
A Diffusion Model for Maximizing Influence
Spread in Large Networks

Tu-Thach Quach(B) and Jeremy D. Wendt(B)

Sandia National Laboratories, Albuquerque, NM, USA
{tong,jdwendt}@sandia.gov

Abstract. Influence spread is an important phenomenon that occurs
in many social networks. Influence maximization is the corresponding
problem of finding the most influential nodes in these networks. In this
paper, we present a new influence diffusion model, based on pairwise fac-
tor graphs, that captures dependencies and directions of influence among
neighboring nodes. We use an augmented belief propagation algorithm to
efficiently compute influence spread on this model so that the direction
of influence is preserved. Due to its simplicity, the model can be used
on large graphs with high-degree nodes, making the influence maximiza-
tion problem practical on large, real-world graphs. Using large Flixster
and Epinions datasets, we provide experimental results showing that
our model predictions match well with ground-truth influence spreads,
far better than other techniques. Furthermore, we show that the influ-
ential nodes identified by our model achieve significantly higher influ-
ence spread compared to other popular models. The model parameters
can easily be learned from basic, readily available training data. In the
absence of training, our approach can still be used to identify influential
seed nodes.

1 Introduction

Social networks often show that different users have varying levels of influence. As
an example, tweets from some users are more likely to spread than from others.
In a network of friends, an individual adopting a product may cause others to
do the same. Identifying these influential nodes has important applications. For
instance, in marketing, an organization wants to identify which small set of nodes
will return the highest influence spread given a limited budget. Finding the seed
nodes that maximize influence spread is called influence maximization.

Influence maximization requires two inputs: a graph (with nodes representing
individuals and edges representing relationships between any two individuals),
and a diffusion model. Given the graph and the diffusion model, influence max-
imization finds k seed nodes such that the expected number of nodes influenced
is maximized [11].

A variety of diffusion models have been proposed and analyzed. Two popular
diffusion models are the independent cascade (IC) model and linear threshold
(LT) model [11]. In the IC model, each active node i has one opportunity to
c© Springer International Publishing AG 2016
E. Spiro and Y.-Y. Ahn (Eds.): SocInfo 2016, Part I, LNCS 10046, pp. 110–124, 2016.
DOI: 10.1007/978-3-319-47880-7 7

A Diffusion Model for Maximizing Influence Spread in Large Networks 111

activate a neighboring node j with probability pij . In the LT model, each node
j is influenced jointly by all neighboring nodes i ∈ N(j) (N(j) is the set of
neighbors of node j). Each node j is influenced by each neighbor i with weight
pij such that the sum of all incoming weights to j is at most 1. Each j determines
a threshold tj . If the sum of the incoming weights exceeds tj , then j is activated.

A major drawback of these models is the computation: to get reasonable
estimates of influence spread for a single node, these diffusion models require
running Monte-Carlo simulations on the network many times (typically 10,000).
This is clearly feasible only on small networks. In an effort to minimize this
problem, several heuristics have been proposed to estimate the spread without
resorting to Monte-Carlo simulations [2,3,14]. Others have proposed entirely new
diffusion models. A probabilistic voter model found that the optimal seed nodes
are those with the highest degree [6]. Markov models have also been proposed [5,
17]. Unlike cascade models, which capture the evolution of influence over time,
Markov models capture the interactions of nodes as a set of interdependent
random variables. Abandoning diffusion models altogether, the credit assignment
approach uses historical logs to directly compute the influence of a node [8]. Many
of these methods have parameters that need to be defined as well. When training
data is available, a model’s parameters can be learned [7,18]. In the absence of
training data, constants and heuristics, such as weighted cascade where pij is
inversely proportional to the in-degree of node j, are often used instead.

Given the existence of several proposed diffusion methods, practitioners must
determine which diffusion model is the right one to use in any given situation.
We propose three considerations for identifying which model to use:

1. A diffusion model should match well with ground-truth data when available.
This validates the model and justifies its use for influence maximization.

2. A diffusion model’s parameters can be learned from readily available data.
In other words, the training data required should be practical to obtain. Fur-
thermore, the model should still be usable when no training data is available.

3. A diffusion model should be computationally efficient so that it scales to large
networks. Thus, practical diffusion models cannot rely on costly Monte Carlo
simulations.

