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Abstract. Concurrent program logics are frameworks for constructing
proofs, which ensure that concurrent programs work correctly. However,
most conventional concurrent program logics do not consider the com-
plexities of modern memory structures, and the proofs in the logics do not
ensure that programs will work correctly. To the best of our knowledge,
Independent Reads Independent Writes (IRIW), which is known to have
non-intuitive behavior under relaxed memory consistency models, has
not been fully studied under the context of concurrent program logics.
One reason is the gap between theoretical memory consistency models
that program logics can handle and the realistic memory consistency
models adopted by actual computer architectures. In this paper, we pro-
pose observation variables and invariants that fill this gap, releasing us
from the need to construct operational semantics and logic for each spe-
cific memory consistency model. We describe general operational seman-
tics for relaxed memory consistency models, define concurrent program
logic sound to the operational semantics, show that observation invari-
ants can be formalized as axioms of the logic, and verify IRIW under an
observation invariant. We also obtain a novel insight through construct-
ing the logic. To define logic that is sound to the operational semantics,
we dismiss shared variables in programs from assertion languages, and
adopt variables observed by threads. This suggests that the so-called
bird’s-eye view of the whole computing system disturbs the soundness of
the logic.

Keywords: Relaxed memory consistency model · Concurrent program
logic · Rely/guarantee method · Observation · Independent Reads Inde-
pendent Writes

1 Introduction

Memory structures are becoming increasingly complicated as computing systems
continue to grow. This can be overwhelming when attempting to write programs
that work on architectures consisting of complicated memory structures. Since
conventional program verification considers architectures with simple memory
structures, it struggles to deal with architectures that consist of complicated
memory structures.
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Fig. 1. Independent Reads Indepen-
dent Writes

Fig. 2. Non-remote-write-atomic
memories

To illustrate the problem, consider an example racy program. Readers may
consider that racy programs should be prohibited as their behaviors are specified
undefined in C++11 [12]. However, in lower-level programming (e.g., on virtual
machine or computer architecture), racy programs are necessary to implement
register algorithms, which provide mutual exclusion etc. Although such racy
programs are not typically large, their non-intuitive behaviors make it difficult
to verify them.

Figure 1 shows Independent Reads Independent Writes (IRIW) [4]. Variables
x and y are shared, and variables r0, r1, r2, and r3 are thread-local. We assume
that all variables are initialized to 0. IRIW consists of four threads. Two threads
are readers, which read values from the shared variables x and y. The other two
threads are writers. One writes 1 to x, and the other writes 1 to y. If the write
to x is performed before the write to y, then r2 ≤ r3 seems to hold, since r2 > r3
(i.e., r2 = 1 and r3 = 0) does not hold for the following reason:

1. r2 = 1 implies y = 1, and
2. we assume that the write to x is performed before the write to y;
3. therefore, when x is read (to r3), its value is 1.

Similarly, if the write to y is performed before the write to x, then r0 ≤ r1 seems
to hold. Therefore, it would appear that r0 ≤ r1 ∨ r2 ≤ r3.

However, this is not always the case, because an architecture may realize
a form of shared memory, as shown in Fig. 2. This means that the first reader
and writer share the same physical memory, and the second reader and writer
share another physical memory. Shared memory is realized by any mechanism for
data transfer (denoted by �) between the physical memories. The architecture
that has mechanism for data transfer is sensitive to the so-called remote-write-
atomicity [11] (also called multi-copy-atomicity in [24]). Remote-write-atomicity
claims that if two thread write values to (possibly distinct) locations, then the
other threads must observe the same order between the two write operations.

Here, let us assume that physical memories do not enjoy remote-write-
atomicity, that is, effects on one memory cannot be immediately transferred
to the other memory. Under this architecture, while the first reader may observe
that the write to x is performed before the write to y, the second reader may
observe that the write to y is performed before the write to x. Therefore, there
is no guarantee that r0 ≤ r1 ∨ r2 ≤ r3.

Thus, in modern program verification, we cannot ignore remote-write-
atomicity. However, to the best of our knowledge, there exists no concurrent
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program logic in which remote-write-atomicity can be switched on and off. One
reason is the existence of a gap between theoretical memory consistency mod-
els, which concurrent program logics can handle, and realistic memory consis-
tency models, which are those adopted by actual computer architectures. While
theoretical memory consistency models (axioms written in assertion languages)
in concurrent program logics describe relations between expressions, which are
often the orders of values that are evaluated by expressions, realistic memory con-
sistency models (which are often written in natural languages rather than formal
languages) describe the orders of executions of statements on actual computer
architectures. In this paper, we propose observation variables and invariants that
fill this gap, thus releasing us from the need to construct operational semantics
and logic for each specific memory consistency model. We define general oper-
ational semantics to consider cases in which threads own their memories, and
construct concurrent program logic in which we give proofs that ensure certain
properties hold when programs finish. We can control observation invariants as
uniform axioms of the logic. This enables us to show that a property holds when
a program finishes under an observation invariant, whereas the property does not
hold when the program finishes without the observation invariant. In Sect. 9, we
verify IRIW using this logic under an observation invariant induced by a realistic
memory consistency model like SPARC-PSO [27].

To the best of our knowledge, the derivation shown in Sect. 9 is the first to
ensure that a property holds in concurrent program logic that handles relaxed
memory consistency models like SPARC-PSO, although the behavior of IRIW
under more relaxed memory consistency models that refute the property has
been discussed several times in the literature (e.g., [4,22,24,25,31]).

In constructing the concurrent program logic, we obtained a novel insight into
the use of shared variables in an assertion language for operational semantics
with relaxed memory consistency models. First, we extend an assertion language
in the logic by introducing the additional variable xi to denote x as observed by
the i-th thread. The value of xi is not necessarily the same as that of x. Next, we
restrict the assertion language by dismissing shared variables in programs from
assertion languages. This prohibits us from describing the value of x. By design-
ing this assertion language, we can construct a concurrent program logic that is
sound to operational semantics (explained in Sect. 4) with relaxed memory con-
sistency models. This suggests that, in concurrent computation, the so-called
bird’s-eye view that overlooks the whole does not exist, and that each thread
runs according to its own observations, and some (or all) threads sometimes
reach a consensus.

The rest of this paper is organized as follows. Section 2 discusses related
work, and Sect. 3 presents some definitions that are used throughout this paper.
Section 4 gives operational semantics (based on the notion of state transition sys-
tems) for relaxed memory consistency models. Section 5 explains our concurrent
program logic. Section 6 defines validity of judgments. Section 7 introduces the
notion of observation invariants. Section 8 then presents our soundness theorem.
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In Sect. 9, we provide example derivations for concurrent programs. Section 10
concludes the paper and discusses ideas for future work.

2 Related Work

Stølen [28] and Xu et al. [35,36] provided concurrent program logics based on
rely/guarantee reasoning [13]. However, they did not consider relaxed memory
consistency models containing observation invariants, that is, they handle strict
consistency, the strictest memory consistency model. This paper handles relaxed
memory consistency models. The memory consistency models with observation
invariants in this paper are more relaxed than those obeying strict consistency.

