
Refined Environment Classifiers

Type- and Scope-Safe Code Generation
with Mutable Cells

Oleg Kiselyov1(B), Yukiyoshi Kameyama2, and Yuto Sudo2

1 Tohoku University, Sendai, Japan
oleg@okmij.org

2 University of Tsukuba, Tsukuba, Japan
kameyama@acm.org

Abstract. Generating high-performance code and applying typical
optimizations within the bodies of loops and functions involves moving
or storing open code for later use, often in a different binding environ-
ment. There are ample opportunities for variables being left unbound or
accidentally captured. It has been a tough challenge to statically ensure
that by construction the generated code is nevertheless well-typed and
well-scoped : all free variables in manipulated and stored code fragments
shall eventually be bound, by their intended binders.

We present the calculus for code generation with mutable state that
for the first time achieves type-safety and hygiene without ad hoc restric-
tions. The calculus strongly resembles region-based memory manage-
ment, but with the orders of magnitude simpler proofs. It employs the
rightly abstract representation for free variables, which, like hypothesis
in natural deduction, are free from the bureaucracy of syntax imposed
by the type environment or numbering conventions.

Although the calculus was designed for the sake of formalization and
is deliberately bare-bone, it turns out easily implementable and not too
bothersome for writing realistic program.

1 Introduction

Code generation exhibits the all-too-common trade-off: obtaining code with the
highest performance; statically ensuring the code quality; being able to use the
code-generating system in practice – choose two. Optimizing compilers and many
practical code-generating tools do all desired optimizations. The correctness of
the result is ensured however only by careful programming. This is not a problem
in case of a compiler written by a small team of experts and changed relatively
infrequently. The lack of static assurances is worrisome for code transforma-
tion and generation libraries written by domain experts, who have less time
to devote to proofs and have to continually tune their libraries to the domain
knowledge and circumstances. There is the attested danger of generating code
with unbound, or worse, unexpectedly bound variables. At the very least, we
would like to guarantee that the generated code – at all times, even the code
c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 271–291, 2016.
DOI: 10.1007/978-3-319-47958-3 15

272 O. Kiselyov et al.

fragments – is well-formed, well-typed, and all of its free variables will eventu-
ally be bound by their intended binders. This guarantee should hold before we
compile the generated code, which is typically unfit for human reading. Ideally,
the guarantee should hold even before we compile the generator.

On the other side of the trade-off are the staged calculi such as λ◦ and λα

[4,15] that express code generators with the desired static guarantees. They
are called ‘staged’ because evaluation is stratified: the result of the present, or
Level-0, stage is the code to be evaluated at the next, Level-1, or future stage.
The calculi have been implemented as full-featured staged languages used in
practice [8,17]. Another example is Pouillard’s [13] code generation and analysis
library with proven correctness. Alas, all these systems restrict the range of safe
operations on open code: in particular, they limit or outlaw the operations that
move or store open code, retrieving it later in a different binding environment.
Such operations are required for many optimizations such as let-insertion, mem-
oization, loop interchange and tiling. There have been general approaches that
permit the desired open code motions and provide static guarantees: for exam-
ple, [12]. Alas, they are too complex to use in practice or even to implement. For
more discussion, see Sect. 5 and especially [6].

StagedHaskell [6] overcomes the impasse, but partially. It is the library for
code generation that supports code movements, including movements via any
computational (monadic) effect. Using a contextual modal type system, the
library statically assures that at all times the generated code is well-formed,
well-typed and well-scoped : all free variables in manipulated and stored code
fragments shall eventually be bound by their intended binders. However, the
safety properties have been argued only informally. The main reason is that
the complexity of the Haskell implementation, specifically, the encoding of the
contextual modal type system, make the formal reasoning difficult.

The present paper takes the first step of formalizing StagedHaskell: it distills
the staged calculus <NJ> that safely permits open code movements across dif-
ferent binding environments via mutable cells. The calculus can express realistic
examples from StagedHaskell, such as the assert-insertion, see Sect. 4.

Although <NJ> was motivated by code generation with safety guarantees,
it turned a vantage point to view seemingly unrelated areas. First, there is an
uncanny similarity between generating code of functions (or other blocks with
local binders) and region-based memory management. Preventing the ‘extrusion’
of free variables out of the bodies of generated functions is similar to keeping
reference cells allocated within a region from leaking out. We have consciously
used this similarity, adapting techniques from region calculi [5].

The key to ensuring hygiene and type safety when manipulating open code is
reflecting free variables of a code fragment in its type – which evokes contextual
modal type theory [10] and, in general, sequent calculus. The structural rules
such as weakening now turn up in programs, e.g., as ‘shifts’ of De Bruijn indices
[3]. After all, in metaprogramming, meta-level becomes the object level. ‘The
bureaucracy of syntax’ now worries not only logicians but also programmers.

Refined Environment Classifiers 273

A particularly elegant method to overcome the complexities and redundancies
of concrete name and environment representations is environment classifiers [15]
(recalled and discussed in Sect. 3.2). A single classifier represents a set of free
variables, abstracting from their order, quantity, or names. Unfortunately, in the
presence of effects, the original environment classifiers are too coarse, abstracting
away the information needed to ensure the type safety of effectful generators.
Inspired by the concept of local assumptions from Natural Deduction NJ, we
have identified the minimal necessary refinement of environment classifiers.

Contributions. Our specific contributions are as follows:

– Practical two-stage calculus <NJ> whose type system statically ensures hygiene
and the type-safety of the generated code in the presence of mutable reference
cells. The calculus distills the design of the practical StagedHaskell library.
The calculus itself is easily implementable.

– Refinement of environment classifiers – imposing partial order – that preserves
all their simplicity and advantages and is compatible with effects.

<NJ> is close to the current MetaOCaml [8], which permits leaking of vari-
ables (scope extrusion) but raises a run-time error at the moment the code with
leaked (extruded) variables is about to be used. Our calculus prevents such errors
statically.

The calculus has been implemented as a simple embedding in OCaml, whose
type checker checks <NJ> types and even infers them. Signatures are only needed
for functions that receive code values as arguments and use them in distinct
binding environments. One is immediately reminded of MLF [9]; this is not
an accident, as we shall see in Sect. 3.3. All examples in the paper are slightly
reformatted running code. The implementation, with more examples, is available
at http://okmij.org/ftp/tagless-final/TaglessStaged/metaNJ.ml.

This paper is organized as follows: The next section introduces the calculus,
using many examples to illustrate its syntax and dynamic semantics. Section 3
describes the type systems and proves its soundness. Section 3.1 specifically
demonstrates the obvious and very subtle dangers arising from storing open
code in mutable cells, and how <NJ> prevents the dangers but not the free use of
reference cells. Responsible for this are refined environment classifiers; Sect. 3.2
discusses what, why and how. Section 4 shows off a complex example: It is used
exactly as was explained in [6], deliberately to demonstrate that <NJ> is capable
of representing practical StagedHaskell examples.