With these considerations in mind, we present a new diffusion model based
on pairwise factor graphs that predicts influence spread for a given seed set.
An efficient belief propagation algorithm is used to compute influence spread;
it can be used on large real-world graphs with high-degree nodes. We provide
experimental results showing that our model predictions match ground-truth
spreads using a large Flixster dataset [10] and an Epinions dataset [19]. We
then investigate the influence maximization problem under our model and show
that the influential nodes identified by our model achieve higher influence spread
compared to other popular models. The model parameters can easily be learned
entirely from data. Moreover, the type of training data required is simple and
practical. In the absence of training data, our model can still identify influential
seeds.

112 T.-T. Quach and J.D. Wendt

This paper is organized as follows. Details of our diffusion model and the
associated algorithms are presented in Sect. 2. Experimental results are provided
in Sect. 3. Concluding thoughts are provided in Sect. 4.

2 Influence Spread

Given a graph G = (V, E) of n nodes, a set of seed nodes S ⊆ V, and a diffu-
sion model Ω, the influence spread, σΩ(S), is the expected number of influenced
or activated nodes. Here we adopt a factor graph, which can represent general
graphical models including Markov networks and Bayesian networks. Our diffu-
sion model consists of unary (φ) and pairwise (ψ) factors (potential functions).
Specifically, each node i ∈ V has a corresponding state xi ∈ {0, 1} that indicates
whether or not node i adopts the product (e.g., xi = 1 means node i adopts the
product). The adoption probability, pi(xi), depends on not only i’s preference,
but also the states of its neighbors. The joint probability distribution of the
states of the network is

p(x1, . . . , xn) ∝
∏

i∈V
φi(xi)

∏

(i,j)∈E
ψij(xi, xj). (1)

Note that the unary potential function expresses the state preference of node
i independent of its neighbors. The pairwise potential function expresses the
dependency between neighboring nodes i and j whenever an edge between i and
j exists in E . The pairwise potential function depends on only two nodes and
allows the model to deal with high-degree nodes directly (instead of pruning
excess edges on high-degree nodes as in [14]). With this model, the marginal
probability of each node i is

pi(xi) =
∑

x1,...,xi−1,xi+1,...,xn

p(x1, . . . , xn). (2)

Computing the marginal probabilities can be done efficiently using belief prop-
agation [21].

For undirected graphs, the above model can be used to compute the mar-
ginal probability of each node, which corresponds to its adoption probability. For
directed graphs, an edge’s direction indicates the direction of influence. There-
fore, we propose to adapt the above model for directed influence. Consider the
graph shown in Fig. 1. In this case, the state of node 2 depends on node 1’s
state, but not on node 3’s. This is not true of an undirected model. To capture
directionality, we compute the forward probabilities [16] instead of the marginal
probabilities. For a chain (such as the one shown in Fig. 1) the forward proba-
bility of the state of node i is

fi(xi) =
∑

x1,...,xi−1

p(x1, . . . , xi−1, xi), (3)

A Diffusion Model for Maximizing Influence Spread in Large Networks 113

where the joint probability is

p(x1, . . . , xi) ∝
∏

j∈V:j≤i

φj(xj)
∏

(j,k)∈E:j≤i,k≤i

ψjk(xj , xk). (4)

It is clear that the forward probability of node i considers only those nodes
that can influence it (e.g., the previous nodes in the chain), which is consistent
with the meaning of directed edges. To compute the forward probabilities, we
augment the belief propagation algorithm so that messages are only sent from
node i to node j if there is an edge (i, j) ∈ E . We provide further implementation
details in Subsect. 2.4.

Fig. 1. A directed graph consisting of three nodes. An edge’s direction determines the
influencer-influencee relationship. In this case, node 2 is influenced by node 1, but not
node 3.

We emphasize that an advantage of our approach is that efficient inference
algorithms, such as belief propagation, can be used to approximate these forward
probabilities [21]. Although exact computation of the forward probabilities is
feasible only on graphs without loops, belief propagation is widely used on graphs
with loops and generally provides good results [13,15,20].

