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Chapter 9
Bioprospecting with Brazilian Fungi

João Vicente Braga de Souza, Diego Rayan Teixeira de Sousa, 
Jessyca dos Reis Celestino, Walter Oliva Pinto Filho Segundo, 
and Érica Simplício de Souza

Abstract Fungi produce important substances for industrial utilization. Among 
these substances, colorants, biosurfactants, antibacterial compounds and enzymes 
are of particular relevance. Bioprospecting studies are important in order to identify 
fungal producers of these substances. Understanding that good producers of these 
substances can be found in places with high diversity and microbial competition is 
recognized widely and Brazil is perhaps the most biodiverse country for this type of 
work. The aim of this chapter is to present relevant research involving bioprospect-
ing with Brazilian fungi.

9.1  Introduction

Brazilian researchers have initiated bioprospecting efforts to identify fungi that pro-
duce substances of industrial interest. Among these compounds, colorants, biosur-
factants, antibacterial compounds and enzymes are of particular relevance. This 
chapter describes how the bioprospecting of these substances is being carried out in 
Brazil.

Brazil is the 5th largest country in the world and occupies 47 % of South America. 
This large territory contains different ecosystems such as the (a) Amazon rainforest 
(recognized as having the greatest biological diversity in the world), (b) Atlantic 
forest, (c) Cerrado savanna, (d) Caatinga (a desert in northeast Brazil) and (e) 
Araucaria forest, a temperate forest in the south. These conditions make Brazil a 
mega-diverse country (Brasil 2015).

The study of this diversity and its technological potential is mainly being per-
formed by government-run universities and research institutes. Most of these insti-
tutions are located in the southeast region of Brazil, which is the most economically 
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developed region of the country. The results generated by these researchers typi-
cally have academic value, but unfortunately, very few of these findings have been 
applied to the industrial sector. Brazil significantly contributes to the scientific com-
munity via manuscripts, books, etc.; however, the country generates few patents 
(Glänzel et al. 2006; Leta et al. 2006).

Many of the chemicals that exhibit technological potential and could result in 
new patents, products and services are fungal and fungi play a very important role 
in environmental dynamics. The following discussion aims to examine the impor-
tance of these substances and presents some of the major related studies that have 
been conducted in Brazil.

9.2  Colorants

9.2.1  General

Colorant additives are used to provide color to otherwise dull substances. They can 
be classified as insoluble pigments or soluble dyes; however, these terms are typi-
cally used interchangeably (Saron and Felisberti 2006; Mapari et al. 2010). Dyes 
have been used worldwide as food additives to enhance the marketability of prod-
ucts by making their color more attractive (Uenojo et al. 2007; Volp et al. 2009). 
This technique is utilized because the loss or reduction of a food product’s natural 
color during processing or storage, which it is assumed, lessens their appeal to the 
consumer (Serdar and Knežević 2009).

Currently there is growing interest in the discovery of dyes of natural origin, because 
synthetic dyes have been reported as carcinogenic and mutagenic, as well as causing 
allergies (Gunasekaran and Poorniammal 2008; Polônio and Peres 2009). Examples 
are the amaranth and erythrosine dyes, which have been shown to be genotoxic 
although they are presumably safe (and permitted) at low concentrations (Düsman 
et al. 2012). Therefore, synthetic dyes face more severe legislation, which has reduced 
the number of substances that can be used in food due to their adverse health effects in 
the short and/or long term, further fueling the search for biocolorants.

Bacteria, yeasts, filamentous fungi and algae, can synthesize pigments, but fungi 
stand out for their high productivity and extracellular release of such metabolites 
(Mapari et al. 2010; Hailei et al. 2011). Blakeslea trispora is a non-toxigenic fila-
mentous fungus isolated from tropical plants that can synthesize high concentra-
tions of the yellow-orange carotene pigment (Dufossé 2006). There are other 
producing species, such as Phycomyces blakesleeanus and Mucor circinelloides and 
the yeast, Rhodotorula (Dufossé 2006; Oh et al. 2009; Takahashi and Carvalho 
2010). Riboflavin, or vitamin B2, can be synthesized by the fungus Ashbya gossypii 
and is also used as a food colorant (Braga et al. 2011).

