e., such that [X ∈ A] ∈ G for all
A ∈ S.

12. Let Ω = {(1, 1), (2, 2), (1, 2), (2, 1)} equipped with the power set F . Define
a simple random variable by X (ω) = ω1 + ω2, ω = (ω1,ω2) ∈ Ω . Give an
explicit description of σ(X) as a subcollection of sets in F and give an example
of a set in F that is not in σ(X).

13. (i) Let (Ω,F , P) be a probability space and let P = {A1, A2, . . . , Am}, ∅ =
A j ∈ F , 1 ≤ j ≤ m, be a disjoint partition of Ω . Let (S,S) be an arbitrary
measurable space such that S contains all of the singleton sets {x} for x ∈ S.
Show that a random map X : Ω → S is σ(P)-measurable if and only if X is
a σ(P)-measurable simple function; i.e., simple in the sense of finitely many
values. Give a counterexample in the case that S does not contain singletons.
(ii) Let A1, . . . , Ak be nonempty subsets of Ω . Describe the smallest σ-field
containing {A1, . . . , Ak} and show that its cardinality is at most 2k+1.

14. Give a proof of the change of variables formula. [Hint: (Method of simple func-
tion approximation) Begin with h an indicator function, then h a simple function,
then h ≥ 0, and finally write h = h+ − h−.]

15. Show that if L is a π-system and a λ-system, then it is a σ-field. In the proof of
Dynkin’s π-λ theorem, show that if A ∈ L(C), then LA is a λ-system.

16. Let X1, X2 be real-valued random variables on (Ω,F , P). Suppose that Fi (x) =
P(Xi ≤ x), x ∈ R(i = 1, 2) are two distribution functions on (R,B) and
F1 = F2. Show that X1 and X2 have the same distribution. Extend this to
random vectors X1, X2 with values in Rk .

17. Suppose that X1 and X2 are two bounded real-valued random variables on
(Ω,F , P) such that EXm

1 = EXm
2 , m = 1, 2, . . . . Show that X1 and X2 must

have the same distribution. [Hint: According to the Weierstrass approximation
theorem, a continuous function on a closed and bounded interval may be approx-
imated by polynomials uniformly over the interval (see Appendix B).]

18. Let S be a metric space. (a) Then any family F ⊂ B(S) with the following two
properties is measure-determining: (i) F is closed under finite intersections, (ii)
every open set in S is the union of a finite or a countable number of sets in F .
[Hint: Let P, Q be two probability measures which agree on F . If an open set
G is a finite union of sets in F , then using the inclusion–exclusion formula,
P(G) = Q(G). If G = ∪i≥1Gi (Gi ∈ F, i ≥ 1), then given any ε > 0, there
exists k such that P(∪1≤i≤k Gi ) ≥ P(G) − ε, which implies Q(G) ≥ P(G);
similarly, P(G) ≥ Q(G)]. (b) Prove that the distribution function of a real-
valued random variable determines its distribution. [Hint: Apply (a) to the class
of intervals (a, b],−∞ < a < b < ∞.] (c) Prove that the distribution function
of a random vector X determines its distribution. [Hint: Let F(x) = P(Xi ≤
xi , 1 ≤ i ≤ k), x = (x1, . . . , xk). Let ai < bi , 1 ≤ i ≤ k. Then, by induction
one may see that P(X ∈ (a,b]) = ∑

(−1)k− j F(c1, . . . , ck), where the sum is
over all ci ∈ {ai , bi }, and j = #{i : ci = bi }.]

19. (Finite-dimensional distributions are measure-determining on R
∞) The space

R
∞ of all sequences x = (x1, x2, . . . ) of real numbers is a metric space with the

topology of pointwise convergence metrized by ρ(x, y) = ∑
n≥1

|xn−yn |
1+|xn−yn |2

−n .
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Prove the following. (a)R∞ is separable. (b) The classF of all finite-dimensional
open sets in R

∞ is measure-determining, so that finite-dimensional Borel sets
form a measure-determining class [Hint: Apply Exercise 18].

20. Let (S, d) be a separable metric space, and S∞ the space of sequences x =
(x1, x2, ...) with x j ∈ S for all j ≥ 1. On S∞ define the metric ρ(x, y) =
∑

n≥1
d(xn ,yn)

1+d(xn ,yn)
2−n . Prove that S∞ is separable and the finite-dimensional dis-

tributions are measure-determining on S∞.
21. (Finite-dimensional distributions are measure-determining on C((0, T ) : Rk))

Let S = C([0, T ] : Rk) be the class of Rk-valued continuous functions on the
interval [0, T ], with the topology of uniform convergence, metrized by ρ( f, g) =
|| f − g||T ≡ sup{| f (s) − g(s)| : 0 ≤ s ≤ T }. Note that, by Corollary 1.5 in
AppendixB,C([0, T ] : R) is a separablemetric space, and it is complete because
R is complete. (a) Give a direct proof of the separability ofC([0, T ] : Rk). [Hint:
For each m = 2, 3, . . . , choose m + 1 equidistant points in [0, T ] with the first
point 0 and the last point T . At each of these points assign a point from R

k

with rational coordinates, and define a (continuous) function on [0, T ] by linear
interpolation. The family of such functions forms a countable dense subset of
C([0, T ] : R

k).] (b) For each m and points 0 = t0 < t1 < · · · < tm = T ,
consider the projection π = π(t0, t1, . . . , tm) of f = { f (t) : 0 ≤ t ≤ T } in
C([0, T ] : Rk) onto the vector ( f (t0), f (t1), . . . , f (tm)). For a probability P
on C([0, T ] : Rk), P ◦ π−1 is a probability measure on (Rk)m+1, called a finite-
dimensional distribution of P . Prove that the collection of all finite-dimensional
distributions is measure- determining.

22. Let S = C([0,∞) : R
k) be the class of Rk-valued continuous functions on

[0,∞) with the topology of uniform convergence on compact subsets of [0,∞)

metrized by ρ( f, g) = ∑
N≥1 2

−N || f −g||N

1+|| f −g||N
. Prove the following. (a) S is sep-

arable and complete. (b) Finite-dimensional distributions of S are measure-
determining.

23. Let X be a nonnegative random variable which is not degenerate at 0. (a) Prove
that r → ln μr is convex on [0, s], where μr = EXr < ∞ for r ≤ s. [Hint: Let
0 < α < 1 and 0 ≤ r1, r2 ≤ s. Then μαr1+(1−α)r2 = EY Z , where Y = Xαr1 ,
and Z = X (1−α)r2 . Apply Hölder’s inequality with p = 1

α
.] (b) Prove that

μr

μr−1
≤ μr+1

μr
, for 0 ≤ r ≤ s − 1 if μr < ∞ for 0 ≤ r ≤ s. [Hint: Use

ln μr ≤ 1
2 ln μr−1 + 1

2 ln μr+1.]
24. (i) Show that for a convex function ϕ on an open interval J , ϕ− is finite and

nondecreasing, and the “line of support” property holds with m = ϕ−(x0), as
well as with any m ∈ [ϕ−(x0),ϕ+(x0)]. (ii) Show that while a convex ϕ is
continuous on an open interval, it need not be so on an interval with left-hand
and/or right-hand endpoints. (iii) Show that ifϕ has a continuous, nondecreasing
derivative ϕ′ on J , then ϕ is convex. In particular, if ϕ is twice differentiable
and ϕ′′ ≥ 0 on J , then ϕ is convex. [Hint: Use the mean value theorem from
calculus.]

25. Assume that Xn, n ≥ 1, and X are real-valued random variables with absolutely
continuous distribution functions having densities gn, n ≥ 1, g, with respect
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to Lebesgue measure. Show that if gn → g pointwise a.e., then the distribution
functions Fn(x) = P(Xn ≤ x), x ∈ R, converge uniformly on R to F(x) =
P(X ≤ x), x ∈ R.

26. Suppose that X = 0, and Xn = 1/n with probability one for n = 1, 2, . . . .
Let Fn(x) = P(Xn ≤ x), F(x) = P(X ≤ x), x ∈ R, n ≥ 1. Show that
Fn(x) → F(x) as n → ∞ for each x = 0. Is the convergence uniform?

27. Suppose that Xn has a Binomial distribution with parameters n, pn = 1
n , n =

1, 2, . . . , i.e., P(Xn = k) = gn(k) = (n
k

)
pk

n(1− pn)
n−k, k = 0, 1, . . . n. Suppose

that X has a Poisson distribution with parameter λ = 1, i.e., P(X = k) =
g(k) = 1

k!e
−1, k = 0, 1, 2, . . . . Show that the distribution functions Fn(x) =

P(Xn ≤ x), x ∈ R converge uniformly to the distribution function F(x) =
P(X ≤ x), x ∈ R. [Hint: The distributions of Xn , X have respective densities
gn , g with respect to counting measure μ(dx) = ∑∞

k=0 δ{k}(dx) concentrated on
Z

+ ⊂ S = R, S = B.]
28. Let p ≥ 1, Xn ∈ Lm(Ω,F , P) for somem > p. Suppose there is an M such that

E|Xn|m ≤ M,∀n ≥ 1. Show that {|Xn|p}∞n=1 is uniformly integrable. [Hint: Use
Holder inequality with ||·|| m

p
and its conjugate, followed by Chebyshev. Alterna-

tively, use a Chebyshev-type inequality after inserting a factor (|Xn|/λ)m−p > 1
on [|Xn| > λ].]

29. Suppose that X1, X2, . . . is a sequence of identically distributed random vari-
ables defined on a probability space (Ω,F , P). Show that if Ee|X1| < ∞, then
a.s. lim supn→∞

|Xn |
ln n ≤ 1.

30. Let X be a nonnegative random variable. (i) Show that n P(X > n) → 0 as n →
∞ if EX < ∞. [Hint: n P(X > n) ≤ EX1[X>n].] (ii) Prove that

∑∞
n=1 P(X >

n) ≤ EX ≤ ∑∞
n=0 P(X > n). [Hint:

∑∞
n=1(n − 1)P(n − 1 < X ≤ n) ≤ EX

≤ ∑∞
n=1 n P(n − 1 < X ≤ n). Write P(n − 1 < X ≤ n) = P(X > n − 1) −

P(X > n), n = ∑n
k=1 1, and reverse the order of summation.]

31. Let Un = (Un,1, . . . , Un,n), be uniformly distributed over the n-dimensional
cube Cn = [0, 2]n for each n = 1, 2, . . . . That is, the distribution of Un is
2−n1Cn (x)mn(dx), where mn is n-dimensional Lebesgue measure. Define Xn =
Un,1 · · · Un,n, n ≥ 1. Show that (a) Xn → 0 in probability as n → ∞, [Hint:
Compute EXt

n as an iterated integral for strategic choices of t > 0], and (b)
{Xn : n ≥ 1} is not uniformly integrable;

32. Suppose U is uniformly distributed on the unit interval [0, 1]. That is, the dis-
tribution of U is Lebesgue measure on [0, 1]. Define Xn = n1[0, 1n ](U ), n ≥ 1.
Show that Xn → 0 in probability as n → ∞, but EXn = 1 for all n. Show from
definition that {X1, X2, . . . } is not uniformly integrable.

33. Let (S,S) be a measurable space. (i) Show that if f is a real-valued bounded
measurable function, | f (x)| ≤ c for all x , then the standard simple function
approximations (1.5) to f + and f − provide a sequence of simple functions fn

converging to f uniformly on S, and satisfying | fn(x)| ≤ c for all x and for all
n. (ii) Show that dv defines a metric on P(S) i.e., is a well-defined nonnega-
tive symmetric function on P(S) × P(S) satisfying the triangle inequality with
dv(μ, ν) = 0 if and only if μ = ν. Also show for a Cauchy sequence {μn}∞n=1 in
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P(S) that the set function defined by μ(A) := limn μn(A) ∈ [0, 1], A ∈ S is a
probabilitymeasure. [Hint: The convergence of the real numbersμn(A) → μ(A)

is uniform for A ∈ S.]
34. Let { fn : n ≥ 1} be a Cauchy sequence in measure: μ(| fn − fm | > ε) → 0 as

n, m → ∞. Prove that there exists a measurable function f such that fn → f
in measure. [Hint: Find a sequence n1 < n2 < · · · such that μ(| fnk − fnk+1 | >

2−k) < 2−k, k = 1, 2, . . . . Let B = [| fnk − fnk+1 | > 2−k i.o.], and show
that μ(B) = 0. On Bc, { fnk }∞k=1 is a Cauchy sequence, converging to some
function f . Also for every ε > 0, μ(| fn − f | > ε) ≤ μ(| fn − fnk | > ε/2) +
μ(| fnk − f | > ε/2). The first term on the right of this inequality is o(1) as
k → ∞, n → ∞. Also, outside Bk := ∪∞

m=k[| fnm − fnm+1 | > 2−m], one has
| fnk − f | ≤ ∑∞

m=k 2
−m = 2−(k−1). By choosing k0 such that 2−(k0−1) < ε/2,

one gets μ(| fnk − f | > ε/2) ≤ μ(Bk0) ≤ ε/2 for all k ≥ k0.]
35. Show that for every p ≥ 1, L p(S,S,μ) is a complete metric space.
36. (Integration of Complex-Valued Functions) A Borel measurable function f =

g + ih on a measure space (S,S,μ) into C, set, (i.e., g, h are real-valued Borel-
measurable), is said to be integrable if its real and imaginary parts g and h are both
integrable. Since 2− 1

2 (|g| + |h|) ≤ | f | ≡ √
g2 + h2 ≤ |g| + |h|, f is integrable

if and only if | f | is integrable. The following extend a number of standard results
for measurable real-valued functions to measurable complex-valued functions.

(a) Extend Lebesgue’s dominated convergence theorem (Appendix A) to
complex-valued functions.

(b) Extend the inequalities of Lyapounov, Hölder, Minkowski, and Markov–
Chebyshev (Theorem 1.7(b), (c), (e), (f)) to complex-valued functions.

(c) For p ≥ 1, let the L p-space of complex-valued functions be defined by
equivalence classes of complex-valued functions f induced by equality a.e.
such that | f |p is integrable. Show that this L p-space is a Banach space over

the field of complex numbers with norm ‖ f ‖p = (
∫

S | f |pdμ)
1
p .

(d) Show that the L2-space of complex-valued square-integrable functions is a
Hilbert space with inner product 〈 f1, f2〉 = ∫

S f1 f 2 dμ, where f 2 is the
complex conjugate of f2.

(e) Show that for the special case of real-valued functions, the L p-norm defined
above reduces to that introduced in the text.



Chapter II
Independence, Conditional Expectation

The notions of statistical independence, conditional expectation, and conditional
probability are the cornerstones of probability theory. Since probabilities may be
expressed as expected values (integrals) of random variables, i.e., P(A) = E1A, A ∈
F , much can be gained by beginning with a formulation of independence of random
maps, and conditional expectations of random variables.

Consider a finite set of random variables (maps) X1, X2, . . . , Xn , where each Xi

is a measurable map on (Ω,F , P) into (Si ,Si ) (1 ≤ i ≤ k). The product σ-field,
denoted by S1 ⊗ · · · ⊗ Sn is defined as the σ-field generated by the collection R
of measurable rectangles of the form R = {x ∈ S1 × · · · × Sn : (x1, . . . , xn) ∈
B1 × · · · × Bn}, for Bi ∈ Si , 1 ≤ i ≤ n. Alternatively, the product σ-field may be
viewed, equivalently, as the smallest σ-field of subsets of S1 ×· · ·× Sn which makes
each of the coordinate projections, say πk(x) = xk, x ∈ S1×· · ·× Sn , a measurable
map. In particular, if one gives S1 × · · · × Sn the product σ-field S1 ⊗ · · · ⊗Sn , then
the vector X := (X1, . . . , Xn) : Ω → S1 × · · · × Sn is a measurable map. This
makes S1 ⊗ · · · ⊗ Sn a natural choice for a σ-field on S1 × · · · × Sn .

The essential idea of the definition of independence of X1, . . . , Xn below is
embodied in the extension of the formula

P(∩n
j=1[X j ∈ A j ]) =

n∏

j=1

P(X j ∈ A j ), A j ∈ S j , 1 ≤ j ≤ n,

or equivalently

P((X1, . . . , Xn) ∈ A1 × · · · × An) = P(X1 ∈ A1) · · · P(Xn ∈ An),

for A j ∈ S j , 1 ≤ j ≤ n, to the full distribution of (X1, . . . , Xn). This is readily
obtained via the notion of product measure (see Appendix A).
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Definition 2.1 Finitely many random variables (maps) X1, X2, . . . , Xn , with Xi a
measurable map on (Ω,F , P) into (Sj ,S j ) (1 ≤ j ≤ k), are said to be independent
if the distribution Q of (X1, X2, . . . , Xn) on the product space (S = S1×S2×· · ·×Sn ,
S = S1 ⊗ S2 ⊗ · · · ⊗ Sn) is a product measure Q1 × Q2 × · · · × Qn , where Q j

is a probability measure on (Sj ,S j ), 1 ≤ i ≤ n. Events A j ∈ S j , 1 ≤ j ≤ n
are said to be independent events if the corresponding indicator random variables
1A j , 1 ≤ j ≤ n, are independent.

Notice that if X1, . . . , Xn are independent then

P(Xi ∈ Bi ) = P((X1, . . . , Xn) ∈ S1 × · · · × Bi × · · · × Sn)

= Q1(S1) · · · Qi (Bi ) · · · Qn(Sn)

= Qi (Bi ), Bi ∈ Si , 1 ≤ i ≤ n.

Moreover since, by the π−λ theorem, product measure is uniquely determined by its
values on the π-systemR of measurable rectangles, X1, X2, . . . , Xn are independent
if and only if Q(B1 × B2 × · · · × Bn) = ∏n

i=1 Qi (Bi ), ∀Bi ∈ Si , 1 ≤ i ≤ n, or
equivalently

P(Xi ∈ Bi , 1 ≤ i ≤ n) =
n∏

i=1

P(Xi ∈ Bi ), Bi ∈ Si , 1 ≤ i ≤ n. (2.1)

Observe that any subcollection of finitely many independent random variables
will be independent. In particular, pairs of random variables will be independent.
The converse is not true (Exercise 15).

The following important application of Fubini–Tonelli readily extends to any
finite sum of independent random variables, Exercise 2. Also see Exercise 8 for
applications to sums of independent exponentially distributed random variables and
Gaussian random variables.

Theorem 2.1 Suppose X1,X2 are independent k-dimensional random vectors hav-
ing distributions Q1, Q2, respectively. The distribution of X1 + X2 is given by the
convolution of Q1 and Q2:

Q1 ∗ Q2(B) =
∫

Rk

Q1(B − y)Q2(dy), B ∈ Bk,

where B − y := {x − y : x ∈ B}.
Proof Since sums of measurable functions are measurable, S = X1+X2 is a random
vector, and for B ∈ Bk

PS(B) = P(S ∈ B) = P((X1,X2) ∈ C) = PX1 × PX2(C),

where C = {(x, y) : x + y ∈ B}. Now simply observe that Cy = B − y and apply
Fubini–Tonelli to PX1 × PX2(C). �



II Independence, Conditional Expectation 27

Corollary 2.2 Suppose X1,X2 are independent k-dimensional random vectors hav-
ing distributions Q1, Q2, respectively. Assume that at least one of Q1 or Q2 is
absolutely continuous with respect to k-dimensional Lebesgue measure with pdf g.
Then the distribution of S = X1 + X2 is absolutely continuous with density

fS(s) =
∫

Rk

g(s − y)Q2(dy).

Proof Without loss of generality, assume Q1 has pdf g. Then, using Theorem 2.1,
change of variable, and Fubini-Tonelli, one has for any Borel set B

P(S ∈ B) =
∫

Rk

Q1(B − y)Q2(dy) =
∫

Rk

∫

B−y
g(z)dzQ2(dy)

=
∫

B

{
∫

Rk

g(s − y)Q2(dy)
}
ds. (2.2)

This establishes the assertion. �

From the Corollary 2.2, one sees that if both Q1 and Q2 have pdf’s g1, g2, say,
then the pdf of Q1 ∗ Q2 may be expressed as a convolution of densities g1 ∗ g2 as
given by

fS(s) =
∫

Rk

g1(s − y)g2(y)dy. (2.3)

As given in Appendix A, the notion of product measure μ1 × · · · × μn can be estab-
lished for a finite number of σ-finite measure spaces (S1,S1,μ1), . . . , (Sn,Sn,μn).

The σ-finiteness is essential for such important properties as associativity of the
product, i.e., (μ1 × μ2) × μ3 = μ1 × (μ2 × μ3), the Fubini-Tonelli theorem, and
other such useful properties. In practice, to determine integrability of a measurable
function f : S1 × · · · × Sn → R, one typically applies the Tonelli part (a) of the
Fubini-Tonelli theorem (requiring nonnegativity) to | f | in order to determinewhether
the Fubini part (b) is applicable to f ; cf. Appendix A.

The following result is an often used consequence of independence.

Theorem 2.3 If X1, . . . , Xn are independent random variables on (Ω,F , P) such
that E|X j | < ∞, 1 ≤ j ≤ n, then E|X1 · · · Xn| < ∞ and

E(X1 · · · Xn) = E(X1) · · ·E(Xn).

Proof Let Q j = P ◦ X−1
j , j ≥ 1. Since by independence, (X1, . . . , Xn) has product

measure as joint distribution, one may apply a change of variables and the Tonelli
part to obtain
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E|X1 · · · Xn| =
∫

Ω

|X1 · · · Xn|dP

=
∫

Rn

|x1 · · · xn|Q1 × · · · × Qn(dx1 × · · · × dxn)

=
n∏

j=1

∫

R

|x j |Q j (dx j ) =
n∏

j=1

E|X j | < ∞.

With the integrability established one may apply the Fubini part to do the same thing
for E(X1 · · · Xn) and the product measure distribution P ◦ X−1

1 × · · · × P ◦ X−1
n of

(X1, . . . , Xn). �

The role of independence inmodeling occurs either as an assumption about various
random variables defining a particular model or, alternatively, as a property that one
may check within a specific model.

Example 1 (Finitely Many Repeated Coin Tosses) As a model of n-repeated tosses
of a fair coin, one might assume that the successive binary outcomes are represented
by a sequence of independent of 0− 1 valued random variables X1, X2, . . . Xn such
that P(X j = 0) = P(X j = 1) = 1/2, j = 1, . . . , n, defined on a probability
space (Ω,F , P). Alternatively, as described in Example 1 in Chapter I, one may
define a probability space Ω = {0, 1}n , with sigma-field F = 2Ω , and probability
P({ω}) = 2−n , for all ω ∈ Ω . Within the framework of this model one may then
check that the Bernoulli variables X j (ω) = ω j ,ω = (ω1, . . . ,ωn) ∈ Ω, 1 ≤ j ≤ n,
define a sequence of independent random variables with P(X j = 0) = P(X j =
1) = 1/2, 1 ≤ j ≤ n. For a parameter p ∈ [0, 1], the model of n independent
repeated tosses of a (possibly biased) coin is naturally defined as a sequence of
independent Bernoulli 0 − 1 valued random variables X1, . . . , Xn with P(X j =
1) = p = 1 − P(X j = 0), 1 ≤ j ≤ n.

Example 2 (Percolation on Binary Trees) The set Tn = ∪n
j=0{1, 2}n may be viewed

as a rooted binary tree graph in which, for 1 ≤ j ≤ n, v = (v1, . . . , v j ) ∈ Tn is a
vertex of length |v| = j , with the added convention that {1, 2}0 = {θ} and v = θ has
length |θ| = 0. The special vertex θ is also designated the root. The parent vertex of

v = (v1, . . . , v j ), j ≥ 2, is defined by ←−v = (v1, . . . , v j−1), with θ = ←−
(1) = ←−

(2).
A pair of vertices v,w are connected by an edge if either ←−v = w or ←−w = v. The
infinite tree graph is defined by T = ∪∞

n=0Tn = ∪∞
j=0{1, 2} j , with the corresponding

definitions of vertices and edges. For v = (v1, v2, . . . , vn) ∈ ∂Tn := {1, 2}n , or
v = (v1, v2, . . . ) ∈ ∂T := {1, 2}∞, denote the restriction to the first j generations
by v| j = (v1, . . . , v j ), with v|0 = θ. Then θ = v|0, v|1, v|2, . . . may be viewed as
a path of nearest neighboring vertices to the root. Now, let {Xv : v ∈ T } be a family
of independent and identically distributed (i.i.d.) Bernoulli 0 − 1-valued random
variables with p = P(Xv = 1). Define Xθ ≡ 1 with probability one. A path v ∈ ∂T
is said to be open if Xv| j = 1∀ j = 0, 1, 2 . . . . The tree graph is said to percolate if
there is at least one open nearest neighbor path from θ to ∂T . Let B denote the event
that the graph percolates. The problem is to find p such that P(B) > 0. Let Nn be
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the number of open nearest neighbor paths from the root to ∂Tn , and N the number
of open nearest neighbor paths to ∂T . Then

B = [N > 0] = ∩∞
n=1[Nn > 0], [Nn+1 > 0] ⊂ [Nn > 0], n = 1, 2 . . . .

So it suffices to investigate p for which there is a positive lower bound on
limn→∞ P(Nn > 0). First observe that ENn = E

∑
|v|=n

∏n
j=0 Xv| j = (2p)n. Since

P(Nn > 0) ≤ ENn , it follows that P(N = 0) = 1 for p < 1
2 , i.e., P(B) = 0

and the graph does not percolate. For larger p we use the second moment bound
(ENn)

2 ≤ P(Nn > 0)EN 2
n by Cauchy-Schwarz. In particular,

EN 2
n =

∑

|u|=n,|v|=n

E

n∏

j=1

Xu| j Xv| j

=
n∑

k=1

∑

|w|=k,|u|=n−k,|v|=n−k,u1 �=v1

k∏

i=1

EX2
w|i

n∏

j=k+1

EXw∗u| jEXw∗v| j , (2.4)

where w ∗ v = (w1, . . . , wk, v1, . . . , vn−k) denotes concatenation of the paths. It
follows for 2p > 1 that EN 2

n ≤ 1
2p−1 (2p)

2n . In particular, from the second moment

bound one finds that P(B) ≥ infn(ENn)
2/ENn

2 ≥ 2p − 1 ≥ 0 f or p > 1
2 . The

parameter value pc = 1
2 is thus the critical probability for percolation on the tree

graph.1 It should be clear that the methods used for the binary tree carry over to the
b-ary tree for b = 3, 4, . . . by precisely the same method, Exercise 13.

Two random variables X1, X2 in L2 = L2(Ω,F , P) are said to be uncorrelated
if their covariance Cov(X1, X2) is zero, where

Cov(X1, X2) := E [(X1 − E(X1))(X2 − E(X2))] = E(X1X2) − E(X1)E(X2).

(2.5)
The varianceVar(Y ) of a random variable Y ∈ L2 is defined by the average squared
deviation of Y from its mean EY . That is,

Var(Y ) = cov(Y,Y ) = E(Y − EY )2 = EY 2 − (EY )2.

The covariance term naturally appears in consideration of the variance of sums of
random variables X j ∈ L2(Ω,F , P), 1 ≤ j ≤ n, i.e.,

1Criteria for percolation on the d-dimensional integer lattice is a much deeper and technically
challenging problem. In the case d = 2 the precise identification of the critical probability for
(bond) percolation as pc = 1

2 is a highly regarded mathematical achievement of Harry Kesten, see
Kesten, H. (1982). For d ≥ 3 the best known results for pc are expressed in terms of bounds.
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Var

⎛

⎝
n∑

j=1

X j

⎞

⎠ =
n∑

j=1

Var(X j ) + 2
∑

1≤i< j≤n

Cov(Xi , X j ).

Note that if X1 and X2 are independent, then it follows from Theorem 2.3 that they
are uncorrelated; but the converse is easily shown to be false. For the record one has
the following important corollary to Theorem 2.3.

Corollary 2.4 If X1, . . . , Xn are independent random variables with finite second
moment, then

Var(X1 + · · · + Xn) = Var(X1) + · · · + Var(Xn).

Example 3 (Chebyshev Sample Size) Suppose that X1, . . . , Xn is a sequence of
independent and identically distributed (i.i.d.) Bernoulli 0 − 1 valued random vari-
ables with P(X j = 1) = p, 1 ≤ j ≤ n. As often happens in random polls, for
example, the parameter p is unknown and one seeks an estimate based on the sample
proportion p̂n := X1+···+Xn

n . Observe that n p̂n has the Binomial distribution with
parameters n, p obtained by

P(n p̂n = k) =
∑

(ε1,...,εn)∈{0,1}n :∑n
j=1 ε j=k

P(X1 = ε1, . . . , Xn = εn)

=
(
n

k

)

pk(1 − p)k, (2.6)

for k = 0, 1, . . . , n. In a typical polling application one seeks a sample size n such
that

P(| p̂n − p| > .03) ≤ .05.

Since E| p̂n − p|2 = var( p̂n) = np(1− p)/n2 ≤ 1/4n, the second moment Cheby-
shev bound yields n = 5, 556. This is obviously much larger than that used in a
standard poll ! To improve on this one may consider a fourth moment Chebyshev
bound. Rather tedious calculation yields (Exercise 3)

E| p̂n − p|4 = n(p(1 − p)4 + p4(1 − p) + 3(n − 1)p2(1 − p)2)/n4

≤ (3n − 2)

16n3
≤ 3

16n2
.

Thus the fourth moment Chebyshev bound yields a reduction to see that n = 2,154 is
a sufficient sample size. This example will be used in subsequent chapters to explore
various other inequalities involving deviations from the mean.

Definition 2.2 Let {Xt : t ∈ Λ} be a possibly infinite family of random maps
on (Ω,F , P), with Xt a measurable map into (St ,St ), t ∈ Λ. We will say that
{Xt : t ∈ Λ} is a family of independent maps if every finite subfamily is a family
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of independent maps. That is, for all n ≥ 1 and for every n-tuple (t1, t2, . . . , tn)
of distinct points in Λ, the maps Xt1 , Xt2 , . . . , Xtn are independent (in the sense of
(2.1)).

Definition 2.3 A sequence of independent random maps X1, X2, . . . is said to be
independent and identically distributed, denoted i.i.d., if the distribution of Xn

does not depend on n, i.e., is the same for each n = 1, 2, . . . .

Remark 2.1 The general problem of establishing the existence of infinite families
{Xt : t ∈ Λ} of randommaps, including that of infinite sequences, defined on a com-
mon probability space (Ω,F , P) and having consistently specified distributions of
finitely many variables (Xt1 , . . . , Xtn ), say, for t j ∈ Λ, j = 1, . . . , n, is treated in
Chapter VIII under the guise of Kolmogorov’s extension theorem. This is a non-
trivial problem of constructing probability measures with prescribed properties on an
infinite product space, also elaborated upon at the close of this chapter. Kolmogorov
provided a frequently useful solution, especially for countable Λ.

Let us consider the notions of uncorrelated and independent random variables a
bit more fully. Before stating the main result in this regard the following proposition
provides a very useful perspective on the meaning of measurabililty with respect to
a σ-field generated by random variables.

Proposition 2.5 Let Z ,Y1, . . . ,Yk be real-valued random variables on a measurable
space (Ω,F). A random variable Z : Ω → R is σ(Y1, . . . ,Yk)-measurable iff there
is a Borel measurable function g : Rk → R such that Z = g(Y1, . . . , Yk).

Proof If Z = g(Y1, . . . ,Yk), then σ(Y1, . . . ,Yk)-measurability is clear, since for
B ∈ B(R), [Z ∈ B] = [(Y1, . . . ,Yk) ∈ g−1(B)] and g−1(B) ∈ B(Rk) for Borel
measurable g.

For the converse, suppose that Z is a simple σ(Y1, . . . ,Yk)-measurable random
variable with distinct values z1, . . . , zm . Then [Z = z j ] ∈ σ(Y1, . . . , Yk) implies
that there is a Bj ∈ B(Rk) such that [Z = z j ] = [(Y1, . . . ,Yk) ∈ Bj ], since
the class of all sets of the form [(Y1, . . . ,Yk) ∈ B], B ∈ B(Rk), is σ(Y1, . . . ,Yk).
Z = ∑k

j=1 f j (Y1, . . . ,Yk), where f j (y1, . . . , yk) = z j1Bj (y1, . . . , yk), so that Z =
g(Y1, . . . ,Yk) with g = ∑k

j=1 f j . More generally, one may use approximation by
simple functions to write Z(ω) = limn→∞ Zn(ω), for each ω ∈ Ω , where Zn is
a σ(Y1, . . . ,Yk)-measurable simple function, Zn(ω) = gn(Y1(ω), . . . ,Yk(ω)), n ≥
1,ω ∈ Ω . Let B̃ = {

(y1, . . . , yk) ∈ R
k : limn→∞ gn(y1, . . . , yk) exists

}
. Then B̃ ∈

B(Rk) (Exercise 38). Denoting this limit by g on B̃ and letting g = 0on (B̃)c, one
has Z(ω) = g(Y1(ω), . . . ,Yk(ω)). �

Corollary 2.6 Suppose that X1, X2 are two independent random maps with values
in (S1,S1), (S2,S2), respectively. Then for Borel measurable functions gi : Si →
R, i = 1, 2, the random variables Z1 = g1(X1) and Z2 = g2(X2) are independent.

Proof For Borel sets B1, B2 one has g−1
i (Bi ) ∈ Si , i = 1, 2, and

http://dx.doi.org/10.1007/978-3-319-47974-3_8
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P(Z1 ∈ B1, Z2 ∈ B2) = P(X1 ∈ g−1
1 (B1), X2 ∈ g−1

2 (B2))

= P(X1 ∈ g−1
1 (B1))P(X2 ∈ g−1

2 (B2)). (2.7)

Thus (2.1) follows. �

Now let us return to the formulation of independence in terms of correlations.
Although zero correlation is a weaker notion than statistical independence, if a
sufficiently large class of functions of disjoint finite sets of random variables are
uncorrelated then independence will follow. More specifically

Proposition 2.7 A family of random maps {Xt : t ∈ Λ} (with Xt a measurable map
into (St ,St )) is an independent family if and only if for every pair of disjoint finite
subsets Λ1,Λ2 of Λ, any random variable V1 ∈ L2(σ{Xt : t ∈ Λ1}) is uncorrelated
with any random variable V2 ∈ L2(σ{Xt : t ∈ Λ2})
Proof Observe that the content of the uncorrelation condition may be expressed
multiplicatively as

EV1V2 = EV1EV2, Vi ∈ L2(σ{Xt : t ∈ Λi }), i = 1, 2.

Suppose the uncorrelation condition holds as stated. Let {t1, . . . , tn} ⊂ Λ be an
arbitrary finite subset. To establish (2.1) proceed inductively by first selecting Λ1 =
{t1},Λ2 = {t2, . . . , tn}, with V1 = 1B1(Xt1), V2 = ∏n

j=2 1Bj (Xt j ), for arbitrary
Bj ∈ St j , 1 ≤ j ≤ n. Then

P(Xt j ∈ Bj , 1 ≤ j ≤ n) = EV1V2 = EV1EV2

= P(Xt1 ∈ B1)P(Xt j ∈ Bj , 2 ≤ j ≤ n).

(2.8)

Iterating this process establishes (2.1). For the converse one may simply apply
Proposition 2.5 and its Corollary to see V1, V2 are independent and therefore
uncorrelated. �

Definition 2.4 A collection C of events A ∈ F is defined to be a set of independent
events if the set of indicator random variables {1A : A ∈ C} is an independent
collection.

The notion of independence of events may also be equivalently defined in terms
of sub-σ-fields of F .

Definition 2.5 Given (Ω,F , P), a family {Ft : t ∈ Λ} of σ-fields (contained
in F) is a family of independent σ-fields if for every n-tuple of distinct indices
(t1, t2, . . . , tn) in Λ one has P(Ft1 ∩ Ft2 ∩ · · · ∩ Ftn ) = P(Ft1)P(Ft2) · · · P(Ftn ) for
all Fti ∈ Fti (1 ≤ i ≤ n); here n is an arbitrary finite integer, n ≤ cardinality of Λ.

It is straightforward to check that the independence of a family {Xt : t ∈ Λ} of
random maps is equivalent to the independence of the family {σ(Xt) : t ∈ Λ} of
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σ-fields σ(Xt ) ≡ {[Xt ∈ B] : B ∈ St } generated by Xt (t ∈ Λ), where (St ,St ) is
the image space of Xt . One may also check that σ(Xt ) is the smallest sub-σ-field of
measurable subsets of Ω that makes Xt : Ω → S measurable. More generally

Definition 2.6 Suppose {Xt : t ∈ Λ} is a collection of random maps defined on
(Ω,F). The smallest sub-σ-field of F such that every Xt , t ∈ Λ, is measurable,
denoted σ(Xt : t ∈ Λ), is referred to as the σ-field generated by {Xt : t ∈ Λ}.
Proposition 2.8 Let X1, X2, . . . be a sequence of independent random maps with
values in measurable spaces (S1,S1), (S2,S2), . . . , respectively, and let n1 <

n2 < · · · be a nondecreasing sequence of positive integers. Suppose that Y1 =
f1(X1, . . . , Xn1),Y2 = f2(Xn1+1, . . . , Xn2), . . . , where f1, f2, . . . are Borel
-measurable functions on the respective product measure spaces S1×· · ·×Sn1 , Sn1+1

× · · · × Sn2 , . . . . Then Y1,Y2, . . . is a sequence of independent random variables.

Proof It suffices to check that the distribution of an arbitrary finite subset of random
variables (Yn1 , . . . Ynm ), 1 ≤ n1 < n2 < · · · < nm , is product measure. But this
follows readily from the distribution of (X1, . . . , Xnm ) being product measure, by
observing for any k ≥ 2,

P(Y1 ∈ B1, . . . ,Yk ∈ Bk)

= P((X1, . . . , Xnk ) ∈ f −1
1 (B1), . . . , (Xnk−1+1, . . . , Xnk ) ∈ f −1

k (Bk))

=
k∏

j=1

P(Xn j−1+1, . . . , Xn j ) ∈ f −1
j (Bj )).

Taking k = nm and Bi = Si for n j−1 < i < n j , the assertion follows. �

The σ-field formulation of independence can be especially helpful in tracking
independence, as illustrated by the following consequence of the π − λ theorem.

Proposition 2.9 If {Ct }t∈Λ is a family of π-systems such that P(Ct1 ∩ · · · ∩ Ctn ) =∏n
i=1 P(Cti ), Cti ∈ Cti , for any distinct ti ∈ Λ, n ≥ 2, then {σ(Ct)}t∈Λ is a family of

independent σ-fields.

Proof Fix a finite set {t1, . . . , tn} ⊂ Λ. Fix arbitrary Cti ∈ Cti , 2 ≤ i ≤ n. Then
{F1 ∈ σ(Ct1) : P(F1 ∩ Ct2 ∩ · · · ∩ Ctn ) = P(F1)P(Ct2) · · · P(Ctn )} is a λ-system
containing the π-system Ct1 . Thus, by the π − λ theorem, one has

P(F1 ∩ Ct2 ∩ · · · ∩ Ctn ) = P(F1)P(Ct2) · · · P(Ctn ),∀F1 ∈ σ(Ct1).

Now proceed inductively to obtain

P(F1 ∩ F2 ∩ · · · ∩ Fn) = P(F1)P(F2) · · · P(Fn),∀Fi ∈ σ(Cti ) 1 ≤ i ≤ n.

�
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The simple example in which Ω = {a, b, c, d} consists of four equally probable
outcomes and C1 = {{a, b}}, C2 = {{a, c}, {a, d}}, shows that the π-system require-
ment is indispensable. For a more positive perspective, note that if A, B ∈ F are
independent events then it follows immediately that A, Bc and Ac, Bc are respective
pairs of independent events, since σ({A}) = {A, Ac,∅,Ω} and similarly for σ({B}),
and each of the singletons {A} and {B} is a π-system. More generally, a collection of
events C ⊂ F is a collection of independent events if and only if {σ({C}) : C ∈ C}
is a collection of independent σ-fields. As a result, for example, C1, . . . ,Cn are
independent events in F if and only if the 2n equations

P(A1 ∩ A2 ∩ · · · ∩ An) =
n∏

i=1

P(Ai ),

where Ai ∈ {Ci ,Cc
i }, 1 ≤ i ≤ n, are satisfied; also see Exercise 15.

Often one also needs the notion of independence of (among) several families of
σ-fields or random maps.

Definition 2.7 Let Λi , i ∈ I, be a family of index sets and, for each i ∈ I, {Ft :
t ∈ Λi } a collection of (sub) σ-fields of F . The families {Ft : t ∈ Λi }i∈I are said
to be independent (of each other) if the σ-fields Gi := σ({Ft : t ∈ Λi }) generated
by {Ft : t ∈ Λi } (i.e., Gi is the smallest σ-field containing ∪t∈ΛiFt , i ∈ I),2 are
independent in the sense of Definition 2.5.

The corresponding definition of independence of (among) families of random
maps {Xt : t ∈ Λi }i∈I can now be expressed in terms of independence of theσ-fields
Ft := σ(Xt ), t ∈ Λi , i ∈ I.

We will conclude the discussion of independence with a return to considerations
of a converse to the Borel–Cantelli lemma I. Clearly, by taking An = A1,∀n, then
P(An i.o.) = P(A1) ∈ [0, 1]. So there is no general theorem without some restric-
tion on how much dependence exists among the events in the sequence. Write An

eventually for all n to denote the event [Ac
n i.o.]c, i.e., “An occurs for all but finitely

many n.”

Lemma 1 (Borel–Cantelli II) Let {An}∞n=1 be a sequence of independent events in a
probability space (Ω,F , P). If

∑∞
n=1 P(An) = ∞ then P(An i.o.) = 1.

Proof Consider the complementary event to get from continuity properties of P ,
independence of complements, and the simple bound 1 − x ≤ e−x , x ≥ 0, that
1 ≥ P(An i.o.) = 1 − P(Ac

n eventually for all n) = 1 − P(∪∞
n=1 ∩∞

m=n Ac
m) =

1 − limn→∞
∏∞

m=n P(Ac
m) ≥ 1 − limn→∞ exp{−∑∞

m=n P(Am)} = 1. �

Example 4 Suppose that {Xn}∞n=1 is a sequence of independent and identically dis-
tributed (i.i.d.) Bernoulli 0 or 1-valued random variables with P(X1 = 1) = p > 0.
Then P(Xn = 1 i.o.) = 1 is a quick and easy consequence of Borel–Cantelli II.

2Recall that the σ-field Gi generated by ∪t∈ΛiFt is referred to as the join σ-field and denoted∨
t∈Λi

Ft .
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Example 5 (Random Power Series) Consider the random formal power series

S(x) =
∞∑

n=0

εnx
n, (2.9)

where ε0, ε1, . . . , is an i.i.d. sequence of random variables, not a.s. zero, with
E log+ |ε1| < ∞.Let us see how theBorel–Cantelli lemmas can be used to determine
those values of x for which S(x) is actually the almost sure limit of the sequence of
partial sums, i.e., almost surely a power series in x . As a warm-up notice that if for
some positive constants b, c, one has |εn| ≤ cbn a.s. eventually for all n then a.s.
convergence holds for |x | < 1

b . More generally, if |x | < 1, then there is a number
1 < b < 1

|x | ,

∞∑

n=0

P(|εn| ≥ bn) =
∞∑

n=0

P(|ε1| > bn)

=
∞∑

n=0

P(log+ |ε1| > n log+ b)

≤ 1

log+ b

∫ ∞

0
P(log+ |ε1| > x)dx < ∞. (2.10)

It follows from Borel-Cantelli I that almost surely |εn| ≤ bn eventually for all n. In
particular the series is almost surely convergent for |x | < 1. Conversely, if |x | > 1
then there is a 1 < b < |x | such that

∞∑

n=0

P(|εnxn| ≥ bn) =
∞∑

n=0

P(|ε1| > (
b

|x | )
n) = ∞, (2.11)

since limn→∞ P(|ε1| > ( b
|x | )

n) = P(|ε1| > 0) > 0. Thus, using Borel–Cantelli II,
one sees that P(|εnxn| > bni.o.) = 1. In particular, the series is almost surely
divergent for |x | > 1. In the case |x | = 1, one may choose δ > 0 such that
P(|ε1| > δ) > 0. Again it follows from Borel–Cantelli II that |εnxn| ≡ |εn| > δ i.o.
with probability one. Thus the series is a.s. divergent for |x | = 1. Analysis of the
case E log+ ε1 = ∞ is left to Exercise 20.

We now come to another basic notion of fundamental importance in probability—
the notion of conditional probability and conditional expectation. It is useful to
consider the spaces L p(Ω,G, P), where G is a sub-σ-field of F . A little thought
reveals that an element of this last (Banach) space is not in general an element
of L p(Ω,F , P). For if Z is G-measurable, then the set (equivalence class) Z̃ of
all F-measurable random variables each of which differs from Z on at most a P-
null set may contain random variables that are not G-measurable. However, if we
denote by L p(G) the set of all elements of L p(Ω,F , P), each equivalent to some
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G-measurable Z with E|Z |p < ∞, then L p(G) becomes a closed linear subspace of
L p(Ω,F , P). In particular, under this convention, L2(G) is a closed linear subspace
of L2 ≡ L2(F) ≡ L2(Ω,F , P), for every σ-field G ⊂ F . The first definition
below exploits the Hilbert space structure of L2 through the projection theorem (see
Appendix C) to obtain the conditional expectation of X , given G, as the orthogonal
projection of X onto L2(G). Since this projection, as an element of L2(Ω,F , P), is
an equivalence class which contains in general F-measurable functions which may
not be G-measurable, one needs to select from it a G-measurable version, i.e., an
equivalent element of L2(Ω,G, P). If F is P-complete, and so are all its sub-sigma
fields, then such a modification is not necessary.

Definition 2.8 (First Definition of Conditional Expectation (on L2)). Let X ∈ L2

and G be a sub-σ-field of F . Then a conditional expectation of X given G, denoted
by E(X |G), is a G-measurable version of the orthogonal projection of X onto L2(G).

Intuitively, E(X |G) is the best prediction of X (in the sense of least mean square
error), given information about the experiment coded by events that constitute G. In
the case G = σ{Y } is a random map with values in a measurable space (S,S), this
makes E(X |G) a version of a Borel measurable function of Y. This is because of the
Proposition 2.5.

As simple examples, consider the sub-σ-fields G0 = {Ω,∅}, σ(X), and F . (The
σ-field G0, or the one comprising only P-null sets and their complements, is called
the trivial σ-field). One has for all X ∈ L2,

E(X |G0) = E(X), E(X |σ(X)) = X, E(X |F) = X. (2.12)

The first of these follows from the facts that (i) the only G0-measurable functions are
constants, and (ii) E(X − c)2 is minimized, uniquely, by the constant c = EX . The
other two relations in (2.12) are obvious from the definition.

For another perspective, if X ∈ L2, then the orthogonal projection of X onto
1⊥ ≡ {Y ∈ L2 : Y ⊥ 1} = {Y ∈ L2 : EY = 0} is given by X − E(X), or
equivalently, the projection of X onto the space of (equivalence classes of) constants
is E(X).

In addition to the intuitive interpretation of E(X |G) as a best predictor of X , there
is also an interpretation based on smoothing in the sense of averages that extends
beyond L2. For example, as noted above, E(X |{∅,Ω}) = EX = ∫

Ω
X (ω)P(dω).

In particular, this may be viewed as a smoothing of the function X over all sample
points ω ∈ Ω . Similarly, and B ∈ F , 0 < P(B) < 1, and X ∈ L2, one may check
that (Exercise 24)

E(X |{∅, B, Bc,Ω}) =
(

1

P(B)

∫

B
XdP

)

1B +
(

1

P(Bc)

∫

Bc

XdP

)

1Bc . (2.13)

It is worth repeating that the conditional expectation is well defined only up to
a G-measurable P-null set. That is, if X is a version of E(X |G), then so is any
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G-measurable Y such that P(Y �= X) = 0. Thus the conditional expectation E(X |G)

is uniquely defined only as an element of L2(Ω,G, P). We will, however, continue
to regard E(X |G) as a G-measurable version of the orthogonal projection of X onto
L2(G). The orthogonality condition is expressed by

∫

Ω

(X − E(X |G))ZdP = 0 ∀ Z ∈ L2(Ω,G, P), (2.14)

or ∫

Ω

X ZdP =
∫

Ω

E(X |G)ZdP ∀ Z ∈ L2(Ω,G, P). (2.15)

In particular, with Z = 1G for G ∈ G in (2.15), one has

∫

G
XdP =

∫

G
E(X |G)dP ∀ G ∈ G. (2.16)

It is simple to check that for X ∈ L2(Ω,F , P), (2.16) is equivalent to (2.14) or
(2.15). But (2.16) makes sense for all X ∈ L1 ≡ L1(Ω,F , P), which leads to the
second, more general, definition.

Definition 2.9 (Second Definition of Conditional Expectation (on L1)). Let X ∈
L1(Ω,F , P), and let G be a sub-σ-field of F . A G-measurable random variable is
said to be a conditional expectation of X given G, denoted by E(X |G), if (2.16)
holds.

That E(X |G) exists for X ∈ L1, and is well defined a.e., may be proved by letting
Xn ∈ L2 converge to X in L1 (i.e.,‖Xn−X‖1 → 0 asn → ∞), applying (2.16) to Xn ,
and letting n → ∞. Note that L2 is dense in L1 (Exercise 39). Alternatively, onemay
apply the Radon–Nikodym theorem to the finite (signed) measure ν(G) := ∫

G X dP
on (Ω,G), which is absolutely continuouswith respect to P (restricted to (ω,G)), i.e.,
if P(G) = 0, then ν(G) = 0. Hence there exists a G-measurable function, denoted
E(X |G), such that (2.16) holds. Viewed as an element of L1(Ω,G, P), E(X |G) is
unique.

There are variations on the requirement (2.16) in the definition of conditional
expectation that may be noted. In particular, a version of E(X |G) is uniquely deter-
mined by the condition that (1) it be a G-measurable random variable on Ω and, (2)
it satisfy the equivalent version

E{X Z} = E{E(X |G)Z} ∀Z ∈ Γ, (2.17)

of (2.16), where, in view of the Radon–Nikodym theorem, Γ may be taken as the
set of indicator random variables {1G : G ∈ G}. There is some flexibility in the
choice of Γ as a set of test functions when verifying and/or using the definition.
Depending on the context, Γ may more generally be selected as (i) the collection of
all bounded nonnegativeG-measurable randomvariables Z onΩ or (ii) the collection
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of all bounded G measurable random variables Z on Ω , or even the collection of
all nonnegative, bounded G measurable random variables Z on Ω , for example,
as convenient. Certainly all of these would include the indicator random variables
and therefore more than sufficient. Moreover, by simple function approximation, the
defining condition extends to such choices for Γ and may be applied accordingly in
computations involving conditional expectations.

The following properties ofE(X |G) are important and, for the most part, immedi-
ate consequences of the definitions. As illustrated by the proofs, the basic approach
to the determination of E(X |G) may be by “guessing”a G-measurable random vari-
able and then checking that it satisfies (2.17), or by starting from the left side of
(2.17) and making calculations/deductions that lead to the right side, with an explicit
G-measurable random variable that revealsE(X |G). To check almost sure properties,
on the other hand, an approach is to show that the event G, say, for which the desired
property fails, has probability zero. These alternative approaches are illustrated in
the proofs of the properties given in the following theorem.

Theorem 2.10 Let (Ω,F , P) be a probability space, L1 = L1(Ω,F , P), G,D
sub-σ-fields of F , X,Y ∈ L1. Then the following holds, almost surely (P):

(a) E(X |{Ω,φ}) = E(X).
(b) E[E(X |G)] = E(X).
(c) If X is G-measurable, then E(X |G) = X .
(d) (Linearity). E(cX + dY |G) = cE(X |G) + dE(Y |G) for all constants c, d.
(e) (Order). If X ≤ Y a.s., then E(X |G) ≤ E(Y |G).

(f) (Smoothing). If D ⊂ G, then E[E(X |G)|D] = E(X |D).
(g) If XY ∈ L1 and X is G-measurable, then E(XY |G) = XE(Y |G).
(h) If σ(X) and G are independent then E(X |G) = E(X).
(i) (Conditional Jensen’s Inequality). Let ψ be a convex function on an interval

J such that ψ has finite right- (or left-)hand derivative(s) at left (or right) end-
point(s) of J if J is not open. If P(X ∈ J ) = 1, and if ψ(X) ∈ L1, then

ψ(E(X |G)) ≤ E(ψ(X)|G).

(j) (Contraction). For X ∈ L p(Ω,F , P), p ≥ 1, ‖E(X |G)‖p ≤ ‖X‖p ∀ p ≥ 1.
(k) (Convergences).

(k1) If Xn → X in L p then E(Xn|G) → E(X |G) in L p (p ≥ 1).
(k2) (Conditional Monotone Convergence) If 0 ≤ Xn ↑ X a.s., Xn and X ∈ L1

(n ≥ 1), then E(Xn|G) ↑ E(X |G) a.s. and E(Xn|G) → E(X |G) in L1.
(k3) (ConditionalDominatedConvergence) If Xn → X a.s. and |Xn| ≤ Y ∈ L1,

then E(Xn|G) → E(X |G) a.s.

(�) (Substitution Property) Let U, V be random maps into (S1,S1) and (S2,S2),
respectively. Let ψ be a measurable real-valued function on (S1 × S2,S1 ⊗S2).
IfU is G-measurable, σ(V ) and G are independent, andE|ψ(U, V )| < ∞, then
one has that E[ψ(U, V )|G] = h(U ), where h(u) := Eψ(u, V ).
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(m) E(X |σ(Y, Z)) = E(X |σ(Y )) if (X,Y ) and Z are independent.

Proof (a–h) follow easily from the definition. In the case of (e) takeG = [E(X |G) >

E(Y |G)] ∈ G in the definition (2.16) of conditional expectation with X replaced
by Y − X . To prove (g), let Z ∈ Γ , the set of bounded, G-measurable random
variables. Then, since X and XY are both integrable, X Z ∈ L1(Ω,G, P) and XY Z ∈
L1(Ω,F , P). Thus, XE(Y |G) is G-measurable, and E(Z XE(Y |G)) = E(Z XY ) =
E(ZE(XY |G)). To prove (h), again let Z ∈ Γ be a bounded, G-measurable random
variable. By independence of σ(X) and G, one has that X and Z are independent
random variables; namely since [Z ∈ B] ∈ G for all Borel sets B, one has P(X ∈
A, Z ∈ B) = P(X ∈ A)P(Z ∈ B) for all Borel sets A, B. Thus one has, using
Theorem 2.3, E(Z X) = E(Z)E(X) = E(ZE(X)). Since the constant E(X) is G-
measurable, indeed, constant random variables are measurable with respect to any
σ-field, (h) follows by the defining property (2.17).

For (i) use the line of support Lemma 3 from Chapter I. If J does not have a right
endpoint, take x0 = E(X |G), and m = ψ+(E(X |G)), where ψ+ is the right-hand
derivative of ψ, to get ψ(X) ≥ ψ(E(X |G)) + ψ+(E(X |G))(X −E(X |G)). Now take
the conditional expectation, given G, and use (e) to get (i). Similarly, if J does not
have a left endpoint, take m = ψ−(E(X |G)). If J has both right and left endpoints,
say a < b, let m = ψ+(E(X |G)) on [E(X |G) �= b] and m = ψ−(E(X |G)) on
[E(X |G) �= a].

The contraction property (j) follows from this by taking ψ(x) = |x |p in the
conditional Jensen inequality (i), and then taking expectations on both sides. The
first convergence in (k) follows from (j) applied to Xn − X . The second convergence
in (k) follows from the order property (e), and the monotone convergence theorem.
The L1 convergence in (k3) follows from (k1). For the a.s. convergence in (k3), let
Zn := sup{|Xm − X | : m ≥ n}. Then Zn ≤ |X | + |Y |, |X | + |Y | − Zn ↑ |X | + |Y |
a.s., so that by (k2), E(|X | + |Y | − Zn|G) ↑ E(|X | + |Y ||G) a.s. Hence E(Zn|G) ↓ 0
a.s., and by (e), |E(Xn|G) − E(X |G)| ≤ E(|Xn − X ||G) ≤ E(Zn|G) → 0 a.s.

If one takes G = σ(U ), then (�) follows by the Fubini–Tonelli theorem (if one
uses the change of variables formula to do integrations on the product space (S1 ×
S2,S1⊗S2, Q1×Q2), where Q1, Q2 are the distributions ofU and V , respectively).
For the general case, first consider ψ of the form ψ(u, v) = ∑n

i=1 fi (u)gi (v) with fi
and gi bounded and measurable (on (S1,S1) and (S2,S2), respectively), 1 ≤ i ≤ n.
In this case, for every G ∈ G, one has h(U ) = ∑n

i=1 fi (U )Egi (V ), and

∫

G
ψ(U, V )dP ≡ E

(
1G

∑n
i=1 fi (U )gi (V )

)

=
n∑

i=1

E(1G fi (U ) · gi (V )) =
n∑

i=1

E(1G fi (U )) · Egi (V )

= E

(

1G

{
n∑

i=1

fi (U ) · Egi (V )

})

= E(1Gh(U ))

≡ ∫
G h(U )dP.

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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The case of arbitrary ψ(U, V ) ∈ L1(Ω,F , P) follows by the convergence result
(i), noting that functions of the form

∑n
i=1 fi (u)gi (v) are dense in L1(S1 × S2,S1 ⊗

S2, Q1 × Q2) (Exercise 2).
For the proof of (m) observe that for bounded, measurable g, one has using

the substitution property that E(Xg(Y, Z)) = E(E[Xg(Y, Z)|σ(Z)]) = Eϕ(Z),
where ϕ(z) = E(Xg(Y, z)) = E(E[Xg(Y, z)|σ(Y )]) = E(g(Y, z)E[X |σ(Y )]). In
particular, E(Xg(Y, Z)) = E(E[X |σ(Y )]g(Y, Z)) completes the proof of (m). �

The following inequality illustrates a clever application of these properties, includ-
ing conditional Jensen’s inequality, for its proof.3 First, let X ∈ L p, p > 1, be a
nonnegative random variable and define

vp(X) = EX p − (EX)p.

In particular v2(X) is themachine formula for variance of X , and theNeveu–Chauvin
inequality is the all-important additive equality for variance of a sum of independent
random variables; i.e., Corollary 2.4.

Proposition 2.11 (Neveu–Chauvin Inequality) Let X1, X2, . . . Xn be nonnegative,
independent random variables in L p for some p > 1, and let c1, . . . , cn be nonneg-
ative constants. Then, for 1 < p ≤ 2,

vp(

n∑

j=1

c j X j ) ≤
n∑

j=1

cpj vp(X j ).

Proof By induction it is sufficient to establish vp(X + Y ) ≤ vp(X) + vp(Y ) for
nonnegative independent random variables X,Y . That is, one must show

E(X + Y )p − (EX + EY )p ≤ EX p + EY p − (EX)p − (EY )p.

Noting the concavity of x → (x+y)p−x p on [0,∞) for fixed y ≥ 0 and 1 < p ≤ 2,
it follows from the substitution property and Jensen’s inequality that

E{(X + Y )p − X p|σ(Y )} ≤ [E(X) + Y ]p − [EX ]p.

Thus, taking expected values, using independence and properties of conditional
expectation,

E(X + Y )p − EX p ≤ E(EX + Y )p − (EX)p.

Applying this formula to Y and EX in place of X and Y , respectively, one has

E(Y + EX)p − EY p ≤ (EY + EX)p − (EY )p.

3This inequality appears in J. Neveu (1988): Multiplicative martingales for spatial branching
processes, Seminar on Stochastic Processes, 223–242, with attribution to joint work with Brigitte
Chauvin.
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Thus

E(X + Y )p ≤ E(EX + Y )p + EX p − (EX)p

≤ EY p + (EY + EX)p − (EX)p − (EY )p + EX p

= (EY + EX)p + vp(X) + vp(Y ).

As noted at the outset, this inequality is sufficient for the proof. �

Specializing the notion of conditional expectation to indicator functions 1A of sets
A in F , one defines the conditional probability of A given G, denoted by P(A|G),
by

P(A|G) := E(1A|G), A ∈ F . (2.18)

As before, P(A|G) is a (unique) element of L1(Ω,G, P), and thus defined only up to
“equivalence” by the (second) definition (2.16). That is, there are in general different
versions of (2.18) differing from one another only on P-null sets in G. In particular,
the orthogonality condition may be expressed as follows:

P(A ∩ G) =
∫

G
P(A|G)(ω)P(dω), ∀G ∈ G. (2.19)

It follows fromproperties (d), (e), (h) (linearity, order, andmonotone convergence)
in Theorem 2.10 that (outside G-measurable P-null sets)

0 ≤ P(A|G) ≤ 1, P(φ|G) = 0, P(Ω|G) = 1, (2.20)

and that for every countable disjoint sequence {An}∞n=1 in F ,

P(∪n An|G) =
∑

n

P(An|G). (2.21)

In other words, conditional probability, given G, has properties like those of a prob-
ability measure. Indeed, under certain conditions one may choose for each A ∈ F a
version of P(A|G) such that A → P(A|G)(ω) is a probability measure on (Ω,F)

for every ω ∈ Ω . However, such a probability measure may not exist in the full
generality in which conditional expectation is defined.4 The technical difficulty in
constructing the conditional probability measure (for each ω ∈ Ω) is that each one
of the relations in (2.20) and (2.21) holds outside a P-null set, and individual P-null
sets may pile up to a nonnull set. Such a probability measure, when it exists, is called
a regular conditional probability measure given G, and denoted by PG(A)(ω). It
is more generally available as a probability measure (for each ω outside a P-null
set) on appropriate sub-σ-fields of F (even if it is not a probability measure on all

4Counterexamples have been constructed, see for example, Halmos (1950), p. 210.
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of F). An important case occurs under the terminology of a regular conditional
distribution of a randommap Z (on (Ω,F , P) into somemeasurable space (S,S)).

Definition 2.10 Let Y be a randommap on (Ω,F , P) into (S,S). Let G be a sub-σ-
field ofF . A regular conditional distribution of Y given G is a function (ω,C) →
QG(ω,C) ≡ PG([Y ∈ C])(ω) on Ω × S such that

(i) ∀ C ∈ S, QG(·,C) = P([Y ∈ C]|G) a.s. (and QG(·,C) is G-measurable),
(ii) ∀ ω ∈ Ω , C → QG(ω,C) is a probability measure on (S,S).

The following definition provides a topological framework in which one can be
assured existence of a regular version of the conditional distribution of a random
map.

Definition 2.11 A topological space S whose topology can be induced by a metric
is said to bemetrizable. If S is metrizable as a complete and separable metric space
then S is referred to as a Polish space.

For our purposes a general existence theorem as the Doob–Blackwell theorem5

stated in the footnote will be unnecessary for the present text since we will have an
explicit expression of QG given directly when needed. Once QG is given, one can
calculate E( f (Y )|G) (for arbitrary functions f on (S,S) such that f (Y ) ∈ L1) as

E( f (Y )|G) =
∫

f (y)QG(·, dy). (2.22)

This formula holds for f (y) = 1C(y) ∀ C ∈ S by definition. The general result
follows by approximation of f by simple functions, using linearity and convergence
properties of conditional expectation (and of corresponding properties of integrals
with respect to a probability measure QG(ω, ·)). Combining (2.22) with Theorem
2.10(b) yields the so-called disintegration formula

E( f (Y )) =
∫

Ω

∫

f (y)QG(ω, dy)P(dω). (2.23)

The conditional Jensen inequality (i) of Theorem 2.10 follows from the existence
of a regular conditional distribution of X , given G. The following simple examples
tie up the classical concepts of conditional probability with the more modern general
framework presented above.

Example 6 Let B ∈ F be such that P(B) > 0, P(Bc) > 0. Let G = σ(B) ≡
{Ω, B, Bc,∅}. Then for every A ∈ F one has

5The Doob–Blackwell theorem provides the existence of a regular conditional distribution of a
random map Y , given a σ-field G, taking values in a Polish space equipped with its Borel σ-field
B(S). For a proof, see Breiman (1968), pp. 77–80.
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P(A|G)(ω) =
{

P(A|B) := P(A∩B)

P(B)
, if ω ∈ B

P(A|Bc) := P(A∩Bc)

P(Bc)
, if ω ∈ Bc.

More generally, let {Bn : n = 1, 2, . . . } be a countable disjoint sequence in F such
that ∪n Bn = Ω , called a partition of Ω. Let G = σ({Bn : n ≥ 1}) (G is the class
of all unions of sets in this countable collection). Then for every A in F , assuming
P(Bn) > 0, one has

P(A|G)(ω) = P(A ∩ Bn)

P(Bn)
if ω ∈ Bn. (2.24)

If P(Bn) = 0 then for ω ∈ Bn , define P(A|G)(ω) to be some constant, say c, chosen
arbitrarily (Exercise 2).

Remark 2.2 Let Y ∈ L1(Ω,F , P) and suppose X is a random map on (Ω,F , P)

with values in (S,S). In view of Proposition 2.5, E(Y |σ(X)) is a function of X ,
say f (X), and thus constant on each event [X = x], x ∈ S; i.e., E(Y |σ(X))(ω) =
f (X (ω)) = f (x),ω ∈ [X = x] = {ω ∈ Ω : X (ω) = x}. In particular, the notation
E(Y |X = x) may be made precise by defining E(Y |X = x) := f (x), x ∈ S.

Example 7 (A Canonical Probability Space) Let (Si ,Si ,μi ), i = 1, 2 be two
σ-finite measure spaces, that may serve as the image spaces of a pair of random
maps. The canonical probability model is constructed on the image space as follows.
LetΩ = S1× S2,F = S1⊗S2. Assume that the probability P is absolutely continu-
ous with respect to μ = μ1×μ2 with density f i.e., f is a nonnegativeF-measurable
function such that

∫
Ω

f dμ = 1, and P(A) = ∫
A f du, A ∈ F . One may view P as

the distribution of the joint coordinate maps (X,Y ), where X (ω) = x,Y (ω) = y,
for ω = (x, y) ∈ S1×S2. The σ-field G = {B×S2 : B ∈ S1} is the σ-field generated
by the first coordinate map X. A little thought leads naturally to a reasonable guess
for a (regular) conditional distribution of Y given σ(X). Namely, for every event
A = [Y ∈ C] = S1 × C (C ∈ S2), one has

P(A|G)(ω) =
∫
C f (x, y)μ2(dy)

∫
S2

f (x, y′)μ2(dy′)
if ω = (x, v) (∈ Ω). (2.25)

To check this, first note that by the Fubini–Tonelli theorem, the function D defined by
the right-hand side of (2.25) isG-measurable. Second, for every nonnegative bounded
Borel measurable g on S1, i.e., G-measurable test random variables Z = g(X), one
has
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E(ZD) =
∫

S1×S2

g(x)

∫
C f (x, y)μ2(dy)

∫
S2

f (x, y)μ2(dy)
f (x, y′)μ1(dx)μ2(dy

′)

=
∫

S1

g(x)

{∫

S2

∫
C f (x, y)μ2(dy)

∫
S2

f (x, y′)μ2(dy′)
f (x, y′)μ2(dy

′)

}

μ1(dx)

=
∫

S1

g(x)

{ ∫
C f (x, y)μ2(dy)

∫
S2

f (x, y′)μ2(dy′)
·
∫

S2

f (x, y′)μ2(dy
′)

}

μ1(dx)

=
∫

S1

g(x)

{∫

C
f (x, y)μ2(dy)

}

μ1(dx) = E(1S1×Cg(X))

= E(Z1[Y∈C]).

In particlular, P(A|G) = E(1A|G) = D. The function f (x, y)/
∫
S2

f (x, y)μ2(dy)
is called the conditional pdf of Y given X = x , and denoted by f (y|x); i.e., the
conditional pdf is simply the joint density (section) y → f (x, y) normalized to
a probability density by dividing by the (marginal) pdf fX (x) = ∫

S2
f (x, y)μ2(dy)

of X . Let A ∈ F = S1 ⊗ S2. By the same calculations using Fubini–Tonelli one
more generally obtains

P(A|G)(ω) =
∫

Ax

f (y|x)μ2(dy) ≡
∫
Ax

f (x, y)μ2(dy)
∫
S2

f (x, y)μ2(dy)
if ω ≡ (x, y′), (2.26)

where Ax = {y ∈ S2 : (x, y) ∈ A}.
One may change the perspective here a little and let (Ω,F , P) be any probability

space on which are defined two maps X and Y with values in (S1,S1) and (S2,S2),
respectively. If the (joint) distribution of (X,Y ) on (S1 × S2,S1 ⊗ S2) has a pdf f
with respect to a product measure μ1 ×μ2, where μi is a σ-finite measure on (S,Si ),
i = 1, 2, then for G = σ(X), after using the change of variable formula mapping
Ω → S1 × S2, precisely the same calculations show that the (regular) conditional
distribution of Y given G (or “given X”) is given by

P([Y ∈ C]|G)(ω) =
∫
C f (x, y)μ2(dy)

∫
S2

f (x, y)μ2(dy)
if X (ω) = x, (2.27)

i.e., if ω ∈ [X = x] ≡ X−1{x}, x ∈ S1. Note that the conditional probability is
constant on [X = x] as required for σ(X)-measurability; cf Proposition 2.5.

Two particular frameworks in which conditional probability and conditional
expectation are very prominent are those of (i) Markov processes and (ii) martin-
gales. The former is most naturally expressed as the property that the conditional
distribution of future states of a process, given the past and present states coincides
with the conditional distribution given the present, and the latter is the property that
the conditional expectation of a future state given past and present states, is simply
the present. The Markov property is illustrated in the next example, and martingales
are the topic of the next chapter.
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Example 8 (MarkovProperty forGeneralRandomWalks onRk )Let {Zn : n ≥ 1}be
a sequence of independent and identically distributed (i.i.d.) k-dimensional random
vectors defined on a probability space (Ω,F , P). Let μ denote the distribution of
Z1 (hence of each Zn). For arbitrary x ∈ R

k , a random walk starting at x with
step-size distribution μ is defined by the sequence Sx

n := x+ Z1+· · ·+ Zn (n ≥ 1),
Sx
0 = x .
For notational simplicity we will restrict to the case of k = 1 dimensional random

walks, however precisely the same calculations are easily seen to hold for arbitrary
k ≥ 1 (Exercise 2). Let Qx denote the distribution of {Sx

n := n ≥ 0} on the product
space (R∞,B∞). Here B∞ is the σ-field generated by cylinder sets of the form
C = Bm×R

∞ := {y = (y0, y1, . . . ) ∈ R
∞; (y0, y1, . . . , ym) ∈ Bm}with Bm aBorel

subset ofRm+1 (m = 0, 1, 2, . . . ). Note that Qx(Bm ×R
∞) = P((Sx

0 , S
x
1 . . . , Sx

m) ∈
Bm), so that Qx (Bm ×R

∞)may be expressed in terms of them-fold product measure
μ × μ × · · · × μ, which is the distribution of (Z1, Z2, . . . , Zm). For our illustration,
let Gn = σ({Sx

j : 0 ≤ j ≤ n}) = σ({Z1, Z2, . . . , Zn}) (n ≥ 1). We would like
to establish the following property: The conditional distribution of the “after-n
process” Sx+

n := {Sx
n+m : m = 0, 1, 2, . . . } on (R∞,B∞) given Gn is Qy|y=Sxn ≡

QSxn . In other words, for the random walk {Sx
n : n ≥ 0}, the conditional distribution

of the future evolution defined by Sx+
n , given the past states Sx

0 , . . . , S
x
n−1 and present

state Sx
n , depends solely on the present state Sx

n , namely, QSxn i.e., it is given by the
regular conditional distribution QGn (ω, ·) = QSxn (ω)(·).
Theorem 2.12 (Markov Property) For every n ≥ 1, the conditional distribution of
Sx+
n given σ(Sx

0 , . . . , S
x
n ) is a function only of Sx

n .

Proof To prove the theorem choose a cylinder set C ∈ B∞. That is, C = Bm × R
∞

for some m ≥ 0. We want to show that

P([Sx+
n ∈ C]|Gn) ≡ E(1[Sx+n ∈C]|Gn) = QSxn (C). (2.28)

Now [Sx+
n ∈ C] = [(Sx

n , S
x
n + Zn+1, . . . , Sx

n + Zn+1 + · · · + Zn+m) ∈ Bm], so that
one may write

E
(
1[Sx+n ∈C]|Gn

) = E(ψ(U, V )|Gn),

whereU = Sx
n , V = (Zn+1, Zn+2, . . . , Zn+m) and, for u ∈ R and v ∈ R

m ,ψ(u, v) =
1Bm (u, u + v1, u + v1 + v2, . . . , u + v1 + · · · + vm). Since Sx

n is Gn-measurable
and V is independent of Gn , it follows from property (�) of Theorem 2.10 that
E(ψ(U, V )|Gn) = h(Sx

n ), where h(u) = Eψ(u, V ). But

Eψ(u, V ) = P((u, u + Zn+1, . . . , u + Zn+1 + · · · + Zn+m) ∈ Bm)

= P((u, u + Z1, u + Z1 + Z2, . . . , u + Z1 + · · · + Zm) ∈ Bm)

= P((Su0 , S
u
1 , . . . , S

u
m) ∈ Bm) = Qu(C).

Therefore, P([Sx+
n ∈ C]|Gn) = (Qu(C))u=Sxn = QSxn (C). We have now shown

that the class L of sets C ∈ B∞ for which “P([Sx+
n ∈ C]|Gn) = QSxn (C) a.s.”
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holds contains the class C of all cylinder sets. Since this class is a λ-system (see the
convergence property (k) of Theorem 2.10) containing the π-system of cylinder sets
that generate B∞, it follows by the π − λ theorem that L = B∞. �

Example 9 (Recurrence of 1-d Simple Symmetric Random Walk) Let X0 be an
integer-valued random variable, and X1, X2, . . . an i.i.d. sequence of symmetric
Bernoulli ±1-valued random variables, independent of X0, defined on a probability
space (Ω,F , P). For x ∈ Z, the sequence of random variables Sx = {Sx

0 , S
x
1 , . . . }

defined by Sx
0 = x, Sx

n = x + X1 + · · ·+ Xn, n = 1, 2, . . . , is referred to as the one-
dimensional simple symmetric random walk on Z started at x . Let Qx = P ◦ (Sx )−1

denote the distribution of Sx . Observe that the conditional distribution of the after-
one process Sx

+1 = (Sx
1 , S

x
2 , . . . ) given σ(X1) is the composition ω → QS1(ω). Thus,

letting R = ∪∞
n=1{(x0, x1, x2, . . . ) ∈ Z

∞ : xn = x0}, [Sx ∈ R] denotes the event of
eventual return to x , one has

Qx (R) = P(Sx ∈ R) = EP(Sx ∈ R|σ(X1))

= EQSx1 (R) = Qx+1(R)P(Sx
1 = x + 1) + Qx−1(R)P(Sx

1 = x − 1)

= Qx+1(R)
1

2
+ Qx−1(R)

1

2
. (2.29)

Since Qx (R) ≥ P(X1 = 1, X2 = −1) = 1/4 > 0, it follows that the only solution
to (2.29) is Qx (R) = 1. Note that this does not depend on the particular choice of
x ∈ Z, and is therefore true for all x ∈ Z. Thus the simple symmetric random walk
started at any x ∈ Z is certain to eventually return to x .

Independence and conditional probability underly most theories of stochastic
processes in fundamental ways. From the point of view of ideas developed thus
far, the general framework is as follows. A stochastic process {Xt : t ∈ Λ} on a
probability space (Ω,F , P) is a family of random maps Xt : Ω → St , t ∈ Λ,
for measurable spaces (St ,St ), t ∈ Λ. The index set Λ is most often of one of the
following types: (i) Λ = {0, 1, 2, . . .}. Then {Xt : t = 0, 1, 2, . . .} is referred to as a
discrete-parameter stochastic process, usuallywith S = Z

k orRk . (ii)Λ = [0,∞).

Then {Xt : t ≥ 0} is called a continuous-parameter stochastic process, usually
with S = Z

k or Rk .
Given an arbitrary collection of sets St , t ∈ Λ, the product space, denoted by

S = ∏
t∈Λ St ≡ ×t∈ΛSt , is defined as the space of functions x = (xt , t ∈ Λ)

mapping Λ to ∪t∈ΛSt such that xt ∈ St for each t ∈ Λ. This general definition
applies to cases in which Λ is finite, countably infinite, or a continuum. In the case
that each St , t ∈ Λ, is also ameasurable spacewith respectiveσ-fieldsSt , the product
σ-field, denoted by ⊗t∈ΛSt , is defined as the σ-field generated by the collection R
of finite-dimensional rectangles of the form R = {x ∈ ∏

t∈Λ St : (xt1 , . . . , xtk ) ∈
B1 × · · · × Bk}, for k ≥ 1, Bi ∈ Sti , 1 ≤ i ≤ k. Alternatively, the product σ-field
is the smallest σ-field of subsets of

∏
t∈Λ St which makes each of the coordinate

projections, πs(x) = xs, x ∈ ∏
t∈Λ St , s ∈ Λ, a measurable map. In this case the

pair(S = ∏
t∈Λ St ,⊗t∈ΛSt ) is the (measure-theoretic) product space.
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As previously noted, it is natural to ask whether, as already known for finite
products, given any family of probability measures Qt (on (St ,St )), t ∈ Λ, can
one construct a probability space (Ω,F , P) on which are defined random maps Xt

(t ∈ Λ) such that (i) Xt has distribution Qt (t ∈ Λ) and (ii) {Xt : t ∈ Λ} is a family
of independent maps ? Indeed, on the product space (S ≡ ×t∈Λ St ,S ≡ ⊗t∈ΛSt ) it
will be shown in Chapter VIII that there exists such a product probability measure
Q = ∏

t∈Λ Qt ; and one may take Ω = S, F = S, P = Q, Xt (ω) = xt for
ω = (xt , t ∈ Λ) ∈ S. The practical utility of such a construction for infinite Λ

is somewhat limited to the case when Λ is denumerable. However such a product
probability space for a countable sequence of randommaps X1, X2, . . . is remarkably
useful.

The important special case of a sequence X1, X2, . . . of independent and identi-
cally distributed randommaps is referred to as an i.i.d. sequence. An example of the
construction of an i.i.d. (coin tossing) sequence {Xn}∞n=1 of Bernoulli-valued random
variables with values in {0, 1} and defined on a probability space (Ω,F , P) with
prescribed distribution P(X1 = 1) = p = 1 − P(X1 = 0), for given p ∈ [0, 1], is
given in Exercise 37. As remarked above, the general existence of infinite product
measures will be proved in Chapter VIII. This is a special case of the Kolmogorov
extension theorem proved in Chapter VIII in the case that (S,S) has some extra
topological structure; see Exercise 37 for a simple special case illustrating how one
may exploit topological considerations. Existence of an infinite product probability
measure will also be seen to follow in full measure-theoretic generality, i.e., without
topological requirements on the image spaces, from the Tulcea extension theorem
discussed in Chapter VIII.

Exercise Set II

1. Suppose that X1, . . . , Xn are independent randommaps defined on a probability
space (Ω,F , P). Show that the product measure Q = P ◦ (X1, . . . , Xn)

−1 is
given by Q1 × · · · × Qn , where Qi = P ◦ X−1

i . Also show that any subset of
{X1, . . . , Xn} comprises independent random maps.

2. Suppose X1,X2, . . .Xn are independent k-dimensional random vectors having
distributions Q1, Q2, . . . , Qn , respectively. Prove that the distribution of X1 +
X2+· · ·+Xn, n ≥ 2, is given by the n-fold convolution Q∗n = Q1∗Q2∗· · ·∗Qn

inductively defined by Q∗n(B) = ∫
Rk Q∗(n−1)(B − x)Qn(dx), where B − x :=

{y − x : y ∈ B} for Borel sets B ⊂ R
k , Q∗(1) = Q1.

3. Let X1, . . . , Xn be i.i.d. random variables with finite variance σ2 = E(X1 −
EX1)

2, and finite central fourth moment μ4 = E(X1 − EX1)
4. Let Sn =∑n

j=1 X j . (a) Show E(Sn − nEX1)
4 = nμ4 + 3n(n − 1)σ4. (b) For the case in

which X1, . . . , Xn is the i.i.d. Bernoulli 0−1 valued sequence given in Example
3 show that both the variance and the fourth central moment of n p̂n ≡ Sn are
maximized at p = 1/2, and determine the respective maximum values.

4. Let X1, X2 be random maps with values in σ-finite measure spaces (S1,S1,μ1)

and (S2,S2,μ2), respectively. Assume that the distribution of (X1, X2) has a pdf
f with respect to product measure μ1 × μ2, i.e., f is a nonnegative measurable
function such that

http://dx.doi.org/10.1007/978-3-319-47974-3_8
http://dx.doi.org/10.1007/978-3-319-47974-3_8
http://dx.doi.org/10.1007/978-3-319-47974-3_8
http://dx.doi.org/10.1007/978-3-319-47974-3_8
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P((X1, X2) ∈ B) =
∫

B
f (x1, x2)μ1 × μ2(dx1 × dx2), B ∈ S1 ⊗ S2.

Show that X1 and X2 are independent if andonly if f (x1, x2) = f1(x1) f2(x2)μ1×
μ2 − a.e. for some 0 ≤ fi ,

∫
Si

fi dμi = 1, (i = 1, 2).
5. Suppose that X1, X2, . . . is a sequence of independent random variables on

(Ω,F , P). Show that the two families {X1, X3, X5, . . . } and {X2, X4, X6, . . . }
are independent. [Hint: Express σ(X1, X3, . . . ) = σ(C1), for the π-system C1 =
{[(X1, X3, . . . , X2m−1) ∈ A1 × · · · × Am] : A j ∈ B, 1 ≤ j ≤ m,m ≥ 1}, and
similarly for the even indices.]

6. (a) Show that the coordinate variables (Un,1, . . . ,Un,n) in Exercise 31 of
Chapter I are independent, and each is uniformly distributed over [0, 2]. (b)
Show that if Xn

n → c in probability as n → ∞ for a constant c < 0, then
Xn → −∞ in probability in the sense that for any λ < 0, P(Xn > λ) → 0
as n → ∞. (c) Taking logarithms and using (a) and (b) together with a Cheby-
chev inequality, show that Un,1 · · ·Un,n → 0 in probability as n → ∞. (d) Use
Jensen’s inequality to extend (c) to any independent, positive, mean one random
variables (Un,1, . . . ,Un,n) having finite second moment.

7. Show that if (U1,U2) is uniformly distributed on the disc D = {(x, y) : x2+y2 ≤
1}, i.e., distributed as a multiple ( 1

π
) of Lebesgue measure on D, then X and Y

are not independent. Compute Cov(X,Y ).

8. Let X1, X2, . . . , Xn be i.i.d. random variables defined on (Ω,F , P) and having
(common) distribution Q.

(i) Suppose Q(dx) = λe−λx1[0,∞)(x)dx , for some λ > 0, referred to as the
exponential distribution with parameter λ. Show that X1 + · · · + Xn has
distribution Q∗n(dx) = λn xn−1

(n−1)!e
−λx1[0,∞)(x)dx . This latter distribution is

referred to as a gamma distribution with parameters n,λ.