2 <NJ>, Its Syntax and Semantics

Formally, the syntax of <NJ> is defined in Fig. 1. This section introduces the
calculus and its dynamic semantics more accessibly, on a series of small examples.

<NJ> is a lambda-calculus with reference cells and special constants to create
and combine code values. Whereas 1 : int is the familiar constant of the base
type int, cint 1 is an expression of the code type 〈 int〉γ which evaluates to 〈1〉.

http://okmij.org/ftp/tagless-final/TaglessStaged/metaNJ.ml

274 O. Kiselyov et al.

The code types are explained in Sect. 3. Here, cint is a special code-generating
constant, also called code combinator1 [16,18]. We underline all such constants.
Likewise, cbool true evaluates to 〈true〉 Since the cint and cbool expressions are
common we adopt the abbreviated notation % that stands for either constant,
depending on the context.

The bracketed expressions like 〈1〉 cannot appear in source programs; they
come only during and as the result of reductions. This is the most visible dis-
tinction from stage calculi like λα [15] and MetaOCaml. Neither do we have
‘splicing’ (or, ‘escape’, unquotation). Bracketed expressions are essentially con-
stants: they cannot be decomposed, inspected, or substituted into. Only a subset
of expressions may be bracketed: underlined constants and the brackets them-
selves are excluded. <NJ> therefore is the two-stage calculus, for generating code
but not for generating code generators2. We will sometimes use the superscript
e1 to emphasize the distinction between the host language and the generated
language. Most of the time the superscript is elided for ease of notation.

Figure 2 defines the constants of <NJ>. They come in different arities. Seen
earlier 1 and true are zero-ary constants, denoted as c0 in Fig. 1. On the other
hand, cint and cbool have the arity 1, and are not considered expressions per se:
only their applications to one argument are expressions, see Fig. 1. Likewise, + is
an arity-2 constant, requiring two arguments to be regarded as an expression. We
write such an expression in the conventional infix notation 1 + 2, which evaluates
to 3. Besides cint and cbool, there are constants that combine already built code
values: %1 ± %1 of the code type 〈 int 〉γ evaluates as follows according to the
rules of Figs. 3 and 4.

%1 + %2 � 〈1〉 + %2 � 〈1〉 + 〈2〉 � 〈1+2〉
Here, ± is an arity-2 constant, which we also write in infix. Again, all constants
must be fully applied: there are no partial applications, sections, or other sugar.

<NJ> is the lambda-calculus, with the standard abstractions λx. e and appli-
cations e1 e2. We let let x = e1 in e2 stand as the abbreviation for (λx.e2) e1,
and e1; e2 for let x = e1 in e2 where x does not appear free in e2. The semantics
of <NJ> is the standard small-step left-to-right call-by-value, see Fig. 3. (Heaps
will be explained later on and can be ignored for now). <NJ> can also generate
the code of functions, using the expression form λx. e with peculiar semantics,
which we explain in detail. For example, the expression λx. x ±%3 eventually
generates the code of the function that increments its argument by 3:

λx. x + %3 � λy.〈y〉 + %3 � λy.〈y〉 + 〈3〉 � λy.〈y+3〉 � 〈λy.y+3〉
First, the expression λx. x ±%3 reduces by choosing a fresh variable name y,
replacing all free occurrences of x in its body with 〈y〉 and wrapping the result
in λy. (Expressions of the form λy.e come up during the evaluation and do not
appear in source programs.) Next, the body of thus built λy.〈y〉 ±%3 reduces as

1 The StagedHaskell library, the prototype of <NJ>, is a code-combinator library.
2 This restriction certainly simplifies the formalism. It is also realistic: in all our expe-

rience of using MetaOCaml, the multi-stage language, we are yet to come across any
real-life example needing more than two stages. Template Haskell is also two-stage.

Refined Environment Classifiers 275

described earlier. The final reduction in the sequence builds the resulting code.
Thus producing the code for functions has two separate phases: generating the
name for the bound variable, and generating the binder for that name at the
end. In many staged calculi the two phases can be (and are) combined. The
effects force them apart however, as we shall see soon.

Fig. 1. Syntax of <NJ>. The constants ci with their arities i are defined in Fig. 2.

Fig. 2. The constants ci of <NJ> with their arities i. The underlined constants, whose
result type is code type, are code combinators. The shown types are schematic: t
denotes any suitable type and γ any suitable classifier. We silently add other arithmetic
and comparison constants and code combinators, similar to + and =. Although the
constants may have function types, they are not expressions, unless applied to the right
number of arguments.

For another illustration we take the familiar power example: generating a
function that raises its argument to the given power by repeated multiplications.

let body = λf n x. if n=0 then %1 else x ∗ f (n−1) x in
λn. λx. (fix body) n x

Applying the result to, say, 3 produces 〈λy. y ∗ y ∗ y ∗ 1〉.
<NJ> has mutable state in the form of the familiar mutable cells, such as those

found in ML and many other languages. Correspondingly, the calculus has the

276 O. Kiselyov et al.

Fig. 3. Dynamic semantics of <NJ>: reductions e1 � e2. The reductions involving
(code-generating) constants are defined in Fig. 4.

Fig. 4. Constant (code-generating) reductions

form ref e to create a fresh reference cell holding the value of e, !e to dereference
it, obtaining the held value, and e1 := e2 to replace the value of the cell e1 with
the value of e2, returning the latter value. The semantics is standard, involving
locations l and the heap H, the finite map from locations to values. The empty
heap is denoted as [] ; (l :v,H) is the heap that contains the association of l with
v plus the associations in H. The domain of the latter does not include l. From
λU [2] we borrow the heap-like name heap N, which is the set of names used for
variables in the generated code. As we shall see throughout the paper, there is an
uncanny similarity between reference cells and the future-stage variable names.

The full dynamic semantics of <NJ> thus deals with reductions between con-
figurations, made of the name and location heaps, and an expression, see Fig. 3.
We will often elide the heaps when presenting reductions, especially in exam-
ples. As an illustration, the following reductions show the evaluation of a sample
imperative code, and the generation of the imperative code:

Refined Environment Classifiers 277

N;H;let r = ref (2+3) in r := 0; ! r �∗

N;(l :5,H); l := 0; ! l �∗ N;(l :0,H);! l � N;(l :0,H);0
clet r = ref (%2 + %3) in clet z = r := %0 in !r ≡
(λr. (λz. ! r) @ r := %0) @ ref (%2 + %3) �∗

(λy. (λu. !〈y〉) @ 〈y〉 := %0) @ ref (%2 + %3) �∗

(λy. 〈λu. !y〉 @ 〈y := 0〉) @ ref (%2 + %3) �∗

〈(λy. (λu. !y) (y := 0)) (ref (2 + 3))〉
where we used clet x = e1 in e2 to stand for (λx. e2) @ e1. In the first example,
l denotes a fresh location. We elided the heaps in the second example.

