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1 École Centrale de Nantes, IRCCyN, CNRS, UMR 6597, Nantes, France
eandre93430@lipn13.fr
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Abstract. Parametric timed automata (PTAs) allow to reason on sys-
tems featuring concurrency and timing constraints making use of para-
meters. Most problems are undecidable for PTAs, including the paramet-
ric reachability emptiness problem, i.e., whether at least one parameter
valuation allows to reach some discrete state. In this paper, we first
exhibit a subclass of PTAs (namely integer-points PTAs) with bounded
rational-valued parameters for which the parametric reachability empti-
ness problem is decidable. Second, we present further results improving
the boundary between decidability and undecidability for PTAs and their
subclasses.

1 Introduction

Timed automata (TAs) [1] are a powerful formalism that extend finite-state
automata with clocks (real-valued variables evolving linearly) that can be com-
pared with integer constants in locations (“invariants”) and along transitions
(“guards”); additionally, some clocks can be reset to 0 along transitions. Many
interesting problems for TAs (including the reachability of a location) are decid-
able. However, the classical definition of TAs is not tailored to verify systems
only partially specified, especially when the value of some timing constants is
not yet known.

Parametric timed automata (PTAs) [2] leverage this problem by allowing the
specification and the verification of systems where some of the timing constants
are parametric. PTAs extend TAs by allowing the use of integer- or rational-
valued parameters in place of timing constants in guards and invariants. PTAs
were used to verify a variety of case studies, from hardware circuits to com-
munication protocols (see [3]). This expressive power comes at the price of the
undecidability of most interesting problems. The EF-emptiness problem (“does
there exist a parameter valuation such that a given location is reachable?”) is
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undecidable in general [2], even when parameters are bounded [15], even when
only strict inequalities are used [11], and with a single integer-valued parame-
ter [8].

In [13], L/U-PTAs are introduced as a subclass of PTAs where each para-
meter is either always compared to a clock as a lower bound in guards and
invariants, or always as an upper bound. The EF-emptiness problem is decidable
for L/U-PTAs. In [10], further results are proved for L/U-PTAs with integer-
valued parameters: emptiness, finiteness and universality of the set of parameter
valuations for which there exists an infinite accepting run are decidable. The AF-
emptiness problem (“does there exist a parameter valuation for which a given
location is eventually reached for any run?”) is undecidable for L/U-PTAs [14].
It is also shown in [14] that the synthesis of the parameters reaching a given
location in an L/U-PTA is intractable in practice. Two further subclasses have
been defined in [10]: L-PTAs and U-PTAs, where all parameters are always lower
bounds and upper bounds respectively.

In [14], PTAs with bounded integer-valued parameters are considered. The
problem of finding parameter valuations such that a given location is reach-
able or unavoidable becomes decidable, and two algorithms are provided that
compute the exact such sets of integer valuations in a symbolic manner, i.e.,
without performing an exhaustive enumeration. In [6], it is shown that comput-
ing a parametric extrapolation of the integer hull of symbolic states allows one
to synthesize (rational-valued) parameter valuations for bounded PTAs, guaran-
teeing the synthesis of at least all integer-valued valuations, but also sometimes
most or even all rational-valued valuations.

Contribution. L/U-PTAs is the only non-trivial1 subclass of PTAs for which
the EF-emptiness problem is decidable for an arbitrary number of clocks and
parameters. However, other results are disappointing: undecidability of AF-
emptiness, intractability of the synthesis [14]. It is hence important to look for
further subclasses of PTAs for which problems may be decidable. It is shown
in [6,14] that integer points play a key role in decidability. Hence, our first
contribution here is to investigate integer-points PTAs (IP-PTAs), that are
PTAs where each symbolic state contains at least one integer point (i.e., an
integer valuation of the clocks and the parameters). Our intuition is success-
ful: we prove that the EF-emptiness problem is decidable for bounded IP-PTAs
(i.e., with a bounded parameter domain), even when parameters are rational-
valued. Although we show that it cannot be decided whether a bounded PTA is
a (bounded) IP-PTA, we give two sufficient syntactic conditions: we show that
bounded L/U-PTAs with non-strict inequalities are IP-PTAs and, more inter-
estingly, we introduce a new subclass of “reset-PTAs”, that are also IP-PTAs,
and for which, when bounded, the EF-emptiness problem is hence decidable too.
This class is only the second syntactic subclass of PTAs (after L/U-PTAs) for
which this problem is decidable.