(ii) Suppose that Q(dx) = 1√
2πσ2

e− (x−μ)2

σ2 dx ; referred to as the Gaussian or

normal distributionwith parametersμ ∈ R,σ2 > 0. Show that X1+· · ·+Xn

has a normal distribution with parameters nμ and nσ2.
(iii) Let X be a standard normal N (0, 1) random variable. Find the distribution

Q of X2, and compute Q∗2. [Hint: By the π − λ theorem it is sufficient to
compute a pdf for Q(−∞, x], x ∈ R to determine Q(A) for all Borel sets
A. Also,

∫ 1
0 u− 1

2 (1 − u)− 1
2 du = π.]

9. Let X1, X2 be random maps on (Ω,F , P) taking values in the measurable
spaces (S1,S1), (S2,S2), respectively. Show that the joint distribution of
(X1, X2) on (S1 × S2,S1 ⊗S2) is product measure if and only if σ(X1) and
σ(X2) are independent σ-fields.

10. (i) Let V1 take values ±1 with probability 1/4 each, and 0 with probability
1/2. Let V2 = V 2

1 . Show that Cov(V1, V2) = 0, though V1, V2 are not
independent.

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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(ii) Show that random maps V1, V2 are independent if and only if f (V1) and
g(V2) are uncorrelated for all pairs of real-valued Borel-measurable func-
tions f, g such that f (V1), g(V2) ∈ L2.

11. Suppose that X1, X2, . . . is a sequence of random variables on (Ω,F , P) each
having the same distribution Q = P ◦ X−1

n . (i) Show that if E|X1| < ∞ then
P(|Xn| > n i.o.) = 0. [Hint: First use (1.10) to get E|X1| = ∫ ∞

0 P(|X1| >

x)dx , and then apply Borel–Cantelli.] (ii) Assume that X1, X2, . . . are also
independent with E|Xn| = ∞. Show that P(|Xn| > n i.o.) = 1.

12. Suppose that Y1,Y2, . . . is an i.i.d. sequence of nonconstant random variables.
Show that lim infn→∞ Yn < lim supn→∞ Yn a.s. In particular P(limn→∞ Yn
exists) = 0. [Hint: Use there must be numbers a < b such that P(Y1 < a) > 0
and P(Y1 > b) > 0. Use Borel–Cantelli II.]

13. [Percolation] Formulate and extendExample 2 by determining the critical proba-
bility for percolation on the rooted b-ary tree defined by T = ∪∞

j=0{1, 2, . . . , b} j
for a natural number b ≥ 3.

14. Suppose that Y1,Y2, . . . is a sequence of i.i.d. positive random variables with
P(Y1 = 1) < 1 and EY1 = 1. (a) Show that Xn = Y1Y2 . . . Yn → 0 a.s.
as n → ∞; [Hint: Consider EXt

n for fixed 0 < t < 1, and apply Cheby-
chev inequality, Jensen inequality and Borel–Cantelli I.] (b) Is the sequence
X1, X2, . . . uniformly integrable ?

15. (i) Consider three independent tosses of a balanced coin and let Ai denote the
event that the outcomes of the i th and (i +1)st tosses match, for i = 1, 2. Let A3

be the event that the outcomes of the third and first match. Show that A1, A2, A3

are pairwise independent but not independent. (ii) Show that A1, . . . , An , A j ∈
S j , 1 ≤ j ≤ n, are independent events if and only if the 2n equations P(C1∩· · ·∩
Cn) = ∏n

j=1 P(C j ) hold for all choices ofC j = A j orC j = Ac
j , 1 ≤ j ≤ n. (iii)

Show that A1, . . . , An , A j ∈ S j , 1 ≤ i ≤ n, are independent events if and only
if the 2n − n − 1 equations P(A j1 ∩ · · · ∩ A jm ) = ∏m

i=1 P(A ji ),m = 2, . . . , n,
hold.

16. Suppose that A1, A2, . . . is a sequence of independent events, each having the
same probability p = P(An) > 0 for each n = 1, 2, . . . . Show that the event
[An e.o.] := ∪∞

n=1An has probability one, where e.o. denotes eventually occurs.
17. Let (Ω,F , P) be an arbitrary probability space and suppose A1, A2, . . . is a

sequence of independent events inF with P(An) < 1,∀n. Suppose P(∪∞
n=1An)

= 1. (i) Show that P(An i.o.) = 1. (ii) Give an example of independent events
for which P(∪∞

n=1An) = 1 but P(An i.o.) < 1.
18. Let (Ω,F , P) be an arbitrary probability space and suppose {An}∞n=1 is a

sequence of independent events in F such that
∑∞

n=1 P(An) ≥ 2. Let E denote
the event that none of the An’s occur for n ≥ 1. (i) Show that E ∈ F .

(ii) Show that P(E) ≤ 1
e2 . [Hint: 1 − x ≤ e−x , x ≥ 0.]

19. Suppose that X1, X2, . . . is an i.i.d. sequence of Bernoulli 0 or 1-valued random
variables with P(Xn = 1) = p, P(Xn = 0) = q = 1 − p. Fix r ≥ 1 and let
Rn := [Xn = 1, Xn+1 = 1, . . . , Xn+r−1 = 1] be the event of a run of 1’s of
length at least r starting from n.

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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(i) Show that P(Rn i.o.) = 1 if 0 < p ≤ 1.
(ii) Suppose r is allowed to grow with n, say rn = [θ log2 n] in defining the

event Rn; here [x] denotes the largest integer not exceeding x . In the case of
a balanced coin (p = 1/2), show that if θ > 1 then P(Rn i.o.) = 0, [Hint:
Borel–Cantelli Lemma 1], and if 0 < θ ≤ 1 then P(Rn i.o.) = 1. [Hint:
Consider a subsequence Rnk = [Xnk = 1, . . . , Xnk+rnk −1 = 1] with n1
sufficiently large that θ log2 n1 > 1, and nk+1 = nk + rnk , k ≥ 1. Compare
∑∞

k=1 n
−θ
k ≡ ∑∞

k=1
n−θ
k

nk+1−nk
(nk+1 − nk) to an integral

∫ ∞
n1

f (x)dx for an
appropriately selected function f .]

20. Show that in the case E log+ ε1 = ∞, the formal power series of Example 5 is
almost surely divergent for any x �= 0. [Hint: Consider 0 < |x | < 1, |x | ≥ 1,
separately.]

21. Let C denote the collection of functions of the form
∑n

i=1 fi (u)gi (v), (u, v) ∈
S1 × S2, where fi , gi , 1 ≤ i ≤ n, are bounded Borel-measurable functions on
the probability spaces (S1,S1, Q1) and (S2,S2, Q2), respectively. Show that C is
dense in L1(S1×S2,S1⊗S2, Q1×Q2). [Hint: Use themethod of approximation
by simple functions.]

22. Suppose that X,Y are independent random variables on (Ω,F , P). Assume
that there is a number a < 1 such that P(X ≤ a) = 1. Also assume that Y
is exponentially distributed with mean one. Calculate E[eXY |σ(X)]. [Hint: Use
the substitution property.]

23. Suppose that (X,Y ) is uniformly distributed on the unit disk D = {(x, y) :
x2+ y2 ≤ 1}, i.e., has constant pdf on D. (i) Calculate the (marginal) distribution
of X . (ii) Calculate the conditional distribution of Y given σ(X). (iii) Calculate
E(Y 2|σ(X)).

24. (i) Give a proof of (2.13) using the second, and therefore the first, definition
of conditional expectation. [Hint: The only measurable random variables with
respect to {Ω,∅, B, Bc} are those of the form c1B + d1Bc , for c, d ∈ R.] (ii)
Prove (2.24), (2.26).

25. Suppose that X, N are independent random variables with standard normal dis-
tribution. Let Y = X + bN ; i.e., X with an independent additive noise term bN .
Calculate E(X |σ(Y )). [Hint: Compute the conditional pdf of the regular condi-
tional distribution of X given σ(Y ) by first computing the joint pdf of (X,Y ). For
this, either view (X,Y ) as a function (linear transformation) of independent pair
(X, N ), or notice that the conditional pdf of Y given σ(X) follows immediately
from the substitution property. Also, the marginal of X is the convolution of two
normal distribution and hence, normal. It is sufficient to compute the mean and
variance of X . From here obtain the joint density as the product of the conditional
density of Y given σ(X) and the marginal of X .]

26. Suppose thatU is uniformly distributed on [0, 1] and V = U (1−U ). Determine
E(U |σ(V )).Does the answer dependon the symmetry of the uniformdistribution
on [0, 1] ?

27. Suppose X is a real-valued random variable with symmetric distribution Q about
zero; i.e., X and −X have the same distribution. (i) Compute P(X > 0|σ(|X |)).
(ii) Determine the (regular) conditional distribution of X given σ(|X |). [Hint:
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Keep in mind that
∫
R
f (x)δ{a}(dx) = f (a) for any a ∈ R, and consider

E f (X)g(|X |) for E| f (X)| < ∞ and bounded, Borel measurable g. Partition
the integral by 1 = 1(0,∞)(|X |) + 1{0}(|X |).]

28. Suppose that X1, X2, . . . is an i.i.d. sequence of square-integrable random vari-
ables with mean μ and variance σ2 > 0, and N is a nonnegative integer-valued
random variable, independent of X1, X2, . . . . Let S = ∑N

j=1 X j , with the con-
vention S = 0 on the event [N = 0]. Compute the mean and variance of S.
[Hint: Condition on N .]

29. (a) Let X1, . . . , Xn be an i.i.d. sequence of random variables on (Ω,F , P) and
let Sn = X1 + · · · + Xn. Assume E|X1| < ∞. Show that E(X j |σ(Sn)) =
E(X1|σ(Sn)). [Hint: Use Fubini–Tonelli.] Calculate E(X j |σ(Sn)). [Hint: Add
up and use properties of conditional expectation.] (b) Generalize (a) to the case
in which the distribution of (X1, . . . , Xn) is invariant under permutations of the
indices, i.e., the distribution of (Xπ1 , . . . , Xπn ) is the same for all permutations
π of (1, 2, . . . , n).

30. Suppose that (X,Y ) is distributed on [0, 1] × [0, 1] according to the pdf
f (x, y) = 4xy, 0 ≤ x, y ≤ 1. Determine E[X |σ(X + Y )].

31. Suppose that Y1, . . . ,Yn are i.i.d. exponentially distributed with mean one. Let
Sn = ∑n

j=1 Y j .

(i) Calculate E(Y 2
1 |Sn). [Hint: In view of part (iii) of this problem, calculate

the joint pdf of (Y1,Y2 + · · · + Yn) and then that of (Y1, Sn) by a change of
variable under the linear transformation (y, s) �→ (y, y+s), for an arbitrary
distribution of Y1 having pdf g(y). Namely, g(y)g∗(n−1)(s − y)/g∗n(s).]

(ii) Calculate E(Y1Y2|Sn). [Hint: Consider S2n = E(S2n |Sn) along with the pre-
vious exercise.]

(iii) Make the above calculations in the case that Y1,Y2, . . . Yn are i.i.d. with
standard normal distributions.

32. [Conditional Chebyshev-type] For X ∈ L p, p ≥ 1, prove for λ > 0, P(|X | >

λ|G) ≤ E(|X |p|G)/λp a.s.
33. [Conditional Cauchy–Schwarz] For X,Y ∈ L2 show that |E(XY |G)|2 ≤

E(X2|G)E(Y 2|G).

34. Let Y be an exponentially distributed random variable on (Ω,F , P). Fix a > 0.

(i) Calculate E(Y |σ(Y ∧ a)), where Y ∧ a := min{Y, a}. [Hint: [Y < a] =
[Y ∧a < a]. Let g be a bounded Borel-measurable function and either make
and verify an intuitive guess forE(Y |σ(Y ∧a)) (based on “lack of memory”
of the exponential distribution), or calculate E(Yg(Y ∧ a)) by integration
by parts.]

(ii) Determine the regular conditional distribution of Y given σ(Y ∧ a).

(iii) Repeat this problem for Y having arbitrary distribution Q on [0,∞), and a
such that 0 < P(Y ≤ a) < 1.

35. LetU, V be independent randommapswith values inmeasurable spaces (S1,S1)

and (S2,S2), respectively. Letϕ(u, v) be ameasurablemap on (S1×S2,S1⊗S2)

into a measurable space (S,S). Show that a regular conditional distribution of
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ϕ(U, V ), given σ(V ), is given by QV , where Qv is the distribution of ϕ(U, v).
[Hint: Use the Fubini–Tonelli theorem or Theorem 2.10(l).]

36. Prove the Markov property for k-dimensional random walks with k ≥ 2.
37. Let Ω = {0, 1}∞ be the space of infinite binary 0–1 sequences, and let F0

denote the field of finite unions of sets of the form An(ε1, . . . , εn) = {ω =
(ω1,ω2, . . . ) ∈ Ω : ω1 = ε1, . . . ,ωn = εn} for arbitrary εi ∈ {0, 1},
1 ≤ i ≤ n, n ≥ 1. Fix p ∈ [0, 1] and define Pp(An(ε1, . . . , εn)) =
p

∑n
i=1 εi (1 − p)n−∑n

i=1 εi . (i) Show that the natural finitely additive extension
of Pp to F0 defines a measure on the field F0. [Hint: By Tychonoff’s theorem
from topology, the set Ω is compact for the product topology, see Appendix B.
Check that setsC ∈ F0 are both open and closed for the product topology, so that
by compactness, any countable disjoint union belonging to F0 must be a finite
union.] (ii) Show that Pp has a unique extension to σ(F0). This probability Pp

defines the infinite product probability, also denoted by (pδ{1} + (1− p)δ{0})∞.
[Hint: Apply the Carathéodory extension theorem.] (iii) Show that the coordi-
nate projections Xn(ω) = ωn,ω = (ω1,ω2, . . . ) ∈ Ω , n ≥ 1, define an i.i.d.
sequence of (coin tossing) Bernoulli 0 or 1-valued random variables.

38. Prove that the set B̃ in the proof of Proposition2.5 belongs to B(Rk), and the
function g, there, is Borel-measurable.

39. (i) Prove that the set of all simple function on (Ω,F , P) is dense in LP,∀ p ≥ 1.
(ii) Prove that Lp is dense in Lr(in Lr − norm) for p > r ≥ 1 (in Lr-norm)



Chapter III
Martingales and Stopping Times

The notion ofmartingale has proven to be among the most powerful ideas to emerge
in probability in the past century. This chapter provides a foundation for this the-
ory together with some illuminating examples and applications. For a prototypical
illustration of the martingale property, let Z1, Z2, . . . be a sequence of independent
integrable random variables and let Xn = Z1 +· · ·+ Zn, n ≥ 1. If EZ j = 0, j ≥ 1,
then one clearly has

E(Xn+1|Fn) = Xn, n ≥ 1,

where Fn := σ(X1, . . . , Xn).

Definition 3.1 (First Definition of Martingale) A sequence of integrable random
variables {Xn : n ≥ 1} on a probability space (Ω,F , P) is said to be a martingale
if, writing Fn := σ(X1, X2, . . . , Xn),

E(Xn+1|Fn) = Xn a.s. (n ≥ 1). (3.1)

This definition extends to any (finite or infinite) family of integrable randomvariables
{Xt : t ∈ T }, where T is a linearly ordered set: Let Ft = σ(Xs : s ≤ t). Then
{Xt : t ∈ T } is amartingale if

E(Xt |Fs) = Xs a.s ∀ s < t (s, t ∈ T ). (3.2)

In the previous case of a sequence {Xn : n ≥ 1}, as one can see by taking successive
conditional expectations E(Xn|Fm) = E[E(Xn|Fn+1)|Fm] = E(Xn+1|Fm) = · · · =
E(Xm+1|Fm) = Xm, (3.1) is equivalent to

E(Xn|Fm) = Xm a.s. ∀ m < n. (3.3)
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Thus, (3.1) is a special case of (3.2). Most commonly, T = N or Z+, or T = [0,∞).

Note that if {Xt : t ∈ T } is a martingale, one has the constant expectations property:
EXt = EXs ∀ s, t ∈ T .

Remark 3.1 Let {Xn : n ≥ 1} be a martingale sequence. Define its associated
martingale difference sequence by Z1 := X1, Zn+1 := Xn+1 − Xn (n ≥ 1). Note
that for Xn ∈ L2(Ω,F , P), n ≥ 1, the martingale differences are uncorrelated. In
fact, for Xn ∈ L1(Ω,F , P), n ≥ 1, one has

EZn+1 f (X1, X2, . . . , Xn) = E[E(Zn+1 f (X1, . . . , Xn)|Fn)]
= E[ f (X1, . . . , Xn)E(Zn+1|Fn)] = 0 (3.4)

for all boundedFn measurable functions f (X1, . . . , Xn). If Xn ∈ L2(Ω,F , P)∀n ≥
1, then (3.1) implies, and is equivalent to, the fact that Zn+1 ≡ Xn+1 − Xn is
orthogonal to L2(Ω,Fn, P). It is interesting to compare this orthogonality to that
of independence of Zn+1 and {Zm : m ≤ n}. Recall that Zn+1 is independent of
{Zm : 1 ≤ m ≤ n} or, equivalently, ofFn = σ(X1, . . . , Xn) if and only if g(Zn+1) is
orthogonal to L2(Ω,Fn, P) for all bounded measurable g such that Eg(Zn+1) = 0.
Thus independence translates as 0 = E{[g(Zn+1) − Eg(Zn+1)] · f (X1, . . . , Xn)} =
E{g(Zn+1) · f (X1, . . . , Xn)} − Eg(Zn+1) · E f (X1, . . . , Xn), for all bounded mea-
surable g on R and for all bounded measurable f on R

n.

Example 1 (Independent Increment Process) Let {Zn : n ≥ 1} be an independent
sequence having zero means, and X0 an integrable random variable independent of
{Zn : n ≥ 1}. Then

X0, Xn := X0 + Z1 + · · · + Zn ≡ Xn−1 + Zn (n ≥ 1) (3.5)

is a martingale sequence.

Definition 3.2 If one has inequality in place of (3.1), namely,

E(Xn+1|Fn) ≥ Xn a.s. ∀n ≥ 1, (3.6)

then {Xn : n ≥ 1} is said to be a submartingale. More generally, if the index set T is
as in (3.2), then {Xt : t ∈ T } is a submartingale if

E(Xt |Fs) ≥ Xs ∀ s < t (s, t ∈ T ). (3.7)

If instead of ≥, one has ≤ in (3.7) (3.8), the process {Xn : n ≥ 1} ({Xt : t ∈ T }) is
said to be a supermartingale.

In Example 1, if EZk ≥ 0 ∀ k, then the sequence {Xn : n ≥ 1} of partial
sums of independent random variables is a submartingale. If EZk ≤ 0 for all k,
then {Xn : n ≥ 1} is a supermartingale. In Example 3, it follows from the triangle
inequality for conditional expectations that the sequence {Yn := |Xn| : n ≥ 1} is
a submartingale. The following proposition provides an important generalization of
this latter example.
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Proposition 3.1 (a) If {Xn : n ≥ 1} is a martingale and ϕ(Xn) is a convex and
integrable function of Xn, then {ϕ(Xn) : n ≥ 1} is a submartingale. (b) If {Xn} is a
submartingale, and ϕ(Xn) is a convex and nondecreasing integrable function of Xn,

then {ϕ(Xn) : n ≥ 1} is a submartingale.

Proof The proof is obtained by an application of the conditional Jensen’s inequality
given in Theorem 2.10. In particular, for (a) one has

E(ϕ(Xn+1|Fn) ≥ ϕ(E(Xn+1|Fn)) = ϕ(Xn). (3.8)

Now take the conditional expectation of both sides with respect to Gn ≡ σ(ϕ(X1),

. . . ,ϕ(Xn)) ⊂ Fn , to get the martingale property of {ϕ(Xn) : n ≥ 1}. Similarly, for
(b), for convex and nondecreasing ϕ one has in the case of a submartingale that

E(ϕ(Xn+1|Fn) ≥ ϕ(E(Xn+1|Fn)) ≥ ϕ(Xn), (3.9)

and taking conditional expectation in (3.9), the desired submartingale property
follows. �

Proposition 3.1 immediately extends to martingales and submartingales indexed
by an arbitrary linearly ordered set T .

Example 2 (a) If {Xt : t ∈ T } is a martingale, E|Xt |p < ∞ (t ∈ T ) for some
p ≥ 1, then {|Xt |p : t ∈ T } is a submartingale. (b) If {Xt : t ∈ T } is a submartingale,
then for every real c, {Yt := max(Xt , c)} is a submartingale. In particular, {X+

t :=
max(Xt , 0)} is a submartingale.

Remark 3.2 It may be noted that in (3.8), (3.9), the σ-field Fn is σ(X1, . . . , Xn),
and not σ(ϕ(X1), . . . ,ϕ(Xn)), as seems to be required by the first definitions in
(3.1), (3.6). It is, however, more convenient to give the definition of a martingale
(or a submartingale) with respect to a filtration {Fn} for which (3.1) holds (or
respectively, (3.6) holds) assuming at the outset that Xn is Fn-measurable (n ≥ 1)
(or, as one often says, {Xn} is {Fn}-adapted). One refers to this sequence as an
{Fn}-martingale (respectively {Fn}-submartingale). An important example of an
Fn larger than σ(X1, . . . , Xn) is given by “adding independent information” via
Fn = σ(X1, . . . , Xn) ∨ G, where G is a σ-field independent of σ(X1, X2, . . . ), and
G1 ∨ G2 denotes the smallest σ-field containing G1 ∪ G2. We formalize this with the
following definition; also see Exercise 13.

Definition 3.3 (Second General Definition) Let T be an arbitrary linearly ordered
set and suppose {Xt : t ∈ T } is a stochastic process with (integrable) values in R

and defined on a probability space (Ω,F , P). Let {Ft : t ∈ T } be a nondecreasing
collection of sub-σ-fields of F , referred to as a filtration, i.e., Fs ⊂ Ft if s ≤
t. Assume that for each t ∈ T , Xt is adapted to Ft in the sense that Xt is Ft -
measurable. We say that {Xt : t ∈ T } is amartingale, respectively submartingale,
supermartingale, with respect to the filtration {Ft } if E[Xt |Fs] = Xs, ∀s, t ∈
T, s ≤ t, respectively ≥ Xs,∀s, t ∈ T, s ≤ t, or ≤ Xs ∀s, t ∈ T, s ≤ t.

http://dx.doi.org/10.1007/978-3-319-47974-3_2
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Example 3 Let X be an integrable random variable on (Ω,F , P) and let {Fn : n ≥
1} be a filtration of F . One may check that the stochastic process defined by

Xn := E(X |Fn) (n ≥ 1) (3.10)

is an {Fn}-martingale.

Note that for submartingales the expected values are nondecreasing,while those of
supermartingales are nonincreasing.Of course,martingales continue to have constant
expected values under this more general definition.

Theorem 3.2 (Doob’s Maximal Inequality) Let {X1, X2, . . . , Xn} be an {Fk : 1 ≤
k ≤ n}-martingale, or a nonnegative submartingale, and E|Xn|p < ∞ for some
p ≥ 1. Then, for all λ > 0, Mn := max{|X1|, . . . , |Xn|} satisfies

P(Mn ≥ λ) ≤ 1

λp

∫

[Mn>λ]
|Xn|pd P ≤ 1

λp
E|Xn|p. (3.11)

Proof Let A1 = [|X1| ≥ λ], Ak = [|X1| < λ, . . . , |Xk−1| < λ, |Xk | ≥ λ]
(2 ≤ k ≤ n). Then Ak ∈ Fk and [Ak : 1 ≤ k ≤ n] is a (disjoint) partition of
[Mn ≥ λ]. Therefore,

P(Mn ≥ λ) =
n∑

k=1

P(Ak) ≤
n∑

k=1

1

λp
E(1Ak |Xk |p) ≤

n∑

k=1

1

λp
E(1Ak |Xn|p)

= 1

λp

∫

[Mn≥λ]
|Xn|pd P ≤ E|Xn|p

λp
.

�

Remark 3.3 The classicalKolmogorovmaximal inequality for sums of i.i.d. mean
zero, square-integrable random variables is a special case of Doob’s maximal
inequality obtained by taking p = 2 for the martingales of Example 1 having
square-integrable increments.

Corollary 3.3 Let {X1, X2, . . . , Xn} be an {Fk : 1 ≤ k ≤ n}-martingale such that
E|Xn|p < ∞ for some p ≥ 2, and Mn = max{|X1|, . . . , |Xn|}. Then EMp

n ≤
pqE|Xn|p.
Proof A standard application of the Fubini–Tonelli theorem (see (1.10)) provides
the second moment formula

EMp
n = p

∫ ∞

0
x p−1P(Mn > x)dx .

Noting that p − 1 ≥ 1 to first apply the Doob maximal inequality (3.11), one then
makes another application of the Fubini–Tonelli theorem, and finally the Hölder
inequality, noting pq − q = p for the conjugacy 1

p + 1
q = 1, to obtain

http://dx.doi.org/10.1007/978-3-319-47974-3_1


III Martingales and Stopping Times 57

EMp
n ≤ p

∫ ∞

0
E

(|Xn|p−11[Mn≥x]
)
dx = pE

(|Xn|p−1Mn
)

≤ p(E|Xn|(p−1)q)
1
q (EMp

n )
1
p .

Divide both sides by (E|Mn|p) 1
p and use monotonicity of x → x

1
q , x ≥ 0, to

complete the proof. �

Doob also obtained a bound of this type for p > 1with a smaller constant q p ≤ pq

when p ≥ 2, but it also requires a bit more clever estimation than in the above proof.
Doob’s statement and proof are as follows.

Theorem 3.4 (Doob’sMaximal Inequality forMoments) Suppose that {X1, X2, . . . ,

Xn} is an {Fk : 1 ≤ k ≤ n}-martingale, or a nonnegative submartingale, and let
Mn = max{|X1|, . . . , |Xn|}. Then
1. EMn ≤ e

e−1

(
1 + E|Xn| log+ |Xn|

)
.

2. If E|Xn|p < ∞ for some p > 1, then EMp
n ≤ q p

E|Xn|p, where q is the
conjugate exponent defined by 1

q + 1
p = 1, i.e., q = p

p−1 .

Proof For any nondecreasing function F1 on [0,∞) with F1(0) = 0, one may
define a corresponding Lebesgue–Stieltjes measure μ1(dy). Use the integration by
parts Proposition 1.4, to get

EF1(Mn) =
∫

[0,∞)

P(Mn ≥ y)F1(dy)

≤
∫

[0,∞)

[1

y

∫

[Mn≥y]
|Xn|dP

]
F1(dy)

=
∫

Ω

|Xn|
(
∫

[0,Mn ]
1

y
F1(dy)

)
dP, (3.12)

where the integrability follows from Theorem 3.2 (with p = 1). For the first part,
consider the function F1(y) = y1[1,∞)(y). Then y − 1 ≤ F1(y), and one gets

E(Mn − 1) ≤ EF1(Mn) ≤
∫

Ω

∣
∣Xn|

∫

[1,max{1,Mn}]
y
1

y
dy

)
dP

=
∫

Ω

|Xn| log(max{1, Mn})dP

=
∫

[Mn≥1]
|Xn| logMndP. (3.13)

Now use the inequality (proved in the remark below)

a log b ≤ a log+ a + b

e
, a, b ≥ 0, (3.14)

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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to further arrive at

EMn ≤ 1 + E|Xn| log+ |Xn| + EMn

e
. (3.15)

This establishes the inequality for the case p = 1. For p > 1 take F1(y) = y p. Then

EMp
n ≤ E

(|Xn|
∫

[0,Mn ]
py p−2dy

)

= E
(|Xn| p

p − 1
Mp−1

n

)

≤ p

p − 1
(E|Xn|p) 1

p (EM (p−1)q
n )

1
q

= q(E|Xn|p) 1
p (EMp

n )
1
q . (3.16)

The bound for p > 1 now follows by dividing by (EMp
n )

1
q and a little algebra. �

Remark 3.4 To prove the inequality (3.14) it is sufficient to consider the case 1 <

a < b, since it obviously holds otherwise. In this case it may be expressed as

log b ≤ log a + b

ae
,

or

log
b

a
≤ b

ae
.

But this follows from the fact that f (x) = log x
x , x > 1, has a maximum value 1

e .

Corollary 3.5 Let {Xt : t ∈ [0, T ]} be a right-continuous nonnegative {Ft }-
submartingale with E|XT |p < ∞ for some p ≥ 1. Then MT := sup{Xs : 0 ≤
s ≤ T } is FT -measurable and, for all λ > 0,

P(MT > λ) ≤ 1

λp

∫

[MT >λ]
X p
T d P ≤ 1

λp
EX p

T . (3.17)

Proof Consider the nonnegative submartingale {X0, . . . , XTi2−n , . . . , XT }, for each
n = 1, 2, . . . , and let Mn := max{XiT 2−n : 0 ≤ i ≤ 2n}. For λ > 0, [Mn > λ] ↑
[MT

> λ] as n ↑ ∞. In particular, MT is FT -measurable. By Theorem 3.2,

P(Mn > λ) ≤ 1

λp

∫

[Mn>λ]
X p
T d P ≤ 1

λp
EX p

T .

Letting n ↑ ∞, (3.17) is obtained. �
We finally come to the notions of stopping times, and optional timeswhich pro-

vide a powerful probabilistic tool to analyze processes by viewing themat appropriate
random times.
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Definition 3.4 Let {Ft : t ∈ T } be a filtration on a probability space (Ω,F , P),

with T a linearly ordered index set to which one may adjoin, if necessary, a point
‘∞’ as the largest point of T ∪ {∞}. A random variable τ : Ω → T ∪ {∞} is an
{Ft }-stopping time if [τ ≤ t] ∈ Ft ∀ t ∈ T . If [τ < t] ∈ Ft for all t ∈ T then τ is
called an optional time.

Most commonly, T in this definition is N or Z+, or [0,∞), and τ is related to an
{Ft }-adapted process {Xt : t ∈ T }.

The intuitive idea of τ as a stopping-time strategy is that to “stop by time t , or
not,” according to τ , is determined by the knowledge of the past up to time t , and
does not require “a peek into the future.”

Example 4 Let {Xt : t ∈ T } be an {Ft }-adapted process with values in a measurable
space (S,S), with a linearly ordered index set. (a) If T = N or Z+, then for every
B ∈ S,

τB := inf{t ≥ 0 : Xt ∈ B} (3.18)

is an {Ft }-stopping time. (b) If T = R+ ≡ [0,∞), S is a metric space S = B(S),

and B is closed, t → Xt is continuous, then τB is an {Ft }-stopping time. (c) If
T = R+, S is a topological space, t → Xt is right-continuous, and B is open, then
[τB < t] ∈ Ft for all t ≥ 0, and hence τB is an optional time; see Definition 3.4.

We leave the proofs of (a)–(c) as Exercise 11. Note that (b), (c) imply that under
the hypothesis of (b), τB is an optional time if B is open or closed; recall Definition
3.4.

Definition 3.5 Let {Ft : t ∈ T } be a filtration on (Ω,F). Suppose that τ is a {Ft }-
stopping time. The pre-τ σ-fieldFτ comprises all A ∈ F such that A∩[τ ≤ t] ∈ Ft

for all t ∈ T .

Heuristically,Fτ comprises events determined by information available only up to
time τ . For example, if T is discrete with elements t1 < t2 < · · · , and Ft = σ(Xs :
0 ≤ s ≤ t) ⊂ F ,∀t, where {Xt : t ∈ T } is a process with values in some
measurable space (S,S), then Fτ = σ(Xτ∧t : t ≥ 0); (Exercise 9). The stochastic
process {Xτ∧t : t ≥ 0} is referred to as the stopped process. The notation ∧ is
defined by a ∧ b = min{a, b}. Similarly ∨ is defined by a ∨ b = max{a, b}.

If τ1, τ2 are two {Ft }-stopping times and τ1 ≤ τ2, then it is simple to check that

Fτ1 ⊂ Fτ2 . (3.19)

Suppose {Xt } is an {Ft }-adapted processwith values in ameasurable space (S,S),

and τ is an {Ft }-stopping time. For many purposes the following notion of adapted
joint measurability of (t,ω) → Xt (ω) is important.

Definition 3.6 Let T = [0,∞) or T = [0, t0] for some t0 < ∞. A stochastic process
{Xt : t ∈ T } with values in a measurable space (S,S) is progressively measurable
with respect to {Ft } if for each t ∈ T, the map (s,ω) → Xs(ω), from [0, t] × Ω to
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S is measurable with respect to the σ-fields B[0, t] ⊗ Ft (on [0, t] × Ω) and S (on
S). Here B[0, t] is the Borel σ-field on [0, t], and B[0, t] ⊗ Ft is the usual product
σ-field.

Proposition 3.6 (a) Suppose {Xt : t ∈ T } is progressively measurable, and τ is a
stopping time. Then Xτ is Fτ -measurable, i.e., [Xτ ∈ B] ∩ [τ ≤ t] ∈ Ft for each
B ∈ S and each t ∈ T . (b) Suppose S is a metric space and S its Borel σ-field. If
{Xt : t ∈ T } is right-continuous, then it is progressively measurable.

Proof (a) Fix t ∈ T . On the set Ωt := [τ ≤ t], Xτ is the composition of the maps
(i) f (ω) := (τ (ω),ω), from ω ∈ Ωt into [0, t] × Ωt , and (ii) g(s,ω) = Xs(ω) on
[0, t] × Ωt into S. Now f is F̃t -measurable on Ωt , where F̃t := {A ∩ Ωt : A ∈ Ft }
is the trace σ-field on Ωt , and B[0, t] ⊗ F̃t is the σ-field on [0, t] × Ωt . Next the
map g(s,ω) = Xs(ω) on [0, t]×Ω into S isB[0, t]⊗Ft -measurable. Therefore, the
restriction of this map to the measurable subset [0, t]×Ωt is measurable on the trace
σ-field {A∩ ([0, t] × Ωt ) : A ∈ B[0, t] ⊗Ft }. Therefore, the composition Xτ is F̃t -
measurable on Ωt , i.e., [Xτ ∈ B] ∩ [τ ≤ t] ∈ F̃t ⊂ Ft and hence [Xτ ∈ B] ∈ Fτ ,

for B ∈ S.

(b) Fix t ∈ T . Define, for each positive integer n, the stochastic process {X (n)
s :

0 ≤ s ≤ t} by

X (n)
s := X j2−n t for ( j − 1)2−nt ≤ s < j2−nt (1 ≤ j ≤ 2n), X (n)

t = Xt .

Since {(s,ω) ∈ [0, t] × Ω : X (n)
s (ω) ∈ B} = ∪2n

j=1([ j − 1)2−nt, j2−nt) × {ω :
X j2−n t (ω) ∈ B}) ∪ ({t} × {ω : Xt (ω) ∈ B}) ∈ B[0, t] ⊗ Ft , it follows that {X (n)

t }
is progressively measurable. Now X (n)

t (ω) → Xt (ω) for all (t,ω) as n → ∞, in
view of the right-continuity of t → Xt (ω). Hence {Xt : t ∈ T } is progressively
measurable. �

Remark 3.5 It is often important to relax the assumption of ‘right-continuity’ of
{Xt : t ∈ T } to “a.s. right-continuity.” To ensure progressive measurability in this
case, it is convenient to take F ,Ft to be P-complete, i.e., if P(A) = 0 and B ⊂ A
then B ∈ F and B ∈ Ft ∀ t. Then modify Xt to equal X0 ∀ t on the P-null set
N = {ω : t → Xt (ω) is not right-continuous}. This modified {Xt : t ∈ T }, together
with {Ft : t ∈ T } satisfy the hypothesis of part (b) of Proposition 3.6.

The following proposition is distinguished as a characterization of the uniformly
integrable martingales as conditional expectations.

Proposition 3.7 (a) Let Y be integrable and Fn(n = 1, 2, . . .) a filtration. Then the
martingale Yn = E(Y |Fn) is uniformly integrable. (b) Suppose Yn is aFn-martingale
(n = 1, 2, . . .) such that Yn → Y in L1. Then Yn = E(Y |Fn), n ≥ 1.

Proof (a) Note that P(|Yn| > λ) ≤ E|Yn |
λ

≤ E|Y |
λ

for λ > 0. Hence, given ε > 0,
there exist λ > 0 such that P(|Yn| > λ) < ε for all n. Therefore, E(1[|Yn |>λ]|Yn|) ≤
E(1[|Yn |>λ]E(|Y ||Fn)) = E(1[|Yn |>λ]|Y |) → 0 as λ → ∞ uniformly in n (see Exer-
cise 14). (b) Let A ∈ Fm . Then E(1AYm) = E(1AYn) for all n ≥ m. Taking the limit
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as n → ∞, we have E(1AYm) = E(1AY ) for all A ∈ Fm . That is, Ym = E(Y |Fm).

�

Remark 3.6 One can show that aFn-martingale {Zn : n ≥ 1} has the representation
Zn = E(Z |Fn) iff it is uniformly integrable, and then Zn → Z a.s. and in L1.
Indeed, a uniformly integrable martingale converges a.s. and in L1 by the martingale
convergence theorem; see Theorems 1.10 and 3.12.

One of the important implications of the martingale property is that of constant
expected values.Let us consider a substantially stronger property. Consider a discrete
parametermartingale sequence X0, X1, . . . , and stopping time τ with respect to some
filtration Fn, n ≥ 0. Let m be an integer and suppose that τ ≤ m. For G ∈ Fτ , write
g = 1G . One has that G ∩ [τ = k] = (G ∩ [τ ≤ k])\(G ∩ [τ ≤ k − 1]) ∈ Fk from
the definition of Fτ . It follows from the martingale property E(Xm |Fk) = Xm , one
has

E(gXτ ) =
m∑

k=0

E(g1[τ=k]Xk)

=
m∑

k=0

E(g1[τ=k]E(Xm |Fk))

=
m∑

k=0

E(g1[τ=k]Xm) = E(gXm). (3.20)

Thus the constancy of expectations EXn = EX0 property of martingales extends to
certain stopping times τ in place of n. However, as illustrated in Example 5, below,
this requires some further conditions on τ thanmerely being a stopping time to extend
to unbounded cases. The following theorem provides precisely such conditions.

Theorem 3.8 (Optional Stopping) Let {Xt : t ∈ T } be a right-continuous {Ft }-
martingale, where T = N or T = [0,∞). (a) If τ1 ≤ τ2 are bounded stopping times,
then

E(Xτ2 |Fτ1) = Xτ1 . (3.21)

(b) (Optional Sampling). If τ is a stopping time (not necessarily finite), then {Xτ∧t :
t ∈ T } is an {Fτ∧t }t∈T -martingale.

(c) Suppose τ1 ≤ τ2 are stopping times such that (i) P(τ2 < ∞) = 1, and (ii)
Xτ2∧t (t ∈ T ) is uniformly integrable. Then

E(Xτ2 |Fτ1) = Xτ1 . (3.22)

In particular,
E(Xτ2) = E(Xτ1) = E(X0).

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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Proof First we consider the case T = N. In the case that τ2 is bounded by some
positive integer m, it follows from the above calculation (3.20) that

E(Xm |Fτ2) = Xτ2 .

Thus if τ1 ≤ τ2 ≤ m, then one also has

E(Xm |Fτ1) = Xτ1 .

In other words, the two term sequence Xτ1 , Xτ2 is a martingale with respect to
Fτ1 ,Fτ2 . Hence it follows from the “smoothing property”of conditional expecta-
tion that Xτ1 = E(Xm |Fτ1) = E(E(Xm |Fτ2)|Fτ1) = E(Xτ2 |Fτ1). This proves (a) in
the discrete parameter case. Part (b) follows directly from (a) since τ1 := τ ∧ n ≤
τ2 := n < ∞ for any n, and both of these τ1, τ2, so-defined, are stopping times. For
(c), let G ∈ Fτ1 . Then, G ∩ [τ1 ≤ n] ∈ Fn . Also G ∩ [τ1 ≤ n] ∈ Fτ1∧n. To see this,
for m ≥ n, G ∩ [τ1 ≤ n]) ∩ [τ1 ∧ n ≤ m] = G ∩ [τ1 ≤ n] ∈ Fn ⊂ Fm , and if
m < n then (G ∩ [τ1 ≤ n]) ∩ [τ1 ∧ n ≤ m] = G ∩ [τ1 ≤ m] ∈ Fm . So in either case
G ∩ [τ1 ≤ n] ∈ Fτ1∧n. Also τ1 ∧ n ≤ τ2 ∧ n. By part (a), E(Xτ2∧n|Fτ1∧n) = Xτ1∧n .
Thus

E(g1[τ1≤n]Xτ2∧n) = E(g1τ1≤n]Xτ1∧n), g = 1G . (3.23)

So, by the uniform integrability of Xτ2∧n , and the fact that Xτ2∧n → Xτ2 a.s. as
n → ∞, one has Xτ2∧n → Xτ2 in L1. Now observe that the uniform integrability
of Xτ2∧n implies that of Xτ1∧n, n ≥ 1, as follows: Since Xτ2∧n, n ≥ 1, is uniformly
integrable, it converges in L1 (and a.s.) to Xτ2 , and Xτ2∧n = E(Xτ2 |Fτ2∧n). Therefore
Xτ1∧n = E(Xτ2∧n|Fτ1∧n) = E[E(Xτ2 |Fτ2∧n)|Fτ1∧n] = E(Xτ2 |Fτ1∧n). Uniform inte-
grability of Xτ1∧n, n ≥ 1, now follows from Proposition 3.7(a). Putting this uniform
integrability together, it follows that the left side of (3.23) converges to E(gXτ2) and
the right side to E(gXτ1). Since this is for any g = 1G,G ∈ Fτ1 , the proof of (b)
follows.

Next we consider the case T = [0,∞). Let τ1 ≤ τ2 ≤ t0 a.s. The idea for the
proof is, as above, to check that E[Xt0 |Fτi ] = Xτi , for each of the stopping times
(i = 1, 2) simply by virtue of their being bounded. Once this is established, the result
(a) follows by smoothing of conditional expectation, sinceFτ1 ⊂ Fτ2 . That is, it will
then follow that

E[Xτ2 |Fτ1] = E[E(Xt0 |Fτ2)|Fτ1] = E[Xt0 |Fτ1] = Xτ1 .

So let τ denote either of τi , i = 1, 2, and consider E[Xt0 |Fτ ]. For each n ≥ 1
consider the nth dyadic subdivision of [0, t0] and define τ (n) = (k + 1)2−nt0 if
τ ∈ [k2−nt0, (k + 1)2−nt0)(k = 0, 1, . . . , 2n − 1), and τ (n) = t0 if τ = t0. Then
τ (n) is a stopping time and Fτ ⊂ Fτ (n) (since τ ≤ τ (n)). For G ∈ Fτ , exploiting the
martingale property E[Xt0 |F(k+1)2−n t0 ] = Xt(k+1)2−n t0

, one has
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E(1G Xt0) =
2n−1∑

k=0

E(1G∩[τ (n)=(k+1)2−n t0]Xt0)

=
2n−1∑

k=0

E(1G∩[τ (n)=(k+1)2−n t0]X(k+1)2−n t0)

=
2n−1∑

k=0

E(1G∩[τ (n)=(k+1)2−n t0]Xτ (n) )

= E(1G Xτ (n) ) → E(1G Xτ ). (3.24)

The last convergence is due to the L1-convergence criterion of Theorem 1.10 in
view of the following checks: (1) Xt is right-continuous (and τ (n) ↓ τ ), so that
Xτ (n) → Xτ a.s., and (2) Xτ (n) is uniformly integrable, since by the submartingale
property of {|Xt | : t ∈ T },

E(1[|Xτ (n) |>λ]|Xτ (n) |) =
2n−1∑

k=0

E(1[τ (n)=(k+1)2−n t0]∩[|Xτ (n) |>λ]|X(k+1)2−n t0 |)

≤
2n−1∑

k=0

E(1[τ (n)=(k+1)2−n t0]∩[|Xτ (n) |>λ]|Xt0 |)

= E(1[|Xτ (n) |>λ]|Xt0 |) → E(1[|Xτ |>λ]|Xt0 |).

Since the left side of (3.24) does not depend on n, it follows that

E(1G Xt0) = E(1G Xτ ) ∀ G ∈ Fτ ,

i.e., E(Xt0 |Fτ ) = Xτ applies to both τ = τ1 and τ = τ2. The result (a) therefore
follows by the smoothing property of conditional expectations noted at the start of
the proof.

As in the discrete parameter case, (b) follows immediately from (a). For if s < t
are given, then τ ∧ s and τ ∧ t are both bounded by t , and τ ∧ s ≤ τ ∧ t.

(c) Since τ < ∞ a.s., τ ∧ t equals τ for sufficiently large t (depending on
ω), outside a P-null set. Therefore, Xτ∧t → Xτ a.s. as t → ∞. By assumption
(ii), Xτ∧t (t ≥ 0) is uniformly integrable. Hence Xτ∧t → Xτ in L1. In particular,
E(Xτ∧t ) → E(Xτ ) as t → ∞. But EXτ∧t = EX0 ∀ t , by (b). �

Remark 3.7 If {Xt : t ∈ T } in Theorem 3.8 is taken to be a submartingale, then
instead of the equality sign “=” in (3.21), (3.22), one gets “≤.”

Remark 3.8 The stopping time approximation technique used in the proof of Theo-
rem 3.8, to obtain a decreasing sequence τ (1) ≥ τ (2) ≥ · · · of discrete stopping times
converging to τ , is adaptable to any number of situations involving the analysis of
processes having right-continuous sample paths.

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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The following proposition and its corollary are often useful for verifying the
hypothesis of Theorem 3.8 in examples.

Proposition 3.9 Let {Zn : n ∈ N} be real-valued random variables such that for
some ε > 0, δ > 0, one has

P(Zn+1 > ε | Gn) ≥ δ a.s. ∀ n = 0, 1, 2, . . .

or
P(Zn+1 < −ε | Gn) ≥ δ a.s. ∀ n = 0, 1, 2, . . . , (3.25)

where Gn = σ{Z1, . . . , Zn} (n ≥ 1), G0 = {∅,Ω}. Let Sx
n = x + Z1 + · · · + Zn

(n ≥ 1), Sx
0 = x , and let a < x < b. Let τ be the first escape time of {Sx

n } from
(a, b), i.e., τ = τ x = inf{n ≥ 1 : Sx

n ∈ (a, b)c}. Then τ < ∞ a.s. and

sup
{x :a<x<b}

Eeτ z < ∞ for − ∞ < z <
1

n0

(

log
1

1 − δ0

)

, (3.26)

writing [y] for the integer part of y,

n0 =
[
b − a

ε

]

+ 1, δ0 = δn0 . (3.27)

Proof Suppose thefirst relation in (3.25) holds.Clearly, if Z j > ε∀ j = 1, 2, . . . , n0,
then Sx

n0 > b, so that τ ≤ n0. Therefore, P(τ ≤ n0) ≥ P(Z1 > ε, . . . , Zn0 > ε) ≥
δn0 , by taking successive conditional expectations (given Gn0−1,Gn0−2, . . . ,G0, in
that order). Hence P(τ > n0) ≤ 1 − δn0 = 1 − δ0. For every integer k ≥ 2, P(τ >

kn0) = P(τ > (k − 1)n0, τ > kn0) = E[1[τ>(k−1)n0]P(τ > kn0|G(k−1)n0)] ≤ (1 −
δ0)P(τ > (k − 1)n0), since, on the set [τ > (k − 1)n0], P(τ ≤ kn0|G(k−1)n0) ≥
P(Z(k−1)n0+1 > ε, . . . , Zkn0 > ε|G(k−1)n0) ≥ δn0 = δ0. Hence, by induction, P(τ >

kn0) ≤ (1 − δ0)
k . Hence P(τ = ∞) = 0, and for all z > 0,

Eezτ =
∞∑

r=1

ezr P(τ = r) ≤
∞∑

k=1

ezkn0
kn0∑

r=(k−1)n0+1

P(τ = r)

≤
∞∑

k=1

ezkn0 P(τ > (k − 1)n0) ≤
∞∑

k=1

ezkn0(1 − δ0)
k−1

= ezn0(1 − (1 − δ0)e
zn0)−1 if ezn0(1 − δ0) < 1.

An entirely analogous argument holds if the second relation in (3.25) holds. �

The following corollary immediately follows from Proposition 3.9.

Corollary 3.10 Let {Zn : n = 1, 2, . . .} be an i.i.d. sequence such that P(Z1 =
0) < 1. Let Snn = x + Z1 + · · · + Zn (n ≥ 1), Sx

0 = x , and a < x < b. Then the



III Martingales and Stopping Times 65

first escape time τ of the random walk from the interval (a, b) has a finite moment
generating function in a neighborhood of 0.

Example 5 Let Zn(n ≥ 1) be i.i.d. symmetric Bernoulli, P(Zi = +1) = P(Zi =
−1) = 1

2 , and let Sx
n = x + Z1 + · · · + Zn(n ≥ 1), Sx

0 = x , be the simple
symmetric random walk on the state space Z, starting at x . Let a ≤ x ≤ b be
integers, τy := inf{n ≥ 0 : Sx

n = y}, τ = τa ∧ τb = inf{n ≥ 0 : Sx
n ∈ {a, b}}.

Then {Sx
n : n ≥ 0} is a martingale and τ satisfies the hypothesis of Theorem 3.8(c)

(Exercise 4). Hence

x ≡ ESx
0 = ESx

τ = aP(τa < τb) + bP(τb < τa) = a + (b − a)P(τb < τa),

so that

P(τb < τa) = x − a

b − a
, P(τa < τb) = b − x

b − a
, a ≤ x ≤ b. (3.28)

Letting a ↓ −∞ in the first relation, and letting b ↑ ∞ in the second, one arrives
at the conclusion that the simple symmetric random walk reaches every state with
probability one, no mater where it starts. This property is referred to as recurrence;
also see Example 9, of Chapter II. To illustrate the importance of the hypothesis
imposed on τ in Theorem 3.8(c), one may naively try to apply (3.22) to τb (see
Exercise 4) and arrive at the silly conclusion x = b!

Example 6 One may apply Theorem 3.8(c) to a simple asymmetric random walk
with P(Zi = 1) = p, P(Zi = −1) = q ≡ 1 − p(0 < p < 1, p �= 1/2),
so that Xx

n := Sx
n − (2p − 1)n (n ≥ 1), Xx

0 ≡ x, is a martingale. Then with
τa, τb, τ = τa ∧ τb as above, one gets

x ≡ EXx
0 = EXx

τ = ESx
τ − (2p − 1)Eτ = a + (b − a)P(τb < τa) − (2p − 1)Eτ .

(3.29)
Since we do not know Eτ yet, we can not quite solve (3.29). We therefore use a sec-
ond martingale (q/p)S

x
n (n ≥ 0). Note that E[(q/p)S

x
n+1 |σ{Z1, . . . , Zn}] = (q/p)S

x
n ·

E[(q/p)Zn+1] = (q/p)S
x
n [(q/p)p + (q/p)−1q] = (q/p)S

x
n · 1 = (q/p)S

x
n , proving

themartingale property of the “exponential process”Yn := (q/p)S
x
n = exp(cSx

n ), c =
ln(q/p), n ≥ 0. Note that (q/p)S

x
τ∧n ≤ max{(q/p)y : a ≤ y ≤ b}, which is a finite

number. Hence the hypothesis of uniform integrability holds. Applying (3.22) we get

(q/p)x = (q/p)a · P(τa < τb) + (q/p)b P(τb < τa),

or

P(τb < τa) = (q/p)x − (q/p)a

(q/p)b − (q/p)a
≡ ϕ(x) (a ≤ x ≤ b). (3.30)

Using this in (3.29) we get

Eτ ≡ Eτa ∧ τb = x − a − (b − a)ϕ(x)

1 − 2p
, a ≤ x ≤ b. (3.31)

http://dx.doi.org/10.1007/978-3-319-47974-3_2
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Suppose now that p < q, i.e., p < 1
2 . Letting a ↓ −∞ in (3.30), one sees that the

probability of ever reaching b starting from x < b is (
p
q )b−x < 1. Similarly if p > 1

2 ,
i.e., q < p, then the probability of ever reaching a starting from x > a is (

q
p )

x−a < 1
(Exercise 6).

Very loosely speaking the submartingale and and supermartingale properties con-
vey a sense of “monotonicity”in predictions of successive terms based on the past.
This is so much so that the expected values comprise a monotone sequence of num-
bers. Recall from calculus that every sequence of real numbers bounded above (or
below) must have a limit. Perhaps some form of “boundedness”at least seems worthy
of consideration in the context of martingale convergence ? Indeed, as we now see,
the implications are striking!

Let {Zn : n = 1, 2, . . . } be a {Fn}∞n=1-submartingale, and a < b arbitrary real
numbers. Recursively define successive crossing times of (a, b) by η1 = 1, η2 =
inf{n ≥ 1 : Zn ≥ b}, η2k−1 = inf{n ≥ η2k−2 : Zn ≤ a}, η2k = inf{n ≥ η2k−1 :
Zn ≥ b}. In particular η2k is the time of the k-th upcrossing of the interval (a, b)
by the sequence {Zn : n = 1, 2, . . . }. η2k is also the time of the k-th upcrossing of
(0, b − a) by the sequence Xn = max(Zn − a, 0) = (Zn − a)+, n ≥ 1. Note that
these crossing times are in fact stopping times. Also, Xn is nonnegative and Xn = 0
if Zn ≤ a, and Xn ≥ b − a if Zn ≥ b.

For a positive integer N , consider their truncations τk = ηk ∧ N , which are also
{Fn}-stopping times, in fact, bounded stopping times. Let UN = max{k : η2k ≤ N }
denote the number of upcrossings of (a, b) by {Zn : n = 1, 2 . . . } by the time N .
ThenUN may also be viewed as the number of upcrossings of the interval (0, b− a)

by the submartingale Xn(n = 1, 2, . . . ).

Theorem 3.11 (Doob’s Upcrossing Inequality)Let {Zn : n ≥ 1} be a {Fn}-submart-
ingale, and a < b arbitrary real numbers. Then the number UN of upcrossings of
(a, b) by time N satisfies

EUN ≤ E(ZN − a)+ − E(Z1 − a)+

b − a
≤ E|ZN | + |a|

b − a
.

Proof For k > UN + 1, η2k > N , and η2k−1 > N so that τ2k = N and τ2k−1 = N .
Hence, Xτ2k = XN = Xτ2k−1 . If k ≤ UN then η2k ≤ N , and η2k−1 ≤ N so that
Xτ2k ≥ b − a, 0 = Xτ2k−1 = Xη2k−1 . Now suppose k = UN + 1. Then η2k > N and
Xτ2k = XN . Also, either η2k−1 ≥ N so that τ2k−1 = N , and Xτ2k−1 = XN , Xτ2k −
Xτ2k−1 = 0, or η2k−1 < N , in which case η2k−1 = τ2k−1 and Xτ2k−1 = 0, so that
Xτ2k − Xτ2k−1 = XN ≥ 0. Thus, in any case, if k = UN + 1, Xτ2k − Xτ2k−1 ≥ 0. Now
choose a (nonrandom) integer m > N

2 + 2. Then m > UN + 1 and one has
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XN − X1 = Xτ2m − X1 =
m∑

k=1

(Xτ2k − Xτ2k−1) +
m∑

k=2

(Xτ2k−1 − Xτ2k−2)

=
UN+1∑

k=1

(Xτ2k − Xτ2k−1) +
m∑

k=2

(Xτ2k−1 − Xτ2k−2)

≥ (b − a)UN +
m∑

k=2

(Xτ2k−1 − Xτ2k−2). (3.32)

Taking expected values and using the fact from the optional sampling theorem that
{Xτk : k ≥ 1} is a submartingale, one has

EXN − EX1 ≥ (b − a)EUN .

�
Remark 3.9 Observe that the relations (3.32) do not require the submartingale
assumption on {Zn : n ≥ 1}. It is merely a relationship among a sequence of
numbers.

One of the most significant consequences of the uncrossing inequality is the
following.

Theorem 3.12 (Submartingale Convergence Theorem) Let {Zn : n ≥ 1} be a sub-
martingale such that E(Z+

n ) is a bounded sequence. Then {Zn : n ≥ 1} converges
a.s. to a limit Z∞. If M := supn E|Zn| < ∞, then Z∞ is a.s. finite and E|Z∞| ≤ M .

Proof LetU (a, b) denote the total number of upcrossings of (a, b) by {Zn : n ≥ 1}.
Then UN (a, b) ↑ U (a, b) as N ↑ ∞. Therefore, by the monotone convergence
theorem

EU (a, b) = lim
N↑∞EUN (a, b) ≤ sup

N

EZ+
N + |a|
b − a

< ∞. (3.33)

In particular U (a, b) < ∞ almost surely, so that

P (lim inf Zn < a < b < lim sup Zn) = 0. (3.34)

Since this holds for every pair a, b = a + 1
m with aεQ and m a positive integer, and

the set of all such pairs is countable, one must have lim inf Zn = lim sup Zn almost
surely. Let Z∞ denote the a.s. limit. By Fatou’s lemma, E|Z∞| ≤
limE|Zn|. �

An immediate consequence of Theorem 3.12 is

Corollary 3.13 A nonnegative martingale {Zn : n ≥ 1} converges almost surely to
a finite limit Z∞. Also, EZ∞ ≤ EZ1.

Proof For a nonnegative martingale {Zn : n ≥ 1}, |Zn| = Zn and therefore,
supE|Zn| = supEZn = EZ1 < ∞. Hence the Corollary follows from Theorem
3.12. �
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The following Corollary provides an illustrative application of this theory.

Corollary 3.14 Suppose X1, X2, . . . is a sequence of independent, nonnegative ran-
dom variables such that

∑∞
n=1 EXn < ∞. Then

∑∞
n=1 Xn converges almost surely.

Proof Since Zn = ∑n
j=1(X j − EX j ), n ≥ 1, is a martingale with EZ+

n ≤ 2
∑∞

j=1

EX j < ∞ for all n, one has that Z∞ = limn→∞ Zn exists. Thus
∑n

j=1 X j =
Zn + ∑n

j=1 EX j has an a.s. limit as n → ∞. �

Doob’s upcrossing inequality (Theorem 3.11) also applies to the so-called reverse
martingales, submartingales defined as follows.

Definition 3.7 Let Fn, n ≥ 1, be a decreasing sequence of sub-sigmafields of F ,
i.e., F ⊃ Fn ⊃ Fn+1, n = 1, 2, . . . . A sequence {Xn : n ≥ 1} of integrable
random variables on (Ω,F , P) is said to be a reverse submartingalewith respect to
Fn, n ≥ 1, if Xn isFn-measurable and E(Xn|Fn+1) ≥ Xn+1,∀n. If one has equality
for each n then the sequence is called a reverse martingalewith respect toFn, n ≥ 1.

Theorem 3.15 (Reverse submartingale convergence theorem) Let {Xn : n ≥ 1} be
a reverse submartingale with respect to a decreasing sequence Fn, n ≥ 1. Then Xn

converges almost surely to an integrable random variable Z as n → ∞.

Proof For each N > 1, {XN , XN−1, . . . , X1} is a submartingale with respect to the
filtration {FN ,FN−1, . . . ,F1}. Thus, with UN denoting the number of up crossings
of (a, b) by {X1, . . . , XN }, Doob’s inequality yields EUN ≤ E|X1|+|a|

b−a . Arguing as in
the proof of of the submartingale convergence theorem (Theorem 3.12), the desired
result follows. �

Remark 3.10 The martingale proof of the strong law of large numbers provides a
beautiful illustration of Theorem 3.15 that will be given in Chapter V. Viewed this
way, it will follow easily from the reverse martingale convergence theorem that the
limit of the sample averages of an i.i.d. sequence of integrable random variables
exists. However something more is needed to identify the limit (as the expected
value).

Example 7 Let X be an integrable random variable on (Ω,F , P) and Fn, (n ≥ 1),
a decreasing sequence of sigmafields Fn ⊂ F , n ≥ 1. Then Xn = E(X |Fn), n ≥ 1,
is a reverse martingale. Thus Xn → Z a.s. as n → ∞, for some integrable random
variable Z . Note that {Xn : n ≥ 1} is uniformly integrable since

∫
[|Xn |>λ] |Xn|dP ≤

∫
[|Xn |>λ] E(|X ||Fn)dP = ∫

[|Xn |>λ] E(|X ||F1)dP . Hence Xn → Z in L1 as well.

Example 8 It follows from the Corollary that the martingales {Zn := ∏n
j=1 X j }

converge almost surely to an integrable random variable Z∞, if {Xn}∞n=1 is an inde-
pendent nonnegative sequence with EXn = 1 for all n. In the case {Xn}∞n=1 is i.i.d.
and P(X1 = 1) < 1, it is an interesting fact that the limit of {Zn : n ≥ 1} is 0 a.s.,
as shown by the following proposition.



III Martingales and Stopping Times 69

Proposition 3.16 Let {Xn : n ≥ 1} be an i.i.d. sequence of nonnegative random
variables with EX1 = 1. Then {Yn := ∏n

j=1 X j } converges almost surely to 0,
provided P(X1 = 1) < 1.

Proof First assume P(X1 = 0) > 0. Then P(Xn = 0 for some n) = 1− P(Xn > 0
for all n) = 0, since P(X j > 0 for 1 ≤ j ≤ n) = (P(X1 > 0))n . But if Xm = 0
then Zn = 0 for all n ≥ m. Therefore, P(Zn = 0 for all sufficiently large n) = 1.

Assume now P(X1 > 0) = 1. Consider the i.i.d. sequence {log Xn}∞n=1. Since
x → log x is concave one has, by Jensen’s inequality, E log X1 ≤ logEX1 = 0.
Since P(X1 = 1) < 1, for any 0 < h < 1, Xh

1 is not degenerate (i.e., not almost
surely the constant 1.). Hence the Jensen inequality is strict. Therefore, EXh

1 < 1.
Thus, using Fatou’s lemma,

0 ≤ EZh
∞ ≤ lim inf

n→∞ EZh
n = lim inf

n→∞ (EXh
1 )

n = 0.

It follows that Zh∞ = 0 a.s. �

Example 9 (Binary Multiplicative Cascade Measure) Suppose that one is given
a countable collection {Xv : v ∈ ∪∞

n=1{0, 1}n} of positive, mean one random
variables indexed by the set of vertices ∂T = ∪∞

n=1{0, 1}n of a binary tree. For
v = (v1, . . . , vn) ∈ {0, 1}n we write |v| = n. For a given “generation”n ≥ 1, one
may consider a corresponding partition of the unit interval [0, 1) into 2n subinter-
vals [ k−1

2n , k
2n ), k = 1, . . . 2n , and assign mass (area) (

∏n
j=1 Xv| j )2−n to the interval

indexed by v of length 2−n , where v| j = (v1, . . . , v j ), v = (v1, . . . , vn) ∈ {0, 1}n ,
to create a random bar graph. The total area in the graph is then given by

Zn =
∑

|v|=n

n∏

j=1

Xv| j2−n, n = 1, 2, . . . . (3.35)

One may check that {Zn : n ≥ 1} is a positive martingale. Thus limn→∞ Zn = Z∞
exists almost surely. Moreover, Z∞ satisfies the recursion

Z∞ = X0Z∞(0)
1

2
+ X0Z∞(1)

1

2
, (3.36)

where Z∞(0), Z∞(1) aremutually independent, and independent of X0, X1, and have
the same distribution as Z∞. Let 0 < h ≤ 1. Then by sub-linearity of z → zh, z ≥ 0,
one has, for a generic random variable X distributed as an Xv ,

EZh
∞ ≥ 21−h

EXh
EZh

∞.

Thus, if 21−h
EXh > 1 for some 0 < h ≤ 1 then Z∞ = 0 a.s; for otherwise

EZh∞ > 0 and one gets the reverse inequality 21−h
EXh ≤ 1, or χ(h) := logEXh −

(h − 1) log 2 ≤ 0. Since h → χ(h), 0 < h ≤ 1 is convex, this is equivalent to
χ′(1−) = EX log X ≤ log 2. Thus if EX log X > log 2 then Z∞ = 0 a.s. Of course
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if X = 1 a.s. then Z∞ = 1 a.s. as well. In some contexts, the quantity EX log X
is referred to as a disorder parameter and log 2 is a branching rate. The heuristic
condition for a nonzero limit is that the branching rate be sufficiently large relative
to the disorder. This will be confirmed in Chapter V. Let us consider the case in
which X is uniform on [0, 2]. In this case, as will be verified in Chapter V, one can
solve the recursion (3.36), to obtain that Z∞ has a Gamma distribution with density
ze−z, z ≥ 0. As an alternative for now, we will apply the Chebyshev method from
(Chapter I, Example 5) to derive lower bound estimates on P(Z∞ ≤ z), z ≥ 0. One
may check that for X uniformly distributed on [0, 2], EXk = 2k

k+1 , k = 1, 2, . . . .
Moreover, using induction (on k) one sees that the unique positive solution to the
equation of moments corresponding to (3.36), namely

EZk
∞ = 2−k

k∑

j=0

(
k

j

)
2 j

j + 1
EZ j

∞
2k− j

k − j + 1
EZk− j

∞

=
k∑

j=0

(
k

j

)
EZ j

∞
1 + j

EZk− j
∞

1 + k − j
, (3.37)

is given by EZk∞ = (k + 1)!. Thus the Chebyshev method yields

P(Z∞ ≤ x) ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if x ≤ 2,

1 − 6
x2 if 2 < x ≤ 3,

· · ·
1 − (k+1)!

xk if k + 1 < x ≤ k + 2, k = 2, 3, . . . .

(3.38)

Example 10 (Ruin Probability in Insurance Risk) TheCramér–Lundberg, and more
generally Sparre Andersen, models of insurance markets involve insurance claims
of strictly positive random amounts X1, X2, . . . arriving at random time times
T1, T2, . . . , together with a constant premium rate c > 0 per unit time. The two
sequences {Xn : n ≥ 1} of claim sizes and arrival times {Tn : n ≥ 1} are assumed to
be independent.Moreover, the inter-arrival times An = Tn−Tn−1, n ≥ 1, T0 = 0, are
assumed to be i.i.d. positive random variables with EA1 = λ < ∞. For a company
with initial capital reserves u > 0, the probability of ruin is defined by

ψ(u) = P(∪∞
n=1[

n∑

j=1

X j > u + c
n∑

j=1

A j ]) = P(∪∞
n=1[

n∑

j=1

Y j > u]), (3.39)

where Y j := X j − cA j . The common distribution of the i.i.d. sequence {Y j : j ≥ 1}
is assumed to satisfy the so-called Net Profit Condition (NPC)

EY1 = EX1 − cA1 > 0. (3.40)

http://dx.doi.org/10.1007/978-3-319-47974-3_5
http://dx.doi.org/10.1007/978-3-319-47974-3_5
http://dx.doi.org/10.1007/978-3-319-47974-3_1
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Observe that ifEY1 is nonnegative and finite then, by the strong law of large numbers
(SLLN), one has

ψ(u) ≡ 1 ∀ u. (3.41)

To avoid the trivial case in which ψ(u) = 0 ∀ u > 0, one may assume

P(Y1 > 0) > 0. (3.42)

The Cramér–Lundberg model refers to the case in which the An, n ≥ 1, are i.i.d.
exponentially distributed, while the more general model described above is referred
to as the Sparre Andersen model. For the present let us assume that the claim size
distribution is light tailed in the sense that

EeqX1 < ∞ for some q > 0. (3.43)

With this one obtains the following bound on the ruin probability as a function of
the initial capital.

Proposition 3.17 (Lundberg Inequality) In the non-degenerate case (3.42), the
Sparre Andersen model satisfying the NPC (3.40), and the light-tailed claim size
distribution condition (3.43), there is a unique parameter q = R > 0 such that
EeqY1 = 1. Moreover

ψ(u) ≤ exp(−Ru), ∀u > 0. (3.44)

Proof Observe that the light-tailed condition (3.43) implies that there is an h, 0 <

h ≤ ∞ such that

0 < m(q) := EeqY1 < ∞, for 0 ≤ q < h, lim
q↓h m(q) = ∞.

Alsom(0) = 1,m ′(0) = EY1 < 0 (orm ′(0+) < 0 ifm(q) = ∞∀q < 0), andm ′′(q)

= EY 2
1 exp(qY1) > 0,∀q > 0, with m(q) → ∞ as q ↑ h. Thus m(q) decreases

from m(0) = 1 to a minimum in (0, 1) at some q̃ before increasing without bound
as q ↑ h. It follows that there is a unique q = R > 0 such that m(q) = 1.
To prove the asserted Lundberg bound, let τ = inf{n ≥ 1 : Sn > u}, where
Sn = Y1 + · · · + Yn, n ≥ 1, S0 = 0. Then τ is a stopping time with respect to the
filtration Fn = σ(Y1, . . . ,Yn), n ≥ 1,F0 = {Ω,∅}. Then

ψ(u) = P(τ < ∞).

Next write Wn = u − Sn, n ≥ 1,W0 = u. Then Mn = exp{−RWn}, n ≥ 0, is an
Fn-martingale since,

E(Mn+1|Fn) = E(eRYn+1Mn|Fn) = MnEe
RYn+1 = Mnm(R) = Mn.

By the optional sampling theorem one then has
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e−Ru = EM0 = EMτ∧n ≥ EMτ∧n1[τ≤n] = EMτ1[τ≤n],∀n. (3.45)

Noting that Mτ > 1 on [τ < ∞], it follows from (3.45) that e−Ru ≥ E1[τ≤n] =
P(τ ≤ n) for all n. Let n ↑ ∞ to obtain the asserted Lundberg bound. �
Remark 3.11 The parameter R is generally referred to as the Lundberg coefficient,
or adjustment coefficient. It can be shown that the exponential decay rate provided
by the Lundberg inequality cannot be improved under the conditions of the theorem.
In the Cramér–Lundberg model the true asymptotic rate is given by ψ(u) ∼ ce−Ru ,
as u → ∞, for a constant c < 1; here ∼ demotes asymptotic equality in the sense
that the ratio of the two sides converges to one as u → ∞.1

Exercise Set III

1. (i) If τ1 and τ2 are {Ft }-stopping times, then show that so are τ1∧τ2 and τ1∨τ2.
(ii) Show that τ +c is an {Ft }-stopping time if τ is an {Ft }-stopping time, c > 0,

and τ + c ∈ T ∪ {∞}. (iii) Show that (ii) is false if c < 0.
2. If τ is a discrete random variable with values t1 < t2 < · · · in a finite or

countable set T in R
+, then (i) τ is an {Ft }t∈T -stopping time if and only if

[τ = t] ∈ Ft ∀ t ∈ T ; (ii) τ is an {Ft }-stopping time if and only if it is an
{Ft }-optional time.

3. (Wald’s Identity) Let {Y j : j ≥ 1} be an i.i.d. sequence with finite mean μ, and
take Y0 = 0, a.s. Let τ be an {Fn}-stopping time, where Fn = σ(Y j : j ≤ n).
Write Sn = ∑n

j=0 Y j . If Eτ < ∞ and E|Sτ − Sτ∧m | → 0 as m → ∞, prove
that ESτ = μEτ . [Hint: {Sn − nμ : n ≥ 0} is a martingale.]

4. In Example 5 for τ = τa ∧ τb, show that (i) Eτ < ∞ ∀ a ≤ x ≤ b, and
|S(τ )∧n| ≤ max{|a|, |b|} ∀ n ≥ 0, is uniformly integrable, (ii) P(τa < ∞) =
1 ∀ x, a, but {Sτa∧n : n ≥ 0} is not uniformly integrable. (iii) For Example 5 also
show that Yn := S2n − n, n ≥ 0, is a martingale and {Yτ∧n : n ≥ 0} is uniformly
integrable. Use this to calculate Eτ . [Hint: Use triangle inequality estimates on
|Yτ∧n| ≤ |Sτ∧n|2 + τ ∧ n|.]

5. (A cautionary example) Let Ω = {1, 2}3, and assume all outcomes equally
likely. For ω = (ω1,ω2,ω3) ∈ Ω , let Yi (ω1,ω2,ω3) = δωi ,ωi+1 , (i = 1, 2),
and X (ω1,ω2,ω3) = δω3,ω1 . Define J (ω) = 2 if Y1(ω) = 1, and J (ω) = 1 if
Y1(ω) = 0, ω ∈ Ω . Then show that Y1 and X are independent, as are Y2 and X ,
and J and X . However YJ is not independent of X .

6. (Transienceof asymmetric simple randomwalk)Letθ(c|x)denote theprobability
that the simple random walk starting at x ever reaches c. Use (3.30) to prove (i)
θ(b|x) = (

p
q )b−x for x < b if p < 1/2, and (ii) θ(a|x) = (

q
p )

x−a for x > a if
p > 1/2.

7. Let Z1, Z2, . . . be i.i.d. ±1-valued Bernoulli random variables with P(Zn =
1) = p, P(Zn = −1) = 1 − p, n ≥ 1, where 0 < p < 1/2. Let Sn = Z1 + · · ·
+ Zn, n ≥ 1, S0 = 0.

1See Theorem 5.12 of S. Ramasubramanian (2009) for the asymptotic equality in the case of the
Cramér-Lundberg model.
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(i) Show that P(supn≥0 Sn > y) ≤ (
p
q )y, y ≥ 0. [Hint: Apply a maximal

inequality to Xn = (q/p)Sn .]
(ii) Show for p < 1/2 that E supn≥0 Sn ≤ 1

q−p . [Hint: Use (1.10), noting that
the distribution function is a step function. Also see Exercise 30 of Chapter
I.]

8. Suppose that Z1, Z2, . . . is a sequence of independent random variables with
EZn = 0 such that

∑
n EZ

2
n < ∞. Show that

∑∞
n=1 Zn := limN

∑N
n=1 Zn exists

a.s.2 [Hint: Let Sj = ∑ j
k=1 Zk and show that {Sj } is a.s. a Cauchy sequence. For

this note that Yn := maxk, j≥n |Sk − Sj | is a.s. a decreasing sequence and hence
has a limit a.s. Apply Kolmogorov’s maximal inequality to maxn≤ j≤N |Sj − Sn|
to show that the limit in probability is zero, and hence a.s. zero; also seeChapter I,
Exercise 34.]

(i) For what values of θ will
∑∞

n=1 Zn converge a.s. if P(Zn = n−θ) = P(Zn =
−n−θ) = 1/2 ?

(ii) (RandomSigns3) Suppose each Xn is symmetricBernoulli±1-valued. Show
that the series

∑∞
n=1 Xnan converges with probability one if {an} is any

square-summable sequence of real numbers.
(iii) Show that

∑∞
n=1 Xn sin(nπt)/n converges a.s. for each t if the Xn’s are i.i.d.

standard normal.

9. Let {Xt : t ∈ T } be a stochastic process on (Ω,F) with values in some mea-
surable space (S,S), T a discrete set with elements t1 < t2 < · · · . Define
Ft = σ(Xs : 0 ≤ s ≤ t) ⊂ F , t ∈ T . Assume that τ is an {Ft }-stopping time
and show that Fτ = σ(Xτ∧t : t ∈ T ); i.e., Fτ is the σ-field generated by the
stopped process {Xτ∧t : t ∈ T }.

10. Prove (3.19). Also prove that an {Ft }-stopping time is an {Ft }-optional time;
recall Definition 3.4.

11. (i) Prove that τB defined by (3.18) is an {Ft }-stopping time if B is closed and
t → Xt is continuous with values in a metric space (S, ρ). [Hint: For t > 0, B
closed, [τB ≤ t] = ∩n∈N ∪r∈Q∩[0,t] [ρ(Xr , B) ≤ 1

n ], where Q is the set of
rationals.] (ii) Prove that if t → Xt is right-continuous, τB is an optional time
for B open. [Hint: For B open, t > 0, [τB < t] = ∪r∈Q∩(0,t)[Xr ∈ B].] (iii) If
T = N or Z+, prove that τB is a stopping time for all B ∈ S.

12. Prove that if τ is an optional time with respect to a filtration {Ft : 0 ≤ t < ∞},
then τ is an optional time with respect to {Ft+ : 0 ≤ t < ∞}, where Ft+ :=
∩ε>0Ft+ε. Deduce that under the hypothesis of Example 4(b), if B is open or
closed, then τB is a stopping time with respect to {Ft+ : 0 ≤ t < ∞}.

13. Let {Ft : t ∈ T } and {Gt : t ∈ T } be two filtrations of (Ω,F), each adapted
to {Xt : t ∈ T }, and assume Ft ⊂ Gt ,∀t ∈ T . Show that if {Xt : t ∈ T } is a

2A more comprehensive treatment of this class of problems is given in Chapter VIII.
3Historically this is the problem that leadHugo Steinhaus to develop an axiomatic theory of repeated
coin tossing based on his reading of Lebesgue’s newly developed integral and measure on the real
number line. The problem is revisited in Chapter VIII.

http://dx.doi.org/10.1007/978-3-319-47974-3_1
http://dx.doi.org/10.1007/978-3-319-47974-3_1
http://dx.doi.org/10.1007/978-3-319-47974-3_1
http://dx.doi.org/10.1007/978-3-319-47974-3_8
http://dx.doi.org/10.1007/978-3-319-47974-3_8
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{Gt }-martingale (or sub or super) then it is an {Ft }-martingale (or respectively
sub or super).

14. (Uniform absolute continuity) Let Y be an integrable random variable. Prove
that, given ε > 0, there is a δ > 0 such that

∫
A |Y |dP < ε for every A with

P(A) < δ. [Hint: Prove by contradiction: There cannot exist a sequence An ,
P(An) < 1

n , and
∫
An

|Y |dP > ε(n = 1, 2, . . . ).]



Chapter IV
Classical Central Limit Theorems

In view of the great importance of the central limit theorem (CLT), we shall give a
general but self-contained version due to Lindeberg.1 This version is applicable to
nonidentically distributed summands and provides the foundation to the following
CLTparadigm, which permeates the sciences: “The sumof a large number of ‘small’
independent random terms is approximately normally distributed.”

Let us first define a notion of convergence in distribution or weak convergence
for sequences of probabilities defined on the finite-dimensional Euclidean space
S = R

k .

Definition IV.1 A sequence {Qn}∞n=1 of probabilities on the Borel σ-field of Rk is
said to converge weakly or, equivalently, in distribution to a probability Q on Bk ,
denoted Qn ⇒ Q as n → ∞, if

lim
n→∞

∫

Rk

g(x)Qn(dx) =
∫

Rk

g(x)Q(dx),

for all bounded continuous functions g : Rk → R. A sequence Xn, n = 1, 2, . . .
of k-dimensional random vectors with respective distributions Qn, n = 1, 2, . . . , is
said to converge in distribution to a k-dimensional random vector X with distribution
Q, if the sequence Qn, n ≥ 1, converges weakly to Q.

The following theorem provides some alternative useful conditions for weak con-
vergence. Additional useful methods are developed in Exercise 9 of Chapter VII.

1This approach has received recent attention of Terence Tao (2015, SPA Conference, Oxford) as
“the most effective way to deal with local universality for non-Hermitian random matrices.” In this
context, it is referred to as Lindeberg’s exchange strategy, e.g., see Tao (2012). The “exchange”
refers to a substitution with a normal random variable and should not be confused another technical
use of related terminology for permutation invariance.

© Springer International Publishing AG 2016
R. Bhattacharya and E.C. Waymire, A Basic Course in Probability Theory,
Universitext, DOI 10.1007/978-3-319-47974-3_IV
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Theorem 4.1 (Finite-Dimensional Weak Convergence) Let {Qn}∞n=1, Q be proba-
bilities on the Borel σ-field of Rk . The following are equivalent statements:

(a) Qn ⇒ Q.
(b)

∫
Rk f d Qn → ∫

Rk f d Q for all (bounded) continuous f vanishing outside a
compact set.

(c)
∫
Rk f d Qn → ∫

Rk f d Q for all infinitely differentiable functions f vanishing
outside a compact set.

(d) Let Fn(x) := Qn((−∞, x1] × · · · × (−∞, xk]), and F(x) := Q((−∞, x1] ×
· · · × (−∞, xk]), x ∈ R

k, n = 1, 2, . . . . Then Fn(x) → F(x) as n → ∞, for
every point of continuity x of F .

Proof We give the proof for the one-dimensional case k = 1. The case k ≥ 2
requires little difference in proof for (a)–(c) and is left as Exercise 1 for these parts.
The equivalence of (a) and (d) for the case k ≥ 2 will be derived in Chapter VII.
First let us check that (b) is sufficient. It is obviously necessary by definition of weak
convergence. Assume (b) and let f be an arbitrary bounded continuous function,
| f (x)| ≤ c for all x . The idea is to construct a continuous approximation to f having
compact support. For notational convenience write {x ∈ R : |x | ≥ N } = {|x | ≥ N },
etc. Given ε > 0 there exists N such that Q({|x | ≥ N }) < ε/4c. Define θN by
θN (x) = 1, |x | ≤ N , θN (x) = 0, |x | ≥ N + 1, and linearly interpolate for N ≤
|x | ≤ N + 1. Then,

limn→∞ Qn({|x | ≤ N + 1}) ≥ limn→∞

∫

θN (x)d Qn(x) =
∫

θN (x)d Q(x)

≥ Q({|x | ≤ N }) > 1 − ε

4c
,

so that

limn→∞ Qn({|x | > N + 1}) ≡ 1 − limn→∞ Qn({|x | ≤ N + 1}) <
ε

4c
. (4.1)

Now define fN := f θN+1. Noting that f = fN on {|x | ≤ N + 1} and that on
{|x | > N +1} one has | f (x)| ≤ c, upon first writing f = f 1{|x |≤N+1} + f 1{|x |>N+1},
and then further writing

∫
R

fN1{|x |≤N+1}d Qn = ∫
R

fN d Qn −∫
{N+1<|x |≤N+2} fN d Qn

(and similarly for the integral with respect to Q), one has from the triangle inequality
and the bound on f and fN that

limn→∞
∣
∣
∣
∣

∫

R

f d Qn −
∫

R

f d Q

∣
∣
∣
∣ ≤ limn→∞

∣
∣
∣
∣

∫

R

fN d Qn −
∫

R

fN d Q

∣
∣
∣
∣

+ limn→∞(2cQn({|x | > N + 1})
+ 2cQ({|x | > N + 1}))

< 2c
ε

4c
+ 2c

ε

4c
= ε.

http://dx.doi.org/10.1007/978-3-319-47974-3_7
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Since ε > 0 is arbitrary,
∫
R

f d Qn → ∫
R

f d Q. So (a) and (b) are equivalent. Let us
now show that (b) and (c) are equivalent. It is enough to prove (c) is sufficient for (b).
For this we construct an approximation to f that is C∞ and has compact support.
For each ε > 0 define the function

ρε(x) = d(ε) exp

{

− 1

1 − x2/ε2

}

1[−ε,ε](x), (4.2)

where d(ε) is so chosen as to make
∫

ρε(x)dx = 1. One may check that ρε(x)

is infinitely differentiable in x . Now let f be a continuous function that vanishes
outside a finite interval. Then f is uniformly continuous, and therefore, δ(ε) =
sup{| f (x) − f (y)| : |x − y| ≤ ε} → 0 as ε ↓ 0. Define

f ε(x) =
∫

R

f (y)ρε(x − y)dy = f ∗ ρε(x) :=
∫ ε

−ε

f (x − y)ρε(y)dy, (4.3)

and note that since f ε(x) is infinitely differentiable, vanishes outside a compact set,
and is an average over values of f within the interval (x −ε, x +ε), | f ε(x)− f (x)| ≤
δ(ε) for all ε. Hence,

∣
∣
∣
∣

∫

R

f d Qn −
∫

R

f ε d Qn

∣
∣
∣
∣ ≤ δ(ε) for all n,

∣
∣
∣
∣

∫

R

f d Q −
∫

R

f ε d Q

∣
∣
∣
∣ ≤ δ(ε),

∣
∣
∣
∣

∫

R

f d Qn −
∫

R

f d Q

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

R

f d Qn −
∫

R

f ε d Qn

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

R

f ε d Qn −
∫

R

f ε d Q

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

R

f ε d Q −
∫

R

f d Q

∣
∣
∣
∣

≤ 2δ(ε) +
∣
∣
∣
∣

∫

R

f ε d Qn −
∫

R

f ε d Q

∣
∣
∣
∣ → 2δ(ε) as n → ∞.

