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Abstract. Traffic models require calibration to provide an adequate representation
of the actual field conditions. This study presents the adaptation of a memetic
algorithm (MA-SW-Chains) based on Solis and Wets local search chains, for the
calibration of microscopic traffic flow simulation models. The effectiveness of the
proposed MA-SW-Chains approach was tested using two vehicular traffic flow
models (McTrans and Reno). The results were superior compared to two
state-of-the-art approaches found in the literature: (i) a single-objective genetic
algorithm that uses simulated annealing (GASA), and (ii) a stochastic approximation
simultaneous perturbation algorithm (SPSA). The comparison was based on tuning
time, runtime and the quality of the calibration, measured by the GEH statistic
(which calculates the difference between the counts of real and simulated links) .
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1 Introduction

The last decade has observed an increase in the use of microscopic traffic flow sim-
ulation for a wide range of purposes. Calibration of the simulation models is critical to
ensure validity and significance of the analysis. Calibration requires field measurements
to be compared to the corresponding simulation outputs [1].

Microscopic traffic flow simulation models include many parameters that are adjusted
to capture the required behavior. General principles for calibration of a microscopic traffic
flow simulation models are summarized as follows: (1) pre-calibration, (2) selection of
parameters to calibrate and the corresponding range, (3) selection of goodness of fit
measures, (4) defining of a calibration procedure, and (5) execution of calibration, vali-
dation and analysis of results [2]. Optimization is recommended and typically used in step
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4 (calibration procedure) for searching the numeric value to assign to each of the selected
parameters to minimize the difference between simulation and field measurements.

Studies in the past have proposed a variety of methods and algorithms for con-
ducting the search described [3]. The single sequence algorithm [4] and methodologies
of stochastic approximation have been used for the simultaneous calibration of the
model parameters [5, 6]. The two techniques used today include genetic algorithms
(GA) [7, 8] and the simultaneous perturbation stochastic approximation algorithm
(SPSA) [9, 10]. These techniques do not require information about the characteristics
of the microscopic traffic flow simulation model [11]. That is, information about the
methods used by the traffic flow simulation model to move vehicles and represent
traffic flow dynamics is not required. Hence, these techniques assumed to work well
with various types of traffic flow models.

Previous studies indicate that SPSA and GA provide similar results [10, 12].
However, SPSA requires less time and computational resources than GA. A memetic
algorithm [13], GASA combines genetic algorithms with simulated annealing, which
provides adequate results for low and medium complexity networks. A comparison
with SPSA showed promising results [13].

There is no approach in the literature for the calibration of microscopic traffic flow
models using memetic algorithms based on local search chains, as proposed in this
paper. The first memetic algorithm based on local search chain approach was intro-
duced in 2010 [14] and 2015 [15]. The algorithm showed great performance solving
complex problems (continuous).

One of the interpretations of the No-Free-Lunch Theorem for optimization is that it
is unknown which meta-heuristic can solve a problem in the best possible manner [16].
Thus, this paper investigates the performance of the MA-SW-Chains algorithm [14]
compared to two alternative state-of-the-art algorithms found in the resent literature
[11, 13].

The rest of the article is organized as follows: Sect. 2 defines the problem and explains
how the MA-SW-Chains algorithm was adapted to solve the proposed calibration problem.
Section 3 describes the experiments and results obtained with the MA-SW-Chains algo-
rithm. Section 4 presents the comparison between the MA-SW-Chains, GASA, and SPSA
algorithms. Finally, Sect. 5 provides conclusions and directions for future work.

2 Proposal

2.1 Formal Definition of the Problem

This study used the general principles described previously and in detail [2] for the
calibration of microscopic traffic flow models. The objective function to minimize is
the Root Mean Squared Normalized Error (RMSNE) [10] as shown in Eq. (1). Mini-
mize RMSNE implies the minimization of the difference between actual and simulated
volumes (vehicle counts) and actual and simulated vehicle speeds.
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where V;, is the actual count for link i at time t and \7(0)1-,, is the simulated count for link
i at time . S;, is the actual speed for link i at time ¢ and S’(g)w is the simulated speed for

link 7 at time 7. W is a weight used to assign value to the volume and the speed, N is the
total number of links in the model, and T is the total number of time periods .

Calibration criteria: The Federal Highway Administration (FHWA) guidelines for
the calibration of CORSIM models were used in this study. The difference between the
count for real and simulated links ought to be less than 5 for all links. The statistical
GEH [2] was used, which should be less than 5 in at least 85 % of the links. The
formula used to calculate the GEH statistic is provided by Eq. (2).