Ridge [23] developed a concurrent program logic for x86-TSO [26] based on
rely/guarantee reasoning by introducing buffers. However, buffers to one shared
memory are known to be insufficient to cause the behavior of IRIW. This paper
handles more relaxed memory consistency models than x86-TSO, as threads
have their own memories to deal with observation invariants.

Ferreira et al. [7] introduced a concurrent separation logic that is parame-
terized by invariants, and explained the non-intuitive behavior of IRIW. Their
motivation for constructing a parametric logic coincides with ours. However,
their logic is based on command subsumptions, which describe the execution
orders of statements. This is different from our notion of observations; their
approach therefore has no direct connection to our logic, and gave no sufficient
condition to ensure the correctness of IRIW. Any connection between their logic
and ours remains an open question.

Vafeiadis et al. presented concurrent separation logics for restricted C++11
memory models [30,32]. The restricted C++11 semantics are so weak that the
property for IRIW (shown in Sect. 1) does not hold without additional assump-
tions. However, unlike our approach, they did not handle programs that contain
write operations to distinct locations, such as IRIW. In another paper [15], Lahav
and Vafeiadis described an Owicki–Gries style logic and verified a program con-
sisting of multiple reads and writes in the logic. This program is different from
IRIW, as the reads/writes are from/to the same location. The essence of IRIW
is to write to distinct locations x and y. Our paper proposes the notion of obser-
vation invariants, constructs a simple concurrent program logic, formalizes the
axioms of our logic, and gives a formal proof for IRIW. This simplification pro-
vides the insight explained in Sect. 1.

The authors proposed a notion of program graphs, representations of pro-
grams with memory consistency models, gave operational semantics and con-
struct program logic for them [1]. However, the semantics and logic cannot han-
dle the non-intuitive behavior of IRIW since remote-write-atomicity is implicitly
assumed.

There also exist verification methods that are different from those using con-
current program logics. Model checking based on exhaustive searches is a promis-
ing program verification method [2,10,14,17]. Given a program and an assertion,
model checking is good at detecting execution traces that violate the assertions,
but is less suitable for ensuring that the assertion holds.
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Some reduction methods to Sequential Consistency (SC) via race-freedom
of programs are well-known (e.g., [5,20,21]). However, verification of racy pro-
grams like concurrent copying protocols is one of the authors’ concerns [3], and
programs that have non-SC behaviors are our main targets.

Boudol et al. proposed an operational semantics approach to represent
a relaxed memory consistency model [5,6]. They defined a process calculus,
equipped with buffers that hold the effects of stores, and its operational seman-
tics to handle the non-intuitive behavior of IRIW. He proved Data Race Freedom
(DRF) guarantee theorem that DRF programs have the same behaviors as those
under SC. However, IRIW is not DRF.

Owens et al. reported that x86-CC [25] allows the non-intuitive behavior of
IRIW, and designed x86-TSO [22] that prohibits the behavior. He also extended
DRF to Triangular Race Freedom (TRF) that TRF programs have the same
behaviors under x86-TSO as those under SC [21]. Although IRIW is surely TRF,
a slight modification of IRIW in which additional writes to distinct variables at
the start on the reader threads are inserted is not TRF. Since the program has
a non-SC behavior, verification of the program under SC cannot ensure correct-
ness of the program under x86-TSO. Our verification method to use observation
invariants is robust to such slight changes. In addition, our method is not specific
to a certain memory consistency model like x86-TSO. An observation invariant
introduced in Sect. 7 for IRIW is independent of the slight change, and we can
construct a derivation for the program that is similar to the derivation for IRIW
explained in Sect. 9.3.

3 Concurrent Programs

In this section, we formally define our target concurrent programs.
Similar to the conventional program logics (e.g., [8]), sequential programs

are defined as sequences of statements. Let r denote the thread-local variables
that cannot be accessed by other threads, x, y, . . . denote shared variables, and
e denote thread-local expressions (thread-local variables, constant values val ,
arithmetic operations, and so on). A sequential program can then be defined as
follows:

S i ::= SKi | MVi r e | LDi r x | STi x e | IFi ϕ?S i:S i | WLi ϕ?S i | S i; S i

ϕ ::= e = e | e ≤ e | ¬ϕ | ϕ ⊃ ϕ | ∀ r. ϕ.

In the above definition, the superscript i represents (an identifier of) the
thread on which the associated statement will be executed. In the rest of this
paper, this superscript is often omitted when the context is clear. The SK state-
ment denotes an ordinary no-effect statement (SKip). As in conventional pro-
gram logics, MV r e denotes an ordinary variable substitution (MoVe). The load

and store statements denote read and write operations, respectively, for shared
variables (LoaD and STore). The effect of the store statement issued by one
thread may not be immediately observed by the other threads. The IF and



68 T. Abe and T. Maeda

WL statements denote ordinary conditional branches and iterations, respectively,
where we adopt ternary conditional operators (IF-then-else-end and WhiLe-do-
end). Finally, S ; S denotes a sequential composition of statements.

We write ϕ ∨ ψ, ϕ ∧ ψ, ϕ ↔ ψ, and ∃ r. ϕ as (¬ϕ) ⊃ ψ, ¬ ((¬ϕ) ∨ (¬ψ)),
(ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ), and ¬ ∀ r.¬ϕ, respectively. In the following, we assume that
¬, ∧, ∨, and ⊃ are stronger with respect to their connective powers. In addition
to the above definition, 	 is defined as the tautology ∀ r. r = r.

A concurrent program with N threads is defined as the composition of sequen-
tial programs by parallel connectives ‖ as follows:

P ::= S 0 ‖ S 1 ‖ . . . ‖ S N−1.

In this paper, the number of threads N is fixed during program execution.
Parentheses are often omitted, and all operators except ⊃ are assumed to be left
associative.

4 Operational Semantics

In this section, we define small-step operational semantics for the programming
language defined in Sect. 3. Specifically, the semantics is defined as a standard
state transition system, where a state (written as st) is represented as a pair
of 〈σ, Σ〉. The first element of the pair, σ, consists of the values of thread-local
variables and shared variables that threads observe on registers and memories;
formally, a function from thread identifiers and (thread-local and shared) vari-
ables to values. The second element, Σ, represents buffers that temporarily buffer
the effects of store operations to shared variables. It may be worth noting that,
in the present paper, buffers are not queues, that is, each buffer stores only the
latest value written to its associated variable, for simplicity. This is because the
present paper focuses on verifying IRIW, and storing the latest value suffices for
the purpose. Replacing buffers with queues is straightforward and not shown in
the present paper. Σ i, j refers to thread j’s buffer for effects caused by thread i’s
statements. If i 
= j, then thread j cannot observe the effects that are buffered.
If i = j, then thread j can observe the effects that are buffered.

Using Fig. 3, we now present an informal explanation of buffers and memories.
Thread 0 executes statement ST0 x1, and buffers Σ0,0 and Σ0,1 are updated. Next,
thread 1 executes statement LD1 r1 x. If the effect of ST0 x 1 has not yet reached
σ1, thread 1 cannot observe it, and reads the initialized value 0. If the effect
of ST0 x 1 has already reached σ1, thread 1 reads 1. Finally, thread 0 executes
statement LD0 r0 x. Whether the effect of ST0 x 1 has reached σ1 or not, thread 0
can observe it. Therefore, thread 0 reads a value of 1. Updates from Σ to σ are
performed without the need for statements.

