
Novel Automatic Filter-Class Feature Selection
for Machine Learning Regression

Morten Gill Wollsen1(B), John Hallam2, and Bo Nørregaard Jørgensen1

1 Center for Energy Informatics, The Maersk Mc-Kinney Moller Institute,
University of Southern Denmark, Odense, Denmark

{mgw,bnj}@mmmi.sdu.dk
2 Center for BioRobotics, The Maersk Mc-Kinney Moller Institute,

University of Southern Denmark, Odense, Denmark
john@mmmi.sdu.dk

Abstract. With the increased focus on application of Big Data in all
sectors of society, the performance of machine learning becomes essen-
tial. Efficient machine learning depends on efficient feature selection algo-
rithms. Filter feature selection algorithms are model-free and therefore
very fast, but require a threshold to function. We have created a novel
meta-filter automatic feature selection, Ranked Distinct Elitism Selec-
tion Filter (RDESF) which is fully automatic and is composed of five
common filters and a distinct selection process.

To test the performance and speed of RDESF it will be benchmarked
against 4 other common automatic feature selection algorithms: Back-
ward selection, forward selection, NLPCA and PCA as well as using
no algorithms at all. The benchmarking will be performed through
two experiments with two different data sets that are both time-series
regression-based problems. The prediction will be performed by a Mul-
tilayer Perceptron (MLP).

Our results show that RDESF is a strong competitor and allows for
a fully automatic feature selection system using filters. RDESF was only
outperformed by forward selection, which was expected as it is a wrap-
per which includes the prediction model in the feature selection process.
PCA is often used in machine learning litterature and can be considered
the default feature selection method. RDESF outperformed PCA in both
experiments in both prediction error and computational speed. RDESF
is a new step into filter-based automatic feature selection algorithms that
can be used for many different applications.

1 Introduction

More data is available now than ever before, with cheaper sensors and the instal-
lation of sensors everywhere. The “Internet of Things” and “Big Data” are terms
connected to the fact that the amount of data is increasing rapidly. Machine
learning regression attempts to learn the relation between parameters of a sys-
tem based on historical data. Implementing a successful machine learning algo-
rithm requires choosing a representation of the solution, selecting relevant input
features and setting parameters associated with the learning method [17].
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Selecting the relevant input features, or feature selection, is the process
of determining which subset of the combined available input data should be
included to give the best performance. Feature selection is a critical task because
excluding important input features means the learning algorithm will not be able
to model the system. On the other hand, including unnecessary features com-
plicates the learning. Any input that is added increases the search space by at
least one dimension [17]. Feature selection can be performed by humans with
the necessary domain expertise. In some cases the experts do not exist or the
work itself can be expensive and time consuming [17]. A reduced feature set
for the learning algorithm also reduces training time and over-generalization [5].
By automating the feature selection process, the time and expertise required is
reduced and the practicality of a combined system with a learning algorithm is
increased [17].

Feature selection is broadly split into three categories: wrapper, embedded
and filter algorithms [11]. Common to all algorithms is that they only select a
subset of the input features. Another strategy is to reduce the dimensions of the
original feature set; such methods are named dimension reduction algorithms.
Filtering algorithms are model-free which makes them very fast. Unfortunately
they require a threshold that decides which features are selected. This presents
a problem because the same threshold cannot be used for all algorithms and
selecting a threshold requires a domain expert.

This paper proposes a novel filtering algorithm that automatically select fea-
tures. The filter is called the Ranked Distinct Elitism Selection Filter (RDESF)
and is composed of multiple common filtering algorithms. RDESF is bench-
marked against other common feature selection algorithms such as forward
search, backward search, PCA and NLPCA. The benchmark is performed on
two time-series regression-based problems in both short-term (1 h ahead) and
long-term (24 h ahead). The first problem is the prediction of indoor tempera-
ture from the SML2010 data set [18], available at the UCI Machine Learning
Repository. The first of the two files in data set is used. More information is
available at the UCI website [8]. The second problem is prediction of outdoor
temperature. This data set is a design reference year from 2001-2010 created
by The Danish Meteorological Institute [16]. Besides the weather parameters,
we have added an input whether or not the sun is up, based on [9]. We have
also added the earth’s azimuth with reference to the sun, to have an input that
differentiates the seasons. Both data sets are publicly available.