So far, the lambda-calculus fragment of <NJ>, the code generating and the
reference cell fragments looked like orthogonal extensions. There is one part
of the semantics where they interact non-trivially. It has to do with generat-
ing functions and using reference cells to store open code. The following is an
example of how not to use reference cells to store open code: it is the infamous
scope-extrusion example.

N;H;let r = ref %0 in (λx. r := x); ! r � N;(l : 〈0〉 ,H); (λx. l := x); ! l �
(y,N);(l : 〈0〉 ,H); (λy. l := 〈y〉); ! l � (y,N);(l : 〈y〉 ,H): (λy. 〈y〉); ! l �
(y,N);(l : 〈y〉 ,H); 〈λy. y〉 ; ! l �
(y,N);(l : 〈y〉 ,H); ! l � (y,N);(l : 〈y〉 ,H); 〈y〉

When building the functions’s body we store the code with the yet-to-be-bound
variable y in the reference cell. After the function is constructed we retrieve from
the reference cell the code with what is by now the unbound variable y. We have
just seen the most blatant example of scope extrusion; alas, there are also subtle,
and hence far more dangerous cases; we discuss them in Sect. 3.1.

Our dynamic semantics is really non-chalant about unbound future-stage
variables, treating them essentially as constants. To be pedantic, y in the result
of the scope-extrusion example is bound, technically: it occurs in the name heap.
Real staged languages such as MetaOCaml and Scala-Virtualized [14] likewise
allow unbound variables to appear in code values (in case of MetaOCaml, for
a short interval). We will show in the next section that a well-typed <NJ> pro-
gram never generates code with unbound variables. The scope-extrusion program
above does not type-check.

Storing open code in reference cells has many legitimate uses. Here we show
one simple example. It is again the power function, but now with reference cells.
Merely computing xn looks in <NJ> as

λn.λx. let r = ref 1 in
fix (λf .λn. if n = 0 then 0 else (r := !r ∗ x; f (n−1))) n; ! r

To obtain the code for computing xn for a fixed n, we turn the above program
into the generator, in a rather straightforward way:

let body = λn.λx. let r = ref %1 in
fix (λf .λn. if n = 0 then 0 else (r := !r ∗ x; f (n−1))) n; ! r

in λn. λx. body n x

Applying the result to, say, 3 produces, as before, 〈λy. y ∗ y ∗ y ∗ 1〉. The ref-
erence cell r accumulates progressively longer code for the product, containing

278 O. Kiselyov et al.

multiple occurrences of the free variable y, to be bound at the end. Section 4
shows more interesting, realistic example of reference cells in code generators, of
assertion insertion.

3 Type System

Figure 1 also defines the syntax of types t, which include the standard, base
types of int and bool, the arrow (function) type and the reference type t ref.
Non-standard is the code-type 〈t〉γ , containing the so-called classifier γ – similar
in intent, but more precise than the environment classifier of [15], as mentioned
in the Introduction. One may think of the classifier γ as a type-level represen-
tation, or ‘name’, of a Level-1 variable – although strictly speaking a classifier
represents a binding environment. We delay the further discussion of classifiers
till Sect. 3.2, after we explained the typing rules that govern classifiers, the par-
tial order on classifiers and classifier subtyping. Since <NJ> is a two-level system
– the generated code does not contain any code generating expressions – we
distinguish level 1 types t1 from level 0 types t: the former omits code types. To
relieve the notation burden, however, we will often use the same meta-variable
t for both sorts of types, using t1 only where necessary for disambiguation.

Figure 5 defines judgements and their components. The main typing judge-
ment – the expression e has the type t at the level L – has the form
Υ ;Θ;Γ �L e : t. Here, Γ is the standard environment, an ordered sequence asso-
ciating types with free variables in an expression. Free variables in e1 expressions
(that is, expressions within brackets) are Level-1 free variables; their associations
(y:t1)γ in Γ are annotated with the classifier γ. Besides the free variable bind-
ings, Γ also contains classifiers γ and classifier subtyping witnesses γ1�γ2 to be
explained shortly. Υ and Θ are essentially the typings of the name and location
heaps. Θ is indeed a finite map from locations to types; Υ on the other hand,
has more structure. It is an ordered sequence. It contains the classifier γ for
each name in N. Like Γ , it also contains the types associated with each name
(Level-1 variable) and the classifier subtyping witnesses. One may think of Γ as
a local type environment and Υ as a ‘global’ one. The initial Υ contains only the
pre-defined classifier γ0. We use the standard ∈ notation to assert that Γ or Υ
sequences contain a particular element. In addition, we write l ∈ Θ to say the
location is in the domain of the finite map Θ. The notation b ∈ (Γ � Υ) means
that some binding b is an element of Γ , or else it is an element of Υ (note the
asymmetry).

Fig. 5. Judgements, environments, classifiers

Refined Environment Classifiers 279

Fig. 6. Well-formedness of environments and heap typings � Υ ok, Υ � Θ ok, Υ � Γ ok

Some judgements are generic, so we use superscript L that stands for either
empty or a classifier. If L is not empty, then, strictly speaking, the judgement
should be written as Υ ;[]; Γ �γ e1: t1, meaning that only a subset of expressions
(and types) are allowed at level 1. In particular, locations cannot appear at
Level 13: normally locations result from evaluating expressions ref e; although
such expressions may appear in the generated code, they remain unevaluated.
There are no code combinators in <NJ> that could produce the value 〈 l 〉. A
substitution cannot insert a location either, since the generated code cannot be
substituted into. Therefore, the heap typing Θ is irrelevant in such judgements.
We will almost always drop the superscript in e1 and t1 (we keep it in the rule
(Code) as reminder).

Figure 6 states the well-formedness constraints on the environments and heap
typings, which can be summarized as the absence of duplicates and the classifiers
being defined before use. It becomes clear that each Level-1 variable binding
recorded in the global Υ or local Γ environment has its own classifier. Indeed, a
classifier acts as a type-level ‘name’ of a Level-1 variable. To ease the notation,
hereafter we shall assume well-formedness of all environments and heap typings.
We write Γ ,Γ ’ and Υ ,Υ ’ for the concatenation of two sequences such that the
result must be well-formed.