Formally, in the following, a function from triples formed of two thread iden-
tifiers and shared variables to values is evaluated by currying all functions, for
the convenience of partial applications. We assume that the set of values contains
a special constant value udf to represent uninitialized or invalidated buffers. We
often write σi, Σi, and Σi j as σi, Σ i, and Σ i, j, respectively, for readability. We
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Fig. 3. Buffers and memories Fig. 4. Update functions

define the following two operations for update functions as in Fig. 4 where f
ranges over each among σ, σi, Σ, Σ i, and Σ i, j.

Figure 5 shows the rules of the operational semantics, where 〈|e|〉σi denotes
the valuation of an expression e as follows:

〈|val |〉σi = val 〈|r|〉σi = σir 〈|x|〉σi = σi x 〈|e1 + e2|〉σi = 〈|e1|〉σi + 〈|e2|〉σi . . .

and σi � ϕ denotes the satisfiability of ϕ on σi in the standard manner, which is
defined as follows:

σi � e1 = e2 ⇔ 〈|e1|〉σi = 〈|e2|〉σi σi � e1 ≤ e2 ⇔ 〈|e1|〉σi ≤ 〈|e2|〉σi σi � ¬ ϕ⇔ σi �� ϕ
σi � ϕ ⊃ ϕ′ ⇔ σi � ϕ implies σi � ϕ′ σi � ∀ r. ϕ(r) ⇔ σi � ϕ(v) for any v.

Fig. 5. Our operational semantics
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A pair of a program and a state is called a configuration. Each rule is repre-
sented by a one-step transition between configurations 〈P, st〉 δ−→ 〈P′, st ′〉, which
indicates that a statement causes 〈P, st〉 to transit to 〈P′, st ′〉, where δ is c or e.

Specifically, Rule O-ENV denotes a transition that requires no statement
in P, which means that other threads are executing statements or memories are
being updated from buffers. Although the rule was originally introduced to mean
that other threads consume statements in conventional operational semantics
for concurrent programming languages (with strict consistency) [35,36], the rule
has the additional meaning here that memories are updated from buffers in
constructing operational semantics for relaxed memory consistency models.

Readers unfamiliar with operational semantics for an imperative concurrent
programming language (and its rely/guarantee reasoning) may consider e−→ to
be nonsense because e−→ seems to allow any transitions. However, it is restricted
to being admissible under a rely-condition by the notion of validity for judgments
(called rely/guarantee specifications), as defined in Sect. 6. This is similar to the
context of Hoare logic, where transitions consuming statements are defined to
be large at first, and the transitions are restricted to be admissible ones under
pre-conditions by the notion of validity for Hoare triples. This is one of the
standard methods of defining operational semantics for an imperative concurrent
programming language (e.g., as seen in [35,36]), and is not caused by handling
relaxed memory consistency models. Here, in accordance with the standard, a
transition e−→ that consumes no statements is defined to be the product of states.

Rule O-MV evaluates e and updates σ with respect to r. Rule O-LD evaluates
x on Σ i,i, if Σ i,i x is defined (i.e., effects on x by statements on thread i itself are
buffered), and on σi otherwise, and updates σi with respect to r. O-ST evaluates
e and updates Σ i, j (not σi) with respect to x for any j; i.e., the rule indicates
that the effect of the store operation is buffered in Σ i, j. Rule O-IT handles a
branch statement by asserting that ϕ is satisfied under state σi, and P is chosen.
If σi is not satisfied, rule O-IE is applied and Q is chosen. Rule O-WT handles a
loop statement by asserting that ϕi is satisfied under state σ, and an iteration is
performed. If σi is not satisfied, rule O-WE is applied, and the program exits from
the loop. Rules O-SQ and O-PR handle sequential and parallel compositions of
programs, respectively.

5 Concurrent Program Logic

In this section, we define our concurrent program logic. Our assertion language
is defined as follows:

Φ ::= E = E | E ≤ E | ¬Φ | Φ ⊃ Φ | ∀ v. Φ v ::= r | xi | r | xi

where E represents a pseudo-expression denoting thread-local variables r, obser-
vation variables xi, next thread-local variables r, next observation variables xi,
constant values val , arithmetic operations, and so on. Our assertion language
does not contain a shared variable x that occurs in programs. This means that
nobody observes the whole system. This novelty is a key point of this paper. We
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often write r as ri when referring to r being a thread-local variable on the i-th
thread. The observation variable xi represents the value written to the shared
variable x by ST on a thread with identifier i. The next variable v represents the
value of v on a state to which the current state transits under the operational
semantics.

Figure 6 shows the judgment rules. They are defined in the styles of Stølen
and Xu’s proof systems [28,35,36], which have two kinds of judgments. Each
judgment of the form � Φ refers to satisfiability in the first-order predi-
cate logic with equations in a standard manner. Each judgment of the form
{pre , rely}P{guar , post} (where pre and post have no next variable) states that, if
program P runs under pre-condition pre and rely-condition rely (which are guar-
anteed by the other threads as well as the environments, as explained in Sect. 6)
according to the operational semantics of Sect. 4, then the guarantee-condition
guar (on which the other threads rely) holds, as in conventional rely/guaran-
tee systems. In the rest of this paper, we write � {pre , rely} P {guar , post} if
{pre , rely} P {guar , post} can be derived from the judgment rules of Fig. 6.

Fig. 6. Our concurrent program logic
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Fig. 7. The interpretation of the assertion language

Fig. 8. Invariants about variables before and after assignments

More specifically, rule L-MV of Fig. 6 handles the substitution of thread-local
variables with expressions. This is the same as in conventional rely/guarantee
proof systems. [e/v] represents the substitution of v with e. The first assumption
means that pre must be a sufficient condition that implies post with respect to the
substitution. We define � Φ as 〈σ, Σ〉, 〈σ′, Σ′〉 � Φ for any 〈σ, Σ〉, 〈σ′, Σ′〉, where
〈σ, Σ〉, 〈σ′, Σ′〉 � Φ is defined in a similar manner to a conventional rely/guarantee
system, as shown in Fig. 7. In the following, we often write 〈σ, Σ〉 � Φ when Φ has
no next variable. The second assumption means that pre must be a sufficient
condition that implies guar under an invariant about V before and after an
execution of an assignment C (formally defined as �C�V), where C is MV r e,
LD r x, or ST x e, and V is a finite set of non-next variables that occur in guar .
A formula �MVi r e�V is defined as r = e ∧ ∧

I(V\{r}), which means that the
value of r is equal to the evaluation of e while the values of variables in V\{r}
are assignment-invariant, where I(V) is { v = v | v ∈ V }. Its formal definition is
shown in Fig. 8. The third assumption means that pre and post are stable under
the rely condition guaranteed by another thread, where we denote that Φ is
stable under Ψ (written as Φ ⊥ Ψ) as Φ(u) ∧ Ψ(u, u) ⊃ Φ(u), where u denotes a
sequence of variables.