2.1 Learning

The unary (φi) and pairwise (ψij) potential functions are our model’s parame-
ters. The pairwise potential function is shown in Table 1, where pij is an edge-
specific influence probability. If causal information between nodes were available,
these could be learned individually. In the absence of good causal information,
pij can be set using a heuristic, such as those based on the degree of a node, or
some constant [2,3,11,18]. In our model, we set pij = 0.5 + 0.5/in-degree(j). As
the in-degree of a node increases, pij → 0.5. This essentially implies that for any
high in-degree node, each influencer exerts less influence on it. The rationale for
this function is that when a node has many influencers, each influencer, indi-
vidually, has a smaller impact on the decision of that node, allowing the node
to make a decision based on the aggregate of the states of the influencers. Note
that the potential functions express the fact that when xi = 0, node i does not
influence node j because both states are equally likely; the lack of adoption does
not spread influence. Note that pairwise potential functions are general enough
to accommodate other situations, including the case where the lack of adoption
could spread influence. For completeness, we also consider the case when pij is
a constant in our experiments.

Each node’s unary potential function can be learned from training data, if
available. Specifically, the unary potential is any node’s adoption probability

114 T.-T. Quach and J.D. Wendt

Table 1. Pairwise potential functions.

ψij(xi, xj) xj = 0 xj = 1

xi = 0 0.5 0.5

xi = 1 1 − pij pij

Table 2. Unary potential functions.

φi(xi)

xi = 0 1 − ρi

xi = 1 ρi

independent of all other nodes. Therefore, given any training dataset, we can
compute a node’s adoption probability as simply the number of historical node
adoptions divided by the total number of possible adoptions. Let ρi be this
probability for node i. If ρi is too small, we set it to a minimum value (that
is, ρi ≥ 10−5). This allows nodes that are not activated in the training set to
still participate in influence propagations in the test set. The unary potential
function is shown in Table 2.

The type of data required for training our model is minimal and generally
available. In particular, it is far more realistic to assume that we can obtain
historical states of the nodes in a network than to capture other higher-level
information, such as the causal spread of information from one node to another,
as required by the credit assignment model [8]. That is, it is easier to capture
which nodes are activated than how nodes are activated. Nonetheless, in our
experiments, we also consider the situation when no training data is available
and set ρi to a small positive constant.

2.2 Computing Influence Spread

Using our diffusion model, we can compute the influence spread of seed set
S. For each seed node i ∈ S, we set φi(1) = 1 and φi(0) = 0. We then run
our forward belief propagation algorithm to compute fi(xi) as defined by (3).
Since social networks tend to have loops, belief propagation requires several
iterations to converge (we use a maximum of 20 iterations in our experiments).
Once converged, or the maximum number of iterations is reached, the influence
spread of seed set S is quantified by

σΩ(S) =
∑

i∈V
fi(xi = 1). (5)

2.3 Influence Maximization

The influence maximization problem is to find seed set S of specified size k
that maximizes the influence spread [11]. A greedy approach can be used to

A Diffusion Model for Maximizing Influence Spread in Large Networks 115

Algorithm 1. Greedy Influence Maximization
Input: G = (V, E), k, σΩ

Output: S
S ← ∅
while |S| < k do

u ← arg maxv∈V\S σΩ(S ∪ v) − σΩ(S)
S ← S ∪ u

Algorithm 2. CELF
Input: G = (V, E), k, σΩ

Output: S
S ← ∅
for u ∈ V do

u.priority ← σΩ({u})
u.n ← 0
enqueue(u)

while |S| < k do
u ← dequeue()
if u.n = |S| then

S ← S ∪ u
else

u.priority ← σΩ(S ∪ u) − σΩ(S)
u.n ← |S|
enqueue(u)

approximate the influence maximization problem, which is NP-hard in general.
The greedy algorithm, taken from [8], is shown in Algorithm 1.

The problem with the greedy approach is that it searches all nodes in the net-
work at each iteration to find the best node. This can be prohibitively expensive,
especially if the diffusion model uses Monte Carlo simulations. Several methods
have been proposed to improve the greedy algorithm so as to reduce the number
of nodes evaluated [3,9,12,22]. In particular, CELF (Cost-Effective Lazy For-
ward) significantly reduces the number of nodes to evaluate, resulting in 700
times speedup [12]. It uses a priority queue to greedily select the node that has
the largest gain in influence spread at each iteration so as to minimize the num-
ber of nodes evaluated. In our experiments, we use CELF. For completeness,
the CELF algorithm is shown in Algorithm2. We note that CELF is not the
only algorithm that can be used for seed selection. Other algorithms, such as
CELF++ [9], can serve as alternatives. We prefer CELF due to its simplicity
and find it sufficient, as computing spread on our model via belief propagation
is fast.