PCA will act as a baseline for the benchmark, but other commonly used
filters are included to give a good indication of RDESF’s capabilities. MATLAB
and PCA is often used in machine learning litterature because MATLAB has
implementations of Artificial Neural Networks and also includes PCA. In addi-
tion MATLAB is very easy and intuitive to use. We want to show that there are
better and faster alternatives to PCA.
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2 Method

The performance of RDESF will be benchmarked against commonly used feature
selection algorithms described in the litterature. The benchmarking will be based
on prediction error and computational speed.

2.1 Feature Selection Algorithms

The following feature selection algorithms are used:

Principal Component Analysis (PCA). PCA is a feature dimension reduc-
tion technique. The features are mapped into a smaller dimensional space to
hopefully reveal structures in the underlying data [15]. The principal components
are calculated using the singular value decomposition (SVD) method. Selecting a
subset of the components is done by removing those components with a standard
deviation close to zero with respect to machine precision.

Non-Linear Principal Component Analysis (NLPCA). Where PCA is a
linear mapping between the original and the reduced dimension space, NLPCA
offers a non-linear mapping, and thus any non-linear correlations between the
features will be kept [7]. The non-linear mapping is performed with an artificial
neural network (ANN) with three hidden layers. The middle hidden layer is a
bottleneck layer and the other hidden layers are mapping layers. The bottleneck
layer contains the number of nodes that the input set is reduced to. The number
of nodes in the bottleneck layer of the ANN is determined by the Guttmann-
Kaiser criterion, which picks components with eigenvalues above 1.0 [4]. The
number of nodes in the mapping layers is set to the number of input features
plus one, to avoid any bottlenecking in those layers. By training the network
to approximate the input through this bottleneck layer, the bottleneck layer
contains information for subsequent layers to reconstruct the input [7]. The
network is trained using the backpropagation algorithm [12] until an error of
0.001 % has been achieved with a maximum of 500 iterations. After the training
is complete, a new ANN is created from the first three layers. The first mapping
layer is now the hidden layer and the previous bottleneck layer is now the output
layer. The entire data set is then run through the new ANN, and the output of
the new ANN is the reduced data set.

Forward and Backward Selection. The forward and backward selection are
both wrapper-class feature selection algorithms. This means that the learning
algorithm for which features are selected is included in the feature selection
process. In forward selection the features are added one at a time. If the testing
error decreases when a feature is added, the feature is kept. In backward selection
the process is reversed where features are removed, and if the error increases,
the removed features are included again [11]. As with the NLPCA, the data
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is randomly divided 50/50 into a training set and a test set. The error is the
corrected Akaike information criterion (AICc) [1]. The formula for AICc is:

AICc = n · ln(RMSE) + 2(k + 1) +
2k(k + 1)
n − k − 1

(1)

with n being the sample size, k being the number of features and RMSE being
the root mean square error.

Ranked Distinct Elitism Selection Filter (RDESF). RDESF is our novel
filter feature selection algorithm. It is a meta filter that combines commonly used
filtering algorithms to combine their strengths and to create a broad-ranging
generic filter that can be used in many application. The included filters return a
ranked score of the input features based on their individual measurement. This
means that a threshold is required to select the relevant features. To overcome
this issue, an elitism selection is used inspired by Genetic Algorithms. The top
10 % highest ranked features are selected from every included filters. From the
combined features a distinct selection based on set theory is performed to remove
duplicate features. In our case the selection is a union. The process of RDESF is:

1. Let every included filter score the features based on their respective measure-
ment

2. Rank the scores and select the best 10 % from each filter
3. Perform a union selection on the combined selected features from the filters

The included filters are Shannon entropy, Granger Causality, Mutual Infor-
mation (MI), Pearson and Spearman:

Shannon entropy. The Shannon entropy is a measure of unpredictability, which
means that features with unique probabilities will be ranked higher. The entropy
of a feature, H(X) is defined as:

H(X) = −
∑

i

P (xi) log P (xi) (2)

with P (xi) being the probability density function, X is the feature and xi are
the samples of that feature [14].