Bioprospecting of fungal-derived dyes has gained increasing prominence due to 
their reduced toxic properties and added medicinal values (Chengaiah et al. 2010). 
In the textile industry, replacing synthetic dyes with other non-synthetic sources is 
feasible and would also decrease environmental toxicity (Mirjalili et al. 2011). 
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Synthetic dye residues can contaminate soil and natural water sources and are 
responsible for causing serious problems of environmental pollution (Ali 2010; 
Mirjalili et al. 2011). Fungal pigments, in turn, are more readily biodegradable and 
are potential dyes for industrial application.

Among the producing fungi the literature has highlighted, Aspergillus, 
Penicillium, Paecilomyces and Monascus are prominent (Gunasekaran and 
Poorniammal 2008; Méndez et al. 2011). Monascus is a cosmopolitan genus, and 
species such as M. ruber and M. purpureous are known for production of orange 
and red pigments. Some Penicillium species are capable of producing chemicals of 
various colors, including azaphilones. The sclerotiorin pigment produced by P. 
sclerotiorum and chromophores of the anthraquinone-type red pigment, such as Red 
Arpink produced by P. oxalicum are used in the food industry (Gunasekaran and 
Poorniammal 2008; Petit et al. 2009; Celestino et al. 2014; Kumar et al. 2015).

9.2.2  Brazilian Situation

In Brazil, many fungi have been studied for their synthesis of pigments during fer-
mentation as follows:

A P. sclerotiorum strain isolated from soil samples of the Brazilian Cerrado pro-
duced the yellow-orange pigment sclerotiorin (Hamano and Kilikian 2006; 
Kanokmedhakul et al. 2006; Lucas et al. 2010). Sclerotiorin was also obtained from 
P. sclerotiorum isolated from Amazonian soil that showed increased production of 
the metabolite when modified sources of carbon and nitrogen were added to the 
growth medium (Celestino et al. 2014).

The endophyte fungus Phoma sorghina found in association with Tithonia diver-
sifolia (Asteraceae), produced anthraquinones with orange and yellow colors 
(Borges and Pupo 2006). Polyketides of red, yellow and lilac shades have been 
found in Ascomycetes isolated from Amazonian soil, flowers and sawdust (Durán 
et al. 2002). Another report listed three Amazonian strains of Penicillium simplicis-
simum, Penicillium melinii and Aspergillus sclerotiorum that produced xantoep-
ocina pigments (yellow), atrovenetina (yellow) and neoaspergilico acid (yellow–green), 
respectively. These have high economic value and low toxicity (Teixeira et al. 2012).

9.3  Biosurfactants

9.3.1  General

Surfactants have industrial applications including detergency, emulsification, lubri-
cation, foaming capacity, “wettability”, solubilization and dispersion. The use of 
these substances is increasing particularly in cleaning products (soaps and deter-
gents), oils, cosmetics and toiletries (Nitschke and Pastore 2002). Commercially 
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available surfactants are synthetic and are obtained from petroleum products, 
although they present toxicity and are non-biodegradable (Soberón-Chávez and 
Maier 2011). The growing environmental concerns among consumers, combined 
with new environmental control laws, have led to the search for alternative biosur-
factants (Nitschke and Pastore 2002).

Biosurfactants are a structurally diverse group of surface-active substances pro-
duced by living organisms. These substances are amphiphilic and composed of a 
hydrophilic and a hydrophobic group. The hydrophilic group consists of mono, 
oligo or polysaccharides, peptides or proteins and typically contains hydrophobic 
mid-chain saturated hydrocarbons or unsaturated fatty acids (Marchant and Banat 
2012).

The composition and variations of biosurfactants are classified according to their 
chemical composition and microbial origin, because they have different chemical 
structures, especially those produced in the presence of hydrocarbons. These can 
belong to seven groups: glycopeptides, lipopeptides, phospholipids, fatty acids, 
neutral lipids, surfactants and polymeric surfactants particulates (Shekhar et al. 
2014).The production of biosurfactants by microorganisms is well studied and has 
been published in studies using bacteria and filamentous fungi (Bhardwaj 2013).