116 T.-T. Quach and J.D. Wendt

2.4 Implementation Details

We now briefly describe an implementation of belief propagation and our modi-
fication for directed graphs so that the direction of influence is preserved. For a
more thorough treatment, see [21].

To solve the marginal probabilities from (2), belief propagation defines a per-
edge message from i to j about the likelihood of node j being in state xj from
the perspective of node i:

mij(xj) =
∑

xi

φi(xi)ψij(xi, xj)
∏

k∈N(i)\j

mki(xi) (6)

where φi and ψij are potentials as defined before, and the final term is the
product of all messages sent to i by its neighbors (excluding j). These messages
are initialized to a fixed value at all nodes (usually 1). At each iteration, new
messages are computed from the previous iteration’s messages in both directions
along each edge. Iterations continue until either all messages converge to a steady
value or a maximum number of iterations is reached.

Once converged, the belief over the states of node i is

bi(xi) ∝ φi(xi)
∏

j∈N(i)

mji(xi). (7)

The normalized belief bi(xi) corresponds to the marginal probability pi(xi).
The solution to both (6) and (7) may have numerical issues if any node

involved has high degree. That is, the product of hundreds or thousands of
messages with values between [0, 1] leads to products that are unrepresentable
by finite-precision machines. The solution to this problem is to use the well-
known log trick.

Since mij(xj) can be normalized by an arbitrary positive constant cij (that
is fixed for all values of xi and xj on an edge), we can reformulate (6) as

mij(xj) =
∑

xi

cij φi(xi)ψij(xi, xj)
∏

k∈N(i)\j

mki(xi)

=
∑

xi

exp
[

ln(cij) + ln(φi(xi)) + ln(ψij(xi, xj)) +
∑

k∈N(i)\j

ln(mki(xi))
]
.

(8)

By exploiting log space, the products become sums, and we avoid numerical
underflow during message computation. We can ensure the result is within the
representable double-precision range before exponentiation by setting ln(cij) to
an appropriate value. Specifically, we use

ln(cij) = −max
xi,xj

{ln(φi(xi)) + ln(ψij(xi, xj)) +
∑

k∈N(i)\j

ln(mki(xi))}. (9)

A similar trick is used for computations involving (7).

A Diffusion Model for Maximizing Influence Spread in Large Networks 117

We found that a graph containing a node with degree greater than 750 would
underflow with the default implementation. With the exponentiated version, we
have tested up to degree 20,000 with no numerical issues.

Finally, the above belief propagation works on undirected graphs. However,
as already described, the influence problem can be directed or asymmetric along
edges – that is, i may influence j more than j does i. The only alteration required
in the implementation to solve for (3) instead of (2) is to send messages down-
stream only. The beliefs now correspond to the forward probabilities.

We have implemented the above algorithms and models in Java and inte-
grated them into the open-source Algorithm Foundry package.1 For a com-
mented example of how to run our code, see the class InfluenceSpread in the
GraphExamples Component.

3 Experiments

We demonstrate the utility of our model using two datasets: Flixster [10] and
Epinions [19]. The Flixster dataset contains movie reviews with timestamps and
a network of friends. The edges are undirected, but to allow asymmetric influence
along edges, we convert each edge into two opposite directed edges. The Epinions
dataset contains product reviews with timestamps and a directed network of
trust among reviewers. The basic statistics of the two datasets are summarized
in Table 3.

Table 3. Statistics of the two datasets.

Flixster Epinions

Nodes 800K 18K

Directed Edges 12M 1.2M

Products/Movies 49K 262K

Avg. Degree 30 64

Max. Degree 2K 4K

In the following, we use the word propagations to refer to movies in the
Flixster dataset and products in the Epinions dataset. For each dataset, we split
the propagations into two sets: training (80 %) and test (20 %). As in [8], to
ensure a fair distribution of the propagation sizes across the training and test
sets, we order all propagations by size and assign every fifth propagation into
the test set. The training set is used to learn the unary potential functions, ρi.

1 https://github.com/algorithmfoundry/Foundry/.

https://github.com/algorithmfoundry/Foundry/

118 T.-T. Quach and J.D. Wendt

3.1 Diffusion Model Validation

We use the test sets to quantify how well our diffusion model predicts actual
influence spreads using the method proposed in [8]. Specifically, for a given seed
set S, we calculate the predicted spread, σΩ(S), using our diffusion model. We
can compare our predictions against ground-truth spreads. As in [8], for each
propagation in the test set, the seed set is the set of users who are first to review
among their immediate friends. The ground-truth spread is the actual number
of users who reviewed the propagation.