Rule L-SK states that an ordinary no-effect statement does not affect any-
thing.

Rule L-LD handles the substitution of thread-local variables with shared
variables. Note that r is substituted with the observation variables xi, instead of
the shared variables x. Rule L-ST handles the substitution of shared variables
with expressions. Note that, as for L-LD, this rule considers the observation
variable xi instead of the shared variable x.

Rules L-IF and L-WL handle branch and loop statements, respectively. Care-
ful readers may have noticed that Xu et al.’s papers [35,36] do not require
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the third assumption, which is implicitly assumed because these logics adopt
the restriction that rely/guarantee-conditions are reflexive (as in [19,29]). This
restriction often makes it difficult to write down derivations. Therefore, in this
paper, we do not adopt the restriction, following van Staden [33]. As suggested by
Nieto in [19], reflexivity is used to ensure soundness. However, we do not adopt
the reflexivity of rely/guarantee-conditions, but instead use the third assump-
tion regarding L-IF and L-WL, which prohibits the so-called stuttering transi-
tions [16], as explained in Sect. 6.

Rule L-SQ handles the sequential composition of programs. Rule L-WK is
the so-called consequence rule. L-PR handles parallel compositions of programs
in a standard rely/guarantee system. The third assumption means that P1’s
rely-condition rely1 must be guaranteed by the global rely-condition rely or P0’s
guarantee-condition guar0. The fourth assumption is similar. The fifth assump-
tion means that guar must be guaranteed by either guar0 or guar1.

6 Validity for Judgments

We now define computations of programs, and validity for judgments.
We define the set of computations Cmp(P) of P as a finite or infinite sequence

c of configurations whose adjacent configurations are related by c−→ or e−→
defined in Sect. 4. We write Cfg(c, i), Prg(c, i), and St(c, i) as the i-th configura-
tion, program, and state of c, respectively. By definition, the program Prg(c, 0) is
P. As mentioned in Sect. 5, we do not assume that the rely/guarantee-conditions
are reflexive. Therefore, our logic does not unconditionally ensure that the guar-
antee conditions hold on computations that contain 〈P, st〉 e−→ 〈P, st〉, as Xu
et al. noted in [36].

The length of a computation of c is denoted by |c|. If c is an infinite sequence,
then |c| is the smallest limit ordinal ω. Let c′ be a computation that satisfies
St(c′, |c′| − 1) = St(c, 0). We define c′ · c as a concatenation of c′ and c. We
define � {pre, rely}P{guar , post} as Cmp(P)∩A(pre , rely) ⊆ C(guar , post), which
means that any computation under pre/rely-conditions satisfies guarantee/post-
conditions, as shown in Fig. 9. Thus, this paper does not handle post-conditions
in non-terminating computations. This kind of validity is called partial correct-
ness [34].

Careful readers may have noticed that the second arguments of Σ and sub-
stitutions to Σ i, j (i 
= j) at rule O-ST are redundant, as e−→, which satisfies a
rely-condition, is allowed at any time, and our assertion language cannot describe
Σ i, j (i 
= j). Strictly speaking, although technically unnecessary and redundant,
we have adopted these arguments to explain admissible computations more intu-
itively. A computation that formally represents the non-intuitive behavior of
IRIW without remote-write-atomicity in Sect. 9.3 may help readers understand
how memories are updated by effects from buffers.
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Fig. 9. Computations under pre/rely-conditions satisfies guarantee/post-conditions

7 Observation Invariant

In this section, we propose an observation invariant, which is an invariant writ-
ten by observation variables. Formally, we define an observation invariant as a
formula of the first-order predicate logic with the equations of Sect. 5.

We adopt observation invariants as axioms of the logic in Sect. 5. For example,
let x0 = x1 be an observation invariant, which means that the value of x observed
by thread 0 coincides with the value of x observed by thread 1. Adopting the
observation invariant as an axiom means handling execution traces that always
satisfy σ0[Σ0,0]x = σ1[Σ1,1]x.

Let us consider three examples of observation invariants. The program shown
in Fig. 10 is called Dependence Cycle (DC). Although we intuitively think that
either r0 or r1 has an initial value of 0, r0 = 1 ∧ r1 = 1 may not hold under
a relaxed memory consistency model such as C++11 memory models. Memory
consistency models for programming languages are often very relaxed in consid-
eration of compiler optimization.

Our intuition that either r0 or r1 has an initial value is supported by no
speculation regarding store statements on distinct threads, which is assumed
under SPARC-PSO and similar architectures. For DC, this can be represented
as y0 = 0 ⊃ y1 = 0, x1 ≤ x1 ⊃ x0 ≤ x0, x1 = 0 ⊃ x0 = 0, and y0 ≤ y0 ⊃
y1 ≤ y1 if the buffers are empty with respect to x and y when DC launches,
and a rely-condition ensures no store operation to x and y. The first formula,
y0 = 0 ⊃ y1 = 0, means that thread 1 observes y = 0 as long as thread 0 observes
y = 0. This is because thread 0 is the only thread that has a store statement to
y in DC. The second formula, x1 ≤ x1 ⊃ x0 ≤ x0, means that thread 0 observes
that x is monotone if thread 1 observes x is monotone. Thread 0 cannot observe
x is not monotone, because thread 1 (which has a store statement to x and can
see its own buffer) observes x is monotone. The third and fourth formulas are
similar.

Next, let us consider an observation invariant for the One Reader One Writer
(1R1W) program shown in Fig. 11, which consists of one reader thread and one
writer thread. The reader thread in 1R1W has no store statement. Therefore,
y1 ≤ x1 ⊃ y0 ≤ x0 is an observation invariant for 1R1W under x86-TSO [26].
This prohibits the reordering of effects of store statements, where we assume
that the buffers are empty with respect to x and y when 1R1W launches, and
a rely-condition ensures no store operations to x and y. Note that this is not
an invariant under SPARC-PSO, which allows the effects of store statements
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Fig. 10. Dependence cycle Fig. 11. One reader one writer (1R1W)

to be reordered. The transfer of monotonicity x1 ≤ x1 ⊃ x0 ≤ x0 is also an
observation invariant, even under SPARC-PSO, since the reader thread has no
store statement to x.

Finally, let us consider an observation invariant for IRIW. Similar to DC,
the transfer of monotonicity (x2 ≤ x2 ⊃ x0 ≤ x0, x2 ≤ x2 ⊃ x1 ≤ x1,
y3 ≤ y3 ⊃ y0 ≤ y0, and y3 ≤ y3 ⊃ y1 ≤ y1) holds, because the reader threads in
IRIW have no store statement. In addition, x0 = x1 and y0 = y1 are invariants
under remote-write-atomicity (which is assumed under SPARC-PSO and similar
architectures), as threads 0 and 1 can detect nothing in their own buffers, and
share a common observation of a shared memory. Note that the invariants are
properly weaker than the strict consistency assumed by conventional concurrent
program logics [13,28,35,36], which forces the variable updates to be immedi-
ately observed by all threads, that is, x0 = x1 = x2 = x3 and y0 = y1 = y2 = y3.