Granger Casuality. A variable X “Granger-causes” Y if Y can be better pre-
dicted using the histories of both X and Y than it can using the history of Y
alone [3]. The Granger causality score is calculated by creating two linear regres-
sions; one that only contains the samples from Y and one that also includes the
samples from X. F-tests are used to reject the null hypothesis that X does not
Granger-cause Y. By using an F-distribution every input Xi can be scored as to
how much it causes Y.

Mutual Information (M). The MI is a measure of the distance between the
distributions of two variables and hence the dependence of the variables [2].
Choosing features with high dependence to the output could indicate that the
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feature is good for predicting the output. The MI of an input X to the output
Y is defined as [2]:

I(X;Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(3)

with p(x, y) being the joint probability density function and p(x) and p(y) being
marginal probability distribution functions of X and Y respectively.

Pearson. The Pearson correlation coefficient is a measure of the dependence
between two variables [13]. The pearson correlation coefficient is defined as [13]:

ρX,Y =
cov(X,Y )

σXσY
(4)

with cov as the covariance and σX and σY are the standard deviations of X and
Y respectively.

Spearman. Spearman’s rank correlation coefficient is simply the Pearson cor-
relation coefficient applied to ranked data [13]. Ranking the data will be more
resistant to outliers [13], and does not assume the data is numerical. The ranking
used is the normal ordering of the input.

2.2 Artificial Neural Network

Artificial Neural Networks (ANNs) are universal approximators [6] and have
been applied successfully in regression based problems for many years. Multilayer
Perceptrons (MLPs) are one of the most used ANNs also known as feedforward
networks. An MLP will be used to attempt to solve the regression problems.
The ANN uses the tanh activiation function, 20 nodes in the hidden layer and
the RPROP training algorithm [10]. A rule of thumb states to use the average of
the number of input features and the number of outputs as the number of nodes
in the hidden layer. However, we found that fewer nodes results in a better
generalization, and we’ve settled on 20 hidden nodes. The network is trained
until an error of 0.001 % is achieved with a maximum of 500 iterations. For
further information on the technique the reader is refered to [19]. The focus on
this paper is on the feature selection, which is why we have chosen MLP which
may be the most basic, but very efficient, type of ANNs. Researchers choice of
ANN comes down to personal preference, the type of problem, but also what
is hip at the time. Modern types of ANNs such as Deep Neural Networks have
feature selection functionality as well, but feature selection as a pre-processing
step will always decrease the learning complexity, regardless of the ANN type.

10-fold cross-validation is performed, and in each fold the network is trained
and tested 10 times to decrease the influence by the randomness in the ANN.
The average of those 10 repetitions is used for the comparison.
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2.3 Statistics

The error of the prediction is calculated using the root mean square error
(RMSE) measurement. The RMSE is defined as [13, p. 497]:

RMSE =

√∑n
t=1(ŷt − yt)2

n
(5)

where ŷt is the predicted value and yt is the actual value. The number of pre-
dictions in the series is denoted n. RMSE punishes negative and positive errors
equally.

The feature selection methods will be compared against each other using a
Wilcoxon signed-rank test. Because the output from all methods are used in the
equally configured ANN, we assume the samples are dependent, and hence we
must use a paired test. Because we have a small sample size, we cannot make
any safe assumptions about the underlying distribution. For that reason a rank
test is necessary. The Wilcoxon signed-rank test works any measurement type
and returns a p-value on the null hypothesis that the two sample populations
are identical. This also means that any specific error measurements or time
measurements will not be presented. The Wilcoxon signed-rank test uses the
following test statistic, W :

W =
Nr∑

i=1

[sgn(x2,i − x1,i) · Ri] (6)

where Nr is the number of pairs with equalities removed, Ri is the rank of pair
i and x1 and x2 are the pair samples.