The typing of expressions is presented in Fig. 7 whereas Fig. 9 defines the
typing of heaps. Most of the type system is standard. The rule (Const) uses
the types of constants tc, given in Fig. 2. We abuse the notation and treat, for
type-checking purposes, constant expressions such as c2 e1 e2 as applications to
c2, although c2 is not an expression per se. The rules (Sub0) and (Sub1) rely
on the partial order on classifiers specified in Fig. 8 in the straightforward way:
Υ ,Γ |= γ1�γ2 if either γ1�γ2 literally occurs in the environments as a witness,
or can be derived by reflexivity and transitivity.
3 If we generate code for later use, e.g., as a library of specialized algorithms, it makes

no sense for the generated code to contain pointers into the generator’s heap. By
the time the produced code is run, the generator will be long gone. Although shared
heap may be useful in run-time-code specialization, none of the staged calculi to our
knowledge consider this case.

280 O. Kiselyov et al.

Fig. 7. Type system: typing of expressions

Fig. 8. Partial order on classifiers Υ ;Γ |= γ1�γ2

Fig. 9. Type system: typing of heaps Υ � N and Υ ;Θ � H

The most interesting are the rules (CAbs) and (IAbs). To explain them and
to illustrate the type system, we show two sample typing derivations. The first
deals with the term λx1.λx2.x1 ± x2 – generating the curried addition func-
tion – in the initial environment, in which Υ contains only the predefined clas-
sifier γ0, and Θ and Γ are empty. In the following derivation, Γ2 stands for
γ1, (γ1�γ0), (x1:〈int〉γ1), γ2, (γ2�γ1), (x2:〈int〉γ2).

Υ ;Θ;Γ2 � x1: 〈int〉γ1 Υ ;Γ2 |= γ1�γ2

Υ ;Θ;Γ2 � x1: 〈int〉γ2 Υ ;Θ;Γ2 � x2: 〈int〉γ2

Υ ;Θ;Γ2 � x1 + x2: 〈int〉γ2

Υ ;Θ;(γ1, (γ1�γ0), (x1:〈int〉γ1)) � λx2. x1 + x2: 〈int→int〉γ1

Υ ;Θ;[] � λx1.λx2. x1 + x2 : 〈int→int→int〉γ0

Refined Environment Classifiers 281

The side-conditions of (CAbs) tell that the classifiers γ1 and γ2 are ‘fresh’.
Section 3.1 shows another attempted (but not completed) derivation, in case of
scope extrusion. The second derivation is for the expression λy1.λx2. 〈y1〉 + x2,
which results from the one-step reduction of the expression in the pre-
vious derivation. Now, Υ1 stands for γ0, γ1, γ1�γ0, (y1:int)

γ1 and Γ2 for
γ2,γ2�γ1,(x2:〈int〉γ2).

Υ1;Θ;Γ2 �γ1 y1: int

Υ1;Θ;Γ2 � 〈y1〉: 〈int〉γ1 Υ1;Γ2 |= γ2�γ1

Υ1;Θ;Γ2 � 〈y1〉: 〈int〉γ2 Υ1;Θ;Γ2 � x2: 〈int〉γ2

Υ1;Θ;Γ2 � 〈y1〉 + x2: 〈int〉γ2

Υ1;Θ;[] � λx2. 〈y1〉 + x2: 〈int→int〉γ1

Υ1;Θ;[] � λy1.λx2. 〈y1〉 + x2 : 〈int→int→int〉γ0

It should be clear, already from (IAbs) in fact, that λy. is not really a binding
form. The environment Γ in (IAbs) is empty since λy.e shows up only during
evaluation and it is not a value.

Proposition 1 (Canonical Forms). The only values of base types int and bool
are zero-ary constants (numerals and booleans, respectively). Values of reference
types t ref are locations. Values of code types are all bracketed expressions 〈e〉
and of the function types t1→t2 are abstractions λx.e.

Although constants of arity 1 and above also have function types (see Fig. 2), not
applied to the right number of arguments they are not regarded as expressions.

Proposition 2 (Weakening). If Υ ;Θ;Γ �L e:t, Υ � N, and Υ ;Θ � H hold, so
do (Υ ,Υ ’);(Θ,Θ’);(Γ ,Γ ’) �L e:t and (Υ ,Υ ’) � N and (Υ ,Υ ’);(Θ,Θ’) � H.

Recall that comma denotes concatenation that preserves well-formedness; which
implies Θ and Θ’ are disjoint. The proof is straightforward.

Theorem 1 (Subject Reduction). If Υ ;Θ;[] � e: t, Υ � N, Υ ;Θ � H, and
N;H;e � N’;H’;e’, then Υ ’;Θ ’;[] � e ’: t, Υ ’ � N’, Υ ’;Θ’ � H’, for some Υ ’ and
Θ’ that are the extensions of the corresponding unprimed things.

We outline the proof in AppendixA.

Theorem 2 (Progress). If Υ ;Θ;[] � e: t, Υ � N and Υ ;Θ � H, then either e is
a value or there are N’, H’ and e’ such that N;H;e � N’;H’;e’.

The proof is the easy consequence of the canonical forms lemma. For example,
if the last rule in the derivation of Υ ;Θ;[] � e: t is (IAbs), then e must have the
form λy.e’ for some e’ , where e’ must itself be typeable in the same Υ and Θ.
By induction hypothesis, e’ either reduces, or is a value. In the latter case, by
the canonical forms lemma, it should be of the form 〈e2〉 for some e2 – meaning
λy.〈e2〉 can reduce.

282 O. Kiselyov et al.

Corollary 1. If ([], γ0);[];[] � e:〈t〉γ0 and [];[]; e � N;H;v then v has the
form 〈e1〉 and ([], γ0);[];[] �γ0 e1:t.

That is, if a well-typed program of the type 〈t〉γ0 terminates it generates the
code well-typed in the empty environment. The generated code hence has no
unbound variables.

3.1 Scope Extrusion

When generating the body of a function, its formal argument is available as a
code value – as the free variable. Scope extrusion occurs when that open code
value is used outside the dynamic scope of the function generator and hence the
free variable can never be properly bound. Although the error is obvious once we
attempt to compile the generated code, it is not at all obvious what part of the
generator is responsible. Debugging generated code is very difficult in general.
We now demonstrate how <NJ> prevents scope extrusion.

We start with the example of blatant scope extrusion, from Sect. 2:

let r = ref %0 in (λx. r := x); ! r

We have seen that its evaluation indeed produces the code with an unbound
variable. The example does not type check however. Specifically, the type
error occurs not when the open code is retrieved from the reference cell r
at the end. Rather, the generator of the function body, specifically, r := x
fails to type-check. Here is the attempt at the derivation, where we assumed
γ ∈ (Γ � Υ) and so is γ1 (which may be the same as γ). We take Γ2 to be
Γ ,(r :〈 int〉γ1 ref),γ2,γ2�γ,(x:〈int〉γ2) where γ2 is fresh.