8 Soundness

In this section, we present the soundness of the operational semantics defined
in Fig. 5. In Sect. 5, we derived a concurrent program logic that is sound to the
operational semantics defined in Fig. 5. However, the logic is actually insufficient
to derive some valid judgments.

Auxiliary variables are known to enhance the provability of concurrent pro-
gram logics [28]. Auxiliary variables are fresh variables that do not occur in
the original programs, and are used only for the description of assertions. By
using auxiliary variables in assertions, we can describe the progress of thread
executions as rely/guarantee-conditions. In Sect. 9.3, we show a typical usage of
auxiliary variables.

We extend our logic to contain the following inference rule (called the auxil-
iary variables rule [28,35]):

{pre ∧ pre0, rely ∧ rely0} P0 {guar , post} � ∃ z. rely0((u, z), (u, z))
� ∃ z. pre0(u, z) z ∩ (fv(pre) ∪ fv(rely) ∪ fv(guar) ∪ fv(post)) = ∅

(L-AX){pre , rely} (P0)z {guar , post}

where fv(Φ) denotes free variables that occur in Φ in a standard manner, and
(P0)z is defined as the program that coincides with P0, except that an assignment
A is removed if

– A is an assignment whose left value belongs to z,
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– no variable in z occurs in assignments whose left values do not belong to z,
and

– no variable in z freely occurs in conditional statements.

Let c be 〈P0, 〈σ0, Σ0〉〉 δ0−→ · · · δi−1−→ 〈Pi, 〈σi, Σi〉〉 δi−→ · · · for any 0 ≤ i. We
write tr(c, i) as δi. Given c ∈ Cmp(P0 ‖ P1), c0 ∈ Cmp(P0), and c1 ∈ Cmp(P1),
a ternary relation c = c0 ‖ c1 is defined if |c| = |c0| = |c1| and

1. St(c, i) = St(c0, i) = St(c1, i),
2. tr(c, i) = c implies either of tr(c0, i) = c or tr(c1, i) = c holds,
3. tr(c, i) = e implies tr(c0, i) = e and tr(c1, i) = e hold, and
4. Prg(c, i) = Prg(c0, i) ‖ Prg(c1, i)

for 0 ≤ i < |c|. We write ci and postfix(c, i) as the prefix of c with length i + 1
and the sequence that is derived from c by removing ci − 1, respectively.

Proposition 1. Cmp(P0 ‖ P1) = { c0 ‖ c1 | c0 ∈ Cmp(P0), c1 ∈ Cmp(P1) }.
Lemma 2. Assume � {pre0 ∧ pre1, rely} P0 ‖ P1 {guar , post0 ∧ post1} by
L-PR, Cmp(P0) ∩ A(pre0, rely0) ⊆ C(guar0, post0), Cmp(P1) ∩ A(pre1, rely1) ⊆
C(guar1, post1), � rely∨guar0 ⊃ rely1, � rely∨guar1 ⊃ rely0, � guar0∨guar1 ⊃
guar, and c ∈ Cmp(P0 ‖ P1) ∩ A(pre0 ∧ pre1, rely). In addition, we take
c0 ∈ Cmp(P0) and c1 ∈ Cmp(P1) such that c = c0 ‖ c1 by Proposition 1.

1. St(c, i),St(c, i + 1) � guar0 and St(c, i),St(c, i + 1) � guar1 hold for any
Cfg(c0, i)

c−→ Cfg(c0, i + 1) and Cfg(c1, i)
c−→ Cfg(c1, i + 1), respectively.

2. St(c, i),St(c, i+1) � rely∨guar1 and St(c, i),St(c, i+1) � rely∨guar0 hold for
any Cfg(c0, i)

e−→ Cfg(c0, i+ 1) and Cfg(c1, i)
e−→ Cfg(c1, i+ 1), respectively.

3. St(c, i),St(c, i + 1) � guar for any Cfg(c, i) c−→ Cfg(c, i + 1) holds.
4. Assume |c| < ω and Prg(c, |c| − 1) = ∅. Then, St(c, |c| − 1) � post0 ∧ post1

holds.

Proof. 1. Let us consider the former case. Without loss of generality, we can
assume that St(c, i),St(c, i + 1) 
� guar0 where St(c, j),St(c, j + 1) � guar0 and
St(c, j),St(c, j + 1) � guar1 for any 0 ≤ j < i.

By the definition, there exists Cfg(c, k) e−→ Cfg(c, k + 1) or Cfg(c1, k)
c−→

Cfg(c1, k + 1) corresponding to Cfg(c0, k)
e−→ Cfg(c0, k + 1) for any 0 ≤ k ≤ i.

Therefore, St(c, k),St(c, k + 1) � rely ∨ guar1 holds. By � rely ∨ guar1 ⊃ rely0,
c0i + 1 ∈ A(pre0, rely0) holds. Since Cmp(P0) ∩ A(pre0, rely0) ⊆ C(guar0, post0)
holds, in particular, St(c, i),St(c, i + 1) � guar0 holds. This contradicts
St(c, i),St(c, i + 1) 
� guar0. The latter case is similar.
2. Immediate from the definition of c = c0 ‖ c1 and 1.
3. Immediate from 1 and � guar0 ∨ guar1 ⊃ guar .
4. By 2, � rely ∨ guar0 ⊃ rely1, and � rely ∨ guar1 ⊃ rely0, c0 ∈ A(pre0, rely0)
and c1 ∈ A(pre1, rely1) hold.

By Cmp(P0) ∩ A(pre0, rely0) ⊆ C(guar0, post0) and Cmp(P1) ∩
A(pre1, rely1) ⊆ C(guar1, post1), St(c, |c|) � post0 and St(c, |c| − 1) � post1
hold. Therefore, St(c, |c| − 1) � post0 ∧ post1 holds. ��
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Theorem 3. � {pre , rely} P {guar , post} implies � {pre , rely} P {guar , post}.
Proof. By induction on derivation and case analysis of the last inference rule.

First, assume L-ST. Let c ∈ Cmp(STi x e)∩A(pre , rely). By O-ST, there exist
σ0, Σ0, . . . such that 〈σn+1, Σn+1〉 = 〈σn, Σ[i :=Σ i[ j :=Σ i, j[x := 〈|e|〉σi ] | 0 ≤ j <
N]]〉,
c = 〈STi x e, 〈σ0, Σ0〉〉 e−→∗ 〈STi x e, 〈σn, Σn〉〉 c−→ 〈SKi, 〈σn+1, Σn+1〉〉 e−→ · · · ,

〈σ0, Σ0〉 � pre, and 〈σ j, Σ j〉, 〈σ j+1, Σ j+1〉 � rely for any 0 ≤ j < n. By � pre ⊥
rely , 〈σn, Σn〉 � pre. By the definition, 〈σn, Σn〉, 〈σn, Σ[i :=Σ i[ j :=Σ i, j[x := 〈|e|〉σi ] |
0 ≤ j < N]]〉 � �STi x e�V . By � pre ⊃ �STi x e�V ⊃ guar ,
〈σn, Σn〉, 〈σn, Σ[i :=Σ i[ j :=Σ i, j[x := 〈|e|〉σi ] | 0 ≤ j < N]]〉 � guar , that is,
〈σn, Σn〉, 〈σn+1, Σn+1〉 � guar . In addition, assume |c| < ω. By � pre ⊃ [e/xi]post ,
〈σn, Σn〉 � [e/xi]post . By the definition, 〈σn, Σ[i :=Σ i[ j :=Σ i, j[x := 〈|e|〉σi ] | 0 ≤ j <
N]]〉 � post , that is, 〈σn+1, Σn+1〉 � post . By � post ⊥ rely , 〈σ|c|−1, Σ|c|−1〉 � post .