We consider two strategies for choosing the pairwise potential functions (ψij ,
Table 1):

– DW: Degree Weighted – pij = 0.5 + 0.5/in-degree(j).
– CW: Constant Weight – pij is set to a constant of 10−3. Note that for the

Flixster dataset the weights are symmetric on all edges and the resulting model
is undirected.

We consider two strategies for the unary potential functions (φi, Table 2):

– LU: Learned Unary – ρi is number of reviewed propagations by node i divided
by the total number of propagations in the training set; must be at least 10−5.

– CU: Constant Unary – ρi is set to a constant (5 × 10−3).

Thus, for any experiment, we must select both a unary and a pairwise strat-
egy. Hereafter, we refer to a combined strategy as a pairwise-unary strategy. As
an example, the DW-LU strategy uses the degree weighted pairwise and learned
unary strategies. For completeness, we also consider the weighted cascade IC
model, a first in itself for the large Flixster graph. For the IC model, we use
10,000 Monte Carlo simulations to compute the spread of each propagation.

We show the scatter plots of the predicted and actual spread of each of these
strategies on the test sets in Fig. 2. To improve the readability of the scatter plots,
if there are several propagations that have the same actual spread, we report the
average predicted spread. The ideal spread is shown as the green dashed line.
The CW-LU strategy consistently underestimates the actual spreads. The DW-
CU strategy overestimates (or underestimates, depending on the constant ρi)
the actual spreads. The IC model significantly overestimates the spreads. This is
consistent with past observations on smaller networks [8]. The DW-LU strategy
performs the best – surrounding the actual spread.

In Fig. 3, we show the same scatter plots of DW-LU along with the corre-
sponding seed sizes. The plots show that this model is able to take the initial
seeds and spread their influence to other nodes in the network.

We believe DW-LU performs well on both datasets for two reasons. First, the
learned unary strategy is able to incorporate node-specific data. For instance,
some social media users are much more likely to produce content than others:
incorporating this into the model improves results. This also implies that nodes
that tend to adopt products on their own should not be targeted, as resources
are better spent on other nodes. Second, as mentioned earlier, the choice of DW
for pij implies that influencers of high in-degree nodes have small impact on their

A Diffusion Model for Maximizing Influence Spread in Large Networks 119

Fig. 2. Scatter plots of predicted spread vs. actual spread for different choices of poten-
tial functions: DW-CU (degree weighted and constant unary), CW-LU (constant weight
and learned unary), and DW-LU (degree weighted and learned unary), as well as IC
for the Flixster and Epinions datasets. The green line shows the ideal predictions. The
DW-LU model best predicts the actual spread. Best viewed in color. (Color figure
online)

influencees individually, allowing the influencees to make their decisions based
on the aggregate of the states of their influencers.

3.2 Influence Maximization

Since our results establish that the DW-LU model is the best in predicting the
spread of a seed set, we now investigate the influence maximization problem
to determine how much spread is achieved under the DW-LU model on seeds
selected by various models, obtained by running CELF on each model as appro-
priate. In addition, we also investigate the similarity between the seeds selected

120 T.-T. Quach and J.D. Wendt

Fig. 3. Scatter plots of predicted spread using DW-LU along with the corresponding
seed sizes used to spread influence on (a) Flixster and (b) Epinions. The green line
shows the ideal predictions. The DW-LU model is able to spread the influence of seed
nodes to other nodes. Best viewed in color. (Color figure online)

Fig. 4. Influence spread achieved under the DW-LU model by seed sets selected by
various models: DW-LU, IC, and High Degree on (a) Flixster and (b) Epinions.

by DW-LU and other models. We consider several models: DW-LU, DW-CU,
IC, and High Degree which selects the top k nodes as seeds based on degree
(CELF is not needed). Since the IC model is computationally demanding, we
run it only on the Epinions dataset, which is the smaller of the two datasets.
Even then, it takes 22 days to find 50 seeds.

The plot of the influence spreads of seeds selected by DW-LU, IC, and High
Degree are shown in Fig. 4. The results show that the seeds identified by our
DW-LU model achieve significantly higher influence spread than High Degree
and IC.

A Diffusion Model for Maximizing Influence Spread in Large Networks 121

Table 4. Number of overlapping seeds between DW-LU and other models for various
seed sizes.