Υ ;Θ;Γ2 � r := x: 〈int〉γ2

Υ ;Θ;(Γ ,(r:〈 int 〉γ1 ref)) � (λx. r := x): 〈 int→int〉γ

Υ ;Θ;Γ � let r = ref cint 0 in (λx. r := x): 〈 int→int〉γ

The derivation cannot be completed since r has the type 〈 int〉γ1 ref but x is of
the type 〈 int〉γ2 where γ2 is specifically chosen by (CAbs) to be different from
any other classifiers in Γ and Υ , including γ1.

If such examples were our only worry, a simpler type system would have
sufficed. Instead of named classifiers, we would annotate code types with just a
natural number: the nesting level of λ. Our blatant example will likewise fail to
type-check. The error will be reported later, however, when type checking the
last expression ! r retrieving the code with the already leaked variable as the
program result. The program result must be closed: be at the 0th nesting level.
The type system of [3] (extended with reference cells) likewise rejects the blatant
example, as was described in that paper. (After all, their type system annotates
code types with the typing environment sequence, which is the refinement of
the nesting depth.) MetaOCaml also reports the scope extrusion error – when
running the program and executing the ! r expression. In contrast, <NJ> rejects
r := x, when merely attempting to leak out the free variable.

Refined Environment Classifiers 283

Alas, scope extrusion can be subtle. Consider a small modification of the
earlier example:

let r = ref %0 in (λx. r := x); (λz. ! r)

The simpler type system with mere level counting accepts the code: the free
variable leaks out of one binder into another, at the same nesting level of λ.
Likewise, the calculus of [3] (extended with reference cells as described therein)
will type-check and even run the example, producing the code for the identity
function. This is not what one may expect from the generator λz. ! r. Our <NJ>
rejects r := x in the first part of the example as described earlier: it rejects even
an attempt to leak the variable.

Finally, scope extrusion may be harmless, as in the following, yet another
variation of the example:

let r = ref (λz.z) in (λx. r := (λz. (x; z)); %0); !r

When generating the body of the function, we incorporate the free variable x in
the closure λz. (x; z), but in a way that it does not contribute to the result and
hence is not reflected in the closure’s type, which remains int→int. Technically,
the free variable has leaked – but in a useless way, embedded in dead code.

<NJ> accepts the latter example. When run, it indeed produces the closure
with an unbound variable – which remains typeable since the unbound variable
is still in the global heap N and its classifier in Υ . Such open code must have been
dead, however: it cannot be the result of a well-typed generator, since the type
of such result would have contained the classifier γ that is different from γ0. The
well-typed generator program must have the type 〈t〉γ0 . We have seen before
that even a fragment, let alone the whole program, that attempts to ‘usefully
leak’ a bound variable will fail to type-check.

Accepting unbound variables in dead code has many precedents. Most region
calculi (see [5] and references therein) and their implementations (such as runST
monad in Haskell) allow dangling references, provided they are not accessed –
that is, remain embedded in essentially dead code.

3.2 Environment Classifiers, Binding Abstractions, and Lexical
Scope

As we have seen from Sect. 3.1, the key to preventing scope extrusion is annotat-
ing the type of a code value with some representation of free variables that may
be contained therein. This section discusses a few choices for the representation
and the position of <NJ> among them as the most abstract while still sufficient
to prevent scope extrusion. By free variables we always mean Level-1 free vari-
ables: all values and terms produced and evaluated in stage calculi are closed
with respect to Level-0 variables.

On one end of the spectrum is annotating the type of a code value with the
names of the containing free variables, or the typing environment: the set or
the sequence listing the free variables and their types. Taha and Nielsen [15,
Sect. 1.4] describe many difficulties of this approach (the sheer size of the type
being one of them), which makes it hard to implement, and use in practice.

284 O. Kiselyov et al.

On the other extreme is the most abstract representation of a set of free
variables: as a single name (the environment classifier, [15]) or a number, the
cardinality of the set. Section 3.1 showed that this is not sufficient to prevent the
scope extrusion, of the devious, most harmful sort.

The approach of [3] also annotates the code types with the type environ-
ment; however, by using De Bruijn indices, it avoids many difficulties of the
nominal approach, such as freshness constraints, α-renaming, etc. The approach
is indeed relatively easy to implement, as the authors have demonstrated. Alas,
although preventing blatant scope extrusion, it allows the devious one, as we
saw in Sect. 3.1.

The representation of [3] is also just too concrete: the code type
〈 int 〉(int,bool,int) tells not only that the value may contain three free variables
with the indices 0, 1 and 2. The type also tells that the int and the bool vari-
ables will be bound in that order and there is no free variable to be bound in
between. There is no need to know with such exactitude when free variables will
be bound. In fact, there is no need to even know their number, to prevent scope
extrusion. The concreteness of the representation has the price: the system of [3,
Sect. 3.3] admits the term, in our notation, λf .λx.λy.f y, which may, depending
on the argument f, generate either 〈λx.λy.y〉 or, contrary to any expectation,
〈λx.λy.x〉.

Such a behavior is just not possible in <NJ>: consider λx. f x where f is some
function on code values. The function receives the code of a Level-1 variable
and is free to do anything with it: discard it, use it once or several times in the
code it is building, store in global reference cells, as well as do any other effects,
throw exceptions or diverge. Still, we are positive that whatever f may do, if
it eventually returns the code that includes the received Level-1 variable, that
variable shall be bound by λx. of our expression – regardless of whatever binders
f may introduce. This is what we call ‘lexical’ scope for Level-1 variables: the
property, not present in [7] (by choice) or [3].

<NJ> avoids the problematic ‘variable conversions’ because it does not exposes
in types or at run-time any structure of the Level-1 typing environment. The
environment classifier in <NJ> is the type-level representation of the variable
name. There is a partial order on classifiers, reflecting the nesting order of the
corresponding λx generators. The relation γ2�γ1 tells that the variable corre-
sponding to γ1 is (to be) introduced earlier than the free variable corresponding
to γ2, with no word on which or how many variables are to be introduced in-
between. The code type is annotated not with the set of free variables, not with
the set of the corresponding classifiers – but only with the single classifier, the
maximal in the set. The type system ensures that there is always the maxi-
mal element. To be precise, any free Level-1 variable that may appear within
λy. 〈e〉 : 〈t1→t2〉γ2 is marked by such a classifier γ1 that γ2�γ1. Therefore, any
such variable will be bound by an ancestor of λy. This is another way to state
the property of ‘lexical scope’ for free variables.