1 The bounded integer PTAs of [14] are arguably a trivial such subclass (even though
the associated analysis techniques are not).
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Our second main contribution is to study several open problems for PTAs and
several known subclasses (as well as the new class of IP-PTAs): we study here the
emptiness and universality of reachability (EF), as well as unavoidability empti-
ness (AF). Emptiness is of utmost importance as, without decidability of the
emptiness, exact synthesis is practically ruled out. Universality checks whether
all parameter valuations satisfy a property, which is important for applications
where the designer has no power on some valuations; this is the case of net-
works, where some latencies (e.g., the transmission time of some packets) may
be totally arbitrary. Among our results, we prove in particular that AF-emptiness
is undecidable for both bounded IP-PTAs and bounded L/U-PTAs. Overall, we
significantly enhance the knowledge we have of decidability problems for PTAs
and subclasses.

Outline. We first recall the necessary definitions in Sect. 2. Then, we introduce in
Sect. 3 a new proof for the undecidability of the EF-emptiness problem for PTAs
with a single rational-valued parameter; whereas this result is not essentially new
(it has been known since [15]), our original proof will be used in several other
results of this paper. In addition, we extend this result (using a variant of our
proof) to bounded PTAs with only non-strict inequalities which, to the best of
our knowledge, is an original result. Then, we introduce the new class of IP-PTAs
in Sect. 4, and study its properties. Finally, in part by using this new class, we
prove in Sect. 5 several open results for L/U-PTAs and PTAs. We conclude in
Sect. 6.

2 Preliminaries

2.1 Clocks, Parameters and Constraints

Let N, Z, Q+ and R+ denote the sets of non-negative integers, integers, non-
negative rational numbers and non-negative real numbers respectively.

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i.e., real-
valued variables that evolve at the same rate. A clock valuation is a function
w : X → R+. We identify a clock valuation w with the point (w(x1), . . . , w(xH)).
An integer clock valuation is a valuation w : X → N. We write 0 for the valuation
that assigns 0 to each clock. Given d ∈ R+, w + d denotes the valuation such
that (w + d)(x) = w(x) + d, for all x ∈ X.

We assume a set P = {p1, . . . , pM} of parameters, i.e., unknown constants.
A parameter valuation v is a function v : P → Q+. We identify a valuation v
with the point (v(p1), . . . , v(pM )). An integer parameter (resp. clock) valuation
is a valuation that assigns an integer value to each parameter (resp. clock).

In the following, we assume ≺ ∈ {<,≤} and �� ∈ {<,≤,≥, >}. lt denotes
a linear term over X ∪ P of the form

∑
1≤i≤H αixi +

∑
1≤j≤M βjpj + d, with

xi ∈ X, pj ∈ P , and αi, βj , d ∈ Z. plt denotes a parametric linear term over P ,
that is a linear term without clocks (αi = 0 for all i). A constraint C over X ∪P
is a conjunction of inequalities of the form lt �� 0 (i.e., a convex polyhedron).
Given a parameter valuation v, v(C) denotes the constraint over X obtained
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by replacing each parameter p in C with v(p). Likewise, given a clock valuation
w, w(v(C)) denotes the expression obtained by replacing each clock x in v(C)
with w(x). We say that v satisfies C, denoted by v |= C, if the set of clock
valuations satisfying v(C) is nonempty. Given a parameter valuation v and a
clock valuation w, we denote by w|v the valuation over X ∪ P such that for
all clocks x, w|v(x) = w(x) and for all parameters p, w|v(p) = v(p). We use
the notation w|v |= C to indicate that w(v(C)) evaluates to true. We say that
C is satisfiable if ∃w, v s.t. w|v |= C. An integer point is w|v, where w is an
integer clock valuation, and v is an integer parameter valuation. We define the
time elapsing of C, denoted by C↗, as the constraint over X and P obtained
from C by delaying all clocks by an arbitrary amount of time. Given R ⊆ X,
we define the reset of C, denoted by [C]R, as the constraint obtained from C
by replacing with 0 the value of the clocks in R, and keeping the value of other
clocks unchanged. We denote by C↓P the projection of C onto P , i.e., obtained
by eliminating the clock variables (e. g., using the Fourier-Motzkin algorithm).