9.3.2  Brazilian Situation

In Brazil, the most investigated topics are the use of agro-industrial waste as sub-
strates for biosurfactant production and the bioprospecting of fungi for biosurfac-
tants. It is expected that new and innovative products will be generated as a result. 
Although not bioprospecting in terms of using novel fungi, Luna et al. (2012) evalu-
ated the use of industrial wastes from processing corn and peanuts as substrates for 
the production of biosurfactants from Candida sphaerica and obtained yields of up 
to 9 g/l. Katerine et al. (2013) investigated the potential use of waste from the bio-
ethanol and fuel industry in the production of biosurfactants by mixed cultures and 
also obtained good yields. Two recent publications (Santos et al. 2013, 2014) 
reviewed the use of animal fat and corn steep liquor as substrates for biosurfactant 
production from Candida lipolytica. Silva et al. (2014) investigated the use of resi-
dues from corn and soybean processing industries with Cunninghamella echinulata, 
a fungus isolated from the Brazilian Cerrado. They showed that the biosurfactant 
could reduce and increase the vicosity of hydrophobic substrates and their mole-
cules, suggesting a candidate for oil recovery. The residual glycerol from biodiesel 
production has been studied as a substrate by Yarrowia lipolytica for biosurfactant 
production (Ribeiro et al. 2013). Luna et al. (2012) investigated the environmental 
applications of biosurfactants produced by C. sphaerica and concluded that these 
biosurfactants have potential for use as adjuvants in the remediation/treatment of 
oily industrial effluents. Solid-state fermentation was also investigated for the pro-
duction of biosurfactants by Aspergillus fumigatus (Castiglioni et al. 2013) on 
paddy rice bran and verified the importance of inducing substrates such as diesel oil. 
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With optimal nutritional conditions, A. fumigatus showed a good emulsifying activ-
ity and in experimental conditions, was able to provide a novel alternative for pro-
cess optimizations in biosurfactants production. However, this fungus may be a 
human pathogen and should be avoided. In general, the data from these studies 
indicate that agro-industrial waste can be used for production of biosurfactants that 
have the potential to generate economically-promising bioprocesses.

Bioprospecting studies of biosurfactant-producing filamentous fungi have been 
conducted (Teixeira et al. 2012). Suzana et al. (2014) and Da Silva et al. (2014) 
isolated (a) Pichia strains from industrial effluents and (b) endophytic fungi using 
the biopanning technique (peptides affinity selection) in the plant Myrcia guianen-
sis respectively. Both studies revealed high emulsification indexes, and that the 
strains were able to produce biosurfactants, demonstrating the potential of these 
organisms for bioremediation under a wide range of environmental conditions.

9.4  Antibacterials

The misuse of antibiotics for the treatment and prevention of infectious diseases has 
led to an increase in antimicrobial resistance (Michael et al. 2014). Millions of years 
ago, pathogenic bacteria modified their virulence to adapt to the host defense sys-
tem (Beceiro et al. 2013). Evidence suggests that the development of antibiotic 
resistance by bacteria, over time, is a natural process, occurring in the absence of 
humans and animals (Arias and Murray 2009). While there was a marked decrease 
in the discovery of new antimicrobial agents in the last 30 years due to lack of 
research and development by large drug companies, the rate of bacteria resistant to 
multiple drugs (MDR) has alarmingly increased, resulting in a serious worldwide 
problem with consequences for the treatment of infectious diseases (Wright et al. 
2014).

Bacterial resistance is a consequence of the evolution of bacteria and worsened 
with the ease of mobility of easy international travel. The (a) increasing world popu-
lation; (b) misuse of antibiotics in human medicine, veterinary medicine and agri-
culture; (c) constant loss of antimicrobial efficacy and (d) decrease of new 
antimicrobial agents (Wright et al. 2014; Shaikh et al. 2015) contribute to the situa-
tion. In the 1980s and 1990s, many pharmaceutical companies refocused their 
research programs for new antimicrobial agents in more profitable areas, primarily 
focusing on gram-positive bacteria, due to the rapid rise of Staphylococcus aureus 
resistant to methicillin (MRSA). The increase in MDR gram-negative bacteria 
intensified the search for new antibiotics, as these also promised a good financial 
return for pharmaceutical companies (Theuretzbacher 2009).