Second, assume L-WL. Let c ∈ Cmp(WLi ϕ?S i
0) ∩ A(pre , rely), which consists

of the following five segments:

– 〈S i, 〈σkn , Σkn〉〉 e−→∗ 〈S i, 〈σk0 , Σk0〉〉,
– 〈S i, 〈σk0 , Σk0〉〉 c−→ 〈S i

0; S
i, 〈σk0 , Σk0〉〉 where σk0 � ϕ,

– 〈S i, 〈σk0 , Σk0〉〉 c−→ 〈SKi, 〈σk0 , Σk0〉〉 e−→ · · · where σk0 
� ϕ,
– 〈S i

0; S
i, 〈σk0 , Σk0〉〉 −→∗ 〈S i, 〈σkn , Σkn〉〉.

– 〈S i
0; S

i, 〈σk0 , Σk0〉〉 −→ · · · which does not reach S i.

where 〈σ′, Σ′〉, 〈σ′′, Σ′′〉 � rely for any 〈S ′, 〈σ′, Σ′〉〉 e−→ 〈S ′′, 〈σ′′, Σ′′〉〉 in the
five segments. By � pre ⊥ rely , 〈σk0 , Σk0〉 � pre. Let c′ be 〈S i

0, 〈σk0 , Σk0〉〉 −→∗

〈SKi, 〈σkn , Σkn〉〉. By induction hypothesis, 〈σ′, Σ′〉, 〈σ′′, Σ′′〉 � guar holds for any
〈S ′, 〈σ′, Σ′〉〉 c−→ 〈S ′′, 〈σ′′, Σ′′〉〉 in c′ holds. The case that c does not reach S i

is similar. Therefore, since � pre ⊃ I(V) ⊃ guar holds, 〈σ′, Σ′〉, 〈σ′′, Σ′′〉 � guar
holds for any 〈S ′, 〈σ′, Σ′〉〉 c−→ 〈S ′′, 〈σ′′, Σ′′〉〉 in c holds. In addition, assume
|c| < ω. By � pre ⊥ rely and induction hypothesis, 〈σk0 , Σk0〉 � pre holds. By
� pre ⊃ ¬ϕ ⊃ post and � post ⊥ rely , St(c, |c| − 1) � post .

Third, assume L-SQ. Let c ∈ Cmp(Pi
0; P

i
1) ∩ A(pre , rely). There exist

st0, δ0, . . . such that

c = 〈Pi
0; P

i
1, st0〉 δ0−→ · · · δn−1−→ 〈Pi

1, stn〉 δn−→ · · · ,
st0 � pre, and st j, st j+1 � rely for any 0 ≤ j < n. Let c′ and c′′ be
〈Pi

0, st0〉 δ0−→ · · · δn−1−→ 〈SKi, stn〉 and postfix(c, n), respectively. Obviously, c′ ∈
Cmp(Pi

0) ∩ A(pre, rely) holds. By induction hypothesis, c′ ∈ C(guar , Φ) holds.
By the definition, 〈σn, Σn〉 � Φ holds. Therefore, c′′ ∈ Cmp(Pi

1)∩A(Φ, rely) holds.
By induction hypothesis, c′′ ∈ C(guar , post) holds. Therefore, c ∈ C(guar , post)
holds.

Fourth, assume L-PR. By Lemmas 2.3 and 2.4.
Fifth, assume L-AX. Let c ∈ Cmp(P)∩ A(pre , rely). There exist σ0, Σ0, δ0, . . .

such that

c = 〈(P)z, 〈σ0, Σ0〉〉 δ0−→ · · · δn−1−→ 〈Pn, 〈σn, Σn〉〉 δn−→ · · · ,
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Fig. 12. A essential part of a derivation for DC

〈σ0, Σ0〉 � pre, and 〈σ j, Σ j〉, 〈σ j+1, Σ j+1〉 � rely for any 0 ≤ j < n. Since �
∃ z. pre0(u, z), � ∃ z. rely0((u, z), (u, z)), and z ∩ (fv(pre) ∪ fv(rely) ∪ fv(guar) ∪
fv(post)) = ∅, there exist P′

0, σ
′
0, Σ

′
0, . . . such that

c′ = 〈P′
0, 〈σ′

0, Σ
′
0〉〉 δ0−→ · · · δn−1−→ 〈P′

n, 〈σ′
n, Σ

′
n〉〉 δn−→ · · · ,

and P′
0 = P, (P′

n)z = Pn, σ′
j
i
v = σ j

iv, Σ′
j
i,i′
v = Σ j

i,i′v, 〈σ′
0, Σ

′
0〉 � pre ∧ pre0,

and 〈σ′
j, Σ

′
j〉, 〈σ′

j+1, Σ
′
j+1〉 � rely ∧ rely0 for any v 
∈ z, 0 ≤ i, i′ < N and 0 ≤

j < n. Therefore, c′ ∈ Cmp(P) ∩ A(pre ∧ pre0, rely ∧ rely0) holds. By induction
hypothesis, c′ ∈ C(guar , post) holds. Therefore, c ∈ C(guar , post) holds.

The other cases are similar and omitted due to space limitation. ��

9 Examples

In this section, we verify several example racy programs.

9.1 Verification of DC

The first example program is DC, introduced in Sect. 7. The verification property,
a judgment consisting of the post-condition r0 = 0 ∨ r1 = 0 under appropriate
pre/rely-conditions, is shown with a derivation for DC.

Figure 12 shows an essential part of a derivation for DC, where

pre0 ≡ y0 = 0 ∧ ((x0 = 0 ∧ r0 = 0) ∨ (x0 = 1 ∧ r1 = 0))

pre1 ≡ post0 ≡ y0 = 0 ∧ (r0 = 0 ∨ (x0 = 1 ∧ r1 = 0))

post1 ≡ y0 = 1 ∧ (r0 = 0 ∨ (x0 = 1 ∧ r1 = 0))

rely0 ≡ (y0 = 0 ∨ r0 = 1 ⊃ r1 = 0) ∧ x0 ≤ x0 ∧ I{y0, r1} ∧ D ∧ D

guar0 ≡ (x0 = 0 ∨ r1 = 1 ⊃ r0 = 0) ∧ y0 ≤ y0 ∧ I{x0, x1, r1} ∧ D ∧ D

pre2 ≡ x1 = 0 ∧ ((y1 = 0 ∧ r1 = 0) ∨ (y1 = 1 ∧ r0 = 0))

pre3 ≡ post2 ≡ x1 = 0 ∧ (r1 = 0 ∨ (y1 = 1 ∧ r0 = 0))

post3 ≡ x1 = 1 ∧ (r1 = 0 ∨ (y1 = 1 ∧ r0 = 0))

rely1 ≡ (x1 = 0 ∨ r1 = 1 ⊃ r0 = 0) ∧ y1 ≤ y1 ∧ I{x1, r1} ∧ D ∧ D

guar1 ≡ (y1 = 0 ∨ r0 = 1 ⊃ r1 = 0) ∧ x1 ≤ x1 ∧ I{y0, y1r1} ∧ D ∧ D
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Fig. 13. An essential part of a derivation for 1R1W

and D, D are
∧{ (xi = 0 ∨ xi = 1) ∧ (yi = 0 ∨ yi = 1) | 0 ≤ i < 4 } and∧{ (xi = 0 ∨ xi = 1) ∧ (yi = 0 ∨ yi = 1) | 0 ≤ i < 4 }, respectively. Some

assumptions regarding the inference rules are omitted when the context renders
them obvious.