Since δ(ε) → 0 as ε → 0 it follows that
∫
R

f d Qn → ∫
R

f d Q, as claimed. Next
let Fn, F be the distribution functions of Qn, Q, respectively (n = 1, 2, . . . ), and
suppose that (a) holds. Then we want to show that Fn(x) → F(x) at all points x
of continuity of the limit distribution function F . Fix such a point of continuity x0
of F . Given ε > 0 there is an η = η(ε) > 0, such that |F(x) − F(x0)| < ε for
|x − x0| < η. Let ψ+

ε (x) = 1, x ≤ x0 and ψ+
ε (x) = 0, x > x0 + η. Extend ψ+

ε

to (x0, x0 + η) by linear interpolation. Similarly, define ψ−
ε (x) = 0, x ≥ x0 and

ψ−
ε (x) = 1, x ≤ x0 − η. Extend ψ−

ε to (x0 − η, x0). Then, using the definition of
weak convergence of Qn to Q,

lim sup
n→∞

Fn(x0) ≤ lim sup
n→∞

∫

R

ψ+
ε (x)Qn(dx) =

∫

R

ψ+
ε (x)Q(dx) ≤ F(x0 + η)

< F(x0) + ε,

and
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lim inf
n→∞ Fn(x0) ≤ lim inf

n→∞

∫

R

ψ−
ε (x)Qn(dx) =

∫

R

ψ−
ε (x)(x)Q(dx) ≥ F(x0 − η)

> F(x0) − ε.

Since ε > 0 is arbitrary, one has

lim sup
n→∞

Fn(x0) ≤ F(x0) ≤ lim inf
n→∞ Fn(x0).

In particular, Fn(x0) → F(x0) as n → ∞. To show that the converse (d) implies
(a) also holds, suppose Fn(x) → F(x) at all points of continuity of a distribution
function F. Note that since F is nondecreasing and bounded between 0 and 1, it can
have at most countably many discontinuities, i.e., only finitely many jumps of size
larger than 1/n for any n = 1, 2, . . . . Consider a continuous function f that vanishes
outside the compact set K contained in an interval [a, b] where a, b are selected as
points of continuity of F . The idea is to construct an approximation to f by a step
function with jumps at points of continuity of F . Given any ε > 0 one may partition
[a, b] into a finite number of subintervals whose endpoints are all points of continuity
of F , and obtain a uniform approximation of f to within ε > 0 by a step function fε
having constant values of f at the endpoint over each respective subinterval. Then,∫
R

fεd Qn → ∫
R

fεd Q as n → ∞. Thus | ∫
R

f d Qn −∫
R

f d Q| ≤ ∫
R

| f − fε|d Qn +
| ∫

R
fεd Qn −∫

R
fεd Q|+∫

R
| fε− f |d Q ≤ 2ε+| ∫

R
fεd Qn −∫

R
fεd Q|. Since ε > 0

is arbitrary, one readily obtains (b) and hence (a). �

In preparation for the proof of the central limit theorem, the following simple
lemma is easily checked by an integration by parts left as Exercise 3.

Lemma 1 (A Second-Order Taylor Expansion) Let f be a real-valued function of
R such that f, f ′, f ′′, f ′′′ are bounded. Then for x, h ∈ R,

f (x + h) = f (x) + h f ′(x) + h2

2! f ′′(x) + h2
∫ 1

0
(1 − θ){ f ′′(x + θh) − f ′′(x)} dθ.

Theorem 4.2 (Lindeberg’s CLT) For each n, let Xn,1, . . . , Xn,kn be an independent
array of random variables satisfying

EXn, j = 0, σn, j := (EX2
n, j )

1/2 < ∞,

kn∑

j=1

σ2
n, j = 1, (4.4)

and, for each ε > 0,

(Lindeberg condition) lim
n→∞

kn∑

j=1

E(X2
n, j1[|Xn, j |>ε]) = 0. (4.5)

Then,
∑kn

j=1 Xn, j converges in distribution to the standard normal law N (0, 1).
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Proof Let {Z j : j ≥ 1} be a sequence of i.i.d. N (0, 1) randomvariables, independent
of {Xn, j : 1 ≤ j ≤ kn}. Write

Zn, j := σn, j Z j (1 ≤ j ≤ kn), (4.6)

so that EZn, j = 0 = EXn, j ,EZ2
n, j = σ2

n, j = EX2
n, j . Define

Un,m :=
m∑

j=1

Xn, j +
kn∑

j=m+1

Zn. j (1 ≤ m ≤ kn − 1),

Un,0 :=
kn∑

j=1

Zn, j , Un,kn :=
kn∑

j=1

Xn, j , (4.7)

Vn,m := Un,m − Xn,m (1 ≤ m ≤ kn).

Let f be a real-valued function of R such that f, f ′, f ′′, f ′′′ are bounded. Taking
x = Vn,m , h = Xn,m in the Taylor expansion Lemma 1, one has

E f (Un,m) ≡ E f (Vn,m + Xn,m) = E f (Vn,m) + E(Xn,m f ′(Vn,m))

+ 1
2E(X2

n,m f ′′(Vn,m)) + E(Rn,m), (4.8)

where

Rn,m := X2
n,m

∫ 1

0
(1 − θ){ f ′′(Vn,m + θXn,m) − f ′′(Vn,m)} dθ. (4.9)

Since Xn,m and Vn,m are independent, and EXn,m = 0, EX2
n,m = σ2

n,m , (4.8) reduces
to

E f (Un,m) = E f (Vn,m) + σ2
n,m

2
E f ′′(Vn,m) + E(Rn,m). (4.10)

Also Un,m−1 = Vn,m + Zn,m , and Vn,m and Zn,m are independent. Therefore, exactly
as above one gets, using EZn,m = 0, EZ2

n,m = σ2
n,m ,

E f (Un,m−1) = E f (Vn,m) + σ2
n,m

2
E f ′′(Vn,m) + ER′

n,m), (4.11)

where

R′
n,m := Z2

n,m

∫ 1

0
(1 − θ){ f ′′(Vn,m + θZn,m) − f ′′(Vn,m)} dθ. (4.12)
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Hence,

|E f (Un,m) − E f (Un,m−1)| ≤ E|Rn,m | + E|R′
n,m | (1 ≤ m ≤ kn). (4.13)

Now, given an arbitrary ε > 0,

E|Rn,m | = E(|Rn,m |1[|Xn,m |>ε]) + E(|Rn,m |1[Xn,m |≤ε])

≤ E

[

X2
n,m1[|Xn,m |>ε]

∫ 1

0
(1 − θ)2‖ f ′′‖∞ dθ

]

+ E

[

X2
n,m1[|Xn,m |≤ε]

∫ 1

0
(1 − θ)|Xn,m |‖ f ′′′‖∞ dθ

]

≤ ‖ f ′′‖∞E(X2
n,m1[|Xn,m |>ε]) + 1

2εσ
2
n,m‖ f ′′′‖∞. (4.14)

We have used the notation ‖g‖∞ := sup{|g(x)| : x ∈ R}. By (4.4), (4.5), and (4.14),

lim
kn∑

m=1

E|Rn,m | ≤ 1
2ε‖ f ′′′‖∞.

Since ε > 0 is arbitrary,

lim
kn∑

m=1

E|Rn,m | = 0. (4.15)

Also,

E|R′
n,m | ≤ E

[

Z2
n,m

∫ 1

0
(1 − θ)‖ f ′′′‖∞|Zn,m | dθ

]

= 1

2
‖ f ′′′‖∞E|Zn,m |3

= 1
2‖ f ′′′‖∞σ3

n,mE|Z1|3 ≤ cσ3
m,n ≤ c

(

max
1≤m≤kn

σm,n

)

σ2
n,m, (4.16)

where c = 1
2‖ f ′′′‖∞E|Z1|3. Now, for each δ > 0,

σ2
n,m = E(X2

n,m1[|Xn,m |>δ]) + E(X2
n,m1[Xn,m |≤δ]) ≤ E(X2

n,m1[|Xn,m |>δ]) + δ2,

which implies that

max
1≤m≤kn

σ2
n,m ≤

kn∑

m=1

E(X2
n,m1[|Xn,m |>δ]) + δ2.

Therefore, by (4.5),
max

1≤m≤kn

σn,m → 0 as n → ∞. (4.17)
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From (4.16) and (4.17), one gets

kn∑

m=1

E|R′
n,m | ≤ c

(

max
1≤m≤kn

σn,m

)

→ 0 as n → ∞. (4.18)

Combining (4.15) and (4.18), one finally gets, on telescoping the difference between
(4.10) and (4.11),

|E f (Un,kn ) − E f (Un,0)| ≤
kn∑

m=1

(E|Rn,m | + E|R′
n,m |) → 0 as n → ∞. (4.19)

But Un,0 is a standard normal random variable. Hence,

E f

(
kn∑

m=1

Xn, j

)

−
∫

R

f (y)(2π)−1/2 exp{− 1
2 y2} dy → 0 as n → ∞.

By Theorem 4.1, the proof is complete. �

It has been shown by Feller2 that in the presence of the uniform asymptotic
negligibility (u.a.n.) condition (4.17), the Lindeberg condition is also necessary for
the central limit theorem to hold.

Corollary 4.3 (The Classical CLT) Let {X j : j ≥ 1} be i.i.d. EX j = μ, 0 < σ2 :=
Var X j < ∞. Then

∑n
j=1(X j − μ)/(σ

√
n) converges in distribution to N (0, 1).

Proof Let Xn, j = (X j − μ)/(σ
√

n), kn = n, and apply Theorem 4.2. �

Remark 4.1 Note that the case kn = n corresponds to an exact triangular array of
random variables. The general framework of the Lindeberg CLT is referred to as a
triangular array as well.

Corollary 4.4 (Lyapounov’s CLT) For each n let X1,n , X2,n, . . . , Xn,kn be kn inde-
pendent random variables such that

kn∑

j=1
EXn, j = μ,

kn∑

j=1

Var Xn, j = σ2 > 0,

(Lyapounov condition) lim
n→∞

kn∑

j=1

E|Xn, j − EXn, j |2+δ = 0 (4.20)

for some δ > 0. Then
∑kn

j=1 Xn, j converges in distribution to the Gaussian law with
mean μ and variance σ2.

2Billingsley (1986), p. 373.
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Proof By normalizing one may assume, without loss of generality, that

EXn, j = 0,
kn∑

j=1

EX2
n, j = 1.

It then remains to show that the hypothesis of the corollary implies the Lindeberg
condition (4.5). This is true, since for every ε > 0,

kn∑

j=1

E(X2
n, j1[Xn, j > ε]) ≤

kn∑

j=1

E
|Xn, j |2+δ

εδ
→ 0 (4.21)

as n → ∞, by (4.20). �

Based on such results, there can be no question of the importance of the Gaussian

distribution to probability theory. The expression of the indefinite integral
∫

e− z2

2 dz
in terms of elementary functions is known to be impossible, however, the following
is an often useful property for estimating probabilities for this distribution.

Lemma 2 (Feller’s Tail Probability Estimates) For a standard normal random vari-
able Z ,

(z−1 − z−3)

√
2

π
exp{−z2/2} ≤ P(|Z | ≥ z) ≤

√
2

πz2
exp{−z2/2}, z > 1.

In particular,

lim
z→∞

P(|Z | > z)
√

2
πz2 exp{−z2/2}

= 1.

Proof One may obtain simple upper and lower bounds on the integrand by per-

fect derivatives as follows:
∫ ∞

z e− x2

2 dx ≤ ∫ ∞
z

x
z e− x2

2 dx , and for the other direction

− d
dx {( 1x − 1

x3 )e− x2

2 } = (1 − 3
x4 )e− x2

2 ≤ e− x2

2 . �

Example 1 (Sampling Design Revisited) Recall from Example 3 in Chapter II, the
computed sample size was n = 2, 154 using the 4th moment Chebyshev inequal-
ity when estimating the sample proportion required to obtain an estimate of the
Bernoulli parameter p of a Binomial distribution to within ±0.03 with probability
at least 0.95. However, using the central limit theorem one obtains that the interval
[ p̂n − ξ.005

√
p(1 − p)/n, p̂n + ξ.005

√
p(1 − p)/n] contains p with probability at

least 0.99. Thus, the central limit theorem requires n to be sufficiently large that
ξ0.005

√
p(1 − p)/n ≤ 0.05. Since p(1 − p) ≤ 1/4, it is sufficient that n ≥ 1,071.3

3In general, the error of approximation in the CLT is O(n− 1
2 ); see the Berry-Esseen Theorem 4.6.

For the binomial case the approximation is best near p = 1/2. However, even for p near the tail such

http://dx.doi.org/10.1007/978-3-319-47974-3_2
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Theorem 4.5 (Polya’s Uniformity) Suppose that Fn is a sequence of distribution
functions converging pointwise to a continuous distribution function F on R. Then
the convergence is uniform, i.e.,

lim
n→∞ sup

x
|Fn(x) − F(x)| = 0.

Proof Partition the range of F as 0, 1
N , 2

N , . . . N
N = 1, and use continuity and

monotonicity to get −∞ ≤ x0 < x1 < · · · < xN ≤ ∞ such that F(x j ) = j
N .

On [x j−1, x j ], 1 ≤ j ≤ N , one has

Fn(x) − F(x) ≤ Fn(x j ) − F(x j−1) = Fn(x j ) − F(x j ) + 1

N
,

and

Fn(x) − F(x) ≥ Fn(x j−1) − F(x j ) = Fn(x j−1) − F(x j−1) − 1

N
.

In particular

sup
x∈R

|Fn(x) − F(x)| ≤ max
0≤ j≤N

|Fn(x j ) − F(x j )| + 1

N
.

Observe that in the case x0 = −∞, one has Fn(x0) − F(x0) = 0, and if xN = ∞,
then Fn(xN )− F(xN ) = 1−1 = 0. Let ε > 0 and fix N > 1

ε
. Then supx∈R |Fn(x)−

F(x)| ≤ max1≤ j≤N |Fn(x j ) − F(x j )| + ε. Now let n → ∞ and use pointwise
convergence at finitely many points to get

lim sup
n→∞

sup
x∈R

|Fn(x) − F(x)| ≤ ε.

Since ε > 0 is arbitrary, the proof is complete. �

The following (uniform) rate of convergence will be proven in Chapter VI using
Fourier transform methods.

Theorem 4.6 (Berry-Esseen Convergence Rate)Let X1, X2, . . . be an i.i.d. sequence
of random variables having finite third momentsE|X1|3 < ∞, with mean μ and vari-
ance σ2. Then, for Sn = X1 + · · · + Xn, n ≥ 1, one has

sup
x∈R

|P(
Sn − nμ

σ
√

n
≤ x) − Φ(x)| ≤ c

E|X1|3
σ3

√
n

, c = 0.5600.

(Footnote 3 continued)
as p = 0.9 or, p = 0.1, the approximation is quite good with n ≥ 500; e.g., see the calculations
in R. Bhattacharya, L. Lin and M. Majumdar (2013): Problems of ruin and survival in economics:
applications of limit theorems in probability, Sankhya, 75B 145–180.

http://dx.doi.org/10.1007/978-3-319-47974-3_6
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Observe that the most crucial property of the normal distribution used in the proof
of Theorem 4.2 is that the sum of independent normal random variables is normal. In
fact, the normal distribution N (0, 1)may be realized as the distribution of the sum of
independent normal random variables having zero means and variances σ2

i for any
arbitrarily specified set of nonnegative numbers σ2

i adding up to 1; a form of infinite
divisibility4 of the normal distribution.

Definition 4.2 A probability Q on (Rk,Bk) is said to be infinitely divisible if for
each integer n ≥ 1 there is a probability Qn such that Q = Q∗n

n .

Other well-known distributions possessing the infinite divisibility property are the
Poisson distribution, as well as the class of stable laws introduced in Chapter VI
in the context of the Holtzmark Example 3.

The following multidimensional version of Corollary 4.3 will also be obtained by
the method of characteristic functions in Chapter VI.

Theorem 4.7 (Multivariate Classical CLT) Let {Xn : n = 1, 2, . . .}be a sequence of
i.i.d. random vectors with values inRk . LetEX1 = μ ∈ R

k (defined componentwise)
and assume that the dispersion matrix (i.e., variance–covariance matrix) D of X1

exists. Then as n → ∞, n−1/2(X1 + · · · +Xn − nμ) converges in distribution to the
Gaussian probability measure with mean zero and dispersion matrix D.

Exercise Set IV

1. Prove the equivalence of (a)–(c) of Theorem 4.1 in the case k ≥ 2.
2. Suppose that {(Xn, Yn)}∞n=1 is a sequence of pairs of real-valued random vari-

ables that converge in distribution to (X, Y ). Show that Xn + Yn converges in
distribution to X +Y . [Hint: The map h : R×R → R given by h(x, y) = x + y
is continuous.]

3. Give a proof of Lemma 1. [Hint: Use integration by parts.]
4. Define a one-dimensional normal distribution with mean μ and variance σ2 = 0

to be δμ, the Dirac measure concentrated at μ. For dimensions k > 1, given μ ∈
R

k , and a nonnegative-definite (possibly singular) k×k matrix D, amultivariate
normal distribution ΦD,μ is defined to be the distribution of μ + √

DZ, where
Z is k-dimensional standard normal, and

√
D denotes a nonnegative-definite

symmetric matrix such that
√

D
√

D = D. Extend the classical CLT (Corollary
4.3) to a version with such possible limits.

5. Suppose that {X j }∞j=1, . . . is a sequence of independent random variables with
X j distributed uniformly on [− j, j], j ≥ 1. Show that for a suitable choice of
scaling constants cn , the rescaled sum c−1

n (X1 + · · · + Xn) is asymptotically
normal with mean 0 and variance 1 as n → ∞.

4Infinitely divisible distributions are naturally associated with stochastic processes having inde-
pendent increments. This connection is thoroughly developed in a companion text on stochastic
processes.

http://dx.doi.org/10.1007/978-3-319-47974-3_6
http://dx.doi.org/10.1007/978-3-319-47974-3_6
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6. {X j }∞j=1 is a sequence of independent random variables uniformly bounded by
M > 0. Assume σ2

n = ∑n
k=1 Var(Xk) → ∞ as n → ∞. Show that the central

limit theorem holds under suitable centering and scaling.
7. Suppose that U1, U2, . . . is an i.i.d. sequence of uniformly distributed random

variables on (0, 1). Calculate the limit distribution of Tn = (eGn)
√

n , where
Gn = (

∏n
j=1 U j )

1
n is the (sample) geometric mean [Hint: Consider ln Tn .]

8. Suppose that {Xm}∞m=1 is a sequence of independent random variables with Xm

distributed as P(Xm = 1) = P(Xm = −1) = pm, P(Xm = 0) = 1 − 2pm ,
m ≥ 1, where

∑∞
m=1 pm = ∞. Use each of the methods of (a) Lindeberg, (b)

Lyapounov to give a proof that, for a suitable choice of scaling constants cn; the
rescaled sum c−1

n (X1 + · · · + Xn) is asymptotically normal with mean 0 and
variance 1 as n → ∞.



Chapter V
Classical Zero–One Laws, Laws of Large
Numbers and Large Deviations

The term law has various meanings within probability. It is sometimes used synony-
mously with distribution of a random variable. However, it also may refer to an event
or phenomenon that occurs in some predictable sense, as in a “law of averages.” The
latter is the context of the present section. For example, if X0, X1, . . . is a sequence
of independent random variables and Bn ∈ B, n ≥ 0, then, in view of the Borel–
Cantelli lemmas, one may conclude that the event [Xn ∈ Bn i.o.] will occur with
probability one, or its complement is certain to occur. Before taking up the laws of
large numbers, we consider two standard zero–one laws of this type. In particular,
observe that the event A = [Xn ∈ Bn i.o.] is special in that it does not depend on any
finite number of values of the sequence X0, X1, X2, . . . . Such an event is referred to
as a tail event. That is, an event E ∈ σ(X0, X1, X2, . . . ) is said to be a tail event if
E ∈ σ(Xn, Xn+1, . . . ) for every n ≥ 0. The collection of all tail events is given by
the tail σ−field T := ∩∞

n=0σ(Xn, Xn+1, . . . ).

Theorem 5.1 (Kolmogorov Zero–One Law) A tail event for a sequence of indepen-
dent random variables has probability either zero or one.

Proof To see this first check that σ(X0, X1, . . . ) = σ(F0), where F0 := ∪∞
k=0σ(X0,

. . . , Xk) is a field and, in particular, a π-system. For E ∈ F0, one has E =
[(X0, . . . , Xk) ∈ C] for some k ≥ 0,C ∈ Bk+1. Thus if A is a tail event then
A ∈ σ(Xk+1, . . . ) and hence A is independent of E; i.e., A is independent of
F0. Also, the class L of events independent of A is a λ-system (containing F0).
Therefore L contains σ(F0). In particular, A is independent of itself and hence
P(A) = P(A ∩ A) = P(A)P(A). The only solutions to the equation x2 = x are 0
and 1. �

Not all tail events for the sums of randomvariables need be tail events for the terms
of the series. Let Sn = X1 +· · ·+ Xn, n ≥1, be a random walk on the k-dimensional
integer lattice Zk , for example. An event of the form [Sn = 0 i.o.] is not covered by
Kolmogorov’s zero–one law, since it is not a tail event for the terms X1, X2, . . . , and

© Springer International Publishing AG 2016
R. Bhattacharya and E.C. Waymire, A Basic Course in Probability Theory,
Universitext, DOI 10.1007/978-3-319-47974-3_V

87
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the sums S1, S2, . . . are not independent. However, there is a special way in which
such tail events for the sums depend on the sequence X1, X2, . . . of i.i.d. summands
captured by the following zero-one law.

Let B∞ denote the (Borel) σ-field of subsets of R∞ = {(x1, x2, . . .) : xi ∈ R
1}

generated by events depending on finitely many coordinates. The following is a more
general result than Theorem 5.1.

Theorem 5.2 (Hewitt–Savage Zero–One Law)Let X1, X2,…be an i.i.d. sequence of
random variables. If an event A = [(X1, X2, . . .) ∈ B], where B ∈ B∞, is invariant
under finite permutations (Xi1 , Xi2 , . . .) of terms of the sequence (X1, X2, . . .), that
is, A = [(Xi1 , Xi2 , . . .) ∈ B] for any finite permutation (i1, i2, . . .) of (1, 2, . . .), then
P(A) = 1 or 0.

As noted above, the symmetric dependence with respect to {Xn}∞n=1 applies, for
example, to tail events expressed in terms of the partial sums {Sn}∞n=1.

Proof To prove the Hewitt–Savage 0–1 law selects finite-dimensional approximants
to A of the form An = [(X1, . . . , Xn) ∈ Bn], Bn ∈ Bn , such that P(AΔAn) → 0 as
n → ∞, where EΔF := (Ec ∩ F) ∪ (E ∩ Fc) is the symmetric difference of sets
E, F ; this approximation may be achieved from the Carathéodory extension formula
(see Exercise 17). For each fixed n, let (i1, i2, . . .) be the permutation (2n, 2n −
1, . . . , 1, 2n + 1, . . .) and define Ãn = [(Xi1 , . . . , Xin ) ∈ Bn]. Then Ãn , and An are
independent with P(An∩ Ãn) = P(An)P( Ãn) = (P(An))

2 → (P(A))2 as n → ∞.
On the other hand, P(AΔ Ãn) = P(AΔAn) → 0, noting that AΔ Ãn is obtained by
a permutation from AΔAn . Hence P(AnΔA) + P( ÃnΔA) → 0 and, in particular,
therefore P(An ∩ Ãn) → P(A) as n → ∞. Thus x = P(A) satisfies x = x2. �

The classical strong law of large numbers (SLLN) refers to the almost sure limit
of averages of a “large number” of i.i.d. random variables having finite first moment.
While the zero–one laws are not required in the following proof, they do imply that
the indicated limit of the averages is either sure to exist or sure not to exist.

A good warm-up exercise is to work out a proof using the Borel–Cantelli lemma
I based on Chebyshev inequality estimates, assuming finite fourth moments (Exer-
cise 1). The proof we present in this section is due to Etemadi.1 It is based on Part
1 of the Borel–Cantelli lemmas. As remarked in Chapter III it is possible to obtain a
proof from the reverse martingale convergence theorem. This is aided by the Hewitt–
Savage zero–one law in identifying the limit as the expected value (constant). Before
presenting Etemadi’s proof, let’s pause to consider that proof.

Theorem 5.3 (Strong Law of Large Numbers: Reverse martingale proof) Let {Xn :
n ≥ 1} be an i.i.d. sequence of integrable random variables defined on a probability
space (Ω,F , P). Then with probability 1,

lim
n→∞

X1 + · · · + Xn

n
= EX1. (5.1)

1Etemadi, N. (1983): “On the Laws of Large Numbers for Nonnegative Random Variables,” J.
Multivariate Analysis, 13, pp. 187–193.

http://dx.doi.org/10.1007/978-3-319-47974-3_3
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Proof Let Gn denote the σ-field of symmetric events based on {X1, . . . , Xn}. One
may simply check that

E(X1|Gn) = X1 + · · · + Xn

n
, n = 1, 2, . . . .

Thus, using the reverse martingale convergence theorem, it follows that
limn→∞ X1+ ··· +Xn

n exists a.s. and in L1; recall Example 7 of Chapter III. In par-
ticular, therefore, the limit has mean EX1. In fact, by the Hewitt–Savage zero–one
law it follows that the limit is constant, and hence EX1. �

Theorem 5.4 (Strong Law of Large Numbers: Etemadi proof) Let {Xn : n ≥ 1}
be a sequence of pairwise independent and identically distributed random variables
defined on a probability space (Ω,F , P). If E|X1| < ∞ then with probability 1,

lim
n→∞

X1 + · · · + Xn

n
= EX1. (5.2)

Proof Without loss of generality we may assume for the proof of the SLLN that the
random variables Xn are nonnegative, since otherwise we can write Xn = X+

n − X−
n ,

where X+
n = max(Xn, 0) and X−

n = −min(Xn, 0) are both nonnegative random
variables, and then the result in the nonnegative case yields that

Sn
n

= 1

n

n∑

k=1

X+
k − 1

n

n∑

k=1

X−
k

converges to EX+
1 − EX−

1 = EX1 with probability 1.
Truncate the variables Xn by Yn = Xn1[Xn≤n]. Then Y1,Y2, . . . is a sequence of

independent random variables, though not identically distributed. Moreover EY 2
n <

∞ for all n; in factYn hasmoments of all orders. Let Tn = ∑n
k=1 Yk . By the dominated

convergence theorem one has EYk = EX11[X1≤k] → EX1 as k → ∞. It follows
simply that the same holds for the Caesaro mean

lim
n→∞

1

n
ETn = EX1. (5.3)

Next let us consider the sequence {Tn}∞n=1 on the “fast” time scale τn = [αn],
for a fixed α > 1, where brackets [ ] denote the integer part. Let ε > 0. Then by
Chebyshev’s inequality and pairwise independence,

http://dx.doi.org/10.1007/978-3-319-47974-3_3
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P

(∣
∣
∣
∣
Tτn − ETτn

τn

∣
∣
∣
∣ > ε

)

≤ Var(Tτn )

ε2τ 2
n

= 1

ε2τ 2
n

τn∑

k=1

Var Yk ≤ 1

ε2τ 2
n

τn∑

k=1

EY 2
k

= 1

ε2τ 2
n

τn∑

k=1

E{X2
k1[Xk≤k] = 1

ε2τ 2
n

τn∑

k=1

E{X2
11[X1≤k]}

≤ 1

ε2τ 2
n

τn∑

k=1

E{X2
11[X1≤τn ]}

= 1

ε2τ 2
n

τnE{X2
11[X1≤τn ]}. (5.4)

Therefore,

∞∑

n=1

P

(∣
∣
∣
∣
Tτn − ETτn

τn

∣
∣
∣
∣ > ε

)

≤
∞∑

n=1

1

ε2τn
E{X2

11[X1≤τn ]} = 1

ε2
E

{

X2
1

∞∑

n=1

1

τn
1[X1≤τn ]

}

. (5.5)

Let x > 0 and let N = min{n ≥ 1 : τn ≥ x}. Then αN ≥ x , and since y ≤ 2[y] for
any y ≥ 1,

∞∑

n=1

1

τn
1[x≤τn ] =

∑

τn≥x

1

τn
≤ 2

∑

n≥N

α−n = 2α

α − 1
α−N = aα−N ≤ a

x
,

where a = 2α/(α − 1). Therefore,

∞∑

n=1

1

τn
1[X1≤τn ] ≤ a

X1
for X1 > 0.

So ∞∑

n=1

P

(∣
∣
∣
∣
Tτn − ETτn

τn

∣
∣
∣
∣ > ε

)

≤ a
E[X1]

ε2
< ∞. (5.6)

By the Borel–Cantelli lemma I, taking a union over positive rational values of ε, with
probability 1, (Tτn − ETτn )/τn → 0 as n → ∞. Since, by (5.3),

lim
n→∞

1

τn
ETτn = EX1,

it follows that
Tτn

τn
→ EX1. (5.7)
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Furthermore, since

∞∑

n=1

P(Xn 	= Yn) =
∞∑

n=1

P(X1 > n) ≤
∫ ∞

0
P(X1 > u) du = EX1 < ∞,

we get by another application of the Borel–Cantelli lemma that, with probability 1,

Sn − Tn
n

→ 0 as n → ∞. (5.8)

Therefore, the previous results about {Tn} give for {Sn} that
Sτn

τn
→ EX1 as n → ∞ (5.9)

with probability 1. If τn ≤ k ≤ τn+1, then since Xi ≥ 0,

τn

τn+1

Sτn

τn
≤ Sk

k
≤ τn+1

τn

Sτn+1

τn+1
. (5.10)

But τn+1/τn → α, so that now we get with probability 1,

1

α
EX1 ≤ lim inf

k

Sk
k

≤ lim sup
k

Sk
k

≤ αEX1. (5.11)

Letting α ↓ 1 via rational α > 1, one has limk→∞ Sk/k = EX1 with probability 1.
This is the strong law of large numbers (SLLN). �

The above proof of the SLLN is really quite remarkable, as the following observa-
tions show. First, pairwise independence is used only to make sure that the positive
and negative parts of Xn , and their truncations Yn remain independent and therefore
(pairwise) uncorrelated for the calculation of the variance of Tk as the sum of the
variances. Positivity can alternatively be achieved by assuming the random variables
are uniformly bounded below with probability one, since one can then add a suf-
ficiently large constant. Assuming that the random variables are square-integrable
and uncorrelated it is unnecessary to truncate, so the same variance bound on the Sτk

can be achieved. In fact, one may replace identical distributions with an assumption
of bounded variances Var X j , j ≥ 1, Thus, if the random variables all are square-
integrable, mean zero and a.s. uniformly bounded below, then it suffices to require
that they merely be uncorrelated for the same proof of the a.s. convergence on the
fast time scale, followed by interpolation, to go through; this is Exercise 2.

Proposition 5.5 Let X1, X2, . . . , be a sequence of square-integrable, mean-zero
uncorrelated random variables that are a.s. uniformly bounded below, or a.s. uni-
formly bounded above. If, in addition, V ar Xn, n ≥ 1, is a bounded sequence, then
with probability 1,
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X1 + · · · + Xn

n
→ 0 as n → ∞.

In particular, this holds for every bounded, mean-zero, uncorrelated sequence.

The following corollary follows directly from Theorem 5.4.

Corollary 5.6 If X1, X2, . . . is an i.i.d. sequence and EX+
1 = ∞ and EX−

1 < ∞,
then with probability 1,

X1 + · · · + Xn

n
→ ∞ as n → ∞.

Similarly, if EX+
1 < ∞ and EX−

1 = ∞, then the a.s. limit is −∞.

Proof Assume EX+
1 < ∞. Then one has by Theorem 5.4 that X+

1 +···+X+
n

n → EX+
1

with probability one. Thus, since Xn = X+
n − X−

n , n ≥ 1, it is enough to check that
X−
1 +···+X−

n

n → ∞ a.s.. Let Y (c)
n = X−

n 1[X−
n ≤c], n ≥ 1, for a constant c > 0. Then, with

probability one, X−
1 +···+X−

n

n ≥ Y (c)
1 +···+Y (c)

n

n → EY (c)
1 . Let c → ∞ to obtain the desired

result. �

As an obvious corollary, since a.s. convergence implies convergence in probabil-
ity, one may conclude that the averages converge in probability as well. The latter
statement is referred to as a weak law of large numbers (WLLN).

The proof of the Weierstrass approximation theorem given in Appendix B may
be viewed as an application of the WLLN to a classic problem in analysis; namely,
a continuous function g on [0, 1] may be uniformly approximated by polynomials
hn(x) = ∑n

k=0

(n
k

)
f ( kn )x

k(1 − x)n−k , 0 ≤ x ≤ 1, referred to as Bernstein polyno-
mials.

Let us now briefly turn some attention to deviations from the law of averages.
Suppose X1, X2, . . . is an i.i.d. sequence of random variables with mean μ. Then the
WLLN implies that for any δ > 0, the event that the sample average An := X1+···+Xn

n
would fall outside the interval μ±δ, i.e., “would deviate from μ by a positive amount
δ,” is a rare event for large n. In fact, under suitable conditions one might expect
the probability to be exponentially small for large n. The “large deviation theorem”
below provides an important illustration of such conditions. We will need a few
preliminaries to prepare for the statement and proof.

Definition 5.1 Let X be a random variable on (Ω,F , P) with distribution Q.
The moment-generating function of X (or Q) is defined by m(h) = EehX =∫
R
ehx Q(dx). The cumulant-generating function is c(h) = lnm(h), h ∈ R.

Note that m(h) may be infinite; see Exercise 6. The function m(−h) is the Laplace
transform of the distribution Q.

Proposition 5.7 (a) Assume that m(h) < ∞ for all h in a neighborhood of h = 0.
Then E|X |k < ∞ for all k ≥ 1 and EXk = m(k)(0) ≡ dk

dhk m(0). (b) Assume that



V Classical Zero–One Laws, Laws of Large Numbers and Large Deviations 93

m(h) < ∞ for all h in a neighborhood of h = r ∈ R. Then E|Xker X | < ∞ and
m(k)(r) ≡ dk

drk m(r) = EXker X .

Proof Since e|hx | ≤ ehx + e−hx , it follows from the hypothesis for (a) that EehX ≤
Ee|hX | < ∞ for all h in a neighborhood of h = 0. Also, since the partial sums
∑n

k=0
|hX |k
k! are bounded by e|hX |, one has by the dominated convergence theorem

that EehX = E
∑∞

k=0
hk Xk

k! = ∑∞
k=0

EXk

k! hk . The assertion (a) now follows from the
uniqueness of the coefficients in Taylor series expansions about the origin (Exercise
16). For part (b) consider the change of measure defined by Q̃(dx) = erx

m(r) Q(dx).

Recall that the factor 1
m(r) is the normalization of erx Q(dx) to a probability. If X̃ is

a random variable with distribution Q̃, then its moment-generating function is given
by m̃(h) = m(h+r)

m(r) . Under hypothesis (b), X̃ has a moment-generating function

in a neighborhood of h = 0, so that (a) yields EXker X/m(r) = m(k)(r)/m(r).
Multiplying by m(r) yields the assertion (b). �

For the rest of this section assume that X is non-degenerate, i.e. Q is not a Dirac
measure δc. Assuming that m(h) is finite in a neighborhood of zero, the second
derivative of m(h) is obviously positive, and one may use the Cauchy–Schwarz
inequality to check c(2)(h) > 0 as well; see Exercise 7.

Corollary 5.8 Suppose that m(h) = EehX < ∞ for all h ∈ R. Then both m(h) and
c(h) are convex functions on R.

The following “change of measure”technique was used in the proof of Proposi-
tion 5.7. It provides a way in which to tilt or bias a probability distribution that is
effective for analyzing deviations from the original mean. In the language of change
of measure, the mean of the tilted distribution becomes the “new normal”for the sake
of analysis.

Definition 5.2 Suppose that m(b) ≡ ∫
ebx Q(dx) < ∞. For a fixed such parameter

b, the change of measure defined by Q̃b(dx) = ebx

m(b) Q(dx) is called an exponential
size-bias, Esscher or tilting transformation of Q.

Let X̃ denote a random variable with the tilted distribution Q̃. The effect of the
tilt on the mean is reflected in the following calculation:

EX̃ =
∫

R

x Q̃b(dx) = 1

m(b)

∫

R

xebx Q(dx) = m ′(b)
m(b)

= c′(b). (5.12)

The function defined by

c∗(x) = sup
h

(xh − c(h), x ∈ R, (5.13)

is called the Legendre transform of c; see Exercise 10 for more details. The maxi-
mum in (5.13) is attained at h such that c′(h) = x . From (5.14) it also follows that
this h is also such that the size-biased distribution Q̃h has mean one. Observe that
c∗ is convex since for 0 ≤ t ≤ 1, x, y ∈ R,
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c∗(t x + (1 − t)y) = sup
h

(t (xh − tc(h)) + (1 − t)(yh − (1 − t)c(h))

≤ tc∗(x) + (1 − t)c∗(y). (5.14)

In the following write An = X1+···+Xn
n , where X j ( j ≥ 1) are i.i.d. with common

distribution Q, and Ãn = X̃1+···+X̃n
n , where X̃ j ( j ≥ 1) are i.i.d. with common size-

biased distribution Q̃h∗ for a suitable h∗.

Theorem 5.9 (Cramér-Chernoff) Suppose that X1, X2, . . . is an i.i.d. sequence with
finite mean EX1 = μ. Moreover, assume that the moment-generating function

m(h) := EehX1

is finite for all h in a neighborhood of zero. Let c(h) := lnm(h) denote the cumulant-
generating function. Then for a > EX1 one has

lim
n→∞

ln P(An ≥ a)

n
= I (a), (5.15)

where I (a) = −c∗(a) for

c∗(x) = sup
h∈R

{xh − c(h)} ≥ 0.

Proof We will first give the proof in the case that m(h) < ∞ for all h ∈ R. The
proof of the general case is outlined in Exercise 14. (and below). We may assume
P(X1 ≥ a) > 0. For otherwise, (5.15) is trivially true, since I (a) = −∞ and both
sides of (5.15) are zero (Exercise 8.). To obtain the formula (5.15), first note the
simple inequality

EehnAn ≥ E{ehnAn1[An ≥ a]} ≥ ehn(a)P(An ≥ a)

for all h ≥ 0. Since by independence, the moment-generating function of nAn ≡
X1 + · · · + Xn may be expressed as enc(h), one has for any h ≥ 0,

P(An ≥ a) ≤ e−n(ah−c(h)).

Thus, one obtains an (upper) bound for the rate of decay of probability in (5.15) of
the form

lim sup
n→∞

ln P(An ≥ a)

n
≤ −c∗(a).

It suffices to prove the reverse inequality to establish (5.15). For this it is useful to
exponentially size-bias the distribution of X in such a way that the deviant event
is the rule, rather than the exception. For the given deviation a, suppose that the
maximum defining c∗(a) is achieved at h = ha > 0 (see Exercise 8), with
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c∗(a) = aha − c(ha),
d

dh
(ah − c(h))|h=ha = 0.

In particular, a = d
dh c(h)|h=ha . To simplify notation we will write h∗ for ha in the

rest of the proof. Define a random variable X̃ to have the size-biased distribution
given by

Qh∗(dy) = P(X̃ ∈ dy) = Z−1
δ eh

∗ y P(X ∈ dy),

where Zδ = m(h∗) normalizes eh
∗ y P(X ∈ dy) to a probability distribution. Now

observe that

EX̃ = e−c(h∗)
∫

R

yeh
∗ y P(X ∈ dy) = d

dh
c(h)|h=h∗ = a. (5.16)

In particular, the law of large numbers yields

lim
n→∞ Ãn = lim

n→∞
X̃1 + · · · + X̃n

n
= EX̃ = a.

From here one may obtain the reverse inequality by the law of large numbers under
size biasing: Namely, let ε > 0, and consider deviations of size a (to within ±ε)
defined by

Dn := {(y1, . . . , yn) ∈ R
n : 1

n

n∑

j=1

y j ∈ (a − ε, a + ε)}.

Note that exp{−nh(a + ε) + h
∑n

j=1 X j } ≤ 1 on the event [(X1, . . . , Xn) ∈ Dn].
Thus one has,

P(An > a − ε)

≥ P(An ∈ (a − ε, a + ε))

= E1[(X1, . . . , Xn) ∈ Dn]
≥ E1[(X1, . . . , Xn) ∈ Dn] exp{−nh∗(a + ε) + h∗

n∑

j=1

X j }

= exp{−nh∗(a + ε)}Zn
δE{1[(X1, . . . , Xn) ∈ Dn]

n∏

j=1

Z−1
δ eh

∗X j }

= exp{−nh∗(a + ε)}enc(h∗)P((X̃1, . . . , X̃n) ∈ Dn)

= exp{−(h∗(a + ε) − c(h∗))n}P( Ãn ∈ (a − ε, a + ε)). (5.17)

Now, the law of large numbers under the size-biased distribution (having mean a)
makes Ãn → a and hence P( Ãn ∈ (a − ε, a + ε)) → 1 as n → ∞. In particular, it
follows from (5.17) that for any ε > 0,
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lim inf
n→∞

ln P(An > a − ε)

n
≥ −c∗(a) − h∗ε.

Since lim infn→∞ ln P(An>a−ε)
n is an increasing function of ε, the inequality follows.

The case in which the supremum defining c∗(a) is finite but not achieved is left to
Exercise 16.

For the more restricted hypothesis of finiteness in a neighborhood of zero, let
(a, b) be the interval on which m(h) is finite, −∞ ≤ a < 0 < b < ∞. On (a, b)c,
m(h) = ∞, and therefore, one may restrict attention to h ∈ (a, b) in the definition
of c∗(x). The details are left to Exercise 14. �

Remark 5.1 The inequality

P(An ≥ a) ≤ e−n suph(ah−c(h)) = enI (a) (5.18)

arrived at in the “easy-half”of the above proof is of interest in its own right and
referred to as the Chernoff inequality. The function I (a) is referred to as the
large deviation rate and is computed here in terms of the Legendre transform of the
cumulant-generating function c of the common distribution Q for the sequence of
random variables.

A refinement of the Cramér–Chernoff large deviation rate that takes advantage of
the central limit theorem was developed by Ranga Rao and Bahadur2 It also yields
an alternative derivation of Theorem 5.9.

Theorem 5.10 (Bahadur and Ranga Rao) Let X1, X2, . . . be an i.i.d. sequence of
real-valued random variables, having finite moment-generating function m(h) =
EehX1 for h in a neighborhood of zero. Let σ2 denote the variance of X1. Then for
a > EX1,

pn := P(
1

n

n∑

j=1

X j ≥ a) = enI (a)e
ν2n
2 (1 − Φ(νn)] + Rn,

where h∗ is defined as before, and

m ′(h∗)
m(h∗)

= a, νn = σh∗√n, I (a) = −ah∗ + c′(h∗),

and |Rn| ≤ enI (a)2cE|X1|3
σ3

√
n
, for a constant c ≤ 3.

Remark 5.2 This estimate of pn , omitting Rn , is sharper than that given in Theorem
5.9. The error term involves the (uniform) error in normal approximation by the

2The refinement presented here is due to Bahadur, R., and Ranga Rao, R. (1960): On deviations of
the sample mean, Ann. Math. Stat., v31(4), 1015-1027. This work was preceded by earlier results
of Blackwell, D. and Hodges, J.L. (1959): The probability in the extreme tail of a convolution, Ann.
Math. Stat., v30, 1113–1120.
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clt. A so-called Berry–Esseen bound of the form cE|X1|3/σ3√n will be proven in
Chapter VI, namely Theorem 6.17, to produce Feller’s constant c = 3. As noted
there, this constant has been subsequently reduced to c = 0.5600 as best to date.

Proof Assume for simplicity that m(h) < ∞ for all h ∈ R. Let Y j = X j − a, j =
1, 2, . . . , n and denote its distribution by Q−, and its moment-generating function
ϕ(h) = EehY1 = e−ahm(h), h ∈ R. Define a sequence of i.i.d. random variables
Ỹ j , j ≥ 1, with the size-biased distribution Q̃−(dy) = ϕ(τ )−1eτ y Q−(dy), where
h∗ is chosen so that EỸ1 = ∫

y Q̃−(dy) = 0. Equivalently, the moment-generating

function ψ(h∗) = Eeh
∗Ỹ j = ϕ(h∗+h)

Var(h∗) has the property ψ′(0) = 0. Equivalently,

m ′(h∗)
m(h∗)

= a.

Also note that σ2 = ψ′′(0) = ϕ′′(h∗)
ϕ(h∗) = m ′(h∗)

m(h∗) − a2. Now,

pn = P(

n∑

j=1

Y j ≥ 0) =
∫

{(y1,...,yn):∑n
j=1 y j=0}

Q−(dy1) · · · Q−(dyn)

=
∫

{(y1,...,yn):∑n
j=1 y j=0}

ϕn(h∗)e−h∗ ∑n
j=1 y j Q̃−(dy1) · · · Q̃−(dyn)

= ϕn(h∗)
∫

[0,∞)

e−τ y Q̃∗n
− (dy) = ϕn(h∗)

∫

[0,∞)

e−h∗
σ
√
nxFn(dx),

where Q̃∗n− is the n-fold convolution of Q̃−, and Fn is the distribution of 1
σ
√
n
(Ỹ1 +

· · · + Ỹn), for i.i.d. Ỹ j ( j ≥ 1), having the size-biased distribution Q̃−. Next apply
integration by parts to obtain

pn = ϕn(h∗)h∗σ
√
n

∫

[0,∞)

e−h∗σ
√
nx {Fn(x) − Fn(0)}dx .

By the central limit theorem, for large n and up to a (uniform) error, one can replace
Fn by the standard normal distribution Φ to get

pn = ϕn(h∗)h∗σ
√
n

∫

[0,∞)

e−h∗σ
√
nx {Φ(x) − Φ(0)}dx + Rn,

where, denoting the error in the central limit theorem approximation by εn , one may
write |Rn| = ϕn(τ )εn . Using the Berry–Esseen bound noted in the remark before the
proof, and using

∫ ∞
0 e−zdz = 1, one has

|Rn| ≤ e−nah∗
mn(h∗)2c

E|X1|3
σ3

√
n

http://dx.doi.org/10.1007/978-3-319-47974-3_6
http://dx.doi.org/10.1007/978-3-319-47974-3_6
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Integrating by parts one has, using Φ ′(x) = 1√
2π
e− x2

2 and completing the square,

ϕn(h∗)h∗σ
√
n

∫

[0,∞)

e−h∗σ
√
nx {Φ(x) − Φ(0)}dx

= ϕn(h∗)
∫

[0,∞)

e−h∗σ
√
nxΦ ′(x)

= ϕn(h∗)e
1
2 (h∗σ

√
n)2{1 − Φ(h∗σ

√
n}

= enI (a)e
ν2n
2 {1 − Φ(νn)}.

�

We conclude this chapter with an important inequality due to Hoeffding3 The
inequality is derived from the following lemma.

Lemma 5.1 (Hoeffding’s Lemma) Let Y be a non-degenerate mean zero random
variable such that P(a ≤ Y ≤ b) = 1. Then,

EehY ≤ exp{h
2(b − a)2

8
}, ∀h ∈ R.

Proof The convexity of y → ehy implies that

ehY ≤ b − Y

b − a
ehY + Y − a

b − a
ehb.

Taking expectations one obtains

EehY ≤ b

b − a
eha + −a

b − a
ehb

= eha(
b

b − a
+ −a

b − a
eh(b−a))

= eha(1 − p + peh(b−a))

= e−λp(1 − p + peλ) = eg(λ),

where p = −a
b−a , 1 − p = b

b−a , λ = h(b − a), and

g(λ) = −λp + ln(1 − p + peλ).

3W. Hoeffding (1963): Probability inequalities for sums of bounded random variables, J. of the Am.
Stat. Assoc. 58(301),1330, obtained this inequality in 1963. There are a number of related “concen-
tration inequalities” of this type in the modern probability literature, expressing the concentration
of the distribution of X near the mean.
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Note that g′(0) = 0, g′′(p) = (1− p)peλ/(1− p+ peλ)2 ≤ (1−p)peλ

4(1−p)peλ = 1/4. Thus,

by Taylor expansion, g(λ) ≤ λ2

8 . This leads to the asserted bound on EehY . �

Proposition 5.11 (Hoeffding Inequality) Suppose that X j , 1 ≤ j ≤ n, are indepen-
dent non-degenerate bounded random variables, say, P(c j ≤ X j ≤ d j ) = 1, j =
1, . . . , n. Let μ j = EX j ,μ = 1

n

∑n
j=1 μ j ,Δ

2 = ∑n
j=1(d j − c j )2. Then for every

δ > 0, writing X = 1
n

∑n
j=1 X j , one has

P(X ≥ μ + δ) ≤ exp{−2n2δ2

Δ2
},

P(X ≤ μ − δ) ≤ exp{−2n2δ2

Δ2
}.

Proof It is clearly enough to prove the first inequality since it can then be applied to
the case in which each X j is changed to −X j , 1 ≤ j ≤ n. Now,

P(X ≥ μ + δ) = P(X − μ ≥ δ)

≤ e−hδ
Eeh(X−μ)

= e−hδ
n∏

j=1

Ee
h
n (X j−μ j )

≤ e−hδ
n∏

j=1

exp{ h2

8n2
(d j − c j )

2}

= e−hδ+h2Δ2/8n2 = e f (h).

Using Hoeffding’s lemma, the minimum of the quadratic f (h) is attained at h =
4δn2/Δ2,and for this value of h one has f (h) = −2n2δ2/Δ2. �

Remark 5.3 Hoeffding’s inequality may be viewed as a special case of Chernoff’s
inequality extended to non-identically distributed random variables, with an estima-
tion of the Legendre transform −I (μ + δ) provided by Hoeffding’s lemma. Indeed,
assuming each mgf satisfies m j (h) = E exp{h(X j − μ)} < ∞ in a neighborhood
(−ε, ε) for some ε > 0, 1 ≤ j ≤ n, one has

P(X − μ > δ) ≤ e−δh
Eeh(X−μ) = e−δh

n∏

j=1

m j (
h

n
).

Minimizing with respect to h (or h
n ), one obtains

P(X − μ > δ) ≤ enI (δ),

where
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I (δ) = inf
h≥0

{−δ
h

n
+ 1

n

n∑

j=1

c j (
h

n
)} = inf

h′≥0
{−δh′ + 1

n

n∑

j=1

c j (h
′)}.

Such so-called “concentration inequalities” of Chernoff and Hoeffding have many
applications in areas such as risk theory and machine learning.4

Example 1 (Sampling Design) The Chernoff/Hoeffding estimate of the sample size
for Bernoulli parameter estimation requires a surprisingly large value of n; namely
2, 049, Exercise 13. On the other hand the Bahadur–Ranga Rao large deviation
estimate provides a reasonable reduction; Exercise 13.

Exercise Set V

1. Give a simple proof of the strong law of large numbers (SLLN) for i.i.d. random
variables Z1, Z2, . . . having finite fourth moments. That is, for Sn := Z1+· · ·+
Zn, n ≥ 1, limn→∞ Sn/n → EZ1 a.s. as n → ∞. [Hint: Use a fourth moment
Chebyshev-type inequality and the Borel–Cantelli lemma I to check for each
ε = 1/k, k ≥ 1, P(| Snn − EZ1| > ε i.o.) = 0.]

2. (i) Write out the proof of Proposition 5.5 based on the remarks following the
proof of Theorem 5.4. (ii) Suppose {Xn : n ≥ 1} is a sequence of mean zero
uncorrelated random variables such that

∑n
k=1 var(Xk)/n2 → 0. Show that

1
n

∑n
k=1 Xk → 0 in probability.

3. (SLLN and Transience and Recurrence of Simple Random Walk) Let Sx = {Sx
n :

n = 0, 1, 2, . . . }, where Sx
n = x + Z1 + · · · Zn, (n ≥ 1), Sx

0 = x ∈ Z, be
the simple random walk with P(Z1 = 1) = p, P(Z1 = −1) = q = 1 − p,
with 0 < p < 1. Use the SLLN to show that (i) if p = 1/2 then γ(x) :=
P(Sx reaches every state in Z) = 1, and (ii) if p 	= 1/2 then γ(x) = 0.

4. Let X1, X2, . . . be an i.i.d. sequence of positive random variables such that
E| ln X1| < ∞. (i) Calculate the a.s. limiting geometric mean limn→∞(X1 · · ·
Xn)

1
n . Determine the numerical value of this limit in the case of uniformly

distributed random variables on (0, 2). (ii) Suppose also that EX1 = 1, and
P(X1 = 1) < 1. Show that X1 · · · Xn → 0 a.s. as n → ∞. (iii) Under the
conditions of (ii), is the sequence of products X1, X1X2, X1X2X3, . . . uniformly
integrable ?

5. (Hausdorff’s Estimate) Let X1, X2, . . . be an i.i.d. sequence of random variables
with mean zero and moments of all orders. Let Sn = X1 + · · · + Xn , n ≥ 1.
Show that given any ε > 0 the event A := [|Sn| = O(n

1
2 +ε) as n → ∞] has

probability one. [Hint: For two sequences of numbers {an}n and {bn 	= 0}n one
writes an = O(bn) as n → ∞ if and only if there is a constant C > 0 such that
|an| ≤ C |bn| for all n. Check that E|Sn|2k ≤ cknk , k = 1, 2, 3, . . . , and use the
Borel–Cantelli lemma I to prove the assertion.]

4See Mitzenmacher, M. and E. Upfal (2005) for illustrative applications in the context of machine
learning.
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6. Compute the moment-generating function m(h) for each of the following ran-
dom variables X : (i) P(X = n) = Q({n}) = c

n2 , n = ±1,±2, . . . , where
c−1 = 2

∑∞
n=1

1
n2 . (ii) Q(dx) = λe−λx1[0,∞)(x)dx , where λ > 0. (iii)

Q(dx) = 1√
2π
e− 1

2 x
2
dx . (iv) Show that m(h) < ∞ for all h ∈ R if X is a

bounded random variable, i.e., P(|X | ≤ B) = 1 for some B ≥ 0.
7. Assume m(h) < ∞ for all h ∈ R. If X has a non-degenerate distribution, show

that c(2)(h) > 0 for all h ∈ R. [Hint: c(2)(h) = EX̃2 − (EX̃)2, where X̃ has the
distribution ehx Q(dx)

m(h)
.]

8. (i) Show that there is a maximal interval including zero on which the mgf m(h)

of a random variable X is finite. [Hint: The function h → m(h) is convex since
h → ehy is convex for each y.] (ii) Find examples when the maximal interval in
(i) is (a) {0}, (b) [0, δ) for some 0 < δ ≤ ∞, (c) (δ, 0] for some −∞ ≤ δ < 0,
(d) (α,β),−∞ ≤ α < 0 < β ≤ ∞.

9. Suppose X is non-degenerate with a finite mgf m(h) in a neighborhood of zero,
and the maximal such interval is (α,β), −∞ ≤ α < 0 < β ≤ ∞. (i) Show
that if P(X > 0) > 0, then limh↑β m(h) = ∞, and if P(X < 0) > 0, then
limh↓α m(h) = ∞. (ii) Prove that m(h) and c(h) = lnm(h) are both strictly
convex on (α,β). (iii) For every a ∈ R, the mgf of X − a, namely, ϕa(h) =
e−ahm(h), is finite on (α,β) and infinite on (α,β)c. In particular, ifa > μ = EX ,
then limh↓α ϕa(h) = ∞, and if P(X > a) > 0, then limh↑β ϕa(h) = ∞. (iv)
Suppose a > μ, and P(X > a) > 0. Prove that the indicated supremum c∗(a) =
sup{ah − c(h) : h ∈ R} is attained at some point in (α,β). [Hint: The function
f (h) = ah − c(h) satisfies f (0) = 0, limh↓α f (h) = −∞ = limh↑β f (h).]

10. (Some Basic Properties of Legendre Transform) Let u, v be twice continuously
differentiable convex functions on R with Legendre transforms u∗, v∗, where
f ∗(x) := suph∈R(xh − f (h)), x ∈ R.

(i) (Convexity) Show that u∗ is convex. [Hint: Directly check that u∗(λx + (1−
λ)y) ≤ λu∗(x) + (1 − λ)u∗(y), 0 ≤ λ ≤ 1, x, y ∈ R, from the formula
defining u∗. Note that u need not be convex for this property of u∗.]

(ii) (Involution) Show that u∗∗ = u. [Hint: Write u∗(x) = xh(x)−u(h(x)) and
use the smoothness hypothesis on u to first obtain d

dx u
∗(x) = h(x) where

x = u′(h(x)).]
(iii) (Young’s Inequality) Show that if u = v∗ then xy ≤ u(x) + v(y). [Hint:

Fix x and use the formula defining u in terms of v∗ to bound u(x) below by
xh − v(h) for all h. Replace h by y.]

(iv) Illustrate the above relations graphically.

11. (i) Suppose that X1 has a Gaussian distribution with mean μ and variance σ2.
Compute the large deviation rate I (a). (ii) If X1 is Poissonwithmeanμ, compute
I (a). (iii) If X1 is Bernoulli, P(X1 = 0) = 1− p, P(X1 = 1) = p (0 < p < 1),
compute I (a). (iv) Calculate I (a) for a gamma-distributed random variable with
density f (x) = αβ

Γ (β)
xβ−1e−αx1(0,∞)(x).

12. Suppose that X1, X2, . . . is an i.i.d. sequence of Poisson distributed random
variables with mean one, i.e., P(X1 = m) = 1

m!e
−1,m = 0, 1, 2, . . . . Calculate
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an exact formula for limn→∞ ln P(Sn>n(1+ε))
n as a function of ε > 0, where Sn =

X1 + · · · + Xn, n ≥ 1.
13. Determine the sample sizes for estimation of the Bernoulli parameter to within

±.03 with probability at least .95 using each of the Chernoff inequality and the
Bahadur–Ranga Rao large deviation estimates.

14. (i) Prove that Theorem 5.9 holds if m(h) is finite in a neighborhood of zero.
[Hint: Let (a, b) be the maximal interval on which m(h) is finite, −∞ ≤ a <

0 < b < ∞. On (a, b)c, c(h) = ∞. Also the approach to infinity by c(h) at an
infinite boundary point α or β is faster than that of any linear function h → ah,
and therefore, one may restrict attention to h ∈ (a, b) in the definition of c∗(x).]

15. Derive the Cramér–Chernoff estimate (Theorem 5.9) from that of the Bahadur–
Ranga Rao estimate (Theorem 5.10). [Hint: Use the Feller tail estimate Lemma

2 from Chapter IV: 1 − Φ(x) ∼ 1
x
√
2π
e− x2

2 as x → ∞.]
16. (Interchange of the Order of Differentiation and Integration) (i) Let f (x, θ) be

a real-valued function on S × (c, d), where (S,S,μ) is a measure space and (a)
f is μ-integrable for all θ, (b) θ �→ f (x, θ) is differentiable at θ = θ0 ∈ (c, d),
and (c) | f (x, θ0 + ε) − f (x, θ0)|/|ε| ≤ g(x) for all x ∈ S and for all ε such
that 0 < |ε| < ε0 (for some ε0 > 0), and

∫
S g dμ < ∞. Then show that

d
dθ

∫
S f (x, θ)μ(dx)|θ=θ0 = ∫

S(
d
dθ

f (x, θ))θ=θ0μ(dx). [Hint: Apply Lebesgue’s
dominated convergence theorem to the sequence gn(x) := ( f (x, θ0 + εn) −
f (x, θ0)/εn (0 	= εn → 0).] (ii) Verify the term-by-term differentiation of
m(h) = ∑∞

k=0
hk

k! EX
k at h = 0 in the proof of Proposition 5.7.

17. (i) Use the definition of product probability measure via the Carathéodory con-
struction to obtain the approximation of A ∈ B∞ by finite-dimensional events
An = [(X1, . . . , Xn) ∈ Bn], Bn ∈ Bn , such that P(AΔAn) → 0 as n → ∞.
[Hint: Given ε > 0, obtain a cover A ⊂ ∪m≥1Rm , with Rm ∈ σ(X1, . . . , Xm),
such that P(∪m≥1Rm\A) < ε/2. Use continuity of the probability from above
to argue that P(∪m≥1Rm\ ∪n

m=1 Rm) < ε/2 for n sufficiently large.] (ii)
Show that |P(A) − P(An)| ≤ P(AΔAn). (iii) Show that on a finite mea-
sure space (S,S,μ), (a) μ(BΔA) = μ(AΔB) ≥ 0, (b) μ(AΔA) = 0, and
(c) μ(AΔB) + μ(BΔC) ≥ μ(AΔC) hold for all A, B,C ∈ S. That is,
(A, B) → μ(AΔB) is a pseudo-metric on S.

http://dx.doi.org/10.1007/978-3-319-47974-3_4


Chapter VI
Fourier Series, Fourier Transform,
and Characteristic Functions

Fourier series andFourier transformprovide oneof themost important tools for analy-
sis and partial differential equations, with widespread applications to physics in par-
ticular and science in general. This is (up to a scalar multiple) a norm-preserving (i.e.,
isometry), linear transformation on the Hilbert space of square-integrable complex-
valued functions. It turns the integral operation of convolution of functions into the
elementary algebraic operation of the product of the transformed functions, and that
of differentiation of a function into multiplication by its Fourier frequency.

Although beyond our scope, this powerful and elegant theory extends beyond
functions on finite-dimensional Euclidean space to infinite-dimensional spaces and
locally compact abelian groups.1 From this point of view, Fourier series is the Fourier
transform on the circle group.

This chapter develops the basic properties of Fourier series and the Fourier trans-
form with applications to the central limit theorem and to transience and recurrence
of random walks.

Consider a real- or complex-valued periodic function on the real line. By changing
the scale if necessary, onemay take the period to be2π. Is it possible to represent f as a
superposition of the periodic functions (“waves”) cos nx , sin nx of frequency n (n =
0, 1, 2, . . .)? In view of Weierstrass approximation theorem, every continuous
periodic function f of period 2π is the limit (in the sense of uniform convergence of
functions) of a sequence of trigonometric polynomials, i.e., functions of the form

T∑

n=−T

cne
inx = c0 +

T∑

n=1

(an cos nx + bn sin nx);

the Bernstein polynomials in eix illustrate one such approximation.

1Extensions of the theory can be found in the following standard references, among others: Rudin
(1967), Grenander (1963), Parthasarathy (1967).
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As will be seen, Theorem 6.1 below gives an especially useful version of the
approximation from the perspective of Fourier series. In a Fourier series, the
coefficients of the polynomials are especially defined according to an L2[−π,π]-
orthogonality of the complex exponentials einx = cos(nx) + i sin(nx) as explained
below. For this special choice of coefficients the theory of Fourier series yields,
among other things, that with the weaker notion of L2-convergence the approxi-
mation holds for a wider class of functions, namely for all square-integrable func-
tions f on [−π,π]; here square integrability means that f is measurable and that∫ π

−π | f (x)|2 dx < ∞; denoted f ∈ L2[−π,π]. It should be noted that in general, we
consider integrals of complex-valued functions in this section, and the L p = L p(dx)
spaces are those of complex-valued functions (see Exercise 36 of Chapter I).

The successive coefficients cn for this approximation are the so-called Fourier
coefficients:

cn = 1

2π

∫ π

−π

f (x)e−inx dx (n = 0,±1,±2, . . .). (6.1)

The main point of Theorem 6.1 in this context is to provide a tool for uniformly
approximating continuous functions by trigonometric polynomials whose coeffi-
cients more closely approximate Fourier coefficients than alternatives such as Bern-
stein polynomials.

As remarked above, the functions einx (n = 0,±1,±2, . . .) form an orthonormal
set:

1

2π

∫ π

−π

einxe−imx dx =
{
0, for n �= m,
1 for n = m,

(6.2)

so that the Fourier series of f is written formally, without regard to convergence
for the time being, as

∞∑

n=−∞
cne

inx . (6.3)

As such, this is a representation of f as a superposition of orthogonal components. To
make matters precise we first prove the following useful class of Fejér polynomials;
see Exercise 1 for an alternative approach.

Theorem 6.1 Let f be a continuous periodic function of period 2π. Then, given
δ > 0, there exists a trigonometric polynomial, specifically a Fejér average∑N

n=−N dneinx , where

dn = (1 − |n|
N + 1

)
1

2π

∫ π

−π

f (x)e−inxdx, n = 0,±1,±2, . . . ,

such that

sup
x∈R1

∣
∣
∣
∣
∣
f (x) −

N∑

n=−N

dne
inx

∣
∣
∣
∣
∣
< δ.

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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Proof For each positive integer N , introduce the Fejér kernel

kN (x) := 1

2π

N∑

n=−N

(

1 − |n|
N + 1

)

einx . (6.4)

This may also be expressed as

2π(N + 1)kN (x) =
∑

0≤ j,k≤N

ei( j−k)x =
∣
∣
∣
∣
∣
∣

N∑

j=0

ei j x

∣
∣
∣
∣
∣
∣

2

= 2{1 − (cos(N + 1)x}
2(1 − cos x)

=
(
sin{ 12 (N + 1)x}

sin 1
2 x

)2

. (6.5)

At x = 2nπ (n = 0,±1,±2, . . . ), the right side is taken to be (N + 1)2. The first
equality in (6.5) follows from the fact that there are N +1−|n| pairs ( j, k) in the sum
such that j − k = n. It follows from (6.5) that kN is a positive continuous periodic
function with period 2π. Also, kN is a pdf on [−π,π], since nonnegativity follows
from (6.5) and normalization from (6.4) on integration. For every ε > 0 it follows
from (6.5) that kN (x) goes to zero uniformly on [−π,−ε] ∪ [ε,π], so that

∫

[−π,−ε]∪[ε,π]
kN (x)dx → 0 as N → ∞. (6.6)

In otherwords, kN (x)dx convergesweakly to δ0(dx), the pointmass at 0, as N → ∞.
Consider now the approximation fN of f defined by

fN (x) :=
∫ π

−π

f (y)kN (x − y)dy =
N∑

n=−N

(

1 − |n|
N + 1

)

cne
inx , (6.7)

where cn is the nth Fourier coefficient of f . By changing variables and using the
periodicity of f and kN , one may express fN as

fN (x) =
∫ π

−π

f (x − y)kN (y)dy.

Therefore, writing M = sup{| f (x)| : x ∈ R
k}, and δε = sup{| f (y) − f (y′)| :

|y − y′| < ε}, one has

| f (x)− fN (x)| ≤
∫ π

−π

| f (x− y)− f (x)|kN (y)dy ≤ 2M
∫

[−π,−ε]∪[ε,π]
kN (y)dy+δε.

(6.8)
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It now follows from (6.6) that f − fN converges to zero uniformly as N → ∞. Now
write dn = (1 − |n|/(N + 1))cn . �

Remark 6.1 The representation of the approximating trigonometric polynomial for
f as a convolution f ∗ kN , where kN is a nonegative kernel such that kN ⇒ δ0
is a noteworthy consequence of the proof of Theorem 6.1. The advantages of such
polynomials over an approximation by Bernstein polynomials will become evident
in the context of unique determination of an integrable periodic function, or even a
finite measure on the circle, from its Fourier coefficients; see Proposition 6.3 and
Theorem 6.4 below.

The first task is to establish the convergence of the Fourier series (6.3) to f in L2.
Here the norm ‖ · ‖ is ‖ · ‖2 as defined by (6.10) below. If f (x) = ∑N

n=−N aneinx is a
trigonometric polynomial then the proof is immediate. The general case follows by
a uniform approximation of 2π-periodic continuous function by such trigonometric
polynomials, and finally the density of such continuous functions in L2[−π,π].
Theorem 6.2

a. For every f in L2[−π,π], the Fourier series of f converges to f in L2-norm,
and the identity ‖ f ‖ = (

∑∞
−∞ |cn|2)1/2 holds for its Fourier coefficients cn . Here

‖ · ‖ is defined in (6.10).
b. If (i) f is differentiable, (ii) f (−π) = f (π), and (iii) f ′ is square-integrable,

then the Fourier series of f also converges uniformly to f on [−π,π].
Proof (a) Note that for every square-integrable f and all positive integers N ,

1

2π

∫ π

−π

(

f (x) −
N∑

−N

cne
inx

)

e−imxdx = cm − cm = 0 (m = 0,±1, . . . ,±N ).

(6.9)
Therefore, if one defines the norm (or “length”) of a function g in L2[−π,π] by

‖g‖ =
(

1

2π

∫ π

−π

|g(x)|2dx
)1/2

≡ ‖g‖2, (6.10)

then, writing z̄ for the complex conjugate of z,

0 ≤ ‖ f −
N∑

−N

cne
in·‖2

= 1

2π

∫ π

−π

(

f (x) −
N∑

−N

cne
inx

)(

f̄ (x) −
N∑

−N

c̄ne
−inx

)

dx
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= 1

2π

∫ π

−π

( f (x) −
N∑

−N

cne
inx ) f̄ (x)dx

= ‖ f ‖2 −
N∑

−N

cnc̄n = ‖ f ‖2 −
N∑

−N

|cn|2. (6.11)

This shows that ‖ f − ∑N
−N cnein·‖2 decreases as N increases and that

lim
N→∞ ‖ f −

N∑

−N

cne
in·‖2 = ‖ f ‖2 −

∞∑

−∞
|cn|2. (6.12)

To prove that the right side of (6.12) vanishes, first assume that f is continuous
and f (−π) = f (π). Given ε > 0, there exists, by Theorem 6.1, a trigonometric
polynomial

∑N0
−N0

dneinx such that

max
x

∣
∣
∣
∣
∣
f (x) −

N0∑

−N0

dne
inx

∣
∣
∣
∣
∣
< ε.

This implies

1

2π

∫ π

−π

∣
∣
∣
∣
∣
f (x) −

N0∑

−N0

dne
inx

∣
∣
∣
∣
∣

2

dx < ε2. (6.13)

But by (6.9), f (x)−∑N0
−N0

cn exp{inx} is orthogonal to eimx (m = 0,±1, . . . ,±N0),
so that

1

2π

∫ π

−π

∣
∣
∣
∣
∣
f (x) −

N0∑

−N0

dne
inx

∣
∣
∣
∣
∣

2

dx

= 1

2π

∫ π

−π

∣
∣
∣
∣
∣
f (x) −

N0∑

−N0

cne
inx +

N0∑

−N0

(cn − dn)e
inx

∣
∣
∣
∣
∣

2

dx

= 1

2π

∫ π

−π

∣
∣
∣
∣
∣
f (x) −

N0∑

−N0

cne
inx

∣
∣
∣
∣
∣

2

dx

+ 1

2π

∫ π

−π

∣
∣
∣
∣
∣

N0∑

−N0

(cn − dn)e
inx

∣
∣
∣
∣
∣

2

dx . (6.14)

Hence, by (6.13), (6.14), and (6.11),
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1

2π

∫ π

−π

∣
∣
∣
∣
∣
f (x) −

N0∑

−N0

cne
inx

∣
∣
∣
∣
∣

2

dx < ε2, lim
N→∞

∥
∥
∥
∥
∥
f −

N∑

−N

cne
in·

∥
∥
∥
∥
∥

2

≤ ε2. (6.15)

Since ε > 0 is arbitrary, it follows that

lim
N→∞

∥
∥
∥
∥
∥
f (x) −

N∑

−N

cne
inx

∥
∥
∥
∥
∥

= 0, (6.16)

and by (6.12),

‖ f ‖2 =
∞∑

−∞
|cn|2. (6.17)

This completes the proof of convergence for continuous periodic f . Now it may be
shown that given a square-integrable f and ε > 0, there exists a continuous periodic
g such that ‖ f − g‖ < ε/2 (Exercise 1). Also, letting

∑
aneinx ,

∑
cneinx be the

Fourier series of g, f , respectively, there exists N1 such that

∥
∥
∥
∥
∥
g −

N1∑

−N1

ane
in·

∥
∥
∥
∥
∥

<
ε

2
.

Hence (see (6.14))

∥
∥
∥
∥
∥
f −

N1∑

−N1

cne
in·

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥
f −

N1∑

−N1

ane
in·

∥
∥
∥
∥
∥

≤ ‖ f − g‖ +
∥
∥
∥
∥
∥
g −

N1∑

−N1

ane
in·

∥
∥
∥
∥
∥

<
ε

2
+ ε

2
= ε. (6.18)

Since ε > 0 is arbitrary and ‖ f (·) − ∑N
−N cnein.‖2 decreases to ‖ f ‖2 − ∑∞

−∞ |cn|2
as N ↑ ∞ (see (6.12)), one has

lim
N→∞

∥
∥
∥
∥
∥
f −

N∑

−N

cne
in·

∥
∥
∥
∥
∥

= 0; ‖ f ‖2 =
∞∑

−∞
|cn|2. (6.19)

To prove part (b), let f be as specified. Let
∑

cneinx be the Fourier series of f , and∑
c(1)
n einx that of f ′. Then

c(1)
n = 1

2π

∫ π

−π

f ′(x)e−inx dx = 1

2π
f (x)e−inx

∣
∣
∣
∣

π

−π

+ in

2π

∫ π

−π

f (x)e−inx dx

= 0 − incn = −incn . (6.20)

Since f ′ is square-integrable,
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∞∑

−∞
|ncn|2 =

∞∑

−∞
|c(1)

n |2 < ∞. (6.21)

Therefore, by the Cauchy–Schwarz inequality,

∞∑

−∞
|cn| = |c0| +

∑

n �=0

1

|n| |ncn| ≤ |c0| +
⎛

⎝
∑

n �=0

1

n2

⎞

⎠

1/2 ⎛

⎝
∑

n �=0

|ncn|2
⎞

⎠

1/2

< ∞.

(6.22)
But this means that

∑
cneinx is uniformly absolutely convergent, since

max
x

∣
∣
∣
∣
∣
∣

∑

|n|>N

cne
inx

∣
∣
∣
∣
∣
∣
≤

∑

|n|>N

|cn| → 0 as N → ∞.

Since the continuous functions
∑N

−N cneinx converge uniformly (as N → ∞) to∑∞
−∞ cneinx , the latter must be a continuous function, say h. Uniform convergence

to h also implies convergence in norm to h. Since
∑∞

−∞ cneinx also converges in
norm to f , f (x) = h(x) for all x . If the two continuous functions f and h are not
identically equal, then

∫ π

−π

| f (x) − h(x)|2dx > 0.

�

Definition 6.1 For a finite measure (or a finite-signed measure) μ on the circle
[−π,π) (identifying −π and π), the nth Fourier coefficient of μ is defined by

cn = 1

2π

∫

[−π,π)

e−inxμ(dx) (n = 0,±1, . . .). (6.23)

If μ has a density f , then (6.23) is the same as the nth Fourier coefficient of f
given by (6.1).

Proposition 6.3 A finite measure μ on the circle is determined by its Fourier coef-
ficients.

Proof Approximate the measure μ(dx) by gN (x) dx , where

gN (x) :=
∫

[−π,π)

kN (x − y)μ(dy) =
N∑

−N

(

1 − |n|
N + 1

)

cne
inx , (6.24)

with cn defined by (6.23). For every continuous periodic function h (i.e., for every
continuous function on the circle),
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∫

[−π,π)

h(x)gN (x) dx =
∫

[−π,π)

(∫

[−π,π)

h(x)kN (x − y) dx

)

μ(dy). (6.25)

As N → ∞, the probability measure kN (x − y) dx = kN (y − x) dx on the circle
converges weakly to δy(dx). Hence, the inner integral on the right side of (6.25)
converges to h(y). Since the inner integral is bounded by sup{|h(y)| : y ∈ R},
Lebesgue’s dominated convergence theorem implies that

lim
N→∞

∫

[−π,π)

h(x)gN (x) dx =
∫

[−π,π)

h(y)μ (dy). (6.26)

This means that μ is determined by {gN : N ≥ 1}. The latter in turn are determined
by {cn}n∈Z. �

We are now ready to answer an important question: When is a given sequence
{cn : n = 0,±1, . . .} the sequence of Fourier coefficients of a finite measure on
the circle? A sequence of complex numbers {cn : n = 0,±1,±2, . . .} is said to be
positive-definite if for any finite sequence of complex numbers {z j : 1 ≤ j ≤ N },
one has

∑

1≤ j,k≤N

c j−k z j z̄k ≥ 0. (6.27)

Theorem 6.4 (Herglotz Theorem) {cn : n = 0,±1, . . .} is the sequence of Fourier
coefficients of a probability measure on the circle if and only if it is positive-definite,
and c0 = 1

2π .

Proof Necessity If μ is a probability measure on the circle, and {z j : 1 ≤ j ≤ N } a
given finite sequence of complex numbers, then

∑

1≤ j,k≤N

c j−k z j z̄k = 1

2π

∑

1≤ j,k≤N

z j z̄k

∫

[−π,π)

ei( j−k)xμ(dx)

= 1

2π

∫

[−π,π)

(
N∑

1

z j e
i j x

) (
N∑

1

z̄ke
−ikx

)

μ(dx)

= 1

2π

∫

[−π,π)

∣
∣
∣
∣
∣

N∑

1

z j e
i j x

∣
∣
∣
∣
∣

2

μ(dx) ≥ 0. (6.28)

Also,

c0 = 1

2π

∫

[−π,π)

μ(dx) = 1

2π
.
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Sufficiency. Take z j = ei( j−1)x , j = 1, 2, . . . , N + 1, in (6.27) to get

gN (x) := 1

N + 1

∑

0≤ j,k≤N

c j−ke
i( j−k)x ≥ 0. (6.29)

Again, since there are N + 1 − |n| pairs ( j, k) such that j − k = n (−N ≤ n ≤ N )

it follows that (6.29) becomes

0 ≤ gN (x) =
N∑

−N

(

1 − |n|
N + 1

)

einxcn. (6.30)

In particular, using (6.2),

∫

[−π,π)

gN (x)dx = 2πc0 = 1. (6.31)

Hence gN is a pdf on [−π,π]. By Proposition 7.6, there exists a subsequence {gN ′ }
such that gN ′(x) dx converges weakly to a probability measure μ(dx) on [−π,π] as
N ′ → ∞. Also, again using (6.2) yields

∫

[−π,π)

e−inxgN (x)dx = 2π

(

1 − |n|
N + 1

)

cn (n = 0,±1, . . . ,±N ). (6.32)

For each fixed n, restrict to the subsequence N = N ′ in (6.32) and let N ′ → ∞.
Then, since for each n, cos(nx), sin(nx) are bounded continuous functions,

2πcn = lim
N ′→∞ 2π

(

1 − |n|
N ′ + 1

)

cn =
∫

[−π,π)

e−inxμ(dx) (n = 0,±1, . . .).

(6.33)
In other words, cn is the nth Fourier coefficient of μ. �

Corollary 6.5 Asequence {cn : n = 0,±1, . . . }of complex numbers is the sequence
of Fourier coefficients of a finite measure on the circle [−π,π) if and only if {cn :
n = 0,±1, . . . } is positive-definite.
Proof Since the measure μ = 0 has Fourier coefficients cn = 0 for all n, and the
latter is trivially a positive-definite sequence, it is enough to prove the correspon-
dence between nonzero positive-definite sequences and nonzero finite measures. It
follows fromTheorem6.4, by normalization, that this correspondence is 1–1 between
positive-definite sequences {cn : n = 0,±1, . . . } with c0 = c > 0 and measures on
the circle having total mass 2π. �

It is instructive to consider the Fourier transform f̂ of an integrable function f
on R, defined by

http://dx.doi.org/10.1007/978-3-319-47974-3_7
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f̂ (ξ) =
∫ ∞

−∞
eiξy f (y) dy, ξ ∈ R. (6.34)

as a limiting version of a Fourier series. In particular, if f is differentiable and
vanishes outside a finite interval, and if f ′ is square-integrable, then one may use the
Fourier series of f (scaled to be defined on (−π,π]) to obtain (see Exercise 6) the
Fourier inversion formula,

f (z) = 1

2π

∫ ∞

−∞
f̂ (y)e−i zy dy. (6.35)

Moreover, any f that vanishes outside a finite interval and is square-integrable is
automatically integrable, and for such an f one has the Plancherel identity (see
Exercise 6)

‖ f̂ ‖22 :=
∫ ∞

−∞
| f̂ (ξ)|2 dξ = 2π

∫ ∞

−∞
| f (y)|2 dy = 2π‖ f ‖22. (6.36)

The extension of this theory relating to Fourier series and Fourier transforms in
higher dimensions is straightforward along the following lines. The Fourier series of
a square-integrable function f on [−π,π) × [−π,π) × · · · × [−π,π) = [−π,π)k

is defined by
∑

v cv exp{iv · x}, where the summation is over all integral vectors
(or multi-indices) v = (v(1), v(2), . . . , v(k)), each v(i) being an integer. Also, v ·
x = ∑k

i=1 v(i)x (i) is the usual Euclidean inner product on R
k between two vectors

v = (v(1), . . . , v(k)) and x = (x (1), x (2), . . . , x (k)). The Fourier coefficients are given
by

cv = 1

(2π)k

∫ π

−π

· · ·
∫ π

−π

f (x)e−iv·x dx . (6.37)

The extensions of Theorems (and Proposition) 6.1–6.4 are fairly obvious. Similarly,
the Fourier transform of an integrable function (with respect to Lebesgue measure
on R

k) f is defined by

f̂ (ξ) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
eiξ·y f (y) dy (ξ ∈ R

k), (6.38)

the Fourier inversion formula becomes

f (z) = 1

(2π)k

∫ ∞

−∞
· · ·

∫ ∞

−∞
f̂ (ξ)e−i z·ξ dξ, (6.39)

which holds when f (x) and f̂ (ξ) are integrable. The Plancherel identity (6.36)
becomes

∫ ∞

−∞
· · ·

∫ ∞

−∞
| f̂ (ξ)|2 dξ = (2π)k

∫ ∞

−∞
· · ·

∫ ∞

−∞
| f (y)|2 dy, (6.40)
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which holds whenever f is integrable and square-integrable, i.e., Theorem 6.7 below.

Definition 6.2 The Fourier transform2 of an integrable (real- or complex-valued)
function f on R

k is the function f̂ on R
k defined by

f̂ (ξ) =
∫

Rk

eiξ·y f (y) dy, ξ ∈ R
k . (6.41)

As a special case, take k = 1, f = 1(c,d]. Then,

f̂ (ξ) = eiξd − eiξc

iξ
, (6.42)

so that f̂ (ξ) → 0 as |ξ| → ∞. Such “decay”in the Fourier transform is to be
generally expected for integrable functions as follows.

Proposition 6.6 (Riemann–Lebesgue Lemma) The Fourier transform f̂ (ξ) of an
integrable function f on R

k tends to zero in the limit as |ξ| → ∞.