Refined Environment Classifiers 285

3.3 Classifier Polymorphism

The classifier polymorphism and its importance are best explained on examples.
The following generator

λx. let f = λz. cint x + %1 + z in let f ’ = λz’. (cint x + %1) ∗ z’ in e

contains the repeated code that we would like to factor out, to make the gener-
ators clearer and more modular:

λx. let u = cint x + %1 in let f = λz. u + z in let f ’ = λz’. u ∗ z’ in e

One may worry if the code type-checks: after all, u is used in contexts associated
with two distinct classifiers. The example does type-check, thanks to (Sub0)
rule: u can be given the type 〈 int〉γ0 , and although z:〈 int〉γ1 and z ’: 〈 int〉γ2 are
associated with unrelated classifiers, γ1�γ0 and γ2�γ0 hold.

Alas, the classifier subtyping gets us only that far. It will not help in the
more interesting and common example of functions on code values:

λx. let u = λz.cint x + z in let f = λz. u z + z in let f ’ = λz’. u z’ ∗ z’ in e

where the function u is applied to code values associated with unrelated classi-
fiers. To type-check this example we need to give u the type ∀ γ. 〈 int〉γ→〈int〉γ .
Before, γ was used as a (sometimes schematic) constant; now we use it as a
classifier variable.

Extending <NJ> with let-bound classifier polymorphism with attendant value
restriction is unproblematic and straightforward. In fact, our implementation
already does it, inheriting let-polymorphism from the host language, OCaml.
Sometimes we may need more extensions, however.

For example, we may write a generator that introduces an arbitrary, sta-
tically unknown number of Level-1 variables, e.g., as let-bound variables to
share the results of computed expressions. Such pattern occurs, for example,
when specializing dynamic programming algorithms. AppendixB demonstrates
the let-sharing on the toy example of specializing the Fibonacci-like function,
described in [6, Sect. 2.4]. As that paper explains, the generator requires poly-
morphic recursion – which is well-understood. Both Haskell and OCaml supports
it, and hence our implementation of <NJ>. Polymorphic recursion also shows in
[3].

There are, however, times (not frequent, in our experience) where
even more polymorphism is needed. The poster example is the staged
eta-function, the motivating example in [15]: λf . λx. f x, whose type is,
(〈t1〉γ → 〈t2〉γ) → 〈t1→t2〉γ , approximately. The type is not quite right: f
accepts the code value that contains a fresh free variable, which comes with
a previously unseen classifier. Hence we should assign eta at least the type
(∀ γ1. 〈t1〉γ1 → 〈t2〉γ1) → 〈t1→t2〉γ – the rank-2 type. This is still not quite
right: we would like to use eta in the expression such as λu. eta (λz. u ± z),
where f combines the open code received as argument with some other open
code. To type-check this combination we need Υ ,Γ |= γ1�γ. Hence the correct
type for eta should be

∀ γ. (∀ γ1�γ. 〈t1〉γ1 → 〈t2〉γ1) → 〈t1→t2〉γ

286 O. Kiselyov et al.

with the bounded quantification. One is immediately reminded of MLF . Such
bounded quantification is easy to implement, however, by explicit passing of
subtyping witnesses (as done in the implementation of the region calculus [5])
Our implementation of <NJ> supports it too – and how it cannot: eta is just the
first-class form of λ. Thus the practical drawback is the need for explicit type
signatures for the sake of the rank-2 type (just as signatures are required in MLF

when the polymorphic argument function is used polymorphically). Incidentally,
the original environment classifiers calculus of [15] gives eta the ordinary rank-1
type: here the coarseness of the original classifiers is the advantage. The formal
treatment of rank-2 classifier polymorphism is the subject of the future research.

4 Complex Example

To demonstrate the expressiveness of <NJ>, we show a realistic example of assert-
insertion – exactly the same example that was previously written in Staged-
Haskell. The latter is the practical Haskell code-generation library, too complex
to reason about formally and prove correctness. The example was explained in
detail in [6]; therefore, we elide many explanations here.

For the sake of the example, we add the following constants to <NJ>:

/ : int → int → int assert : bool → bool
/ : 〈 int 〉γ → 〈int〉γ → 〈int〉γ assertPos : 〈 int 〉γ → 〈t〉γ → 〈t〉γ

The first two are the integer division and the corresponding code combinator;
assert e returns the result of the boolean expression, if it is true. Otherwise, it
crashes the program. The constant assertPos is the corresponding combinator,
with the reduction rule assertPos 〈e1〉 〈e2〉 � 〈assert (e1>0); e2〉 .

The goal is to implement the guarded division, which makes sure that the
divisor is positive before attempting the operation. The naive version

let guarded div = λx.λy. assertPos y (x / y)

to be used as

λy. complexExp + guarded div %10 y

produces 〈λx. complexExp + (assert (x>0); (10 / x))〉. The result is hardly sat-
isfactory: we check the divisor right before the division. If it is not positive, the
time spent computing complexExp is wasted. If the program is going to end up
in error, we had rather it end sooner than much later.

The solution is explained in [6], implemented in StagedHaskell and is repro-
duced below in <NJ>. Intuitively, we first reserve the place where it is appropriate
to place assertions, which is typically right at the beginning of a function. As we
go on generating the body of the function, we determine the assertions to insert
and accumulate them in a mutable ‘locus’. Finally, when the body of the function
is generated, we retrieve the accumulated assertion code and prepend it to the
body. The function add assert below accumulates the assertions; assert locus
allocates the locus at the beginning and applies the accumulated assertions at
the end.

Refined Environment Classifiers 287

let assert locus = λf.
let r = ref (λx.x) in let c = f r in
let transformer = !r in transformer c

let add assert locus transformer =
locus := (let oldtr = !locus in λx. oldtr (transformer x))

let guarded div = λlocus.λx.λy. add assert locus (λz. assertPos y z); (x / y)

They are to be used as in the example below:

λy. assert locus (λlocus. λz. complexExp + guarded div locus z y)

As we generate the code, the reference cell r within the locus accumulates the
transformer (code-to-code function), to be applied to the result. In our exam-
ple, the code transformer includes open code (embedded within the assertPos
expression), which is moved from within the generator of the inner function. The
example thus illustrates all the complexities of imperative code generation. The
improved generated code

〈λx. assert (x>0); (λy. complexExp + y / x)〉
checks the divisor much earlier: before we started on complexExp, before we even
apply the function (λy. complexExp + y / x). If we by mistake switch y and z in
guarded div locus z y, we get a type-error message.

5 Related Work

We thoroughly review the large body of related work in [6]. Here we highlight
only the closest connections. First is Template Haskell, which either permits
effectful generators but then provides no guarantees by construction; or pro-
vides guarantees but permits no effects – the common trade-off. We discuss this
issue in detail in [6]. BER MetaOCaml [8] permits any effects and ensures well-
scopedness, even in open fragments, using dynamic checks. StagedHaskell and
<NJ> are designed to prevent scope extrusion even before running the generator.