Antimicrobials are generally classified by their molecular structure and mecha-
nism of action in the bacterial cell. The β-lactams target Penicillin Binding Proteins 
PBPs, inhibiting the synthesis of peptidoglycans and the formation of the cell wall 
in susceptible bacteria. These glycopeptides act on the D-ala-D-wing of lipid II, 
inhibiting peptidoglycan synthesis. Macrolides, lincosamides, chloramphenicol and 
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oxazolidones act on the 50S subunit of the ribosome and inhibits protein synthesis. 
Tetracycline and aminoglycosides affect the 30S ribosomal subunit, thus inhibiting 
protein synthesis. The fluoroquinolones inhibit topoisomerases (DNA gyrase and 
topoisomerase IV), thus inhibiting DNA replication (Silver 2011).

Fungi are used for the discovery of new bioactive natural products because they 
are a source of compounds with different biological activities and can produce anti-
viral, antimicrobial and insecticidal substances with relevance in the industrial, 
agricultural and pharmaceutical sectors (Vieira et al. 2011). Most of the classes of 
antimicrobial agents used today were discovered from actinomyces in the soil 
(Aminov 2010). However, there are many antimicrobials produced by fungi cur-
rently used in therapy, including (a) cephalosporins produced by Cephalosporium 
acremonium; (b) penicillins produced by Penicillium chrysogenum, Aspergillus 
nidulans and Cephalosporium acremonium; (c) pleuromutilin produced by Pleurotus 
mutilus and P. passeckerianos; and (d) fusidic acid produced by Fusidium coc-
cineum and Acremonium fusidioides (Wright et al. 2014).

9.4.1  Brazilian Situation

Brazil is carrying out bioprospecting of antibiotics produced by endophytes fungi, 
the production of nanoparticles with antimicrobial activity and optimizing antimi-
crobial activity. Using a bioprospecting approach, Orlandelli et al. (2012) investi-
gated the production of antimicrobials, including terpenes by the endophytic fungus 
Piper hispidum. They observed that some of the isolates produced antimicrobials 
and three produced terpenes. Vaz et al. (2012) investigated the endophytic fungi on 
plants belonging to Brazilian flora (i.e. Myrciaria floribunda, Alchornea castaneifo-
lia and Eugenia aff. bimarginata) and Emericellopsis donezkii and Colletotrichum 
gloesporioides produced an antimicrobial with an MIC similar to that of conven-
tionally used antimicrobials. Santos et al. (2015) investigated the fungi from the 
leaves of Indigofera suffruticose Miller. (Fabaceae) where Nigrospora sphaerica 
and Pestalotiopsis maculans showed antimicrobial activity against gram positive 
(Staphylococcus aureus, Bacillus subtilis) and gram negative (Escherichia coli, 
Klebsiella pneumonia, Pseudomonas aeruginosa) bacteria. Flores et al. (2013) 
investigated the production of 3-nitropropionic acid by endophytic Phomopsis lon-
gico from Trichilia elegans A. JUSS spp. and found that it had activity against 
Mycobacterium tuberculosis.

Important investigations have also been carried out in the biogenesis of nanopar-
ticles. Rodrigues et al. (2013) demonstrated the ability of Aspergillus tubingensis 
and Bionectria ochroleuca to produce silver nanoparticles with antimicrobial activ-
ity. Ishida et al. (2014) used a similar approach and obtained similar results by using 
Fusarium oxysporum.

The influence of the bioprocess factors on the production of metabolites with 
antimicrobial activity has also been studied. Bracarense and Takahashi (2014) using 
A. parasiticus, investigated modulation in the production of antibiotics, including 
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kojic acid, showing growth inhibition against A. flavus, C. albicans, E. coli and S. 
aureus. However, A. parasiticus is a well-known aflatoxin producing fungus and 
should be avoided for bioprospecting procedures. Pigments of Brazilian fungal ori-
gin were also assessed for biological activity. Teixeira et al. (2012) investigated the 
biological activity of the dyes produced by Aspergillus and Penicillium isolated 
from the Amazon forest and found that many of these showed biological activity, 
with the pigments produced by A. sclerotiorum and P. simplicissimum being par-
ticularly important.