N
GEH = Z
i=1

where V; and \7(9),- are, respectively, the actual and simulated count for link i.

2.2 Adaptation of the MA-SW-Chains Algorithm

In this paper, each agent (solution or individual) represents a parameter vector con-
taining a solution for the optimization problem. In addition to a measure of fitness
(efficacy), a bias vector indicates the direction of the local search. A standard deviation
value (rho) is used in the Gaussian Distribution within the Solis and Wets algorithm
[17] to generate an offset vector, which helps to change the direction of the bias vector.
The representation of an agent is illustrated in Fig. 1.

P P, Parameters Py Py 0 1 Bias n-1n rho Fitness

e PPV e [ ][ 2s J[oos]

Fig. 1. Representation of an agent in the MA-SW-Chains algorithm.

Users (traffic engineers) need to select parameters that are calibrated for a specific
model. These selected parameters (or record types) are part of the agent (see [11] for
more details). These parameters take integer values based on restrictions defined in the
CORSIM user manual [18].

The MA-SW-Chains algorithm uses a steady state GA to explore the solution
search space. In this steady state GA, an (or several) offspring is created in every
generation and competes with the agents in the population [19] to be a part of the new
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population. The best agents are used to generate new populations through the genetic
operators of the algorithm. The best agent of the population in each generation is
selected for the process of exploitation using the Solis and Wets algorithm to refine the
search to find better solutions.

The differentiating approach of MA-SW-Chains is the chaining of local searches,
assigning a local search intensity (Istr) to each agent and exploiting the most promising
agents more intensely. To adapt the local search intensity, local search can be applied
several times to the same agent and their final parameters stored. These are used again
when the agent is selected to be optimized locally, thereby creating the local search
chain [14]. The stopping criterion for MA-SW-Chains is the maximum number of
generations (a parameter of the algorithm), or the maximum execution time (an
alternative parameter).

The MA-SW-Chains algorithm for supporting the calibration process is defined by
the following steps:

Step 1:  Generate the initial population randomly and apply restrictions to the
agents to avoid non-permitted values. Each parameter to be calibrated has a
previously defined range and type (in this case, integer). Fitness is
calculated for all agents of the population based on RMSNE according to
Eq. (1). The size of the population is a parameter previously defined by the
user

Step 2:  Generate new agents (the number of agents is determined by the algorithm
parameters set by the user) using a tournament selection genetic operator,
uniform crossover, and multigene mutation. These new agents comply with
the restrictions to avoid non-permitted values

Step 3:  Calculate fitness for new agents based on RMSNE and add to the
population

Step 4: Given that the lowest value of RMSNE is sought, agents with high fitness
values are removed from the population. As many as required agents are
removed to maintain the population size defined by the user

Step 5:  Select the best agent in the population (this agent has the lowest fitness
measure because a minimum value of RMSNE is sought)

Step 6: If local search has been applied previously to this best agent, then the bias
vector and standard deviation (rho) of the local search are initialized using
the bias vector and standard deviation (rho) values of the agent selected

Step 7:  If local search has not been applied previously to this best agent, the
parameters of local search are initialized using default values, with the bias
vector equal to the zero vector and the standard deviation (rho) equal to half
of the distance from the nearest neighbor to the best agent in the population
(20]

Step 8:  Apply the local search algorithm, Solis and Wets, to the best agent of the
population with an intensity of Istr, which is the number of iterations the
local search will run and is defined previously by the user



Step 9:

Step 10:
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On completion of the local search, the bias vector and standard deviation
(rho) of the local search should be set at the bias vector and standard
deviation (rho) of the agent to which the local search was applied. These
parameters will be used in future local searches if the agent is selected
again as the best of the population

If the stop condition is not satisfied, then back to step 2

The pseudocode of the original MA-SW-Chains algorithm can be reviewed in [14].
Local searches are performed with the Solis and Wets algorithm, which is a random
Hill-Climber with adaptive step size. The Solis and Wets algorithm works while the
local search iterations are less than or equal to the parameter Istr. The pseudocode of
the Solis and Wets algorithm is found in [20] and was adapted for the calibration
process using the following steps:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Initialize the offset vector (same size as the bias vector) with values from
the Gaussian distribution, whose parameters are zero for both mean and
standard deviation (rho) according to the data sent from MA-SW-Chains
Create a new agent (Agent 1), adding each element of the vector parameters
of the current best agent to each element of the bias vector and each
element of the offset vector. Values are repaired to this new agent so that it
meets restrictions of range and data type. The fitness measure is then
calculated for this new agent, based on RMSNE