Safe imperative multi-staged programming has been investigated in [1,17].
Safety comes at the expense of expressiveness: e.g., only closed code is allowed
to be stored in mutable cells (in the former approach).

We share with [15] the idea of using an opaque label, the environment clas-
sifier, to refer to a typing environment. The main advantage of environment
classifiers, their imprecision (they refer to infinite sets of environments), is also
their drawback. On one hand, they let us specify staged-eta Sect. 3.3 without
any first-class polymorphism. On the other hand, the imprecision is not enough
to safely use effects.

Chen and Xi [3] and Nanevski et al. [10] annotate the code type with the
type environment of its free variables. The former relies on the first-order syn-
tax with De Bruijn indices whereas the latter uses higher-order abstract syntax.
Although internally Chen and Xi use De Bruijn indices, they develop a pleas-
ant surface syntax a la MetaOCaml (or Lisp’s antiquotations). The De Bruijn

288 O. Kiselyov et al.

indices are still there, which may lead to unpleasant surprises, which they dis-
cuss in [3, Sect. 3.3]. Their type system indeed rejects the blatant example of
scope extrusion. Perhaps that is why [3] said that reference cells do not bring
in significant complications. However, scope extrusion is much subtler than its
well-known example: Sect. 3.1 presented a just slightly modified example, which
is accepted in Chen and Xi’s system, but produces an unexpected result. We
refer to [6] for extensive discussion.

One may think that any suitable staged calculus can support reference cells
through a state-passing translation. The elaborate side-conditions of our (CAbs)
and (IAbs) rules indicate that a straightforward state-passing translation is not
going to be successful to ensure type and scope safety.

Staged-calculi of [3,15] have a special constant run to run the generated code.
Adding it to <NJ> is straightforward.

Our bracketed expressions are the generalization of data constructors of the
code data type in the ‘single-stage target language’ [2, Fig. 2]. Our name heap
also comes from the same calculus. The latter, unlike <NJ>, is untyped, and
without effects.

6 Conclusions and Future Work

We have described the first staged calculus <NJ> for imperative code generators
without ad hoc restrictions – letting us even store open code in reference cells and
retrieve it in a different binding environment. Its sound type system statically
assures that the generated code is by construction well-typed and well-scoped,
free from unbound or surprisingly bound variables. The calculus has been dis-
tilled from StagedHaskell, letting us formally prove the soundness of the latter’s
approach. The distilled calculus is still capable of implementing StagedHaskell’s
examples that use mutation.

<NJ> has drawn inspiration from such diverse areas as region-based memory
management and Natural Deduction. It turns out a vantage point to overview
these areas.

<NJ> trivially generalizes to effects such as exceptions or IO. It is also easy to
extend with new non-binding language forms. (Binding-forms like for-loops can
always be expressed via lambda-forms: see Haskell or Scala, for example.) <NJ>
thus serves as the foundation of real staged programming languages. In fact, it
is already implemented as an OCaml library. Although the explicit weakening
is certainly cumbersome, it turns out, in our experience, not as cumbersome as
we had feared. It is not a stretch to recommend the OCaml implementation of
<NJ> as a new, safe, staged programming language.

Extension to effects such as delimited control or non-determinism is however
non-trivial and is the subject of on-going research. We are also investigating
adding first-class bounded polymorphism for classifiers, relating <NJ> more pre-
cisely to MLF .

Refined Environment Classifiers 289

Acknowledgments. We thank anonymous reviewers for many helpful comments.
This work was partially supported by JSPS KAKENHI Grant Numbers 15K12007,
16K12409, 15H02681.

A Proof Outlines: Subject Reduction Theorem

Lemma 1 (Substitution). (1) If Υ ;Θ;(Γ ,(x:t1)) � e: t and Υ ,Θ,Γ � e1: t1
then Υ ;Θ;Γ � e[x:=e1]: t. (2) If Υ ;Θ;(Γ ,γ2,γ2�γ1,Γ ’) �L e: t and γ1 ∈ Υ and
γ2’ �∈ (Γ � Υ), then (Υ ,γ2’,γ2’�γ1);Θ,(Γ ,Γ ’[γ2:=γ2’]) �L e: t[γ2:=γ2’] (if L was
γ2 it is also replaced with γ2’).

This lemma is proved straightforwardly.

Theorem 3 (Subject Reduction). If Υ ;Θ;[] � e: t, Υ � N, Υ ;Θ � H, and
N;H;e � N’;H’;e’, then Υ ’;Θ ’;[] � e ’: t, Υ ’ � N’, Υ ’;Θ’ � H’, for some Υ ’ and
Θ’ that are the extensions of the corresponding unprimed things.

Proof. We consider a few interesting reductions. The first one is

N;H;λx. e � (N,y);H;λ y. e[x:=〈y〉], y
∈ N

We are given N’ is N,y, H’ is H, and Υ ;Θ;[] � λx.e : 〈t1→t2〉γ , which means
γ ∈ Υ and Υ ;Θ;(γ2,γ2�γ,(x:〈t1〉γ2)) � e:〈t2〉γ2 for a fresh γ2. We choose Υ ’ as
Υ ,γ1,γ1�γ,(y:t1)

γ1 where γ1 is fresh, and Θ’ as Θ. Υ ’ is well-formed and is an
extension of Υ . Furthermore, Υ ’ � N,y. By weakening, Υ ’ � Θ ok and Υ ’;Θ � H
if it was for Υ . We only need to show that Υ ’;Θ ;[] � λy. e[x:=〈y〉] : 〈t1→t2〉γ ,
which follows by (IAbs) from Υ ’;Θ ;[] � e[x:=〈y〉] : 〈t2〉γ1 , which in turn follows
from the fact that Υ ’;Θ ;[] � 〈y〉 : 〈t1〉γ1 and the substitution lemma.