Proof The convergence to zero as ξ → ±∞ illustrated by (6.42) is clearly valid for
arbitrary step functions, i.e., finite linear combinations of indicator functions of finite
rectangles. Now let f be an arbitrary integrable function. Given ε > 0 there exists a
step function fε such that (see Remark following Proposition 2.5)

‖ fε − f ‖1 :=
∫

Rk

| fε(y) − f (y)| dy < ε. (6.43)

Now it follows from (6.41) that | f̂ ε(ξ)− f̂ (ξ)| ≤ ‖ fε− f ‖1 for all ξ. Since f̂ ε(ξ) → 0
as |ξ| → ∞, one has lim sup|ξ|→∞ | f̂ (ξ)| ≤ ε. Since ε > 0 is arbitrary,

f̂ (ξ) → 0 as|ξ| → ∞.

�

Let us now check that (6.35), (6.36), in fact, hold under the followingmore general
conditions

Theorem 6.7 a. If f and f̂ are both integrable, then the Fourier inversion formula
(6.35) holds.

b. If f is integrable as well as square-integrable, then the Plancherel identity (6.36)
holds.

2There are several different ways in which Fourier transforms can be parameterized and/or nor-
malized by extra constant factors and/or a different sign in the exponent. The definition given here
follows the standard conventions of probability theory.

http://dx.doi.org/10.1007/978-3-319-47974-3_2
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Proof (a) Let f, f̂ be integrable. Assume for simplicity that f is continuous. Note
that this assumption is innocuous since the inversion formula yields a continuous
(version of) f (see Exercise 7(i) for the steps of the proof without this a priori
continuity assumption for f ). Let ϕε2 denote the pdf of the Gaussian distribution
with mean zero and variance ε2 > 0. Then writing Z to denote a standard normal
random variable,

f ∗ ϕε2(x) =
∫

R

f (x − y)ϕε2(y)dy = E f (x − εZ) → f (x), (6.44)

as ε → 0. On the other hand (see Exercise 3),

f ∗ ϕε2(x) =
∫

R

f (x − y)ϕε2(y)dy =
∫

R

f (x − y)

{
1

2π

∫

R

e−iξye−ε2ξ2/2dξ

}

dy

= 1

2π

∫

R

e−ε2ξ2/2

{∫

R

eiξ(x−y) f (x − y)dy

}

e−iξxdξ

= 1

2π

∫

R

e−iξxe−ε2ξ2/2 f̂ (ξ)dξ → 1

2π

∫

R

e−iξx f̂ (ξ)dξ (6.45)

as ε → 0. The inversion formula (6.35) follows from (6.44), (6.45). For part (b) see
Exercise 7(ii). �

Remark 6.2 Since L1(R, dx) ∩ L2(R, dx) is dense in L2(R, dx) in the L2-metric,
the Plancheral identity (6.36) may be extended to all of L2(R, dx), extending in this
process the definition of the Fourier transform f̂ of f ∈ L2(R, dx). However, we
do not make use of this extension in this text.

Suppose k = 1 to start. If f is continuously differentiable and f , f ′ are both
integrable, then integration by parts yields (Exercise 2(b))

f̂ ′(ξ) = −iξ f̂ (ξ). (6.46)

The boundary terms in deriving (6.46) vanish, if f ′ is integrable (as well as f ) then
f (x) → 0 as x → ±∞. More generally, if f is r -times continuously differentiable
and f ( j), 0 ≤ j ≤ r , are all integrable, then one may repeat the relation (6.46) to get
by induction (Exercise 2(b))

f̂ (r)(ξ) = (−iξ)r f̂ (ξ). (6.47)

In particular, (6.47) implies that if f , f ′, f ′′ are integrable then f̂ is integrable. Similar
formulae are readily obtained for dimensions k > 1 using integration by parts. From
this and the Riemann–Lebesgue lemma one may therefore observe a clear sense in
which the smoothness of the function f is related to the rate of decay of the Fourier
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transform at ∞. The statements of smoothness in higher dimensions use the multi-
index notation for derivatives: For a k-tuple of positive integersα = (α1, . . . ,αk)

|α| = ∑k
j=1 α j , ∂α = ∂α1

∂x
α1
1

· · · ∂αk

∂x
αk
k

.

Theorem 6.8

a. Suppose f in L1(Rk). For |α| ≤ m, f̂ ∈ Cm , and ∂α f̂ = (i x)α f̂ ).
b. If (i) xα f ∈ Cm , (ii) ∂α f ∈ L1 for α ≤ m, and (iii) ∂α f ∈ C0 for |α| ≤ m − 1,

then ˆ∂α f (ξ) = (iξ)α f̂ (ξ).

Proof To establish part (i) requires differentiation under the integral and induction
on |α|. The differentiation is justified by the dominated convergence theorem. Inte-
gration by parts yields part (ii) in the case |α| = 1, as indicated above. The result
then follows by induction on |α|. �

Definition 6.3 The Fourier transform μ̂ of a finite measure μ on R
k , with Borel

σ-field Bk , is defined by

μ̂(ξ) =
∫

Rk

eiξ·x dμ(x). (6.48)

If μ is a finite-signed measure, i.e., μ = μ1 − μ2 where μ1, μ2 are finite measures,
then also one defines μ̂ by (6.48) directly, or by setting μ̂ = μ̂1 − μ̂2. In particular,
if μ(dx) = f (x) dx , where f is real-valued and integrable, then μ̂ = f̂ . If μ is a
probability measure, then μ̂ is also called the characteristic function of μ, or of any
random vector X = (X1, . . . , Xk) on (Ω,F , P) whose distribution is μ = P ◦ X−1.
In this case, by the change of variable formula, one has the equivalent definition

μ̂(ξ) = Eeiξ·X , ξ ∈ R
k . (6.49)

In the case that Q̂ ∈ L1(Rk) the Fourier inversion formula yields a density function
for Q(dx), i.e., integrability of Q̂ implies absolute continuity of Q with respect to
Lebesgue measure.

We next consider the convolution of two integrable functions f , g:

f ∗ g(x) =
∫

Rk

f (x − y)g(y) dy (x ∈ R
k). (6.50)

Since by the Tonelli part of the Fubini–Tonelli theorem,

∫

Rk

| f ∗ g(x)| dx =
∫

Rk

∫

Rk

| f (x − y)||g(y)| dy dx

=
∫

Rk

| f (x)| dx
∫ ∞

−∞
|g(y)| dy, (6.51)

f ∗ g is integrable. Its Fourier transform is
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( f ∗ g) ˆ(ξ) =
∫

Rk

eiξ·x
(∫

Rk

f (x − y)g(y) dy

)

dx

=
∫

Rk

∫

Rk

eiξ·(x−y)eiξ·y f (x − y)g(y) dy dx

=
∫

Rk

∫

Rk

eiξ·zeiξ·y f (z)g(y) dy dz = f̂ (ξ)ĝ(ξ), (6.52)

a result of importance in both probability and analysis. By iteration, one defines the
n-fold convolution f1 ∗ · · · ∗ fn of n integrable functions f1, . . . , fn and it follows
from (6.52) that ( f1 ∗ · · · ∗ fn) ˆ = f̂ 1 f̂ 2 · · · f̂ n . Note also that if f , g are real-
valued integrable functions and one defines the measures μ, ν by μ(dx) = f (x) dx ,
ν(dx) = g(x) dx , and μ ∗ ν by ( f ∗ g)(x) dx , then

(μ ∗ ν)(B) =
∫

B
( f ∗ g)(x) dx =

∫

Rk

(∫

B
f (x − y) dx

)

g(y) dy

=
∫

Rk

μ(B − y)g(y) dy
∫

Rk

μ(B − y)dν(y), (6.53)

for every interval (or, more generally, for every Borel set) B. Here B − y is the
translate of B by −y, obtained by subtracting from each point in B the number
y. Also (μ ∗ ν) ˆ = ( f ∗ g) ˆ = f̂ ĝ = μ̂ν̂. In general (i.e., whether or not finite-
signed measures μ and/or ν have densities), the last expression in (6.53) defines
the convolution μ ∗ ν of finite-signed measures μ and ν. The Fourier transform of
this finite-signed measure is still given by (μ ∗ ν) ˆ = μ̂ν̂. Recall that if X1, X2 are
independent k-dimensional random vectors on some probability space (Ω,A, P)

and have distributions Q1, Q2, respectively, then the distribution of X1 + X2 is
Q1 ∗ Q2. The characteristic function (i.e., Fourier transform) may also be computed
from

(Q1 ∗ Q2) ˆ(ξ) = Eeiξ·(X1+X2) = Eeiξ·X1Eeiξ·X2 = Q̂1(ξ)Q̂2(ξ). (6.54)

This argument extends to finite-signedmeasures, and is an alternativeway of thinking
about (or deriving) the result (μ ∗ ν) ˆ = μ̂ν̂.

Theorem 6.9 (Uniqueness) Let Q1, Q2 be probabilities on the Borel σ-field of R
k .

Then Q̂1(ξ) = Q̂2(ξ) for all ξ ∈ R
k if and only if Q1 = Q2.

Proof For each ξ ∈ R
k , one has by definition of the characteristic function that

e−iξ·x Q̂1(ξ) = ∫
Rk eiξ(y−x)Q1(dy). Thus, integrating with respect to Q2, one obtains

the duality relation

∫

Rk

e−iξ·x Q̂1(ξ)Q2(dξ) =
∫

Rk

Q̂2(y − x)Q1(dy). (6.55)
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Let ϕ1/σ2(x) = σ√
2π
e− σ2x2

2 , x ∈ R, denote the Gaussian pdf with variance 1/σ2

centered at 0, and take Q2(dx) ≡ Φ1/σ2(dx) := ∏k
j=1 ϕ1/σ2(x j )dx1 · · · dxk in (6.55).

Then Q̂2(ξ) = Φ̂1/σ2(ξ) = e− ∑k
j=1

ξ2j
2σ2 = (

√
2πσ2)k

∏k
j=1 ϕσ2(ξ j ) so that the right-

hand side may be expressed as (
√
2πσ2)k times the pdf of Φσ2 ∗ Q1. In particular,

one has

1

2π

∫

R j

e−iξ·x Q̂1(ξ)e
− ∑k

j=1

σ2ξ2j
2 dξ j =

∫

Rk

k∏

j=1

ϕσ2(y j − x j )Q1(dy).

The right-hand side may be viewed as the pdf of the distribution of the sum of
independent random vectors Xσ2 + Y with respective distributions Φσ2 and Q1.
Also, by the Chebyshev inequality, Xσ2 → 0 in probability as σ2 → 0. Thus the
distribution of X2

σ + Y converges weakly to Q1. Equivalently, the pdf of Xσ2 + Y is
given by the expression on the left side, involving Q1 only through Q̂1. In this way
Q̂1 uniquely determines Q1. �

Remark 6.3 Equation (6.55) may be viewed as a form of Parseval’s relation.

The following version of Parseval relation is easily established by an application
of the Fubini–Tonelli theorem and definition of characteristic function.

Proposition 6.10 (Parseval Relation) Let Q1 and Q2 be probabilities on R
k with

characteristic functions Q̂1 and Q̂2, respectively. Then

∫

Rk

Q̂1(ξ)Q2(dξ) =
∫

Rk

Q̂2(ξ)Q1(dξ).

At this point we have established that the map Q ∈ P(Rk) → Q̂ ∈ P̂(Rk) is
one to one, and transforms convolution as pointwise multiplication. Some additional
basic properties of this map are presented in the exercises. We next consider impor-
tant special cases of an inversion formula for absolutely continuous finite (signed)
measures μ(dx) = f (x)dx on R

k . This is followed by a result on the continuity of
the map Q → Q̂ for respectively the weak topology on P(Rk) and the topology
of pointwise convergence on P̂(Rk). Finally the identification of the range of the
Fourier transform of finite positive measures is provided. Such results are of notable
theoretical and practical value.

Next we will see that the correspondence Q �→ Q̂, on the set of probability
measures with the weak topology onto the set of characteristic functions with the
topology of pointwise convergence is continuous, thus providing a basic tool for
obtaining weak convergence of probabilities on the finite-dimensional space R

k .

Theorem 6.11 (Cramér–Lévy Continuity Theorem) Let Pn(n ≥ 1) be probability
measures on (Rk,Bk).

a. If Pn converges weakly to P , then P̂n(ξ) converges to P̂(ξ) for every ξ ∈ R
k .
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b. If for some continuous function ϕ one has P̂n(ξ) → ϕ(ξ) for every ξ, then ϕ is
the characteristic function of a probability P , and Pn converges weakly to P .

Proof (a) Since P̂n(ξ), P̂(ξ) are the integrals of the bounded continuous function
exp{iξ·x}with respect to Pn and P , it follows from the definition ofweak convergence
that P̂n(ξ) → P̂(ξ). (b) We will show that {Pn : n ≥ 1} is tight. First, let k = 1. For
δ > 0 one has

1

2δ

∫ δ

−δ

(1 − P̂n(ξ))dξ = 1

2δ

∫

R

{∫ δ

−δ

(1 − eiξx )dξ

}

Pn(dx)

= 1

2δ

∫

R

(2δ − ξ[
sin(ξx)

ξx

∣
∣δ−δ

)
Pn(dx)

= 1

2δ

∫

R

(

2δ − 2δ
sin(δx)

δx

)

Pn(dx)

=
∫

R

(

1 − sin(δx)

δx

)

Pn(dx)

≥ 1

2
Pn({x : |δx | ≥ 2}) = 1

2
Pn

({

x : |x | ≥ 2

δ

})

.

Hence, by assumption,

Pn

({

x : |x | ≥ 2

δ

})

≤ 2

2δ

∫ δ

−δ

(1 − P̂n(ξ))dξ → 2

2δ

∫ δ

−δ

(1 − ϕ(ξ))dξ,

as n → ∞. Since ϕ is continuous and ϕ(0) = 1, given any ε > 0 one may choose
δ > 0 such that (1 − ϕ(ξ)) ≤ ε/4 for |ξ| ≤ δ. Then the limit in (6.56) is no more
than ε/2, proving tightness. For k > 1, consider the distribution Pj,n under Pn of the
one-dimensional projections x = (x1, . . . , xk) �→ x j for each j = 1, . . . , k. Then
P̂j,n(ξ j ) = P̂n(0, . . . , 0, ξ j , 0, . . . , 0) → ϕ j (ξ j ) := ϕ(0, . . . , 0, ξ j , 0, . . . , 0) for
all ξ j ∈ R

1. The previous argument shows that {Pj,n : n ≥ 1} is a tight family for
each j = 1, . . . , k. Hence there is a δ > 0 such that Pn({x ∈ R

k : |x j | ≤ 2/δ, j =
1, . . . , k}) ≥ 1 − ∑k

j=1 Pj,n({x j : |x j | ≥ 2/δ}) ≥ 1 − kε/2 for all sufficiently
large n, establishing the desired tightness. By Prohorov’s Theorem (Theorem 7.11),
there exists a subsequence of {Pn}∞n=1, say {Pnm }∞m=1, that converges weakly to some
probability P . By part (a), P̂nm (ξ) → P̂(ξ), so that P̂(ξ) = ϕ(ξ) for all ξ ∈ R

k .
Since the limit characteristic functionϕ(ξ) is the same regardless of the subsequence
{Pnm }∞m=1, it follows that Pn converges weakly to P as n → ∞. �

The law of rare events, orPoisson approximation to the binomial distribution,
provides a simple illustration of the Cramér–Lévy continuity Theorem 6.11.

Proposition 6.12 (Law of Rare Events) For each n ≥ 1, suppose that Xn,1, . . . , Xn,n

is a sequence of n i.i.d. 0 or 1-valued random variables with pn = P(Xn,k = 1),
qn = P(Xn,k = 0),where limn→∞ npn = λ > 0,qn = 1−pn . ThenYn = ∑n

k=1 Xn,k

converges in distribution to Y , where Y is distributed by the Poisson law

http://dx.doi.org/10.1007/978-3-319-47974-3_7
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P(Y = m) = λm

m! e
−λ,

m = 0, 1, 2, . . . .

Proof Using the basic fact that limn→∞(1 + an
n )n = elimn an whenever {an}∞n=1 is a

sequence of complex numbers such that limn an exists, one has by independence,
and in the limit as n → ∞,

EeiξYn = (
qn + pne

iξ
)n =

(

1 + npn(eiξ − 1)

n

)n

→ exp(λ(eiξ − 1)), ξ ∈ R.

One may simply check that this is the characteristic function of the asserted limiting
Poisson distribution. �

The development of tools for Fourier analysis of probabilities is concluded with
an application of the Herglotz theorem (Theorem 6.4) to identify the range of the
Fourier transform of finite positive measures.

Definition 6.4 A complex-valued function ϕ on R
k is said to be positive-definite

if for every positive integer n and finite sequences {ξ1, ξ2, . . . , ξn} ⊂ R
k and

{z1, z2, . . . , zn} ⊂ C (the set of complex numbers), one has

∑

1≤ j,k≤n

z j z̄kϕ(ξ j − ξk) ≥ 0. (6.56)

Theorem 6.13 (Bochner’s theorem) A function ϕ on R
k is the Fourier transform of

a finite measure on R
k if and only if it is positive-definite and continuous.

Proof We give the proof in the case k = 1 and leave k > 1 to the reader. The proof of
necessity is entirely analogous to (6.28). It is sufficient to consider the caseϕ(0) = 1.
For each positive integer N , c j,N := ϕ(− j2−N )), j = 0,±1,±2, . . . , is positive-
definite in the sense of (6.27). Hence, by the Herglotz theorem, there exists a proba-
bility γN on [−π,π) such that c j,N = (2π)−1

∫
[−π,π)

e−i j xγN (dx) for each j . By the

change of variable x → 2N x , one has ϕ( j2−N ) = (2π)−1
∫
[−2Nπ,2Nπ)

ei j2
−N xμN (dx)

for some probability μN (dx) on [−2Nπ, 2Nπ). The characteristic function μ̂N (ξ) :=∫
R1 eiξxμN (dx) agrees with ϕ at all dyadic rational points j2−N , j ∈ Z, dense in R.
To conclude the proof we note that one may use the continuity of ϕ(ξ) to see that
the family of functions μ̂N (ξ) is equicontinuous by the lemma below. With this it
will follow by the Arzelà–Ascoli theorem (Appendix B) that there is a subsequence
that converges pointwise to a continuous function g on R. Since g and ϕ agree on a
dense subset of R, it follows that g = ϕ. �

Lemma 1 (An Equicontinuity Lemma)

a. Let ϕN , N ≥ 1, be a sequence of characteristic functions of probabilities μN . If
the sequence is equicontinuous at ξ = 0 then it is equicontinuous at all ξ ∈ R.
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b. In the notation of the above proof of Bochner’s theorem, let μN be the probability
on [−2Nπ, 2Nπ] with characteristic function ϕN = μ̂N , where ϕN (ξ) = ϕ(ξ)
for ξ = j2−N , j ∈ Z. Then, (i) for h ∈ [−1, 1], 0 ≤ 1 − ReϕN (h2−N ) ≤
1 − Reϕ(2−N ). (ii) ϕN is equicontinuous at 0, and hence at all points of R

(by (i)).

Proof For the first assertion (a) simply use the Cauchy–Schwarz inequality to check
that |ϕN (ξ) − ϕN (ξ + η)|2 ≤ 2|ϕN (0) − ReϕN (η)|.

For (i) of the second assertion (b), write the formula and note that 1− cos(hx) ≤
1 − cos(x) for −π ≤ x ≤ π, 0 ≤ h ≤ 1. For (ii), given ε > 0 find δ > 0, (0 <

δ < 1) such that |1 − ϕ(θ)| < ε for all |θ| < δ. Now express each such θ as
θ = (hN + kN )2−N , where kN = [2Nθ] is the integer part of 2Nθ, and hN =
2Nθ−[2Nθ] ∈ [−1, 1].Using the inequality |a+b|2 ≤ 2|a|2+2|b|2 togetherwith the
inequality in the proof of (a), one has that |1−ϕN (θ)|2 = |1−ϕN ((hN+kN )2−N )|2 ≤
2|1 − ϕ(kN2−N )|2 + 4|1 − Reϕ(2−N )| ≤ 2ε2 + 4ε. �

Wewill illustrate the useof characteristic functions in twoprobability applications.
For the first, let us recall the general random walk on R

k from Chapter II. A basic
consideration in the probabilistic analysis of the long-run behavior of a stochastic
evolution involves frequencies of visits to specific states.

Let us consider the random walk Sn := Z1 + · · · + Zn, n ≥ 1, starting at S0 = 0.
The state 0 is said to be neighborhood recurrent if for every ε > 0, P(Sn ∈
Bε i.o.) = 1, where Bε = {x ∈ R

k : |x | < ε}. It will be convenient for the
calculations to use the rectangular norm |x | := max{|x j | : j = 1, . . . , k}, for
x = (x1, . . . , xk). All finite-dimensional norms being equivalent, there is no loss of
generality in this choice.

Observe that if 0 is not neighborhood recurrent, then for some ε > 0, P(Sn ∈
Bε i.o.) < 1, and therefore by the Hewitt–Savage 0-1 law, P(Sn ∈ Bε i.o.) = 0.
Much more may be obtained with regard to recurrence dichotomies, expected return
times, nonrecurrence, etc., which is postponed to a fuller treatment of stochastic
processes. However, the following lemma is required for the result given here. As a
warm-up, note that by the Borel–Cantelli lemma I, if

∑∞
n=1 P(Sn ∈ Bε) < ∞ for

some ε > 0 then 0 cannot be neighborhood recurrent. In fact one has the following
basic result.

Lemma 2 (Chung–Fuchs) 0 is neighborhood recurrent if and only if for all ε > 0,∑∞
n=1 P(Sn ∈ Bε) = ∞.

Proof As noted above, if for some ε > 0,
∑∞

n=1 P(Sn ∈ Bε) < ∞, then with
probability one, Sn will visit Bε at most finitely often by the Borel–Cantelli lemma
I. So it suffices to show that if

∑∞
n=1 P(Sn ∈ Bε) = ∞ for every ε > 0 then Sn will

http://dx.doi.org/10.1007/978-3-319-47974-3_2
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visit any given neighborhood of zero infinitely often with probability one. The proof
is based on establishing the following two calculations:

(A)
∞∑

n=1

P(Sn ∈ Bε) = ∞ ⇒ P(Sn ∈ B2ε i.o.) = 1,

(B)
∞∑

n=1

P(Sn ∈ Bε) ≥ 1

(2m)k

∞∑

n=1

P(Sn ∈ Bmε), m ≥ 2.

In particular,
∑∞

n=0 P(Sn ∈ Bε) = ∞ for some ε > 0, then from (B),
∑∞

n=0 P(Sn ∈
Bε′) = ∞ for all ε′ < ε. In view of (A) this would make 0 neighborhood recurrent.
To prove (A), let Nε := card{n ≥ 0 : Sn ∈ Bε} count the number of visits to Bε. Also
let Tε := sup{n : Sn ∈ Bε} denote the (possibly infinite) time of the last visit to Bε.
To prove (A) we will show that if

∑∞
m=0 P(Sm ∈ Bε) = ∞, then P(T2ε = ∞) = 1.

Let r be an arbitrary positive integer. One has

P(|Sm | < ε, |Sn| ≥ ε,∀n ≥ m + r)

= P(m ≤ Tε < m + r)

= P(Tε = m) + P(Tε = m + 1) + · · · + P(Tε = m + r − 1).

Hence,

∞∑

m=1

P(|Sm | < ε, |Sn | ≥ ε,∀n ≥ m+r) =
∞∑

m=1

P(Tε = m)+· · ·+
∞∑

m=1

P(Tε = m+r−1) ≤ r.

Thus,

r ≥
∞∑

m=0

P(Sm ∈ Bε, |Sn| ≥ ε ∀ n ≥ m + r)

≥
∞∑

m=0

P(Sm ∈ Bε, |Sn − Sm | ≥ 2ε ∀ n ≥ m + r)

=
∞∑

m=0

P(Sm ∈ Bε)P(|Sn| ≥ 2ε ∀ n ≥ r). (6.57)

Assuming
∑∞

m=0 P(Sm ∈ Bε) = ∞, one must therefore have P(T2ε ≤ r) ≤
P(|Sn| ≥ 2ε ∀ n ≥ r) = 0. Thus P(T2ε < ∞) = 0. For the proof of (B), let
m ≥ 2 and for x = (x1, . . . , xk) ∈ R

k , define τx = inf{n ≥ 0 : Sn ∈ Rε(x)}, where
Rε(x) := [0, ε)k + x := {y ∈ R

k : 0 ≤ yi − xi < ε, i = 1, . . . , k} is the translate of
[0, ε)k by x , i.e., “square with lower left corner at x of side lengths ε.” For arbitrary
fixed x ∈ {−mε,−(m − 1)ε, . . . , (m − 1)ε}k ,
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∞∑

n=0

P(Sn ∈ Rε(x)) =
∞∑

m=0

∞∑

n=m

P(Sn ∈ Rε(x), τx = m)

≤
∞∑

m=0

∞∑

n=m

P(|Sn − Sm | < ε, τx = m)

=
∞∑

m=0

P(τx = m)

∞∑

j=0

P(Sj ∈ Bε)

≤
∞∑

j=0

P(Sj ∈ Bε).

Thus, it now follow that

∞∑

n=0

P(Sn ∈ Bmε) ≤
∞∑

n=0

∑

x∈{−mε,−(m−1)ε,...,(m−1)ε}k
P(Sn ∈ Rε(x))

=
∑

x∈{−mε,−(m−1)ε,...,(m−1)ε}k

∞∑

n=0

P(Sn ∈ Rε(x))

≤ (2m)k
∞∑

n=0

P(Sn ∈ Bε).

�

Remark 6.4 On a countable state space such as Z
d , the topology is discrete and { j}

is an open neighborhood of j for every state j . Hence neighborhood recurrence is
equivalent to point recurrence. Using the so-called strongMarkov property discussed
in ChapterXI, one may show that if a state i of a Markov chain on a countable state
space is point recurrent, then the probability of reaching a state j , starting from i , is
one, provided that the n-step transition probability from i to j , p(n)

i j , is nonzero for
some n; see Example 1 below, and Exercise 5 of Chapter XI.

Example 1 (Polya’s Theorem) The simple symmetric random walk {Sn : n =
0, 1, 2, . . . } on Z

k starting at S0 = 0 is defined by the random walk with the discrete
displacement distribution Q({e j }) = Q({−e j }) = 1

2k , j = 1, 2, . . . , k, where e j
is the j th standard basis vector, i.e., j th column of the k × k identity matrix. For
k = 1 the recurrence follows easily from Lemma 2 by the combinatorial identity
P(S2n = 0) = (2n

n

)
2−2n and Stirling’s formula. For k = 2, one may rotate the

coordinate axis by π/4 to map the simple symmetric two-dimensional random walk
onto a randomwalk on the rotated lattice having independent one-dimensional simple
symmetric random walk coordinates. It then follows for the two-dimensional walk
that P(S2n = 0) = (

(2n
n

)
2−2n)2, from which the point recurrence also follows in two

dimensions. Combinatorial arguments for the transience in three or more dimensions

http://dx.doi.org/10.1007/978-3-319-47974-3_11
http://dx.doi.org/10.1007/978-3-319-47974-3_11
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are also possible, but quite a bit more involved. An alternative approach by Fourier
analysis is given below.

We turn now to conditions on the distribution of the displacements for neighbor-
hood recurrence in terms of Fourier transforms. If, for example, EZ1 exists and is
nonzero, then it follows from the strong law of large numbers that a.s. |Sn| → ∞.
The following is a complete characterization of neighborhood recurrence in terms of
the distribution of the displacements. A simpler warm-up version for random walks
on the integer lattice is given in Exercise 25. In the following theorem Re(z) refers
to the real part of a complex number z.

Theorem 6.14 (Chung–Fuchs Recurrence Criterion) Let Z1, Z2, . . . be an i.i.d.
sequence of random vectors in R

k with common distribution Q. Let {Sn = Z1 +
· · · + Zn : n ≥ 1}, S0 = 0, be a random walk on R

k starting at 0. Then 0 is a
neighborhood-recurrent state if and only if for every ε > 0,

sup
0<r<1

∫

Bε

Re

(
1

1 − r Q̂(ξ)

)

dξ = ∞.

Proof First observe that the “triangular probability density function” f̂ (ξ) = (1 −
|ξ|)+, ξ ∈ R, has the characteristic function f (x) = 21−cos(x)

x2 , x ∈ R, and therefore,
1
2π f (x) has characteristic function f̂ (ξ) (Exercise 23). One may also check that

f (x) ≥ 1/2 for |x | ≤ 1 (Exercise 23). Also f(x) := ∏k
j=1 f (x j ), x = (x1, . . . , xk),

has characteristic function f̂(ξ) = ∏k
j=1 f̂ (ξ j ), and f̂ has characteristic function

(2π)kf . In view of Parseval’s relation (Proposition 6.10), one may write

∫

Rk

f
( x
λ

)
Q∗n(dx) = λk

∫

Rk

f̂(λξ)Q̂n(ξ)dξ,

for any λ > 0, n ≥ 1. Using the Fubini–Tonelli theorem one therefore has for
0 < r < 1 that

∫

Rk

f(
x
λ

)

∞∑

n=0

rnQ∗n(dx) = λk
∫

Rk

f̂(λξ)

1 − r Q̂(ξ)
dξ.

Also, since the integral on the left is real, the right side must also be a real integral.
For what follows note that when an indicated integral is real, one may replace the
integrand by its respective real part. Suppose that for some ε > 0,

sup
0<r<1

∫

B 1
ε

Re

(
1

1 − r Q̂(ξ)

)

dξ < ∞.

Then, it follows that
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∞∑

n=1

P(Sn ∈ Bε) =
∞∑

n=1

Q∗n(Bε) ≤ 2k
∫

Rk

f(
x
ε
)

∞∑

n=0

Q∗n(dx)

≤ 2kεk sup
0<r<1

∫

Rk

f̂(εξ)

1 − r Q̂(ξ)
dξ

≤ 2kεk sup
0<r<1

∫

B 1
ε

Re

(
1

1 − r Q̂(ξ)

)

dξ < ∞.

Thus, in view of of Borel–Cantelli I, 0 cannot be neighborhood recurrent.
For the converse, suppose that 0 is not neighborhood recurrent. Then, by Lemma

2, one must have for any ε > 0 that
∑∞

n=1 Q
∗n(Bε) < ∞.

Let ε > 0. Then, again using the Parseval relation with (2π)k f̂ as the Fourier
transform of f ,

sup
0<r<1

∫

Bε

Re

(
1

1 − r Q̂(ξ)

)

dξ ≤ 2k sup
0<r<1

∫

Bε

Re

(
f( x

ε
)

1 − r Q̂(x)

)

dx

≤ 2k(2π)kεk sup
0<r<1

∫

Rk

f̂(εx)
∞∑

n=0

rnQ∗n(dx)

≤ 2k(2π)kεk
∫

Bε−1

f̂(εx)
∞∑

n=0

Q∗n(dx)

≤ (4επ)k
∞∑

n=1

Q∗n(Bε−1) < ∞.

�

Corollary 6.15 If
∫
Bε
Re

(
1

1−Q̂(ξ)

)
dξ = ∞ for ε > 0, then the random walk with

displacement distribution Q is neighborhood recurrent.3 [Hint: Pass to the limit as

r → 1 in 0 ≤ Re
(

1
1−r Q̂(ξ)

)
, using the Chung–Fuchs criterion]

Example 2 (Gaussian RandomWalk) Suppose that Q is the k-dimensional standard

normal distribution. Then Q̂(ξ) = e− |ξ|2
2 , ξ ∈ R

k .

We now turn to a hallmark application of Theorem 6.11 in probability to prove
the celebrated Theorem 6.16 below. First, we need an estimate on the error in the
Taylor polynomial approximation to the exponential function. The following lemma
exploits the special structure of the exponential to obtain two bounds: a “good small x
bound” and a “good large x bound”, each of which is valid for all x .

3That the converse is also true was independently established in Stone, C. J. (1969): On the potential
operator for one-dimensional recurrent random walks, Trans. AMS, 136 427–445, and Ornstein, D.
(1969): Random walks, Trans. AMS, 138, 1–60.
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Lemma 3 (Taylor Expansion of Characteristic Functions) Suppose that X is a ran-
dom variable defined on a probability space (Ω,F , P) such that E|X |m < ∞. Then

∣
∣
∣
∣
∣
EeiξX −

m∑

k=0

(iξ)k

k! EXk

∣
∣
∣
∣
∣
≤ Emin

{ |ξ|m+1|X |m+1

(m + 1)! , 2
|ξ|m |X |m

m!
}

, ξ ∈ R.

Proof Let fm(x) = eix − ∑m
j=0

(i x) j

j ! . Note that fm(x) = i
∫ x
0 fm−1(y)dy. Iteration

yields a succession ofm−1 iterated integralswith integrand ofmodulus | f0(ym−1)| =
|eiym−1 − 1| ≤ 2. The iteration of the integrals is therefore at most 2 |x |m

m! . To obtain
the other bound note the following integration by parts identity:

∫ x

0
(x − y)meiydy = xm+1

m + 1
+ i

m + 1

∫ x

0
(x − y)m+1eiydy.

This defines a recursive formula that by induction leads to the expansion

eix =
m∑

j=0

(i x) j

j ! + im+1

m!
∫ x

0
(x − y)meiydy. (6.58)

For x ≥ 0, bound the modulus of the integrand by |x − y|m ≤ ym to get the bound on
the modulus of the integral term by |x |m+1

(m+1)! . Similarly for x < 0. Since both bounds
hold for all x , the smaller of the two also holds for all x . Now replace x by |ξX | and
take expected values to complete the proof. �

Theorem 6.16 (The Classical Central Limit Theorem) Let Xn, n ≥ 1, be i.i.d. k-
dimensional random vectors with (common) mean μ and a finite covariance matrix
D. Then the distribution of (X1 + · · · +Xn − nμ)/

√
n converges weakly to ΦD , the

normal distribution on R
k with mean zero and covariance matrix D.

Proof It is enough to prove the result for μ = 0 and D = I , the k× k identity matrix
I , since the general result then follows by an affine linear (and hence continuous)
transformation. First, consider the case k = 1, {Xn : n ≥ 1} i.i.d.EXn = 0,EX2

n = 1.
Let ϕ denote the (common) characteristic function of Xn . Then the characteristic
function, say ϕn , of (X1 + · · · + Xn)/

√
n is given at a fixed ξ by

ϕn(ξ) = ϕn(ξ/
√
n) =

(

1 − ξ2

2n
+ o

(
1

n

))n

, (6.59)

where no( 1n ) = o(1) → 0 as n → ∞. The limit of (6.59) is e− ξ2

2 , the characteristic
function of the standard normal distribution, which proves the theorem for the case
k = 1, using Theorem 6.11(b).

For k > 1, letXn, n ≥ 1, be i.i.d.withmean zero and covariancematrix I . Then for
each fixed ξ ∈ R

k , ξ �= 0, Yn = ξ ·Xn , n ≥ 1, defines an i.i.d. sequence of real-valued
random variables with mean zero and variance σ2

ξ = ξ · ξ. Hence by the preceding,
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Zn := (Y1 + · · · + Yn)/
√
n converges in distribution to the one-dimensional normal

distribution with mean zero and variance ξ · ξ, so that the characteristic function of
Zn converges to the function η �→ exp{−(ξ · ξ)η2/2}, η ∈ R. In particular, at η = 1,
the characteristic function of Zn is

Eeiξ·(X1+···+Xn)/
√
n → e−ξ·ξ/2. (6.60)

Since (6.60) holds for every ξ ∈ R
k , the proof is complete by the Cramér–Lévy

continuity theorem. �

Let us now establish the Berry–Esseen bound on the rate of convergence first
noted in Chapter IV.4

Theorem 6.17 (Berry–Esseen Convergence Rate) Let X1, X2, . . . be an i.i.d.
sequence of random variables having finite third moments ρ = E|X1|3 < ∞, with
mean μ and variance σ2. Then, for Sn = X1 + · · · + Xn, n ≥ 1, one has

sup
x∈R

|P(
Sn − nμ

σ
√
n

≤ x) − Φ(x)| ≤ 3E|X1|3
σ3

√
n

.

The proof rests on the following lemma5 exploiting the fact that for any T > 0,
the clearly integrable function ωT (ξ) := 1− |ξ|

T , |ξ| ≤ T , and zero on |ξ| ≥ T , is by
Bochner’s theorem the characteristic function of a probability distribution. In fact,
one can exhibit this distribution as vT (x) := 1

π
1−cos(T x)

T x2 , x ∈ R.

Lemma 4 Let F be a distribution function on R, and G any function on R such that
limx→−∞ G(x) = 0, limx→∞ G(x) = 1, and having bounded derivative |G ′(x)| ≤
m < ∞. Then, for T > 0,

sup
y∈R

|
∫

R

(F(y − x) −G(y − x))
1

π

1 − cos(T x)

T x2
dx | ≥ 1

2
sup
x∈R

|F(x) −G(x)| − 12m

πT
.

Proof Let Δ(x) = F(x) − G(x), x ∈ R. Since G is continuous and F has left
and right limits at any point x ∈ R, so does Δ(x). Also Δ(x) → 0 asx → ±∞.
So there is an x0 such that either |Δ(x+

0 )| or |Δ(x−
0 )| takes the maximum value

η = supx∈R |Δ(x)|. Say |Δ(x0)| = η. We take Δ(x0) = η, by changing F − G to
G − F in the desired inequality, if necessary. Since F is nondecreasing |G ′(x)| is
bounded bym,Δ(x0+s) ≥ η−ms, s > 0. Taking h = η/2m, y = x0+h, x = h−s,
for |x | ≤ h one has

Δ(y − x) ≥ η

2
+ mx .

4A comprehensive account of errors of normal approximation for the clt in general multidimensions
may be found in Bhattacharya, R. and R. Ranga Rao (2010).
5The proof given here follows that given in Feller, W. (1971), vol 2. Feller refers to this particular
estimate, attributed to A.C. Berry, as the smoothing inequality.

http://dx.doi.org/10.1007/978-3-319-47974-3_4
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For |x | > h, Δ(y − x) ≥ −η. This, and the properties that vT is symmetric about
x = 0, and

∫
|x |>h vT (x)dx ≤ 4

πTh , provides the asserted bounds as follows:

sup
y∈R

|
∫

R

(F(y − x) − G(y − x))
1

π

1 − cos(T x)

T x2
dx |

≥
∫

R

Δ(y − x)vT (x)dx

≥ η

2
(1 − 4

πTh
) − η

4

πTh
. (6.61)

This is the asserted lower bound. �

Proof of Berry–Esseen theorem Let Q(dx) denote the distribution of X1. Apply
Lemma 4 to F(x) = Fn(x) = P(

Sn−nμ
σ
√
n

≤ x), x ∈ R, and G(x) = Φ(x), x ∈ R,

with, using Liapounov inequality,

T = 4

3

σ3

ρ

√
n ≤ 4

3

√
n.

The integral on the left side of Lemma 4 is the distribution function of the signed
measure (Fn − Φ) ∗ vT whose density is given by Fourier inversion as

1

2π

∫

R

e−iξx (ϕn(
ξ

σ
√
n

) − e− ξ2

2 )v̂T (ξ)dξ = d

dx

∫

R

e−iξx

−iξ
(ϕn(

ξ

σ
√
n

) − e− ξ2

2 )v̂T (ξ)dξ.

Thus the integral on the right equals the integral on the left in the lemma. Since
|Φ ′(x)| = m < 2/5, the smoothing lemma now yields

π|Fn(x) − Φ(x)| ≤
∫ T

−T
|ϕn(

ξ

σn
) − e− ξ2

2 |dξ

|ξ| + 9.6

T
. (6.62)

Recall (6.58) from which it follows that |eix − ∑n−1
j=0

(i x) j

j ! | ≤ xn

n! , x > 0, n =
1, 2, . . . . Thus,

|ϕ(x) − 1 + 1

2
σ2x2| = |

∫

R

(eixy − 1 − i xy + 1

2
y2x2)Q(dy)| ≤ 1

6
ρ|x |3. (6.63)

Since e−x − 1 + x ≤ x2

2 , x > 0, one has



128 VI Fourier Series, Fourier Transform, and Characteristic Functions

|ϕ(
ξ

σ
√
n
) − e− ξ2

2n | ≤ |ϕ(
ξ

σ
√
n
) − 1 + ξ2

2n
|

+ |1 − ξ2

2n
− e− ξ2

2n |

≤ 1

6σ3n
3
2

|ξ|3 + |ξ|4
8n2

. (6.64)

Also from (6.63), |ϕ(x)| ≤ 1 − 1
2σ

2x2 + ρ
6 |x |3, for 1

2σ
2x2 ≤ 1. So for |ξ| ≤ T one

has

|ϕ(
ξ

σ
√
n
)| ≤ 1 − 1

2n
ξ2 + ρ

6σ3n
3
2

|ξ|3 ≤ 1 − 5

18n
ξ2 ≤ e− 5

18n ξ2 .

Since σ3 < ρ, assume n ≥ 10; otherwise the theorem is clearly true for
√
n ≤ 3. In

this case, |ϕ(
ξ

σ
√
n
)|n−1 ≤ e− 1

4 ξ2 . These estimates can be used to bound the integrand

on the right side of (6.62) based on the simple inequality |an−bn| ≤ n|a−b|cn−1, for

|a| ≤ c, |b| ≤ c, with a = ϕ(
ξ

σ
√
n
), b = e− ξ2

2n , c = e− ξ2

4 . In particular, for
√
n > 3,

one obtains using this inequality that

|ϕn(
ξ

σn
) − e− ξ2

2 | ≤ 1

T
(
2

9
ξ2 + 1

18
|ξ|3)e− 1

4 ξ2 .

Inserting this (integrable) bound on the integrand in (6.62) and integrating by parts,
yields

π|Fn(x) − Φ(x)| ≤ 8

9

√
π + 98

99
.

The assertion follows since
√

π < 9
5 making the right side smaller than 4π. �

Remark 6.5 After a rather long succession of careful estimates, the constant c = 3
in Feller’s bound cρ/σ3√n has been reduced6 to c = 0.5600 as best to date.

Definition 6.5 A nondegenerate distribution Q on R, i.e., Q �= δ{c}, is said to be
stable if for every integer n there is a centering constant cn and a scaling index α > 0
such that n− 1

α (X1 +· · ·+ Xn − cn) has distribution Q whenever X j , j ≥ 1, are i.i.d.
with distribution Q.

It is straightforward to check that the normal distribution and Cauchy distribution
are both stable with respective indices α = 2 and α = 1. Notice also that it follows
directly from the definition that every stable distribution Q is infinitely divisible in
the sense that for any integer n ≥ 1, there is a probability distribution Qn such that
Q may be exposed as an n-fold convolution Q = Q∗n

n .

6See Shevtsova, I. G. (2010): An Improvement of Convergence Rate Estimates in the Lyapunov
Theorem, Doklady Math. 82(3), 862–864.
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The following example7 illustrates a general framework inwhich symmetric stable
laws arise naturally.

Example 3 (One-dimensional Holtzmark problem) Consider 2n points (eg., masses
or charges) X1, . . . , X2n independently and uniformly distributed within an interval
[−n, n] so that the density of points is one. Suppose that there is a fixed point (mass,
charge) at the origin that exerts an inverse r th power force on the randomly distributed
points, where r > 1/2. That is, the force exerted by the point at the origin on amass at
location x is −sgn(x)|x |−r . Let Fn = −∑2n

j=1
sgn(X j )

|X j |r denote the total force exerted
by the origin on the 2n points. The characteristic function of the limit distribution
Qr of Fn as n → ∞ may be calculated as follows: For ξ > 0, using an indicated
change of variable,

EeiξFn =
(

E cos(
ξsgn(X1)

|X1|r )

)2n

=
(

1 − ξ
1
r

nr

∫ ∞

ξ( 1
n )r

(1 − cos(y))y− r+1
r dy

)2n

→ e−aξα

,

where α = 1/r . This calculation uses the fact that |1 − cos(y)| ≤ 2 to obtain
integrability on [1,∞). Also 1−cos(y)

y2 → 1 as y ↓ 0 on (0, 1). So one has 0 < a < ∞
for 0 < 1

r < 2. Similar calculation holds for ξ < 0 to obtain e−a|ξ| 1r . In particular
Qr is a so-called symmetric stable distribution with index α = 1

r ∈ (0, 2) in the

following sense: If F (∞)
1 , F (∞)

2 , . . . are i.i.d. with distribution Qr , then m−r (F (∞)
1 +

· · · + F (∞)
m ) has distribution Qr . This example includes all such one-dimensional

symmetric stable distributions with the notable exception ofα = 2, corresponding to
the normal distribution. The caseα = 2 represents a different phenomena covered by
the central limit theorem in Chapter IV and to be expanded upon in the next chapter.

Exercise Set VI

1. Prove that given f ∈ L2[−π,π] and ε > 0, there exists a continuous function
g on [−π,π] such that g(−π) = g(π) and ‖ f − g‖ < ε, where ‖‖ is the L2-
norm defined by (6.10). [Hint: By Proposition 2.6 in Appendix A, there exists
a continuous function h on [−π,π] such that ‖ f − h‖ < ε

2 . If h(−π) �= h(π),
modify it on [π − δ,π] by a linear interpolation with a value h(π − δ) at π − δ
and a value h(−π) at π, where δ > 0 is suitably small.]

2. (a) Prove that if E|X |r < ∞ for some positive integer r , then the charac-
teristic function ϕ(ξ) of X has a continuous r th order derivative ϕ(r)(ξ) =

7For a more elaborate treatment of the physics of the Holtsmark distribution in higher dimensions
see S. Chandreskhar (1943): Stochastic problems in physics and astronomy, Reviews of Modern
Physics, 15(3), reprinted in Wax (1954). The treatment provided here was inspired by Lamperti
(1996).

http://dx.doi.org/10.1007/978-3-319-47974-3_4
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ir
∫
R
xr eiξx PX (dx), where PX is the distribution of X . In particular, ϕ(r)(0) =

irEXr . (b) Prove (6.47) assuming that f and f ( j), 1 ≤ j ≤ r , are integrable.
[Hint: Prove (6.46) and use induction.] (c) If r ≥ 2 in (b), prove that f̂ is
integrable.

3. This exercise concerns the normal (or Gaussian) distribution.

(i) Prove that for every σ �= 0, ϕσ2,μ(x) = (2πσ2)− 1
2 e− (x−μ)2

2σ2 , −∞ < x <

∞, is a probability density function (pdf). The probability on (R,B(R))
with this pdf is called the normal (or Gaussian) distribution with mean
μ variance σ2, denoted by Φσ2,μ. [Hint: Let c = ∫ ∞

−∞ e−x2/2dx . Then

c2 = ∫
R2 e−(x2+y2)/2dxdy = ∫ ∞

0

∫ 2π
0 re−r2/2dθdr = 2π.]

(ii) Show that
∫ ∞
−∞ xϕσ2,μ(x)dx = μ,

∫ ∞
−∞(x − μ)2ϕσ2,μ(x)dx = σ2. [Hint:

∫ ∞
−∞(x − μ)ϕσ2,μ(x)dx = 0,

∫ ∞
−∞ x2e−x2/2dx = 2

∫ ∞
0 x(−de−x2/2) =

2
∫ ∞
0 e−x2/2dx = √

2π.]
(iii) Write ϕ = ϕ1,0, the standard normal density. Show that its odd-order

moments vanish and the even-order moments are given by μ2n = ∫ ∞
−∞ x2n

ϕ(x)dx = (2n−1)·(2n−3) · · · 3·1 for n = 1, 2, . . . . [Hint: Use integration
by parts to prove the recursive relation μ2n = (2n − 1)μ2n−2, n = 1, 2 . . . ,
with μ0 = 1.]

(iv) Show Φ̂σ2,μ(ξ) = eiξμ−σ2ξ2/2, ϕ̂(ξ) = e−ξ2/2. [Hint: ϕ̂(ξ) = ∫ ∞
−∞(cos(ξx))

ϕ(x)dx . Expand cos(ξx) in a power series and integrate term by term using
(iii).]

(v) (Fourier Inversion for ϕσ2 ≡ ϕσ2,0). Show ϕσ2(x) = (2π)−1
∫ ∞
−∞ e−iξx ϕ̂σ2

(ξ)dξ. [Hint: ϕ̂σ2(ξ) =
√

2π
σ2 ϕ 1

σ2
(ξ). Now use (iv).]

(vi) Let Z = (Z1, . . . , Zk) be a random vector where Z1, Z2, . . . , Zk are i.i.d.
random variables with standard normal density ϕ. Then Z is said to have
the k-dimensional standard normal distribution. Its pdf (with respect to

Lebesgue measure on R
k) is ϕI (x) = ϕ(x1) · · · ϕ(xk) = (2π)− k

2 e− |x |2
2 , for

x = (x1, . . . , xk). IfΣ is a k×k positive-definite symmetric matrix and μ ∈
R

k , then the normal (orGaussian) distributionΦΣ,¯ with mean ¯ and disper-
sion (or covariance)matrixΣ has pdfϕΣ,μ(x) = (2π)− k

2 (detΣ)− 1
2 exp{− 1

2 (x−
μ) · Σ−1(x − ¯)}, where · denotes the inner (dot) product on R

k . (a) Show
that ϕ̂Σ,μ(ξ) = exp{iξ · μ − 1

2ξ · Σξ}, ξ ∈ R
k . (Note that the characteristic

function of any absolutely continuous distribution is the Fourier transform
of its pdf). (b) If A is a k × k matrix such that AA′ = Σ , show that for stan-
dard normal Z, AZ + μ has the distribution ΦΣ,μ. (c) Prove the inversion
formula ϕΣ,μ(x) = (2π)−k

∫
Rk ϕ̂Σ,μ(ξ)e−iξ·xdξ, x ∈ R

k .
(vii) If (X1, . . . , Xk) has a k-dimensional Gaussian distribution, show {X1, . . . ,

Xk} is a collection of independent random variables if and only if they are
uncorrelated.

4. Suppose that {Pn}∞n=1 is a sequence of Gaussian probability distributions on
(Rk,Bk) with respective mean vectors m(n) = (m(n)

1 , . . . ,m(n)
k ) and variance–
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covariance matrices Γ (n) = ((γ(n)
i, j ))1≤i, j≤k . (i) Show that if m(n) → m and

Γ (n) → Γ (componentwise) as n → ∞, then Pn ⇒ P, where P is Gaussian
with mean vector m and variance–covariance matrix Γ. [Hint: Apply the conti-
nuity theorem for characteristic functions. Note that in the case of nonsingular Γ
one may apply Scheffé’s theorem, or apply Fatou’s lemma to Pn(G),G open.]
(ii) Show that if Pn ⇒ P , then P must be Gaussian. [Hint: Consider the case
k = 1, mn = 0,σ2

n = ∫
R
x2Pn(dx). Use the continuity theorem and observe

that if σ2
n (n ≥ 1) is unbounded, then P̂n(ξ) ≡ e− σ2

2 ξ2 does not converge to a
continuous limit at ξ = 0.]

5. (Change of Location/Scale/Orientation) LetX be a k-dimensional randomvector
and compute the characteristic function of Y = AX + b, where A is a k × k
matrix and b ∈ R

k .
6. (Fourier Transform, Fourier Series, Inversion, and Plancherel) Suppose f is

differentiable and vanishes outside a finite interval, and f ′ is square-integrable.
Derive the inversion formula (6.35) by justifying the following steps. Define
gN (x) := f (Nx), vanishing outside (−π,π). Let

∑
cn,Neinx ,

∑
c(1)
n,Ne

inx be
the Fourier series of gN and its derivative g′

n , respectively.

(i) Show that cn,N = 1
2Nπ

f̂
(− n

N

)
.

(ii) Show that
∑∞

n=−∞ |cn,N | ≤ 1
2π

∣
∣
∫ ∞
−∞ gN (x) dx

∣
∣+A

(
1
2π

∫ π

−π |g′
N (x)|2 dx)1/2

< ∞, where A = (2
∑∞

n=1 n
−2)1/2. [Hint: Split off |c0,N | and applyCauchy–

Schwarz inequality to
∑

n �=0
1
|n| (|ncn,N |). Also note that |c(1)

n,N |2 = |ncn,N |2.]
(iii) Show that for all sufficiently large N , the following convergence is uniform:

f (z) = gN
(
z
N

) = ∑∞
n=−∞ cn,Neinz/N = ∑∞

n=−∞
1

2Nπ
f̂
(− n

N

)
einz/N .

(iv) Show that (6.35) follows by letting N → ∞ in the previous step if f̂ ∈
L1(R, dx).

(v) Show that for any f that vanishes outside a finite interval and is square-

integrable, hence integrable, one has, for all sufficiently large N , 1
N

∑∞
n=−∞

∣
∣
∣

f̂
(
n
N

)∣∣
∣
2 = 2π

∫ ∞
−∞ | f (y)|2 dy. [Hint: Check that 1

2π

∫ π

−π |gN (x)|2 dx =
1

2Nπ

∫ ∞
−∞ | f (y)|2 dy, and 1

2π

∫ π

−π |gN (x)|2 dx = ∑∞
n=−∞ |cn,N |2 = 1

4N 2π2

∑∞
n=−∞

∣
∣
∣ f̂

(
n
N

)∣∣
∣
2
.] Show that the Plancherel identity (6.36) follows in the

limit as N → ∞.

7. (General Inversion Formula and Plancherel Identity)
(i) Prove (6.35) assuming only that f , f̂ are integrable. [Hint: Step 1. Contin-

uous functions with compact support are dense in L1 ≡ L1(R, dx). Step 2.
Show that translation y → g(· + y)(≡ g(x + y), x ∈ R), is continuous
on R into L1, for any g ∈ L1. For this, given δ > 0, find continuous h
with compact support such that ‖g − h‖1 < δ/3. Then find ε > 0 such that
‖h(·+y)−h(·+y′)‖1 < δ/3 if |y−y′| < ε. Thenuse‖g(·+y)−g(·+y′)‖1 ≤
‖g(·+ y)−h(·+ y)‖1+‖h(·+ y)−h(·+ y′)‖1+‖h(·+ y′)−g(·+ y′)‖1 < δ,
noting that the Lebesgue integral (measure) is translation invariant. Step 3.
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Use Step 2 to prove that E f (x + εZ) → f (x) in L1 as ε → 0, where
Z is standard normal. Step 4. Use (6.45), which does not require f to be
continuous, and Step 3, to show that the limit in (6.45) is equal a.e. to f .]

(ii) (Plancherel Identity). Let f ∈ L1 ∩ L2. Prove (6.36). [Hint: Let f̃ (x) :=
f (−x), g = f ∗ f̃ . Then g ∈ L1, |g(x)| ≤ ‖ f ‖22, g(0) = ‖ f ‖22. Also
g(x) = 〈 fx , f 〉, where fx (y) = f (x + y). Since x → fx is continuous on
R into L2 (using arguments similar to those in Step 2 of part (i) above), and
〈, 〉 is continuous on L2×L2 intoR, g is continuous onR. Apply the inversion
formula (in part (i)) to get ‖ f ‖22 = g(0) = 1

2π

∫
ĝ(ξ)dξ ≡ 1

2π

∫ | f̂ (ξ)2dξ.]
8. (Smoothing Property of Convolution) (a) Suppose μ, ν are probabilities on R

k ,
with ν absolutely continuous with pdf f ; ν(dx) = f (x)dx . Show that μ ∗ ν is
absolutely continuous and calculate its pdf. (b) If f, g ∈ L1(Rk, dx) and if g is
bounded and continuous, show that f ∗g is continuous. (c) If f, g ∈ L1(Rk, dx),
and if g and its first r derivatives g( j), j = 1, . . . , r are bounded and continuous,
show that f ∗ g is r times continuously differentiable. [Hint: Use induction.]

9. Suppose f, f̂ are integrable on (R, dx). Show ˆ̂f (x) = 2π f (−x).
10. Let Q(dx) = 1

21[−1,1](x)dx be the uniform distribution on [−1, 1].
(i) Find the characteristic functions of Q and Q∗2 ≡ Q ∗ Q.
(ii) Show that the probability with pdf c sin2 x/x2, for appropriate normalizing

constant c, has a characteristic function with compact support and compute
this characteristic function. [Hint: Use Fourier inversion for f = Q̂2.]

11. Derive the multidimensional extension of the Fourier inversion formula.
12. Show that if Q is a stable distribution symmetric about 0 with exponent α, then

cn = 0 and 0 < α ≤ 2. [Hint: Q̂(ξ) must be real by symmetry, and positivity
follows from the case n = 2 in the definition.]

13. Show that

(i) The Cauchy distribution with pdf (π(1 + x2))−1, x ∈ R, has characteristic
function e−|ξ|.

(ii) The characteristic function of the double-sided exponential distribution
1
2e

−|x |dx is (1 + ξ2)−1. [Hint: Use integration by parts twice to show
∫ ∞
−∞ eiξx ( 12e

−|x |)dx ≡ ∫ ∞
0 e−x cos(ξx)dx = (1 + ξ2)−1.]

14. (i) Give an example of a pair of dependent random variables X,Y such that the
distribution of their sum is the convolution of their distributions. [Hint: Consider
the Cauchy distribution with X = Y .] (ii) Give an example of a non-Gaussian
bivariate distribution such that the marginals are Gaussian. [Hint: Extend the
proof of Theorem 6.7.]

15. Show that if ϕ is the characeristic function of a probability then ϕ must be
uniformly continuous on R.

16. (Symmetric Distributions) (i) Show that the characteristic function of X is real-
valued if and only ifX and−X have the same distribution. (ii) A symmetrization
of (the distribution of) a random variable X may be defined by (the distribution
of) X − X′, where X′ is an independent copy of X, i.e., independent of X and
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having the same distribution asX. Express symmetrization of a random variable
in terms of its characteristic function.

17. (Multidimensional Gaussian characterization) Suppose that X = (X1, . . . , Xk)

is a k-dimensional random vector having a positive pdf f (x1, . . . , xk) onR
k(k ≥

2). Assume that (a) f is differentiable, (b) X1, . . . , Xk are independent, and (c)
have an isotropic density, i.e., f (x1, . . . , xk) is a function of ‖x‖2 = x21 + · · · +
x2k , (x1, . . . , xk) ∈ R

k . Show that X1, . . . , Xk are i.i.d. normal with mean zero
and common variance. [Hint: Let f j denote the marginal pdf of X j and argue

that
f ′
j

2x j f j
must be a constant.]

18. (i) Show that the functions {eξ : ξ ∈ R
k} defined by eξ(x) := exp(iξ·x), x ∈ R

k

constitute a measure-determining class for probabilities on (Rk,Bk).[Hint:
Given two probabilities P, Q for which the integrals of the indicated func-
tions agree, construct a sequence by Pn = P ∀ n = 1, 2, . . . whose charac-
teristic functions will obviously converge to that of Q.]

(ii) Show that the closed half-spaces of R
k defined by Fa := {x ∈ R

k : x j ≤
a j , 1 ≤ j ≤ k}, a = (a1, . . . , ak) constitute a measure-determining collec-
tion of Borel subsets of R

k . [Hint: Use a trick similar to that above.]
19. Compute the distribution with characteristic function ϕ(ξ) = cos2(ξ), ξ ∈ R

1.
20. (Fourier Inversion for Lattice Random Variables)

(i) Let p j , j ∈ Z, be a probability mass function (pmf) of a probability distribu-
tion Q on the integer latticeZ. Show that the Fourier transform Q̂ is periodicwith
period 2π, and derive the inversion formula p j = (2π)−1

∫
(−π,π] e

−i jξ Q̂(ξ)dξ.
(ii) Let Q be a lattice distribution of span h > 0, i.e., for some a0, Q({a0 + jh :
j = 0,±1,±2, . . . }) = 1. Show that Q̂ is periodic with period 2π/h and write
down an inversion formula. (iii) Extend (i), (ii) to the multidimensional lattice
distributions with Z

k in place of Z.
21. (Parseval’s Relation) Let f, g,∈ L2([−π,π)), with Fourier coefficients {cn},

{dn}, respectively. Prove that
∑

n cndn = 1
2π

∫
(−π,π] f (x)g(x)dx ≡ 〈 f, g〉.

(ii) Let f, g ∈ L2(Rk, dx) with Fourier transforms f̂ , ĝ. Prove that 〈 f̂ , ĝ〉 =
2π〈 f, g〉. [Hint: Use (a) the Plancherel identity and (b) the polar identity
4〈 f, g〉 = ‖ f + g‖2 − ‖ f − g‖2.]

22. (i) Let ϕ be continuous and positive-definite on R in the sense of Bochner, and
ϕ(0) = 1. Show that the sequence {c j ≡ ϕ( j) : j ∈ Z} is positive-definite in the
sense of Herglotz (6.27). (ii) Show that there exist distinct probability measures
on R whose characteristic functions agree at all integer points.

23. Show that the “triangular function” f̂ (ξ) = (1 − |ξ|)+ is the characteristic
function of f (x) = 21−cos(x)

x2 , x ∈ R. [Hint: Consider the characteristic function
of the convolution of two uniform distributions on [−1/2, 1/2] and Fourier
inversion.] Also show that 1−cos(x) ≥ x2/4 for |x | ≤ π/3. [Hint: Use cos(y) ≥
1/2 and sin(y) ≥ y for 0 < y < π/3 in the formula 1− cos(x) = ∫ x

0 sin(y)dy.]
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24. (Chung–Fuchs) For the one-dimensional random walk show that if Sn
n → 0

in probability as n → ∞, i.e., WLLN holds, then 0 is neighborhood recurrent.
[Hint: Using the lemma for the proof of Chung–Fuchs, for any positive integerm
and δ, ε > 0,

∑∞
n=0 P(Sn ∈ Bε) ≥ 1

2m

∑∞
n=0 P(Sn ∈ Bmε) ≥ 1

2m

∑mδ−1

n=0 P(Sn ∈
Bδε), using monotonicity of r → P(Sn ∈ Br ). Let m → ∞ to obtain for the
indicated Cesàro average, using limn→∞ P(Sn ∈ Bδε) = 1 from the WLLN
hypothesis, that

∑∞
n=0 P(Sn ∈ Bε) ≥ 1

2δ . Let δ → 0 and apply the Lemma 2.]
25. This exercise provides a version of the Chung–Fuchs Fourier analysis criteria

for the case of random walks on the integer lattice. Show that

(i) P(Sn = 0) = 1
(2π)k

∫
[−π,π)k

ϕ(ξ)dξ, where ϕ(ξ) = Eeiξ·X1 . [Hint: Use
Fourier inversion formula.]

(ii)
∑∞

n=0 r
n P(Sn = 0) = 1

(2π)k

∫
[−π,π)k

Re( 1
1−rϕ(ξ)

)dξ.
(iii) The lattice random walk {Sn : n = 0, 1, 2, . . . } is recurrent if and only if

limr↑1
∫
[−π,π)k

Re( 1
1−rϕ(ξ)

)dξ = ∞. [Hint: Justify passage to the limit r ↑ 1
and use Borel–Cantelli lemma.]

26. (i) Use the Chung–Fuchs criteria, in particular Corollary 6.15 and its converse, to
determinewhether the randomwalkwith symmetric Cauchy displacement distri-
bution is recurrent or transient. (ii) Extend this to symmetric stable displacement
distributions with exponent 0 < α ≤ 2.8

27. Show that 0 is neighborhood recurrent for the random walk if and only if∑∞
n=0 P(Sn ∈ B1) = ∞.

28. Prove that the set of trigonometric polynomials is dense in L2([−π,π),μ), where
μ is a finite measure on [−π,π).

29. Establish the formula
∫
R

g(x)μ ∗ ν(dx) = ∫
R

∫
R

g(x + y)μ(dx)ν(dy) for any
bounded measurable function g.

8Surprisingly, recurrence and heavy tailsmay coexist, see Shepp, L (1964): Recurrent randomwalks
with arbitrarily large steps, Bull. Amer. Math. Soc., v. 70, 540–542; Grey, D.R. (1989): Persistent
random walks may have arbitrarily large tails, Adv. Appld. Probab. 21, 229–230.



Chapter VII
Weak Convergence of Probability Measures
on Metric Spaces

Let (S, ρ) be a metric space and let P(S) be the set of all probability measures on
(S,B(S)). In this chapter we consider a general formulation of convergence inP(S),
referred to as weak convergence or convergence in distribution.

For motivation, suppose that Y1, Y2, . . . is an i.i.d. sequence of square-integrable
random variables with values in S = R, defined on a probability space (Ω,F , P).
Assume that the Y j are centered and scaled to have mean zero and variance one. A
well-known central limit theorem, already proven in Chapter IV, asserts that

lim
n→∞ P(

√
n

Sn

n
≤ y) =

∫ y

−∞
1√
2π

e− x2

2 dx, ∀y ∈ R, (7.1)

where Sn = Y1 + · · · + Yn, n ≥ 1. Letting Qn, n ≥ 1, denote the distribution of

Xn = √
n Sn

n ≡ Sn√
n
, and Q(dx) = 1√

2π
e− x2

2 dx , the convergence from Qn to Q may
be expressed as

Qn(A) → Q(A), A = (−∞, y], y ∈ R.

While this formulation is somewhat too special for a general formulation of limits of
probability measures on a metric space S, we will also see that it has an equivalent
formulation of the form

lim
n→∞

∫

R

f (x)Qn(dx) =
∫

R

f (x)Q(dx), (7.2)

for all bounded continuous functions f on S = R. Equivalently,

lim
n→∞E f (Xn) = E f (Z), (7.3)

where Z is the standard normal random variable with distribution Q.
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This formulation of convergence in distribution is sufficiently general to accom-
modate the convergence of any sequence of probability measures Qn, n ≥ 1, to a
probability measure Q on (S,B(S)) as in Definition 7.1 below.

Another example is obtained by consideration of the distribution of polygonal
paths Xn = {Xn(t) : 0 ≤ t ≤ 1} ∈ S = C[0, 1] of a random walk defined by linear
interpolation between the values ( k

n , Sn√
n
), k = 0, 1, . . . , n, given by,

Xn(t) =
{

Sk√
n

if t = k
n , k = 0, 1, 2, . . . n√

nYk+1(t − k
n ) + Sk√

n
if k

n < t < k+1
n , k = 0, 1, . . . n − 1.

(7.4)

Then, viewing Xn as a random path with values in the metric space S = C[0, 1] for
the uniform metric, the convergence of Xn in distribution to a continuous parameter
stochastic process Z = {Z(t) : 0 ≤ t ≤ 1} ∈ C[0, 1], known as the standard
Brownian motion, enjoys the same formulation as above, with the metric space
S = R replaced by S = C[0, 1].

For yet another motivation, recall the total variation metric (distance) for P(S)

that emerged in the context of Scheffe’s theorem. It will be seen that the convergence
in total variation metric is stronger than convergence in distribution.

To fix ideas one may regard a sequence of probabilities Qn ∈ P(S), n ≥ 1, as
respective distributions of random maps Xn , n ≥ 1, defined on some probability
space and taking values in the metric space S.

A topology may be defined on P(S) by the following neighborhood system: For
Q0 ∈ P(S), δ > 0, and fi (1 ≤ i ≤ m) real-valued bounded continuous functions
on S, define an open neighborhood of Q0 ∈ P(S) as

N (Q0 : f1, f2, . . . , fm; δ) := {Q ∈ P(S) :
∣
∣
∣
∣

∫

S
fi d Q −

∫

S
fi d Q0

∣
∣
∣
∣ < δ ∀ i ≤ m}.

(7.5)
Here all δ > 0, m ≥ 1, and fi ∈ Cb(S) (the set of all real-valued bounded continuous
functions on S), 1 ≤ i ≤ m, are allowed. An open set of P(S) is defined to be a set
U such that every Q0 in U has an open neighborhood of the form (7.5) contained in
U. Since the neighborhoods (7.5) are taken to be open, the topology is the collection
of all unions of such sets. The topology (i.e., the collection of open sets) so defined
is called the weak topology1 of P(S).

Definition 7.1 A sequence of probabilities {Qn : n ≥ 1} is said to converge weakly
to a probability Q if

∫
S f d Qn → ∫

S f d Q ∀ f ∈ Cb(S). Denote this convergence
by Qn ⇒ Q.

1Billingsley (1968) provides a detailed exposition and comprehensive account of the weak conver-
gence theory. From the point of view of functional analysis, weak convergence is actually conver-
gence in the weak* topology. However the abuse of terminology has become the convention in this
context.
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Recall that the collection Cb(S) is a measure-determining class of functions. Thus
the limit Q of {Qn}∞n=1 is uniquely defined by weak convergence (also see Remark
7.2 below).

Note that if Qn , Q are viewed as distributions of random maps Xn , X , respec-
tively, defined on some probability space, then the definition of weak convergence,
equivalently convergence in distribution, takes the form

lim
n

E f (Xn) = E f (X) ∀ f ∈ Cb. (7.6)

There are a number of equivalent formulations of weak convergence that are useful in
various contexts. We will need the following topological notions. Recall that a point
belongs to the closure of a set A if it belongs to A or if every neighborhood of the
point intersects both A and Ac. On the other hand, a point belongs to the interior of
A if there is an open set contained in A that includes the point. Denoting the closure
of a set A by A− and the interior by A◦, one defines the boundary by ∂ A = A−\A◦.
A set A in B whose boundary ∂ A satisfies P(∂ A) = 0 is called a P-continuity set.
Since ∂ A is closed, it clearly belongs to the σ-field S = B(S).

Theorem 7.1 (Alexandrov Theorem) Let Qn, n ≥ 1, Q be probability measures on
(S,B(S)). The following are equivalent:

(i) Qn ⇒ Q.

(ii) limn
∫

S f d Qn = ∫
S f d Q for all bounded, uniformly continuous real f.

(iii) lim supn Qn(F) ≤ Q(F) for all closed F.

(iv) lim infn Qn(G) ≥ Q(G) for all open G.

(v) limn Qn(A) = Q(A) for all Q-continuity sets A.

Proof The plan is to first prove (i) implies (ii) implies (iii) implies (i), and hence
that (i), (ii), and (iii) are equivalent. We then directly prove that (iii) and (iv) are
equivalent and that (iii) and (v) are equivalent.
(i) implies (ii): This follows directly from the definition.
(ii) implies (iii): Let F be a closed set and δ > 0. For a sufficiently small but fixed
value of ε, Gε = {x : ρ(x, F) < ε} satisfies Q(Gε) < Q(F) + δ, by continuity of
the probability measure Q from above, since the sets Gε decrease to F = ∩ε↓0Gε.

Adopt the construction from the proof of Proposition 1.6 that Cb(S) is measure-
determining to produce a uniformly continuous function h on S such that h(x) = 1
on F, h(x) = 0 on the complement Gc

ε of Gε, and 0 ≤ h(x) ≤ 1 for all x . In view
of (ii) one has limn

∫
S h d Qn = ∫

S h d Q. In addition,

Qn(F) =
∫

F
h d Qn ≤

∫

S
h d Qn

and ∫

S
h d Q =

∫

Gε

h d Q ≤ Q(Gε) < Q(F) + δ.

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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Thus

lim sup
n

Qn(F) ≤ lim
n

∫

S
h d Qn =

∫

S
h d Q < Q(F) + δ.

Since δ was arbitrary this proves (iii).
(iii) implies (i): Let f ∈ Cb(S). It suffices to prove

lim sup
n

∫

S
f d Qn ≤

∫

S
f d Q. (7.7)

For then one also gets lim infn
∫

S f d Qn ≥ ∫
S f d Q, and hence (i), by replacing f

by − f. But in fact, for (7.7) it suffices to consider f ∈ Cb(S) such that 0 < f (x) <

1, x ∈ S, since the more general f ∈ Cb(S) can be reduced to this by translating
and rescaling f. Fix an integer k and let Fi be the closed set Fi = [ f ≥ i/k] ≡ {x ∈
S : f (x) ≥ i/k}, i = 0, 1, . . . , k. Then taking advantage of 0 < f < 1, one has

k∑

i=1

i − 1

k
Q

(

[ i − 1

k
≤ f <

i

k
]
)

≤
∫

S
f d Q ≤

k∑

i=1

i

k
Q

(

[ i − 1

k
≤ f <

i

k
]
)

.

Noting that F0 = S, Fk = ∅, the sum on the right telescopes as

k∑

i=1

i

k
[Q(Fi−1) − Q(Fi )] = 1

k
+ 1

k

k∑

i=1

Q(Fi ),

while the sum on the left is smaller than this by 1/k. Hence

1

k

k∑

i=1

Q(Fi ) ≤
∫

S
f d Q <

1

k
+ 1

k

k∑

i=1

Q(Fi ). (7.8)

In view of (iii), lim supn Qn(Fi ) ≤ Q(Fi ) for each i. So, using the upper bound in
(7.8) with Qn in place of Q and the lower bound with Q, it follows that

lim sup
n

∫

S
f d Qn ≤ 1

k
+ 1

k

k∑

i=1

Q(Fi ) ≤ 1

k
+

∫

S
f d Q.

Now let k → ∞ to obtain the asserted inequality (7.7) to complete the proof of (i)
from (iii).
(iii) iff (iv): This is simply due to the fact that open and closed sets are complementary.
(iii) implies (v): Let A be a Q-continuity set. Since (iii) implies (iv) one has

Q(A−) ≥ lim sup
n

Qn(A−) ≥ lim sup
n

Qn(A)

≥ lim inf
n

Qn(A) ≥ lim inf
n

Qn(A◦) ≥ Q(A◦). (7.9)
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Since Q(∂ A) = 0, Q(A−) = Q(A◦), so that the inequalities squeeze down to Q(A)

and limn Qn(A) = Q(A) follows.
(v) implies (iii): Let F be a closed set. The idea is to observe that F may be expressed
as the limit of a decreasing sequence of Q-continuity sets as follows. Since ∂{x :
ρ(x, F) ≤ δ} ⊂ {x : ρ(x, F) = δ}, these boundaries are disjoint for distinct δ,
(Exercise 1). Thus at most countably many of them can have positive Q-measure
(Exercise 1), all other, therefore, being Q-continuity sets. In particular, there is a
sequence of positive numbers δk ↓ 0 such that the sets Fk = {x : ρ(x, F) ≤ δk} are
Q-continuity sets. From (v) one has lim supn Qn(F) ≤ limn Qn(Fk) = Q(Fk) for
each k. Since F is closed one also has Fk ↓ F, so that (iii) follows from continuity
of the probability Q from above. This completes the proof of the theorem. �

Definition 7.2 Let S be a metric space. A family F ⊂ B(S) is said to be
convergence-determining if Pn(B) → P(B) for all P-continuity sets B ∈ F
implies Pn ⇒ P.

Proposition 7.2 Let S be a separable metric space. Suppose F ⊂ B(S) has the
properties: (i) it is closed under finite intersections, (ii) every open set is a finite or
countable union of P-continuous sets in F . Then F is convergence-determining.

Proof Let Pn(F) → P(F) for all P-continuity sets F ∈ F . Note that if A, B are
P-continuity sets in F , then so is A ∩ B, since ∂(A ∩ B) ⊂ ∂(A) ∪ ∂(B). Let G
be open and a finite union, G = ∪1≤i≤k Gi with each Gi P-continuous. Then, by the
inclusion–exclusion formula, Pn(∪1≤i≤k Gi ) = ∑

1≤i≤k Pn(Gi )−∑
1≤i1<i2≤k Pn(Gi1

∩ Gi2) ± · · · + (−1)k+1Pn(G1 ∩ G2 ∩ · · · ∩ Gk) → ∑
1≤i≤k P(Gi ) − ∑

1≤i1<i2≤k

P(Gi1 ∩ Gi2) ± · · · + (−1)k+1P(G1 ∩ G2 ∩ · · · ∩ Gk) = P(G). If G is open and a
countable union of P-continuous sets Gi ∈ F , G = ∩i≥1Gi , then given any ε > 0
there exists k such that P(∪1≤i≤k Gi ) ≥ P(G) − ε, and, therefore, lim inf Pn(G) ≥
lim inf Pn(∪1≤i≤k Gi ) = P(∪1≤i≤k Gi ) ≥ P(G) − ε. This being true for every
ε > 0, one has lim inf Pn(G) ≥ P(G) for all open G. By Alexandrovs Theorem,
Pn ⇒ P . �

As an example, it follows that in R
∞ the class F of finite-dimensional Borel sets is

convergence-determining (see Chapter I, Exercises 19, 20), i.e., finite-dimensional
distributions are convergence-determining.

Weak convergence is often referred to as an integral limit theorem, referring to
convergence of the distribution functions. In contrast, a local limit theorem can be a
precursor to weak convergence as follows. Consider a sequence of discrete random
variables Xn (n ≥ 1). In fact one may permit possibly defective random variables,
i.e., allow P(Xn ∈ R) ≤ 1. Let the set of values of Xn be contained in a discrete set
Ln = {x (n)

i : i ∈ In}, where In is a countable index set. Write p(n)
i = P(Xn = x (n)

i ).
Assume that there exist nonoverlapping intervals A(n)

i of lengths |A(n)
i | > 0, i ∈ In ,

which partition an interval J ⊂ R such that (i) x (n)
i ∈ A(n)

i , (ii) δn := sup{|A(n)
i | :

i ∈ In} → 0 as n → ∞, (iii) for every x ∈ J outside a set of Lebesgue measure
zero, and with the index i = i(n, x) such that x ∈ A(n)

i , one has

p(n)

i(n,x)

/|A(n)

i(n,x)| −→ f (x) as n → ∞, (7.10)

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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and (iv) 1 ≥ αn := ∑
i∈In

p(n)
i → α := ∫

J f (x)dx > 0.

Proposition 7.3 (Local Limit Theorem) Under the assumptions (i)–(iv) above,∑
{i∈In :x (n)

i ≤x} p(n)
i → ∫

J∩(−∞,x] f (y)dy for every x ∈ J . In particular if Xn are

proper random variables, i.e.,
∑

i∈In
p(n)

i = 1, then Xn converges in distribution to
the law with density f .

Proof First assume αn = 1 = α for all n. On J define the density function fn(x) =
p(n)

i /|A(n)
i | if x ∈ A(n)

i (x ∈ J ). By assumption (iv) and Scheffé’s theorem,
∫

J | fn(y)

− f (y)|dy → 0. On the other hand, since p(n)
i = ∫

A(n)
i

fn(y)dy for all i ∈ In ,

∑

{i∈In :x (n)
i ≤x}

p(n)
i =

∫

J∩(−∞,x]
fn(y)dy.

For the general case of αn → α > 0, rescale using p(n)
i /αn and f (x)/α to

get the displayed equality above. Then compare the sum on the left with that
divided by α. �
Remark 7.1 Note also that this extends to higher dimensions Rk , where A(n)

i is a
rectangle of positive k-dimensional volume |A(n)

i |.
Example 1 For a very simple illustrative example, suppose that for each fixed n =
1, 2, . . . , P(Tn = i) = (1 − θn)

i−1θn, i = 1, 2, . . . is a geometrically distributed
random variable with parameter θn ∈ (0, 1). Let Xn = Tn

n . Then Ln = { 1n , 2
n , . . . , }.

Define Ai (n) = ( 2i−1
2n , 2i+1

2n ], i = 0, . . . , and δn = 1
n . Also p(n)

i = (1 − θn)
ni−1θn, i

= 1
n , 2

n , . . . ,. Assume that nθn → θ > 0 as n → ∞. Then, for any x ∈ J = [0,∞)
and sequence i(n, x) such that 2i(n,x)−1

2n ≤ x < 2i(n,x)+1
2n , one has

np(n)

i(n,x) = (nθn)(1 − nθn

n
)ni(n,x)(1 − θn)

−1 → θe−θx

as n → ∞, from which convergence in distribution of Xn to the exponential distri-
bution with parameter θ > 0 follows.

The following result provides a useful tool for tracking weak convergence in a
variety of settings. Note that in the case that h is continuous it follows immediately
from the definition of weak convergence since compositions of bounded continuous
functions with h are bounded and continuous.

Theorem 7.4 (Mann–Wald) Let S1, S2 be a pair of metric spaces and h : S1 → S2
a Borel-measurable map. Suppose that {Qn}∞n=1, Q are probabilities on the Borel σ-
field of S1 such that Qn ⇒ Q. If h is Q-a.s. continuous, then Qn ◦ h−1 ⇒ Q ◦ h−1.

Proof Let F be a closed subset of S2. Then, letting Fh = h−1(F), it follows from
Alexandrov conditions that lim supn Qn(Fh) ≤ lim supn Qn(F−

h ) ≤ Q(F−
h ). But

Q(F−
h ) = Q(Fh) since F−

h ⊂ Dh ∪ Fh , where Dh denotes the set of discontinuities
of h (Exercise 1) and, by hypothesis, Q(Dh) = 0. �
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Remark 7.2 It follows from Theorem 7.1, in particular, that if (S, ρ) is a metric
space, Q1, Q2 ∈ P(S), then

∫
S f d Q1 = ∫

S f d Q2∀ f ∈ Cb(S) implies Q1 = Q2.

Note that by a simple rescaling this makes { f ∈ Cb(S) : ‖ f ‖∞ ≤ 1} measure-
determining as well. The same is true for the set UCb(S) of all bounded uniformly
continuous real-valued functions on S in place of Cb(S).

Using a technique from theproof ofTheorem7.1onemayalso obtain the following
equivalent specification of the weak topology.

Proposition 7.5 The weak topology is defined by the system of open neighborhoods
of the form (7.5) with f1, f2, . . . , fm bounded and uniformly continuous.

Proof Fix Q0 ∈ P(S), f ∈ Cb(S), ε > 0. We need to show that the set {Q ∈ P(S) :
| ∫S f d Q − ∫

S f d Q0| < ε} contains a set of the form (7.5), but with fi ’s that are
uniformly continuous and bounded. Without essential loss of generality, assume 0 <

f < 1. As in the proof of Theorem 7.1, (iii) implies (i); see the relations (7.8), choose
and fix a large integer k such that 1/k < ε/4 and consider the Fi in that proof. Next,
as in the proof of (ii) implies (iii) of Theorem 7.1, there exist uniformly continuous
functions gi , 0 ≤ gi ≤ 1, such that gi = 1 on Fi and | ∫S gi d Q0 − Q0(Fi )| <

ε/4, 1 ≤ i ≤ k. Then on the set {Q : | ∫S gi d Q − ∫
S gi d Q0| < ε/4, 1 ≤ i ≤ k},

one has (see (7.5))

∫

S
f d Q ≤ 1

k

k∑

i=1

Q(Fi ) + 1

k
≤ 1

k

k∑

i=1

∫

S
gi d Q + 1

k

<
1

k

k∑

i=1

∫

S
gi d Q0 + ε

4
+ 1

k
≤ 1

k

k∑

i=1

Q0(Fi ) + 2ε

4
+ 1

k

<

∫

S
f d Q0 + 2ε

4
+ 1

k
≤

∫

S
f d Q0 + ε. (7.11)

Similarly, replacing f by 1 − f in the above argument, one may find uniformly
continuous hi , 0 ≤ hi ≤ 1, such that on the set {Q : | ∫S hi d Q − ∫

S hi d Q0| <

ε/4, 1 ≤ i ≤ k}, one has ∫
S(1 − f )d Q <

∫
S(1 − f )d Q0 + ε. Therefore

{Q ∈ P(S) : |
∫

S
f d Q −

∫

S
f d Q0| < ε}

⊃
{

Q :
∣
∣
∣
∣

∫

S
gi d Q −

∫

S
gi d Q0

∣
∣
∣
∣ < ε/4,

∣
∣
∣
∣

∫

S
hi d Q −

∫

S
hi d Q0

∣
∣
∣
∣ < ε/4, 1 ≤ i ≤ k

}

.