2.4 Experiments

The feature selection algorithms will be tested against two problems. Both data
sets are publicly available and will function as benchmarks for future comparison
and experimentation. The problems are time-series problems and we assume the
parameters change naturally over time. For this reason it is necessary to add the
delayed input and output to the available input features. We did a grid search
on a reduced version of one of the data sets, and found that a delay of 12 h gives
the best performance. We assume this delay will perform equally well for the full
data set as well as the other data set. With the delay the first problem will have
a total of 285 input features and the second problem will have a total of 142
features. To perform the long term prediction the output is shifted accordingly.

Besides the prediction error the computational speed will also be measured.
This gives an indication of the implications of using the feature selection algo-
rithms. The time will also be measured 10 times in each cross fold to even out any
randomness. The timer is started before the feature selection and stopped after
the output from the ANN has been denormalized. There is no significant time
difference between short-term and long-term predictions, so only the measured
time from the short-term prediction will be used for comparison.
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The data is first delayed and then divided into the crossfold bins. In each
crossfold bin the feature selection is performed on the training part followed by
a normalization of the entire data in the bin to prepare it for the ANN. After the
ANN training the same features are selected from the test part and the ANN is
run using this data.

3 Results and Discussion

3.1 Experiment 1 - SML2010 Data Set

The results of the performance of predicting the indoor temperature and the
computational speed can be seen in Table 1. With 5 % significance the prediction
with RDESF outperforms backward selection, NLPCA and PCA on both short-
term and long-term. RDESF also outperforms using all available features on
short-term and with 10 % significance on long-term. Only forward selection is
able to get a better prediction than RDESF and only on short-term. On long-
term there is not enough statistical significance to make any statements. It was
expected that forward selection performs best because it includes the model in
the feature selection process. Interestingly, the backward selection also includes
the model in the selection process but does not have the same performance.

Table 1. p-values from the Wilcoxon signed-rank test for methods compared to RDESF
for the SML2010 data set

Backward Forward NLPCA PCA All input features

Short-term error 0.019 1.0 0.001 0.003 0.014

Long-term error 0.018 0.862 0.001 0.002 0.053

Computational speed 0.001 0.001 0.001 0.001 1.0

Looking at the computational speed in Table 1, RDESF outperforms all other
algorithms with 1 % significance. Only using no algorithms at all is faster and
therefore best in terms of computational speed. Using all input features equals
no pre-calculations before the prediction and the fact that the MLP can be
computed in parallel makes this the fastest option. This result will not reproduce
for other types of neural networks because they are not suited for a large number
of input parameters, for example Support Vector Regression (SVR). A large
increase in the number of features will also affect the speed for MLP, however
this has not been encountered yet.

3.2 Experiment 2 - Temperature Forecasting

Results from the temperature prediction from the design reference year data
set can be seen in Table 2. The results do not change much between short term
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Table 2. p-values from the Wilcoxon signed-rank test for methods compared to RDESF
for the reference year data set

Backward Forward NLPCA PCA All input features

Short-term error 0.652 1.0 0.001 0.003 0.52

Long-term error 0.313 1.0 0.001 0.002 0.423

Computational speed 0.001 0.001 0.001 0.001 1.0

and long term prediction as seen in experiment 1. Our algorithm RDESF clearly
outperforms both NLPCA and PCA (with 1 % significance) when it comes to
the prediction error. There is not statistical significance for the performance of
RDESF against using all available input features nor backward selection. Again
RDESF is only outperformed by the forward selection.

Just like in experiment 1, we expected that forward selection would outper-
form RDESF, because the model is included in the feature selection process. In
experiment 1 we see that backward selection does not have the same superior
performance as forward selection. Forward and backward selection both have
advantages and disadvantages and it might be that the disadvantages of back-
ward selection is influencing the results. One could overcome the disadvantages
of both selection algorithms by using stepwise regression that combines forward
and backward selection, but that will not be further investigated in this paper.