A guard g is a constraint over X ∪ P defined by inequalities of the form
x �� z, where z is either a parameter or a constant in Z.

A zone is a polyhedron over a set of variables V (usually clocks) in which
all constraints on variables are of the form x �� k (rectangular constraints) or
xi − xj �� k (diagonal constraints), where xi ∈ V , xj ∈ V and k is an integer.
Operations on zones are well-documented (see e. g., [9]).

A parametric zone is a convex polyhedron over X ∪P in which all constraints
on variables are of the form x �� plt (parametric rectangular constraints) or
xi − xj �� plt (parametric diagonal constraints), where xi ∈ X, xj ∈ X and plt
is a parametric linear term over P .

2.2 Parametric Timed Automata

Definition 1. A PTA A is a tuple A = (Σ,L, l0,X, P, I, E), where: (i) Σ is a
finite set of actions, (ii) L is a finite set of locations, (iii) l0 ∈ L is the initial
location, (iv) X is a finite set of clocks, (v) P is a finite set of parameters, (vi)
I is the invariant, assigning to every l ∈ L a guard I(l), (vii) E is a finite set of
edges e = (l, g, a,R, l′) where l, l′ ∈ L are the source and target locations, a ∈ Σ,
R ⊆ X is a set of clocks to be reset, and g is a guard.

We say that a PTA is closed if all its guards and invariants use only non-strict
constraints. Note that the grammar of constraints does not include negation so
this restriction is meaningful, and that = defines closed constraints.

Given a parameter valuation v, we denote by v(A) the non-parametric timed
automaton where all occurrences of a parameter pi have been replaced by v(pi).

Definition 2 (Concrete Semantics of a TA). Given a PTA A =
(Σ,L, l0,X, P, I, E), and a parameter valuation v, the concrete semantics of v(A)
is given by the timed transition system (S, s0,→), with

– S = {(l, w) ∈ L × R
H
+ | w|v |= I(l)}, s0 = (l0,0)
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– → consists of the discrete and (continuous) delay transition relations:
• discrete transitions: (l, w) e→ (l′, w′), if (l, w), (l′, w′) ∈ S, there exists

e = (l, g, a,R, l′) ∈ E, ∀x ∈ X : w′(x) = 0 if x ∈ R and w′(x) = w(x)
otherwise, and w|v |= g.

• delay transitions: (l, w) d→ (l, w + d), with d ∈ R+, if ∀d′ ∈ [0, d], (l, w +
d′) ∈ S.

Moreover we write (l, w) e�→ (l′, w′) for a sequence of delay and discrete
transitions where ((l, w), e, (l′, w′)) ∈ �→ if ∃d,w′′ : (l, w) d→ (l, w′′) e→ (l′, w′).

Given a TA v(A) with concrete semantics (S, s0,→), we refer to the states
of S as the concrete states of v(A). A concrete run of v(A) is an alternating
sequence of concrete states of v(A) and edges starting from the initial concrete
state s0 of the form s0

e0�→ s1
e1�→ · · · em−1�→ sm, such that for all i = 0, . . . ,m − 1,

ei ∈ E, and (si, ei, si+1) ∈ �→. Given a concrete state s = (l, w), we say that s
is reachable (or that v(A) reaches s) if s belongs to a concrete run of v(A). By
extension, we say that l is reachable in v(A).

Symbolic Semantics. Let us now recall the symbolic semantics of PTAs
(see e. g., [4]). A symbolic state is a pair (l, C) where l ∈ L is a loca-
tion, and C its associated parametric zone. The initial symbolic state of A is
s0 = (l0, (

∧
1≤i≤H xi = 0)↗ ∧ I(l0)).

The symbolic semantics relies on the Succ operation. Given a symbolic state
s = (l, C) and an edge e = (l, g, a,R, l′), Succ(s, e) = (l′, C ′), with C ′ =

(
[(C ∧

g)]R ∧ I(l′)
)↗ ∧ I(l′)..