By taking intersections over m such sets, it follows that a neighborhood N (Q0), say,
of Q0 of the form (7.5) (with fi ∈ Cb(S), 1 ≤ i ≤ m) contains a neighborhood of
Q0 defined with respect to bounded uniformly continuous functions. In particular,
N (Q0) is an open set defined by the latter neighborhood system. Since the latter
neighborhood system is a subset of the system (7.5), the proof is complete. �



142 VII Weak Convergence of Probability Measures on Metric Spaces

Two points of focus for the remainder of this section are metrizability and (rel-
ative) compactness in the weak topology. Compactness in a metric space may be
equivalently viewed as the existence of a limit point for any sequence in the space.

In the case that (S, ρ) is a compact metric space, C(S) ≡ Cb(S) is a complete
separable metric space under the “sup” norm ‖ f ‖ := max{| f (x)| : x ∈ S}, i.e.,
under the metric d( f, g) := ‖ f − g‖ ≡ max{| f (x) − g(x)| : x ∈ S} (see Appendix
B). In this case the weak topology is metrizable, i.e., P(S) is a metric space with the
metric

dW (Q1, Q2) :=
∞∑

n=1

2−n

∣
∣
∣
∣

∫

S
fn d Q1 −

∫

S
fnd Q2

∣
∣
∣
∣ , (7.12)

where { fn : n ≥ 1} is a dense subset of { f ∈ C(S) : ‖ f ‖ ≤ 1}.Using Cantor’s diag-
onal procedure and the Riesz representation theorem (for bounded linear functionals
on C(S) in Appendix A), one may check that every sequence {Qn : n ≥ 1} has a
convergent subsequence. In other words, one has the following result (Exercise 4).

Proposition 7.6 If (S, ρ) is compact, thenP(S) is a compact metric space under the
weak topology, with a metric given by (7.12).

A slightly weaker form of convergence is sometimes useful to consider within the
general theme of this section, for example in analyzing the nature of certain failures
of weak convergence (see Exercise 3). A function f ∈ Cb(S) is said to vanish at
infinity if for each ε > 0 there is a compact subset Kε such that | f (x)| < ε for all
x ∈ K c

ε . Let C0
b (S) denote the collection of all such functions on S.

Definition 7.3 A sequence of probability measures {Qn}∞n=1 on (S,B(S)) is said
to converge vaguely to a finite measure Q(0), not necessarily a probability, if
limn

∫
S f d Qn = ∫

S f d Q(0) for all f ∈ C0
b (S).

Corollary 7.7 (Helly Selection Principle)Every sequence of probabilitiesμn, n ≥ 1,
on (R,B) has a vaguely convergent subsequence.

Proof Let ϕ : R → (−1, 1) be given by ϕ(x) = 2
π
tan−1(x), x ∈ R, and define

a probability νn supported on (−1, 1) by νn(A) = μn({x : ϕ(x) ∈ A}) for Borel
subsets A of (−1, 1). One may regard νn as a probability on the compact interval
[−1, 1] (supported on the open interval). Thus, by Proposition 7.6, there is a proba-
bility ν on [−1, 1] and a subsequence {νnm : m ≥ 1} such that νnm ⇒ ν as m → ∞.
Define ν̃(A) = ν(A) for Borel subsets A of (−1, 1). Then ν̃ is a measure on (−1, 1)
with ν̃(−1, 1) ≤ 1. Let μ(B) = ν̃({y ∈ (−1, 1) : ϕ−1(y) ∈ B}) for Borel subsets
B of R. Since for f ∈ C0

b (R), the map g := f ◦ ϕ−1 is in Cb([−1, 1]), where
g(1) = g(−1) = f (ϕ−1(±1)) := 0, one has, using the change of variable formula,
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∫

R

f (x)μ(dx) =
∫

(−1,1)
f (ϕ−1(y))μ ◦ ϕ−1(dy) =

∫

[−1,1]
g(y)ν̃(dy)

= lim
m→∞

∫

[−1,1]
g(y)νnm (dy)

= lim
m→∞

∫

R

f (x)μnm (dx),

where the change of variable formula is again used to write the last equality. �
The following theorem is typically proven using Fourier transforms, as will be

presented here.2

Proposition 7.8 (Cramér–Wold Device) A sequence of k-dimensional random vec-
tors Xn(n ≥ 1) converges in distribution to (the distribution of a random vector) X
if and only if all linear functions c · Xn ≡ ∑k

j=1 c j X ( j)
n converge in distribution to

c · X for all c = (c1, . . . , ck) ∈ R
k .

Proof Certainly if one has convergence in distribution of the sequence Xn(n ≥ 1)
to X, then the linear functions of Xn must converge in distribution since for any
choice of c, the function x → c · x is continuous. For if g is a continuous, bounded
function then so is the composition g(c · x), and Eg(c · Xn) → Eg(c · X). For the
converse suppose that c · Xn ≡ ∑k

j=1 c j X ( j)
n converges in distribution to c · X for all

c = (c1, . . . , ck) ∈ R
k . Then one has for any θ ∈ R

k , Eeiθ·Xn → Eeiθ·X. Now use
the Cramér–Lévy continuity theorem (Theorem 6.11). �

As a simple application one may obtain the classical one-dimensional central
limit theorem for sums of i.i.d. random variables having finite second moments to
R

k . Namely,

Theorem 7.9 (Multivariate Classical CLT)Let {Xn : n = 1, 2, . . .} be a sequence of
i.i.d. random vectors with values inRk . LetEX1 = μ ∈ R

k (defined componentwise)
and assume that the dispersion matrix (i.e., variance–covariance matrix) D of X1 is
finite. Then as n → ∞, n−1/2(X1 + · · · + Xn − nμ) converges in distribution to the
Gaussian probability measure with mean zero and dispersion matrix D.

Proof For each ξ ∈ R
k\{0} apply Corollary 4.3, to the sequence ξ · Xn , n ≥ 1. Then

use the Cramér–Wold device. �
For our next result we need the following lemma. Let H = [0, 1]N be the space

of all sequences in [0, 1] with the product topology, referred to as the Hilbert cube

Lemma 1 (Hilbert Cube Embedding) Let (S, ρ) be a separable metric space. There
exists a map h on S into the Hilbert cube H ≡ [0, 1]N with the product topology,
such that h is a homeomorphism of S onto h(S), in the relative topology of h(S).

2A non-Fourier analytic proof was found by Guenther Walther (1997): On a conjecture concerning
a theorem of Cramér and Wold, J. Multivariate Anal., 63, 313–319, resolving some serious doubts
about whether it would be possible.

http://dx.doi.org/10.1007/978-3-319-47974-3_6
http://dx.doi.org/10.1007/978-3-319-47974-3_4


144 VII Weak Convergence of Probability Measures on Metric Spaces

Proof Without loss of generality, assume ρ(x, y) ≤ 1∀ x, y ∈ S. Let {zk : k =
1, 2, . . . } be a dense subset of S. Define the map

h(x) = (ρ(x, z1), ρ(x, z2), . . . , ρ(x, zk), . . . ) (x ∈ S). (7.13)

If xn → x in S, then ρ(xn, zk) → ρ(x, zk) ∀ k, so that h(xn) → h(x) in the
(metrizable) product topology (of pointwise convergence) on h(S). Also, h is one-
to-one. For if x �= y, one may find zk such that ρ(x, zk) < 1

3ρ(x, y), and hence
ρ(y, zk) ≥ ρ(y, x) − ρ(zk, x) > 2

3ρ(x, y), so that ρ(x, zk) �= ρ(y, zk). Finally, let
ãn ≡ (an1, an2, . . . ) → ã = (a1, a2, . . . ) in h(S), and let xn = h−1(ãn), x = h−1

(ã). One then has (ρ(xn, z1), ρ(xn, z2), . . . ) → (ρ(x, z1), ρ(x, z2), . . . ). Hence
ρ(xn, zk) → ρ(x, zk)∀ k, implying xn → x, since {zk : k ≥ 1} is dense in S. �

Theorem 7.10 Let (S, ρ) be a separable metric space. Then P(S) is a separable
metric (i.e., metrizable) space under the weak topology.

Proof By Lemma 1, S may be replaced by its homeomorphic image Sh ≡ h(S)

in [0, 1]N which is compact under the product topology by Tychonov’s theorem
(Appendix B), and is metrizable with the metric

d(ã, b̃) :=
∞∑

n=1

2−n|an − bn|(ã = (a1, a2, . . . ), b̃ = (b1, b2, . . . )).

We shall consider uniform continuity of functions on Sh with respect to this metric
d. Every uniformly continuous (bounded) f on Sh has a unique extension f̄ to S̄h

(≡ closure of Sh in [0, 1]N) : f̄ (ã) := limk→∞ f (ãk), where ãk ∈ Sh, ãk → ã.

Conversely, the restriction of every g ∈ C(S̄h) is a uniformly continuous bounded
function on Sh . In other words, the space UCb(Sh) of all bounded uniformly contin-
uous functions on Sh may be identified with C(S̄h) as sets and as metric spaces under
the supremum distance d∞ between functions. Since S̄h is compact,Cb(S̄h) ≡ C(S̄h)

is a separable metric space under the supremum distance d∞, and therefore, so is
UCb(Sh). Letting { fn : n = 1, 2, . . . } be a dense subset of UCb(Sh), one now
defines a metric dW on P(Sh) as in (7.12). This proves metrizability of P(Sh).

To prove separability of P(Sh), for each k = 1, 2, . . . , let Dk := {xki : i =
1, 2, . . . , nk} be a finite (1/k)-net of Sh (i.e., every point of Sh is within a distance
1/k from some point in this net). This is possible since S̄h is a compact metric
space. Let D = {xki : i = 1, . . . , nk, k ≥ 1} = ∪∞

k=1Dk . Consider the set E
of all probabilities with finite support contained in D and having rational mass at
each point of support. Then E is countable and is dense in P(Sh). To prove this last
assertion, fix Q0 ∈ P(Sh). Consider the partition generated by the set of open balls
{x ∈ Sh : d(x, xki ) < 1

k }, 1 ≤ i ≤ nk . Let Qk be the probability measure defined
by letting the mass of Q0 on each nonempty set of the partition be assigned to a
singleton {xki } in Dk that is at a distance of at most 1/k from the set. Now construct
Qk ∈ E,where Q̃k has the same support as Qk but the point masses of Q̃k are rational
and are such that the sum of the absolute differences between these masses of Qk
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and the corresponding ones of Q̃k is less than 1/k. Then it is simple to check that
dW (Q0, Q̃k) → 0 as k → ∞, that is,

∫
Sh

g d Q̃k → ∫
Sh

g d Q0 for every uniformly
continuous and bounded g on Sh . �

The next result is of considerable importance in probability. To state it we need a
notion called “tightness.”

Definition 7.4 A subset Λ of P(S) is said to be tight if for every ε > 0, there exists
a compact subset Kε of S such that

Q(Kε) ≥ 1 − ε ∀ Q ∈ Λ. (7.14)

Theorem 7.11 (Prohorov’s Theorem) (a) Let (S, ρ) be a separable metric space. If
Λ ⊂ P(S) is tight then its weak closure Λ̄ is compact (metric) in the weak topology.
(b) If (S, ρ) is Polish, then the converse is true: For a set Λ to be conditionally
compact (i.e., Λ̄ compact) in the weak topology, it is necessary that Λ be tight.

Proof We begin with a proof of part (a). Suppose Λ ⊂ P(S) is tight. Let S̃ =
∪∞

j=1K1/j , where K1/j is a compact set determined from (7.14) with ε = 1/j.Then

P(S̃) = 1∀ Q ∈ Λ. Accordingly, since S̃ is σ-compact, so is it’s image S̃h =
∪∞

j=1h(K1/j ) under the map h (appearing in the proofs of Lemma 1 and Theorem
7.10). That is, since the image of a compact set under a continuousmap is compact,we
see that S̃h is also expressible as a countable union of compact sets, i.e.,σ-compact.

In particular, S̃h is a Borel subset of [0, 1]N and therefore of ¯̃Sh . Let Λh be the
image of Λ in S̃h under h, i.e., Λh = {P ◦ h−1 : P ∈ Λ} ⊂ P(S̃h). In view of the
homeomorphism h : S̃ → S̃h, it is enough to prove that Λh is conditionally compact
as a subset of P(S̃h).

Since S̃h is a Borel subset of ¯̃Sh, one may take P(S̃h) as a subset of P(
¯̃Sh),

extending Q in P(S̃h) by setting Q(
¯̃Sh\S̃h) = 0. Thus Λh ⊂ P(S̃h) ⊂ P(

¯̃Sh).

By Proposition 7.6, P(
¯̃Sh) is compact metric (in the weak topology). Hence every

sequence {Qn : n = 1, 2, . . . } in Λh has a subsequence {Qnk : k = 1, 2, . . . }
converging weakly to some Q ∈ P(

¯̃Sh). We need to show that Q ∈ P(S̃h), that is,
Q(S̃h) = 1. By Theorem 7.1, Q(h(K1/j )) ≥ lim supk→∞ Qnk (h(K1/j )) ≥ 1 − 1/j.
(By hypothesis, Q(h(K1/j )) ≥ 1 − 1/j ∀ Q ∈ Λh). Letting j → ∞, one gets
Q(S̃h) = 1. Finally, note that if Λ is conditionally compact when considered as a
subset of P(S̃), it is also conditionally compact when regarded as a subset of P(S)

(Exercise 8).
For part (b) suppose that (S, ρ) is separable and complete and let Λ be relatively

compact in the weak topology. We will first show that given any nondecreasing
sequence Gn , n ≥ 1, of open subsets of S such that ∪nGn = S and given any ε > 0,
there is an n = n(ε) such that Q(Gn(ε)) ≥ 1 − ε for all Q ∈ Λ. For suppose this is
not true. Then there are an ε > 0 and Q1, Q2, . . . in Λ such that Qn(Gn) < 1 − ε
for all n ≥ 1. But by the assumed compactness, there is a subsequence Qn(k) that
converges weakly to some probability Q ∈ P(S). By Alexandrov’s theorem this
implies, noting Gn ⊂ Gn(k) for n ≤ n(k), that Q(Gn) ≤ lim infk→∞ Qn(k)(Gn) ≤



146 VII Weak Convergence of Probability Measures on Metric Spaces

lim infk→∞ Qn(k)(Gn(k)) ≤ 1 − ε, for n ≥ 1. This leads to the contradiction 1 =
Q(S) = limn→∞ Q(Gn) ≤ 1 − ε. Now to prove that Λ is tight, fix ε > 0. By
separability of S for each k ≥ 1 there is a sequence of open balls Bn,k , n ≥ 1, having
radii smaller than 1/k and such that ∪n≥1Bn,k = S. Let Gn,k := ∪n

m=1Bm,k . Using
the first part of this proof of (b), it follows that for each k there is an n = n(k) such
that Q(Gn(k),k) ≥ 1−2−kε for all Q ∈ Λ. Define G := ∩∞

k=1Gn(k),k . Then its closure
G is totally bounded, since for each k there is a finite cover of G by n(k) closed balls
Bn,k of diameter smaller than 1/k. Thus completeness of S implies that G is compact
(see Appendix B, Lemma 4). But Q(G) ≥ Q(G) ≥ 1 − ∑∞

k=1 2
−kε = 1 − ε for all

Q ∈ Λ. �

We state the following proposition without proof3.

Proposition 7.12 Let (S, ρ) be a Polish space. Then P(S) is Polish for the weak
topology.

Corollary 7.13 Let (S, ρ) be a Polish space. Then any finite collection Λ of proba-
bilities on (S,B(S)) is tight.

Remark 7.3 The compactness asserted in part (a) of Theorem 7.11 remains valid
without the requirement of separability for themetric space (S, ρ).To see this, simply
note that the set S̃ = ∪∞

j=1K1/j is σ-compact metric whether S is separable or not.
However, in this caseP(S)may not be metric under the weak topology. Nonetheless,
the relative weak topology on Λ (and Λ̄) is metrizable.

In applications one might have Λ = {Qn}∞n=1, where Qn = P ◦ X−1
n is the

distribution of a random map Xn. If Xn is real valued, for example, then one might
try to check tightness by a Chebyshev-type inequality, see, for example, Exercise 5.

The following definition and proposition provide a frequently used metrization in
weak convergence theory.

Definition 7.5 The Prohorov metric dπ on P(S) is defined by

dπ(Q1, Q2) := inf{ε > 0 : Q1(A) ≤ Q2(Aε) + ε, Q2(A) ≤ Q1(Aε) + ε,∀A ∈ B(S)}.

Remark 7.4 Essentially using the symmetry that A ⊂ S\Bε if and only if B ⊂
S\Aε, one may check that if Q1(A) ≤ Q2(Aε)+ε for all A ∈ B(S) then dπ(Q1, Q2)

≤ ε. That is it suffices to check that one of the inequalities holds for all A ∈ B(S)

to get the other. For if the first inequality holds for all A, taking B = S\Aε, one has
Q1(Aε) = 1 − Q1(B) ≥ 1 − Q2(Bε) − ε = Q2(S\Bε) − ε ≥ Q2(A) − ε.

Proposition 7.14 Let (S, ρ) be a separable metric space. Then dπ metrizes the weak
topology on P(S) in the sense that:

3See Parthasarathy, K.R. (1967), Theorem 6.5, pp. 46–47, or Bhattacharya and Majumdar (2007),
Theorem C11.6, p. 237.
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(i) dπ defines a metric on P(S).
(ii) If dπ(Qn, Q) → 0 as n → ∞ then Qn ⇒ Q.
(iii) If Qn ⇒ Q, then dπ(Qn, Q) → 0 as n → ∞.

Proof Suppose that dπ(Q1, Q2) = 0. Then from the definition of dπ one arrives
for all closed sets F , letting ε ↓ 0 with A = F in the definition, at Q1(F) ≤
Q2(F) and Q2(F) ≤ Q1(F). Symmetry and nonnegativity are obvious. For the
triangle inequality let dπ(Qi , Qi+1) = εi , i = 1, 2. Then Q1(A) ≤ Q2(Aε′

1) + ε′
1 ≤

Q3((A)ε
′
1)ε

′
2) + ε′

1 + ε′
2, for all ε

′
i > εi , i = 1, 2. Thus dπ(Q1, Q3) ≤ ε′

1 + ε′
2 since

(Aε′
1)ε

′
2 ⊂ Aε′

1+ε′
2 . Since this is true for all ε′

i > εi , i = 1, 2, the desired triangle
inequality follows. Next suppose that dπ(Qn, Q) → 0 as n → ∞. Let εn → 0 be
such that dπ(Qn, Q) < εn . Then, by definition, Qn(F) ≤ Q(Fεn )+ εn for all closed
F . Thus lim supn Qn(F) ≤ Q(F) for all closed F , and weak convergence follows
from Alexandrov’s conditions. For the converse, fix an ε > 0. In view of the remark
following the definition of dπ it suffices to show that for all n sufficiently large, say
n ≥ n0, one has for any Borel set A that Q(A) ≤ Qn(Aε) + ε. By separability, S
is the union of countably many open balls Bi , i ≥ 1, of diameter smaller than ε.
Choose N such that Q(S\ ∪N

m=1 Bm) ≤ Q(∪m≥N+1Bm) < ε. Now by Alexandrov’s
conditions, Qn ⇒ Q implies that for any of the finitely many open sets of the
form G := Bi1 ∪ · · · ∪ Bim , 1 ≤ i1 < · · · < im ≤ N , there is an n0 such that
Qn(G) > Q(G) − ε for all n ≥ n0. For A ∈ B(S) let Â = ∪N

i=1{Bi : Bi ∩ A �= ∅}.
Then consider the open set Âε := {x ∈ S : ρ(x, Â) < ε}. In particular, there exists
n > n0 that Q(A) ≤ Q( Â)+ Q(∪i>N Bi ) ≤ Q( Â)+ ε < Qn( Â)+ 2ε ≤ Qn( Âε)+
2ε ≤ Qn(A2ε) + 2ε, since Â ⊂ Aε, so that Âε ⊂ A2ε. Thus dπ(Qn, Q) ≤ 2ε for all
n ≥ n0. �

Example 2 (Functional Central Limit Theorem (FCLT, Invariance Principle)) Sup-
pose {Zm : m = 1, 2, . . .} is an i.i.d. sequence with EZ1 = 0 and variance
EZ2

1 = σ2 > 0 defined on a probability space (Ω,F , P). To simplify calcula-
tions for this example we will assume EZ4

1 < ∞. This result will be proved by
another method in the full generality of finite second moments in Chapter XI.

For a positive integer n, define a polygonal path process B(n) with values in the
metric space S = C[0,∞), with the topology of uniform convergence on com-
pacts, by

B(n)(t) = S[nt]√
n

= Sm√
n

= Z1 + · · · + Zm√
n

, t = m

n
, m = 1, 2, . . . , (7.15)

with linear interpolation between (mn, Sm√
n
). Note that by Corollary 4.7 from the

classical central limit theory, one has (B(n)(1), . . . , B(n)(kn)) ⇒ (B(1), . . . , B(k))

as n → ∞, where (B(1), · · · , B(k)) is a k-dimensional Gaussian random vector
with mean zero and variance–covariance EB(i)B( j) = σ2i ∧ j, 1 ≤ i, j ≤ k. From
this point onwards take σ2 = 1 for without loss of generality.

The functional central limit theorem provides the existence of a limit distribution
W on C[0,∞), referred to as Wiener measure. Equivalently, this is the existence

http://dx.doi.org/10.1007/978-3-319-47974-3_11
http://dx.doi.org/10.1007/978-3-319-47974-3_4
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of a stochastic process B with values in C[0,∞) having distribution W , referred
to as standard Brownian motion, such that B(n) ⇒ B as n → ∞. In particular
it will follow that in general the limit process depends on the distribution of the
displacements Z only through the variance σ2 > 0, and is given by the rescaling
σB. This invariance of the distribution is the reason for the alternative reference to
invariance principle. The following definition provides a complete description of
the stochastic process obtained in the limit when σ2 = 1.

Definition 7.6 The one-dimensional standard Brownian motion starting at 0 defined
on a probability space (Ω,F , P) is the stochastic process B := {Bt : t ≥ 0} having
a.s. continuous paths, B0 = 0, with the independent increments property: For any
0 = t0 < t1 < t2 < · · · < tk , Bti+1 − Bti , i = 0, 1, . . . k − 1, are independent.
The increments have a Gaussian distribution with mean zero and variances ti+1 − ti ,
respectively. The probability measure W = P ◦B−1 on the Borel σ-field of C[0,∞)

defined by the distribution of standard Brownian motion starting at 0 is called the
Wiener measure. If B is standard Brownian motion then Xt = σBt + μt, t ≥ 0,
σ > 0,μ ∈ R, is referred to as Brownian motion with drift coefficient μ, and
diffusion coefficient σ2. 4

Note that the property of independent Gaussian increments of standard Brown-
ian motion may be equivalently formulated as the property that for any 0 = t0 <

t1 < t2 < · · · < tk , (Bt1 , . . . , Btk) is Gaussian random vector with mean zero and
variance–covariance matrix ((EBti Bt j ))0≤i, j≤k = ((ti ∧ t j ))0≤i, j≤k .

Theorem 7.15 (The Functional Central Limit Theorem (Invariance Principle)) Sup-
pose {Zm : m = 1, 2, . . .} is an i.i.d. sequence with EZm = 0 and variance σ2 > 0.
Then as n → ∞ the stochastic processes {X̃ (n)

t : t ≥ 0} converge in distribution to
a Brownian motion starting at the origin with zero drift and diffusion coefficient σ2.

For the proof we will require a few lemmas of general utility.
First to check tightness in the context of probabilities on C[0, 1] we appeal to

the Arzela–Ascoli theorem from Appendix B for a description of the (relatively)
compact subsets of C[0, 1]. Accordingly, a subset A of functions in C[0, 1] has
compact closure if and only if

i sup
ω∈A

|ω0| < ∞,

ii lim
δ→0

sup
ω∈A

νω(δ) = 0, where νω(δ) is the oscillation at scale of resolution δ in

ω ∈ C[0, 1] defined by νω(δ) = sup|s−t |<δ |ωs − ωt |.
The condition (ii) refers to the equicontinuity of the functions in A in the sense that
given any ε > 0 there is a common δ > 0 such that for all functions ω ∈ A we have
|ωt −ωs | < ε if |t − s| < δ. Conditions (i) and (ii) together imply that A is uniformly
bounded in the sense that there is a number B for which

4The notations Xt , Bt , X (t), B(t) are all common and used freely in this text.
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‖ω‖ := sup
0≤t≤1

|ω(t)| ≤ B for all ω ∈ A.

This is because for N sufficiently large we have supω∈A νω(1/N ) < 1 and, therefore,
for each 0 ≤ t ≤ 1

|ωt | ≤ |ω0| +
N∑

i=1

|ωi t/N − ω(i−1)t/N | ≤ sup
ω∈A

|ω0| + N sup
ω∈A

νω(1/N ) = B.

Combining this with the Prohorov theorem gives the following criterion for tightness
of probability measures {Qn}n≥1 on S = C[0, 1].
Lemma 2 Let {Qn : n ≥ 1} be a sequence of probability measures on C[0, 1]. Then
{Qn : n ≥ 1} is tight if and only if the following two conditions hold.

i For each η > 0 there is a number B such that

Qn({ω ∈ C[0, 1] : |ω0| > B})łEη, n = 1, 2, . . . .

ii For each ε > 0, η > 0, there is a 0 < δ < 1 such that

Qn({ω ∈ C[0, 1] : νω(δ)Eε})łEη, n ≥ 1.

Proof If {Qn : n ≥ 1} is tight, then given η > 0 there is a compact K such that
Qn(K ) > 1 − η for all n. By the Arzela–Ascoli theorem, if B > supω∈K |ω0| then

Qn({ω ∈ C[0, 1] : |ω0| ≥ B}) ≤ Qn(K c) ≤ 1 − (1 − η) = η.

Also given ε > 0 select δ > 0 such that supω∈K νω(δ) < ε. Then

Qn({ω ∈ C[0, 1] : νω(δ) ≥ ε}) ≤ Qn(K c) < η for all n ≥ 1.

The converse goes as follows. Given η > 0, first select B using (i) such that Qn({ω :
|ω0| ≤ B}) ≥ 1 − 1

2η, for n ≥ 1. Select δr using (ii) such that Qn({ω : νω(δr ) <

1/r}) ≥ 1 − 2−(r+1)η for n ≥ 1. Now take K to be the closure of

{ω : |ω0| ≤ B} ∩
∞⋂

r=1

{

ω : νω(δr ) <
1

r

}

.

Then Qn(K ) > 1 − η for n ≥ 1, and K is compact by the Arzela–Ascoli
theorem. �

The next lemma provides a moment inequality that can be useful for checking
such Arzela-Ascoli type conditions.
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Lemma 3 Let Λ ⊂ R
k be a bounded rectangle, and let X (n) = {X (n)

u : u ∈ Λ},
n ≥ 1, be a sequence of continuous processes with values in a complete metric space
(S, ρ) satisfying

Eρα(X (n)
u , X (n)

v ) ≤ c|u − v|k+β, for all u, v ∈ Λ, n ≥ 1,

for some positive numbers c,α,β. Then, for every given ε > 0 and 0 < η < 1, there
is a δ > 0 such that

P(sup{ρ(X (n)
u , X (n)

v ) : u, v ∈ Λ, |u − v| ≤ δ} > ε) < η, for all n ≥ 1.

In particular, for the tightness of the distributions of X (n) = {X (n)
t : 0 ≤ t ≤ 1},

n ≥ 1, it is sufficient that there be positive numbers α, β, M such that

E|X (n)
t − X (n)

s |α ≤ M |t − s|1+β for all s, t, n. (7.16)

Proof Without loss of generality takeΛ = [0, 1]k . Let | · | denote themaximum norm
given by |u| = max{|ui | : 1 ≤ i ≤ k}, u = (u1, . . . , uk). For each N = 1, 2, . . . ,
let L N be the finite lattice { j2−N : j = 0, 1, . . . 2N }k . Write L = ∪∞

N=1L N . Define
M (n)

N = max{ρ(X (n)
u , X (n)

v ) : (u, v) ∈ L2
N , |u − v| ≤ 2−N }. Since (i) for a given

u ∈ L N there are no more than 3k points in L N such that |u − v| ≤ 2−N , (i i) there
are (2N + 1)k points in L N , and (i i i) for every given pair (u, v), the condition of the
theorem holds, one has by Chebyshev’s inequality that for γ < β/α

P(M (n)
N > 2−γN ) ≤ c3k(2N + 1)k(

2−N (k+β)

2−αγN
). (7.17)

In particular, since γ < β/α,

∞∑

N=1

P(M (n)
N > 2−γN ) < ∞. (7.18)

Thus there is a random positive integer N ∗ ≡ N ∗(ω) and a set Ω∗ with P(Ω∗) = 1,
such that

M (n)
N (ω) ≤ 2−γN for all N ≥ N ∗(ω),ω ∈ Ω∗. (7.19)

Fix ω ∈ Ω∗ and let N ≥ N ∗(ω). We will see by induction that, for all m ≥ N + 1,
one has

ρ(X (n)
u , X (n)

v ) ≤ 2
m∑

j=N

2−γ j , for all u, v ∈ Lm, |u − v| ≤ 2−N . (7.20)

For m = N this follows from (7.19). Suppose, as an induction hypothesis, that
(7.20) holds for m = N + 1, . . . , M . Let u, v ∈ L M+1, |u − v| ≤ 2−N . Write u =
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(i12−M−1, . . . , ik2−M−1), v = ( j12−M−1, . . . , jk2−M−1), where iν, jν, 1 ≤ ν ≤ k,
belong to {0, 1, 2, . . . , 2n+1}. We will find u∗, v∗ ∈ Ln such that |u − u∗| ≤ 2−n−1,

|v−v∗| ≤ 2−M−1, and |u∗ −v∗| ≤ 2−N . For this let the ν-th coordinate, say i∗
ν2

−M−1

of u∗ be the same as that of u if iν is even, and i∗
ν = iν − 1 if iν is odd and iν ≥ jν ,

and i∗
ν = iν + 1 if iν is odd and iν < jν , ν = 1, . . . , k. Then |u∗ − u| ≤ 2−M−1,

and u∗ ∈ L M (since i∗
ν is even and i∗

ν2
−M−1 = (i∗

ν/2)2−M ). Similarly define v∗ with
the roles of iν and jν interchanged, to get v∗ ∈ L M and |v − v∗| ≤ 2−M−1, with,
moreover, |u∗ − v∗| ≤ |u − v| ≤ 2−N . Then by (7.19) and the induction hypothesis,

ρ(X (n)
u , X (n)

v ) ≤ ρ(X (n)
u , X (n)

u∗ ) + ρ(X (n)
u∗ , X (n)

v∗ ) + ρ(X (n)
u∗ , X (n)

v )

≤ 2−γ(M+1) + 2
M∑

ν=N

2−γν + 2−γ(M+1) = 2
M+1∑

ν=N

2−γν,

completing the induction argument for (7.20), for all ω ∈ Ω∗, m ≥ N + 1, N ≥
N ∗(ω). Since 2

∑∞
ν=N 2−γν = 2−γN+1(1 − 2−γ)−1, and L = ∪∞

m=N+1Lm for all
N ≥ N ∗(ω), it follows that

sup{ρ(X (n)
u , X (n)

v ) : u, v ∈ L , |u − v| ≤ 2−N }
= sup{ρ(X (n)

u , X (n)
v ) : u, v ∈ ∪∞

m=N+1Lm, |u − v| ≤ 2−N }
≤ 2−γN+1(1 − 2−γ)−1, N ≥ N ∗(ω),ω ∈ Ω∗. (7.21)

Thus given ε > 0, one has

P(sup{ρ(X (n)
u , X (n)

v ) : u, v ∈ Λ, |u − v| ≤ δ} > ε)

≤ θ(N ) := c3k(2N + 1)k(
2−N (k+β)

2−αγN
). (7.22)

Next for 0 < η < 1 find N (η) such that, for a given γ ∈ (0,β/α),
∑∞

N=N (η) θ(N ) <

η, where θ(N ) is determined This provides the asserted probability bound with
(1 − 2−γ)−12γ2−γN (η) in place of ε. If this last quantity is larger than ε then find
N (ε, η) ≥ N (η) such that (1− 2−γ)2γ2−γN (ε,η) ≤ ε. Then the asserted bound holds
with δ = 2−N (ε,η). In particular the tightness condition follows from Lemmas 2
and 3 �

To complete the extension fromC[0, 1] toC[0,∞)wemake use of the following.

Lemma 4 Suppose that X, X (n), n ≥ 1, are stochastic processes with values in
C[0,∞) for which one has that {X (n)

t : 0 ≤ t ≤ T } converges in distribution to
{Xt : 0 ≤ t ≤ T } for each T = 1, 2, . . . . Then X (n) converges in distribution to X
as processes in C[0,∞).

Proof Since S = C[0,∞) is separable, the proof can be accomplished using the
triangle inequality in Prokhorov’s metrization of weak convergence as follows:
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First define processes X T and X (n),T with paths in C[0,∞) by X T
t := Xt , 0 ≤ t ≤

T, X T
t := XT , t ≥ T , and X (n),T

t := X (n)
t , 0 ≤ t ≤ T , and X (n),T

t := X (n)
T , t ≥ K .

Then as n → ∞ one has that X (n),T converges in distribution to X T in C[0,∞)

by tightness of {X (n)
t : 0 ≤ t ≤ T }, n ≥ 1, and convergence of finite-dimensional

distributions to {Xt : 0 ≤ t ≤ T }. Next one has {X T
t : 0 ≤ t < ∞} converges a.s.

and hence in distribution to X . �

Proof of Theorem 7.15 under finite fourth moment assumption. By the continuous
operation of rescaling if necessary, onemay assumeσ2 = 1without loss of generality.
This proof is given under the further restriction of finite fourth moment m4 = EZ4

1 .
Let us consider the processes restricted to 0 ≤ t ≤ 1. It will suffice to prove tightness
of the distributions Qn, n ≥ 1, of the polygonal processes {B(n)(t) : 0 ≤ t ≤ 1} ∈
C[0, 1], n = 1, 2, . . . . To wit, by Prohorov’s theorem, one obtains a subsequence
Qnk and a probability Q on C[0, 1] such that Qnk ⇒ Q as k → ∞. But we have
already seen that weak convergence of the finite-dimensional distributions of the full
sequence is a consequence of classical central limit theory and hence, since finite-
dimensional events uniquely determine a probability on C[0, 1],we can conclude
Qn ⇒ Q as n → ∞. Moreover Q is a probability on C[0, 1] with the finite-
dimensional requirements of the definition of a standard Brownian motion.

We will show that there are positive numbers α,β and M such that

E|B(n)(t) − B(n)(s)|α ≤ M |t − s|1+β for 0 ≤ s, t ≤ 1, n = 1, 2, . . . (7.23)

By the above lemma this will prove tightness of the distributions of the processes
{B(n)(t) : t ≥ 0}, n = 1, 2, . . . .

To establish (7.23), take α = 4. First consider the case s = ( j/n) < (k/n) = t
are at the grid points. Then

E{B(n)(t) − B(n)(s)}4 = n−2
E{Z j+1 + · · · + Zk}4

= n−2
k∑

i1= j+1

k∑

i2= j+1

k∑

i3= j+1

k∑

i4= j+1

E{Zi1 Zi2 Zi3 Zi4}

= n−2

{

(k − j)EZ4
1 +

(
4

2

)(
k − j

2

)

(EZ2
1)

2

}

. (7.24)

Thus, in this case,

E{X̃ (n)
t − X̃ (n)

s }4 = n−2{(k − j)m4 + 3(k − j)(k − j − 1)}

≤ n−2{(k − j)m4 + 3(k − j)2} ≤ (m4 + 3)

(
k

n
− j

n

)2

≤ (m4 + 3)|t − s|2 = c1|t − s|2, where c1 = m4 + 3.

Next, consider the more general case 0 ≤ s, t ≤ 1. Then, for s < t ,
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E{B(n)(t) − B(n)(s)}4 = n−2
E

⎧
⎨

⎩

[nt]∑

j=[ns]+1

Z j + (nt − [nt])Z[nt]+1 − ([ns] − ns)Z[ns]+1

⎫
⎬

⎭

4

≤ n−234

⎧
⎪⎨

⎪⎩
E

⎛

⎝
[nt]∑

j=[ns]+1

Z j

⎞

⎠

4

+ (nt − [nt])4EZ4[nt]+1 (7.25)

+ (ns − [ns])4EZ4[ns]+1

⎫
⎪⎬

⎪⎭

≤ n−234{c1([nt] − [ns])2 + (nt − [nt])2m4 + (ns − [ns])2m4}
≤ n−234c1{([nt] − [ns])2 + (nt − [nt])2 + (ns − [ns])2}
≤ n−234c1{([nt] − [ns]) + (nt − [nt]) + (ns − [ns])}2
= n−234c1{nt − ns + 2(ns − [ns])}2
≤ n−234c1{nt − ns + 2(nt − ns)}2
= n−236c1(nt − ns)2 = 36c1(t − s)2. (7.26)

In the above, we used the fact that (a + b + c)4 ≤ 34(a4 + b4 + c4) to get the first
inequality. The analysis of the first (gridpoint) case (7.24) was then used, along with
the fact that for all t ≥ 0, 0 ≤ nt − [nt] ≤ 1, to get the second inequality. Take
β = 1, M = 36(m4 + 3), α = 4, in (7.16).

In view of Lemma 4 it now follows that there is a stochastic process B = {B(t) :
t ≥ 0} defined on a probability space (Ω,F , P) satisfying the conditions of Defini-
tion 7.6 specifying a Brownian motion onR. In particular, there is a probability mea-
sure W defined on the Borelσ-field ofC[0,∞) such that for any 0 = t0 < t1 < · · · <

tk, a1, . . . , ak ∈ R, k ≥ 1, letting F := {ω ∈ C[0,∞) : ω(0) = 0,ω(t j ) − ω(t j−1)

≤ a j , j = 1, . . . , k},

W (F) =
∫ ak

−∞
· · ·

∫ a1

−∞

k∏

j=1

1
√
2π(t j − t j−1)

e
(x j −x j−1)2

2(t j −t j−1) dx1 · · · dxk .

This completes the proof of the functional central limit theorem under the finite
fourth moment assumption. �

There are two distinct types of applications of Theorem 7.15. In the first type it is
used to calculate probabilities of infinite-dimensional events associated with Brown-
ian motion by directly computing limits of distributions of functionals of the scaled
simple random walks. In the second type it (invariance) is used to calculate asymp-
totic distribution of a large variety of partial sum processes, since the asymptotic
probabilities for these are the same as those of simple random walks.

Consider the functional g(ω) := max0≤t≤1 ω(t),ω ∈ C[0,∞). As an application
of the FCLT one may obtain the following limit distribution: Let Z1, Z2, . . . be an
i.i.d. sequence of real-valued random variables standardized to have mean zero, vari-
ance one. Let Sn := Z1+· · ·+Zn, n ≥ 1.Then g(X̃ (n)), and thereforemax0≤t≤1 X (n)

t ,
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converges in distribution to max0≤t≤1 Bt , where {Bt : t ≥ 0} is standard Brownian
motion starting at 0. Thus

lim
n→∞ P(n− 1

2 max
1≤k≤n

Sk ≥ a) = lim
n→∞ P(max

0≤t≤1
X (n)

t ≥ a)

= lim
n→∞ P(g(X̃ (n)) ≥ a)

= P(max
0≤t≤1

Bt ≥ a). (7.27)

For this calculation to be complete one needs to check that theWiener measure of the
boundary of the set G = {ω ∈ C[0,∞) : max0≤t≤1 ω(t) ≥ a} is zero. This follows
from the fact that the extremal random variable M = max0≤t≤1 Bt has a density, and
consequently, P(M = a) = 0; the derivation of the density of M using the strong
Markov property (reflection principle) is postponed until Chapter X.

One may note that another point of view is possible in which the FCLT is used
to obtain formulae for Brownian motion by making the special choice of simple
symmetric random walk for Z1, Z2, . . . , do the combinatorics and then pass to the
appropriate limit. Both of these perspectives are quite useful.

It is often useful to recognize that it is sufficient that g : C[0,∞) → R be only a.s.
continuous with respect to the limiting distribution for the FCLT to apply, i.e., for the
convergence of g(X (n)) in distribution to g(X). That is, as an immediate consequence
of the Mann–Wald Theorem 7.4, one has

Proposition 7.16 If X (n) := {X (n)
t : t ≥ 0} converges in distribution to X := {Xt :

t ≥ 0} and if P(X ∈ Dg) = 0, where Dg = {x ∈ C[0,∞) : g is discontinuous at x},
then g(X (n)) converges in distribution to g(X).

Before closing this chapter on weak convergence, let us consider the following
alternative metrization of the topology of weak convergence of probabilities on a
separable metric space.5 This particular metric has utility in applications to time
asymptotic behavior of Markov chains that is illustrated in Chapter XIII. To state the
result it is convenient to have the following notation for the oscillation of a function
on a set:

Definition 7.7 (Oscillation of Function) Let g be an arbitrary function on a set S.
The oscillation of g on a set A ⊂ S is defined by ωg(A) := supx,y∈A |g(x) − g(y)|.
Theorem 7.17 (Bounded-Lipschitz Metric) Let (S, ρ) be a separable metric space
with Borel sigma field S = B(S). Define dBL : P(S) × P(S) → [0,∞) by

dBL(μ, ν) = sup{|
∫

S
f dμ −

∫

S
f dν| : ω f (S) ≤ 1, sup

x �=y

ρ( f (x), f (y))

ρ(x, y)
≤ 1},

5While the result here is merely that convergence in the bounded-Lipschitz metric implies weak
convergence, the converse is also true. For a proof of this more general result see Bhattacharya
and Majumdar (2007), pp. 232–234. This metric was originally studied by Dudley, R.M. (1968):
Distances of probability measures and random variables, Ann. Math. 39, 15563–1572.

http://dx.doi.org/10.1007/978-3-319-47974-3_10
http://dx.doi.org/10.1007/978-3-319-47974-3_13
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for ν,μ ∈ P(S). Then dBL is a metric, referred to as the bounded-Lipschitz metric.
Moreover, convergence in the bounded-Lipschitz metric implies weak convergence.
From here it is straightforward to check that dBL defines ametric onP(S) as asserted.
In particular, dBL(Q1, Q2) = 0 if and only if Q1 = Q2 since the above argument
shows this class to be measure-determining as well.

Proof Suppose that dBL(Qm ⇒ Q) → 0 as m → ∞. Now, for each integer n ≥ 1,
one may define a convergence-determining sequence fn : S → R as in Proposition
1.6 in Chapter I. But each of these is bounded Lipschitz with Lipschitz constant n.
Rescaling by gn = fn/n ∨ω fn (S). Then, applying the hypothesis to each gn , one has

lim
m→∞ |

∫

S
fnd Qm −

∫

S
fnd Q| = lim

m→∞(n ∨ ωgn (S))|
∫

S
gnd Qm −

∫

S
gnd Q| = 0.

Since the sequence { fn : n ≥ 1} has already been shown to be convergence-determin-
ing the proof is complete. �

Remark 7.5 One may note from the proof that the uniformity over P(S) defining
the metric is not actually necessary to obtain weak convergence. On the other hand,
the converse (see Footnote) does imply the uniformity contained in the metric.

Exercise Set VII

1. (i) Show that if F is closed, δ > 0, then ∂{x : ρ(x, F) ≤ δ} ⊂ {x : ρ(x, F) = δ}.
[Hint: If y belongs to the set on the left, there is a sequence yn → y such that
ρ(yn, F) ≥ δ.] (ii) Let (Ω,F , P) be an arbitrary probability space. Suppose
Aδ , δ > 0, is a collection of disjoint measurable sets. Show that P(Aδ) > 0 for
at most countably many δ. [Hint: For each positive integer n, the set {δ > 0 :
P(Aδ) > 1/n} must be a finite set.] (iii) Let h : S1 → S2 be Borel measurable
and P-a.s. continuous. With Fh as in Theorem 7.4, show that F−

h ⊂ Fh ∪ Dh .
[Hint: If y ∈ F−

h \Fh ⊂ ∂Fh , then h(y) /∈ F , but there is a sequence yn → y
such that h(yn) ∈ F for all n ≥ 1.]

2. Let {Xn}∞n=1 be a sequence of random maps with values in a metric space S with
metric ρ and Borel σ-field S = B(S).

(i) Show that Xn converges in probability to an a.s. constant c if and only if
the sequence of probabilities Qn := P ◦ X−1

n converge weakly to δc. [Here
convergence in probability means that given ε > 0 one has P(ρ(Xn, c) >

ε) → 0 as n → ∞.]
(ii) Show that convergence in probability to a randommap X implies P◦X−1

n ⇒
P ◦ X−1 as n → ∞.

3. Let S be ametric spacewith Borel σ-fieldB(S). (a) Give an example to show that
vague convergence does not imply weak convergence, referred to as escape of
probability mass to infinity. [Hint: Consider, for example, Qn = 2

3δ{ 1
n } + 1

3δ{n}.]
(b) Show that if {Qn}∞n=1 is tight, then vague convergence and weak convergence
are equivalent for {Qn}∞n=1.

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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4. Let (S, ρ) be a compact metric space. Give a proof of Proposition 7.6. [Hint:
Let { fn} be a countable dense sequence in C(S). For a sequence of probabilities
Qn, first consider the bounded sequence of numbers

∫
S f1d Qn, n ≥ 1. Extract

a subsequence Qn1k such that L( f1) := lim
∫

S f1d Qn1k exists. Next consider the
bounded subsequence

∫
S f2d Qn1k , etc. Use Cantor’s diagonalization to obtain

a densely defined bounded linear functional L (on the linear span of { fk : k ≥
1}) and extend by continuity to C(S). Use the Riesz representation theorem
(Appendix A) to obtain the weak limit point.]

5. Let {Xn}∞n=1 be a sequence of real-valued random variables on (Ω,F , P).

(i) Suppose that each Xn is in L p, n ≥ 1, for some p ≥ 1, and supn E|Xn|p <

∞. Show that {Qn = P ◦ X−1
n }∞n=1 is a tight sequence. [Hint: Use a

Chebyshev-type inequality.]
(ii) Suppose there is a δ > 0 such that for each −δ ≤ t ≤ δ. Eet Xn < ∞ for

each n, and limn→∞ Eet Xn = m(t) exists and is finite. Show that {Qn = P ◦
X−1

n }∞n=1 is tight. [Hint: Apply the Markov inequality to the event [eδ|Xn | >

eδa].]
6. Define probabilities on R absolutely continuous with respect to Lebesgue mea-

sure with density Qε(dx) = ρε(x)dx , where ρε(x) was introduced to obtain
C∞-approximations with compact support in (4.2). Let δ{0} denote the Dirac
probability concentrated at 0, and show that Qε ⇒ δ{0} as ε ↓ 0. [Hint: Con-
sider probabilities of open sets in Alexandrov’s theorem.]

7. Suppose that Qn , n ≥ 1, is a sequence of probabilities concentrated on [a, b].
Suppose that one may show for each positive integer r that

∫
[a,b] xr Qn(dx) →

mr ∈ R as n → ∞. Show that there is a probability Q such that Qn ⇒ Q as
n → ∞ and

∫
[a,b] xr Q(dx) = mr for each r ≥ 1.

8. Let (S, ρ) be a metric space and B a Borel subset of S given the relative (metric)
topology. Let {Qn : n ≥ 1} be a sequence of probabilities in P(S) such that
Qn(B) = 1 for all n. If the restrictions of Qn , n ≥ 1, to B converge weakly to
a probability Q ∈ P(B), show that Qn ⇒ Q, when considered in P(S), i.e.,
extending Q to S by setting Q(S\B) = 0.

9. Complete the following steps to prove the equivalence of (a) and (d) of Theorem
4.1 in the case k ≥ 2.

(i) Show that F is continuous from above at x in the sense that given ε > 0
there is a δ > 0 such that |F(x)− F(y)| < εwhenever xi ≤ yi < xi +δ, i =
1, . . . , k. [Hint: Use the continuity of probability measures from above.]

(ii) Say that F is continuous from below at x if given ε > 0 there is a δ > 0 such
that |F(x) − F(y)| < ε whenever xi − δ < yi ≤ xi , i = 1, . . . , k. Show
that x is a continuity point of F if and only if continuity holds from below.
Moreover, x is a continuity point of F if and only if F(x) = Q(∩k

i=1{y ∈
R

k : yi < xi }), where Q is the probability measure whose distribution
function is F .

(iii) Show that x is a continuity point of F if and only if ∩k
i=1{y ∈ R

k : yi ≤ xi }
is a Q-continuity set; i.e., its boundary has probability zero. [Hint: The

http://dx.doi.org/10.1007/978-3-319-47974-3_4
http://dx.doi.org/10.1007/978-3-319-47974-3_4
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boundary of ∩k
i=1{y ∈ R

k : yi ≤ xi } is the relative complement ∩k
i=1{y ∈

R
k : yi ≤ xi }\ ∩k

i=1 {y ∈ R
k : yi < xi }.]

(iv) Show that if Qn ⇒ Q then Fn(x) → F(x) at all continuity points x of F .
(v) Let A be a π-system of Borel subsets of Rk , i.e., closed under finite inter-

sections. Assume that each open subset of R
k is a finite or countable

union of elements of A. Show that if Qn(A) → Q(A) for each A ∈ A
then Qn ⇒ Q. [Hint: Use the inclusion–exclusion principle to show that
Qn(∪N

m=1Am) → Q(∪N
m=1 Am) if Am ∈ A for m = 1, . . . , m. Verify for

ε > 0 and open G = ∪m Am, Am ∈ A, that there is an N such that
Q(G) − ε ≤ Q(∪N

m=1 Am) = limn Qn(∪N
m=1Am) ≤ lim infn Qn(G).]

(vi) LetA be a π-system of sets such that for each x ∈ R
k and every ε > 0 there

is an A ∈ A such that x ∈ A◦ ⊂ A ⊂ Bε(x) := {y ∈ R
k : |y − x | < ε},

where A◦ denotes the set of points belonging to the interior of A. Show that
Qn(A) → Q(A) for all A ∈ A then Qn ⇒ Q. [Hint: Check thatA satisfies
the conditions required in the previous step.]

(vii) Show that if Fn(x) → F(x) at each point x of continuity of F then Qn ⇒ Q.
[Hint: Take A to be the collection of sets of the form A = {x : ai <

xi ≤ bi , i = 1, . . . , k} for which the 2k (k − 1)-dimensional hyperplanes
determining each of its faces has Q-measure zero. The Q, Qn-probabilities
of A ∈ A are sums and differences of values of F(x), Fn(x), respectively,
as x varies over the 2k vertices of A. Moreover, vertices of A ∈ A are
continuity points of F , and at most countably many parallel hyperplanes
can have positive Q-measure.]

10. Use Prohorov’s theorem to give a simple derivation for Exercise 9. [Hint: Sup-
pose that Fn(x) → F(x) at all points x of continuity of F . Show that {Qn : n ≥
1} is tight, using Qn((a, b]) ≥ Fn(b)−∑k

i=1 Fn(b1, . . . , bi−1, ai , bi+1, . . . , bk),

1 ≤ i ≤ k, for ai < bi ,∀i , where a = (a1, . . . , ak), b = (b1, . . . , bk).]



Chapter VIII
Random Series of Independent Summands

The convergence of an infinite series
∑∞

n=1 Xn is a tail event. Thus, by the Kol-
mogorov zero–one law (Theorem 5.1), if X1, X2, . . . is a sequence of independent
randomvariables, the convergence takes placewith probability one or zero. For a con-
crete example, consider the so-called random signs question for the divergent series
∑∞

n=1
1
n . Namely, while

∑∞
n=1

(−1)n+1

n is convergent, one might ask what happens if
the signs are assigned by i.i.d. tosses of a balanced coin (see Exercise 1)?

To answer questions about almost-sure convergence of a random series, one often
proceeds with an effort to show that the sequence {Sn = X1 + · · · + Xn : n ≥ 1} of
partial sums is not Cauchy with probability zero. A “non-Cauchy with probability
zero” statement may be formulated as follows:

P

(

sup
j,k≥n

|Sj − Sk | ≥ ε

)

≤ 2P

(

sup
m≥1

|Sm+n − Sn| ≥ ε

2

)

= 2 lim
N→∞ P

(

max
1≤m≤N

|Sn+m − Sn| ≥ ε

2

)

. (8.1)

Thus, to prove non-Cauchy with probability zero it is sufficient to show that

lim
n,N→∞ P

(

max
1≤m≤N

|Sn+m − Sn| ≥ ε

)

= 0. (8.2)

This approach is facilitated by the use of maximal inequalities of the type found
previously for martingales. At the cost of some redundancy, here is another statement
and derivation of Kolmogorov’s maximal inequality for sums of independent random
variables.

© Springer International Publishing AG 2016
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Theorem 8.1 (Kolmogorov’s Maximal Inequality) Let X1, . . . , Xn be independent
randomvariableswithEX j = 0,Var X j < ∞, for j = 1, . . . , n. Let Sk = ∑k

j=1 X j .

For δ > 0 one has P(max1≤k≤n |Sk | ≥ δ) ≤ Var Sn
δ2

.

Proof Let τ = min{k ≤ n : |Sk | ≥ δ}, with τ = ∞ if |Sk | < δ for all k ≤ n. Then

E
(
S2

n

) ≥
n∑

k=1

E
(
S2

n1[τ=k]
)

=
n∑

k=1

E({Sk + (Sn − Sk)}21[τ=k])

=
n∑

k=1

E
({S2

k + 2Sk(Sn − Sk) + (Sn − Sk)
2}1[τ=k]

)

≥
n∑

k=1

E{S2
k + 2Sk(Sn − Sk)}1[τ=k]. (8.3)

Now observe that [τ = k] ∈ σ(X1, . . . , Xk) and Sk is σ(X1, . . . , Xk)-measurable.
Thus 1[τ=k]Sk and Sn − Sk are independent. Since the latter has mean zero, the
expected value of their product is zero, and the above bound reduces to

ES2
n ≥

n∑

k=1

E{S2
k 1[τ=k]} ≥

n∑

k=1

δ2P(τ = k).

Noting that
∑n

k=1 P(τ = k) = P(max1≤k≤n |Sk | ≥ δ) completes the proof. �

A related inequality is given by

Theorem 8.2 (Skorokhod Maximal Inequality) Let X1, X2, . . . , Xn be independent
random variables. Define Sm = ∑m

j=1 X j , 1 ≤ m ≤ n, S0 = 0. Given δ > 0, let

p = max
m≤n

P(|Sn − Sm | > δ) < 1.

Then

P(max
m≤n

|Sm | > 2δ) ≤ 1

q
P(|Sn| > δ), q = 1 − p.

Proof Let τ = min{m ≤ n : |Sm | > 2δ}, and τ = ∞ if |Sm | ≤ 2δ,∀m ≤ n. Then∑n
m=1 P(τ = m) = P(maxm≤n |Sm | > 2δ), and
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P(|Sn| > δ) ≥
n∑

m=1

P(|Sn| > δ, τ = m)

≥
n∑

m=1

P(|Sn − Sm | ≤ δ, τ = m)

=
n∑

m=1

P(|Sn − Sm | ≤ δ)P(τ = m)

≥
n∑

m=1

q P(τ = m) = q P(max
m≤n

|Sm | > 2δ).

�
Theorem 8.3 (Mean-Square-Summability Criterion) Let X1, X2, . . . be indepen-
dent random variables with mean zero. If

∑∞
n=1 Var(Xn) < ∞ then

∑∞
n=1 Xn con-

verges a.s.

Proof Applying Kolmogorov’s maximal inequality to the sum of Xn+1, . . . , Xn+m

yields for arbitrary ε > 0,

P

(

max
1≤k≤m

|Sn+k − Sn| > ε

)

≤ 1

ε2

m∑

k=1

Var(Xn+k) ≤ 1

ε2

∞∑

k=1

Var(Xn+k).

Using continuity of the probability P , it follows that P(supk≥1 |Sn+k − Sn| > ε) =
limm→∞ P

(
max1≤k≤m |Sn+k − Sn| > ε

) ≤ 1
ε2

∑∞
k=1 Var(Xn+k). Since the bound is

by the tail of a convergent series, one has, letting n → ∞, that

lim
n→∞ P(sup

k≥1
|Sn+k − Sn| > ε) = 0.

It follows by the method leading up to (8.2) that the event [{Sn}∞n=1 is not a Cauchy
sequence] has probability zero. �
As a quick application of the mean-square-summability criterion one may obtain
a strong law of large numbers for sums of independent centered random variables
whose variances do not grow too rapidly; see Exercise 2

We will see below that it can also be employed in a proof of strong laws for
rescaled averages of i.i.d. sequences under suitable moment conditions. This will
use truncation arguments stemming from the following further consequence; also
see Exercises 4, 5.

Corollary 8.4 (Kolmogorov’s Three-Series Criteria: Sufficiency Part) Let X1, X2,
. . . be independent random variables. Suppose that there is a (truncation level) num-
ber a > 0 such that the following three-series converge: (i)

∑∞
n=1 P(|Xn| > a); (ii)∑∞

n=1 E
(
Xn1[|Xn |≤a]

)
; (iii)

∑∞
n=1 Var(Xn1[|Xn |≤a]). Then

∑∞
n=1 Xn converges with

probability one.
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Proof Convergence of (i) implies that the truncated and nontruncated series converge
and diverge together, since by Borel–Cantelli I, they differ by at most finitely many
terms with probability one. In view of the mean-square-summability criterion, part
(iii) gives a.s. convergence of the centered truncated sum, and adding (ii) gives the
convergence of the uncentered truncated sum. �

Remark 8.1 Note that Corollary 8.4 holds if the truncation level a = an depends on
n.

As an application of theCLTonemay also establish the necessity ofKolmogorov’s
three-series criteria as follows.

Corollary 8.5 (Kolmogorov’s Three-Series Criteria: Necessary Part) Let X1, X2,
. . . be independent random variables. If

∑∞
n=1 Xn converges with probability one,

then for any (truncation level) number a > 0 the following three-series converge: (i)∑∞
n=1 P(|Xn| > a); (ii)

∑∞
n=1 E[Xn1[|Xn |≤a]]; (iii) ∑∞

n=1 Var(Xn1[|Xn |≤a]).

Proof Assume that
∑∞

n=1 Xn converges a.s. and let a > 0. Necessity of condi-
tion (i) follows from Borel–Cantelli II. Let S(a)

n = ∑n
k=1 Xk1[|Xk |≤a], and σ2

n(a) =
Var(S(a)

n ),μn(a) = ES(a)
n . Suppose for the sake of contradiction of (iii) that σn(a) →

∞. Then, since S(a)
n converges a.s. to a finite limit, S(a)

n /σn(a) → 0 a.s. as n →
∞, and hence in probability as well. However, since the terms Xk1[|Xk |≤a] −
E{Xk1[|Xk |≤a]} are uniformly bounded, onemayuseLindeberg’s central limit theorem
to compute for an arbitrary interval J = (c, d], c < d, and conclude that

P

(
S(a)

n − μn(a)

σn(a)
∈ J,

|S(a)
n |

σn(a)
< 1

)

≥ P

(
S(a)

n − μn(a)

σn(a)
∈ J

)

− P

( |S(a)
n |

σn(a)
≥ 1

)

is bounded away from zero for all sufficiently large n. This is a contradiction since it
implies that for sufficiently largen, the numbers−μn(a)/σn(a) are between c − 1and
d + 1 for two distinct choices of intervals J more than 2 units apart. Thus condition
(iii) holds. The necessity of condition (ii) now follows by applying the mean-square-
summability criterion, Theorem 8.3, to see that

∑∞
n=1{Xn1[|Xn |≤a] − μn(a)} is a.s.

convergent. Thus
∑∞

n=1 μn(a) must converge. �

In preparation for an extension1 of the strong law of large numbers, we record here
two very basic facts pertaining to the ordinary “calculus of averages”; their proofs
are left as Exercise 3.

Lemma 1 Let {cn}∞n=1 be a sequence of positive real numbers such that cn ↑ ∞ as
n → ∞. Let {an}∞n=1 be an arbitrary sequence of real numbers. (a) If an → a as
n → ∞, then defining c0 = 0,

1Theorem 8.6 is a stronger statement than Kolmogorov’s classical strong law. It is due to
Marcinkiewicz and Zygmund (1937): Sur les fonctions indépendentes, Fund. Math. 29, 60–90.,
but clearly contains the classical law as a special case.
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[Cesàro] lim
n→∞

1

cn

n∑

j=1

(c j − c j−1)a j = a.

(b) If
∑∞

j=1
a j

c j
converges then

[Kronecker ] lim
n→∞

1

cn

n∑

j=1

a j = 0.

Theorem 8.6 (Strong Law of Large Numbers) Let X1, X2, . . . be an i.i.d. sequence
of randomvariables, and let 0 < θ < 2. Then n− 1

θ

∑n
j=1 X j converges a.s. if and only

if E|X1|θ < ∞ and either (i) θ ≤ 1 or (ii) θ > 1 and EX1 = 0. When the limit exists
it is EX1 in the case θ = 1, and is otherwise zero for all other cases of θ ∈ (0, 2),
θ 	= 1.

Proof The case θ = 1 was considered in Chapter V (also see Exercise 5). Fix
θ ∈ (0, 2), θ 	= 1, and assume E|X1|θ < ∞. For the cases in which θ > 1, one
has E|X1| < ∞, but assume first that EX1 = 0 in such cases. We will show that
n− 1

θ

∑n
j=1 X j → 0 a.s. as n → ∞.

The basic idea for the proof is to use “truncation methods” as follows: Let Yn =
Xn1[

|Xn |≤n
1
θ

], n ≥ 1. Then it follows from the identical distribution and moment

hypothesis, using Borel–Cantelli lemma I, that P(Yn 	= Xni.o) = 0 since

∞∑

n=1

P(Yn 	= Xn) =
∞∑

n=1

P(|X1|θ > n) ≤
∫ ∞

0
P(|X1|θ > x)dx = E|X1|θ < ∞.

Thus, it is sufficient to show that n− 1
θ

∑n
k=1 Yk a.s. converges to zero. In view of Kro-

necker’s lemma, for this one needs only to show that
∑∞

n=1 n− 1
θ Yn is a.s. convergent.

If θ < 1, then this follows by the direct calculation that

E

∞∑

n=1

n− 1
θ |Yn| =

∞∑

n=1

n− 1
θ E|Xn|1[|Xn |≤n

1
θ ]

≤
∫ ∞

0
x− 1

θ E|X1|1[|X1|≤x
1
θ ]dx

= E

{

|X1|
∫ ∞

|X1|θ
x− 1

θ dx

}

≤ cE|X1|θ < ∞,

for a positive constant c. Thus n− 1
θ

∑∞
n=1 Yn is a.s. absolutely convergent for θ < 1.

For θ > 1, using the three-series theorem (and Remark 8.1), or Theorem 8.3, it
suffices to check that

∑∞
n=1 E

Yn

n
1
θ
is convergent, and

∑∞
n=1 n− 2

θ Var(Yn) < ∞. For

the first of these, noting that EYn = −EXn1[|Xn |>n
1
θ ], one has

http://dx.doi.org/10.1007/978-3-319-47974-3_5
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∞∑

n=1

n− 1
θ |EYn| ≤

∞∑

n=1

n− 1
θ E|Xn|1[|Xn |>n

1
θ ]

≤
∫ ∞

0
x− 1

θ E|X1|1[|X1|>x
1
θ ]dx

= E

{

|X1|
∫ |X1|θ

0
x− 1

θ dx

}

≤ c′
E|X1|θ < ∞,

for some constant c′. Similarly, for the second one has

∞∑

n=1

n− 2
θ Var(|Yn|) ≤

∞∑

n=1

n− 2
θ E|Yn|2

=
∞∑

n=1

n− 2
θ E|Xn|21[|Xn |≤n

1
θ ]

≤
∫ ∞

0
x− 2

θ E|X1|21[|X1|2≤x
1
θ ]dx

= E

{

|X1|2
∫ ∞

|X1|θ
x− 2

θ dx

}

≤ c′
E|X1|θ < ∞.

For the converse, suppose that n− 1
θ

∑n
j=1 X j is a.s. convergent. Let Sn := ∑n

j=1 X j .
Since a.s.

Xn

n
1
θ

= Sn

n
1
θ

−
(

n − 1

n

) 1
θ Sn−1

(n − 1)
1
θ

→ 0

as n → ∞, it follows that

E|X1|θ =
∫ ∞
0

P(|X1|θ > x)dx ≤ 1 +
∞∑

n=1

P(|X1|θ > n) = 1 +
∞∑

n=1

P(|n− 1
θ Xn | > 1).

The last series converges in view of Borel-Cantelli’s Lemma II. In the case that
θ > 1, one may further conclude that EX1 = 0 in view of the strong law of large
numbers. �

Remark 8.2 For 0 < θ < 1, the proof of almost-sure convergence of n− 1
θ

∑n
j=1 X j

does not require independence of the X j , j ≥ 1, but only that they have the same
distribution. However, the proof of the converse does make use of the independence
assumption.

Proposition 8.7 (Almost-Sure & Convergence in Probability for Series of Indepen-
dent Terms) Let X1, X2, . . . be independent random variables. Then

∑∞
n=1 Xn con-

verges a.s. if and only if
∑∞

n=1 Xn converges in probability.
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Proof One part is obvious since almost-sure convergence always implies conver-
gence in probability. For the converse suppose, for contradiction, that limn

∑n
j=1 X j

exists in probability, but with positive probability is divergent. Then there is an
ε > 0 and a γ > 0 such that for any fixed k, P(supn>k |Sn − Sk | > ε) > γ. Use Sko-
rokhod’s maximal inequality (Theorem 8.2) to bound P(maxk<n≤m |Sn − Sk | > ε)
for fixed k,m. Then note that p = pk,m := maxk<n≤m P(|Sm − Sn−1| > ε/2) → 0
as k,m → ∞, while |Sm − Sk | → 0 in probability as k,m → ∞. This indicates a
contradiction. �

Proposition 8.8 (Almost-Sure and Convergence in Distribution for Series of Inde-
pendent Summands) Let {Xn : n ≥ 1} be a sequence of independent real-valued ran-
dom variables. Then

∑n
k=1 Xk converges a.s. as n → ∞ if and only if it converges

in distribution.

Proof One way follows from the dominated convergence theorem using char-
acteristic functions. For the other assume

∑n
k=1 Xk converges in distribution to

Y. Then, letting ϕk(ξ) = EeiξXk , ϕ(ξ) = EeiξY , one has
∏n

k=1 ϕk(ξ) → ϕ(ξ) as
n → ∞. Thus

∏n
k=m ϕk(ξ) → 1 for all ξ as m, n → ∞. For every ε > 0, one has

P(| ∑n
k=m Xk | > 2ε) ≤ ε

∫
[− 1

ε ,
1
ε ](1 − ∏n

k=m ϕk(ξ))dξ → 0 as m, n → ∞ (See the
proof of Theorem 6.11). Now use Proposition 8.7 to complete the proof. �

Exercise Set VIII

1. (Random Signs Problem) Suppose that a1, a2, . . . is a sequence of real numbers,
and X1, X2, . . . an i.i.d. sequence of symmetrically distributed Bernoulli ±1-
valued random variables. Show that

∑∞
n=1 Xnan converges with probability one if

and only if
∑∞

n=1 a2
n < ∞. [Hint: Use mean-square-summability in one direction

and a Kolmogorov’s three-series theorem for the other.]
2. (A Strong Law of Large Numbers) Use the mean-square-summability criterion to

formulate and prove a strong law of large numbers for a sequence of independent

randomvariables X1, X2, . . . such thatEXn = 0 for eachn ≥ 1, and
∑∞

n=1
EX2

n
n2 <

∞. Assuming independence, for what values of θ does one have this strong law
with Var(Xn) = nθ?

3. (Cesàro Limits and Kronecker’s Lemma)Give aproof of theCesàro andKronecker
lemmas. [Hint: For the Cesàro limit, let ε > 0 and choose N sufficiently large that
a + ε > a j > a − ε for all j ≥ N . Consider lim sup and lim inf in the indicated
average. For Kronecker’s lemma make a “summation by parts” to the indicated
sum, and apply the Cesàro limit result.]

4. (Kolmogorov’s Truncation Method) Let X1, X2, . . . be an i.i.d. sequence of
random variables with E|X1| < ∞. Define Yn = Xn1[|Xn |≤n], for n ≥ 1. Show
that in the limit as n → ∞, (a) EYn → EX1; (b) P(Yn 	= Xni.o.) = 0; and
(c)

∑∞
n=1

Var(Yn)

n2 < ∞. [Hint: For (a), Lebesgue’s dominated convergence; for
(b), Borel–Cantelli I; for (c), Var(Yn) ≤ EY 2

n = E{X2
11[|X1| ≤ n]}, and ∑∞

n=1
1
n2

EX2
11[|X1|≤n] ≤ EX2

1

∫ ∞
|X1| x−2dx = E|X1|.]

http://dx.doi.org/10.1007/978-3-319-47974-3_6
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5. (A strong law of large numbers) Use Kolmogorov’s truncation method from the
previous exercise together with Exercise 2 to prove the classic strong law for i.i.d.
sequences having finite first moment.



Chapter IX
Kolmogorov’s Extension Theorem
and Brownian Motion

Suppose a probability measure Q is given on a product space Ω = ∏
t∈Λ St with

the product σ-field F = ⊗t∈ΛSt . Let C denote the class of all finite-dimensional
cylinders C of the form

C =
{

ω = (xt , t ∈ Λ) ∈
∏

t∈Λ

St : (xt1 , xt2 , . . . , xtn ) ∈ B

}

, (9.1)

for n ≥ 1, B ∈ St1 ⊗ · · · ⊗ Stn , and (t1, t2, . . . , tn) an arbitrary n-tuple of distinct
elements of Λ. Since ⊗t∈ΛSt is the smallest σ-field containing C, it is simple to
check from theπ − λ theorem that Q is determined by its values on C.Writeμt1,t2,...,tn
for the probability measure on the product space (St1 × St2 × · · · × Stn ,St2 ⊗ St2 ⊗
· · · ⊗ Stn ) given by

μt1,t2,...,tn (B) := Q(C) (B ∈ St1 ⊗ · · · ⊗ Stn ), (9.2)

where C ∈ C is of the form (9.1) for a given n-tuple (t1, t2, . . . , tn) of distinct ele-
ments in Λ. Note that this collection of finite-dimensional distributions P f :=
{μt1,t2,...,tn : ti ∈ Λ, ti �= t j for i �= j, n ≥ 1} satisfies the following so-called consis-
tency properties.

(a) For any n-tuple of distinct elements (t1, t2, . . . , tn), n ≥ 1, and all permuta-
tions (t ′

1, t ′
2, . . . , t ′

n) = (tπ(1), . . . , tπ(n)) of (t1, t2, . . . , tn), (n ≥ 1), one has
μt ′

1,t
′
2,...,t

′
n
= μt1,t2,...,tn ◦ T −1 under the permutation of coordinates T : St1 × · · · ×

Stn → St ′
1
× · · · × St ′

n
given by T (xt1 , xt2 , . . . , xtn ) := (xt ′

1
, xt ′

2
, . . . , xt ′

n
), i.e., for

finite-dimensional rectangles

μt ′1,t ′2,...,t ′n (Bt ′1 × · · · × Bt ′n ) = μt1,t2,...,tn (Bt1 × · · · × Btn ), Bti ∈ Sti (1 ≤ i ≤ n).

(9.3)

© Springer International Publishing AG 2016
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Universitext, DOI 10.1007/978-3-319-47974-3_IX

167



168 IX Kolmogorov’s Extension Theorem and Brownian Motion

(b) If (t1, t2, . . . , tn, tn+1) is an (n + 1)-tuple of distinct elements ofΛ, thenμt1, t2,...,tn
is the image ofμt1,t2,...,tn+1 under the projectionmapπ : St1 × · · · × Stn+1 → St1 ×
· · · × Stn given by π(xt1 , xt2 , . . . , xtn , xtn+1) := (xt1 , xt2 , . . . , xtn ),

i.e., for finite-dimensional cylinders,

μt1,t2,...,tn (B) = μt1,t2,...,tn ,tn+1(B × Stn+1)∀B ∈ St1 ⊗ · · · ⊗ Stn . (9.4)

The theorem below, variously referred to by other names such as Kolmogorov’s
existence theorem, Kolmogorov’s consistency theorem, or Kolmogorov exten-
sion theorem says, conversely, that given a familyP f of consistent finite-dimensional
probabilities, there exists a Q on (S,S) with these as the finite-dimensional distrib-
utions.

We present two proofs. The first is a more standard measure theoretical con-
struction based on Caratheodory extension theorem, while the second is based on
machinery of functional analysis.

Theorem 9.1 (Kolmogorov’s Extension Theorem) Suppose St , t ∈ Λ, are Polish
spaces andSt = B(St )∀t ∈ Λ.Then given any familyP f of finite-dimensional prob-
abilities,P f = {μt1,...,tn : ti ∈ Λ, ti �= t j for i �= j, n ≥ 1} satisfying the consistency
properties (a) and (b), there exists a unique probability Q on the product space
(Ω = ∏

t∈Λ St ,F = ⊗
t∈Λ St ) satisfying (9.2) for alln ≥ 1 and every (t1, . . . , tn) (n-

tuple of distinct elements ofΛ),μt1,t2,...,tn .Moreover, the stochastic processX = (Xt :
t ∈ Λ) defined onΩ by the coordinate projections Xt (ω) = xt ,ω = (xt , t ∈ Λ) ∈ Ω

has distribution Q.

Proof Measure Theory Version Let St j ( j = 1, 2, . . . ) be Polish spaces and let
μt1,t2,...,tn be a consistent sequence of probability measures on (St1 × · · · × Stn ,St1 ⊗
· · · ⊗ Stn ) (n ≥ 1). Define a sequence of probabilities on S = ×∞

j=1St j , with the prod-
uct σ-field S, as follows. Fix x = (xt1 , xt2 , . . . ) ∈ S. Define Pn(B) := μt1,...,tn (Bx+

n
),

where x+
n = (xtn+1 , xtn+2 , . . . ) ∈ S, and Bx+

n
= {y ∈ B : ytn+ j = xtn+ j : j = 1, 2, . . . }

(B ∈ S). Then {Pn : n ≥ 1} is tight. To see this, fix ε > 0. Since each individual
probability on a Polish space is tight, one can get a compact set Ktn ⊂ Stn such
that xtn ∈ Ktn and μ(Ktn ) > 1 − ε

2n . Then Pn(×∞
j=1Kt j ) > 1 − ε. Thus, there is a

sequence n′(n ≥ 1), and a probability measure Q such that Pn′ ⇒ Q. This Q is
the desired probability for the countably indexed case. For the more general case,
assume the hypothesis of the theorem with Λ uncountable. On the field C of all
finite-dimensional cylinders (see (9.1)) define the set function Q as in (9.2). Then,
(i) Q is a measure on C. To see this suppose that {Cn : n = 0, 1, . . . } is a dis-
joint collection in C whose union C = ∪∞

n=1Cn ∈ C. Then there exists a countable
set T = {t j : j = 1, 2, . . . } such that Cn , C(n ≥ 1) belong to the σ-field FT on
Ω = ×t∈ΛSt generated by the coordinate projections x �→ xt j , t j ∈ T . In view of the
above construction for the countable case, there is a unique extension of Q to FT

that is countably additive. Now, using the Caratheodory extension theorem, one sees
that (ii) Q has a unique extension from C to the product σ-field ⊗t∈ΛSt .
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Functional Analysis VersionFirst, let us consider the case1 that each image space St ,
t ∈ Λ, is assumed to be a compact metric space. This makes Ω = ∏

t∈Λ St compact
for the product topology by Tychonoff’s2 Theorem. On the Banach space C(Ω) of
continuous functions on Ω with the uniform norm ‖ f ‖ := maxx∈Ω | f (x)|, define
a bounded linear functional h as follows: For a function f ∈ C(S) that depends on
only finitely many coordinates, say

f (x) = f (xt1 , . . . , xtn ),

for some n ≥ 1,distinct t1, . . . , tn, and f : St1 × · · · × Stn → R, define

h( f ) =
∫

St1×···×Stn

f dμt1,...,tn .

From the consistency properties it follows that h is well-defined. By the Stone–
Weierstrass theorem from real analysis, see Appendix B, the class of functions in
C(Ω) depending on finitely many coordinates is dense in C(Ω). Thus h uniquely
extends to a bounded (i.e., continuous) linear functional defined on all of C(Ω).

Thus, one may then apply the Riesz representation theorem to obtain the desired
probability Q; see Appendix A for a proof of the Riesz representation theorem
for compact metric spaces S.3 In particular, since C(St1 × · · · × Stn ) is a measure-
determining class of functions on St1 × · · · × Stn , it follows that Q ◦ π−1

t1,...,tn = μt1...tn ,

where πt1...tn (ω) = (xt1 , . . . , xtn ), forω = (xt : t ∈ Λ).This establishes existence for
the compact case. This proof is completed by an embedding into a compact metric
space. More specifically, every Polish space St (t ∈ Λ) has a homeomorphic image
ht (St ) in a compact metric space Kt ; see the Hilbert cube embedding Lemma 1,
Chapter VII. So the construction of the probability given above holds on×t∈Λht (St ).
�
Remark 9.1 In the full generality of the specification of finite-dimensional distribu-
tions for Kolmogorov’s extension theorem, sufficient topological assumptions are
used to prove countable additivity of Q (via some compactness argument). How-
ever, for constructing an infinite product probability measure, or even the dis-
tribution of a discrete parameter Markov process with arbitrary measurable state
spaces (St ,St ), t ∈ Λ, from specified transition probabilities and initial distribution,
consistency is sufficient to prove that Q is a probability. The trade-off is that one is
assuming more on the type of dependence structure for the finite-dimensional distri-
butions. The extension theorem is referred to as Tulcea’s extension theorem. The
precise statement is as follows in the case Λ = {0, 1, . . . }.

1This proof is due to Edward Nelson (1959), Regular Probability Measures on Function Spaces,
Ann. of Math. 69, 630–643.
2See Appendix B for a proof of Tychonoff’s theorem for the case of countable Λ. For uncountable
Λ, see Folland (1984).
3For general locally compact Hausdorff spaces see Folland (1984), or Royden (1988).

http://dx.doi.org/10.1007/978-3-319-47974-3_7
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Theorem 9.2 (Tulcea’s Extension Theorem) Let (Sm,Sm), m = 0, 1, 2, . . . , be an
arbitrary sequence of measurable spaces, and let Ω = ∏∞

m=0 Sm , F = ⊗∞
m=0Sm

denote the corresponding product space and product σ-field. Let μ0 be a probability
on S0 and suppose that (a) for each n ≥ 1 and (x0, x1, . . . , xn) ∈ S1 × · · · × Sn ,
B → μn(x0, x1, . . . , xn−1, B), B ∈ Sn , is a probability on Sn and (b) for each
n ≥ 1, B ∈ Sn , the map (x0, x1, . . . , xn−1) �→ μn(x0, x1, . . . , xn−1, B) is a Borel-
measurable map from

∏n−1
m=0 Sm into [0, 1]. Then there is a probability Q on (Ω,F)

such that for each finite-dimensional cylinder set C = B × Sn × Sn+1 × · · · ∈ F ,
B ∈ ⊗n−1

m=0Sm (n ≥ 1),

Q(C) =
∫

S0
· · ·

∫

Sn−1

1B(x0, . . . , xn−1)μn−1(x0, . . . , xn−2, dxn−1) · · · μ1(x0, dx1)μ0(dx0).

In the case that the spaces are Polish spaces this is a consistent specification and
the theorem is a special case of Kolmogorov’s extension theorem. However, in the
absence of topology, it stands alone. The proof4 is essentially a matter of checking
countable additivity so that the Carathéodory extension theorem may be applied.

Remark 9.2 For the case of a product probability measure
∏

t∈Λ μt on (×t∈ΛSt ,
⊗t∈ΛSt ) the component probability spaces (St ,St ,μt ), t ∈ Λ, may be arbitrary mea-
sure spaces, and Λ may be uncountable. On such a space the coordinate projections
Xs(ω) = ωs ,ω = (ωt : t ∈ Λ), define a family of independent randomvariableswith
marginal distributions μs (s ∈ Λ).

The following example is a recasting of the content of Tulcea’s theorem in the
language of Markov processes whose transition probabilities are assumed to have
densities.

Example 1 (Discrete Parameter Markov Process) Let (S,S) be a measurable
space, ν a σ-finite measure on (S,S). Let p(x, y) be a nonnegative measur-
able function on (S × S,S ⊗ S) such that

∫
S p(x, y)ν(dy) = 1∀x ∈ S. The func-

tion p(x, y) is the (one-step) transition probability density of a Markov process
{Xn : n = 0, 1, 2, . . . } constructed here on the infinite product space (S∞,S⊗∞) of
all sequences x := (x0, x1, x2, . . . ) in S. Here, as usual, S⊗∞ is the product σ-field
on S∞ generated by the class of all finite-dimensional rectangles of the form

C = {x = (x0, x1, . . . ) ∈ S∞ : xi ∈ Bi for i = 0, 1, 2, . . . , m}, (9.5)

for m ≥ 1, Bi ∈ S, i = 0, 1, . . . , m. For this construction, fix a probability measure
μ0 on (S,S) and define for Bi ∈ S, i = 0, 1, . . . , n,

μ0,1,2,...,n(B0 × B1 × · · · × Bn) (9.6)

=
∫

B0

∫

B1

· · ·
∫

Bn

p(x0, x1)p(x1, x2) · · · p(xn−1, xn)ν(dxn) · · · ν(dx1)μ0(dx0).

4For a proof of Tulcea’s theorem see Ethier and Kurtz (1986), or Neveu (1965).
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More generally, μ0,1,2,...n(B) is defined ∀B ∈ S⊗(n+1) by integration of the func-
tion p(x0, x1) · · · p(xn−1, xn) over B with respect to the product measure μ0 ×
ν × · · · × ν. Since

∫
S p(xn, xn+1)ν(dxn+1) = 1, the condition (b) for consistency of

μ0,1,...,n, n ≥ 0, required by Theorem 9.1 is easily checked. For integers 0 ≤ m0 <

m1 < · · · < mn(n ≥ 0), the finite-dimensional probability μm0,...,mn can then be con-
sistently defined by μm0,...,mn = μ0,1,...,mn ◦ π−1

m0,...,mn
, where πm0,...,mn (x0, . . . , xmn )

:= (xm0 , . . . , xmn ), for (x0, . . . , xmn ) ∈ Smn+1. Define μτ (m0),τ (m1),...,τ (mn) for any
given permutation τ of (0, 1, 2, . . . , n) as the induced-image measure on (Smn+1,

S⊗(mn+1)) by (x0, x1, . . . , xmn ) �→ (xmτ (0) , xmτ (1) , . . . , xmτ (n)
) on (Smn+1,S⊗(mn+1),

μ0,1,2,...,mn ) into (Smn+1,S⊗(mn+1)). Then the family P f of Theorem 9.1 is obtained,
and it automatically satisfies (a) as well as (b). As noted above, according to Tul-
cea’s proof the conclusion of Theorem 9.1 holds without any topological conditions
on (S,S). The coordinate process {Xn : n = 0, 1, 2, . . . } defined by Xn(ω) = xn

∀ω = (x0, x1, . . . , xn, . . . ) ∈ S∞ n = 0, 1, 2, . . . on (S∞,S⊗∞, Q) is a Markov
process in the sense of Theorem 2.12: The (regular) conditional distribution
of Xm+ := (Xm, Xm+1, . . . ) given Fm := σ(X0, X1, . . . , Xm) is (Qy)y=Xm ≡ Q Xm ,

where Qy = Q with the initial distribution μ0 taken to be the Dirac delta measure
δy (i.e., μ0({y}) = 1,μ0(S\{y}) = 0) (Exercise 2).