A key point is that � (rely0 ∧ rely1) ∨ guar0 ⊃ rely1 and � (rely0 ∧ rely1) ∨
guar1 ⊃ rely0 are derived from the observation invariants for DC, y0 = 0 ⊃ y1 =
0, x1 ≤ x1 ⊃ x0 ≤ x0, x1 = 0 ⊃ x0 = 0, and y0 ≤ y0 ⊃ y1 ≤ y1 introduced in
Sect. 7 at the final inference by L-PR.

9.2 Verification of 1R1W

Let us consider a relaxed memory consistency model that prohibits the reorder-
ing of the effects of store statements. Therefore, we expect r0 ≤ r1 under an
appropriate condition when the program in Fig. 11 finishes.

Figure 13 shows an essential part of a derivation for 1R1W, where

rely0 ≡ y0 ≤ x0 ∧ x0 ≤ x0 ∧ I{r0, r1} guar0 ≡ I{x1, y1}
rely1 ≡ I{x1, y1} guar1 ≡ y1 ≤ x1 ∧ x1 ≤ x1 ∧ I{r0, r1}

1R ≡ LD0 r0 y; LD0 r1 x, 1W ≡ ST1 x 1; ST1 y 1, and some assumptions of the
inference rules are omitted when the context renders them obvious.

A key point here is that � (rely0 ∧ rely1) ∨ guar0 ⊃ rely1 and � (rely0 ∧
rely1) ∨ guar1 ⊃ rely0 are derived from the observation invariants for 1R1W,
y1 ≤ x1 ⊃ y0 ≤ x0 and x1 ≤ x1 ⊃ x0 ≤ x0 introduced in Sect. 7 at the final
inference by L-PR.

As explained in Sect. 7, under SPARC-PSO, � (rely0 ∧ rely1)∨ guar1 ⊃ rely0

is not implied, since y1 ≤ x1 ⊃ y0 ≤ x0 is not an observation invariant.

9.3 Verification of IRIW

Finally, we demonstrate the verification of the program introduced in Sect. 1.
The verification property is a judgment consisting of the post-condition r0 ≤
r1 ∨ r2 ≤ r3 under appropriate pre/rely-conditions, although the judgment is
formally shown as (2) in this section since the pre/rely-conditions require some
notation.
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First, note that the post-condition does not always hold without axioms for
remote-write-atomicity. Actually, the following computation:

〈LD0 r0 x; LD0 r1 y ‖ LD1 r2 y; LD1 r3 x ‖ ST2 x 1 ‖ ST3 y 1, 〈σ, Σ〉〉
c−→∗ 〈LD0 r0 x; LD0 r1 y ‖ LD1 r2 y; LD1 r3 x, 〈σ,
Σ[x2,0 �→ 1, y3,0 �→ 1, x2,1 �→ 1, y3,1 �→ 1, x2,2 �→ 1, y3,2 �→ 1, x2,3 �→ 1, y3,3 �→ 1]〉〉
e−→∗ 〈LD0 r0 x; LD0 r1 y ‖ LD1 r2 y; LD1 r3 x, 〈σ[x0 �→ 1, y1 �→ 1],

Σ[y3,0 �→ 1, x2,1 �→ 1, x2,2 �→ 1, y3,2 �→ 1, x2,3 �→ 1, y3,3 �→ 1]〉〉
c−→∗ 〈SK, 〈σ[r00 �→ 1, r10 �→ 0, r21 �→ 1, r31 �→ 0, x0 �→ 1, y1 �→ 1],

Σ[y3,0 �→ 1, x2,1 �→ 1, x2,2 �→ 1, y3,2 �→ 1, x2,3 �→ 1, y3,3 �→ 1]〉〉
implies this fact, where we write the substitutions [vi �→ n] and [vi, j �→ n] as
[i :=σi[v := n]] and [i :=Σ i[ j :=Σ i, j[v := n]]], respectively, for readability. Addition-
ally, σ and Σ are constant functions to 0 and udf, respectively. Note that we
must confirm that e−→ satisfies the rely-condition of (2).

Thus, the post-condition does not always hold with no additional axiom. Let
us show that the post-condition holds under appropriate pre/rely/guarantee-
conditions with axioms for remote-write-atomicity. To construct a derivation,
we add the auxiliary variables z0 and z1, as shown in Fig. 14.

Fig. 14. IRIW with auxiliary variables

We construct a derivation on each thread. The following three judgments:

{
z0 = 0 ∧ (x0 ≤ y0 ∨

(z1 = 1 ⊃ r2 ≤ r3)), rely0

}

LD r0 x

{
guar0, z0 = 0 ∧ r0 ≤ x0 ∧

((x0 ≤ y0 ∧ r0 ≤ y0) ∨ (z1 = 1 ⊃ r2 ≤ r3))

}

⎧
⎨

⎩

z0 = 0 ∧ r0 ≤ x0 ∧
((x0 ≤ y0 ∧ r0 ≤ y0) ∨
(z1 = 1 ⊃ r2 ≤ r3)), rely0

⎫
⎬

⎭
LD r1 y

⎧
⎨

⎩

guar0, z0 = 0 ∧ r0 ≤ x0 ∧ r1 ≤ y0 ∧
((x0 ≤ y0 ∧ r0 ≤ r1) ∨

(z1 = 1 ⊃ r2 ≤ r3))

⎫
⎬

⎭
⎧
⎨

⎩

z0 = 0 ∧ r0 ≤ x0 ∧ r1 ≤ y0 ∧
((x0 ≤ y0 ∧ r0 ≤ r1) ∨
(z1 = 1 ⊃ r2 ≤ r3)), rely0

⎫
⎬

⎭
z0 = 1

⎧
⎨

⎩

guar0, z0 = 1 ∧ r0 ≤ x0 ∧ r1 ≤ y0 ∧
((x0 ≤ y0 ∧ r0 ≤ r1) ∨

(z1 = 1 ⊃ r2 ≤ r3))

⎫
⎬

⎭

are derived by L-LD and L-MV, where M(V) is
∧{ v ≤ v | v ∈ V }, and

rely0 ≡ (y0 < x0 ∨ (z0 = 1 ∧ r1 < r0) ⊃ z1 = 1 ⊃ r2 ≤ r3) ∧ M{x0, y0, z1} ∧ I{z0, r0, r1}
guar0 ≡ (x0 < y0 ∨ (z1 = 1 ∧ r3 < r2) ⊃ z0 = 1 ⊃ r0 ≤ r1) ∧