A symbolic run of a PTA is an alternating sequence of symbolic states and
edges starting from the initial symbolic state, of the form s0

e0⇒ s1
e1⇒ · · · em−1⇒ sm,

such that for all i = 0, . . . , m − 1, ei ∈ E, and si+1 belongs to Succ(si, e). Given
a symbolic state s, we say that s is reachable if s belongs to a symbolic run of
A. In the following, we simply refer to symbolic states belonging to a run of A
as symbolic states of A.

2.3 Subclasses of PTAs

In this paper, we will sometimes consider bounded PTAs, i.e., PTAs with a
bounded parameter domain that assigns to each parameter a minimum integer
bound and a maximum integer bound. That is, each parameter pi ranges in
an interval [ai, bi], with ai, bi ∈ N. Hence, a bounded parameter domain is a
hyperrectangle of dimension M .

Let us now recall L/U-PTAs [10,13].

Definition 3 (L/U-PTA [13]). An L/U-PTA is a PTA where the set of para-
meters is partitioned into lower-bound parameters and upper-bound parameters.
A lower- (resp. upper-)bound parameter is a parameter p that is used only in
guards and invariants of the form p ≺ x (resp. x ≺ p), where x is a clock.
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2.4 Decision Problems

Let P be a given a class of decision problems (reachability, unavoidability, etc.).
P-emptiness problem:
Input: A PTA A and an instance φ of P
Problem: Is the set of parameter valuations v such that v(A) satisfies φ
empty?

P-universality problem:
Input: A PTA A and an instance φ of P
Problem: Are all parameter valuations v such that v(A) satisfies φ?

Emptiness is the most basic parametric question: is there at least one para-
meter valuation such that the property holds? Universality gives a robustness
quality to the property and permits to effectively abstract an infinite number of
verifications with concrete values.

In this paper, we mainly focus on reachability and unavoidability properties,
and call them EF and AF respectively. For example, given a PTA A and a
subset G of its locations, EF-universality asks: “are all parameter valuations v
such that G is reachable in v(A) from the initial state?” And AF-emptiness asks:
“is the set of valuations v such that G is unavoidable in v(A) empty?”

3 Undecidability of EF-Emptiness

Let us first recall the following classical result for PTAs.

Theorem 1 [15]. The EF-emptiness problem is undecidable for bounded PTAs.

We provide an alternative and original proof of this result. This new con-
struction is similar to that of Miller [15], but it might be seen as a bit simpler
and we will provide a complete proof. And above all, it allows us to extend it to
obtain several of the main results of this paper.

Proof. We build a PTA that encodes a 2-counter machine (2CM) [16], such that
the machine halts iff there exists some valuation of the parameters of the PTA
such that it reaches a specific location.

Recall that such a machine has two non-negative counters C1 and C2, a finite
number of states and a finite number of transitions, which can be of the form:

– when in state si, increment Ck and go to sj ;
– when in state si, decrement Ck and go to sj ;
– when in state si, if Ck = 0 then go to sj , otherwise block.

The machine starts in state s0 and halts when it reaches a particular state
lhalt. The halting problem for 2-counter machines is undecidable [16].

Given such a machine M, we now provide an encoding as a PTA A(M):
each state si of the machine is encoded as a location of the automaton, which
we also call si.
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l0 s0

x = 1
x := 0

(a) EF-emptiness: initial gadget

si li1

li2

l′i2

li3 sj
x = 0

z = 1,
z := 0

y = a+ 1,
y := 0

y = a+ 1,
y := 0

z = 1,
z := 0

x = 1,
x := 0

(b) EF-emptiness: increment gadget

Fig. 1. EF-emptiness: gadgets

The counters are encoded using clocks x, y and z and one parameter a,
with the following relations with the values c1 and c2 of counters C1 and C2:
in any location si, when x = 0, we have y = 1 − ac1 and z = 1 − ac2. Note
that all three clocks are parametric, i.e., are compared with a in some guard or
invariant. We will see that a is a rational-valued bounded parameter, typically
in [0, 1]. The main idea of our encoding is that, to correctly simulate the machine,
the parameter must be sufficiently small to encode the maximum value of the
counters, i.e., for 1−ac1 and 1−ac2 to stay non-negative all along the execution
of the machine.