If Agent 1 has a lower fitness measure than the best current agent (the best
solution to the problem), Agent 1 replaces the best agent. Each element of
the bias vector is updated using the equation: (0.2 * bias vector + 0.4 *
(offset vector + bias vector)), the number of successes is increased by one
and the number of failures initialized at zero. The constants in the previous
equation were taken from Molina et al. [20]

If Agent 1 is not better than the best current agent, then a new agent (Agent 2)
is created by subtracting each element of the parameter vector of the current
best agent with each element of the bias vector and each element of the offset
vector. This new agent is given its values to comply with the restrictions of
range and type. The fitness measure is then calculated for this new agent
using RMSNE

If Agent 2 has a better (lower) fitness measurement than the current best
agent, then the agent is replaced by Agent 2, each element of the bias vector
is updated using the equation: (bias vector—0.4 * (offset vector + bias
vector)), the number of successes is increased by one and the number of
failures is reset to zero

If Agent 2 is not better than the current best agent, then the number of
failures is increased by one and the number of successes is reset to zero
If the number of successes is greater than two, then the value of the
standard deviation (tho) is duplicated and the number of successes reset to
Zero
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Step 8: If not, i.e. the number of failures is greater than one, then the value of the
standard deviation (rho) is reduced to half and the number of failures is
reset to zero

Step 9: If the value of the standard deviation (rho) is less than one, then the value
of the standard deviation is made to be equal to one (this is because there
are calibration parameters that vary within a small range of integer values)

Step 10: If the stop condition is not met, go to step 1 taking the new value of the
standard deviation (rho) modified in steps 7, 8 or 9

Finally, the execution process of the calibration is performed with its respective
validation and analysis of results. The results of this step are presented in the following
sections.

3 Execution of Calibration and Results

The experimentation was performed using two CORSIM models previously studied
[13]. The first model is considered low complexity due to the number of links that it
contains (20). It is a hypothetical network provided by McTrans. The second experi-
ment was performed using a real network, which corresponds to the Pyramid Highway
in Reno, Nevada, United States. This model is considered medium complexity because
it contains 126 links.

To perform the experiments, the MA-SW-Chains algorithm was implemented and
included in the software tool, “Calibration Tool” [13], which provides four alternative
algorithms: a memetic algorithm, which combines a genetic with simulated annealing
(GASA), a memetic algorithm, which combines a genetic with Tabu search (GATS), a
genetic algorithm without a local optimizer (GA), and the SPSA. In this research, the
results obtained by the MA-SW-Chains algorithm were compared with the results from
GASA and SPSA, which provided best results in the past.

3.1 Algorithm Parameters

Parameters used in MA-SW-Chains for the experimentation were as follows: Initial
population 4, Percent of selection 60, Percent of crossover 75 and percent of mutation 7.
The local search intensity parameter (Istr) of Solis and Wets was set to 30.

3.2 Experiments

The two models used in the experiments, volume and speed were considered simul-
taneously for the calibration. The Reno model included actual field measurements taken
on 45 links of the model. For the field data of the McTrans model, default values were
used. For each of the models, 50 independent runs of the algorithms were performed
and the results averaged.
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As aresult, 50 independent runs on the McTrans model (Fig. 2 (a)) with an average
of 0.094 was achieved in the objective function (RMSNE) with a standard deviation of
0.0545, which indicates an adequate quality in the calibration of the model. However,
the behavior of the algorithm in the Reno model is much better (Fig. 2 (b)), with an
average of 0.0955 was obtained in the objective function with a standard deviation of
0.0144. This indicates a greater stability in the behavior of the algorithm, obtaining in
78 % of the 50 runs a RMSNE < 0.10, which is promising for this model (this model is
more complex).

The best RMSNE obtained in each model after running all experiments was 0.0163
for McTrans and 0.0813 for the Reno network. In Figs. 3 to 5 are the results obtained in
the best experiment of each model.
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Fig. 2. The objective function for the two CORSIM models.
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Fig. 3. Volume data before (blue) and after (red) calibration in the two models. (Color figure
online)
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Fig. 4. Speed data before (blue) and after (red) calibration for the two models. (Color figure
online)

Figure 3 (a & b) shows the volume (vehicles per hour, vph) obtained by the
simulation before calibration (blue crosses) far from the actual data (which would place
them on the diagonal line) for the two models. After performing the calibration process,
the volume (red dots) approach the diagonal for the two models, which means that the
simulated volume largely coincides with the actual.