10 20 30 40 50

Flixster High Degree 0 1 3 4 5

DW-CU 10 20 30 40 49

Epinions High Degree 3 6 10 16 18

DW-CU 10 18 29 36 45

IC 6 9 14 18 24

Table 4 shows the number of overlapping seeds between DW-LU and the other
models. It is clear that the seeds selected by High Degree have low overlap with
DW-LU. Even with k = 50 seeds, the overlap between High Degree and DW-LU
is only 5 for the Flixster dataset and only 18 for the Epinions dataset. For the
Epinions dataset, with 50 seeds, the number of overlapping seeds between DW-
LU and IC is 24. The DW-CU and DW-LU models have almost identical seeds,
which is why we did not plot DW-CU in Fig. 4 as those two curves are on top of
each other. An important consequence of this result is that the social network
analyst can leverage the DW-CU model to identify influential seed nodes in the
absence of any training data. This is significant as training data may not be
available in some applications.

We examine various graph metrics for the seeds selected by DW-LU, IC, and
High Degree.

– Community Overlap: We run Louvain community detection [1] on the
Flixster and Epinions graphs to identify the community assignment for each of
the identified seeds. Since we have 50 seeds and between 15 and 25 communi-
ties identified on each graph, there is some overlap in community assignment
for seed nodes. However, the High Degree technique selects far more nodes
from its two most common communities (24 and 10 on Flixster; 30 and 9
on Epinions) than our DW-LU model (12 and 9 on Flixster; 20 and 14 on
Epinions). On Epinions, IC is approximately the same as DW-LU (19 and
14).

– Average Distance: We compute each seed’s average distance to all other
seeds using Dijkstra’s Algorithm [4]. In both graphs, our DW-LU model selects
nodes that are farther apart on average (2.38 vs. 2.14 edges apart on Flixster;
1.82 vs. 1.39 edges apart on Epinions). On Epinions, IC averages 1.58–further
than degree, but closer than DW-LU.

– Node Degree: We investigate the degrees of seed nodes in the order selected
by CELF. Although the degree of each seed selected by IC and DW-LU varies
from the degrees of the seeds selected before or after it, when we fit a line to
the seeds’ degrees, there is a clear negative trend. The degrees of the seeds
are mostly well above the average degree on both graphs (one of the seeds
selected by DW-LU for Epinions is just below the graph-wide average degree).
IC consistently selects higher degree nodes than DW-LU.

122 T.-T. Quach and J.D. Wendt

These results indicate several interesting features for effective seed nodes.
First, while high degree seems to be a useful feature for a seed node (nearly
all DW-LU seeds have high degree), it is not sufficient (High Degree achieves
lower influence spread and IC’s higher degree nodes achieve lower influence as
shown in Fig. 4). The community overlap and average distance measures indicate
a second critical feature: the best seeds spread out from each other. Note that
the most spread out set of nodes are among the leaves, but those nodes do not
have a high enough degree to spread influence. Thus, there must be a balance
between spread and high degree. Both IC and DW-LU balance these two features,
although DW-LU balances them better.

3.3 Computing Resources

Our model uses an augmented belief propagation algorithm to compute influence
spread. The runtime and memory requirement are both bounded by O(|E| +
|V|). The quantities provided here are relevant to the Flixster dataset, which is
the larger of the two. Our Java implementation uses 3.4 GB of memory. As for
computing time, the most expensive operation in influence maximization is the
computation of influence spread of each node as a seed node, which is required
by CELF. For this, we use a compute cluster of 60 compute nodes to run our
model, which took 12 h to complete. Note that we do this only once. Once done,
we select the top 50 nodes using CELF on a single workstation. The total time
to find the top 50 nodes is approximately 16 min. On average, propagating each
seed set takes 4 s. In contrast, using 10,000 Monte Carlo simulations to compute
the spread of each seed set under the IC model takes 6 min on average.

4 Discussion and Conclusion

Influence maximization is a relevant and important problem in social network
analysis. As such, it is important to have models that are efficient, provide a
certain level of validation against ground-truth data, and can be learned from
readily available data. To this end, we have presented a model that addresses
these concerns. Our model uses belief propagation instead of Monte Carlo simu-
lations to compute influence spread. Our model parameters can be learned from
basic training data, such as frequency of adoptions, which we believe is more
readily available in practical applications than other models that require causal
relationships. In the absence of training data, our model can still identify influen-
tial seeds. As mentioned earlier, we use a heuristic based on in-degree to set the
pairwise potentials. Our model, however, is general enough that these pairwise
functions can be set to arbitrary values, including those learned from a training
dataset, if available.