We initialize the clocks with the gadget in Fig. 1a. Clearly, when in s0 with
x = 0, we have y = z = 1, which indeed corresponds to counter values 0.

We now present the gadget encoding the increment instruction of C1 in
Fig. 1b. The transition from si to li1 only serves to clearly indicate the entry
in the increment gadget and is done in 0 time unit.

Since we use only equalities, there are really only two paths that go through the
gadget: one going through li2 and one through l′i2. Let us begin with the former.

We start from some encoding configuration: x = 0, y = 1−ac1 and z = 1−ac2
in si (and therefore the same in li1). We can enter li2 (after elapsing enough
time) if 1 − ac2 ≤ 1, i.e., ac2 ≥ 0, which implies that a ≥ 0, and when entering
li2 we have x = ac2, y = 1 − ac1 + ac2 and z = 0. Then we can enter li3 if
1 − ac1 + ac2 ≤ 1 + a, i.e., a(c1 + 1) ≥ ac2. When entering li3, we then have
x = a(c1 + 1), y = 0 and z = a(c1 + 1) − ac2. Finally, we can go to sj if
a(c1 + 1) ≤ 1 and when entering sj we have x = 0, y = 1 − a(c1 + 1) and
z = 1 − ac2, as expected.

We now examine the second path. We can enter l′i2 if 1 − ac1 ≤ a + 1,
i.e., a(c1 + 1) ≥ 0, and when entering l′i2 we have x = a(c1 + 1), y = 0 and
z = 1 − ac2 + a(c1 + 1). Then we can go to li3 if 1 − ac2 + a(c1 + 1) ≤ 1 + a, i.e.,
a(c1 + 1) ≤ ac2. When entering li3, we then have x = ac2, y = ac2 − a(c1 + 1)
and z = 0. Finally, we can go to sj if ac2 ≤ 1 and when entering sj we have
x = 0, y = 1 − a(c1 + 1) and z = 1 − ac2, as expected.

Remark that exactly one path can be taken depending on the respective order
of c1 +1 and c2, except when both are equal or a = 0, in which cases both paths
lead to the same configuration anyway.

Decrement is done similarly by replacing guards y = a + 1 with y = 1, and
guards x = 1 and z = 1 with x = a + 1 and z = a + 1, respectively.
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From si, to encode zero-testing C1 and going to sj , we only need to add a
transition from si to sj with guard y = 1 ∧ x = 0.

All those gadgets also work for C2 by swapping y and z.
Finally, we add another location l′halt and a transition from lhalt to l′halt

with guard 0 < x < 1 and x = a. This implies the constraint 0 < a < 1 when
reaching l′halt. This is important, in order to remove the a = 0 value, which does
not encode the counters properly. (Note that we could also do this as early as the
initialization gadget; however, it is convenient to leave it here for the subsequent
proofs reusing this proof.) Removing the value a = 1, which would be possible if
both counters are always 0, is not necessary but it will be useful in subsequent
proofs.

Let us now prove that the machine halts iff there exists a parameter valua-
tion p such that p(A) can reach l′halt. Consider two cases:

1. Either the machine halts, then the automaton can go into the l′halt location,
with constraints 0 < a < 1 and, if c is the maximum value of both C1 and
C2 over the (necessarily finite) halting run of the machine, and if c > 0, then
a ≤ 1

c . The set of such valuations for a is certainly non-empty: a = 1
2 belongs

to it if c = 0 and a = 1
c does otherwise;

2. Or the machine does not halt. There are two subcases:
(a) either the counters stay bounded. Let c be their maximal value. As before,

if c = 0 and 0 < a ≤ 1 or c > 0 and ca < 1, then the machine is correctly
encoded and the PTA cannot reach l′halt. Otherwise, at some point during
an incrementation of, say, C1 we will have a(c1 + 1) > 1 when taking the
transition from li2 to li3 and the PTA will be blocked;

(b) or one of the counters is not bounded, say C1. Then whatever the value of
a > 0, we have the same situation as in the previous item: the automaton
blocks during some incrementation.

In both subcases, the automaton cannot reach the l′halt location and the set
of parameters such that it does is obviously empty.