The same occurs with the speed data (miles per hour, mph) in the two models
Fig. 4 (a & b). However, the improvements in this case are not as significant as in the
Reno model. This is because in the objective function (RMSNE) more weight was
assigned to volume (70 %), compare to speed (30 %). Although the weight parameter
can be modified, in these experiments greater weight was assigned to volume because
there was a greater confidence in the volume data (real data).
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Fig. 5. GEH statistic for the two models. (Color figure online)
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Figure 5 (a & b) shows the results of statistical GEH, in which the dotted blue line
indicates the value before the calibration process and clearly shows many links above
5, indicating that the model is not yet calibrated. The thick red line indicates its value
after calibration. Following calibration, a marked improvement was obtained in both
models, in which 100 % of the links had a GEH < 5; thus, fulfilling the defined
calibration criteria.

4 Comparative Analysis of Results (MA-SW-Chains
Vs GASA and SPSA)

To demonstrate the benefits of MA-SW-Chains for the calibration of microscopic traffic
flow simulation models, a comparison was made with the state-of-the-art algorithms

GASA and SPSA [13]. Table 1 shows the results obtained by the three algorithms.

Table 1. Comparison of MA-SW-Chains, GASA and SPSA

Experiments/ McTrans Reno
Criteria MA-SW | GASA |SPSA |MA-SW |GASA |SPSA
Chains Chains

Run time 9,56 min 9,53 min | 9,55 min | 59,45 min | 43,55 min | 29,30 min

RMSNE before 0.2911 0.2911 |0.2911 |0.2217 0.2217 0.2217

RMSNE after 0.0163 0.0192 [0.0404 |0.0813 0.0857 0.0957

GEH (% of 55 % 55 % 55 % 47 % 47 % 47 %
links < 5) before

GEH after 100 % 100 % 100 % 100 % 93 % 100 %

Time for parameter |1 h 1h 20 h 1h 1h 20 h
tuning

SPSA requires less time to run but more time for parameter tuning (20 h), which is
not the case with the GASA and MA-SW-Chains algorithms. Time for parameter
tuning is the time required for determining appropriate parameter values for the opti-
mization algorithm (setting up the optimization algorithm). While the results showed in
Table 1 are very similar among the algorithms, the potential of the MA-SW-Chains
algorithm is shown in Fig. 6 using the speed of convergence in contrast to GASA and
SPSA. In the McTrans model, the MA-SW-Chains algorithm reaches RMSNE values
below 0.02 faster, approximately at four minutes while GASA requires eight minutes.
SPSA did not reach this value and its convergence curve varies over time. On the other
hand, in the Reno model, the MA-SW-Chains algorithm converges faster to values
close to 0.09, at approximately 10 min, GASA at 14 min, and SPSA does not reach
these values.

The proposed algorithm obtained best solution in the objective function (RMSNE)
and met the calibration criteria for 100 % of the links in the two models, indicating that
the memetic algorithm based on Solis and Wet local search chains obtains better and
faster solutions.
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Fig. 6. Convergence curve of the objective function for the three algorithms in the two
CORSIM models.

5 Conclusions and Future Work

This paper proposes the adaptation of the MA-SW-Chains algorithm, a memetic algorithm
with Solis and Wet local search chains, to support the calibration of microscopic traffic flow
simulation models. The use of this algorithm with the methodology proposed in [13] makes
possible the calibration for any type of implementation because no information about the
characteristics of traffic flow model is required. The MA-SW-Chains algorithm success-
fully calibrated two CORSIM vehicular traffic models, MacTrans and Reno, with the GEH
statistical and RMSNE measure within the required limits.

Comparison of the MA-SW-Chains algorithm with the GASA and SPSA algo-
rithms, previously discussed in the literature [11, 13] showed, indicated that
MA-SW-Chains is an alternative that provides better results, measured by the objective
function and statistical GEH.

As future work, the research group intends to evaluate other single-objective
optimization approaches, such as the use of multiple offspring sampling (MOS) [21]
and differential evolution using cooperative coevolution (DECC-G) [22]. In addition,
queue lengths are to be included as an additional factor in the objective function.
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