The cited studies present a panorama of bioprospecting and screening of endo-
phytic fungi; however, clinical evaluation of these substances is required to deter-
mine the therapeutic potential for these preliminary findings.

9.5  Enzymes

The enzyme industry is part of biotechnology that has developed rapidly, especially 
during the previous four decades. Since ancient times, enzymes found in nature 
have been used in the production of foodstuffs such as cheese, beer, wine and vin-
egar (Saxena 2015). The use of fungi for the production of enzymes has led to a 
highly diverse industry with significant economic importance.

Fungi produce enzymes that are critical to their survival. These can act extracel-
lularly or intracellularly to contribute to the digestion of food or in defense (Lange 
et al. 2012). These enzymes have not escaped the eyes of bio-engineering research-
ers. They are still being studied and occupy important positions in various indus-
tries, including the food, pharmaceutical and chemical industries (Kirk et al. 2002; 
Choi et al. 2015).

Fungal enzymes have been produced by the biotechnology industry in large 
quantities and low cost, and these enzymes can be modified according to desired 
characteristics. Enzymes of animal and plant origin have more complicated pro-
curement mechanisms and modification procedures (Freedonia 2015). 
Multidisciplinary teams of chemists, microbiologist, biochemical engineers, bio-
chemists and experts in other areas have come together to complement the knowl-
edge that each area has on enzymes to improve their practices and develop 
technological innovations (Monteiro and Silva 2009).

The consumer markets are based on enzymes intended for industrial fabrics and 
cleaning products, foods and drinks and animal feed. The main industrial enzymes 
are proteases, amylases, lipases, cellulases, xylanases and phytases, and the largest 
producers are often European, e.g. International (Finland), Gist-Brocades (the 
Netherlands), and Novo Nordisk (Denmark), with Genencor, USA also a major 
player (Mussatto et al. 2007). Novo Nordisk controls about half of the global market 
where costs for production are decreasing, while the demand continually increases 
(Sanderson 2011; Jemli et al. 2014).

Brazil has an enormous diversity of microorganisms that can be exploited for the 
production of different enzymes of industrial interest in various areas (Table 9.1). 
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Table 9.1 Studies on enzyme production by fungi in Brazil

Industrial 
enzymes Microorganisms Authors Methodology

Amylase Filamentous fungi De Castro et al. (2010) Solid State Fermentation
Amylase Lichtheimia ramosa Silva et al. (2013) Solid State Fermentation
Amylase Filamentous fungi Pasin et al. 2014) Submerged Fermentation
Amylase Candida parapsilosis,

Rhodotorula mucilaginosa,
Candida glabrata

De Oliveira et al. (2015) Solid State Fermentation

Amylase Pycnoporus sanguineus Onofre et al. (2015) Semi Solid Fermentation
Cellulase Aspergillus niger Cunha et al. (2012) Submerged Fermentation, 

Semi Solid Fermentation
Cellulase Aspergillus fumigatus Moretti et al. (2012) Submerged Fermentation
Cellulase Acremonium strictum Goldbeck et al. (2013) Submerged Fermentation
Cellulase Penicillium funiculosum Maeda et al. (2013) Submerged Fermentation
Cellulase Lasiodiplodia theobromae,

Trichoderma sp.
Fusarium sp.

Faheina Junior et al. 
(2015)

Submerged Fermentation

Lipase Penicillium sp. Griebeler et al. (2009) Solid State Fermentation
Lipase Penicillium sp. Rigo et al. (2010) Solid State Fermentation
Lipase Yeast Bussamara et al. (2010) Submerged Fermentation
Lipase Aspergillus sp. Colla et al. (2010) Submerged Fermentation
Lipase Aspergillus candidus Cyndy et al. (2015) Solid State Fermentation
Phytase Filamentous fungi Guimarães et al. (2006) Submerged Fermentation
Phytase Aspergillus niger Spier et al. (2011) Solid State Fermentation
Phytase Paecilomyces variotii Madeira et al. (2011) Solid State Fermentation
Phytase Lichtheimia blakesleeana Neves et al. (2011) Solid State Fermentation
Phytase Penicillium chrysogenum Ribeiro Corrêa et al. 