The computational speed of RDESF outperforms all other algorithms with
1 % significance just as in experiment 1. As expected using all input features
is also faster in this experiment. However, keep in mind that using all input
features will increase the computational time heavily for other types of neural
networks.

3.3 Discussion of RDESF

The filters we chose to include in RDESF are by no means final. Mutual informa-
tion (MI), Pearson and Spearman ranking are all measures of dependency. Their
effectiveness is based on the assumption that a dependence between an input fea-
ture and the output will equal a better prediction performance. The Shannon
entropy ranks features higher that are unique with respect to their probability
density function. Selecting features with a high Shannon entropy score will include
features that are different from each other and thereby decreasing the amount of
similar information given to the prediction algorithm. The last included filter was
the Granger causality which investigates if histories of the input feature and the
output are better together. We believe that this mix of different types of filter
makes RDESF strong and a generic solution to automatic feature selection of the
filter-class. We will continue to investigate the performance of RDESF with other
filters.

The numbers of filters included in RDESF has a big influence. Too many
filters will decrease the influence of the individual filter. Because of the filter-wise
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selection, all possible features can be selected if too many filters are included. On
the other hand, too few filters will mean the individual filters are too influential.
If the filters have measurements, it means that the 10 % from every filter will
be almost identical. The meta approach implies that a variety of included filters
with different types of measurements will result in a better performance.

The union selection used as the distinct selection in RDESF was the obvious
choice for us. Other set theory selections should be investigated such as intersec-
tion or even cartesian product. Other elaborate possibilities such as heuristics
or voting systems should also be further investigated in future work.

Our initial goal was to beat the prediction performance by using PCA. PCA
is included in MATLAB which is often used in machine learning. PCA is often
the default feature selection method used and it has clear advantages such as
reducing the dimension space and reversibility. It is a very positive result that
RDESF outperforms PCA. That RDESF outperforms or evens with using all
input features is a good indication that RDESF will perform well for computa-
tionally heavy types of ANNs. Support Vector Regression is one of those types
of network, and preliminary results show that RDESF performs equally well
for SVRs and RBFs. Testing the RDESF with other types of ANNs and other
application areas are planned for further research.

Through careful implementation of the included filters, RDESF is very fast,
especially compared to the computational intensive NLPCA and forward and
backward selection. We’ve implemented RDESF through a mix of the Apache
Commons library and an optimized use of data structures in Java. The speed
can be further improved by the use of multi-threading, with every filter scoring
the features simultaneously.

4 Conclusion

A novel filter-class algorithm for automated selection of features has been pro-
posed. Our algorithm called Ranked Distinct Elitism Selection Filter (RDESF)
was tested in two experiments. The filter-class of feature selection are model-
free and thereby fast. A big drawback of filters is the requirement of choosing a
threshold to select the features. This problem was overcome by creating a meta-
filter that selects the top 10 % features for each included filter. To avoid duplicate
features a distinct selection was performed, in this case a union selection.

The experiments in which RDESF was tested were time-series regression
based problems of prediction a variable. RDESF was only outperformed by for-
ward selection which was expected, because the prediction model is included in
the forward selection process. All the other feature selection algorithms which
were: Backward selection, NLPCA and PCA were all outperformed by RDESF.
In the first experiment RDESF even outperformed using all input features, that
indicates a good performance in computationally heavy types of ANNs. The com-
putational speed of RDESF was only outperformed by using all input features
which was also expected, since no pre-calculations are required.

RDESF clearly outperformed PCA in both prediction error and computa-
tional speed, which was our benchmark baseline. Unlike PCA, RDESF allows



80 M.G. Wollsen et al.

for feature analysis in fault detection scenarios because the features are not trans-
formed. This means that RDESF is a strong competitor in the feature selection
field, and applicable to a variety of application areas. The meta-filter approach
does not require the user to select a threshold for the filter which allows the user
to include filters into an automatic feature selection process or system.
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