The results of this work raise an important question: what intrinsic graph
properties are important in identifying influential seeds? As we have seen, high
degree alone is not sufficient. Yet, our model, using pairwise functions that are
based on in-degree, identifies seed nodes that achieve high influence spread. Are

A Diffusion Model for Maximizing Influence Spread in Large Networks 123

seed nodes intrinsic to graph structures? We hope to provide further insight into
these questions in our future work.

Acknowledgment. We are grateful to Cristopher Moore for discussions on belief
propagation and implementation considerations, Rich Field for improving the quality
of the paper, and Dave Zage for discussions on implementation considerations. This
work was supported by the Laboratory Directed Research and Development program
at Sandia National Laboratories, a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

References

1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech.: Theory Exp. 10, P10008 (2008)

2. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent
viral marketing in large-scale social networks. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1029–1038. ACM (2010)

3. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 199–208 (2009)

4. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math.
1, 269–271 (1959)

5. Domingos, P., Richardson, M.: Mining the network value of customers. In: Pro-
ceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 57–66. ACM (2001)

6. Even-Dar, E., Shapira, A.: A note on maximizing the spread of influence in social
networks. Inf. Proces. Lett. 111(4), 184–187 (2011)

7. Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social
networks. In: Proceedings of the Third ACM International Conference on Web
Search and Data Mining, pp. 241–250. ACM (2010)

8. Goyal, A., Bonchi, F., Lakshmanan, L.V.: A data-based approach to social influence
maximization. Proc. VLDB Endow. 5, 73–84 (2011)

9. Goyal, A., Lu, W., Lakshmanan, L.V.: CELF++: Optimizing the greedy algo-
rithm for influence maximization in social networks. In: Proceedings of the 20th
International Conference Companion on World Wide Web, pp. 47–48. ACM (2011)

10. Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for
recommendation in social networks. In: Proceedings of the Fourth ACM Conference
on Recommender Systems, pp. 135–142. ACM (2010)

11. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

12. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
420–429. ACM (2007)

124 T.-T. Quach and J.D. Wendt

13. Mooij, J.M., Kappen, H.J.: Sufficient conditions for convergence of the sum-product
algorithm. IEEE Trans. Inf. Theory 53(12), 4422–4437 (2007)

14. Nguyen, H., Zheng, R.: Influence spread in large-scale social networks – a belief
propagation approach. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML
PKDD 2012, Part II. LNCS, vol. 7524, pp. 515–530. Springer, Heidelberg (2012)

15. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, Burlington (2014)

16. Rao, V., Teh, Y.W.: Fast MCMC sampling for Markov jump processes and exten-
sions. J. Mach. Learn. Res. 14(1), 3295–3320 (2013)

17. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral market-
ing. In: Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 61–70. ACM (2002)

18. Saito, K., Nakano, R., Kimura, M.: Prediction of information diffusion probabilities
for independent cascade model. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES
2008, Part III. LNCS (LNAI), vol. 5179, pp. 67–75. Springer, Heidelberg (2008)

19. Tang, J., Gao, H., Liu, H., Sarma, A.D.: eTrust: understanding trust evolution in an
online world. In: Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 253–261. ACM (2012)

20. Weiss, Y.: Correctness of local probability propagation in graph-
ical models with loops. Neural Comput. 12(1), 1–41 (2000).
http://dx.doi.org/10.1162/089976600300015880

21. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its
generalizations. Technical report. TR2001-22, Mitsubishi Electric Research Labo-
ratories, November 2001

22. Zhou, C., Zhang, P., Zang, W., Guo, L.: On the upper bounds of spread for greedy
algorithms in social network influence maximization. IEEE Trans. Knowl. Data
Eng. 27(10), 2770–2783 (2015)

http://dx.doi.org/10.1162/089976600300015880

	A Diffusion Model for Maximizing Influence Spread in Large Networks
	1 Introduction
	2 Influence Spread
	2.1 Learning
	2.2 Computing Influence Spread
	2.3 Influence Maximization
	2.4 Implementation Details

	3 Experiments
	3.1 Diffusion Model Validation
	3.2 Influence Maximization
	3.3 Computing Resources

	4 Discussion and Conclusion
	References