The next reduction is

N;H;λy.〈e〉 � N;H;〈λy.e〉
We are given Υ ;Θ;[] � λy.〈e〉 : 〈t1→t2〉γ , Υ � N and Υ ,Θ � H. Since N
and H are unchanged by the reduction, we do not extend Υ and Θ. By
inversion of (IAbs) we know that Υ is Υ ’,γ1,γ1�γ,(y:t1)

γ1 ,Υ ’’ and
∀ γ2. Υ |= γ1�γ2 and γ2 �= γ1 imply Υ |= γ�γ2 and Υ ;Θ;[] � 〈e〉 : 〈t2〉γ1 , or,
by inversion of (Code) Υ ;[];[] �γ1 e : t2. By weakening,
Υ ;[];([],(y ’: t)γ) �γ1 e : t2. An easy substitution lemma gives us
Υ ;[];([],(y ’: t)γ) �γ1 e’ : t2 where e’ is e[y:=y’], keeping in mind that
Υ |= γ1�γ. The crucial step is strengthening. Since we have just substi-
tuted away (y:t1)

γ1 , which is the only variable with the classifier γ1 (the
correspondence of variable names and classifiers is the consequence of well-
formedness), the derivation Υ ;[];([],(y ’: t)γ) �γ1 e’ : t2 has no occurrence of
the rule (Var) with L equal to γ1. Therefore, any subderivation with L being
γ1 must have the occurrence of the (Sub1) rule, applied to the derivation
Υ ;[];([],(y ’: t)γ) �γ2 e’:t’ where Υ |= γ1�γ2 and γ2 is different from γ1. The
inversion of (IAbs) gave us ∀ γ2. Υ |= γ1�γ2 and γ1 �= γ2 imply Υ |= γ�γ2.
Therefore, we can always replace each such occurrence of (Sub1) with the one
that gives us Υ ;[];([],(y ’: t)γ) �γ e ’: t ’ . All in all, we build the derivation of

290 O. Kiselyov et al.

Υ ;[];([],(y ’: t)γ) �γ e’ : t2, which gives us Υ ;[];[] �γ λy.e : t1→t2 and then
Υ ;[];[] � 〈λy.e〉 : 〈t1→t2〉γ .

Another interesting case is

N;H;λy.E[ref 〈y〉] � N;(H,l : 〈y〉);λy.E[l]
Given, Υ ;Θ;[] � λy.E[ref 〈y〉] : 〈t1→t2〉γ which means
Υ = Υ ’, γ1, γ1�γ, (y:t1)

γ1 , Υ ’’. Take Θ’ = Θ,(l:〈t1〉γ1 ref). It is easy to see that
Υ � Θ’ ok and Υ ,Θ’ � H,(l:〈y〉). The rest follows from the substitution lemma.

B Generating Code with Arbitrary Many Variables

Our example is the Fibonacci-like function, described in [6, Sect. 2.4]:

let gib = fix (λf .λx.λy.λn.
if n=0 then x else if n=1 then y else f y (x+y) (n−1))

For example, gib 1 1 5 returns 8. The naive specialization to the given n

let gib naive =
let body = fix (λf .λx.λy.λn.
if n=0 then x else if n=1 then y else f y (x+y) (n−1))
in λn.λx.λy. body x y n

is unsatisfactory: gib naive 5 generates

λx.λy. (y + (x + y)) + ((x + y) + (y + (x + y)))

with many duplicates, exponentially degrading performance. A slight change

let gibs =
let body : ∀ γ. 〈 int 〉γ → 〈int〉γ → int → 〈 int 〉γ = fix (λf.λx.λy.λn.
if n=0 then x else if n=1 then y else clet z = (x+y) in f y z (n−1))
in λn.λx.λy. body x y n

gives a much better result: gibs 5 produces

λx.λy. (λz. (λu. (λw. (λx1.x1) (u + w)) (z + u)) (y + z)) (x + y)

which runs in linear time. The improved generator relies on polymorphic recur-
sion: that is why the signature is needed.

References

1. Calcagno, C., Moggi, E., Taha, W.: Closed types as a simple approach to safe imper-
ative multi-stage programming. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.)
ICALP 2000. LNCS, vol. 1853, pp. 25–36. Springer, Heidelberg (2000). doi:10.
1007/3-540-45022-X 4

2. Calcagno, C., Taha, W., Huang, L., Leroy, X.: Implementing multi-stage lan-
guages using ASTs, gensym, and reflection. In: Pfenning, F., Smaragdakis, Y. (eds.)
GPCE 2003. LNCS, vol. 2830, pp. 57–76. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39815-8 4

3. Chen, C., Xi, H.: Meta-programming through typeful code representation. J. Funct.
Program. 15(6), 797–835 (2005)

http://dx.doi.org/10.1007/3-540-45022-X_4
http://dx.doi.org/10.1007/3-540-45022-X_4
http://dx.doi.org/10.1007/978-3-540-39815-8_4
http://dx.doi.org/10.1007/978-3-540-39815-8_4

Refined Environment Classifiers 291

4. Davies, R.: A temporal logic approach to binding-time analysis. In: LICS, pp.
184–195 (1996)

5. Fluet, M., Morrisett, J.G.: Monadic regions. J. Funct. Program. 16(4–5), 485–545
(2006)

6. Kameyama, Y., Kiselyov, O., Shan, C.: Combinators for impure yet hygienic code
generation. Sci. Comput. Program. 112, 120–144 (2015)

7. Kim, I.S., Yi, K., Calcagno, C.: A polymorphic modal type system for lisp-like
multi-staged languages. In: POPL, pp. 257–268 (2006)

8. Kiselyov, O.: The design and implementation of BER MetaOCaml. In: Codish, M.,
Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 86–102. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-07151-0 6

9. Le Botlan, D., Rémy, D.: MLF: raising ML to the power of system F. In: ICFP,
pp. 27–38 (2003)

10. Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. Trans.
Comput. Logic 9(3), 1–49 (2008)

11. POPL 2003: Conference Record of the Annual ACM Symposium on Principles of
Programming Languages (2003)

12. Pottier, F.: Static name control for FreshML. In: LICS, pp. 356–365. IEEE Com-
puter Society (2007)

13. Pouillard, N., Pottier, F.: A fresh look at programming with names and binders.
In: ICFP, pp. 217–228. ACM, New York (2010)

14. Rompf, T., Amin, N., Moors, A., Haller, P., Odersky, M.: Scala-virtualized: lin-
guistic reuse for deep embeddings. High. Order Symbolic Comput. 25, 165–207
(2013)

15. Taha, W., Nielsen, M.F.: Environment classifiers. In: POPL [11], pp. 26–37
16. Thiemann, P.: Combinators for program generation. J. Funct. Program. 9(5), 483–

525 (1999)
17. Westbrook, E., Ricken, M., Inoue, J., Yao, Y., Abdelatif, T., Taha, W.: Mint: Java

multi-stage programming using weak separability. In: PLDI 2010. ACM, New York
(2010)

18. Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: POPL
[11], pp. 224–235

http://dx.doi.org/10.1007/978-3-319-07151-0_6

	Refined Environment Classifiers
	1 Introduction
	2 <NJ>, Its Syntax and Semantics
	3 Type System
	3.1 Scope Extrusion
	3.2 Environment Classifiers, Binding Abstractions, and Lexical Scope
	3.3 Classifier Polymorphism

	4 Complex Example
	5 Related Work
	6 Conclusions and Future Work
	A Proof Outlines: Subject Reduction Theorem
	B Generating Code with Arbitrary Many Variables
	References