Remark 9.3 As illustrated by this example, in the discrete parameter case in which
Λ = {0, 1, 2, . . . }, it is enough to consistently specify μ0,1,...,n for n = 0, 1, 2 . . . ,

subject to condition (b) and then consistently define the other finite-dimensional
probabilities as being induced by the coordinate projections and permutation maps.
More generally, the condition (a) on permutation consistency can always be built
into the specification of finite-dimensional probabilities when Λ is linearly ordered.
This is accomplished by specifying μt1,t2,...,tn for t1 < t2 < · · · < tn and then defin-
ing μτ (1),τ (2),...,τ (n) as the image (measure) of μt1,t2,...,tn under the permutation map
(xt1 , xt2 , . . . , xtn ) → (xτ (1), xτ (2), . . . , xτ (n)). Thus one needs only to check the con-
sistency property (b) to hold for ordered n-tuples (t1, t2, . . . , tn)with t1 < t2 < · · · <

tn.

Remark 9.4 On an arbitrarymeasurable space (S,S) one defines a transition prob-
ability p(x, B) : S × S → [0, 1] requiring only that (i) x �→ p(x, B) bemeasurable
for each B ∈ S, and that (ii) for each x ∈ S, B �→ p(x, B) is a probability on S. The
construction of a Markov process with a given transition probability p(·, ·) and a
given initial distribution μ0 is now defined by the successive iterated integration,
generalizing (9.6), beginningwith the integral of p(xn−1, Bn)with respect to themea-
sure p(xn−2, dxn−1) to get

∫
Bn−1

p(xn−1, Bn)p(xn−2, dxn−1) = gn−2(xn−2), say. Then
integrate thiswith respect to p(xn−3, dxn−2) to get

∫
Bn−2

gn−2(xn−2)p(xn−3, dxn−2) =
gn−3(xn−3), say, and so on. In this manner one has

μ0,1,2,...,n(B0 × B1 × · · · × Bn) =
∫

B0

g0(x0)μ0(dx0),

g0(x0) =
∫

B1

g1(x1)p(x0, dx1),

http://dx.doi.org/10.1007/978-3-319-47974-3_2
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g1(x1) =
∫

B2

g2(x2)p(x1, dx2),

. . . , gn−2(xn−2) =
∫

Bn−1

gn−1(xn−1)p(xn−2, dxn−1),

and

gn−1(xn−1) = p(xn−1, Bn) ≡
∫

Bn

p(xn−1, dxn),

beginning with the last term and moving successively backward.

Example 2 (Gaussian Process/Random Field)Herewe take St = R,St = B(R), t ∈
Λ. The Kolmogorov extension theorem may be used to construct a probability
space (Ω,F , P) on which a family of Gaussian, or normal, random variables
{Xt : t ∈ Λ} are defined with arbitrarily specified (i) means mt = E(Xt ), t ∈ Λ,

and (ii) covariances σt,t ′ = Cov(Xt , Xt ′), t and t ′ ∈ Λ, with the property that for
every n-tuple (t1, t2, . . . , tn) of distinct indices (n ≥ 1), the matrix ((σti ,t j ))1≤i, j≤n

is symmetric and nonnegative-definite. In this case, using the notation above,
μt1,t2,...,tn is the Gaussian probability distribution parameterized by a (mean) vector
(mt1 , mt2 , . . . , mtn )

t ∈ R
n and symmetric, nonnegative-definite (covariance) matrix

((σti ,t j ))1≤i, j≤n . More specifically, μt1,t2,...,tn is defined as the distribution of Y =
AZ + m, where Z = (Z1, . . . , Zn)

t is n-dimensional standard normal with pdf
ϕ(z1, . . . , zn) = (2π)− k

2 exp{− 1
2

∑n
j=1 z2j }, m = (mt1 , . . . , mtn ) and At A = Γ :=

((σti ,t j ))1≤i, j≤n .Consistency properties (a), (b) are easily checked. Hence there exists
a probability measure Q on the product space (Ω = R

Λ,F = B(R)⊗Λ) such that
the coordinate process {Xt : t ∈ Λ} is the desired Gaussian process. Here RΛ is the
space of functions from Λ toR, i.e., the product space, is product space, Xt (ω) = xt

for ω = (xt ′ , t ′ ∈ Λ) ∈ Ω ≡ R
Λ(t ∈ Λ). The indexing setΛ is general and includes

examples such asΛ = [0,∞), [0, 1], or in a construction, for example, of Gaussian
random fields where Λ = R

k . One generally assumes, for purposes of sample path
regularity, that t → mt and (s, t) → σs,t are continuous.5

As a special case, letΛ = [0,∞) (orΛ = [0, 1]), mt = 0∀t, andσt,t ′ = min{t, t ′}
(t, t ′ ∈ Λ). The check that ((σti ,t j ))1≤i, j≤n is nonnegative-definite for all n-tuples
of distinct indices is outlined in Exercise 1. The process so constructed on (Ω =
R

[0,∞) or R[0,1]) defines a Brownian motion process on the Kolmogorov σ-field
B(R)⊗[0,∞) (or B(R)⊗[0,1]), i.e., on the product σ-field for Ω generated by finite-
dimensional cylinders of the formC = {ω = (xt , t ∈ Λ) : (xt1 , xt2 , . . . , xtn ) ∈ B} for
arbitrary n ≥ 1, t1 < t2 < · · · < tn, B ∈ B(Rn). Unfortunately, the Kolmogorov σ-
field does not include the set of (all) continuous functions C[0,∞) (or C[0, 1]). The
reason for this is that the productσ-field consists only of sets determined by countably
many coordinates, rendering this model mathematically inadequate for computing
probabilities of many “events” of interest due to nonmeasurability (Exercise 4). The

5See e.g., Bhattacharya, R. N. and Waymire E.C. (2016), Stationary Processes and Discrete Para-
meter Markov Processes, Chapter I, Sec 2, Springer (to appear).
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first resolution of this situation was obtained by the seminal construction of Norbert
Wiener. This led to the following definition of Brownian motion.

Definition 9.1 A stochastic process B = {Bt : t ≥ 0}, B0 = 0, defined on a prob-
ability space (Ω,F , P) a.s. having continuous sample paths t → Bt , t ≥ 0, and
such that for any 0 < t1 < t2 < · · · < tk , k ≥ 1 (Bt1 , . . . , Btk ) has a k-dimensional
Gaussian distribution with zero mean and variance–covariance matrix
((ti ∧ t j ))1≤i, j≤k is referred to as one-dimensional standard Brownian motion
started at B0 = 0. The distribution P ◦ B−1 of the process B is a probability concen-
trated on the Borel σ-field of C[0,∞), referred to as Wiener measure.

Since Wiener’s construction, a number of alternative approaches have become
known, one ofwhich follows from the functional central limit theorem applied to sim-
ple symmetric random walk, e.g., as obtained for Example 2 in Chapter VII under a
finite fourth moment condition. Another resolution of the existence problem is given
in the following subsection through a “wavelet construction” in close resemblance to
the classic “Fourier construction” of Wiener, but technically much simpler. Specifi-
cally, a construction is made of a probability space (Ω,F , P) and stochastic process
B = {Bt : t ∈ [0,∞)} such that, as above, for each 0 ≤ t1 < t2 < · · · < tk (k ≥ 1),
(Bt1 , . . . , Btk ) is Gaussian with mean 0 and covariance matrix ((min{ti , t j }))1≤i, j≤k .

Equivalently, the increments Bt j − Bt j−1 , 1 ≤ j ≤ k, are independent Gaussian ran-
dom variables with zero mean and variance t j − t j−1, respectively; cf. Exercise 1.
Moreover, for such a model of Brownian motion, the subset [B ∈ C[0,∞)] ∈ F is
a measurable event (and has probability one).

IX.1 A Wavelet Construction of Brownian Motion: The
Lévy–Ciesielski Construction

A construction6 of Brownian motion based on a.s. uniform and absolute convergence
on the time interval [0,1] of a random series expansion in terms of the integrated Haar
wavelet basis, referred to as the Schauder basis, of L2[0, 1] may be obtained as a
consequence of the following sequence of lemmas. First, though, recursively define
Haar wavelet functions H0,0, Hn,k n = 0, 1, 2, . . . , 2n ≤ k < 2n+1, on 0 ≤ t ≤ 1,
H0,0(t) ≡ 1; H0,1(t) := 1[0,1/2](t) − 1(1/2,1](t); and

Hn,k(t) := 2
n
2 1[k2−n−1,k2−n−1+2−n−1](t)

− 2
n
2 1(k2−n−1+2−n−1,k2−n−1+2−n ](t), 0 ≤ t ≤ 1.

Recall the definition of a complete orthonormal basis in a Hilbert space (see Appen-
dix C).

6This construction originated in Ciesielski, Z. (1961): Hölder condition for realization of Gaussian
processes, Trans. Amer. Math. Soc. 99 403–413, based on a general approach of Lévy, P. (1948), p.
209.

http://dx.doi.org/10.1007/978-3-319-47974-3_7
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Lemma 1 The collection ofHaarwavelet functions {Hn,k} is a complete orthonormal
basis for L2[0, 1]. In particular, 〈 f, g〉 = ∑

(n,k)〈 f, Hn,k〉〈g, Hn,k〉 holds for f, g ∈
L2[0, 1].
Proof Orthonormality follows by a direct calculation. To prove completeness one
needs to show that if f ∈ L2[0, 1] and 〈 f, Hn,k〉 = 0 for all n, k, then f = 0 almost
everywhere with respect to Lebesgue measure on [0, 1]. Define

I f (t) =
∫ t

0
f (s)ds, 0 ≤ t ≤ 1.

Then I f is continuous with I f (0) = 0. Moreover, orthogonality with respect to H0,0

implies that I f (1) = 0. Next I f (
1
2 ) = 0 since l f (0) = l f (1) = 0 and orthogonality

of f to H0,1. Using the orthogonality of f to H1,2, one shows that I f (
1
4 ) − (I f (

1
2 ) −

I f (
1
4 )) = 0, so that I f (

1
4 ) = 0. Orthogonality with H1,3 means that I f (

3
4 ) − I f (

1
2 ) −

(I f (1) − I f (
3
4 )) = 0, implying I f (

3
4 ) = 0. Continuing by induction one finds that

I f (k2−n) = 0 for all dyadic rationals k2−n ∈ [0, 1]. By continuity it now follows
that I f (t) = 0 for all t ∈ [0, 1] and hence f = 0 a.e., as asserted. The last equality
is then simply Parseval’s relation which holds for any complete orthonormal system
(see Appendix C). �

Definition 9.2 The functions defined by Sn,k(t) := ∫ t
0 Hn,k(s)ds, 0 ≤ t ≤ 1, are

called the Schauder functions.

Lemma 2 The Schauder functions Sn,k on [0, 1] are continuous, nonnegative, and
attain a maximum value at 2−( n

2 +1). Moreover, for fixed n, the functions Sn,k, k =
2n, . . . , 2n+1 − 1, have disjoint supports.

Proof Continuity is obvious. The assertions are also clearly true for S0,0 and S0,1.
Since Hn,k is positive, with constant value 2

n
2 on the interval [k2−n − 1, k2−n − 1 +

2−n−1] to the left of (k2−n − 1, k2−n − 1 + 2−n−1], where it takes negative constant
value −2

n
2 , and it has the value 0 off these two intervals, Sn,k is positive and increas-

ing on the first interval with a maximum value Sn,k(tM) = 2
n
2 (k2−n − 1 + 2−n−1 −

k2−n + 1) = 2−( n
2 +1) at the endpoint tM = k2−n − 1 + 2−n−1. Moreover, it attains

a minimum value Sn,k(tm) = 0 at the rightmost endpoint tm = k2−n − 1 + 2−n−1.
Thus Sn,k is nonnegative with disjoint supports [k2−n − 1, k2−n − 1 + 2−n−1] for
k = 2n, . . . , 2n+1 − 1. �

Lemma 3 For 0 ≤ s ≤ t ≤ 1,

∑

n,k

Sn,k(s)Sn,k(t) = min{s, t} = s.

Proof By definition of the Schauder functions one has Sn,k(t) = 〈1[0,t], Hn,k〉 for
fixed t ∈ [0, 1]. Thus one may apply Parseval’s equation to obtain for s ≤ t ,∑

n,k Sn,k(s)Sn,k(t) = ∑
n,k〈1[0,s], Hn,k〉〈1[0,t], Hn,k〉 = 〈1[0,s], 1[0,t]〉 = s, since1[0,s]

1[0,t] = 1[0,s]. �
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Since the maximum of the Schauder functions are decaying exponentially, there is
some room for growth in the coefficients of a series expansion in these functions as
furnished by the next lemma.

Lemma 4 If max2n≤k<2n+1 |an,k | = O(2nε), for some 0 < ε < 1/2, then
∑

n,k an,k

Sn,k on [0, 1] converges uniformly and absolutely to a continuous function.

Proof The key is to observe that since for given n, the Schauder functions have
disjoint supports for 2n ≤ k < 2n+1, the maximum value of |∑2n+1−1

k=2n an,k Sn,k | on
[0, 1] is (max2n≤k<2n+1 |an,k |)2−( n

2 +1). Thus for some c > 0,

∑

n≥m

∣
∣
∣
∣
∣
∣

2n+1−1∑

k=2n

an,k Sn,k(t)

∣
∣
∣
∣
∣
∣
≤

∑

n≥m

c2nε2−n/2+1

is the tail of a convergent geometric series. In particular, the partial sums are uniformly
Cauchy. The assertion follows since the uniform limit of continuous functions on
[0, 1] is continuous. �

Lemma 5 There is an i.i.d. sequence an,k = Zn,k of standard normal random vari-
ables on a probability space (Ω,F , P). Moreover,

∑
n,k Zn,k Sn,k is uniformly and

absolutely convergent on [0, 1] with probability one.

Proof The existence of the i.i.d. sequence follows fromKolmogorov’s extension the-
orem. From here apply Borel–Cantelli I and the Feller’s tail probability estimates to
obtain by the preceding lemma that with probability one,

∑
n,k Zn,k Sn,k is uniformly

and absolutely convergent on [0, 1]. Specifically, for some c′ > 0,

∞∑

n=1

P( max
2n≤k<2n+1

|Zn,k | > 2nε) ≤ c′
∞∑

n=1

2n2− nε
2 e− 1

2 2
2εn

< ∞.

Thus max2n≤k<2n+1 |Zn,k | is a.s. O(2nε) for any choice of 0 < ε < 1/2. �

Lemma 6 Define Bt := ∑
n,k Zn,k Sn,k(t), 0 ≤ t ≤ 1. Then with probability one,

{Bt : 0 ≤ t ≤ 1} has continuous sample paths, B0 = 0, and for any 0 = t0 < t1 <

· · · < tm ≤ 1, ξ1, . . . , ξm ∈ R, m ≥ 1, the increments Bt j − Bt j−1 , j = 1, . . . , m, are
distributed as independent normal random variables with zero mean and respective
variances t j − t j−1, j = 1, . . . , m.

Proof Observe that using the Parseval’s relation as in Lemma 3,
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EeiξBt =
∏

(n,k)

EeiξZ(n,k) S(n,k)(t)

=
∏

(n,k)

e− 1
2 ξ2S2

(n,k)(t)

= exp

⎧
⎨

⎩
−1

2
ξ2

∑

(n,k)

S2
(n,k)(t)

⎫
⎬

⎭
= e− 1

2 ξ2t . (9.7)

Proceed inductively on m, similarly using Parseval’s relation, to check that the
increments Bt j − Bt j−1 , j = 1, . . . , m, have the multivariate characteristic function
E exp{i ∑m

j=1 ξ j (Bt j − Bt j−1)} = ∏m
j=1 exp(− 1

2 (t j − t j−1)ξ
2
j ). �

Theorem 9.3 There is a stochastic process B = {Bt : t ≥ 0} defined on a probability
space (Ω,F , P) with continuous sample paths and having stationary independent
Gaussian increments Bt − Bs with mean zero and variance t − s for each 0 ≤ s < t .

Proof First, use Lemma 6 to construct a Brownianmotion on its image spaceC[0, 1].
By the Kolmogorov extension theorem one may construct a sequence B(r)

t , 0 ≤ t ≤
1, r = 1, 2, . . . of independent standard Brownian motions on [0, 1] each starting at
0. Inductively extend Bt := B(1)

t , 0 ≤ t ≤ 1, by Bt := B(r)
t−r+1 + Br−1, r − 1 ≤ t ≤

r , r = 1, 2, . . . . Then it is now simple to check that the stochastic process {Bt : t ≥ 0}
satisfies all the properties that define a standard Brownian motion on [0,∞) starting
at 0. �

Definition 9.3 Ak-dimensional standard Brownian motion is a stochastic process
{Bt = (B(1)

t , . . . , B(k)
t ) : t ≥ 0} such that {B( j)

t : t ≥ 0}, j = 1, . . . , k, are k indepen-
dent one-dimensional standard Brownian motions.

In the next chapter some fine-scale properties of Brownian motion paths are pre-
sented. In particular, see Exercise 7 of Chapter X for a simple application of the
wavelet construction in this connection.

Without being circular,many classical limit theorems for sums of independent ran-
dom variables arise as consequences of more general theories involving Brownian
motion having a.s. continuous paths. This FCLT connection is dramatically high-
lighted in Chapter XI via the so-called Skorokhod embedding of suitably centered
and scaled random walks in a Brownian motion.

Exercise Set IX

1. (i) Suppose that Y1, Y2, . . . is a sequence of real-valued random variables in
L2(Ω,F , P) and let Γ := ((Cov(Yi , Y j ))1≤i, j≤n . Show that Γ is nonnega-
tive-definite. [Hint: Expand 0 ≤ E|∑n

i= ci Yi |2 for real numbers c1, . . . , cn .]
(ii) Show that ((σti ,t j ))1≤i, j≤n := ((min{ti , t j }))1≤i, j≤n is nonnegative-definite

for all n-tuples of distinct indices t1, . . . , t j . [Hint: Take 0 ≤ t1 < t2 <

· · · < tn, and let Z1, Z2, . . . , Zn be independent mean-zero Gaussian ran-
dom variables (for example defined on a finite product space (Rn,B(Rn))

http://dx.doi.org/10.1007/978-3-319-47974-3_10
http://dx.doi.org/10.1007/978-3-319-47974-3_11
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such that Var(Z1) = t1,Var(Z j ) = t j − t j−1( j = 2, . . . , n).Consider Y1 =
Z1, Y2 = Z1 + Z2, . . . , Yn = Z1 + Z2 + · · · + Zn.Compute the covariance
matrix of Y1, Y2, . . . , Yn .]

2. Prove the assertion in Example 1 that the (regular) conditional distribution
of Xm+ := (Xm, Xm+1, . . . ), given Fm := σ(X0, X1, . . . , Xm), is (Qy)y=Xm ≡
Q Xm ,where Qy = Q with the initial distributionμ0 taken tobe theDeltameasure
δy (i.e., μ0({y}) = 1,μ0(S\{y}) = 0). [Hint: First, consider a cylinder set C as
in (9.5) and show that Q Xm (C), as given under Remark 9.4 withμ0 = δXm equals
P([Xm+ ∈ C]|σ(X0, X1, . . . , Xm)) ≡ P([(Xm, Xm+1, . . . , Xm+n) ∈ B0 × B1 ×
· · · × Bn]|σ(X0, X1, . . . , Xm)) ≡ E(1[(Xm ,Xm+1,...,Xm+n)∈B0×···×Bn ]|
σ(X0, X1, . . . , Xm)). For this, first check with n = 0 and then n = 1. For the
latter, let g(X0, X1, . . . , Xm) be nonnegative, bounded measurable and cal-
culate E(1[Xn∈B0,Xn+1∈B1]g(X0, . . . , Xm)) using the relations in Remark 9.4.
Finally, use induction and properties of conditional expectation to calculate
E(1[Xn∈B0,...,Xn+m+1∈Bm+1]g(X0, X1, . . . , Xm)).]

3. Let Sn = {0, 1}, with the power set σ-field Sn = 2Sn , n = 1, 2, . . . . Suppose
that pn : S1 × · · · × Sn → [0, 1], n ≥ 1, are probability mass functions, i.e.,∑

(s1,...,sn)∈{0,1}n pn(s1, . . . , sn) = 1, for each n. Assume the following con-
sistency condition: pn(s1, . . . , sn) = pn+1(s1, . . . , sn, 0) + pn+1(s1, . . . , sn, 1),
si ∈ {0, 1}, 1 ≤ i ≤ n. Give a direct proof of the existence of a probabil-
ity space (Ω,F , P) and a sequence of random variables X1, X2, . . . such
that P(X1 = s1, . . . , Xn = sn) = pn(s1, . . . , sn), si ∈ {0, 1}, 1 ≤ i ≤ n, n ≥ 1.
[Hint:

∏
n∈N Sn may be viewed as a compact space, with Borel σ-field B ≡

⊗n∈NSn and such that the finite-dimensional cylinders are both open and closed.
Define a set function on the field of finite-dimensional cylinders and use the
Heine–Borel compactness property to prove countable additivity on this field.
The rest follows by Carathéodory extension theory.]

4. For Ω = R
[0,1], we write ω = (xt , 0 ≤ t ≤ 1) ∈ Ω to denote a real-valued

function on [0, 1]. Also B⊗[0,1] = σ(C), where C ∈ C if and only if C ≡
C(T, A1, A2, . . . ) := {ω = (xt , 0 ≤ t ≤ 1) ∈ Ω : xt1 ∈ B1, . . . , xtn ∈ Bn, . . . }
for some countable set T = {t1, t2, . . . } ⊂ [0, 1], and Borel sets B1, B2, . . . .

Let T denote the collection of countable subsets of [0, 1]. For fixed T ∈ T , let
CT be the collection of all subsets of Ω of the form C(T, A1, A2, . . . ).

(i) Show that B⊗[0,1] = ∪T ∈T σ(CT ).

(ii) For fixed T ∈ T , let ϕT : R[0,1] → R
∞ by ϕT (ω) = (xt1 , xt2 , . . . ),ω =

(xt , 0 ≤ t ≤ 1). Show that σ(CT ) = σ(ϕT ) is the smallest σ-field on R
[0,1]

that makes ϕT measurable for the product σ-field B∞ on R
∞.

(iii) Show that if A ∈ σ(CT ) and ω ∈ A, then ω′ ∈ Ω with ϕT (ω) = ϕT (ω′)
implies ω′ ∈ A. [Hint: σ(ϕT ) = {ϕ−1

T (F) : F ∈ B∞}.]
(iv) Show that C[0, 1] is not measurable for the Kolmogorov product σ-field

B⊗[0,1].
(v) Show that {x ∈ R

[0,1] : sup0≤t≤1 x(t) ≤ 1} is not a measurable set for the
Kolmogorov product σ-field.
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5. Suppose that S is a Polish space with Borel σ-field S = B(S). (i) Let μn(x0, . . . ,
xn−1, B) = p(xn−1, B) in Tulcea’s theorem 9.2, with p(x, dy) a probability
on (S,S) for each x ∈ S, and such that x → p(x, B) is Borel measurable
for each fixed B ∈ S. Show that the existence of the probability Q asserted
in Tulcea’s extension theorem follows from Kolmogorov’s extension theorem.
[Hint: Show that the specification of finite-dimensional distributions by the
initial distribution μ and the transition probabilities p(x, dy), x ∈ S, satisfy
the Kolmogorov consistency condition (b).] (ii) Following Remark 9.4, extend
the specification (9.3) to define μ0,1,...,n(B) to all B ∈ S⊗(n+1). [Hint: Suc-
cessively define, (i) gn−1(xn−1; x0, . . . , xn−2) = p(xn−1, Bx0,x1,...,xn−1), where
Bx0,x1,...,xn−1) = {y ∈ S : (x0, x1, . . . , xn) ∈ B} is the (x0, x1, . . . , xn−1)-section
of B. Then define gn−2(xn−2; x0, . . . , xn−3) = ∫

gn−1(xn−1; x0, . . . , xn−2)

p(xn−2, dxn−1), and so on.] (iii) Show that the canonical process given by
coordinate projections x → xn , (x = (x0, x1, · · · ∈ S∞), say Xn(n ≥ 0), on
(S∞,S⊗∞, Q), has the Markov property: the conditional distribution of Xm+1

given Fm = σ(X j : 0 ≤ j ≤ m) is p(Xm, dy).



Chapter X
Brownian Motion: The LIL and Some
Fine-Scale Properties

In this chapter, we analyze the growth of the Brownian paths t �→ Bt as t → ∞.
We will see by a property of “time inversion” of Brownian motion that this leads to
small-scale properties as well. First, however, let us record some basic properties of
the Brownian motion that follow somewhat directly from its definition.

Theorem 10.1 Let B = {Bt : t ≥ 0} be a standard one-dimensional Brownian mo-
tion starting at 0. Then

1. (Symmetry) Wt := −Bt , t ≥ 0, is a standard Brownian motion starting at 0.
2. (Homogeneity and Independent Increments) {Bt+s − Bs : t ≥ 0} is a standard

Brownian motion independent of {Bu : 0 ≤ u ≤ s}, for every s ≥ 0.
3. (Scale-Change Invariance). For every λ > 0, {B(λ)

t := λ− 1
2 Bλt : t ≥ 0} is a stan-

dard Brownian motion starting at 0.
4. (Time-Inversion Invariance) Wt := t B1/t , t > 0,W0 = 0, is a standard Brownian

motion starting at 0.

Proof Each of these is obtained by showing that the conditions defining a Brownian
motion are satisfied. In the case of the time-inversion property, one may apply the
strong law of large numbers to obtain continuity at t = 0. That is, if 0 < tn → 0
then write sn = 1/tn → ∞ and Nn := [sn], where [·] denotes the greatest integer
function, so that by the strong law of large numbers, with probability one

Wtn = 1

sn
Bsn = Nn

sn

1

Nn

Nn∑

j=1

(Bi − Bi−1) + 1

sn
(Bsn − BNn ) → 0,

since Bi − Bi−1, i ≥ 1, is an i.i.d. mean-zero sequence, Nn/sn → 1, and (Bsn −
BNn )/sn → 0 a.s. as n → ∞ (see Exercise 2). �

Although the Brownian motion paths cannot be differentiable, it is possible to
determine an order of continuity using the next general theorem.
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Definition 10.1 A stochastic process (or random field) Y = {Yu : u ∈ Λ} is a ver-
sion of X = {Xu : u ∈ Λ} taking values in a metric space if Y has the same finite
dimensional distributions as X .

Theorem 10.2 (Kolmogorov-Chentsov Theorem) Suppose X = {Xu : u ∈ Λ} is a
stochastic process (or random field) with values in a complete metric space (S, ρ),
indexed by a bounded rectangle Λ ⊂ R

k and satisfying

Eρα(Xu, Xv) ≤ c|u − v|k+β, for all u, v ∈ Λ,

where c,α,β are positive numbers. Then there is a version Y = {Yu : u ∈ Λ} of X
which is a.s. Hölder continuous of any exponent γ such that 0 < γ <

β
α
.

Proof Without essential loss of generality we take Λ = [0, 1]k and the norm | · |
to be the maximum norm given by |u| = max{|ui | : 1 ≤ i ≤ k}, u = (u1, . . . , uk).
For each N = 1, 2, . . . , let LN be the finite lattice { j2−N : j = 0, 1, . . . 2N }k . Write
L = ∪∞

N=1LN . Define MN = max{ρ(Xu, Xv) : (u, v) ∈ L2
N , |u − v| ≤ 2−N }. Since

(i) for a givenu ∈ LN there are nomore than 3k points in LN such that |u − v| ≤ 2−N ,
(i i) there are (2N + 1)k points in LN , and (i i i) for every given pair (u, v), the
condition of the theorem holds, one has by Chebyshev’s inequality that

P(MN > 2−γN ) ≤ c3k(2N + 1)k(
2−N (k+β)

2−αγN
). (10.1)

In particular, since γ < β/α,

∞∑

N=1

P(MN > 2−γN ) < ∞. (10.2)

Thus there is a random positive integer N ∗ ≡ N ∗(ω) and a set Ω∗ with P(Ω∗) = 1,
such that

MN (ω) ≤ 2−γN for all N ≥ N ∗(ω),ω ∈ Ω∗. (10.3)

Fix ω ∈ Ω∗ and let N ≥ N ∗(ω). By exactly the same induction argument as used
for the proof of Lemma 3 in Chapter VII, one has for all m ≥ N + 1,

ρ(Xu, Xv) ≤ 2
m∑

j=N

2−γ j , for all u, v ∈ Lm, |u − v| ≤ 2−N . (10.4)

Since 2
∑∞

ν=N 2−γν = 2−γN+1(1 − 2−γ)−1, and L = ∪∞
m=N+1Lm for all N ≥

N ∗(ω), it follows that

http://dx.doi.org/10.1007/978-3-319-47974-3_7
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sup{ρ(Xu, Xv) : u, v ∈ L , |u − v| ≤ 2−N }
= sup{ρ(Xu, Xv) : u, v ∈ ∪∞

m=N+1Lm, |u − v| ≤ 2−N }
≤ 2−γN+1(1 − 2−γ)−1, N ≥ N ∗(ω),ω ∈ Ω∗. (10.5)

This proves that on Ω∗, u → Xu is uniformly continuous (from L into (S, ρ)), and
is Hölder continuous with exponent γ. Now define Yu := Xu if u ∈ L and otherwise
Yu := lim XuN , with uN ∈ L and uN → u, if u /∈ L . Because of uniform continuity
of u → Xu on L (for ω ∈ Ω∗), and completeness of (S, ρ), the last limit is well-
defined. For all ω /∈ Ω∗, let Yu be a fixed element of S for all u ∈ [0, 1]k . Finally,
letting γ j ↑ β/α, γ j < β/α, j ≥ 1, and denoting the exceptional set above as Ω∗

j ,
one has the Hölder continuity of Y for every γ < β/α on Ω∗∗ := ∩∞

j=1Ω
∗
j with

P(Ω∗∗) = 1.
That Y is a version of X may be seen as follows. For any r ≥ 1 and r vec-

tors u1, . . . , ur ∈ [0, 1]k , there exist u jN ∈ L , u jN → u j as N → ∞ (1 ≤ j ≤ r ).
Then (Xu1N , . . . , XurN ) = (Yu1N , . . . ,YurN ) a.s., and (Xu1N , . . . , XurN ) → (Xu1 , . . . ,

Xur ) in probability, (Yu1N , . . . ,YurN ) → (Yu1 , . . . ,Yur ) almost surely. �

Corollary 10.3 (Brownian Motion) Let X = {Xt : t ≥ 0} be a real-valued Gaussian
process defined on (Ω,F , P), with X0 = 0,EXt = 0, and Cov(Xs, Xt ) = s ∧ t , for
all s, t ≥ 0. Then X has a version B = {Bt : t ≥ 0} with continuous sample paths,
which are Hölder continuous on every bounded interval with exponent γ for every
γ ∈ (0, 1

2 ).

Proof Since E|Xt − Xs |2m = c(m)(t − s)m , 0 ≤ s ≤ t , for some constant c(m), for
every m > 0, the Kolmogorov–Chentsov Theorem 10.2 implies the existence of a
version B(0) = {B(0)

t : 0 ≤ t ≤ 1}with the desired properties on [0, 1]. Let B(n), n ≥
1, be independent copies of B(0), indedpendent of B(0). Define Bt = B(0)

t , 0 ≤ t ≤ 1,
and Bt = B(0)

1 + · · · + B(n−1)
1 + B(n)

t−[t], for t ∈ [n, n + 1), n = 1, 2, . . . . �

Corollary 10.4 (Brownian Sheet) Let X = {Xu : u ∈ [0,∞)2} be a real-valued
Guassian random field satisfying EXu = 0, Cov(Xu, Xv) = (u1 ∧ v1)(u2 ∧ v2) for
all u = (u1, u2), v = (v1, v2). Then X has a continuous version on [0,∞)2, which is
Hölder continuous on every bounded rectangle contained in [0,∞)2 with exponent
γ for every γ ∈ (0, 1

2 ).

Proof First let us note that on every compact rectangle [0, M]2, E|Xu − Xv|2m ≤
c(M)|u − v|m , for all m = 1, 2, . . . . For this it is enough to check that on each
horizontal line u = (u1, c), 0 ≤ u1 < ∞, Xu is a one-dimensional Brownian mo-
tion with mean zero and variance parameter σ2 = c for c ≥ 0. The same holds
on vertical lines. Hence E|X(u1,u2) − X(v1,v2)|2m ≤ 22m−1

(
E|X(u1,u2) − X(v1,u2)|2m +

E|X(v1,u2) − X(v1,v2)|2m
) ≤ 2m−1c(m)

(
um2 |u1 − v1|m + vm

1 |u2 − v2|m
) ≤ 2m−1c(m)

Mm2|u − v|m , where u = (u1, u2), v = (v1, v2). �

Remark 10.1 One may define the Brownian sheet on the index set ΛR of all rec-
tangles R = [u, v), with u = (u1, u2), v = (v1, v2), 0 ≤ ui ≤ vi < ∞ (i = 1, 2), by
setting
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XR ≡ X [u,v) := X(v1,v2) − X(v1,u2) − X(u1,v2) + X(u1,u2). (10.6)

Then XR is Gaussian with mean zero and variance |R|, the area of R. Moreover,
if R1 and R2 are nonoverlapping rectangles, then XR1 and XR2 are independent.
More generally, Cov(XR1 , XR2) = |R1 ∩ R2|. Conversely, given a Gaussian fam-
ily {XR : R ∈ ΛR} with these properties, one can restrict it to the class of rec-
tangles {R = [0, u) : u = (u1, u2) ∈ [0,∞)2} and identify this with the Brownian
sheet in Corollary 10.4. It is simple to check that for all n-tuples of rectangles
R1, R2, . . . , Rn ⊂ [0,∞)2, the matrix ((|Ri − R j |))1≤i, j≤n is symmetric and non-
negative definite. So the finite dimensional distributions of {XR : R ∈ ΛR} satisfy
Kolmogorov’s consistency condition.

In order to prove our main result of this section, we will make use of the following
important inequality due to Paul Lévy.

Proposition 10.5 (Lévy’s Inequality) Let X j , j = 1, . . . , N , be independent and
symmetrically distributed (about zero) random variables. Write Sj = ∑ j

i=1 Xi , 1 ≤
j ≤ N . Then, for every y > 0,

P

(

max
1≤ j≤N

Sj ≥ y

)

≤ 2P(SN ≥ y) − P(SN = y) ≤ 2P(SN ≥ y).

Proof Write A j = [S1 < y, . . . , Sj−1 < y, Sj ≥ y], for 1 ≤ j ≤ N . The events
[SN − Sj < 0] and [SN − Sj > 0] have the same probability and are independent
of A j . Therefore

P

(

max
1≤ j≤N

Sj ≥ y

)

= P(SN ≥ y) +
N−1∑

j=1

P(A j ∩ [SN < y])

≤ P(SN ≥ y) +
N−1∑

j=1

P(A j ∩ [SN − Sj < 0])

= P(SN ≥ y) +
N−1∑

j=1

P(A j )P([SN − Sj < 0])

= P(SN ≥ y) +
N−1∑

j=1

P(A j ∩ [SN − Sj > 0])

≤ P(SN ≥ y) +
N−1∑

j=1

P(A j ∩ [SN > y])

≤ P(SN ≥ y) + P(SN > y)

= 2P(SN ≥ y) − P(SN = y). (10.7)

This establishes the basic inequality. �
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Corollary 10.6 For every y > 0 one has for any t > 0,

P

(

max
0≤s≤t

Bs ≥ y

)

≤ 2P(Bt ≥ y).

Proof Partition [0, t] by equidistant points 0 < u1 < u2 < · · · < uN = t , and let
X1 = Bu1 , X j+1 = Bu j+1 − Bu j , 1 ≤ j ≤ N − 1, in the proposition. Now let N →
∞, and use the continuity of Brownian motion. �

In fact one may use a reflection principle argument (strong Markov property) to
see that this inequality is sharp for Brownian motion

P(max
0≤s≤t

Bs ≥ y) = 2P(Bt ≥ y). (10.8)

Alternatively, the following proposition concerns the simple symmetric random
walk defined by S0 = 0, Sj = X1 + · · · + X j , j ≥ 1, with X1, X2, . . . i.i.d. ±1-
valued with equal probabilities. It also demonstrates the remarkable strength of the
reflectionmethod, allowing one in particular to compute the distribution of themax-
imum of a random walk over a finite time. The above-indicated equality (10.8) then
becomes a consequence of the functional central limit theorem proved in Section1.8,
(Theorem 7.15); especially see (9.27).

Proposition 10.7 For the simple symmetric random walk one has for every positive
integer y,

P

(

max
0≤ j≤N

Sj ≥ y

)

= 2P(SN ≥ y) − P(SN = y).

Proof In the notation of Lévy’s inequality given in Proposition 10.5 one has, for the
present case of the random walk moving by ±1 units at a time, that A j = [S1 <

y, . . . , Sj−1 < y, Sj = y], 1 ≤ j ≤ N . Then in (10.7) the probability inequalities
are all equalities for this special case. �

Corollary 10.8 Equation (10.8) holds for every y > 0, t > 0.

Theorem 10.9 (Law of the Iterated Logarithm (LIL) for Brownian Motion) Each of
the following holds with probability one:

limt→∞
Bt√

2t log log t
= 1, limt→∞

Bt√
2t log log t

= −1.

Proof Letϕ(t) := √
2t log log t, t > 0.Let us first show that for any 0 < δ < 1, one

has with probability one that

limt→∞
Bt

ϕ(t)
≤ 1 + δ. (10.9)

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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For arbitrary α > 1, partition the time interval [0,∞) into subintervals of exponen-
tially growing lengths tn+1 − tn , where tn = αn , and consider the event

En :=
[

max
tn≤t≤tn+1

Bt

(1 + δ)ϕ(t)
> 1

]

.

Since ϕ(t) is a nondecreasing function, one has, using Corollary 10.6, a scaling
property, and Lemma 2 from Chapter IV, that

P(En) ≤ P

(

max
0≤t≤tn+1

Bt > (1 + δ)ϕ(tn)

)

= 2P

(

B1 >
(1 + δ)ϕ(tn)√

tn+1

)

≤
√
2

π

√
tn+1

(1 + δ)ϕ(tn)
e
− (1+δ)2ϕ2(tn )

2tn+1 ≤ c
1

n(1+δ)2/α
(10.10)

for a constant c > 0 and all n > 1
logα

. For a given δ > 0 one may select 1 < α <

(1 + δ)2 to obtain P(En i.o.) = 0 from the Borel–Cantelli lemma (Part I). Thus we
have (10.9). Since δ > 0 is arbitrary we have with probability one that

limt→∞
Bt

ϕ(t)
≤ 1. (10.11)

Next let us show that with probability one,

limt→∞
Bt

ϕ(t)
≥ 1. (10.12)

For this consider the independent increments Btn+1 − Btn , n ≥ 1. For θ = tn+1−tn
tn+1

=
α−1
α

< 1, using Feller’s tail probability estimate (Lemma 2, Chapter IV) and Brown-
ian scale change,

P
(
Btn+1 − Btn > θϕ(tn+1)

) = P

(

B1 >

√
θ

tn+1
ϕ(tn+1)

)

≥ c′
√
2θ log log tn+1

e−θ log log tn+1

≥ c√
log n

n−θ (10.13)

for suitable positive constants c, c′ depending on α and for all n > 1
logα

. It follows
from the Borel–Cantelli Lemma (Part II) that with probability one,

http://dx.doi.org/10.1007/978-3-319-47974-3_4
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Btn+1 − Btn > θϕ(tn+1) i.o. (10.14)

Also, by (10.11) and replacing {Bt : t ≥ 0} by the standard Brownian motion {−Bt :
t ≥ 0},

limt→∞
Bt

ϕ(t)
≥ −1, a.s. (10.15)

Since tn+1 = αtn > tn , we have

Btn+1√
2tn+1 log log tn+1

= Btn+1 − Btn√
2tn+1 log log tn+1

+ 1√
α

Btn√
2tn(log log tn + log logα)

.

(10.16)
Now, using (10.14) and (10.15), it follows that with probability one,

limn→∞
Btn+1

ϕ(tn+1)
≥ θ − 1√

α
= α − 1

α
− 1√

α
. (10.17)

Since α > 1 may be selected arbitrarily large, one has with probability one that

limt→∞
Bt

ϕ(t)
≥ limn→∞

Btn+1

ϕ(tn+1)
≥ 1. (10.18)

This completes the computation of the limit superior. To get the limit inferior simply
replace {Bt : t ≥ 0} by {−Bt : t ≥ 0}. �

The time inversion property for Brownian motion turns the law of the iterated
logarithm (LIL) into a statement concerning the degree (or lack) of local smoothness.
(Also see Exercise 7).

Corollary 10.10 Each of the following holds with probability one:

limt→0
Bt

√
2t log log 1

t

= 1, limt→0
Bt

√
2t log log 1

t

= −1.

Exercise Set X

1. (Ornstein–Uhlenbeck Process) Fix parameters γ > 0,σ > 0, x ∈ R. Use the
Kolmogorov–Chentsov theorem to obtain the existence of a continuousGaussian
process X = {Xt : t ≥ 0} starting at X0 = x withEXt = xe−γt , andCov(Xs, Xt )

= σ2

γ
e−γt sinh(γs), 0 < s ≤ t.

2. (i) Use Feller’s tail estimate (Lemma 2, Chapter IV). to prove that max{|Bi −
Bi−1| : i = 1, 2, . . . , N + 1}/N → 0 a.s. as N → ∞.

(ii) Without using the lawof the iterated logarithm for standardBrownianmotion
B, show directly that lim supn→∞

Bn√
2n log n

≤ 1 almost surely.

http://dx.doi.org/10.1007/978-3-319-47974-3_4
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3. Show that with probability one, standard Brownian motion has arbitrarily large
zeros. [Hint: Apply the LIL.]

4. Fix t ≥ 0 and use the lawof the iterated logarithm to show that limh→0
Bt+h−Bt

h ex-
ists with probability zero. [Hint: Check that Yh := Bt+h − Bt , h ≥ 0, is distrib-
uted as standard Brownian motion starting at 0. Consider 1

h Yh = Yh√
2h log log(1/h)√

2h log log(1/h)

h .]
5. For the simple symmetric random walk, find the distributions of the extremes:

(a) MN = max{Sj : j = 0, . . . , N }, and (b) mN = min{Sj : 0 ≤ j ≤ N }.
6. Consider the simple symmetric random walk S0 = 0, Sn = X1 + · · · + Xn, n ≥

1, where Xk, k ≥ 1, are iid symmetric Bernoulli ±1 valued random variables.
Denote the range by Rn = maxm≤n Sm − minm≤n Sm, n ≥ 1. Show that Rn√

n
con-

verges in distribution to a nonnegative random variable as n → ∞.
7. (LévyModulus of Continuity1) Use thewavelet construction Bt := ∑

n,k Zn,k Sn,k

(t), 0 ≤ t ≤ 1, of standard Brownianmotion to establish the following fine-scale
properties.

(i) Let 0 < δ < 1
2 . With probability one there is a random constant K such that

if |t − s| ≤ δ then |Bt − Bs | ≤ K
√

δ log 1
δ
. [Hint: Fix N andwrite the incre-

ment as a sum of three terms: Bt − Bs = Z00(t − s) + ∑N
n=0

∑2n+1−1
k=2n Zn,k

∫ t
s Hn,k(u)du + ∑∞

n=N+1

∑2n+1−1
k=2n Zn,k

∫ t
s Hn,k(u)du = a + b + c. Check

that for a suitable (random) constant K ′ one has |b| ≤ |t − s|K ′ ∑N
n=0 n

1
2 2

n
2

≤ |t − s|K ′ √
2√

2−1

√
N2

N
2 , and |c| ≤ K ′ ∑∞

n=N+1 n
1
2 2− n

2 ≤ K ′ √
2√

2−1√
N2− N

2 . Use these estimates, taking N = [− log2(δ)] such that δ2N ∼ 1, to
obtain the bound |Bt − Bs | ≤ |Z00|δ + 2K ′√−δ log2(δ). This is sufficient
since δ <

√
δ.]

(ii) The modulus of continuity is sharp in the sense that with probability one,
there is a sequence of intervals (sn, tn), n ≥ 1, of respective lengths tn −
sn → 0 as n → ∞ such that the ratio Btn −Bsn√

−(tn−sn) log(tn−sn)
is bounded below

by a positive constant. [Hint: Use Borel–Cantelli I together with Feller’s tail
probability estimate for the Gaussian distribution to show that P(An i.o.) =
0, where An := [|Bk2−n − B(k−1)2−n | ≤ c

√
n2−n, k = 1, . . . , 2n] and c is

fixed in (0,
√
2 log 2). Interpret this in terms of the certain occurrence of

the complimentary event [An i.o.]c.]
(iii) The paths of Brownian motion are a.s. nowhere differentiable.

1The calculation of the modulus of continuity for Brownian motion is due to Lévy, P. (1937). How-
ever this exercise follows Pinsky, M. (1999): Brownian continuity modulus via series expansions,
J. Theor. Probab. 14 (1), 261–266.



Chapter XI
Strong Markov Property, Skorokhod
Embedding, and Donsker’s Invariance
Principle

This chapter ties together a number of the topics introduced in the text via applica-
tions to the further analysis of Brownian motion, a fundamentally important stochas-
tic process whose existence was established in Chapter VII and, independently, in
Chapter IX.

The discrete-parameter random walk was introduced in Chapter II, where it was
shown to have theMarkov property.Markov processes on a general state space Swith
a given transition probability p(x, dy) were introduced in Chapter IX (see Example
1 and Remark 9.4 in Chapter IX). Generalizing from this example, a sequence of
random variables {Xn : n ≥ 0} defined on a probability space (Ω,F , P)with values
in a measurable space (S,S) has the Markov property if for every m ≥ 0, the
conditional distribution of Xm+1 given Fm := σ(X j , 0 ≤ j ≤ m) is the same as its
conditional distribution given σ(Xm). In particular, the conditional distribution is a
function of Xm , denoted by pm(Xm, dy), where pm(x, dy), x ∈ S is referred to as
the (one-step) transition probability at time m and satisfies the following:

1. For x ∈ S, pm(x, dy) is a probability on (S,S).
2. For B ∈ S, the function x → pm(x, B) is a real-valuedmeasurable function on S.

In the special case that pm(x, dy) = p(x, dy), for every m ≥ 0, the transition
probabilities are said to be homogeneous or stationary. Unless stated otherwise,
Markov processes considered in this book are homogenous.

With the randomwalk example as background, let us recall some basic definitions.
Let Pz denote the distribution of a discrete-parameter stochastic process X = {Xn :
n ≥ 0}, i.e., a probability on the product space (S∞,S⊗∞), with transition probability
p(x, dy) and initial distribution P(X0 = z) = 1. The notation Ez is used to denote
expectations with respect to the probability Pz .

Definition 11.1 Fix m ≥ 0. The after-m (future) process is defined by X+
m :=

{Xn+m : n ≥ 0}.

© Springer International Publishing AG 2016
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It follows from the definition of a Markov process {Xn : n = 0, 1, 2, . . . } with
a stationary transition probability given above that for every n ≥ 0 the conditional
distribution of (Xm, Xm+1, . . . , Xm+n), given σ(X0, . . . , Xm) is the same as the Px -
distribution of (X0, . . . , Xn), evaluated at x = Xm . To see this, let f be a bounded
measurable function on (Sn+1,S⊗(n+1)). Then the claim is that

E
(
f (Xm, Xm+1, . . . , Xm+n)|σ(X0, . . . , Xm)

) = g0(Xm), (11.1)

where given X0 = x ,
g0(x) := Ex f (X0, X1, . . . , Xn). (11.2)

For n = 0 this is trivial. For n ≥ 1, first take the conditional expectation of
f (Xm, Xm+1, . . . , Xm+n), given σ(X0, . . . , Xm, . . . , Xm+n−1) to get, by theMarkov
property, that

E
(
f (Xm, Xm+1, . . . , Xm+n) |σ(X0, . . . , Xm, . . . , Xm+n−1)

)

= E
(
f (xm, . . . , xm+n−1, Xm+n)|σ(Xm+n−1)

)|xm=Xm ,...,xm+n−1=Xm+n−1

=
∫

S
f (Xm, . . . , Xm+n−1, xm+n)p(Xm+n−1, dxm+n)

= gn−1(Xm, . . . , Xm+n−1), say. (11.3)

Next take the conditional expectationof the abovewith respect toσ(X0, . . . , Xm+n−2)

to get

E
(
f (Xm, Xm+1, . . . , Xm+n) |σ(X0, . . . , Xm, . . . , Xm+n−2)

)

= E
(
gn−1(Xm, . . . , Xm+n−1)|σ(X0, . . . , Xm+n−2)

)

= E
(
gn−1(xm, . . . , xm+n−2, Xm+n−1)|σ(Xm+n−2)

)|xm=Xm ,...,xm+n−2=Xm+n−2

= E

∫

S
gn−1(Xm, . . . , Xm+n−2, xm+n−1)p(Xm+n−2, dxm+n−1)

= gn−2(Xm, . . . , Xm+n−2), say. (11.4)

Continuing in this manner one finally arrives at

E
(
f (Xm, Xm+1, . . . , Xm+n) |σ(X0, . . . , . . . , Xm)

)

= E
(
g1(Xm, Xm+1)|σ(X0, . . . , . . . , Xm)

)

=
∫

S
g1(Xm, xm+1)p(Xm, dxm+1) = g0(Xm), say. (11.5)

Now, on the other hand, let us compute Ex f (X0, X1, . . . , Xn). For this, one fol-
lows the same steps as above, but with m = 0. That is, first take the con-
ditional expectation of f (X0, X1, . . . , Xn), given σ(X0, X1, . . . , Xn−1), arriving
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at gn−1(X0, X1, . . . , Xn−1). Then take the conditional expectation of this given
σ(X0, X1, . . . , Xn−2), arriving at gn−2(X0, . . . , Xn−2), and so on. In this way one
again arrives at g0(X0), which is (11.1) with m = 0, or (11.2) with x = Xm .

Since finite-dimensional cylinders C = B × S∞, B ∈ S⊗(n+1) (n = 0, 1, 2, . . . )
constitute a π-system, and taking f = 1B in (11.1), (11.2), one has, for every
A ∈ σ(X0, . . . , Xm),

E
(
1A1[X+

m∈C]
) = E

(
1A1[(Xm ,Xm+1,...,Xm+n)∈B]

) = E
(
1APx (C)|x=Xm

)
, (11.6)

it follows from the π-λ theorem that

E
(
1A1[X+

m∈C]
) = E

(
1APx (C)|x=Xm

)
, (11.7)

for all C ∈ S∞; here Px (C)|x=Xm denotes the (composite) evaluation of the function
x �→ Px (C) at x = Xm . Thus, we have arrived at the following equivalent, but
seemingly stronger, definition of the Markov property.

Definition 11.2 (Markov Property) We say that X = {Xn : n ≥ 0} has the (homo-
geneous) Markov Property if for every m ≥ 0, the conditional distribution of X+

m ,
given the σ-field Fm = σ(X0, . . . , Xm), is PXm , i.e., equals Py on the set [Xm = y].

This notion may be significantly strengthened by considering the future evolution
given its history up to and including a random stopping time. Let us recall that given
a stopping time τ , the pre-τ σ-field Fτ is defined by

Fτ = {A ∈ F : A ∩ [τ = m] ∈ Fm,∀m ≥ 0}. (11.8)

Definition 11.3 The after-τ process X+
τ = {Xτ , Xτ+1, Xτ+2, . . . } is well defined

on the set [τ < ∞] by X+
τ = X+

m on [τ = m].
The following theorem shows that for discrete-parameter Markov processes, this

stronger (Markov) property that “conditionally given the past and the present the
future starts afresh at the present state” holds more generally for a stopping time τ
in place of a constant “present time” m.

Theorem 11.1 (Strong Markov Property) Let τ be a stopping time for the process
{Xn : n ≥ 0}. If this process has the Markov property of Definition 11.2, then on
[τ < ∞] the conditional distribution of the after −τ process X+

τ , given the pre-τ
σ-field Fτ , is PXτ

.

Proof Let f be a real-valued bounded measurable function on (S∞,S⊗∞), and let
A ∈ Fτ . Then
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E(1[τ<∞]1A f (X
+
τ )) =

∞∑

m=0

E(1[τ=m]1A f (X
+
m ))

=
∞∑

m=0

E(1[τ=m]∩AEXm f )

=
∞∑

m=0

E(1[τ=m]∩AEXτ
f ) = E(1[τ<∞]1AEXτ

f ).

The second equality follows from the Markov property in Definition 11.2 since
A ∩ [τ = m] ∈ Fm . �

Let us now consider the continuous-parameter Brownian motion process along
similar lines. It is technically convenient to consider the canonical model of standard
Brownian motion {Bt : t ≥ 0} started at 0 on Ω = C[0,∞) with B the Borel σ-field
on C[0,∞), P0, referred to as Wiener measure, and Bt (ω) := ω(t), t ≥ 0,ω ∈ Ω,

the coordinate projections. However, for continuous-parameter processes it is often
useful tomake sure that all events that have probability zero are included in theσ-field
forΩ. For example, in the analysis of fine-scale structure of Brownianmotion certain
sets D may arise that imply events E ∈ B,D ⊂ E, for which one is able to compute
P(E) = 0. In particular, then, one would want to conclude that D is measurable
(and hence assigned P(D) = 0 too). For this it may be necessary to replace B by its
σ-field completionF = B. We have seen that this can always be achieved, and there
is no loss in generality in assuming that the underlying probability space (Ω,F , P)

is complete from the outset (see Appendix A).
Although the focus is on Brownian motion, just as for the above discussion of

random walk, some of the definitions apply more generally and will be so stated
in terms of a generic continuous-parameter stochastic process {Zt : t ≥ 0}, having
continuous sample paths (outside a P-null set).

Definition 11.4 For fixed s > 0 the after-s process is defined by Z+
s := {Zs+t : t ≥

0}.
Definition 11.5 A continuous-parameter stochastic process {Zt : t ≥ 0}, with a.s.
continuous sample paths, such that for each s > 0, the conditional distribution of
the after-s process Z+

s given σ(Zt , t ≤ s) coincides with its conditional distribution
given σ(Zs) is said to have the Markov property.

Aswill become evident from the calculations in the proof below, theMarkov prop-
erty of a Brownian motion {Bt : t ≥ 0} follows from the fact that it has independent
increments.

Proposition 11.2 (Markov Property of Brownian Motion) Let Px denote the dis-
tribution on C[0,∞) of standard Brownian motion Bx = {Bx

t = x + Bt : t ≥ 0}
started at x . For every s ≥ 0, the conditional distribution of (Bx

s )+ := {Bx
s+t : t ≥ 0}

given σ(Bx
u : 0 ≤ u ≤ s) is PBx

s
.
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Proof Write G := σ(Bx
u : 0 ≤ u ≤ s). Let f be a real-valued bounded measurable

function onC[0,∞). Then E
(
f ((Bx

s )+)|G) = E
(
ψ(U, V )|G)

, whereU = Bx
s , V =

{Bx
s+t − Bx

s : t ≥ 0}, ψ(y,ω) := f (ωy), y ∈ R, ω ∈ C[0,∞), and ωy ∈ C[0,∞) is
given by ωy(t) = ω(t) + y. By the substitution property for conditional expectation
(Theorem 2.10), one has

E
(
ψ(U, V )|G) = h(U ) = h(Bx

s ),

where simplifying notation by writing Bt = B0
t and, in turn, {Bt : t ≥ 0} for a

standard Brownian motion starting at 0,

h(y) = Eψ(y, V ) = Eψ(y, {Bt : t ≥ 0}) = E f (By) =
∫

C[0,∞)

f d Py .

�
It is sometimes useful to extend the definition of standard Brownian motion as

follows.

Definition 11.6 Let (Ω,F , P) be a probability space and Ft , t ≥ 0, a filtration.
The k-dimensional standard Brownian motion with respect to this filtration is
a stochastic process {Bt : t ≥ 0} on (Ω,F , P) having (i) stationary, Gaussian
increments Bt+s − Bs with mean zero and covariance matrix t Ik; (ii) a.s. continuous
sample paths t �→ Bt on [0,∞) → R

k; and (iii) for each t ≥ 0, Bt isFt -measurable
and Bt−Bs is independent ofFs , 0 ≤ s < t.Taking B0 = 0 a.s., then Bx := {x+Bt :
t ≥ 0}, is referred to as the standard Brownian motion started at x ∈ R

k (with
respect to the given filtration). The stochastic process Xt = x + μt + σBt , t ≥ 0,
where x,μ ∈ R

k , and σ is a k×k matrix defines the k-dimensional Brownian motion
started at x and having drift coefficient μ and diffusion coefficient D = σtσ.

For example, one may take the completion Ft = σ(Bs : s ≤ t), t ≥ 0, of the σ-field
generated by the coordinate projections t �→ ω(t), ω ∈ C[0,∞). Alternatively, one
mayhave occasion to useFt = σ(Bs, s ≤ t)∨G, whereG is someσ-field independent
ofF . The definition of the Markov property can be modified accordingly as follows.

Proposition 11.3 The Markov property of Brownian motions Bx on R
k defined on

(Ω,F , P) holds with respect to (i) the right-continuous filtration defined by

Ft+ :=
⋂

ε>0

Ft+ε (t ≥ 0), (11.9)

where Ft = Gt := σ(Bu : 0 ≤ u ≤ t), or (ii) Ft is the P-completion of Gt , or (iii)
Ft = Gt ∨ G (t ≥ 0), where G is independent of F .

Proof It is enough to prove that Bt+s − Bs is independent of Fs+ for every t > 0.
Let G ∈ Fs+ and t > 0. For each ε > 0 such that t > ε, G ∈ Fs+ε, so that if
f ∈ Cb(R

k), one has

http://dx.doi.org/10.1007/978-3-319-47974-3_2
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E(1G f (Bt+s − Bs+ε)) = P(G) · E f (Bt+s − Bs+ε).

Letting ε ↓ 0 on both sides,

E(1G f (Bt+s − Bs)) = P(G)E f (Bt+s − Bs).

Since the indicator of every closed subset of Rk is a decreasing limit of continuous
functions bounded by 1 (see the proof of Alexandrov’s theorem in Chapter VII), the
last equality also holds for indicator functions f of closed sets. Since the class of
closed sets is a π-system, and the class of Borel sets whose indicator functions f
satisfy the equality is a σ-field, one can use the π-λ theorem to obtain the equality
for all B ∈ B(Rk). The proofs of (ii) and (iii) are left to Exercise 2. �

One may define the σ-field governing the “past up to time τ” as the σ-field of events
Fτ given by

Fτ := σ(Zt∧τ : t ≥ 0). (11.10)

The stochastic process {Z̃t : t ≥ 0} := {Zt∧τ : t ≥ 0} is referred to as the process
stopped at τ . Events in Fτ depend only on the process stopped at τ . The stopped
process contains no further information about the process {Zt : t ≥ 0} beyond the
time τ . Alternatively, in analogy with the discrete-parameter case, a description of
the past up to time τ that is often more useful for checking whether a particular event
belongs to it may be formulated as follows.

Definition 11.7 Let τ be a stopping time with respect to a filtration Ft , t ≥ 0. The
pre-τ σ-field is

Fτ = {F ∈ F : F ∩ [τ ≤ t] ∈ Ft for all t ≥ 0}.

For example, using this definition it is simple to check that

[τ ≤ t] ∈ Fτ ,∀t ≥ 0, [τ < ∞] ∈ Fτ . (11.11)

Remark 11.1 We will always use1 Definition 11.7, and not (11.10). Note, however,
that t ∧ τ ≤ t for all t , so that σ(Xt∧τ : t ≥ 0} is contained in Fτ (see Exercise 1).

The future relative to τ is the after-τ process Z+
τ = {(Z+

τ )t : t ≥ 0} obtained by
viewing {Zt : t ≥ 0} from time t = τ onwards, for τ < ∞. This is

(Z+
τ )t (ω) = Zτ (ω)+t (ω), t ≥ 0, on [τ < ∞]. (11.12)

1The proof of the equivalence of (11.10) and that of Definition 11.7 for processes with continuous
sample paths may be found in Stroock and Varadahn (1980), p. 30.

http://dx.doi.org/10.1007/978-3-319-47974-3_7
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Theorem 11.4 (Strong Markov Property for Brownian Motion) Let {Bt : t ≥ 0} be
a k-dimensional Brownian motion with respect to a filtration {Ft : t ≥ 0} starting at
0 and let P0 denote its distribution (Wiener measure) on C[0,∞). For x ∈ R

k let Px
denote the distribution of the Brownian motion process Bx

t := x + Bt , t ≥ 0, started
at x . Let τ be a stopping time. On [τ < ∞], the conditional distribution of B+

τ given
Fτ is the same as the distribution of {By

t : t ≥ 0} starting at y = Bτ . In other words,
this conditional distribution is PBτ

on [τ < ∞].
Proof First assume that τ has countably many values ordered as 0 ≤ s1 < s2 < · · · .
Consider a finite-dimensional function of the after-τ process of the form

h(Bτ+t ′1 , Bτ+t ′2 , . . . , Bτ+t ′r ), [τ < ∞], (11.13)

where h is a bounded continuous real-valued function on (Rk)r and 0 ≤ t ′1 < t ′2 <

· · · < t ′r . It is enough to prove

E
[
h(Bτ+t ′1 , . . . , Bτ+t ′r )1[τ<∞] | Fτ

] = [Eh(By
t ′1
, . . . , By

t ′r
)]y=Bτ

1[τ<∞]. (11.14)

That is, for every A ∈ Fτ we need to show that

E(1Ah(Bτ+t ′1 , . . . , Bτ+t ′r )1[τ<∞]) = E

(

1A

[
Eh(By

t ′1
, . . . , By

t ′r
)
]

y=Bτ

1[τ<∞]
)

.

(11.15)
Now

[τ = s j ] = [τ ≤ s j ] ∩ [τ ≤ s j−1]c ∈ Fs j ,

so that A ∩ [τ = s j ] ∈ Fs j . Express the left side of (11.15) as

∞∑

j=1

E
(
1A∩[τ=s j ]h(Bsj+t ′1 , . . . , Bsj+t ′r )

)
. (11.16)

By the Markov property, the j th summand in (11.16) equals

E(1A1[τ=s j ][Eh(By
t ′1
, . . . , By

t ′r
)]y=Bs j

) = E(1A1[τ=s j ][Eh(By
t ′1
, . . . , By

t ′r
)]y=Bτ

).

Summing this over j , one obtains the desired relation (11.15). This completes the
proof in the case that τ has countably many values 0 ≤ s1 < s2 < · · · .

The case of more general τ may be dealt with by approximating it by stopping
times assuming countablymanyvalues. Specifically, for each positive integern define

τn =
{ j

2n if j−1
2n < τ ≤ j

2n , j = 0, 1, 2, . . .
∞ if τ = ∞.

(11.17)
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Since
[

τn = j

2n

]

=
[
j − 1

2n
< τ ≤ j

2n

]

=
[

τ ≤ j

2n

]

\
[

τ ≤ j − 1

2n

]

∈ F j/2n ,

it follows that

[τn ≤ t] =
⋃

j : j/2n≤t

[

τn = j

2n

]

∈ Ft for all t ≥ 0.

Therefore, τn is a stopping time for each n and τn(ω) ↓ τ (ω) as n ↑ ∞ for each
ω ∈ Ω . Also one may easily check that Fτ ⊂ Fτn from the definition (see Exercise
1). Let h be a bounded continuous function on (Rk)r . Define

ϕ(y) ≡ Eh(By
t ′1
, . . . , By

t ′r
). (11.18)

One may also check that ϕ is continuous using the continuity of y → (By
t ′1
, . . . , By

t ′r
).

Let A ∈ Fτ (⊂ Fτn ). Applying (11.15) to τ = τn one has

E(1Ah(Bτn+t ′1 , . . . , Bτn+t ′r )1[τn<∞]) = E(1Aϕ(Bτn )1[τn<∞]). (11.19)

Since h,ϕ are continuous, {Bt : t ≥ 0} has continuous sample paths, and τn ↓ τ as
n → ∞, Lebesgue’s dominated convergence theorem may be used on both sides of
(11.19) to get

E(1Ah(Bτ+t ′1 , . . . , Bτ+t ′r )1[τ<∞]) = E(1Aϕ(Bτ )1[τ<∞]). (11.20)

This establishes (11.15). Since finite-dimensional distributions determine a proba-
bility on C[0,∞), the proof is complete. �

Remark 11.2 Note that the proofs of the Markov property (Proposition 11.3) and
the strong Markov property (Theorem 11.1) hold for Rk-valued Brownian motions
on Rk with arbitrary drift and positive definite diffusion matrix (Exercise 2).

The examples below illustrate the usefulness of Theorem 11.4 in typical com-
putations. In all these examples B = {Bt : t ≥ 0} is a one-dimensional standard
Brownian motion starting at zero. For ω ∈ C([0,∞) : R) define, for every a ∈ R,

τ (1)
a (ω) ≡ τ a(ω) := inf{t ≥ 0 : ω(t) = a}, (11.21)

and, recursively,

τ (r+1)
a (ω) := inf{t > τ (r)

a : ω(t) = a}, r ≥ 1, (11.22)

with the usual convention that the infimum of an empty set of numbers is ∞.
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Similarly, in the context of the simple random walk, put Ω = Z
∞ = {ω =

(ω0,ω1, . . . ) : ωn ∈ Z,∀n ≥ 1}, and define

τ (1)
a (ω) ≡ τ a(ω) := inf{n ≥ 0 : ωn = a}, (11.23)

and, recursively,

τ (r+1)
a (ω) := inf{n > τ (r)

a : ωn = a}, r ≥ 1. (11.24)

Example 1 (Recurrence of Simple Symmetric Random Walk) Consider the simple
symmetric random walk Sx := {Sx

n = x + S0n : n ≥ 0} on Z started at x . Suppose
one wishes to prove that Px (τ y < ∞) = 1 for y ∈ Z. This may be obtained from
the (ordinary) Markov property applied to ϕ(x) := Px (τ y < τ a), a ≤ x ≤ y. For
a < x < y, conditioning on Sx

1 , and writing Sx+
1 = {Sx

1+n : n ≥ 0}, we have

ϕ(x) = Px (τ y < τ a) = P(τ y ◦ Sx < τ a ◦ Sx )

= P(τ y ◦ Sx+
1 < τ a ◦ Sx+

1 )

= Ex PSx1 (τ y < τ a) = Eϕ(Sx
1 )

= E(1[Sx1 =x+1]ϕ(x + 1) + 1[Sx1 =x−1]ϕ(x − 1))

= 1

2
ϕ(x + 1) + 1

2
ϕ(x − 1), a < x < y, (11.25)

with boundary values ϕ(y) = 1, ϕ(a) = 0. Solving, one obtains ϕ(x) = (x −
a)/(y − a). Thus Px (τy < ∞) = 1 follows by letting a → −∞ using basic
“continuity properties” of probability measures. Similarly, letting y → ∞, one gets
Px (τ a < ∞) = 1. Write ηa := inf{n ≥ 1 : ωn = a} for the first return time
to a. Then ηa = τ a on {ω : ω0 �= a}, and ηa > τ a = 0 on {ω : ω0 = a}. By
conditioning on Sx

1 again, one has Px (ηx < ∞) = 1
2 Px−1(τ x < ∞) + 1

2 Px+1(τ x <

∞) = 1
2 · 1 + 1

2 · 1 = 1. While this calculation required only the Markov property,
next consider the problem of showing that the process will return to y infinitely
often. One would like to argue that, conditioning on the process up to its return
to y, it merely starts over. This of course is the strong Markov property. So let us
examine carefully the calculation to show that under Px , the r th passage time to y,
τ (r)
y , is a.s. finite for every r = 1, 2, . . . . First note that by the (ordinary) Markov

property, Px (τy < ∞) = 1 ∀x . To simplify notation, write τ (r)
y = τ (r)

y ◦ Sx , and
Sx+

τ (r)
y

= {Sx+
τ (r)
y +n

: n ≥ 0} is then the after-τ (r)
y process (for the random walk Sx ).

Applying the strong Markov property with respect to the stopping time τ (r)
y one has,

remembering that Sx
τ (r)
y

= y,
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P(τ (r+1)
y < ∞) = P(τ (r)

y < ∞, η ◦ Sx+
τ (r)
y

< ∞)

= E
(
1[τ (r)

y <∞]Py(η < ∞)
)

= E
(
1[τ (r)

y <∞]
) · 1

= P(τ (r)
y < ∞) = 1 (r = 1, 2, . . . ), (11.26)

by induction on r . If x = y, then τ (1)
x is replaced by ηx . Otherwise, the proof remains

the same. This is equivalent to the recurrence of the state y in the sense that

P(Sx
n = y for infinitely many n) = P(∩∞

r=1[τ (r)
y < ∞]) = 1.

Example 2 (Boundary Value Distribution of Brownian Motion) Let Bx = {Bx
t :=

x + Bt : t ≥ 0} be a one-dimensional standard Brownian motion started at x ∈ [c, d]
for c < d, and let τy = τ y ◦ Bx . The stopping time τc ∧ τd denotes the first time for
Bx to reach the “boundary” states {c, d}, referred to as a hitting time for Bx . Define

ψ(x) := P(Bx
τc∧τd

= c) ≡ P({Bx
t : t ≥ 0} reaches c before d), (c ≤ x ≤ d).

(11.27)
Fix x ∈ (c, d) and h > 0 such that [x − h, x + h] ⊂ (c, d). In contrast to the
discrete-parameter case there is no “first step” to consider. It will be convenient to
consider τ = τx−h ∧ τx+h , i.e., τ is the first time {Bx

t : t ≥ 0} reaches x −h or x +h.
Then P(τ < ∞) = 1, by the law of the iterated logarithm (see Exercise 6 for an
alternative argument). Now, by the strong Markov property (Theorem 11.4), applied
with respect to τ ,

ψ(x) = P({Bx
t : t ≥ 0} reaches c before d)

= P({(Bx+
τ )t : t ≥ 0} reaches c before d)

= E(P({(Bx+
τ )t : t ≥ 0} reaches c before d | Fτ )). (11.28)

The strong Markov property now gives that

ψ(x) = E(ψ(Bx
τ )), (11.29)

so that by symmetry of Brownian motion, i.e., B0 and −B0 have the same distribu-
tion,

ψ(x) = ψ(x − h)P(Bx
τ = x − h) + ψ(x + h)P(Bx

τ = x + h)

= ψ(x − h)
1

2
+ ψ(x + h)

1

2
, (11.30)

where, by (11.27), ψ(x) satisfies the boundary conditions ψ(c) = 1, ψ(d) = 0.
Therefore,

ψ(x) = d − x

d − c
. (11.31)



XI Strong Markov Property, Skorokhod Embedding … 197

Now, by (11.31) (see also Exercise 6),

P({Bx
t : t ≥ 0} reaches d before c) = 1 − ψ(x) = x − c

d − c
(11.32)

for c ≤ x ≤ d. It follows, on letting d ↑ ∞ in (11.31), and c ↓ −∞ in (11.32) that

P(τ y < ∞) = 1 for all x, y. (11.33)

As another illustrative application of the strong Markov property one may derive
a Cantor-like structure of the random set of zeros of Brownian motion as follows.

Example 3.

Proposition 11.5 With probability one, the set Z := {t ≥ 0 : Bt = 0} of zeros
of the sample path of a one dimensional standard Brownian motion, starting at 0,
is uncountable, closed, unbounded, and has no isolated point. Moreover, Z a.s. has
Lebesgue measure zero.

Proof The law of iterated logarithm (LIL) may be applied as t ↓ 0 to show that
with probability one, Bt = 0 for infinitely many t in every interval [0, ε]. Since
t �→ Bt (ω) is continuous, Z(ω) is closed. Applying the LIL as t ↑ ∞, it follows
that Z(ω) is unbounded a.s.

We will now show that for 0 < c < d, the probability is zero of the event
A(c, d), say, that B has a single zero in [c, d]. For this consider the stopping time
τ := inf{t ≥ c : Bt = 0}. By the strongMarkov property, B+

τ is a standard Brownian
motion, starting at zero. In particular, τ is a point of accumulation of zeros from the
right (a.s.). Also, P(Bd = 0) = 0. This implies P(A(c, d)) = 0. Considering all
pairs of rationals c, d with c < d, it follows that Z has no isolated point outside a
set of probability zero (see Exercise 4 for an alternate argument).

Finally, for each T > 0 let HT = {(t,ω) : 0 ≤ t ≤ T , Bt (ω) = 0} ⊂ [0, T ]×Ω .
By the Fubini–Tonelli theorem, denoting the Lebesgue measure on [0,∞) bym, one
has

(m×P)(HT ) =
∫ T

0

{∫

Ω

1[Bt=0](ω)P(dω)

}

dt =
∫ T

0
P(Bt = 0)dt = 0, (11.34)

so that m({t ∈ [0, T ] : Bt (ω) = 0}) = 0 for P-almost all ω. �

The following general consequence of the Markov property can also be useful in
the analysis of the (infinitesimal) fine-scale structure of Brownian motion and may
be viewed as a corollary to Proposition 11.3. As a consequence, for example, one
sees that for any given function ϕ(t), t > 0, the event

Dϕ := [Bt < ϕ(t) for all sufficiently small t] (11.35)
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will certainly occur or is certain not to occur. Functions ϕ for which P(Dϕ) = 1 are
said to belong to the upper class. Thus ϕ(t) = √

2t log log t belongs to the upper
class by the law of the iterated logarithm for Brownian motion (Theorem 10.9).

Proposition 11.6 (Blumenthal’s Zero–One Law) With the notation of Proposi-
tion 11.3,

P(A) = 0 or 1 ∀ A ∈ F0+. (11.36)

Proof It follows from (the proof of) Proposition 11.3 that Fs+ is independent of
σ{Bt+s − Bs : t ≥ 0} ∀ s ≥ 0. Set s = 0 to conclude that F0+ is independent of
σ(Bt : t ≥ 0) ⊃ F0+. Thus F0+ is independent of F0+, so that ∀ A ∈ F0+ one has
P(A) ≡ P(A ∩ A) = P(A) · P(A). �

In addition to the strongMarkov property, another powerful tool for the analysis of
Brownian motion is made available by observing that both the processes {Bt : t ≥ 0}
and {B2

t − t : t ≥ 0} are martingales. Thus one has available the optional sampling
theory.

Example 4 (Hitting by BM of a Two-Point Boundary) Let {Bx
t : t ≥ 0} be a one-

dimensional standard Brownianmotion starting at x , and let c < x < d. Let τ denote
the stopping time, τ = inf{t ≥ 0 : Bx

t = c or d}. Then writing ψ(x) := P({Bx
t }t≥0

reaches d before c), one has (see (11.31))

ψ(x) = x − c

d − c
c < x < d. (11.37)

Applying the optional sampling theorem to the martingale Xt := (Bx
t − x)2 − t ,

one gets EXτ = 0, or (d − x)2ψ(x) + (x − c)2(1 − ψ(x)) = Eτ , so that Eτ =
[(d − x)2 − (x − c)2]ψ(x) + (x − c)2, or

Eτ = (d − x)(x − c). (11.38)

Consider now a Brownian motion {Y x
t : t ≥ 0} with nonzero drift coefficient μ and

diffusion coefficient σ2 > 0, starting at x . Then {Y x
t − tμ : t ≥ 0} is a martingale, so

that (see Exercise 6) E(Y x
τ − μτ ) = x , i.e., dψ1(x) + c(1 − ψ1(x)) − μEτ = x , or

(d − c)ψ1(x) − μEτ = x − c, (11.39)

where ψ1(x) = P(Y x
τ = d), i.e., {Y x

t : t ≥ 0} reaches d before c. There are two
unknowns, ψ1 and Eτ in (11.39), so we need one more relation to solve for them.

Consider the exponential martingale Zt := exp
{
ξ(Y x

t − tμ) − ξ2σ2

2 t
}
(t ≥ 1). Then

Z0 = eξx , so that eξx = EZτ = E exp{ξ(d − τμ)− ξ2σ2 τ/2}1[Y x
τ =d] +E[exp{ξ(c−

τμ) − ξ2σ2 τ/2}1[Y x
τ =c]]. Take ξ �= 0 such that the coefficient of τ in the exponent is

zero, i.e., ξμ + ξ2 σ2/2 = 0, or ξ = −2μ/σ2. Then optional stopping yields

http://dx.doi.org/10.1007/978-3-319-47974-3_10
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e−2μx/σ2 = exp{ξd}ψ1(x) + exp{ξc}(1 − ψ1(x)),

= ψ1(x)

[

exp

{

−2μd

σ2

}

− exp

{

−2μc

σ2

}]

+ exp

{

−2μc

σ2

}

,

or

ψ1(x) = exp{−2μx/σ2} − exp{−2μc/σ2}
exp{− 2μd

σ2 } − exp{− 2μc
σ2 } . (11.40)

One may use this to compute Eτ :

Eτ = (d − c)ψ1(x) − (x − c)

μ
. (11.41)

Checking the hypothesis of the optional sampling theorem for the validity of the
relations (11.37)–(11.41) is left to Exercise 6.

Our main goal for this chapter is to derive a beautiful result of Skorokhod (1965)
representing a general random walk (partial sum process) as values of a Brownian
motion at a sequence of successive stopping times (with respect to an enlarged
filtration). This will be followed by a proof of the functional central limit theorem
(invariance principle) based on the Skorokhod embedding representation. Recall that
for c < x < d,

P(τ x
d < τ x

c ) = x − c

d − c
, (11.42)

where τ x
a := τ a(Bx ) ≡ inf{t ≥ 0 : Bx

t = a}. Also,

E(τ x
c ∧ τ x

d ) = (d − x)(x − c). (11.43)

Write τa = τ 0
a , B

0 = B = {Bt : t ≥ 0}. Consider now a two-point distribution Fu,v

with support {u, v}, u < 0 < v, having mean zero. That is, Fu,v({u}) = v/(v − u)

and Fu,v({v}) = −u/(v − u). It follows from (11.42) that with τu,v = τu ∧ τv , Bτu,v

has distribution Fu,v and, in view of (11.43),

Eτu,v = −uv = |uv|. (11.44)

In particular, the random variable Z := Bτu,v
with distribution Fu,v is naturally

embedded in the Brownian motion. We will see by the theorem below that any
given non-degenerate distribution F with mean zero may be similarly embedded by
randomizing over such pairs (u, v) to get a random pair (U, V ) such that BτU,V has
distribution F , and EτU,V = ∫

(−∞,∞)
x2F(dx), the variance of F . Indeed, this is

achieved by the distribution γ of (U, V ) on (−∞, 0) × (0,∞) given by

γ(du dv) = θ(v − u)F−(du)F+(dv), (11.45)
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where F+ and F− are the restrictions of F to (0,∞) and (−∞, 0), respectively. Here
θ is the normalizing constant given by

1 = θ

[(∫

(0,∞)

vF+(dv)

)

F−((−∞, 0)) +
(∫

(−∞,0)
(−u)F−(du)

)

F+(0,∞)

]

,

or, noting that the two integrals are each equal to 1
2

∫ ∞
−∞ |x |F(dx) since the mean of

F is zero, one has

1/θ =
(
1

2

∫ ∞

−∞
|x |F(dx)

)

[1 − F({0})]. (11.46)

Let (Ω,F , P) be a probability space on which are defined (1) a standard Brownian
motion B ≡ B0 = {Bt : t ≥ 0}, and (2) a sequence of i.i.d. pairs (Ui , Vi ) independent
of B, with the common distribution γ above. Let Ft := σ{Bs : 0 ≤ s ≤ t} ∨
σ{(Ui , Vi ) : i ≥ 1}, t ≥ 0. Define the {Ft : t ≥ 0}-stopping times (Exercise 13)

T0 ≡ 0, T1 := inf{t ≥ 0 : Bt = U1 or V1},
Ti+1 := inf{t > Ti : Bt = BTi +Ui+1 or BTi + Vi+1} (i ≥ 1).

Theorem 11.7 (Skorokhod Embedding) Assume that F has mean zero and finite
variance. Then (a) BT1 has distribution F , and BTi+1 − BTi (i ≥ 0) are i.i.d. with
common distribution F , and (b) Ti+1 − Ti (i ≥ 0) are i.i.d. with

E (Ti+1 − Ti ) =
∫

(−∞,∞)

x2F(dx). (11.47)

Proof (a) Given (U1, V1), the conditional probability that BT1 = V1 is
−U1
V1−U1

. There-
fore, for all x > 0,

P
(
BT1 > x

) = θ

∫

{v>x}

∫

(−∞,0)

−u

v − u
· (v − u)F−(du)F+(dv)

= θ

∫

{v>x}

{∫

(−∞,0)
(−u)F−(du)

}

F+(dv)

=
∫

{v>x}
F+(dv), (11.48)

since
∫
(−∞,0)(−u)F−(du) = 1

2

∫ |x |F(dx) = 1/θ. Thus the restriction of the dis-
tribution of BT1 on (0,∞) is F+. Similarly, the restriction of the distribution of BT1
on (−∞, 0) is F−. It follows that P(BT1 = 0) = F({0}). This shows that BT1 has
distribution F . Next, by the strong Markov property, the conditional distribution
of B+

Ti
≡ {BTi+t : t ≥ 0}, given FTi , is PBTi

(where Px is the distribution of Bx ).
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Therefore, the conditional distribution of B+
Ti

−BTi ≡ {BTi+t −BTi ; t ≥ 0}, givenFTi ,
is P0. In particular, Yi := {(Tj , BTj ) : 1 ≤ j ≤ i} and Xi := B+

Ti
− BTi are indepen-

dent. Since Yi and Xi are functions of B ≡ {Bt : t ≥ 0} and {(Uj , Vj ); 1 ≤ j ≤ i},
they are both independent of (Ui+1, Vi+1). Since τ (i+1) := Ti+1−Ti is the first hitting
time of {Ui+1, Vi+1} by Xi , it now follows that (1) (Ti+1 −Ti ≡ τ (i+1), BTi+1 − BTi ≡
Xi

τ (i+1) ) is independent of {(Tj , BTj ) : 1 ≤ j ≤ i}, and (2) (Ti+1 − Ti , BTi+1 − BTi )

has the same distribution as (T1, BT1).
(b) It remains to prove (11.47). But this follows from (11.44):

ET1 = θ

∫

(0,∞)

∫

(−∞,0)
(−uv)(v − u)F−(du)F+(dv)

= θ

[∫

(0,∞)

v2F+(dv) ·
∫

(−∞,0)
(−u)F−(du) +

∫

(−∞,0)
u2F−(du) ·

∫

(0,∞)

vF+(dv)

]

=
∫

(0,∞)

v2F+(dv) +
∫

(−∞,0)
u2F−(du) =

∫

(−∞,∞)

x2F(dx).