(2015)
Recombinant Expression

Protease Myceliophthora sp. Zanphorlin et al. (2010) Solid State Fermentation, 
Submerged Fermentation

Protease Duddingtonia flagrans Braga et al. (2011) Submerged Fermentation
Protease Filamentous fungi Yeast Rodarte et al. (2011) Solid State Fermentation
Protease Mucor hiemalis Ribeiro et al. (2015) Submerged Fermentation
Protease Filamentous fungi Mendes et al. (2015) Solid State Fermentation
Xylanase Filamentous fungi Simões et al. (2009) Submerged Fermentation, 

Solid State Fermentation
Xylanase Aspergillus sp. Peixoto-Nogueira et al. 

(2009)
Semi Solid Fermentation

Xylanase Neosartorya spinosa Alves-Prado et al. (2010) Solid State Fermentation
Xylanase Lichtheimia blakesleeana Neves et al. (2011) Solid State Fermentation
Xylanase Myceliophtora thermophile Moretti et al. (2012) Solid State Fermentation
Xylanase Rhizomucor sp. Cassia Pereira et al. 

(2015)
Solid State Fermentation

Myceliophthora sp.
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However, enzyme technology is clearly overdue in the country, which is paradoxi-
cal. According to the Bio-Economy Agenda of Brazil, the enzyme industry is of 
great importance to the Brazilian economy, being directly linked to the “Third 
Industrial Revolution”. Brazil is one of the countries that can benefit from the devel-
opment of a national enzyme technology because it has a huge amount of renewable 
raw materials that can be transformed enzymatically into products with high added 
value and would be useful for strategic sectors of the economy (Harvard Business 
Review 2013).

A study by the US Research Industry Freedonia group estimated that world 
demand for enzymes will grow 6.3 % annually to $7 billion by 2017. The increase 
in per capita income in countries such as China and India will support consumer 
demand for higher value products, which can be achieved with enzymes such as 
detergents and foodstuffs. Advances in biotechnology will also boost demand for 
enzymes (Freedonia 2015).

With the advent of biofuels, studies related to the production of these compounds 
involving enzymes has become increasingly common (Cadete et al. 2014; Damaso 
et al. 2014; Aguieiras et al. 2015; Carvalho et al. 2015; Duarte et al. 2015). In addi-
tion, it is possible to obtain enzymes of industrial interest using certain waste (or 
byproducts) as substrates. The need for these enzymes by the world market has 
spurred studies in several parts of Brazil that go beyond the basic techniques of 
fermentation and genetic engineering to meet the future demand for renewable 
energy (Delabona et al. 2012; Valencia and Chambergo 2013; Ióca et al. 2014; 
Katoch et al. 2014; Souza et al. 2014). Brazil is underexplored for the production of 
enzymes of industrial interest. The country imports most of the enzymes it uses. 
Imports were $119 million, while exports reached $52 million. The Brazilian mar-
ket for enzymes was estimated in 2011 at approximately $200 million (Ministério 
Do Desenvolvimento, Indústria e Comércio Exterior 2012). From 2007 to 2011, 
imports have tripled, while exports grew only moderately. To address this, Decree 
6041/2007 established the Biotechnology Development Policy and includes the 
production and industrial use of enzymes (Bon et al. 2008). The current focus on 
enzymes research in Brazil has been applied in the food industry, antibiotic produc-
tion, products for cleaning industries, effluent treatment and biofuel production e.g. 
biodiesel, bioethanol and biogas.

9.6  Conclusions

Brazil is experiencing tremendous growth in the biotech sector, as the main chal-
lenge of the current policy in science and technology is to ensure domestic firms 
participate more intensively in conducting and funding research activities to engen-
der technological autonomy for the country. Innovative companies are being created 
that seek international competitiveness (Rezaie et al. 2008; Resende 2012). The 
enormous potential of the Brazilian biodiversity means that new substances and 
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products can be discovered, resulting in the improvement of society’s quality of life 
(Ribeiro and Raiher 2013; Corrêa et al. 2014; Ferreira et al. 2015). In this context, 
the scientific community, society and governing bodies should strengthen their rela-
tionships in a shared vision to invest in the development of technologies to expand 
domestic production and export of enzymes.
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