I{z1, x1, x2, x3, y1, y2, y3, r2, r3}.
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{
z0 = 0 ∧ (x0 ≤ y0 ∨

(z1 = 1 ⊃ r2 ≤ r3)), rely0

}
LD r0 x; LD r1 y;

z0 = 1

{
guar0, z0 = 1 ∧ ((x0 ≤ y0 ∧ r0 ≤ r1) ∨

(z1 = 1 ⊃ r2 ≤ r3))

}

is derivable by L-SQ. Similarly, so is
{

z1 = 0 ∧ (x1 ≤ y1 ∨
(z0 = 1 ⊃ r0 ≤ r1)), rely1

}
LD r2 y; LD r3 x;

z1 = 1

{
guar1, z1 = 1 ∧ ((x1 ≤ y1 ∧ r2 ≤ r3) ∨

(z0 = 1 ⊃ r0 ≤ r1))

}

from symmetricity, where

rely1 ≡ (x1 < y1 ∨ (z1 = 1 ∧ r3 < r2) ⊃ z0 = 1 ⊃ r0 ≤ r1) ∧ M{x1, y1, z0} ∧ I{z1, r2, r3}
guar1 ≡ (y1 < x1 ∨ (z0 = 1 ∧ r1 < r0) ⊃ z1 = 1 ⊃ r2 ≤ r3) ∧

I{z0, x0, x2, x3, y0, y2, y3, r0, r1}.

Let D and D be
∧{ (xi = 0 ∨ xi = 1) ∧ (yi = 0 ∨ yi = 1) | 0 ≤ i < 4 } and∧{ (xi = 0 ∨ xi = 1) ∧ (yi = 0 ∨ yi = 1) | 0 ≤ i < 4 }, respectively. Note that

v < v′ ∧ D ∧ D means v = 0 ∧ v′ = 1.
By L-ST, {D, rely2} ST y 1 {guar2,	} and {D, rely3} ST x 1 {guar3,	} are

derivable, where

rely2 ≡ x2 ≤ x2 ∧ D ∧ D rely3 ≡ y3 ≤ y3 ∧ D ∧ D

guar2 ≡ y2 ≤ y2 ∧ y3 ≤ y3 ∧ I{x0, x1, x2, x3, r0, r1, r2, r3} ∧ D ∧ D

guar3 ≡ x2 ≤ x2 ∧ x3 ≤ x3 ∧ I{y0, y1, y2, y3, r0, r1, r2, r3} ∧ D ∧ D.

Let us construct separate derivations corresponding to Independent Reads
(IR), Independent Writes (IW), and IRIW. To construct a derivation for IR, it
is sufficient that

� (rely0 ∧ rely1) ∨ guar0 ⊃ rely1 � (rely0 ∧ rely1) ∨ guar1 ⊃ rely0 (1)

is satisfied, as this implies
⎧
⎨

⎩

z0 = 0 ∧ z1 = 0 ∧
pre01,

rely0 ∧ rely1

⎫
⎬

⎭

LD r0 x; LD r1 y;
z0 = 1

∣
∣
∣
∣

∣
∣
∣
∣
LD r2 y; LD r3 x;

z1 = 1

⎧
⎨

⎩

guar0 ∨ guar1,
z0 = 1 ∧ z1 = 1 ∧
(r0 ≤ r1 ∨ r2 ≤ r3)

⎫
⎬

⎭

under L-PR and L-WK, where pre01 ≡ x0 = 0 ∧ y0 = 0 ∧ x1 = 0 ∧ y1 = 0.
Therefore, we can deduce

{pre01, rely
01} LD r0 x; LD r1 y ‖ LD r2 y; LD r3 x {guar0 ∨ guar1, r0 ≤ r1 ∨ r2 ≤ r3}

by L-AX and L-WK, where rely01 ≡ M{x0, y0, x1, y1} ∧ I{r0, r1, r2, r3}.
Similarly, to construct a derivation for IW, it is sufficient that

� (rely2 ∧ rely3) ∨ guar2 ⊃ rely3 � (rely2 ∧ rely3) ∨ guar3 ⊃ rely2

is satisfied, since this allows us to deduce that {D, rely2 ∧ rely3} {ST y 1 ‖
ST x 1, guar2 ∨ guar3}	.
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We now construct the following derivation for IRIW

{pre01 ∧ D, rely01 ∧ rely2 ∧ rely3} IRIW {
∨

{ guar i | 0 ≤ i < 4 }, r0 ≤ r1 ∨ r2 ≤ r3} (2)

it is sufficient that the following is satisfied:

� guar0 ∨ guar1 ⊃ rely2 ∧ rely3 � guar2 ∨ guar3 ⊃ rely01. (3)

Let us recall the observation invariants x0 = x1 and y0 = y1 under the remote-
write-atomicity explained in Sect. 7. Obviously, the observation invariants imply
(1). Additionally, the transfer of monotonicity implies (3). Thus, under remote-
write-atomicity, which is more relaxed than strict consistency (and therefore
under SPARC-PSO), IRIW is guaranteed to work correctly.

10 Conclusion and Future Work

This paper has proposed the notion of observation invariants to fill the gap
between theoretical and realistic relaxed memory consistency models. We have
derived general small-step operational semantics for relaxed memory consistency
models, introduced additional variables xi to denote a value of x observed by i
in an assertion language, and stated a concurrent program logic that is sound
with respect to the operational semantics. Our analysis suggests that the non-
existence of shared variables without observations by threads in the assertion
language ensures the soundness. We have successfully constructed a formal proof
for the correctness of IRIW via the notion of observation invariants. To the best
of our knowledge, the derivation in this paper is the first to verify IRIW in a
logic that handles relaxed memory consistency models like SPARC-PSO.

There are four directions for future work. The first is to invent systematic
construction of observation invariants and to find further applications of obser-
vation invariants. The observation invariants shown in this paper are given in
ad-hoc ways. The example programs that are verified in this paper are small.
Systematic construction of observation invariants will tame observation invari-
ants for larger programs, provide further applications of observation invariants,
and enable us to compare our method with existing methods. The second is to
implement a theorem prover that can verify programs in the logic in this paper.
Manual constructions of derivations, which are done in this paper, are tedious
and error-prone. The third is to compare our logic with doxastic logic [18], which
is based on the notion of belief. We introduced the additional variable xi to denote
x as observed by thread i, but this variable does not always coincide with x on
physical memories. Therefore, xi may be considered to be x as believed by thread
i. The fourth is a mathematical formulation of our logic. Although mathemat-
ical formulations of rely/guarantee-reasoning have been stated in some stud-
ies (e.g., [9]), they assume that (program) shared variables are components in
assertion languages (called a cheat in [9]). Since the insight provided in this
paper dismisses shared variables from assertion languages, the assumption can-
not be admissible, and a new mathematical formulation of our logic based on
rely/guarantee-reasoning is significant.
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