�

We now present an elegant proof of Donsker’s invariance principle, or func-
tional central limit theorem, using Theorem 11.7. Consider a sequence of i.i.d.
random variables Zi (i ≥ 1) with common distribution having mean zero and vari-
ance 1. Let Sk = Z1 + · · · + Zk (k ≥ 1), S0 = 0, and define the polygonal random
function S(n) on [0, 1] as follows:

S(n)
t := Sk−1√

n
+ n

(

n − k − 1

n

)
Sk − Sk−1√

n

for t ∈
[
k − 1

n
,
k

n

]

, 1 ≤ k ≤ n. (11.49)

That is, S(n)
t = Sk√

n
at points t = k

n (0 ≤ k ≤ n), and t �→ S(n)
t is linearly interpolated

between the endpoints of each interval
[
k−1
n , k

n

]
.

Theorem 11.8 (Invariance Principle) S(n) converges in distribution to the standard
Brownian motion, as n → ∞.

Proof Let Tk , k ≥ 1, be as in Theorem 11.7, defined with respect to a standard
Brownian motion {Bt : t ≥ 0}. Then the random walk {Sk : k = 0, 1, 2, . . . } has the
same distribution as {S̃k := BTk : k = 0, 1, 2, . . . }, and therefore, S(n) has the same
distribution as S̃(n) defined by S̃(n)

k/n := n− 1
2 BTK (k = 0, 1, . . . , n) and with linear

interpolation between k/n and (k + 1)/n (k = 0, 1, . . . , n − 1). Also, define, for
each n = 1, 2, . . . , the standard Brownian motion B̃(n)

t := n− 1
2 Bnt , t ≥ 0. We will

show that
max
0≤t≤1

∣
∣
∣S̃(n)

t − B̃(n)
t

∣
∣
∣ −→ 0 in probability as n → ∞, (11.50)

which implies the desired weak convergence. Now



202 XI Strong Markov Property, Skorokhod Embedding …

max
0≤t≤1

∣
∣
∣S̃

(n)
t − B̃(n)

t

∣
∣
∣ ≤ n− 1

2 max
1≤k≤n

∣
∣BTk − Bk

∣
∣

+ max
0≤k≤n−1

{

max
k
n ≤t≤ k+1

n

∣
∣
∣S̃

(n)
t − S̃(n)

k/n

∣
∣
∣ + n− 1

2 max
k≤t≤k+1

|Bt − Bk |
}

= I (1)n + I (2)n + I (3)n , say. (11.51)

Now, writing Z̃k = S̃k − S̃k−1, it is simple to check (Exercise 14) that as n → ∞,

I (2)
n ≤ n− 1

2 max{|Z̃k | : 1 ≤ k ≤ n} → 0 in probability,

I (3)
n ≤ n− 1

2 max
0≤k≤n−1

max{|Bt − Bk | : k ≤ t ≤ k + 1} → 0 in probability.

Hence we need to prove, as n → ∞,

I (1)
n := n− 1

2 max
1≤k≤n

∣
∣BTk − Bk

∣
∣ −→ 0 in probability. (11.52)

Since Tn/n → 1 a.s., by SLLN, it follows that (Exercise 14)

εn := max
1≤k≤n

∣
∣
∣
∣
Tk
n

− k

n

∣
∣
∣
∣ −→ 0 as n → ∞ (almost surely). (11.53)

In view of (11.53), there exists for each ε > 0 an integer nε such that P(εn <

ε) > 1 − ε for all n ≥ nε. Hence with probability greater than 1 − ε one has for all
n ≥ nε the estimate

I (1)
n ≤ max

|s−t |≤nε,
0≤s,t≤n+nε

n− 1
2 |Bs − Bt | = max

|s−t |≤nε,
0≤s,t≤n(1+ε)

∣
∣
∣B̃(n)

s/n − B̃(n)
t/n

∣
∣
∣

= max
|s′−t ′ |≤ε,

0≤s′ ,t ′≤1+ε

∣
∣
∣B̃(n)

s ′ − B̃(n)
t ′

∣
∣
∣

d= max
|s′−t ′ |≤ε,

0≤s′ ,t ′≤1+ε

|Bs ′ − Bt ′ |

−→ 0 as ε ↓ 0,

by the continuity of t → Bt . Given δ > 0 one may then choose ε = εδ such that for
all n ≥ n(δ) := nεδ

, P(I (1)
n > δ) < δ. Hence I (1)

n → 0 in probability. �

For another application of Skorokhod embedding let us see how to obtain a law
of the iterated logarithm (LIL) for sums of i.i.d. random variables using the LIL
for Brownian motion.

Theorem 11.9 (Law of the Iterated Logarithm) Let X1, X2, . . . be an i.i.d. sequence
of random variables with EX1 = 0, 0 < σ2 := EX2

1 < ∞, and let Sn = X1 + · · · +
Xn , n ≥ 1. Then with probability one,

lim sup
n→∞

Sn
√
2σ2n log log n

= 1.
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Proof By rescaling if necessary, one may take σ2 = 1 without loss of generality. In
view of the Skorokhod embedding one may replace the sequence {Sn : n ≥ 0} by
the embedded random walk {S̃n = BTn : n ≥ 0}. By the SLLN one also has Tn

n → 1
a.s. as n → ∞. In view of the law of the iterated logarithm for Brownian motion,

it is then sufficient to check that S̃[t]−Bt√
t log log t

→ 0 a.s. as t → ∞. From Tn
n → 1 a.s.,

it follows for given ε > 0 that with probability one, 1
1+ε

<
T[t]
t < 1 + ε for all t

sufficiently large. Let tn = (1 + ε)n , n = 1, 2, . . . . Then one has

Mtn := max

{

|Bs − Btn | : tn
1 + ε

≤ s ≤ tn(1 + ε)

}

≤ max

{

|Bs − Btn | : tn
1 + ε

≤ s ≤ tn

}

+ max
{|Bs − Btn | : tn ≤ s ≤ tn(1 + ε)

}

≤ Mn,1 + Mn,2, say.

Since tn − tn
1+ε

= tnε
1+ε

< tn(1+ε)− tn = tnε, Mn,2 is stochastically larger than Mn,1,
so that P(Mtn > 2

√
3εtn log log tn) ≤ 2P(Mn,2 >

√
3εtn log log tn). It follows from

the scaling property of Brownian motion, using Lévy’s Inequality and Feller’s tail
probability estimate, that

P
(
Mtn > 2

√
3εtn log log tn

)
≤ 2P

(

max
0≤u≤1

|Bu | >
√
3 log log tn

)

≤ 8P
(
B1 ≥ √

3 log log(tn)
)

≤ 8√
3 log log tn

exp

(

−3

2
log log tn

)

≤ cn− 3
2

for a constant c = (log(1 + ε))
−3
2 > 0. Summing over n, it follows from the Borel–

Cantelli lemma I that with probability one, Mtn ≤ √
3εtn log log tn for all but finitely

many n. Since a.s. 1
1+ε

<
T[t]
t < 1 + ε for all t sufficiently large, one has that

lim sup
t→∞

|S̃[t] − Bt |√
t log log t

≤ √
3ε.

Letting ε ↓ 0 one has the desired result. �

Exercise Set XI

1. (i) If τ1, τ2 are stopping times, show that τ1 ∨ τ2 and τ1 ∧ τ2 are stopping times.
(ii) If τ1 ≤ τ2 are stopping times, show that Fτ1 ⊂ Fτ2 .
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2. (i) Extend the Markov property for one-dimensional Brownian motion (Propo-
sition 11.2) to k-dimensional Brownian motion with respect to a given filtration.
(ii) Prove parts (ii), (iii) of Proposition 11.3.

3. Suppose that X,Y, Z are three random variables with values in arbitrary measur-
able spaces (Si ,Si ), i = 1, 2, 3. Assume that regular conditional distributions
exist; see Chapter II for general conditions. Show that σ(Z) is conditionally
independent of σ(X) given σ(Y ) if and only if the conditional distribution of Z
given σ(Y ) a.s. coincides with the conditional distribution of Z given σ(X,Y ).

4. Prove that the event A(c, d) introduced in the proof of Proposition 11.5 is mea-
surable, i.e., the event [τ < d, Bt > 0 ∀τ < t ≤ d] is measurable.

5. Consider a Markov chain X = {Xn : n = 0, 1, 2 . . . } on a countable state space.
Assume i is (point) recurrent: P(Xn = i i.o.|X0 = i) = 1. If j is a state such
that p(n)

i j > 0 for some n, prove that (i) the probability that j is reached starting
from i is one, and (ii) j is (point) recurrent. [Hint: Consider visiting j between
successive returns to i as i.i.d. events.]

6. Check the conditions for the application of the optional sampling theorem
(Theorem 3.8(b)) for deriving (11.37)–(11.41). [Hint: For Brownian motion
{Y x

t : t ≥ 0} with a drift μ and diffusion coefficient σ2 > 0, let Z1 = Y x
1 − x ,

Zk = Y x
k − Y x

k−1(k ≥ 1). Then Z1, Z2, . . . are i.i.d. and Corollary 3.10 applies
with a = c, b = d. This proves P(τ < ∞) = 1. The uniform integrability of
{Y x

t∧τ : t ≥ 0} is immediate, since c ≤ Y x
t∧τ ≤ d for all t ≥ 0.]

7. Let u′ < 0 < v′. Show that if F = Fu′,v′ is the mean-zero two-point distribu-
tion concentrated at {u′, v′}, then P((U, V ) = (u′, v′)) = 1 in the Skorokhod
embedding of F defined by γ(du dv).

8. Given any distribution F on R, let τ := inf{t ≥ 0 : Bt = Z}, where Z is
independent of B = {Bt : t ≥ 0} and has distribution F . Then Bτ = Z . One can
thus embed a random walk with (a nondegenerate) step distribution F (say, with
mean zero) in different ways. However, show that Eτ = ∞. [Hint: The stable
distribution of τa := inf{t ≥ 0 : Bt = a} has infinite mean for every a �= 0. To
see this, use Corollary 10.6 to obtain P(τa > t) ≥ 1−2P(Bt > a) = P(|Bt | ≤
a) = P(|B1| ≤ a√

t
), whose integral over [0,∞) is divergent.]

9. Prove that ϕ(λ) := E exp{λτu,v} ≤ E exp{λτ−a,a} < ∞ for λ < λ0(a) for
some λ0(a) > 0, where a = max{−u, v}. Here τu,v is the first passage time of
standard Brownian motion to {u, v}, u < 0 < v. [Hint: Use Corollary 3.10 with
Xn := Bn − Bn−1 (n ≥ 1).]

10. (i) Show that for every λ ≥ 0, Xt := exp{√2λBt −λt}, t ≥ 0, is a martingale.

(ii) Use the optional sampling theorem to proveϕ(λ) = 2
(
e
√
2λ a + e−√

2λ a
)−1

,

where ϕ(λ) = E exp(λτ−a,a), in the notation of the previous exercise.
11. Refer to the notation of Theorem 11.8.

(i) Prove that Ti − Ti−1 (i ≥ 1) has a finite moment-generating function in a
neighborhood of the origin if F has compact support.

http://dx.doi.org/10.1007/978-3-319-47974-3_2
http://dx.doi.org/10.1007/978-3-319-47974-3_3
http://dx.doi.org/10.1007/978-3-319-47974-3_3
http://dx.doi.org/10.1007/978-3-319-47974-3_10
http://dx.doi.org/10.1007/978-3-319-47974-3_3
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(ii) Prove that ET 2
1 < ∞ if

∫ |z|2F(dz) < ∞. [Hint: τu,v ≤ τ−a,a with a :=
max{−u, v} ≤ v − u and Eτ 2

U,V ≤ cθ
∫
(v − u)2F+(dv)F−(du) for some

c > 0.]

12. In Theorem 11.7 suppose F is a symmetric distribution. Let Xi (i ≥ 1) be i.i.d.
with common distribution F and independent of {Bt : t ≥ 0}. Let T̃1 := inf{t ≥
0 : Bt ∈ {−X1, X1}, T̃i := T̃i−1 + inf{t ≥ 0 : BT̃i−1+t ∈ {−Xi , Xi }} (i ≥ 1),
T̃0 = 0.

(i) Show that BT̃i − BT̃i−1
(i ≥ 1) are i.i.d. with common distribution F , and

T̃i − T̃i−1 (i ≥ 1) are i.i.d.
(ii) Prove that ET̃1 = EX2

1, and ET̃ 2
1 = cEX4

1, where c is a constant to be
computed.

(iii) Compute Ee−λT̃1 for λ ≥ 0.

13. Prove that Ti (i ≥ 0) defined by (11.47) are {Ft }–stopping times, where Ft is
as defined there.

14. (i) Let Zk , k ≥ 1, be i.i.d. with finite variance. Prove that n− 1
2 max{|Zk | :

1 ≤ k ≤ n} → 0 in probability as n → ∞. [Hint: nP(Z1 >
√
n ε) ≤

1
ε2
EZ2

11[|z : 1 ≥ √
n ε], ∀ ε > 0].

(ii) Derive (11.47). [Hint: εn = max1≤k≤n | Tkk − 1| · k
n ≤ {

max1≤k≤k0 | Tkk − 1|} ·
k0
n + maxk≥k0

∣
∣ Tk
k − 1

∣
∣ ∀ k0 = 1, 2, . . . .]



Chapter XII
A Historical Note on Brownian Motion

Historically, the mathematical roots of Brownian motion lie in the central limit the-
orem (CLT). The first CLT seems to have been obtained in the early Eighteenth
century by DeMoivre for the normal approximation to the binomial distribution (i.e.,
sum of i.i.d. Bernoulli 0 or 1-valued random variables).1 In his treatise a century
later, Laplace2 obtained the far reaching generalization to sums of arbitrary inde-
pendent and identically distributed random variables having finite moments of all
orders. Although by the standards of rigor of present day mathematics, Laplace’s
derivation would not be considered complete, the essential ideas behind this remark-
able result may be found in his work. The first rigorous proof3 of the CLT was
given by Lyapounov yet another 100years later using characteristic functions under
the Lyapounov condition for sums of independent, but not necessarily identically
distributed, random variables having finite (2 + δ)th moments for some δ > 0. This
moment condition was relaxed in 1922 by Lindeberg4 to prove themore general CLT,
and in 1935, Feller5 showed that the conditions are necessary (as well as sufficient),
under uniform asymptotic negligibility of summands. The most popular form of the
CLT is that for i.i.d. summands with finite second moments due to Paul Lévy.6

There are not many results in mathematics that have had such a profound
impact as the CLT, not only on probability and statistics but also on many other
branches ofmathematics, aswell as the natural and physical sciences and engineering

1DeMoivre (1718).
2Laplace, P.-S. (1878–1912).
3Lyapunov, A.M. (1901). Nouvelle forme du théorème sur la limite de probabilités. Mem. Acad.
Imp. Sci. St.-Petersberg 12 (5), 1–24.
4Lindeberg, J.W. (1922). Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeit-
srechnung. Math. Zeitschr. 15, 211–225.
5Feller, W. (1935). Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung. Math.
Zeitschr. 40, 521–559. Also, ibid (1937), 42, 301–312.
6Lévy, P. (1925).
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as a whole. The idea of a stochastic process {Bt : t ≥ 0} that has independent
Gaussian increments also derives from it. One may consider an infinite i.i.d.
sequence {Xm : m ≥ 1}with finite secondmoments as in the CLT, and consider sums
Sn, S2n − Sn, S3n − S2n, . . . , over consecutive disjoint blocks of n of these random
variables Xm having mean μ and variance σ2. The block sums are independent, each
approximately Gaussian with mean nμ and variance nσ2. If one scales the sums
as Sn−nμ

σ
√

n
, S2n−Sn−nμ

σ
√

n
. . . , then in the limit one should get a process with independent

Gaussian increments. If time is scaled so that one unit of time in the newmacroscopic
scale is equal to n units of time in the old scale, the B1, B2 − B1, B3 − B2, . . . are
independent Gaussian Φ0,1. Brownian motion is precisely such a process, but con-
structed for all times t ≥ 0 and having continuous sample paths. The conception of
such a process was previously introduced in a PhD thesis written in the year 1900
by Bachelier7 as a model for the movements of stock prices.

Brownian motion is named after the Nineteenth century botanist Robert Brown,
who observed under the microscope perpetual irregular motions exhibited by small
grains or particles of the size of colloidal molecules immersed in a fluid. Brown8

himself credited earlier scientists for having made similar observations. After some
initial speculation that the movements are those of living organisms was discounted,
the movements were attributed to inherent molecular motions. Independently of this
debate and unaware of the massive experimental observations that had been made
concerning this matter, Einstein9 published a paper in 1905 in which he derived the
diffusion equation

∂C(t, x)

∂t
= D

(
∂2C(t, x)

∂x2
1

+ ∂2C(t, x)

∂x2
2

+ ∂2C(t, x)

∂x2
3

)

, x = (x1, x2, x3),

(12.1)
for the concentration C(t, x) of large solute molecules of uniform size and spherical
shape in a stationary liquid at a point x at time t . The argument (at least implicit
in the above article) is that a solute molecule is randomly displaced frequently by
collisions with the molecules of the surrounding liquid. Regarding the successive
displacements as independent (and identically distributed) withmean vector zero and
dispersion matrix Diag(d, d, d), one deduces a Gaussian distribution of the position

7Bachelier, L. (1900). Théorie de la spéculation. Ann. Sci. École Norm. Sup. 17, 21–86; also see
M. Davis & A. Etheridge (2006) for an English translation with a forward by Paul Samuelson.
8Brown, R. (1828). A brief account of microscopical observations made in the months of June, July,
and August, 1827, on the particles contained in the pollen of plants; and on the general existence
of active molecules in organic and inorganic bodies. Philos. Magazine N.S. 14, 161–173.
9Einstein, A. (1905): Uber die von der molekularkinetischen Theorie der Warme geforderte Bewe-
gung von in ruhenden Flussigkeiten suspendierten Teilchen, Ann. der Physik, 322 (8), 549560.
Similar discoveries of Brownian motion were being made in Poland by the physicist Marian Smolu-
choski who published his basic results in the paper von Smoluchowski, M. (1906): Zur kinetischen
Theorie der Brownschen Molekularbewegung und der Suspensionen, Ann. der Physik, 326 (14),
756–780.
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of the solute molecule at time t with mean vector zero and a dispersion matrix10

2t Diag(D, D, D), where 2D = f d with f as the average number of collisions, or
displacements, per unit time. The law of large numbers (assuming that the different
solute molecules move independently) then provides a Gaussian concentration law
that is easily seen to satisfy the Eq. (12.1), away from the boundary. It is not clear that
Laplace was aware of the profound fact that the operator Δ = ∑3

1 ∂2/∂x2
i in (12.1)

bearing his name is intimately related to the central limit theorem he had derived.
Apprised of the experimental evidence concerning the so-called Brownian move-

ment, Einstein titled his next article11 on the subject, “On the theory of the Brownian
movement.” In addition to deriving the form of the Eq. (12.1), Einstein used classical
thermodynamics, namely the Maxwell–Boltzmann steady-state (Gaussian) velocity
distribution and Stokes’ law of hydrodynamics (for the frictional force on a spherical
particle immersed in a liquid) to express thediffusion coefficient D by D = kT/3πηa,
where a is the radius of the spherical solute molecule, η is the coefficient of viscos-
ity, T is the temperature, and k is the Boltzmann constant. In particular, the physical
parameters are embodied in a statistical parameter. Based on this derivation, Jean
Baptiste Perrin12 estimated k or, equivalently, Avogadro’s number, for which he was
awarded the Nobel Prize in 1926.Meanwhile, in 1923,Wiener13 proved that onemay
take Brownian paths to be continuous almost surely. That is, he constructed the prob-
ability measure Q, the so-called Wiener measure on C[0,∞), extending the normal
distribution to infinitely many dimensions in the sense that the coordinate process
Xt (ω) := ω(t), ω ∈ C[0,∞), t ≥ 0, has independent Gaussian increments. Specif-
ically, Xt+s − Xt has the normal distribution Φ0,s ≡ N (0, s), ∀ 0 ≤ t < ∞, s > 0,
and {Xti+1 − Xti : i = 1, 2, . . . , m − 1} are independent ∀ 0 ≤ t1 < t2 < · · · < tm (∀
m > 1). This was a delicate result, especially since the Brownian paths turned out
to have very little smoothness beyond continuity. Indeed, in 1933 it was shown by
Paley, Wiener, and Zygmund14 that with probability one, a Brownian path is contin-
uous but nowhere differentiable. This says that a Brownian particle has no velocity,
confirming some remarkable empirical observations in the early physics of Brownian
motion. In his monograph “Atoms,” Perrin exclaims: “The trajectories are confused
and complicated so often and so rapidly that it is impossible to follow them; the trajec-
tory actually measured is very much simpler and shorter than the real one. Similarly,
the apparent mean speed of a grain during a given time varies in the wildest way
in magnitude and direction, and does not tend to a limit as the time taken for an
observation decreases, as may be easily shown by noting, in the camera lucida, the
positions occupied by a grain from minute to minute, and then every 5 seconds, or,

10We have generally adapted a convention in which D is referred to as the diffusion coefficient,
however this may not be universally held.
11Einstein, A. (1906). On the theory of the Brownian movement. Ann. der Physik 19, 371–381. An
English translation appears in Fr̈uth (1954).
12Jean Perrin (1990), (French original, 1913).
13Wiener, N. (1923). Differential space. J. Math. Phys. 2, 131–174.
14Paley, R.E.A.C.,Wiener, N. and Zygmund, A. (1933). Notes on random functions.Math. Zietschr.
37, 647–668.
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better still, by photographing them every twentieth of a second, as has been done by
Victor Henri Comandon, and de Broglie when kinematographing the movement. It
is impossible to fix a tangent, even approximately, at any point on a trajectory, and
we are thus reminded of the continuous underived functions of the mathematicians.”

A more dynamical theory of Brownian (particle) motion was given by Ornstein
and Uhlenbeck,15 following the turn-of-the-century work of Langevin.16

The so-called Langevin equation used by Ornstein and Uhlenbeck is a stochastic
differential equation given (in one dimension) by

dv(t) = −βv(t)dt + σd B(t), (12.2)

where v(t) is the velocity of a Brownian molecule of mass m,−mβv is the frictional
force on it, andσ2 = 2β2D (D as above). By integrating v(t) one gets a differentiable
model of the Brownian molecule. If β and σ2 → ∞ such that s2/2β2 = D remains
a constant, then the position process converges to Einstein’s model of Brownian
motion (with diffusion coefficient 2D), providing a scale range for which the models
approximately agree.17 Within the framework of stochastic differential equations one
sees that the steady-state velocity distribution for the Langevin equation is aGaussian
distribution. On physical grounds this can be equated with the Maxwell–Boltzmann
velocity distribution known from statistical mechanics and thermodynamics. In this
way one may obtain Einstein’s fundamental relationship between the physical para-
meters and statistical parameters mentioned above.

Brownian motion is a central notion throughout the theoretical development of
stochastic processes and its applications. This rich history and its remarkable con-
sequences are brought to life under several different guises in major portions of the
theory of stochastic processes.

15Uhlenbeck, G.E. and Ornstein, L.S. (1930). On the theory of Brownian motion. Phys. Rev. 36,
823–841; reprinted in Wax (1954). Also see Chandrasekhar, S. (1943). Stochastic problems in
physics and astronomy. Rev. Modern Physics 15, 2–91; reprinted in Wax (1954).
16Langevin, P. (1908). Sur La théorie du movement brownien. C.R. Acad. Sci. Paris 146, 530–533.
17For a complete dynamical description see Nelson, E. (1967).



Chapter XIII
Some Elements of the Theory of Markov
Processes and Their Convergence
to Equilibrium

Special examples of Markov processes, such as random walks in discrete time and
Brownian motion in continuous time, have occurred many times in preceding chap-
ters as illustrative examples of martingales and Markov processes. There has also
been an emphasis on their recurrence and transience properties. Moreover general
discrete parameter Markov processes, also called Markov chains, were introduced
in Chapter IX, and their important strong Markov property is derived in Chapter XI.
In the present chapter, we begin afresh and somewhat differently with a focus on the
existence of, and convergence to, a unique steady state distribution.

Suppose that X = {X0, X1, X2, . . . } is a (discrete parameter) sequence of ran-
dom variables on a probability space (Ω,F , P) taking values in a measurable
space (S,S). The Markov property refers to the special type of statistical depen-
dence that arises when the conditional distribution of the after-n sequence Xn+ =
{Xn, Xn+1, . . . } given σ(X0, X1, . . . , Xn) coincides with that given σ(Xn). If the
sequence X has the Markov property then we refer to it as a Markov chain with
state space (S,S). The initial distribution μ of the initial state X0 is a probability
on (S,S), and the one-step transition probabilities are defined by

pn(x, B) = P(Xn+1 ∈ B|X0, . . . , Xn), x ∈ S, B ∈ S, on [Xn = x], n ≥ 0.
(13.1)

The case in which these transition probabilities do not depend explicitly on n is
referred to as that of homogeneous or stationary transition probabilities. Unless
otherwise specified, we only consider Markov chains with homogeneous transition
probabilities in this chapter.

Suppose X is a Markov chain having stationary one-step transition probabilities
p(x, B) ≡ pn(x, B). Then, when the initial distribution is μ,

P(Xn ∈ B) =
∫

S
p(n)(x, B)μ(dx), B ∈ S, (13.2)

© Springer International Publishing AG 2016
R. Bhattacharya and E.C. Waymire, A Basic Course in Probability Theory,
Universitext, DOI 10.1007/978-3-319-47974-3_XIII
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where p(n)(x, B) is then-step transitionprobabilitydefined recursively as p(1)(x, B)

= p(x, B), and

p(n+1)(x, B) =
∫

S
p(n)(y, B)p(x, dy), B ∈ S, x ∈ S, (n = 1, 2, . . . ). (13.3)

Given an initial distribution μ and a transition probability p(x, B), (x ∈ S, B ∈ S),
a canonical construction of the Markov chain on the sequence space (S∞,S⊗∞)

is discussed in Chapter IX. We denote this distribution by Qμ, and write Qx in
place of Qδx , x ∈ S. The Markov property may then be stated as: The conditional
distribution ofXn+ given σ(X0, X1, . . . , Xn) is QXn . That is, on the subset [Xn = x],
this conditional distribution is Qx , namely, the distribution of the Markov chain
starting at x ∈ S.

Definition 13.1 A probability π on (S,S) is said to be an invariant distribution if

∫

S
p(x, B)π(dx) = π(B), ∀B ∈ S. (13.4)

This Definition 13.1 says that if X0 has distribution π then so does X1 and, by
iteration, Xn has distribution π for all n ≥ 1. In fact the initial distribution π makes
the Markov chain a stationary process in the sense that the processXn+ has the same
distribution as X for each n ≥ 1; Exercise 11.

Two of the most familiar examples of Markov chains are the following:

Example 1 (Independent Sequence) Let X1, X2, . . . be an i.i.d. sequence of S-
valued random variables with common distribution π, and let X0 be an S-valued
random variable, independent of this sequence, and having distribution μ. Then
X = {X0, X1, X2, . . . } is aMarkov chainwith initial distributionμ and one-step tran-
sition probabilities p(x, B) = π(B), B ∈ S, x ∈ S. Clearly π is the unique invariant
distribution defined by (13.4).

Example 2 (General Random Walk on R
k) Let {Yn : n ≥ 1} be an i.i.d. sequence

with common distribution π onRk , and let Y0 be anRk-valued random variable inde-
pendent of this sequence. These define the displacements of the random walk. The
position process for the random walk is defined by X0 = Y0, Xn = Y0 + Y1 + · · · +
Yn, n ≥ 1. Then X = {X0, X1, X2, . . . } is a Markov chain with initial distribution
that of Y0 and transition probabilities p(x, B) = π(B − x), x ∈ S, B ∈ B(S). This
Markov chain has no invariant probability if π({0}) < 1.

The following are some basic issues concerning invariant probabilities.

• Existence; not always, S = {1, 2, . . . }, p(x, {x + 1}) = 1, x = 1, 2 . . . . (also see
Exercise 1)

• Uniqueness; not always, S = {1, 2}, p(x, {x}) = 1, x = 1, 2. (also seeExercise 5).
• Convergence; not always S = {1, 2}, p(1, {2}) = p(2, {1}) = 1. (also see Exam-
ple 3 and Exercises 3).

http://dx.doi.org/10.1007/978-3-319-47974-3_9


XIII Some Elements of the Theory of Markov … 213

• Rates of convergence; e.g., exponential versus algebraic bounds on an appropriate
metric? (see Theorem 13.1 below, Exercise 3(d)).

The following theorem provides a benchmark result that eliminates the obstruc-
tions captured by the counterexamples. It covers a broad range of examples but is far
from exhaustive.

Theorem 13.1 (Doeblin Minorization) Assume that there is a nonzero measure λ
on (S,S) and an integer N ≥ 1 such that

p(N )(x, B) ≥ λ(B), ∀x ∈ S, B ∈ S.

Then, there is a unique invariant probability π such that

sup
x∈S

sup
B∈S

|p(n)(x, B) − π(B)| ≤ (1 − δ)[
n
N ], n = 1, 2, . . . , (13.5)

where δ = λ(S).

Proof Notice that if λ(S) = 1 then, considering that the minorization inequal-
ity applies to both B and Bc, it follows that p(N )(x, B) = λ(B), x ∈ S, B ∈ S
is the invariant probability; use (13.3) to see p(n)(x, B) = λ(B) does not depend
on x ∈ S, and both sides of (13.5) are zero. Now assume δ = λ(S) < 1. Let d
denote the total variation metric on P(S). Then recall Proposition 1.9 of Chapter I
that (P(S), d) is a complete metric space and d1(μ, ν) := sup{| ∫S f dμ − ∫

S f dν| :
f ∈ B(S), | f | ≤ 1} = 2d(μ, ν), for all μ, ν ∈ P(S). Define T ∗ : P(S) → P(S) by
T ∗μ(B) = ∫

S p(x, B)μ(dx), B ∈ B(S). One may use (13.5) to write

p(N )(x, B) = δγ(B) + (1 − δ)q(x, B), (13.6)

where γ(B) := λ(B)

δ
, and q(x, B) := p(N )(x,B)−λ(B)

1−δ
are both probability measures. It

follows that for all measurable f, | f | ≤ 1, and μ, ν ∈ P(S),

∫

S
f (y)T ∗Nμ(dy) −

∫

S
f (y)T ∗Nν(dy)

=
∫

S

∫

S
f (y)p(N )(x, dy)μ(dx) −

∫

S

∫

S
f (y)p(N )(x, dy)ν(dx)

= (1 − δ)[
∫

S

∫

S
f (y)q(x, dy)μ(dx) −

∫

S

∫

S
f (y)q(x, dy)ν(dx). (13.7)

This implies d1(T ∗Nμ, T ∗Nν) ≤ (1 − δ)d1(μ, ν). Iterating this one obtains (by
induction)

d1(T
∗Nkμ, T ∗Nkν) ≤ (1 − δ)kd1(μ, ν), k ≥ 1. (13.8)

Next observe that ∀μ ∈ P(S), the sequence {T ∗Nkμ : k ≥ 1} is Cauchy for the met-
ric d1 since T ∗N (k+r)μ = T ∗Nk(T ∗Nrμ), and therefore has a limit π which is the

http://dx.doi.org/10.1007/978-3-319-47974-3_1
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unique invariant probability. Takeμ(·) = p(x, ·), and ν = π in (13.8) to complete the
proof. �

The following is a simple consequence.

Corollary 13.2 Suppose that S = {1, 2, . . . , M} is a finite set and {X0, X1, . . . } is
a Markov chain on S with one-step transition probabilities P(Xn+1 = j |Xn = i)
given by the transition probability matrix p = ((pi j ))i, j∈S . If there is an N such
that all entries of pN = ((p(N )

i j ))1≤i, j≤M are positive, then there is a unique invariant

probability π on S, and p(n)
i · converges to π exponentially fast and uniformly for all

i ∈ S.

Proof Define λ(B) = ∑
j∈B λ({ j}),where λ({ j}) = mini∈S p(N )

i j , j ∈ S, and the
empty sum is defined to be zero. Then for each B ⊂ S,

p(N )(i, B) =
∑

j∈B
p(N )
i j ≥ λ(B).

The uniform exponential convergence follows from (13.5). �
Example 3 (Simple Symmetric Random Walk with Reflection) Here S = {0, 1, . . . ,
d − 1} for somed > 2, and pi,i+1 ≡ p(i, {i + 1}) = 1

2 = p(i, {i − 1}) ≡ pi,i−1, 1 ≤
i ≤ d − 2, and p0,1 = pd−1,d−2 = 1. The unique solution to (13.4) is π({0}) =
π({d − 1}) = 1

2(d−1) , and π({i}) = 1/(d − 1), 1 ≤ i ≤ d − 2. However, the hypoth-

esis of Corollary 13.2, (or that of Theorem 13.1), does not hold. Indeed p(N )
i j = 0 if

N and |i − j | have opposite parity; also see Exercise 4 in this regard.
Example 4 (Fluctuation-Dissipation Effects) Let θ ∈ (0, 1) and let ε1, ε2, . . . be
an i.i.d. sequence of Gaussian mean zero, variance σ2 random variables. Define a
Markov process on S = R by Xn+1 = θXn + εn+1, n = 0, 1, 2, . . . for an initial state
X0 = x ∈ S. Then

Xn =
n−1∑

j=0

θ jεn− j =dist
n−1∑

j=0

θ jε j , n = 1, 2, . . . .

In particular, the limit distribution is Gaussian with mean zero and variance 1
1−θ2

σ2.

Remark 13.1 Theorem 13.1, Corollary 13.2, and Example 4 concern so-called irre-
ducible Markov chains, in the sense that for each x ∈ S there is a positive integer
n = n(x) such that the n-step transition probability p(n)(x, B) is positive for every
B ∈ S such that λ(B) > 0, for some nonzero reference measure λ on (S,S). On the
other hand, the Markov chain in Example 3 is not irreducible.

While the time asymptotic theory for irreducible Markov processes is quite well-
developed, there are important examples for which irreducibility is too strong an
hypothesis. The following example is presented to illustrate some useful theory in
cases of non-irreducible Markov processes.
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Example 5 (A Fractional Linear Dynamical System; Products of RandomMatrices)
Let S = [0,∞) and let An, Bn, n = 1, 2, . . . be an i.i.d. sequence positive random
variables with E log A1 < 0. Define a Markov chain on S by X0 = x ∈ S, and

Xn+1 = An+1Xn

An+1Xn + Bn+1
, n = 0, 1, 2 . . . .

Then π = δ0 is the unique invariant distribution. To see this observe that the compo-
sition of two fractional linear maps α1 ◦ α2(x) = α1(α2(x)), α j (x) = a j x

a j x+b j
, x ≥

0, j = 1, 2, may be identified with the result of matrix multiplications of the two

matrices

(
a j 0
a j b j

)

, j = 1, 2, to compute the composite coefficients.1 In particular,

Xn may be identified as an n-foldmatrix product whose diagonal entries are each dis-

tributed as
∏n

j=1 A j = exp{n
∑n

j=1 log A j

n } ∼ exp{nE log A1} → 0 almost surely, and
hence in distribution, as n → ∞. The upper off-diagonal entry is zero, and the
lower off-diagonal entry is

∑n
j=1

∏ j−1
i=1 Bi

∏n
i= j Ai . Since E log A1 < 0, one has

d
dhEAh

1 = EAh
1 log A1 = E log A1 < 0 at h = 0, and EAh

1 = 1 at h = 0. One may
choose sufficiently smallh ∈ (0, 1) such thatEAh

1 < 1. For such a choice one thenhas

from sublinearity that E
( ∑n

j=1

∏ j−1
i=1 Bi

∏n
i= j Ai

)h ≤ n(EAh
1)

n = nen logEAh
1 → 0

as n → ∞. In fact by this, Chebyshev’s inequality and the Borel–Cantelli argument∑n
j=1

∏ j−1
i=1 Bi

∏n
i= j Ai → 0 a.s. as n → ∞, as well.

The previous two examples are illustrations of Markov processes that arise as
iterations of i.i.d. random maps, or so-called random dynamical systems.2

Example 6 (Ehrenfest urnmodel)The followingmodel for heat exchangewas intro-
duced by P. and T. Ehrenfest in 1907, and later by Smoluchowski in 1916, to explain
an apparent paradox that threatened to destroy the basis of Boltzmann’s kinetic the-
ory of matter. In the kinetic theory, heat exchange between two bodies in contact is a
random process involving the exchange of energetic molecules, while in thermody-
namics it is an orderly irreversible progression toward an equilibrium state in which
the (macroscopic) temperatures of two bodies in contact become (approximately)
equal. The main objective of kinetic theory was to explain how the larger scale ther-
modynamic equilibrium could be achieved, while allowing for statistical recurrence
of the random process. In fact, Zermelo argued forcefully that recurrence would
contradict thermodynamic irreversibility. However, Boltzmann was of the view that
the time required by the random process to pass from the equilibrium state to one of

1The authors thank our colleague Yevgeniy Kovchegov for suggesting this example to illustrate
products of random matrices. Such examples as this, including the positivity constraints, arise
naturally in the context of mathematical biology.
2A comprehensive treatment of such Markov processes can be found in Bhattacharya, R., and M.
Majumdar (2007). Limit distributions of products of random matrices has been treated in some
generality by Kaijser, T.(1978): A limit theorem for Markov chains on compact metric spaces
with applications to randommatrices,Duke Math. J. 45, 311–349; Kesten, H. and F. Spitzer (1984):
Convergence in distribution of products of randommatrices, Z.Wahrsch. Verw. Gebiete 67 363–386.
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macroscopic nonequilibrium would be so large that such recurrence would be of no
physical significance. Not all physicists were convinced of this reasoning.

So enter the Ehrenfests. Suppose that 2d balls labelled 1, 2, . . . 2d are distrib-
uted between two boxes A and B at time zero. At each instant of time, a ball label
is randomly selected, independently of the number of balls in either box, and that
ball is moved from its current box to the other box. Suppose that there are ini-
tially Y0 balls in box A, and let Yn denote the number of balls in box A at the
nth stage of this process. Then one may check that Y = {Y0,Y1, . . . } is a Markov
chain on the state space S = {0, 1, 2, . . . , 2d} with one-step transition probabilities
p(y, y + 1) = 2d−y

2d , p(y, y − 1) = y
2d , p(y, z) = 0 otherwise. Moreover, Y has a

unique invariant probability π with mean d, given by the binomial distribution with
parameters 1

2 , 2d, i.e.,

π j =
(
2d

j

)

2−2d , j = 0, 1, . . . , 2d.

Viewing the average state d of the invariant distribution π as thermodynamic
equilibrium, the paradox is that, as a result of recurrence of the Markov chain, the
state j = 0 of extreme disequilibrium is certain to eventually occur. The paradox can
be resolved by calculating the average length of time to pass from j = d to j = 0 in
this kinetic theoretical model.3

The following proposition provides a general framework for such calculations.

Proposition 13.3 (Birth–Death Markov Chain with Reflection) Let Y = {Yn : n =
0, 1, 2, . . . }be aMarkov chain on the state space S = {0, 1, . . . , N }having stationary
one-step transition probabilities pi,i+1 = βi , i = 0, 1, . . . , N − 1, pi,i−1 = δi , i =
1, 2, . . . , N , p0,1 = pN ,N−1 = 1, and pi j = 0 otherwise, where 0 < βi = 1 − δi <

1. Let
Tj = inf{n ≥ 0 : Yn = j}, j ∈ S,

denote the first-passage time to state j ∈ S. Then

mi = Ei T0 =
i∑

j=1

β jβ j+1 · · · βN−1

δ jδ j+1 · · · δN−1
+

i∑

j=1

N−1∑

k= j

β j · · ·βk−1βk

δ jδ j+1 · · · δkβk
, 1 ≤ i ≤ N − 1.

Proof The idea for the proof involves a scale-change technique that is useful for
manyMarkov chains that do not skip over adjacent states; including one-dimensional
diffusions having continuous paths. Specifically, one relabels the states j → u j by

3The original calculations of the Ehrenfests and Smoluchowski were for the mean recurrence times.
Such calculations are easily made from the general mean return-time formula Ei τi = 1

πi
, where

τi = inf{n ≥ 1 : Yn = i}, i ∈ S, for irreducible, ergodic Markov chains. In particular, using the
formula for π and Stirling’s formula, E0τ0 ∼ 220,000, Edτd ∼ 100

√
π, for the same numerical

values for the number of balls and transition rate; e.g., see Kac (1947): Randomwalk and the theory
of Brownian motion, Am. Math. Monthly, 54(7), 369–391. The mean-return time formula and more
general theory can be found in standard treatments of discrete parameter Markov processes.
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an increasing sequence 0 = u0 < u1 < · · · < uN = 1 determined by the requirement
that the probabilities of reaching one boundary before another, starting in-between, is
proportional to the respective distance to the boundary, as in the examples of simple
symmetric randomwalk onZ, and one-dimensional standard Brownianmotion. That
is,

ψ(i) = P(Y reaches 0 before N|Y0 = i) = uN − ui
uN − u0

, i ∈ S.

Since
ψ(i) = βiψ(i + 1) + δiψ(i − 1), 1 ≤ i ≤ N − 1,

and ψ(0) = 1,ψ(N ) = 0, one has

ui+1 − ui = δi

βi
(ui − ui−1) = δ1 · · · δi

β1 · · · βi
(u1 − u0). (13.9)

Thus, one obtains the appropriate scale function

u j+1 = 1 +
j∑

i=1

δ1 · · · δi
β1 · · ·βi

, 1 ≤ j ≤ N − 1.

The transformedMarkov chain uY is said to be on natural scale. Nowwritem(u j ) =
m j , j ∈ S.

{m(u j+1) − m(u j )}β j − {m(u j ) − m(u j−1)}δ j = −1, 1 ≤ j ≤ N − 1, (13.10)

with boundary conditions

m(u0) = m(0) = 0, m(uN ) − m(uN−1) = 1.

Using (13.9), one has

m(u j+1) − m(u j )

u j+1 − u j
− m(u j ) − m(u j−1)

u j − u j−1
= −β0β1 · · · β j−1

δ1δ2 · · · δ j
, 1 ≤ j ≤ N − 1.

Summing over j = i, i + 1, . . . , N − 1 and using the boundary conditions, one has

(uN − uN−1)
−1 − m(ui ) − m(ui−1)

ui − ui−1
= −

N−1∑

j=i

β0β1 · · · β j−1

δ1δ2 · · · δ j
, 1 ≤ i ≤ N − 1.

This and (13.10) lead to
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m(ui ) − m(ui−1) = βiβi+1 · · ·βN−1

δiδi+1 · · · δN−1
+

N−1∑

j=i

βi · · · β j−1β j

δi · · · δ jβ j
, 1 ≤ i ≤ N − 1.

The factor β j/β j was introduced to accommodate the term corresponding to j = i .
The asserted formula now follows by summing over i , using m(u0) = 0. �

In the application to the Ehrenfest model one obtains

md =
d∑

j=1

(2d − j)!( j − 1)!
(2d − 1)! +

d∑

j=1

2d−1∑

k= j

(2d − j)!( j − 1)!
(2d − k)!k! = 22d

2d
(1 + O(

1

d
)),

in the limit as d → ∞. For d = 10, 000 balls and an exchange rate of one ball per
second, it follows that md = 106000 years. The companion calculation of the mean
time to thermodynamic equilibrium from a state far away,

m̃0 = E0Td ≤ d + d log d + O(1), d → ∞, (13.11)

is left as Exercise 6. For the same numerical values one obtains from this that
m̃0 ≤ 29 h. In particular, it takes about a day on average for the system to reach
thermodynamic equilibrium from a state farthest away, but it takes an average time
that is inconceivably large for the system to go from a state of thermodynamic equi-
librium to the same state far from equilibrium.

We saw that Brownian motion is an example of a continuous parameter Markov
process having continuous sample paths. More generally, any right-continuous sto-
chastic process X = {X (t) : t ≥ 0} having independent increments has the Markov
property since for 0 ≤ s < t , the conditional distribution of X (t) = X (s) + X (t) −
X (s) given σ(X (u) : 0 ≤ u ≤ s) is the same as that given σ(X (s)). In view of the
independence of X (t) − X (s) and σ(X (u) : 0 ≤ u ≤ s), the former is the distribu-
tion of x + X (t) − X (s) on [X (s) = x]. If the Markov process is homogeneous, i.e.,
the conditional distribution of X (t + s) given σ(X (s)) does not depend on s, then
this distribution is the transition probability p(t; x, dy) on [X (s) = x], namely the
distribution of X (t) when X (0) = x . Exercise 12.

The following is another example of a continuous parameter Markov process.

Example 7 (Ornstein–Uhlenbeck process) The Ornstein–Uhlenbeck process pro-
vides an alternative to the Brownian motion model for the molecular diffusion of a
suspended particle in a liquid. It is obtained by considering the particle’s velocity
rather than its position. Considering one coordinate, say V = {V (t) : t ≥ 0}, one
assumes that the motion is driven by a combination of inertial drag and the momen-
tum provided by random bombardments by surrounding molecules. Specifically, in
a small amount of time h > 0,

V (t + h) − V (t) ≈ −βV (t)h + σ(B(t + h) − B(t)), t ≥ 0,
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where β > 0 is a constant drag coefficient, σ2 > 0 is the molecular diffusion coef-
ficient, and B denotes standard Brownian motion. The frictional term embodies
Stokes law from fluid dynamics which asserts that the frictional force decelerating a
spherical particle of radius r > 0, mass m, is given by

β = 6πrη

m
,

where η > 0 is the coefficient of viscosity of the surrounding fluid. To achieve this
modeling hypothesis one may consider the integrated form in which V is specified as
a process with continuous sample paths satisfying the so-called Langevin equation

V (t) = −β

∫ t

0
V (s)ds + σB(t), V (0) = u. (13.12)

Theorem 13.4 For each initial state V (0), there is a unique Markov process V with
state space S = R having continuous sample paths defined by (13.12). Moreover, V
is Gaussian with transition probability density

p(t; u, v) = 1
√
2πσ2(1 − e−2βt )

exp{− 1

2σ2(1 − e−2βt )
(v − ue−βt )2}, u, v ∈ R.

Proof The proof is by the Picard iteration method. First define a process V (0)(t) = u
for all t ≥ 0. Next recursively define V (n+1) by

V (n+1)(t) =
∫ t

0
V (n)(s)ds + σB(t), t ≥ 0, n = 0, 1, 2, . . . .

Iterating this equation for n = 1, 2, 3, changing the order of integration as it occurs,
one arrives at the following induction hypothesis

V (n)(t) = u
n∑

j=0

(−βt) j

j ! +
n−1∑

j=1

(−β) jσ

∫ t

0

(t − s) j−1

( j − 1)! B(s)ds + σB(t), t ≥ 0.

(13.13)
Letting n → ∞ one obtains sample pathwise that

V (t) := lim
n→∞ V (n)(t) = e−βt u − βσ

∫ t

0
e−β(t−s)B(s)ds + σB(t), t ≥ 0.

In particular V is a linear functional of the Brownian motion B. That V has contin-
uous paths and is Gaussian follows immediately from the corresponding properties
of Brownian motion. Moreover, this solution is unique. To prove uniqueness, sup-
pose that Y = {Y (s) : 0 ≤ s ≤ T } is another a.s. continuous solution to (13.12) and
consider
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Δ(t) = E(max
0≤s≤t

|X (s) − Y (s)|2), 0 ≤ t ≤ T .

Then,

Δ(T ) ≤ 2β2
E(

∫ T

0
|V (s) − Y (s)|ds)2 ≤ 2β2

∫ T

0
Δ(s)ds. (13.14)

Since t → Δ(t) is nondecreasing on 0 ≤ t ≤ T , applying this inequality to the inte-
grand Δ(s) and reversing the order of integration yields Δ(T ) ≤ (2β2)2

∫ T
0 (T −

s)Δ(s)ds ≤ (2β2T )2

2 Δ(T ). Iterating, one sees by induction that

Δ(T ) ≤ (2β2T )n

n! Δ(T ), n = 2, 3, . . . .

Thus Δ(T ) = 0 and Y = V a.s. on [0, T ]. Since T is arbitrary this establishes the
uniqueness. From uniqueness one may prove the Markov property holds for V as
follows. First, let us note that the solution starting at u at time s, i.e.,

V (s,u)(t) = u − β

∫ t

s
V (s,u)(s)ds + σ(B(t) − B(s)), t ≥ s, (13.15)

can be obtained by Picard iteration as a unique measurable function θ(s, t; u, B(t) −
B(s)), t ≥ s. Since V (t), t ≥ s is a solution starting at u = V (s), i.e.,

V (t) = V (s) − β

∫ t

s
V (r)dr + σ(B(t) − B(s)), 0 ≤ s < t,

it follows from uniqueness that V (t) = θ(s, t; V (s), B(t) − B(s)), t ≥ s. Thus, the
conditional distribution of V (t) given Fs = σ(B(r) : r ≤ s) is the distribution of
θ(x, t; u, B(t) − B(s)) evaluated at u = V (s). Since σ(V (r) : r ≤ s) ⊂ Fs, s ≥ 0,
this proves the Markov property.

Let us now compute the transition probabilities, from which we will also see that
they are homogenous in time. In view of the linearity of the functional θ of Brownian
motion it is clear that the conditional distribution is Gaussian. Thus, it is sufficient
to compute the conditional mean and variance of V (t) started at u = V (s), s < t. In
particular, one obtains

p(t; u, v) =
√

β

πσ2(1 − e−2βt )
exp

{ − β(v − ue−βt )2

σ2(1 − e−2βt )

}

is Gaussian with mean ue−βt and variance σ2

2β (1 − e−2βt ). �

Remark 13.2 A simpler construction of the Ornstein–Uhlenbeck process is given
in Exercise 8 which expresses it as a functional of Brownian motion. The Markov
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property is also immediate from this representation. However, the above derivation
is significant because of its historic relation to physics, in particular, significant in
its role as a precursor to the development of the mathematical theory of stochastic
differential equations. In this regard, the Ornstein–Uhlenbeck example provides an
example of a stochastic differential equation

dV (t) = −βV (t)dt + σdB(t), V (0) = u,

which, because σ is a constant, requires no special calculus to interpret. In fact, the
definition is provided for (13.12) using ordinary Riemann integrals

∫ t
0 V (s)ds of the

(continuous) paths of V . The extension to more general equations of the form

dV (t) = μ(V (t), t)dt + σ(V (t), t)dB(t), V (0) = 0,

in one and higher dimensions is the subject of stochastic differential equations and
Itô calculus to define integrals of the form

∫ t
0 σ(V (s), s)dB(s) for nonconstant inte-

grands σ(V (s), s). K. Itô’s development of a useful calculus in this regard provides
a striking illustration of the power of martingale theory.

Exercise Set XIII

1. (Unrestricted Simple Symmetric Random Walk on Z) Define a transition proba-
bility on S = Z by pi,i+1 = 1

2 = pi,i−1, i ∈ Z. Show that there is not an invariant
probability for this Markov chain.

2. (Uniqueness of an Invariant Probability) (a) Suppose 1
N

∑N
n=1 p

(n)(x, dy) con-
verges, for each x ∈ S, to a probability π(dy) in total variation norm as N → ∞.
Show that π is the unique invariant probability. (b) Suppose that the convergence
in (a) to π(dy) is weak convergence of the probabilities 1

N

∑N
n=1 p

(n)(x, dy) on a
metric space (S,B(S)). Show the same conclusion as in (a) holds if the transition
probability p(x, dy) has the Feller property: Namely, for each bounded, contin-
uous function f on S the function x → ∫

S f (y)p(x, dy), x ∈ S is continuous.
3. (Asymmetric SimpleRandomWalkwithReflection) Let S = {0, 1, . . . , d − 1} for

some d > 2, and for some 0 < p < 1, define pi,i+1 = p, pi,i−1 = 1 − p, 1 ≤
i ≤ d − 2, and p0,1 = 1 = pd−1,d−2. (a) Show that there is a unique invariant
probability and compute it. (b) Show that p(n)

i j = 0 if n and |i − j | have opposite
parity. (c) Show that p̃i, j := p(2)

i, j defines a transition probability on each of
the state spaces S0 = {i ∈ S : i is even}, and S1 = {i ∈ S : i is odd}, and that the
hypothesis of Corollary 13.2 holds for each of these Markov chains. (d) Show
that 1

N

∑N
n=1 p

(n)
i j converges to the unique invariant probabilityπ on S.Moreover,

show that the convergence is exponentially fast as N → ∞, and uniform over
all i, j ∈ S.

4. (Lazy RandomWalk) Suppose the transition probabilities in Exercise 3 are mod-
ified to assign positive probability pii = ε > 0 to each state in S while keeping
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pi,i+1 = pi,i−1 = (1 − ε)/2, 1 ≤ i ≤ d − 2, and p0,1 = pd−1,d−2 = 1 − ε, and
pi, j = 0 if |i − j | > 1. Show thatDoeblin’s Theorem13.1 applies to thisMarkov
chain.

5. (Simple RandomWalk with Absorption) Suppose that the transition probabilities
in Exercise 3 are modified so that p0,0 = p1,1 = 1. Show that there are two
invariant probabilities δ{0} and δ{1}, and hence infinitely many.

6. (Ehrenfest model continued) Calculate m̃0 in (13.11) for the Ehrenfest model by
the following steps:

(i) Write m̃(ui ) = m̃i , 1 ≤ i ≤ d − 1, and show that the same equations as for
m(ui ) apply with boundary conditions m̃(u0) = 1 + m̃(u1), m̃(ud) = 0.

(ii) Summing over j = 1, 3, . . . , d − 1, show that m̃0 = 1 + ∑d−1
j=1

j !
(2d−1)···(2d− j)

+ ∑d−1
j=1

∑ j
k=1

( j+1) j ···(k+2)(k+1)
(2d−k)···(2d− j)( j+1)

(iii) Verify that m̃0 ≤ d + d log d + O(1) as d → ∞.

7. (Stationary Ornstein–Uhlenbeck/Maxwell-Boltzmann Steady State) (a) Show
that the time-asymptotic distribution of the Ornstein–Uhlenbeck process is
Gaussian with mean zero and variance σ2

2β regardless of the initial distribution.

(b) Show that this is the unique invariant distribution of V .4 (c) What general
features do the Erhenfest model and Ornstein–Uhlenbeck diffusion have in com-
mon ? [Hint: Consider the conditional mean and variance of displacements of
the process vn = Yn − d, n = 0, 1, 2, . . . . Namely,E(vn+1 − vn|v0, . . . , vn) and
E((vn+1 − vn)

2|v0, . . . , vn).]
8. (Ornstein–Uhlenbeck process; Time change of Brownian Motion) Assume that

V (0) has the stationary distribution for the Ornstein–Uhlenbeck process. Then
V can be expressed as a time-change of Brownian motion as follows: V (t) =
e−βt B( σ2

2β e
2βt ), t ≥ 0. [Hint: Compute the mean and variance of the Gaussian

transition probability densities.]
9. (Poisson Process) Let T1, T2, . . . be an i.i.d. sequence of exponentially dis-

tributed random variables with intensity λ > 0, i.e., P(T1 > t) = e−λt , t ≥ 0.
Define a counting process N = {N (t) : t ≥ 0} by N (t) = max{n : T1 + · · · +
Tn ≤ t}, t ≥ 0. The random variables T1, T2, . . . are referred to as interar-
rival times of N . Show that N is a continuous parameter Markov process
on the state space S = {0, 1, 2, . . . } with transition probabilities p(t; x, y) =
(λt)y−x

(y−x)! e
−λt , y = x, x + 1, . . . , x = 0, 1, 2, . . . , t ≥ 0. [Hint: N has independent

increments.]
10. (Dilogarithmic Random Walk) The dilogarithmic random walk5 is the mul-

tiplicative random walk on the multiplicative group S = (0,∞) defined by

4The invariant distribution of the Ornstein–Uhlenbeck process is referred to as the Maxwell–
Boltzmann distribution. The physics of fluids requires that the variance be given by the physical
parameter κT

m where κ is Boltzmann constant, T is absolute temperature, and m is the mass of the
particle.
5This random walk plays a role in probabilistic analysis of the incompressible Navier–Stokes equa-
tions introduced by Y. LeJan, A. S. Sznitman (1997): Stochastic cascades and three-dimensional
Navier–Stokes equations. Probab. Theory Related Fields 109, no. 3, 343–366. This particular struc-
ture was exploited in Dascaliuc, R., N. Michalowski, E. Thomann, E. Waymire (2015): Symmetry
breaking anduniqueness for the incompressibleNavier-Stokes equations,Chaos,AmericanPhysical
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Mn = R0
∏n

j=1 R j , n = 1, 2, . . . where R0 is a positive random variable inde-
pendent of the i.i.d. sequence {Rn : n ≥ 1} havingmarginal distribution given by
P(R1 ∈ dr) = 2

π2 ln
|1+r |
|1−r |

dr
r , r > 0. Show that (a) ER1 = ∞. (b) E| ln R1|m <

∞ for m = 1, 2, . . . . (c) The distribution of Mn is symmetric about 1, the iden-
tity element of the multiplicative group S, and {Mn : n ≥ 0} is 1-neighborhood
recurrent. [Hint: Show that the additive random walk Sn = lnMn, n ≥ 0, is 0-
neighborhood recurrent.]

11. Suppose that X0 has an invariant distribution π in the sense of (13.4). Show that
the Markov chain X is stationary (or translation invariant) in the sense that Xn+
and X have the same distribution for each n ≥ 1.

12. For a homogeneous continuous parameter Markov process show that the condi-
tional distribution of X (t + s) given σ(X (s)) on [X (s) = x] is the same as the
conditional distribution of of X (t) given X (0) on [X (0) = x].

(Footnote 5 continued)
Society, 25 (7). The dilogarithmic functions are well-studied and arise in a variety of unrelated
contexts.



Appendix A
Measure and Integration

A.1 Measures and the Carathéodory Extension

Let S be a nonempty set. A classF of subsets of S is afield, or an algebra if (i)∅ ∈ F ,
S ∈ F , (ii) A ∈ F implies Ac ∈ F , (iii) A, B ∈ F implies A ∪ B ∈ F . Note that
(ii) and (iii) imply that F is closed under finite unions and finite intersections. If (iii)
is replaced by (iii)′: An ∈ F (n = 1, 2, . . . ) implies ∪∞

n=1 An ∈ F , then F is said to
be a σ-field, or a σ-algebra. Note that (iii)′ implies (iii), and that a σ-field is closed
under countable intersections.

A function μ : F → [0,∞] is said to be a measure on a field F if μ(∅) = 0
and μ(∪∞

n=1 An) = ∑∞
n=1 μ(An) for every sequence of pairwise disjoint sets An ∈ F

(n = 1, 2, . . . ) such that ∪∞
n=1 An ∈ F . Note that this property, known as countable

additivity, implies finite additivity (by letting An = ∅ for n ≥ m for some m, say).
Ameasure μ on a fieldF is σ-finite if there exists a sequence An ∈ F (n = 1, 2, . . . )
such that ∪∞

n=1 An = S and μ(An) < ∞ for every n.
If μ is a measure on a field F , and An ∈ F (n ≥ 1), A ⊂ ∪n An, A ∈ F ,

then μ(A) ≤ ∑∞
n=1 μ(An) (subadditivity). To see this write B1 = A1, Bn = Ac

1 ∩
· · · ∩ Ac

n−1 ∩ An(n ≥ 2). Then Bn(n ≥ 1) are disjoint, ∪∞
n=1 An = ∪∞

n=1Bn , so that
μ(A) = μ(A ∩ (∪∞

n=1Bn)) = ∑∞
n=1 μ(A ∩ Bn) ≤ ∑∞

n=1 μ(An) (since Bn ⊂ An for
all n).

Let μ be a measure on a σ-field F on S. Then F is said to be μ-complete if all
subsets of μ-null sets inF belong toF : N ∈ F , μ(N ) = 0, B ⊂ N implies B ∈ F .
In this case the measure μ is also said to be complete. Given any measure μ on a
σ-field F , it is simple to check that the class of subsets

F = {C = A ∪ B : A ∈ F , B ⊂ N for some N ∈ F such that μ(N ) = 0}

is a μ-complete σ-field, μ̃(A ∪ B) := μ(A) (A ∈ F , B ⊂ N , μ(N ) = 0) is well
defined, and μ̃ is a measure on F extending μ. This extension of μ is called the
completion of μ.
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Wenowderiveoneof themost basic results inmeasure theory, due toCarathéodory,
which provides an extension of a measure μ on a field A to a measure on the
σ-field F = σ(A), the smallest σ-field containing A. First, on the set 2S of all
subsets of S, call a set function μ∗ : 2S → [0,∞] an outer measure on S if
(1) μ∗(∅) = 0, (2) (monotonicity) A ⊂ B implies μ∗(A) ≤ μ∗(B), and (3) (subad-
ditivity) μ∗(∪∞

n=1 An) ≤ ∑∞
n=1 μ∗(An) for every sequence An (n = 1, 2, . . . ).

Proposition 1.1 Let A be a class of subsets such that ∅ ∈ A, S ∈ A, and let
μ : A → [0,∞] be a function such that μ(∅) = 0. For every set A ⊂ S, define

μ∗(A) = inf

{
∑

n

μ(An) : An ∈ A∀n A ⊂ ∪n An

}

. (1.1)

Then μ∗ is an outer measure on S.

Proof (1) Since ∅ ⊂ ∅ ∈ A, μ∗(∅) = 0. (2) Let A ⊂ B. Then every countable
collection {An : n = 1, 2, . . . } ⊂ A that covers B (i.e., B ⊂ ∪n An) also covers A.
Hence μ∗(A) ≤ μ∗(B). (3) Let An ⊂ S (n = 1, 2, . . . ), and A = ∪n An . If μ∗(An) =
∞ for some n, then by (2), μ∗(A) = ∞. Assume now that μ∗(An) < ∞ ∀n. Fix
ε > 0 arbitrarily. For each n there exists a sequence {An,k : k = 1, 2, · · · } ⊂ A
such that An ⊂ ∪k An,k and

∑
k μ(An,k) < μ∗(An) + ε/2n (n = 1, 2, . . . ). Then

A ⊂ ∪n ∪k An,k , and therefore μ∗(A) ≤ ∑
n,k μ(An,k) <

∑
n μ∗(An) + ε. �

The technically simplest, but rather unintuitive, proof of Carathéodory’s theorem
given below is based on the following notion. Let μ∗ be an outer measure on S. A set
A ⊂ S is said to be μ∗-measurable if the following “balance conditions” are met:

μ∗(E) = μ∗(E ∩ A) + μ∗(E ∩ Ac) ∀ E ⊂ S. (1.2)

Theorem 1.2 (Carathéodory Extension Theorem) (a) Let μ∗ be an outer measure on
S. The classM of all μ∗-measurable sets is a σ-field, and the restriction of μ∗ toM
is a complete measure. (b) Let μ∗ be defined by (1.1), where A is a field and μ is a
measure on F . Then σ(A) ⊂ M and μ∗ = μ on A. (c) If a measure μ on a field A
is σ-finite, then it has a unique extension to a measure on σ(A), this extension being
given by μ∗ in (1.1) restricted to σ(A).

Proof (a) To show thatM is a field, first note that A = ∅ trivially satisfies (1.2) and
that if A satisfies (1.2), so does Ac. Now, in view of the subadditivity property of μ∗,
(1.2) is equivalent to the inequality

μ∗(E) ≥ μ∗(E ∩ A) + μ∗(E ∩ Ac) ∀ E ⊂ S. (1.3)

To prove thatM is closed under finite intersections, let A, B ∈ M. Then ∀ E ⊂ S,
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μ∗(E) = μ∗(E ∩ B) + μ∗(E ∩ Bc) (since B ∈ M)

= μ∗(E ∩ B ∩ A) + μ∗(E ∩ B ∩ Ac) + μ∗(E ∩ Bc ∩ A)

+μ∗(E ∩ Bc ∩ Ac) (since A ∈ M)

≥ μ∗(E ∩ (B ∩ A)) + μ∗(E ∩ (B ∩ A)c).

For the last inequality, use (B ∩ A)c = Bc ∪ Ac = (Bc ∩ A)∪ (Bc ∩ Ac)∪ (B ∩ Ac),
and subadditivity of μ∗. By the criterion (1.3), B ∩ A ∈ M. Thus M is a field.

Next, we show thatM is a σ-field and μ∗ is countably additive onM. Let Bn ∈ M
(n = 1, 2, . . . ) be a pairwise disjoint sequence in M, and write Cm = ∪m

n=1Bn

(m ≥ 1). We will first show, by induction on m, that

μ∗(E ∩ Cm) =
m∑

n=1

μ∗(E ∩ Bn) ∀ E ⊂ S. (1.4)

This is true for m = 1, since C1 = B1. Suppose (1.4) holds for some m. Since
Bm+1 ∈ M, one has for all E ⊂ S,

μ∗(E ∩ Cm+1) = μ∗((E ∩ Cm+1) ∩ Bm+1) + μ∗((E ∩ Cm+1) ∩ Bc
m+1)

= μ∗(E ∩ Bm+1) + μ∗(E ∩ Cm)

= μ∗(E ∩ Bm+1) +
m∑

n=1

μ∗(E ∩ Bm),

using the induction hypothesis for the last equality. Thus (1.4) holds for m + 1 in
place of m, and the induction is complete. Next, writing A = ∪∞

n=1Bn one has, for
all E ⊂ S,

μ∗(E) = μ∗(E ∩ Cm) + μ∗(E ∩ Cc
m) (since Cm ∈ M)

=
m∑

n=1

μ∗(E ∩ Bn) + μ∗(E ∩ Cc
m) ≥

m∑

n=1

μ∗(E ∩ Bn) + μ∗(E ∩ Ac),

since Cc
m ⊃ Ac. Letting m → ∞, one gets

μ∗(E) ≥
∞∑

n=1

μ∗(E ∩ Bn) + μ∗(E ∩ Ac) ≥ μ∗(E ∩ A) + μ∗(E ∩ Ac), (1.5)

using the subadditivity property for the last inequality. This shows that A ≡
∪∞

n=1Bn ∈ M, i.e.,M is closed under countable disjoint unions. If {An : n = 1, . . . }
is an arbitrary sequence inM, one may express A ≡ ∪∞

n=1 An as A = ∪∞
n=1Bn , where

B1 = A1, B2 = Ac
1 ∩ A2, Bn = Ac

1 ∩ · · · ∩ Ac
n−1 ∩ An (n > 2), are pairwise disjoint

sets inM. Hence A ∈ M, proving thatM is a σ-field. To prove countable additivity
of μ∗ onM, let Bn (n ≥ 1) be a pairwise disjoint sequence inM as before, and take



228 Appendix A: Measure and Integration

E = A ≡ ∪∞
n=1Bn in the first inequality in (1.5) to get μ∗(∪∞

n=1Bn) ≥ ∑∞
n=1 μ∗(Bn).

By the subadditive property of μ∗, it follows that μ∗(∪∞
n=1Bn) = ∑∞

n=1 μ∗(Bn).
We have proved that μ∗ is a measure on the σ-field M. Finally, if A ⊂ N ∈ M,

μ∗(N ) = 0, then μ∗(E ∩ A) ≤ μ∗(A) ≤ μ∗(N ) = 0, and μ∗(E ∩ Ac) ≤ μ∗(E), so
that (1.3) holds, proving A ∈ M. Hence M is μ∗-complete.

(b) Consider now the case in which A is a field, μ is a measure on A, and
μ∗ is the outer measure (1.1). To prove A ⊂ M, let A ∈ A. Fix E ⊂ S and
ε > 0 arbitrarily. There exists An ∈ A (n = 1, 2, . . . ) such that E ⊂ ∪∞

n=1 An and
μ∗(E) ≥ ∑∞

n=1 μ(An) − ε. Also,

μ∗(E ∩ A) ≤ μ∗
(

A ∩
∞⋃

n=1

An

)

≤
∞∑

n=1

μ(A ∩ An),

μ∗(E ∩ Ac) ≤ μ∗
(

Ac ∩
∞⋃

n=1

An

)

≤
∞∑

n=1

μ(Ac ∩ An),

μ∗(E ∩ A) + μ∗(E ∩ Ac) ≤
∞∑

n=1

{
μ(A ∩ An) + μ(Ac ∩ An)

}

=
∞∑

n=1

μ(An) ≤ μ∗(E) + ε.

Hence (1.3) holds, proving that A ∈ M. To prove μ = μ∗ on A, let A ∈ A. By
definition (1.1), μ∗(A) ≤ μ(A) (letting A1 = A and An = ∅ for n ≥ 2, be a cover
of A). On the other hand, μ(A) ≤ ∑∞

n=1 μ(An) for every sequence An ∈ A (n ≥ 1)
such that A ⊂ ∪∞

n=1 An , so that μ∗(A) ≥ μ(A) (by subadditivity of μ on A). Hence
μ∗(A) = μ(A).

(c) Suppose μ is a σ-finite measure on the field A, and μ∗ its extension to the
σ-field σ(A) (⊂ M) as derived in (b). Let ν be another extension of μ to σ(A).
Since one may express S = ∪∞

n=1 An with An ∈ A pairwise disjoint and μ(An) < ∞
∀n, it is enough to consider the restrictions of μ and ν to An ∩ σ(A) ≡ {An ∩ A :
A ∈ σ(A)} for each n separately. In other words, it is enough to prove that μ = ν
on σ(A) in the case μ(S) < ∞. But for this case, the class C = {A ∈ F : μ(A) =
ν(A)} is a λ-system, and it contains the π-system A. Hence, by the π-λ theorem,
C = σ(A). �

Example 1 (Lebesgue–Stieltjes Measures) Let S = R. The σ-field generated by the
collection of open subsets of a topological space is referred to as the Borel σ-field.
Let B(R) denote the Borel σ-field. A measure μ on B(R) is said to be a Lebesgue–
Stieltjes (or L–S) measure if μ((a, b]) < ∞ ∀ − ∞ < a < b < ∞. Given such a
measure one may define its distribution function Fμ : R → R by

Fμ(x) =
{−μ((x, 0]) + c if x < 0

μ((0, x]) + c if x > 0,
(1.6)
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where c is an arbitrary constant. Note that

μ((a, b]) = Fμ(b) − Fμ(a) (−∞ < a < b < ∞). (1.7)

Moreover, Fμ is nondecreasing and right-continuous. Conversely, given a function F
which is nondecreasing and right-continuous on R, there exists a unique Lebesgue–
Stieltjes measure μ whose distribution function is F . To prove this, first, fix an
interval S = (c, d], −∞ < c < d < ∞. The class of all finite unions ∪m

j=1(a j , b j ]
of pairwise disjoint intervals (a j , b j ] (c ≤ a j < b j ≤ d) is a fieldA on S. Define the
set functionμ onA first by (1.7) on intervals (a, b], and then on disjoint unions above
as

∑m
j=1 μ((a j , b j ]). It is simple to check that this is well defined. That is, if (ci , di ],

1 ≤ i ≤ n, is another representation of ∪m
j=1(a j , b j ] as a union of disjoint intervals,

then
∑n

i=1[F(di ) − F(ci )] = ∑m
j=1[F(b j ) − F(a j )] (Show this by splitting each

(a j , b j ] by (ci , di ], 1 ≤ i ≤ n).Finite additivity of μ onA is then a consequence of the
definition of μ. In view of this, to prove countable additivity of μ on A, it is enough
to show that if I j = (a j , b j ] ( j = 1, 2, . . . ) is a sequence of pairwise disjoint
intervals whose union is (a, b], then μ((a, b]) ≡ F(b) − F(a) = ∑∞

j=1 μ(I j ).
Clearly,

∑n
j=1 μ(I j ) = μ(∪n

j=1 I j ) ≤ μ((a, b]) for all n, so that
∑∞

j=1 μ(I j ) ≤
μ((a, b]). For the opposite inequality, fix ε > 0 and find δ > 0 such that F(a + δ)−
F(a) < ε (by right-continuity of F).Also, find δ j > 0 such that F(b j +δ j )−F(b j ) <

ε/2 j ( j = 1, 2, . . . ). Then {(a j , b j + δ j ) : j ≥ 1} is an open cover of the compact
interval [a+δ, b], so that there exists a finite subcover: [a+δ, b] ⊂ ∪m

j=1(a j , b j +δ j ),
say. Then μ((a, b]) = F(b) − F(a) ≤ F(b) − F(a + δ) + ε ≤ ∑m

j=1[F(b j + δ j ) −
F(a j )] ≤ ∑m

j=1[F(b j )−F(a j )]+ε ≤ ∑∞
j=1[F(b j )−F(a j )]+ε ≤ ∑∞

j=1 μ(I j )+ε.
This proves that μ is a measure on A. Now use Carathéodory’s extension theorem
to extend uniquely μ to σ(A) = B((c, d]). Since R = ∪∞

n=−∞ (n, n + 1], one may
construct μ on each of (n, n + 1] and then piece (or add) them together to construct
the unique L-S measure on B(R) with the given distribution function F .

(a) As a very special L-S measure, one constructs Lebesgue measure m on
(R,B(R)) specified by

m((a, b]) = b − a,

with distribution function F(x) = x . Lebesgue measure is variously denoted by m,
λ, or dx .

(b) For an example of a L-S measure with a continuous distribution, but that does
not have a density with respect to Lebesgue measure, consider the representation of a
real x in (0, 1] by its ternary representation x = ∑∞

n=1 an3−n , where an ∈ {0, 1, 2}.
By requiring that there be an infinite number of 2’s among {an} one gets a one-to-
one correspondence x �→ {an}. The Cantor set C is defined to be the set of all
x in whose ternary expansion the digit 1 does not occur. That is, C is obtained by
first omitting the middle third (1/3, 2/3] of (0, 1], then omitting the middle thirds
of the two remaining intervals (0, 1/3], (2/3, 1], then omitting the middle thirds of
the four remaining intervals, and so on. The Lebesgue measure of the omitted set is∑∞

n=1 2
n−13−n = 1. Hence the remaining set C has Lebesgue measure zero. Define
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the Cantor function

F(x) =
∞∑

n=1

an

2
2−n for x =

∞∑

n=1

an3
−n ∈ C,

and extend F to [0, 1] by letting F(0) = 0, and F constant between the endpoints
of every omitted interval. Then F is continuous and nondecreasing, and the corre-
sponding L–S probability measure (distribution) μ is the Cantor measure on (0, 1],
which is nonatomic (i.e., μ({x}) = 0 ∀x) and singular in the sense that μ(C) = 1
and m(C) = 0, where m is Lebesgue measure.

A.2 Integration and Basic Convergence Theorems

Let S be a σ-field on S. We say that (S,S) is a measurable space. Denote by L the
class of all (extended) real-valued measurable functions f : S → R = [−∞,∞],
i.e., f −1(B) ∈ S ∀B ∈ B(R) and f −1({−∞}) ∈ S, f −1({+∞}) ∈ S. The subclass
of nonnegative measurable functions is denoted by L+. A simple function is of the
form f = ∑m

1 a j 1A j , where m ≥ 1, a j ∈ R ∀ j , A j ’s are pairwise disjoint sets in S.
The class of all simple functions is denoted by Ls , and the subclass of nonnegative
simple functions by L+

s .
In general, if (Si ,Si ) (i = 1, 2) are measurable spaces, a map, or function,

f : S1 → S2 is said to be measurable if f −1(B) ∈ S1 ∀B ∈ S2. In particular,
if Si is a metric space with Borel σ-field Si (i = 1, 2), then a continuous map
f : S1 → S2 is measurable, since f −1(B) is an open subset of S1 if B is an open
subset of S2, and since F ≡ {B ∈ S2 : f −1(B) ∈ S1} is a σ-field (containing the
class of all open subsets of S2). It is simple to check that compositions of measurable
maps are measurable. As an example, let (S,S) be a measurable space, and let f, g
be measurable maps on S into R

k . Then α f + βg is measurable for all constants
α,β ∈ R. To see this, consider the map h(x, y) �→ αx + βy on R

k × R
k into R

k .
Since h is continuous, it is measurable. Also, ϕ(s) := ( f (s), g(s)) is a measurable
map on S into S × S, with the product σ-field S ⊗ S (i.e., the smallest σ-field on
S × S containing the class of all measurable rectangles A × B, A ∈ S, B ∈ S).
Now α f + βg equals the composition h ◦ ϕ and is therefore measurable.

Example 1 (a) Let f1 f2, . . . , fk be (extended) real-valued measurable functions
on a measurable space (S,S). Then M ≡ max{ f1, . . . , fk} is measurable, since
[M ≤ x] = ∩k

j=1[ f j ≤ x] ∀x ∈ R
1. Similarly, min{ f1, . . . , fk} is measurable.

(b) Let fn (n ≥ 1) be a sequence of (extended) real-valued measurable functions on
a measurable space (S,S). Then h ≡ lim inf fn is measurable. For gn := inf{ f j :
j ≥ n} is measurable (n ≥ 1), since [gn ≥ x] = ∩∞

j=n[ f j ≥ x]. Also, gn ↑ h, so that
[h ≤ x] = ∩∞

n=1[gn ≤ x] ∀x ∈ R. Similarly, lim sup fn is measurable.
Let μ be a σ-finite measure on (S,S) (i.e., on S). For f ∈ L+

s define the integral∫
f dμ,

∫
S f (x)μ(dx), or simply

∫
f when there is no ambiguity about the underlying
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measure μ, by
∫

f ≡
∫

S
f dμ :=

m∑

j=1

a jμ(A j ), (2.1)

with the convention 0 ·∞ = 0. If f = ∑n
1 bi 1Bi is another representation of f , then

a j = bi on A j ∩ Bi , and using the finite additivity of μ, one has
∑m

1 a jμ(A j ) =∑
j

∑
i a jμ(A j ∩ Bi ) = ∑

j

∑
i biμ(A j ∩ Bi ) = ∑

i biμ(Bi ). Thus
∫

f is well
defined for f ∈ L+

s . Using a similar splitting where necessary, one can prove the
following properties of the integral on L+

s :

(i)
∫

c f = c
∫

f ∀c ≥ 0,
(ii)

∫
f ≤ ∫

g if f ≤ g,

(iii)
∫
( f + g) = ∫

f + ∫
g

(2.2)

for an arbitrary f ∈ L+ (set of all extended nonnegative measurable functions on S)
define ∫

f := lim
∫

fn, (2.3)

where fn ∈ L+
s and fn ↑ f . To show that

∫
f is well defined let us first observe that

there does exist fn ∈ L+
s , fn ↑ f . For example, let fn be the so-called standard

approximation,

fn =
n2n
∑

k=1

(k − 1)2−n1[ k−1
2n ≤ f < k

2n ] + n1[ f ≥n]. (2.4)

Secondly, suppose fn, gn ∈ L+
s , fn ↑ f , gn ↑ f . We will show that

lim
n

∫

gn = lim
n

∫

fn. (2.5)

For this, fix c ∈ (0, 1) and m ≥ 1. One may write gm = ∑k
1 a j 1A j ,

∫
cgm =

c
∑k

1 a jμ(A j ) = c
∫

gm . Let Bn = {x ∈ S : fn(x) ≥ cgm(x)}. Then fn = fn1Bn +
fn1Bc

n
, so that (by (2.2)), and using Bn ↑ S,

∫

fn =
∫

fn1Bn +
∫

fn1Bc
n
≥

∫

fn1Bn ≥
∫

cgm1Bn

= c
k∑

j=1

a jμ(A j ∩ Bn) ↑ c
k∑

j=1

a jμ(A j ) = c
∫

gm as n ↑ ∞.
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Hence limn
∫

fn ≥ c
∫

gm ∀c ∈ (0, 1), which implies limn
∫

fn ≥ ∫
gm . Letting

m ↑ ∞, we obtain limn
∫

fn ≥ limm
∫

gm . Reversing the roles of fn and gn , we then
get (2.5), and

∫
f is well defined.

As simple consequences of the definition (2.3) and the order property (2.2)(ii),
one obtains the following results.

Proposition 2.1 (a) Let f ∈ L+. Then
∫

f = sup

{∫

g : g ∈ L+
s , g ≤ f

}

, ∀ f ∈ L+. (2.6)

(b) Let f, g ∈ L+, c ≥ 0. Then (2.2)(i)—(iii) hold.

Proof (a). Clearly,
∫

f is dominated by the right hand side of (2.6), by the definition
(2.3). For the reverse inequality, let g ∈ L+

s , g ≤ f . Then gn := max{g, fn} ↑ f with
fn as in (2.3). Since gn ∈ L+

s , it follows that
∫

g ≤ ∫
gn → ∫

f . Hence
∫

g ≤ ∫
f .

(b). (i) and (iii) in (2.2) follow from the definition (2.3), while (ii) follows from
(2.6). �

A useful convergence result for functions in L+ is the following.

Proposition 2.2 Let fk , f ∈ L+, fn ↑ f . Then
∫

fk ↑ ∫
f .

Proof By Proposition 2.1(b), limk
∫

fk ≤ ∫
f (order property of integrals). Next,

let gk,n ∈ L+
s , gk,n ↑ fk as n ↑ ∞. Define gn = max{gk,n : k = 1, . . . , n} ∈ L+

s ,
gn ↑ g, say. But gn ≥ gk,n ∀k ≤ n, so that g ≥ fk ∀k, implying g ≥ f . On the other
hand, gn ≤ f ∀n. Thus g = f and, therefore, limn

∫
gn = ∫

f . But gn ≤ fn ∀n
which implies limn

∫
fn ≥ limn

∫
gn = ∫

f . �

Let f ∈ L , and set f + = max{ f, 0}, f − = −min{ f, 0}. Then f +, f − ∈ L+ and
f = f + − f −. If at least one of

∫
f +,

∫
f − is finite, we say that the integral of f

exists and define ∫

f =
∫

f + −
∫

f −. (2.7)

If
∫

f + and
∫

f − are both finite, then 0 ≤ ∫ | f | = ∫
f + + ∫

f − < ∞ (since
| f | = f + + f −, Proposition 2.1(b) applies), and f is said to be integrable (with
respect to μ). The following result is now simple to prove.

Proposition 2.3 Let f, g ∈ L be integrable andα,β ∈ R
1. Then (i)α f ,βg,α f +βg

are integrable and
∫
(α f + βg) = α

∫
f + β

∫
g (linearity), and (ii) f ≤ g implies∫

f ≤ ∫
g (order).

Proof (i) First, let α ≥ 0. Then (α f )+ = α f +, (α f )− = α f −, so that
∫

α f =∫
α f +−∫

α f − = α
∫

f +−α
∫

f − = α
∫

f , by Proposition 2.1(b). Now letα < 0.
Then (α f )+ = −α f −, (α f )− = −α f +. Hence

∫
α f = ∫ −α f − − ∫ −α f + =

−α
∫

f −−(−α)
∫

f + = α(
∫

f +−∫
f −) = α

∫
f . Next if f, g are integrable, then
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writing h = f +g, we have |h| ≤ | f |+|g|, so that ∫ |h| ≤ ∫ | f |+∫ |g| < ∞. Since
h = f +g = f ++g+− f −−g− = h+−h−, one has h++ f −+g− = h−+ f ++g+
and, by Proposition 2.1(b),

∫
h+ + ∫

f − + ∫
g− = ∫

h− + ∫
f + + ∫

g+. Therefore,∫
h ≡ ∫

h+ −∫
h− = ∫

f + −∫
f − +∫

g+ −∫
g− = ∫

f +∫
g. This proves (i). To

prove (ii) note that f ≤ g implies f + ≤ g+, f − ≥ g−. Hence
∫

f ≡ ∫
f +−∫

f − ≤∫
g+ − ∫

g− ≡ ∫
g. �

Our next task is to show that the integral of a function f remains unaffected if it
is modified arbitrarily (but measurably) on a μ-null set. First, note that if f ∈ L+,
then ∫

f = 0 iff f = 0 a.e. (μ) ( f ∈ L+), (2.8)

where a.e. (μ) is short-hand for almost everywhere with respect to μ, or outside a
μ-null set. To prove (2.8), let N = {x : f (x) > 0}. Then one has f = f 1N + f 1N c =
f · 1N ( f = 0 on N c). If μ(N ) = 0, then for all g ∈ L+

s , g ≤ f , one has g = 0
on N c, so that

∫
g = ∫

g1N + ∫
g1Nc

= ∫
g1N = 0, implying

∫
f = 0. Conversely,

if
∫

f = 0, then μ(N ) = 0. For otherwise there exists ε > 0 such that writing
Nε := {x : f (x) > ε}, one has μ(Nε) > 0. In that case, g := ε1Nε

≤ f and∫
f ≥ ∫

g = εμ(Nε) > 0, a contradiction.
As a consequence of (2.8), one has the result that if f = g a.e., and f, g are

integrable, then
∫

f = ∫
g. To see this note that | ∫ f − ∫

g| = | ∫ ( f − g)| ≤∫ | f − g| = 0, since | f − g| = 0 a.e.
From here on, all functions f , g, h, fn , gn , hn , etc., are assumed to be measurable,

unless specified otherwise.
An important notion in measure theory is that of convergence in measure. Let fn

(n ≥ 1), f be measurable functions on a measure space (S,S,μ). The sequence
{ fn}n≥1 converges in measure to f if

μ ([| fn − f | > ε]) −→ 0 as n → ∞,∀ε > 0. (2.9)

Proposition 2.4 (a) If fn → f in measure then there exists a subsequence { fnk }k≥1

that converges a.e. to f . (b) If μ(S) < ∞, then the convergence fn → f a.e. implies
fn → f in measure.

Proof (a) Assume fn → f inmeasure. For each k one can find nk such thatμ([| fnk −
f | > 1/2k]) < 1/2k . Now, for any given ε > 0, [lim supk | fnk − f | > ε] ⊂
∩∞

m=1 ∪∞
k=m [| fnk − f | > 1/2k] = N , say. But μ(N ) ≤ ∑∞

k=m 2−k = 2−m+1 → 0 as
m → ∞, i.e., μ(N ) = 0, proving fnk → f a.e., as k → ∞. (b) Suppose μ(S) < ∞,
and fn → f a.e. If fn does not converge in measure to f , there exist ε > 0, δ > 0,
and a subsequence { fnk }k≥1 such that μ([| fnk − f | > ε]) > δ ∀k = 1, 2, . . . . But
writing Ak = [| fnk − f | > ε], one then has Bm ≡ ∪∞

k=m Ak ↓ B = [| fnk − f | >

ε for infinitely many k]. Since Bc
m ↑ Bc, it follows from countable additivity of

μ that μ(Bc
m) ↑ μ(Bc), so that μ(Bm) = μ(S) − μ(Bc

m) → μ(S) − μ(Bc) =
μ(B). Since μ(Bm) > δ ∀m, one obtains μ(B) ≥ δ, which contradicts the fact that
fn → f a.e. �
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Theorem 2.5 (Basic Convergence Theorems for Integrals)

(a) (Monotone Convergence Theorem). Suppose fn (n ≥ 1), f are nonnegative a.e.
and fn ↑ f a.e., then

∫
fn ↑ ∫

f .
(b) (Fatou’s Lemma). If gn ≥ 0 a.e., then

∫
lim inf gn ≤ lim inf

∫
gn .

(c) (Lebesgue’s Dominated Convergence Theorem). If fn → f in μ-measure and
| fn| ≤ h a.e., where h is integrable, then limn

∫ | fn − f | = 0. In particular,∫
fn → ∫

f .

Proof (a) Since a countable union of μ-null sets is μ-null, there exists N such that
μ(N ) = 0 and fn ≥ 0, f ≥ 0, fn ↑ f on N c. Setting fn = 0 (n ≥ 1) and f = 0 on
N does not change the integrals

∫
fn ,

∫
f . Hence one may apply Proposition 2.2.

(b) As in (a), one may assume gn ≥ 0 on S (∀n ≥ 1). Let fn = inf{gk : k ≥ n}.
Then 0 ≤ fn ↑ lim inf gn = f , say, and

∫
fn ↑ ∫

f (by (a)). Also fn ≤ gn ∀n, so that∫
gn ≥ ∫

fn ∀n, implying, in particular, lim inf
∫

gn ≥ lim inf
∫

fn = lim
∫

fn =∫
f .
(c) First assume fn → f a.e. Apply Fatou’s lemma to gn := 2h − | fn − f |,

0 ≤ gn → 2h a.e., to get
∫
2h ≤ lim inf

∫
gn = ∫

2h − lim sup
∫ | fn − f |, proving

lim
∫ | fn − f | = 0. Now assume fn → f in μ-measure. If

∫ | fn − f | does not
converge to zero, there exist δ > 0 and a subsequence 1 < n1 < n2 < · · · such that∫ | fnk − f | > δ ∀k. Then there exists, by Proposition 2.4(a), a further subsequence of
{nk : k ≥ 1}, say {n′

k : k ≥ 1}, such that fn′
k
→ f a.e. as k → ∞, to which the above

result applies to yield
∫ | fn′

k
− f | → 0 as k → ∞, contradicting

∫ | fn′
k
− f | > δ

∀k. �

Thenext result provides useful approximations to functions in the complexBanach

space L p = L p(Rk,B(Rk),μ), with norm ‖ f ‖ := ( ∫
Rk | f (x)|pμ(dx)

) 1
p , where

1 ≤ p < ∞. The result can of course be specialized to the real Banach space L p.

Proposition 2.6 Let μ be a measure on (Rk,B(Rk)) that is finite on compact subsets
ofRk . Then the set of infinitely differentiable functionswith compact support is dense
in L p.

Proof For simplicity of notation we will take k = 1. The general case is similar. It
is easy to see by considering real and imaginary parts separately, and then splitting
a real-valued function f as f = f + − f −, that it is enough to consider real-valued,
nonnegative f ∈ L p. Given ε > 0, find N > 0 such that

∫
{x :|x |≥N } f pdμ < ε

5 . Set
fN = f 1(−N ,N ]. Since fN ,M := fN ∧M ≡ min{ fN , M} ↑ f as M ↑ ∞, and | fN ,M −
fN |p ≤ 2p| fN |p ≤ 2p| f |p, there exists M such that ‖ fN − fN ,M‖ < ε

5 . Because
fN ,M is bounded, there exists a simple function g = ∑m

j=1 x j 1B j , where x j > 0, B j

Borel, B j ⊂ (−N , N ],μ(B j ) < ∞, 1 ≤ j ≤ m, such that sup{| fN ,M(x) − g(x)| :
x ∈ R} < ε

5 (use the standard approximation (2.4)). Then ‖ fN ,M − g‖ < ε
5 .

We will now approximate g by a μ-a.e. continuous step function. For this, first
note that the set of all finite unions of disjoint intervals of the form (a, b], −N ≤
a < b ≤ N , is a field F0 on (−N , N ] such that σ(F0) = B((−N , N ]). Hence by
Carathéodory’s extension theorem, one can find a sequence of such disjoint intervals
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whoseunion contains B j and approximates it as closely as desired. Sinceμ(B j ) < ∞,
one may take a finite subset of these intervals, say (ai j , bi j ], 1 ≤ i ≤ n j , such that
A j = ∪n j

i=1(ai j , bi j ] satisfies μ(B j�A j ) < m−1( ε
5c )

p, for c := max{x1, . . . , xm}
(1 ≤ j ≤ m). Since the set {x : μ({x}) > 0} is countable, one may use
the approximation of (ai j , bi j ] from above and below, if necessary, to ensure that
μ({ai j }) = 0 = μ({bi j }), 1 ≤ i ≤ n j , j = 1, . . . m. Note that, with h = ∑m

j=1 x j 1A j

and g = ∑m
j=1 x j 1B j , as above, one has ‖h − g‖p ≤ mcp[m−1( ε

5 )
p] = ( ε

5 )
p,

so that ‖h − g‖ < ε/5. Finally, let ψ be an infinitely differentiable probabil-
ity density on R with compact support (e.g. see (4.2) in Chapter V). Define
ψn(x) = nψ(nx)(n = 1, 2, . . . ). Then the probabilities ψn(x)dx converge weakly
to δ0 as n → ∞. Hence the functions

hn(x) :=
∫

R

h(x − y)ψn(y)dy =
∫

R

h(y)ψn(x + y)dy, n ≥ 1, (2.10)

are infinitely differentiable with compact support, and hn(x) → h(x) at all points
x of continuity of h. Since the set of possible discontinuities of h, namely {ai j :
1 ≤ i ≤ n j , 1 ≤ j ≤ m} ∪ {bi j : 1 ≤ i ≤ n j , 1 ≤ j ≤ m} has μ-measure zero,
hn → h μ-almost everywhere. Also hn, h have compact support and are uniformly
bounded by c = max{x1, . . . , xm}. Hence hn → h in L p, and there exists n0 such
that ‖hn0 − h‖ < ε

5 . Therefore,

‖hn0 − f ‖ ≤ ‖hn0 − f ‖ + ‖h − g‖ + ‖g − fN ,M‖ + ‖ fN ,M − fN ‖ + ‖ fN − f ‖
< 5(

ε

5
) = ε.

Since ε > 0 is arbitrary the proof is complete. �

Remark 2.1 Note that the proof shows that if μ is finite on compacts sets, then
step functions are dense in L p(R,B(R),μ). Indeed rational-valued step functions
with supporting intervals whose endpoints are dyadic rationals are dense in L p. In
particular, it follows that L p is separable. The argument extends to Rk for k > 1 as
well.

A.3 Product Measures

Let (Si ,Si ) (i = 1, 2) be measurable spaces. The product σ-field S = S1 ⊗ S2 on
the Cartesian product space S = S1 × S2 is the smallest σ-field containing all sets
of the form A × B, with A ∈ S1 and B ∈ S2, called measurable rectangles. Let μi

be a σ-finite measure on (Si ,Si ) (i = 1, 2). Define the set function μ on the classR
of all measurable rectangles

μ(A × B) := μ1(A)μ2(B) (A ∈ S1, B ∈ S2). (3.1)

http://dx.doi.org/10.1007/978-3-319-47974-3_4
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Theorem 3.1 There exists a unique extension of μ fromR to a σ-finite measure on
the product σ-field S = S1 ⊗ S2.

Proof For the proof we need first the fact that if C ∈ S, then the x-section Cx :=
{y ∈ S2 : (x, y) ∈ C} belongs to S2, ∀x ∈ S1. The class C of all sets C for which
this is true contains R, since (A × B)x = B (if x ∈ A), or ∅ (if x /∈ A). Since it
is easy to check that C is a λ-system containing the π-system R, it follows by the
π − λ Theorem that C ⊃ S.

Similarly, if f is an extended real-valued measurable function on the product
space (S,S) then every x-section of f defined by fx (y) = f (x, y), y ∈ S2, is
a measurable function on (S2,S2), ∀x ∈ S. For if D ∈ B(R) and x ∈ S1, then
f −1
x (D) ≡ [y : f (x, y) ∈ D] = ( f −1(D))x ∈ S2.
Next, for C ∈ S the function x �→ μ2(Cx ) is measurable on (S1,S1). This

is clearly true for C ∈ R, and the general assertion again follows from the π-λ
theorem. Now define μ on C by

μ(C) :=
∫

S1

μ2(Cx )μ1dx . (3.2)

If C = ∪nCn , where Cn ∈ S (n = 1, 2, . . . ) are pairwise disjoint, then Cx =
∪n(Cn)x and, by countable additivity of μ2, μ2(Cx ) = ∑

n μ2((Cn)x ), so that
μ(C) = ∫

S1

∑
n μ2((Cn)x )μ1(dx) = ∑

n

∫
S1

μ2((Cn)x )μ1(dx) = ∑
n μ(Cn). Here

the interchange of the order of summation and integration is valid, by the monotone
convergence theorem. Thus (3.2) defines a measure on S, extending (3.1). The
measure μ is clearly σ-finite. If ν is another σ-finite measure on (S,S) such that
ν(A × B) = μ1(A)μ2(B) ∀A × B ∈ R, then the class of sets C ∈ S such that
μ(C) = ν(C) is easily seen to be a σ-field and therefore contains σ(R) = S. �

The measure μ in Theorem 3.1 is called the product measure and denoted by
μ1 ×μ2. The measure space (S,S,μ) with S = S1 × S2, S = S1 ⊗S2, μ = μ2 ×μ2,
is called the product measure space.

Next note that instead of (3.2), one can define the measure μ̃ by

μ̃(C) =
∫

S2

μ1(C
y)μ2(dy), C ∈ S, (3.3)

where C y = {x ∈ S1 : (x, y) ∈ C | is the y-section of C , for y ∈ S2. But μ̃ = μ on
R and therefore, by the uniqueness of the extension, μ̃ = μ on S. It follows that if
f = 1C for some C ∈ S and f y(x) := f (x, y), then

∫

S
f dμ =

∫

S1

{∫

S2

fx (y)μ2(dy)

}

μ1(dx) =
∫

S2

{∫

S1

f y(x)μ1(dx)

}

μ2(dy).

(3.4)
This equality of the iterated integrals with different orders of integration immediately
extends to nonnegative simple functions. For arbitrary nonnegative S-measurable f
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one uses an approximation fn ↑ f by simple functions fn and applies the monotone
convergence theorem to arrive at the following important result.

Theorem 3.2 (Fubini–Tonelli Theorem) (a) Let f be a nonnegative measurable
function on the product measure space (S,S,μ), where S = S1 × S2, S = S1 ⊗ S2,
μ = μ1 × μ2. Then (3.4) holds. (b) If f is μ-integrable, then (3.4) holds.

Proof We have outlined above a proof of (a). For (b), use f = f + − f −, linearity
of the integral (with respect to μ, μ1, μ2), and (a). �

Given k (≥ 2) σ-finite measure spaces (Si ,Si ,μi ), 1 ≤ i ≤ k, the above defini-
tions and results can be extended to define the product measure space (S,S,μ) with
(1) S = S1×· · ·×Sk theCartesian product of S1, . . . , Sk , and (2)S = S1⊗· · ·⊗Sk ,
theproductσ-field, i.e., the smallestσ-field on S containing the classRof allmeasur-
able rectangles A1×A2×· · ·×Ak (Ai ∈ Si , 1 ≤ i ≤ k), and (3)μ = μ1×μ2×· · ·×μk ,
the σ-finite product measure on S satisfying

μ(A1× A2×· · ·× Ak) = μ1(A1)μ2(A2) · · · μk(Ak) (Ai ∈ Si , a ≤ i ≤ k). (3.5)

Example 1 The Lebesgue measure on R
k is the product measure m = m1 × m2 ×

· · · × mk defined by taking Si = R, Si = B(R), mi = Lebesgue measure on R,
1 ≤ i ≤ k.

A.4 Riesz Representation on C(S)

Suppose that S is a compact metric space with Borel σ-field B, and C(S) the space
of continuous real-valued functions on S. If μ is a finite measure on (S,B), then
the linear functional �μ( f ) = ∫

S f dμ, f ∈ C(S), is clearly a linear functional on
C(S). Moreover �μ is a positive linear functional in the sense that �μ( f ) ≥ 0 for
all f ∈ C(S) such that f (x) ≥ 0 for all x ∈ S. Additionally, giving C(S) the
uniform norm ‖ f ‖ = sup{| f (x)| : x ∈ S}, one has that �μ is a bounded linear
functional in the sense that sup‖ f ‖≤1, f ∈C(S) |�μ( f )| < ∞. In view of linearity this
boundedness is easily checked to be equivalent to continuity of �μ : C(S) → R.
The Riesz representation theorem for C(S) asserts that these are the only bounded
linear functionals on C(S).

Theorem 4.1 (Riesz Representation Theorem on C(S)) Let S be a compact metric
space. If � is a bounded positive linear functional on C(S), then there is a unique
finite measure μ on (S,B) such that for all f ∈ C(S),

�( f ) =
∫

S
f dμ.

Moreover,
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μ(A) = inf{μ(G) : G ⊃ A, G open} = sup{μ(F) : F ⊂ A, F closed}, A ∈ B.

Definition 4.1 Ameasure μ defined on the Borel σ-field B of a topological space is
said to be regular if

μ(A) = inf{μ(G) : G ⊃ A, G open} = sup{μ(F) : F ⊂ A, F closed}, A ∈ B.

Observe that the uniqueness assertion follows trivially from the fact that C(S) is a
measure-determining class of functions for finite measures. The proof will follow
from a sequence of lemmas, the first of which already appeared implicitly in the
proof of Alexandrov’s theorem 7.1.

Lemma 1 (Urysohn) For a closed set F ⊂ S there is a (pointwise) nonincreasing
sequence hn ∈ C(S), n ≥ 1, such that hn ↓ 1F , and for an open set G there is a
(pointwise) nondecreasing sequence gn ∈ C(S) such that gn ↑ 1G .

For a function f ∈ C(S), the smallest closed set outside of which f is zero is
called the support of f and is denoted by supp( f ). Note that if f ∈ C(S) satisfies
0 ≤ f ≤ 1A, then supp( f ) ⊂ A. For open sets G ⊂ S it is convenient to introduce
notation g ≺ G to denote a function g ∈ C(S) subordinate to G in the sense that
0 ≤ g ≤ 1 and supp(g) ⊂ G. With this notation we will see that the desired measure
may be expressed explicitly for open G ⊂ S as

μ(G) = sup{�(g) : g ≺ G}. (4.1)

Note that since S is open (and closed), one has μ(S) < ∞ from the boundedness of
�. With μ defined for open sets by (4.1), for arbitrary A ⊂ S let

μ∗(A) = inf{μ(G) : G ⊃ A, G open}. (4.2)

Lemma 2 μ∗ is an outer measure and each Borel-measurable subset of S is μ∗-
measurable.

Proof For the first part we will in fact show that

μ∗(A) = inf

{ ∞∑

n=1

μ(Gn) : ∪∞
n=1Gn ⊃ A, Gn open

}

.

fromwhich it follows by Proposition 1.1 that μ∗ is an outer measure. For this formula
it suffices to check that for any given sequence Gn , n ≥ 1, of open sets one has
μ(∪∞

n=1Gn) ≤ ∑∞
n=1 μ(Gn). Let G = ∪∞

n=1Gn and g ≺ G, g ∈ C(S). The support
supp(g) ⊂ S is compact, and hence supp(g) ⊂ ∪N

n=1Gn , for some N . By Urysohn’s
lemma, there are functions gn ∈ C(S), 1 ≤ n ≤ N , such that gn ≺ Gn , and∑N

n=1 gn = 1 on supp(g). Now g = ∑N
n=1 gng and gng ≺ Gn , so that

http://dx.doi.org/10.1007/978-3-319-47974-3_7
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�(g) =
N∑

n=1

l(gng) ≤
N∑

n=1

μ(Gn) ≤
∞∑

n=1

μ(Gn).

Since g ≺ G is arbitrary, it follows that μ(G) ≤ ∑∞
n=1 μ(Gn) as desired. For the

second part of the lemma it suffices to check that each open set is μ∗-measurable.
That is, if G is an open set, then for any E ⊂ S onemust checkμ∗(E) ≥ μ∗(E ∩G)+
μ∗(E ∩ Gc). If E is also open then given ε > 0 there is a g ∈ C(S), g ≺ E ∩ G, such
that �(g) > μ(E∩G)−ε. Similarly, E∩supp(g)c is open and there is a g̃ ∈ C(S), g̃ ≺
E ∩supp(g)c, such that �(g̃) > μ(E ∩supp(g)c)−ε. But now g+ g̃ ≺ E and μ(E) >

�(g)+ �(g̃) > μ(E ∩ G)+μ(E ∩ supp(g)c)− 2ε ≥ μ∗(E ∩ G)+μ∗(E ∩ Gc)− 2ε.
Since ε is arbitrary, the desired Carathéodory balance condition (1.2) holds for open
E . For arbitrary E ⊂ S let ε > 0 and select an open set U ⊃ E such that μ(U ) <

μ∗(E)+ε. Then μ∗(E)+ε ≥ μ(U ) ≥ μ∗(U ∩ G)+μ∗(U ∩ Gc) > μ∗(E ∩ G)+μ∗
(E ∩ Gc). �

From here one readily obtains a measure space (S,B,μ) by restricting μ∗ to B.
The proof of the theorem is completed with the following lemma.

Lemma 3 For closed F ⊂ S,

μ(F) = inf{�(h) : h ≥ 1F }.

Moreover,

�( f ) =
∫

S
f dμ ∀ f ∈ C(S).

Proof For closed F ⊂ S and an arbitrary h ∈ C(S) with h ≥ 1F consider, for
ε > 0, the open set Gε = {x ∈ S : h(x) > 1 − ε}. Let g ∈ C(S), g ≺ Gε. Then
�(g) ≤ (1 − ε)−1�(h). It now follows that μ(F) ≤ μ(Gε) ≤ (1 − ε)−1�(h), and
hence, since ε > 0 is arbitrary, μ(F) ≤ �(h). To see that μ(F) is the greatest lower
bound, let ε > 0 and let G ⊃ F be an open set with μ(G)−μ(F) < ε. By Urysohn’s
lemma there is an h ∈ C(S), h ≺ G, with h ≥ 1F . Thus, using the definition of μ,
�(h) ≤ μ(G) ≤ μ(F)+ ε. To establish that μ furnishes the desired representation of
�, let f ∈ C(S). In view of the linearity of �, it suffices to check that �( f ) ≤ ∫

S f dμ;
since the same inequality would then be true with f replaced by − f , and hence the
reverse inequality follows. Let m = min{ f (x) : x ∈ S}, M = max{ f (x) : x ∈ S}.
For ε > 0, partition [m, M] as y0 < m < y1 < · · · < yn = M such that y j − y j−1 <

ε. Let A j = f −1(y j−1, y j ] ∩ supp( f ), 1 ≤ j ≤ n. Then A1, . . . , An is a partition of
supp( f ) into disjoint Borel-measurable subsets. Let G j ⊃ A j be an open set with
μ(G j ) < μ(A j ) + ε

n , j = 1, . . . , n, with f (x) < y j + ε, x ∈ G j . Apply Urysohn’s
lemma to obtain g j ≺ G j with

∑n
j=1 g j = 1 on supp( f ). Then f = ∑n

j=1 g j f , and
since g j f ≤ (y j + ε)g j , and y j − ε < f (x) on A j , one has
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�( f ) =
n∑

j=1

�(g j f ) ≤
n∑

j=1

(y j + ε)�(g j ) ≤
n∑

j=1

(y j + ε)μ(G j )

≤
n∑

j=1

(y j + ε)μ(A j ) +
n∑

j=1

(y j + ε)
ε

n

≤
n∑

j=1

(y j − ε)μ(A j ) + 2εμ(supp( f )) + (M + ε)ε

≤
n∑

j=1

∫

A j

f dμ + {2μ(supp( f )) + M + ε}ε

=
∫

S
f dμ + {2μ(supp( f )) + M + ε}ε.

Since ε > 0 is arbitrary, the desired inequality is established. �

Example 2 To associate the Riemann integral of continuous functions f on the k-
dimensional unit S = [−1, 1]k with a measure and the corresponding Lebesgue
integral, apply the Riesz representation theorem to the bounded linear functional
defined by

�( f ) =
∫ 1

−1
· · ·

∫ 1

−1
f (x1, . . . , xk)dx1 · · · dxk . (4.3)
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We begin with an important classical result. Let C[0, 1] denote the set of all
real-valued continuous functions on [0, 1], endowed with the sup norm: ‖ f ‖ =
max{| f (x)| : x ∈ [0, 1]}. With the distance d( f, g) = ‖ f − g‖, C[0, 1] is a real
Banach space i.e., it is a vector space (with respect to real scalars) and it is a com-
plete (normed) metric space. Recall that a norm ‖ ‖ : V → [0,∞) on a vector
space V satisfies: ‖g‖ = 0 iff g = 0, ‖αg‖ = |α| · ‖g‖ (α scalar, g ∈ V ), and
‖ f + g‖ ≤ ‖ f ‖ + ‖g‖. Also, a subset A of a metric space is complete if every
Cauchy sequence in A has a convergent subsequence in A.

Theorem 1.2 (Weierstrass Approximation Theorem) Polynomials are dense
in C[0, 1].
Proof Let g ∈ C[0, 1]. Define a sequence hn (n ≥ 1) of polynomials on [0, 1] as

hn(p) =
n∑

i=0

g

(
i

n

)(
n

i

)

pi (1 − p)n−i (p ∈ [0, 1]), n ≥ 1. (1.4)

Then, for each p one may write hn(p) = Eg(X/n), where X is a binomial random
variable B(n, p). Let ε > 0 be given. There exists δ > 0 such that |g(p′)−g(p′′)| ≤
ε/2, if |p′ − p′′| ≤ δ and p′, p′′ ∈ [0, 1]. Hence

|hn(p) − g(p)| = |Eg(X/n) − g(p)|
≤ ε

2
P

(∣
∣
∣
∣

X

n
− p

∣
∣
∣
∣ ≤ δ

)

+ 2‖g‖P

(∣
∣
∣
∣

X

n
− p

∣
∣
∣
∣ > δ

)

≤ ε

2
+ 2‖g‖ p(1 − p)

nδ2
≤ ε

2
+ ε

2
= ε

for all p if n ≥ ‖g‖
εδ2

. �

Instead of [0, 1], we now consider an arbitrary compact Hausdorff space S. Recall
that a topological space S (with a topology T of open sets) is Hausdorff if for every
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pair x, y ∈ S, x �= y, there exist disjoint open sets U, V such that x ∈ U , y ∈ V .
A topological space is compact if every open cover of S has a finite subcover.
That is, if {Vλ : λ ∈ Λ} is a collection of open sets such that ∪λ∈ΛVλ = S, then
there exists a finite set {λ1, . . . ,λk} ⊂ Λ such that ∪{Vλi : 1 ≤ i ≤ k} = S. By
taking complements it is immediately seen that S is compact if and only if it has the
finite intersection property if {Cλ : λ ∈ Λ} is a collection of closed sets whose
intersection is empty, then it has a finite subcollection whose intersection is empty.
The following are a few useful related notions. A topological space S is called locally
compact if every point x ∈ S has a compact neighborhood. The space S is called
σ-compact if it is a countable union of compact sets. A subset D of a topological
space (S, T ) is compact if it is compact as a topological space with the relative
topology defined by D ∩ T .

It is simple to check, using the finite intersection property, that a real-valued
continuous function on a compact space S attains its supremum (and infimum). From
this it follows that the spaceC(S)of real-valued continuous functions on S is aBanach
space under the norm (called the supnorm) ‖ f ‖ := max{| f (x)| : x ∈ S}It is also an
algebra i.e., it is a vector space that is also closed under (pointwise) multiplication
( f, g) �→ f g ∀ f, g ∈ C(S). A subalgebra of C(S) is a vector subspace that is also
closed under multiplication. A subset H of C(S) is said to separate points if for
every pair of points x �= y in S there is a function f ∈ H such that f (x) �= f (y). The
following is a far reaching generalization of the Weirstrass approximation theorem
1.2

Theorem 1.3 (Stone–Weierstrass Theorem) Let S be a compact Hausdorff space,
and H a subalgebra of C(S). If H includes constant functions and separates points,
then H is dense in S, i.e.,H = C(S).

Proof Step 1. If f ∈ H, then | f | ∈ H. To prove this use Theorem 1.2 to find a
sequence hn of polynomials converging uniformly to the function h(p) = √

p on
[0, 1]. Now if f ∈ H then all polynomial functions of g ≡ f/‖ f ‖ belong to H. In
particular, hn ◦ g2 ∈ H (g2(x) ≡ (g(x))2 ∈ [0, 1]). But hn ◦ g2 converges uniformly
on S to h◦g2 = | f |/‖ f ‖, so that the functions (‖ f ‖)hn ◦g2 inH converge uniformly
to | f |.

Step 2. If f, g ∈ H then max{ f, g}, min{ f, g} ∈ H. To see this, write max{ f, g} =
1
2 ( f + g + | f − g|), min{ f, g} = 1

2 ( f + g − | f − g|) and apply Step 1.
Step 3. Let x �= y ∈ S, α and β real numbers. Then there exists f ∈ H such that

f (x) = α, f (y) = β. For this, find g ∈ H such that a ≡ g(x) �= b ≡ g(y). Let
f = α + β−α

b−a (g − a).

Step 4. Let f ∈ C(S). Given any x ∈ S and ε > 0, there exists g ∈ H such
that g(x) = f (x) and g(y) < f (y) + ε ∀y ∈ S. To prove this, fix f , x , ε as
above. By Step 3, for each y �= x there exists gy ∈ H such that gy(x) = f (x),
gy(y) = f (y) + ε/2. Then y belongs to the open set Oy = {z : gy(z) < f (y) + ε},
and S = ∪{Oy : y ∈ S\{x}}. Let {Oy1 , . . . ,Oyk } be a subcover of S. Define
g = min{gy1 , . . . , gyk }. Then g ∈ H (by Step 2), g(x) = f (x), and g(y) < f (y) + ε
∀ y ∈ S.



Appendix B: Topology and Function Spaces 243

Step 5. To complete the proof of the theorem, fix f ∈ C(S), ε > 0. For each
x ∈ S, let fx = g be the function obtained in Step 4. Then Vx := [z ∈ S : fx (z) >

f (z) − ε], x ∈ S, form an open cover of S (since x ∈ Vx ). Let {Vx1 , . . . , Vxm }
be a finite subcover. Then f ε ≡ max{ fx1 , fx2 , . . . , fxm } ∈ H (by Step 2), and
f (z) − ε < f ε(z) < f (z) + ε ∀z ∈ S. �

Among many important applications of Theorem 1.3, let us mention two.

Corollary 1.4 Let S be a compact subset of Rm (m ≥ 1). Then the set Pm of all
polynomials in m variables is dense in C(S).

Proof The set Pm is clearly an algebra that includes all constant functions. Also, let
x = (x1, . . . , xm) �= y = (y1, . . . , ym) ∈ S. Define f (z) = (z1 − x1)2 + · · ·+ (zm −
xm)2. Then f ∈ Pm , f (x) = 0, f (y) > 0. Hence Theorem 1.3 applies. �

Corollary 1.5 (Separability of C(S)) Let (S, ρ) be a compact metric space. Then
C(S) is a separable metric space.

Proof First observe that S is separable. For there exist finitely many open balls
{B(x j,n : 1/n) : 1 ≤ j ≤ kn} that cover S. Here B(x : ε) = {y ∈ S : ρ(x, y) < ε} is
a ball with center x and radius ε. Clearly, {x j,n : j = 1, . . . , kn; n = 1, 2, . . . } is a
countable dense subset of S. To prove separability ofC(S), let {xn : n = 1, 2, . . . } be
a countable dense subset of S. Denote by Bn,k the ball with center xn and radius 1/k
(k = 1, 2, . . . ; n = 1, 2, . . . ). Also, let hm(u) = 1−mu, 0 ≤ u < 1/m, hm(u) = 0
for u ≥ 1/m, define a sequence of continuous functions on [0,∞) (m = 1, 2, . . . ).
Define fn,k,m(x) := hm(ρ(x, Bn,k)) (n ≥ 1, k ≥ 1, m ≥ 1), and let M be the
set of all (finite) linear combinations of monomials of the form f j1

n1k1,m1
· · · f jr

nr ,kr ,mr

(r ≥ 1; j1, . . . , jr nonnegative integers). Then M is a subalgebra of C(S) that
includes constant functions and separates points: if x �= y then there exists Bn,k

such that x ∈ Bn,k and y /∈ Bn,k , implying fn,k,m(x) = 1, fn,k,m(y) < 1, if m is
sufficiently large. By Theorem 1.3,M is dense in C(S). The countable subset ofM
comprising linear combinations of the monomials with rational scalars is dense in
M and therefore in M = C(S). �

Remark 1.1 LetC(S : C) denote the set of all complex-valued continuous functions
on a compact metric space S. Under the sup norm ‖ f ‖ := sup{| f (x)| : x ∈ S},
C(S : C) is a (complex) Banach space. Letting { fn : n = 1, 2, . . . } be a dense
sequence in the real Banach space C(S), the countable set { fn + i fm : n ≥ 1, m ≥ 1}
is clearly dense in C(S : C). Hence C(S : C) is separable.

The next result concerns the product topology of the Cartesian product S =
×λ∈ΛSλ of an arbitrary collection of compact spaces Sλ (λ ∈ Λ). This topology
comprises all arbitrary unions of sets of the form V = [x ≡ (xλ : λ ∈ Λ) : xλi ∈ Vλi ,
1 ≤ i ≤ k], λi ∈ Λ, Vλi an open subset of Sλi (1 ≤ i ≤ k), for some k ≥ 1.

Theorem 1.6 (Tychonoff’s Theorem) Let Sλ be compact for all λ ∈ Λ. Then S =
×λ∈ΛSλ is compact under the product topology.
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Proof Wewill give a proofwhenΛ is denumerable, sayΛ = {1, 2, . . . }, and (Sn, ρn)

are compact metric spaces, n ≥ 1. The proof of the general case requires invoking
the axiom of choice, and may be found in Folland.1

Let x(n) = (x (n)
1 , x (n)

2 , . . . ), n ≥ 1, be a sequence in S. We will find a convergent
subsequence. Let {x (n(1))

1 : n ≥ 1} be a subsequence of {x (n)
1 : n ≥ 1}, converging

to some x1 ∈ S1, n(1) > n ∀n. Let {x (n(2))
2 : n ≥ 1} be a subsequence of {x (n(1))

2 :
n ≥ 1}, converging to some x2 ∈ S2, n(2) > n(1) ∀n. In general, let {x (n(k))

k :
n ≥ 1} be a subsequence of {x (n(k−1))

k : n ≥ 1}, converging to xk ∈ Sk (k =
1, 2, . . . ). Then the diagonal subsequence x(1(1)), x(2(2)), . . . , x(k(k)), . . . converges
to x = (x1, x2, . . . , xk, . . . ). �

Definition 1.2 A family C of continuous functions defined on a topological space
S is said to be equicontinuous at a point x ∈ S if for every ε > 0 there is a
neighborhood U of x such that for every f ∈ C, | f (y) − f (x)| < ε for all y ∈ U .
If C is equicontinuous at each x ∈ S then C is calledequicontinuous. Also C is said
to be uniformly bounded if there is a number M > 0 such that | f (x)| ≤ M for all
f ∈ C and all x ∈ S.

The next concept is especially useful in the context of C(S) viewed as a metric space
with the uniform metric.

Definition 1.3 A subset A of a metric space is said to be totally bounded if, for
every δ > 0 there is a covering of A by finitely many balls of radius δ.

Lemma 4 If A is a complete and totally bounded subset of a metric space then A is
compact.

Proof Since A may be covered by finitely many balls of radii 1/2, one of these,
denoted by B1, must contain xn for infinitely many n, say n ∈ N1. Next A ∩ B1

may be covered by finitely many balls of radii 1/4. One of these balls, denoted by
B2, contains {xn : n ∈ N1} for infinitely many n, say n ∈ N2 ⊂ N1. Continuing
in this way, by selecting distinct points n1 < n2 < · · · from N1, N2, . . . , one may
extract a subsequence {xnm : nm ∈ Nm} which is Cauchy and, since A is complete,
converges in A. Now suppose that {Uλ : λ ∈ Λ} is an open cover of A. In view of
the total boundedness of A, if for some ε > 0 one can show that every ball of radius
ε which meets A is a subset of some Uλ, then a finite subcover exists. To see that this
is indeed the case, suppose not. That is, suppose for every n ≥ 1 there is a ball Bn of
radius at most 2−n which meets A but is not a subset of any Uλ. For each n there is
an xn ∈ Bn ∩ A. Since there is a convergent subsequence to x ∈ A, one has x ∈ Uλ

for some λ ∈ Λ. Since Uλ is open and since x is a limit point of the sequence xn ,
it follows that x ∈ Bn ⊂ Uλ for n sufficiently large. This is a contradiction to the
construction of Bn, n ≥ 1. �

Theorem 1.7 (Arzelà-Ascoli) A collection C ⊂ C[a, b] is relatively compact for the
uniformmetric on C[a, b] if and only if C is uniformly bounded and equicontinuous.

1Folland, G.B. (1984), p. 130.
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Proof Assume that C is uniformly bounded and equicontinuous. In view of Lemma
4, it is enough to show the closure of C is totally bounded and complete to prove
relative compactness. The completeness follows from the completeness of C[a, b].
For total boundedness it is sufficient to check that C is totally bounded, since this
will be preserved in the closure. Let δ > 0. By equicontinuity, for each x ∈ S there
is an open set Ux containing x such that | f (y)− f (x)| < δ/4 for all y ∈ Ux , and all
f ∈ C. By compactness of [a, b], there are finitely many points x1, . . . , xn in S such
that ∪n

j=1Ux j = S. Now { f (x j ) : f ∈ C, j = 1, . . . , n} is a bounded set. Thus there
are numbers y1, . . . , ym such that for each f ∈ C, and each j , | f (x j ) − yk | < δ/4
for some 1 ≤ k ≤ m. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}. The set Y X of
functions from X into Y is a finite set and C = ∪g∈Y XCg , where Cg := { f ∈ C :
| f (x j )−g(x j )| < δ/4, 1 ≤ j ≤ n}. Now, to complete the proof of total boundedness,
let us see that this covering of C is by sets Cg of diameter at most δ. Let f, h ∈ Cg.
Then | f − h| < δ/2 on X . For x ∈ [a, b], one has x ∈ Ux j for some j , and therefore
| f (x) − h(x)| ≤ | f (x) − f (x j )| + | f (x j ) − h(x j )| + |h(x j ) − h(x)| < δ.

To prove necessity, let us first observe that if C is compact, then C is totally
bounded. For suppose not. Then there is a δ > 0 such that there is no finite cover
by balls of radii δ. Thus, for arbitrary but fixed g1 ∈ C, there is a g2 ∈ C such
that ‖g1 − g2‖ := maxa≤x≤b |g1(x) − g2(x)| > δ. This is because otherwise, the
ball centered at g1 would be a cover of C. Proceeding by induction, having found
g1, . . . , gn , there must be a gn+1 ∈ C such that ‖gk − gn+1‖ > δ for k = 1, . . . n.
Thus, there is an infinite sequence g1, g2, . . . in C such that ‖g j −gk‖ > δ for j �= k.
Thus C cannot be compact. Now, since C is totally bounded, given any ε > 0 there
exist g1, . . . , gn ∈ C such that for any f ∈ C one has ‖ f − gk‖ < ε

3 for some
1 ≤ k ≤ n. Since each gk is a continuous function on the compact interval [a, b],
it is bounded. Let M = max1≤k≤n,a≤x≤b |gk(x)| + ε

3 . Then, for f ∈ C, one has
| f (x)| ≤ |gk(x)| + ε

3 ≤ M for all a ≤ x ≤ b. Thus C is uniformly bounded. Since
eachgk is continuous andhence, uniformly continuous on [a, b], there is a δk > 0 such
that |gk(x)−gk(y)| < ε

3 if |x−y| < δk . Let δ = min{δ1, . . . , δn}. Then for f ∈ C one
has for suitably chosen gk , | f (x)− f (y)| ≤ ‖ f −gk‖+|gk(x)−gk(y)|+‖gk − f ‖ < ε
if |x − y| < δ. Thus C and hence, C ⊂ C is equicontinuous. �



Appendix C
Hilbert Spaces and Applications in Measure
Theory

C.1 Hilbert Spaces

Let H be a real vector space endowed with an inner-product (x, y) �→ 〈x, y〉, i.e.,
(i) 〈x, y〉 = 〈y, x〉 (symmetry), (ii) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 ∀α,β ∈ R

(bilinearity), and (iii) 〈x, x〉 ≥ 0 ∀ x , with equality iff x = 0 (positive definiteness).
One writes ‖x‖2 = 〈x, x〉. to obtain a corresponding norm ‖·‖ on H (see (1.3) below
for the required triangle inequality).

Among the basic inequalities on H is the parallelogram law

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2, (1.1)

which is easy to check, and the Cauchy–Schwarz inequality,

|〈x, y〉| ≤ ‖x‖ · ‖y‖. (1.2)

To prove this, fix x , y. If x or y is 0, this inequality is trivial. Assume then that x , y
are nonzero. Since for all u ∈ R,

0 ≤ ‖x + uy‖2 = ‖x‖2 + u2‖y‖2 + 2u〈x, y〉,

minimizing the right sidewith u = −〈x, y〉/‖y‖2, one gets 0 ≤ ‖x‖2−〈x, y〉2/‖y‖2,
from which (1.2) follows. One can now derive the triangle inequality

‖x + y‖ ≤ ‖x‖ + ‖y‖, (1.3)

by observing that ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉 ≤ ‖x‖2 + ‖y‖2 + 2‖x‖ ·
‖y‖ = (‖x‖ + ‖y‖)2, in view of (1.2). Thus ‖ · ‖ is a norm: (a) ‖x‖ ≥ 0, with
equality iff x = 0, (b) ‖αx‖ = |α| · ‖x‖ for all x ∈ H and real scalar α, and
(c) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x , y ∈ H . If H is a complete metric space under
the metric d(x, y) = ‖x − y‖, then H is said to be a (real) Hilbert space.

© Springer International Publishing AG 2016
R. Bhattacharya and E.C. Waymire, A Basic Course in Probability Theory,
Universitext, DOI 10.1007/978-3-319-47974-3
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Lemma 1 Let M be a closed linear subspace of the Hilbert space H . Then for each
x ∈ H , the distance d ≡ d(x, M) ≡ inf{d(x, y) : y ∈ M} is attained at some z ∈ M
such that d = d(x, z).

Proof Let zn be such that d(x, zn) → d as n → ∞, zn ∈ M ∀n. By (1.1), with
x − zn , x − zm for x and y, respectively, one has

‖zn − zm‖2 = 2‖x − zn‖2 + 2‖x − zm‖2 − ‖2x − zn − zm‖2

= 2‖x − zn‖2 + 2‖x − zm‖2 − 4‖x − 1

2
(zn + zm)‖2

≤ 2‖x − zn‖2 + 2‖x − zm‖2 − 4d2 −→ 2d2 + 2d2 − 4d2 = 0,

showing that {zn : n ≥ 1} is a Cauchy sequence in M . Letting z = lim zn , one gets
the desired result. �

Theorem 1.1 (Projection Theorem) Let M be a closed linear subspace of a real
Hilbert space H . Then each x ∈ H has a unique representation: x = y + z, z ∈ M ,
y ∈ M⊥ ≡ {w ∈ H : 〈w, v〉 = 0 ∀v ∈ M}.
Proof Let x ∈ H . Let z ∈ M be such that d ≡ d(x, M) = d(x, z). Define y = x −z.
Then x = y + z. For all u ∈ R and w ∈ M , w �= 0, one has

d2 ≤ ‖x − (z + uw)‖2 = ‖x − z‖2 + u2‖w‖2 − 2u〈x − z, w〉. (1.4)

If 〈x − z, w〉 �= 0, one may set u = 〈x − z, w〉/‖w‖2 to get d2 ≤ ‖x − z‖2 − 〈x −
z, w〉2/‖w‖2 < d2, which is impossible, implying 〈x − z, w〉 = 0 ∀w ∈ M . Hence
y ∈ M⊥. To prove uniqueness of the decomposition, suppose x = w + v, w ∈ M ,
v ∈ M⊥. Then w +v = y + z, and w − y = z −v. But w − z ∈ M and y −v ∈ M⊥,
implying w − z = 0, y − v = 0. �

The function x �→ z in Theorem 1.1 is called the (orthogonal) projection onto
M , and x → y is the orthogonal projection onto M⊥. It is simple to check that these
projections are linear maps (on H onto M , and on H onto M⊥).

We will denote by H∗ the set of all real-valued continuous linear functions (func-
tionals) on H . Note that if �1, �2 ∈ H∗ and α, β ∈ R, then α�1 + β�2 ∈ H∗, i.e.,
H∗ is a real vector space. It turns out that H∗ is isomorphic to H . To see this, note
that for each y ∈ H , the functional �y , defined by �y(x) = 〈x, y〉, belongs to H∗.
Conversely, one has the following result.

Theorem 1.2 (Riesz Representation Theorem on Hilbert Spaces) If � ∈ H∗, there
exists a unique y ∈ H such that �(x) = 〈x, y〉 ∀x ∈ H .

Proof Since � = 0 is given by �(x) = 〈x, 0〉, and corresponds to �0, assume � �= 0.
Then M ≡ {x ∈ H : �(x) = 0} is a closed proper linear subspace of H , M �= H ,
and therefore M⊥ �= {0}. Let z ∈ M⊥, ‖z‖ = 1. Consider, for any given x ∈ H ,
the element w = �(x)z − �(z)x ∈ H , and note that �(w) = 0. Thus w ∈ M , so
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that 0 = 〈w, z〉 = �(x) − �(z)〈x, z〉, implying �(x) = �(z)〈x, z〉 = 〈x, y〉, where
y = �(z)z.

To prove uniqueness of the representation, suppose 〈x, y1〉 = 〈x, y2〉 ∀x ∈ H .
With x = y1 − y2 one gets 0 = 〈x, y1 − y2〉 = ‖y1 − y2‖2, so that y1 = y2. �

A complex vector space H is a vector space with the complex scalar field C.
An inner product on such a space is a function 〈 , 〉 on H × H into C satisfying
(i) 〈x, y〉 = 〈y, x〉, (α is the complex conjugate of α ∈ C), (ii) 〈αx + βy, z〉 =
α〈x, z〉 + β〈y, z〉, (iii) ‖x‖2 ≡ 〈x, x〉 > 0 ∀x �= 0. If H , with distance d(x, y) =
‖x − y‖, is a complete metric space, it is called a complex Hilbert space. The par-
allelogram law (1.1) follows easily in this case. For the Cauchy–Schwarz inequality
(1.2), take u = −〈x,y〉

‖y‖2 in the relations (for arbitrary x, y ∈ H , and u ∈ C)

0 ≤ ‖x + uy‖2 = ‖x‖2 + |u|2 · ‖y‖2 + u〈x, y〉 + u〈x, y〉

to get 0 ≤ ‖x‖2 −|〈x, y〉|2/‖y‖2, from which (1.2) follows. The proof of the lemma
remains unchanged for complex H . The triangle inequality (1.3) follows as in the
case of real H . In the proof of the projection theorem, (1.4) changes (for u ∈ C) to

d2 ≤ ‖x − y‖2 + |u|2 · ‖w‖2 + u〈x − y, w〉 + u〈x − y, w〉,

so that taking u = −〈x − y, w〉/‖w‖2, one gets d2 ≤ ‖x − y‖2−|〈x − y, w〉|2/‖w‖2,
which implies 〈x − y, w〉 = 0 ∀w ∈ M . The rest of the proof remains intact. For
the proof of the Riesz representation, the relation 0 = �(x) − �(z)〈x, z〉 implies
�(x) = �(z)〈x, z〉 = 〈x, �(z)z〉 = 〈x, y〉 with y = �(z)z (instead of �(z)z in the case
of real H ). Thus Theorems 1.1, 1.2 hold for complex Hilbert spaces H also.

A set {xi : i ∈ I } ⊂ H is orthonormal if 〈xi , x j 〉 = 0 for all i �= j , and ‖xi‖ = 1.
An orthonormal set is complete if 〈x, xi 〉 = 0 for all i ∈ I implies x = 0. A complete
orthonormal subset of a Hilbert space is called an orthonormal basis of H . Suppose
H is a separable Hilbert space with a dense set {yn : n = 1, 2, . . . }. By the following
Gram–Schmidt procedure one can construct a countable orthonormal basis for
H . Without loss of generality assume yn �= 0, n ≥ 1. Let x1 = y1/‖y1‖, u2 =
y2 − 〈y2, x1〉x1, x2 = u2/‖u2‖, assuming u2 �= 0. If u2 = 0, replace y2 by the first y
in the sequence such that y −〈y, x1〉x1 �= 0, and relabel y = y2. Having constructed
u2, x2, . . . , un, xn in this manner, define un+1 = yn+1 − ∑n

j=1〈yn+1, x j 〉x j , xn+1 =
yn+1/‖yn+1‖, assumingun+1 �= 0 (ifun+1 = 0 thenfind thefirst y in the sequence that
is not linearly dependent on {x1, . . . , xn} and relabel it yn+1). The process terminates
after a finite number of steps if H is finite dimensional. Otherwise, one obtains a
complete orthonormal sequence {xn : n = 1, 2, . . . }. Completeness follows from
the fact that if 〈x, xn〉 = 0 for all n, then 〈x, yn〉 = 0 for all n, so that x ∈ {yn :
n ≥ 1}⊥ = {0} (since {yn : n ≥ 1} is dense in H , and A⊥ is a closed set for all
A ⊂ H ). A complete orthonormal set is called a complete orthonormal basis, in
view of Theorem 1.3 below.

Lemma 2 (Bessel’s Inequality)Let {x1, x2, . . . } be a finite or countable orthonormal
subset of a Hilbert space H . Then

∑
n |〈x, xn〉|2 ≤ ‖x‖2 for all x ∈ H .
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Proof One has

‖x −
∑

n

〈x, xn〉xn‖2 = ‖x‖2 − 2Re

〈

x,
∑

n

〈x, xn〉xn

〉

+
∥
∥
∥
∥
∥

∑

n

〈x, xn〉xn

∥
∥
∥
∥
∥

2

= ‖x‖2 − 2Re
∑

n

|〈x, xn〉|2 +
∑

n

|〈x, xn〉|2

= ‖x‖2 −
∑

n

|〈x, xn〉|2.

The inequality is proven since the expression is nonnegative. �

Theorem 1.3 Let {x1, x2, . . . } be a complete orthonormal set in a separable Hilbert
space. Then for all x one has (a) (Fourier Expansion) x = ∑

n〈x, xn〉xn , and (b)
(Parseval’s Equation) ‖x‖2 = ∑

n |〈x, xn〉|2, and 〈x, y〉 = ∑
n〈x, xn〉〈y, yn〉, for all

x, y ∈ H .

Proof (a) In view of Bessel’s inequality, the series
∑

n |〈x, xn〉|2 converges, so

that
∥
∥
∥
∑N

M 〈x, xn〉xn

∥
∥
∥
2 → 0 as M, N → ∞. Hence

∑
n〈x, xn〉xn converges to

z ∈ H , say. Since 〈xm, xn〉 = 0, n �= m, and 〈xm, xm〉 = 1, it follows that
〈z, xm〉 = 〈x, xm〉 for all m. Therefore, 〈z − x, xm〉 = 0 for all m, and hence by
completeness of {xn : n ≥ 1}, x = z = ∑

n〈x, xn〉xn . Also, the first calculation
in (b) follows, since ‖x‖2 = ‖∑

n〈x, xn〉xn‖2 = ∑
n |〈x, xn〉|2. More generally,

one has x = ∑
n〈x, xn〉xn , y = ∑

n〈y, xn〉xn , so that 〈x, y〉 = ∑
n〈x, xn〉〈y, xn〉,

using (i) convergence of
∑N

n=1〈x, xn〉xn to x and that of
∑N

n=1〈y, xn〉xn to y as
N → ∞, and (ii) the continuity of the inner product (u, v) → 〈u, v〉 as a function
on H × H . �

C.2 Lebesgue Decomposition and the Radon–Nikodym
Theorem

In the subsection we will give von Neumann’s elegant proof of one of the most
important results in measure theory.

Let μ, ν be measures on a measurable space (S,S). One says that ν is absolutely
continuous with respect to μ, ν � μ in symbols, if ν(B) = 0 ∀B ∈ S for which
μ(B) = 0. At the other extreme, ν is singular with respect to μ if there exists A ∈ S
such that ν(A) = 0 and μ(AC) = 0, that is, if μ and ν concentrate their entire masses
on disjoint sets: one then writes ν ⊥ μ. Note that ν ⊥ μ implies μ ⊥ ν. However,
ν � μ does not imply μ � ν.

Theorem 2.1 (Lebesgue Decomposition and the Radon–Nikodym Theorem) Let
μ, ν be σ-finite measures on (S,S). Then (Lebesgue decomposition) (a) there exist
unique measures νa � μ and νs ⊥ μ such that ν = νa + νs , and there exists a
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μ-a.e. unique nonnegative measurable h such that νa(B) = ∫
B h dμ ∀B ∈ S. (b) In

particular, (Radon–Nikodym theorem) if ν � μ, then there exists a μ-a.e. unique
h ≥ 0 such that ν(B) = ∫

B h dμ ∀B ∈ S.

Proof First consider the case of finite μ, ν. Write λ = μ + ν. On the real Hilbert
space L2(λ) ≡ L2(S,S,λ), define the linear functional

�( f ) =
∫

S
f dν f ∈ L2(λ). (2.1)

By the Cauchy–Schwarz inequality, writing ‖ f ‖ = (
∫ | f |2dλ)1/2, we have

|�( f )| ≤
∫

S
| f |dλ ≤ ‖ f ‖ · (λ(S))

1
2 . (2.2)

Thus � is a continuous linear functional on L2(λ). By the Riesz representation the-
orem (Theorem 1.2), there exists g ∈ L2(λ) such that

�( f ) ≡
∫

S
f dν =

∫

s
f g dλ ( f ∈ L2(λ)). (2.3)

In particular, for f = 1B ,

ν(B) =
∫

B
g dλ, ∀ B ∈ S. (2.4)

Letting B = {x ∈ S : g(x) > 1} = E , say, one gets λ(E) = 0 = ν(E). For
if λ(E) > 0, then (2.4) implies ν(E) = ∫

E g dλ > λ(E), which is impossible.
Similarly, letting F = {x : g(x) < 0}, one shows that λ(F) = 0. Modifying g on
a λ-null set if necessary, we take g to satisfy 0 ≤ g ≤ 1 on S. Consider the sets
S1 = {x : 0 ≤ g(x) < 1} and S2 = Sc

1 = {x : g(x) = 1}, and define the following
measures ν1, ν2:

ν1(B) := ν(B ∩ S1), ν2(B) := ν(B ∩ S2), B ∈ S. (2.5)

Now, using λ = μ + ν, one may rewrite (2.4) as

∫

B
(1 − g) dν =

∫

B
g dμ (B ∈ S). (2.6)

For B = S2, the left side is zero, while the right side is μ(S2), i.e., μ(S2) = 0. Since
ν2(Sc

2) = 0 by definition, one has ν2 ⊥ μ. On the other hand, on S1, 1 − g > 0, so
that μ(B) = 0 implies

∫
B∩S1

(1 − g)dν = 0 implies ν(B ∩ S1) = 0, i.e., ν1(B) = 0.
Hence ν1 � μ. Thus we have a Lebesgue decomposition ν = νa +νs , with νa = ν1,
νs = ν2. Its uniqueness follows from Corollary 2.3 below. Multiplying both sides of
(2.6) by 1, g, g2, . . . , gn , and adding, we get
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∫

B
(1 − gn+1) dν =

∫

B
(g + g2 + · · · + gn+1) dμ (B ∈ S). (2.7)

Since 1− gn+1 ↑ 1 (as n ↑ ∞) on S1, denoting by h the increasing limit of g + g2 +
· · · + gn+1, one gets

νa(B) ≡ ν1(B) = ν(B ∩ S1) =
∫

B∩S1

h dμ =
∫

B
h dμ (B ∈ S),

completing the proof of (a). Now (b) is a special case of (a). The uniqueness of
the function h in this case does not require Proposition 2.2 below. For if

∫
B h dμ =∫

B h′ dμ∀B ∈ S, then
∫

B(h−h′) dμ = 0∀B ∈ S. In particular
∫
{h>h′}(h−h′) dμ = 0

and
∫
{h≤h′}(h

′ − h) dμ = 0, so that
∫ |h − h′|dμ = 0.

For the general case of σ-finite measures μ, ν, let {An : n ≥ 1} be a sequence
of pairwise disjoint sets in S such that ∪∞

n=1 An = S, μ(An) < ∞, ν(An) < ∞ ∀n.
Applying the above result separately to each An and adding up one gets the desired
result, using the monotone convergence theorem. �

For the next result, call ν a finite signed measure if ν : S → (−∞,∞) satisfies
ν(∅) = 0, and ν(∪n Bn) = ∑

n ν(Bn) for every pairwise disjoint sequence Bn (n ≥ 1)
in S. If ν takes one of the two values −∞, ∞, but not both, ν is said to be σ-finite
signed measure if there exists a sequence of pairwise disjoint sets Bn ∈ S such that
ν is a finite signed measure on each Bn (n ≥ 1), and S = ∪n Bn .

Proposition 2.2 (Hahn–Jordan Decomposition) Suppose ν is aσ-finite signedmea-
sure on (S,S). Then (Hahn decomposition) (a) there exists a set C ∈ S such that
ν(C ∩ B) ≥ 0 ∀B ∈ S, and ν(Cc ∩ B) ≤ 0 ∀B ∈ S and (Jordan Decomposition)
(b) defining the measures ν+(B) := ν(C ∩ B), ν−(B) := −ν(Cc ∩ B), one has
ν = ν+ − ν−.

Proof First assume that ν is finite, and let u = sup{ν(B) : B ∈ S}. Let Bn ∈
S (n ≥ 1) be such that ν(Bn) → u. We will construct a set C ∈ S such that
ν(C) = u. For each m, consider the partition �m of S by 2m sets of the form
B ′
1∩B ′

2∩· · ·∩B ′
m with B ′

i = Bi or Bc
i , 1 ≤ i ≤ m. Let Am be the union of those among

these sets whose ν-measures are nonnegative. Clearly, ν(Am) ≥ ν(Bm). Expressing
Am ∪ Am+1 as a (disjoint) union of certain members of the partition �m+1 and noting
that those sets in �m+1 that make up Am+1\Am all have nonnegative ν-measures,
one has ν(Am ∪ Am+1) ≥ ν(Am). By the same argument, ν(Am ∪ Am+1 ∪ Am+2) ≥
ν(Am ∪ Am+1) ≥ ν(Am), and so on, so that ν(∪n

i=m Ai ) ≥ ν(Am) ∀n ≥ m, implying
that Cm ≡ ∪∞

i=m Ai satisfies ν(Cm) ≥ ν(Am) ≥ ν(Bm). Hence ν(C) = u, where
C = limm→∞ Cm . We will now show that ν(B ∩C) ≥ 0 and ν(B ∩Cc) ≤ 0 ∀B ∈ S.
First note that u < ∞, since ν is finite. Now if ν(B ∩ C) < 0 for some B, then
ν(C\(B ∩ C)) > u, which is impossible. Similarly, if ν(B ∩ Cc) > 0 for some B,
then ν(C ∪ (B ∩Cc)) > u. We have proved the Hahn decomposition (a). The Jordan
decomposition (b) follows immediately from this.
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If ν is σ-finite, then S is a disjoint union of sets An (n ≥ 1) such that νn(B) ≡
ν(An ∩ B), B ∈ S, is a finite signed measure for all n ≥ 1. The Hahn–Jordan
decomposition νn = ν+

n − ν−
n leads to the corresponding decomposition of ν =

ν+ − ν−, with ν+ = ∑
n ν+

n , ν
− = ∑

n ν−
n . �

The measure |ν| := ν+ + ν− is called the total variation of a σ-finite signed
measure ν.

Corollary 2.3 TheHahn–Jordan decomposition of a σ-finite signedmeasure ν is the
unique decomposition of ν as the difference between two mutually singular σ-finite
measures.

Proof It is enough to assume that ν is finite. Let ν = γ1 − γ2 where γ1 ⊥ γ2
are measures, with γ1(Dc) = 0, γ2(D) = 0 for some D ∈ S. Clearly, γ1(D) =
γ1(S) = sup{ν(B) : B ∈ S} = ν(D) = u, say. As in the proof of Proposition 2.2, it
follows that γ1(B) = ν(B ∩ D), γ2(B) = −ν(B ∩ Dc) for all B ∈ S. If C is as in
Proposition 2.2, then u = ν(C). Suppose, if possible, ν+(B) ≡ ν(B∩C) > γ1(B) =
ν(B ∩ D), i.e., ν(B ∩C ∩ Dc)+ν(B ∩C ∩ D) > ν(B ∩ D ∩C)+ν(B ∩ D ∩Cc), or,
ν(B∩C ∩ Dc) > ν(B∩ D∩Cc) = γ1(B∩Cc) ≥ 0. But then ν(D∪(B∩C ∩ Dc)) >

ν(D) = γ1(D) = u, a contradiction. Hence ν+(B) ≤ γ1(B) ∀B ∈ S. Similarly,
γ1(B) ≤ ν+(B) ∀B ∈ S. �

One may take ν to be a σ-finite signed measure in Theorem 2.1 (and μ a σ-finite
measure). Then ν is absolutely continuous with respect to μ, ν � μ, if μ(B) = 0
implies ν(B) = 0 (B ∈ S). Use the Hahn–Jordan decomposition ν = ν+ − ν−,
and apply Theorem 2.1 separately to ν+ and ν− : ν+ = (ν+)a + (ν+)s , ν− =
(ν−)a + (ν−)s . Then let νa = (ν+)a − (ν−)a , νs = (ν+)s − (ν−)s .

Corollary 2.4 Theorem 2.1 extends to σ-finite signed measures ν, with ν = νa +νs ,
where νa and νs are σ–finite signed measures, νa � μ, νs ⊥ μ. Also, there exists a
measurable function h, unique up to aμ–null set, such that νa(B) = ∫

B h dμ ∀B ∈ S.
If ν � μ, then ν(B) = ∫

B h dμ ∀B ∈ S.
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Symbol Index

(S, ρ) space, 5
(S,S,μ), measure space, 1
(S, T ) space, 5
(�,F, P), probability space, 1
1⊥, subspace orthogonal to one, 36
2�, power set of �, 2
A−, closure of set A, 137
Ac, complement of A, 2
A◦, interior of set A, 137
Bx , Brownian motion started at x , 190
C(S), space of continuous real-valued

functions on S, 237
C(S : C), space of complex-valued

continuous functions on S, 243
C([0,∞) : R

k), space of continuous
functions on [0,∞) into R

k , 6
C[0, 1], space of real-valued continuous

functions on [0, 1], 6
C y , y-section of the set C , 236
Cb(S) of real-valued bounded functions on

S, 11
C0

b (S), space of continuous functions on S
that vanish at infinity, 142

Cx , x-section of the set C , 236
F(x) = P(X ≤ x), (multivariate)

distribution function, 6
Hn,k , Haar wavelet functions, 173
L1, abbreviation for L1 ≡ L1(�,F, P), 37
L2, L2(F), abbreviations for L2(�,F, P),

36
L p(�,F, P), L p space of random

variables, 11
M⊥, subspace orthogonal to M , 248
P ◦ X−1, (induced) probability distribution,

6
P(A|G), conditional probability of A given

G, 41
PG or QG , regular conditional distribution,

42

Q(B) := P(X−1(B)) ≡ P(X ∈ B),
(induced) probability distribution, 6

Q1 ∗ Q2, convolution of probability
distributions, 26

Qx , distribution of random walk starting at
x , 45

Sx , random walk process (sequence)
starting at x , 46

Sx
n , position of random walk starting from x

at time n, 45
Sx+

n , after-n process, 45
Sn,k , Schauder functions, 174
W = P ◦ B−1, Wiener measure, 148
X+ part of X , 7
X−, negative part of X , 7
X+

τ , after-τ process, 189
X+

m , after-m process, 187
Z+

s , after-s process, 190
[X ∈ B] image notation for random maps, 5
[x], integer part of x , 50
�, symmetric difference, 88
‖X‖p , L p norm of X , 11
δx , Dirac point mass measure, 1∫

f dμ,
∫

S f (x)μ(dx),
∫

f , alternative
notations for Lebesgue integral of f ,
230

R
∞, infinite real sequence space, 6

B(S) := σ(T ), Borel σ-field on S generated
by the topology T for S, 5

Fτ , pre-τ σ-field, 189
Ft+, right-continuous filtration, 191
Cov, covariance, 29
Var, variance, 29
μ∗, outer measure, 226
μ1 × μ2, product measure, 236
μp , order p-moment, 8
μt1,t2,...,tn , finite-dimensional distribution,

167
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ν � μ, absolute continuity of measures,
250

ν ⊥ μ, mutual singularity of measures, 250
ν+, ν−, positive and negative parts of a

signed-measure, respectively, 252
νω(δ), oscillation of function ω at scale δ,

148
⊗, σ-field product, 25
⊗t∈ΛSt , product σ-field, 46
∂ A, boundary of set A, 137
∂α, multi-index partial derivative, 115
πk , k-th coordinate projection map, 25
πs , s-th coordinate projection map, 46
≺, subordinate, 238
lim infn An , limit inferior of sequence of

sets (events), 2
lim supn An , limit superior of sequence of

sets (events), 2
{0, 1}∞, infinite binary sequence space, 3
{0, 1}m binary sequence space, 2
{Xτ∧t : t ≥ 0}, stopped process, 59
ρ(x, F), distance from point x to set F , 11
σ(X), σ-field generated by X , 5
σ(Xt ), σ-field generated by Xt , 33
σ(Xt : t ∈ Λ), σ-field generated by family

of random maps, 33
σ({Ft : t ∈ Λ}), σ-field generated by a

collection of σ-fields, 34
σ(C) generated by C, 4
σt , matrix transpose, 191
⊂, subset, 1
∨, (lattice) notation for maximum, 59
∧, (lattice) notation for minimum, 59
dπ , Prohorov metric, 146
dv , total variation distance, 15
dBL , bounded-Lipschitz metric, 154
f −1(B) image of B under f , 5
i.o., infinitely often, 2
m,λ, dx , alternative notations for Lebesgue

measure, 229
p(x, B), homogeneous one-step transition

probability from state x to set B at
time n, 211

p(x, B), one-step transition probability
from a state x to set B, 171

p(x, dy), homogeneous one-step transition
probability distribution at time m,
187

p(x, y), one-step transition probability
density, 170

pm(x, dy), one-step transition probability
distribution at time m, 187

pn(x, B), one-step transition probability
from state x to set B at time n, 211

B∞, infinite product of Borel σ-fields, 45
Fτ , pre-τ σ-field, 59
L(C), λ-system generated by C, 4
P(S), set of probability measures on (S,S),

15
S1 ⊗ · · · ⊗ Sk , product σ-field, 237
S1 ⊗ · · · ⊗ Sn , product σ-field, 25
T , tail σ-field, 87
μ̂, Fourier transform of finite-signed

measure μ, 115
f̂ (ξ), Fourier transform, 112
Z

+, set of nonnegative integers, 54, 59
C of complex numbers, 23
E(X |G), conditional expectation of X given

G, 36
EX , expected value of X , 7
R, set of real numbers, 7
R

Λ, the indicated product space, 172
Z, set of integers, 46
1A, indicator function of A, 7
Xn+, after-n process, 211
F̃t , trace σ-field, 60
a.e., almost everywhere, 233
Arrows ↓,↑, limits from above (right-

sided), and from below (left-sided),
respectively, 11

i.i.d., independent and identically
distributed, 31

Re(z), the real part of z, 123
Widearrow ⇒, weak convergence,

convergence in distribution, 75



Index

A
Adapted, 55

σ-field, 55
Adjustment coefficient, Lundberg

coefficient, 72
After-τ process, 189
After-m process, 187
After-n process, 45
After-s process, 190
Alexandrov theorem, 137
Algebra, 225, 242
Almost everywhere (a.e.), 233
Almost sure (a.s.) convergence, 10
Arzelà-Ascoli theorem, 244
Asymmetric random walk, 221

B
Banach space, 11, 241
Bernstein polynomials, 92
Berry–Esseen bound, 83, 97, 126
Bessel’s inequality, 249
Binomial distribution, 22
Birth–death chain

reflecting boundary, 216
Bochner Theorem, 119
Boltzmann paradox, 215
Borel σ-field, 5, 228
Borel–Cantelli lemma I, 3
Borel–Cantelli lemma II, 34
Boundary value (hitting) distribution for

Brownian motion, 196
Bounded-Lipschitz metric, 154
Branching rate, 70
Brownian motion, 148, 194

boundary value (hitting) distribution for
Brownian motion, 196

diffusion coefficient, 191
drift coefficient, 191

homogeneity of Brownian motion
increments, 179

independent increments of Brownian
motion, 179

k-dimensional, 176
k-dimensional Brownian motion with
respect to filtration, 191

Kolmogorov model, 172
law of the iterated logarithm, 183
Lévy modulus of continuity, 186
maximal inequality for Brownian
motion, 183

nowhere differentiable paths, 186
scale invariance of Brownian motion,
179

set of zeros, 197
standard, 191
strong Markov property, 193
symmetry transformation of Brownian
motion, 179

time inversion invariance of Brownian
motion, 179

two-point boundary hitting probabilities,
198

upper class, 198
wavelet construction, 173
zeros of Brownian motion, 186, 197

Brownian sheet, 181

C
Canonical model, canonical construction, 7
Canonical process, 178
Cantor function, 230
Cantor measure, 230
Cantor set, 229
Carathéodory extension theorem, 226
Cartesian product, 237
Cauchy distribution, 132
Cauchy–Schwarz inequality, 247
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Central limit theorem
classical, 81, 125
Lindeberg, 78
Lyapounov, 81
multivariate, 84, 143

Cesàro limit, 163
Change of variables, 8
Characteristic function, 115

Taylor expansion, 125
Chebyshev estimation of distribution

function, 14
Chebyshev estimation of sample size, 30,

82
Chebyshev sampling design, 82
Chernoff estimation of sample size, 100
Chernoff inequality, 96
Chung–Fuchs lemma, 120

recurrence criterion, 123, 134
Coin toss, 2, 3, 28
Compact

finite intersection property, 242
Compact space, 242
Complete metric space, 241
Complete orthonormal set, 249
Complex vector space, 249
Concentration inequalities, 98
Conditional expectation

Cauchy-Schwarz inequality, 51
Chebyshev inequality, 51
contraction, 38
convergence theorems, 38
dominated convergence, 38
first definition, L2-projection, 36
linearity, 38
monotone convergence, 38
ordering, 38
second definition on L1, 37
smoothing, 38
substitution property, 38

Conditional probability, 41
regular conditional distribution, 41

Conditional probability density function, 44
Conjugate exponents, 13
Convergence

almost sure (a.s.), 9
in distribution, 75, 137
in measure, 233
in probability, 10
vague, 142
weak, 75

Convergence-determining, 139
Convex function, 12

line of support property, 12

Convolution, 26, 47, 115, 116
smoothing property, 132

Coordinate projections, 25, 46
Covariance, 29
Cramér–Chernoff Theorem, 94
Cramér–Lèvy Continuity Theorem, 117
Cramér–Lundberg model, 71
Cramér–Wold device, 143
Critical probability

percolation, 29
Cumulant-generating function, 92
Cylinder sets, 45

D
Density

with respect to Lebesgue measure, 6
Diffusion coefficient, 148, 191, 209
Dilogarithmic random walk, 222
Disintegration formula, 42
Disorder parameter, 70
Distribution

absolutely continuous, 250
singular, 250

Distribution function, 228
absolutely continuous, 6

Doeblin minorization, 213
Donsker’s invariance principle, 201
Doob–Blackwell theorem, 42
Doob maximal inequality, 56
Doob maximal inequality for moments, 57
Doob’s upcrossing inequality, 66
Drift coefficient, 148, 191
Dynkin’s π-λ theorem, 4

E
Ehrenfest model, 215, 222
Equicontinuity lemma, 119
Equicontinuous, 244
Esscher transform, 93
Events, 1

increasing, decreasing, 2
infinitely often, i.o., 2
limsup, liminf, 2
tail, 87

Eventually for all, 34
Expected value

mean, first moment, 7
Exponential distribution, 48, 140

F
Fatou’s lemma, 234
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Fejér average, 104
Fejér kernel, 105
Feller property, 221
Feller’s Gaussian tail probability estimates,

82
Field, 225
Filtration, 55

right-continuous, 191
Finite-dimensional cylinders, 167
Finite-dimensional distribution, 21, 167
Finite-dimensional rectangles, 46
Finite intersection property, 242
First return time for random walk, 195
Fluctuation-dissipation, 214
Fourier coefficients

multidimensional, 112
of a function, 104
of a measure, 109

Fourier inversion formula, 112
Fourier series, 104

multidimensional, 112
Fourier transform

inversion, 112, 113, 130
inversion for lattice random variables,
133

location-scale change, 131
multidimensional, 112
of a function, 113
of a measure, 115
range, 119
uniqueness theorem, 116

Fubini–Tonelli Theorem, 237
Functional central limit theorem (FCLT),

147, 201

G
Gamma distribution, 48
Gaussian distribution, 48, 82, 130, 133
Geometric distribution, 140
Gram–Schmidt procedure, 249

H
Haar wavelet functions, 173
Hahn decomposition, 252
Hahn–Jordan decomposition, 252
Hausdorff estimates, 100
Helly selection principle, 142
Herglotz theorem, 110
Hewitt–Savage zero–one law, 88
Hilbert cube embedding, 143
Hilbert space, 11, 247

complex, 249

Hitting time, 196, 198
birth–death chain, 216

Hoeffding estimation of sample size, 100
Hoeffding lemma, 98
Holtzmark problem, 129

I
Inclusion-exclusion formula, 18
Independence

independent and identically distributed,
i.i.d., 31

of σ-fields, 32, 34
of events, 26
of families of random maps, 34
of random maps, 30

Independent
pairwise, 91

Independent increments, 54, 218
Inequality

Bonferroni, 19
Cauchy–Schwarz, 13
Chebyshev, 13
Chernoff, 96
conditional Jensen inequality, 38
Hoeffding, 99
Hölder, 13
Jensen, 13
Lundberg, 71
Lyapounov, 13
Markov, 13, 14
Minkowski triangle, 13
Neveu-Chauvin, 40
upcrossing, 66

Infinitely divisible, 84
Infinitely divisible distribution, 128
Initial distribution, 211
Inner product, 247, 249
Inner product space norm, 247
Integrable, 232
Integral, 230

complex, 23
Lebesgue, 9

Integral limit theorem, 139
Integration

complex functions, 23
Integration by parts, 9
Invariance principle, 147, 148, 201
Invariant distribution, 212
Irreducible

Markov chain, 214
Itô calculus, 221
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J
Jordan decomposition, 252

K
Kolmogorov-Chentsov theorem, 180
Kolmogorov consistency theorem, 168
Kolmogorov existence theorem, 168
Kolmogorov extension theorem, 31, 47, 168
Kolmogorov maximal inequality, 56, 160
Kolmogorov three-series theorem, 161, 162
Kolmogorov zero–one law, 87
Kronecker’s Lemma, 163

L
λ-system, 4
Langevin equation, 219
Laplace transform, 92
Large deviation rate, 96
Large deviations

Bahadur–Ranga Rao, 96
Law of large numbers

Etemadi proof, 89
Marcinkiewicz–Zygmund, 162
reverse martingale proof, 88
strong, 163, 166
weak law, 92

Law of rare events, 118
L1-convergence criterion, 17
Lebesgue Decomposition

Radon–Nikodym Theorem, 250
Lebesgue measure, 229, 237
Lebesgue’s dominated convergence

theorem, 234
Lebesgue’smonotone convergence theorem,

234
Lebesgue–Stieltjes Measures, 228
Legendre transform, 93, 101
Levy–Ciesielski construction

Brownian motion, 173
Light-tail distribution, 71
LIL, law of the iterated logarithm, 202
LIL, law of the iterated logarithm for

Brownian motion, 183, 202
Line of support, 12
Linear functional

bounded, 237
continuous, 237
positive, 237

Local limit theorem, 139, 140
Locally compact, 242
L p-convergence criterion, 18
L p-spaces, 11

Lundberg coefficient, adjustment
coefficient, 72

M
Machine learning

concentration inequalities, 100
Mann–Wald theorem, 140
Markov chain

feller property, 221
irreducible, 214

Markov process
discrete parameter, 170
homogeneous, 218

Markov property, 178, 187, 189–191, 211
general random walk, 45
homogeneous transition probabilities,
187, 189

stationary transition probabilities, 187
Markov property of Brownian motion, 190
Martingale

Brownian motion, 198
first definition, 53
reverse, 68
second general definition, 55

Martingale differences, 54
Mathematical expectation

expected value, 7
Matrix square root, 84
Maximal inequality

Doob, 56
Kolmogorov, 56, 160
Skorokhod, 160

Maxwell–Boltzmann distribution, 222
Measurable

Borel, 5
function, 5, 230
map, 5
rectangles, 25, 230, 235
set, 1
space, 1, 230

Measure, 1
absolutely continuous, 250
complete, 225
completion of, 225
continuity properties, 2
countably additive, 1, 225
dirac point mass, 1
distribution function, 228
finite, 1
Lebesgue, 1, 229
Lebesgue–Stieltjes, 228
on a field, algebra, 225
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outer, 226
probability, 1
σ-finite, 1
signed, 252
singular, 250
subadditivity, 225

Measure space, 1
completion, 225

Measure-determining
events, 5
functions, 11

Metric
bounded-Lipschitz, 154

Metrizable topology, 6
Minorization

Doeblin, 213
Modulus of continuity for Brownian

motion, 186
Moment

formula, 8
higher order, 8

Moment-generating function, 92
Monomials, 243
Multiplicative cascade measure, 69
Multivariate normal distribution, 84
μ∗-measurable, 226

N
Natural scale, 217
Net profit condition, 70
Nonatomic distribution, 230
Norm, 241
Normal distribution, 48
Normed vector space

complete, 247

O
One-dimensional simple symmetric random

walk
recurrence, 46

Optional sampling theorem, 61
Brownian motion, 198

Optional stopping theorem, 61
Optional time, 58, 59
Ornstein–Uhlenbeck process, 185, 210, 218

Maxwell–Boltzmann invariant
distribution, 222

stationary, 222
time change of Brownian motion, 222

Orthogonal projection, 36, 248
Orthogonality

conditional expectation, 36

Orthonormal, 104, 249
basis, 249
complete, 249
set, 104

Oscillation of a function on a set, 154

P
Parallelogram law, 247
Parseval relation, 117, 133

multidimensional, 117
Partition, 43
P-continuity, 137
Percolation, 49

binary tree, 28
critical probability, 29

π-λ theorem, 4
Picard iteration, 219
π-system, 4
Plancheral identity, 112–114
Poisson approximation, 118
Poisson distribution, 84
Poisson process

interarrival times, 222
Polish space, 42
Polya’s recurrence theorem, 122
Polya’s theorem

uniform weak convergence, 83
Positive-definite, 110, 119
Pre-τ σ-field, 189, 192
Probability

monotonicity, 18
sub-additivity, 18

Probability space, 1
Product σ-field, 167, 235, 237
Product measure, 236, 237
Product measure space, 236
Product space, 46, 167
Product topology, 243
Progressive measurability, 59
Prohorov metric, 146
Prohorov theorem, 145
Projection

orthogonal, 248
Projection theorem, 248
Pseudo-metric, 102

R
Radon-Nikodym theorem

Lebesgue decomposition, 250
Random dynamical system, 215
Random field, 172
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Gaussian, 172
Random matrices

i.i.d. product, 215
Random power series, 35
Random series, mean-square-summability

criterion, 161
Random signs problem, 165
Random variable

continuous, 6
discrete, 7
integrable, 7
random map, 5
random vector, 6
simple, 7

Random walk, 45, 120
r th passage times, 195
asymmetric, 65, 221
first return time, 195
Gaussian, 124
general k-dimensional, 45, 212
lazy, 221
Markov property, 45, 187
recurrence, 120, 196
simple, 183
symmetric, 46
with absorption, 222
with reflection, 221

Recurrence
Chung–Fuchs criteria, 123, 134
one-dimensional simple symmetric
random walk, 46, 195

random walk, 65, 196
simple symmetric random walk on
Z

k , k ≤ 2, 122
Recurrent

neighborhood, 120
Reflection principle, 183

Browian motion, 183
simple random walk, 183

Regular conditional distribution, 41
Regular measure, 238
Relative topology, 242
Reverse martingale, 68
Reverse submartingale, 68

convergence theorem, 68
Riemann–Lebesgue Lemma, 113
Riesz Representation Theorem on C(S),

237
Ruin probability

insurance risk, 70

S
Sample points, 1

Sample space, 1
Sampling design, 100
Schauder basis, 173
Schauder functions, 174
Scheffé theorem, 14
Second moment bound, 29
Second moment inequality, 29
Section

of a measurable function, 236
of a measurable set, 236

Separability of C(S), 243
Set

boundary, 137
closure, 137
P-continuity, 137

σ-compact, 145, 242
σ-field, 1

adapted, 55
Borel, 5
complete, 225
filtration, 55
generated, 5
generated by collection of events, 4
join, 4
P-complete, 60
pre-τ , 59
product, 230
tail, 87
trace, 60
trivial, 36

σ-finite, 225
σ-finite signed measure, 252
Signed measure, 252
Simple function, 230

standard approximation, 231
Simple symmetric random walk

reflection principle, 183
unrestricted, 221

Singular distribution, 230
Size-bias

exponential size-bias, 93
Skorokhod embedding, 199
Skorokhod Embedding Theorem, 200
Skorokhod maximal inequality, 160
Smoothing

conditional expectation, 38
Sparre Andersen model, 71
Stable law, symmetric, 128, 129
Stationary process, 212, 223
Stochastic differential equation, 221
Stochastic process, 46

continuous-parameter, 46
discrete-parameter, 46
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Stokes law, 219
Stone–Weierstrass Theorem, 169, 242
Stopped process, 59, 192
Stopping time, 59, 189

approximation technique, 63
Strong law of large numbers, 163, 166

reverse martingale proof, 88
Strong Markov property

Brownian motion, 193
discrete-parameter, 189

Submartingale, 54, 55
Submartingale convergence theorem, 67
Subordinate, 238
Substitution property

conditional expectation, 38
Supermartingale, 54, 55
Supnorm, 242
Support of function, 238
Symmetric difference, 88
Symmetric stable distribution, 129
Symmetrization, 132

T
Tail event, 87
Taylor expansion, 125
Tight, 145
Tilting

size-bias, 93
Topological space, 5

compact, 242
Hausdorff, 241
metrizable, 6
pointwise convergence, 6
uniform convergence, 6
uniform convergence on compacts, 6

Total variation distance, 15, 136
Total variation of a signed measure, 253
Totally bounded, 244
Transience

simple asymmetric random walk, 72
simple symmetric random walk on
Z

k , k ≥ 3, 122
Transition probabilities, 171

homogeneous, 211
one-step, 211
stationary, 211

Triangle inequality, 247
Triangular array, 81
Trigonometric polynomials, 103
Truncation method

Kolmogorov, 165
Tulcea extension theorem, 47, 169
Tychonoff’s Theorem, 243

U
UCb(S), space of bounded uniformly

continuous real-valued functions on,
11

Uncorrelated, 29, 91
Uniformly asymptotic negligible (u.a.n.),

81
Uniformly bounded, 244
Uniformly integrable, 16
Unrestricted simple symmetric random

walk, 221
Upcrossing inequality, 66
Upper class functions, 198
Urysohn lemma, 238

V
Vague convergence, 142
Variance, 29
Variance of sums, 29
Vector space

complex, 249

W
Wald’s identity, 72
Wavelet construction

Brownian motion, 173
Weak convergence, 75, 136

finite-dimensional, 76
Polya’s theorem, 83
uniform, 83

Weak law of large numbers (WLLN), 92
Weak topology, 136
Weierstrass approximation theorem, 92,

103, 241, 242
periodic functions, 103

Wiener measure, 147, 173, 190, 209

Z
Zero–one law

Blumenthal, 198
Hewitt–Savage, 88
Kolmogorov, 87
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