��
Remark 1. We use guards with constraints y = a+1 while our definition of PTAs,
following [2], only allows comparisons of a clock with a single parameter. Note
however, and that will be true for all subsequent constructions, that transitions
with y = a + 1 guards and y := 0 reset can be equivalently replaced by one
transition with an y = 1 guard and a reset of some additional clock w, followed
by a transition with a w = a guard and the y := 0 reset (and similarly for x
and z is the decrement gadget). This allows the proof to work without complex
parametric expressions in guards and uses only one parametric clock and three
normal clocks, with one parameter, matching the best known results with that
respect [15].

Now, by reusing the previous proof, we can show that the EF-emptiness
problem is undecidable for closed bounded PTAs. To the best of our knowledge,
this is an original result, as all existing results with bounded PTAs (e. g., [11,15])
require strict inequalities.
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Theorem 2. The EF-emptiness problem is undecidable for closed bounded
PTAs.

4 Integer-Points Parametric Timed Automata

In this section, we introduce integer-points parametric timed automata (IP-PTAs
for short), i.e., a subclass of PTAs in which any symbolic state contains at
least one integer point. Our first result is to prove the decidability of the EF-
emptiness problem for bounded IP-PTAs (Sect. 4.1). Then, we compare IP-PTAs
with L/U-PTAs and show that the class of bounded IP-PTAs is strictly larger
than bounded L/U-PTAs with non-strict inequalities (Sect. 4.2). We then show
that synthesis is intractable in practice, and that the same holds for bounded
L/U-PTAs (Sect. 4.3). Finally, although we prove that the membership problem
is undecidable for IP-PTAs, we exhibit a syntactic sufficient condition, that
provides a new subclass of PTAs for which the EF-emptiness problem is decidable
(Sect. 4.4).

Definition 4. A PTA A is an integer points PTA (in short IP-PTA) if, in any
reachable symbolic state (l, C) of A, C contains at least one integer point.

4.1 A Decidability Result for Bounded IP-PTAs

Our main positive result is that the EF-emptiness problem is decidable for
bounded IP-PTAs.

Theorem 3. The EF-emptiness problem is decidable (and PSPACE-complete)
for bounded IP-PTAs.

Proof. We first need to recall two lemmas relating symbolic and concrete runs
(proved in [4,13]).

Given a concrete (respectively symbolic) run (l0,0) e0�→ (l1, w1)
e1�→ · · · em−1�→

(lm, wm) (respectively (l0, C0)
e0⇒ (l1, C1)

e1⇒ · · · em−1⇒ (lm, Cm)), we define the
corresponding discrete sequence as l0

e0⇒ l1
e1⇒ · · · em−1⇒ lm. Two runs (concrete

or symbolic) are said to be equivalent if their associated discrete sequences are
equal.

Lemma 1. Let A be a PTA, and v be a parameter valuation. Let ρ be a run
of A reaching a symbolic state (l, C). Then, there exists an equivalent run in the
TA v(A) reaching a concrete state (l, w) (for some w) iff v |= C↓P .

Lemma 2. Let A be a PTA, and v be a parameter valuation. Let ρ be a run
of the TA v(A) reaching a concrete state (l, w). Then there exists an equivalent
run in A reaching a symbolic state (l, C), for some C such that v |= C↓P .
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Let A be a bounded IP-PTA. EF-emptiness is false for A iff there exists a
valuation v such that a run of v(A) reaches a location in some predefined set G.
Assume there exists a valuation v such that a run of v(A) reaches l, with l ∈ G.
From Lemma 2, there exists a symbolic run of A reaching a symbolic state (l, C),
for some C. Since A is an IP-PTA, C contains at least one integer point. Hence
there exists an integer parameter valuation v′ |= C↓P ; hence from Lemma 1,
there exists a concrete run of v′(A) reaching l. This gives that EF-emptiness is
false for A iff there exists an integer valuation v′ such that a run of v′(A) reaches
a location in G.

Hence, deciding whether some valuation permits to reach l reduces to decid-
ing whether some integer valuation permits to do so, which, for bounded PTAs,
is PSPACE-complete [14]. ��
In practice, [14] proposes efficient symbolic algorithms to synthesize all the inte-
ger parameter valuations that permit to reach some given location, and thus to
solve EF-emptiness for IP-PTAs.

4.2 Comparison with L/U-PTAs

Let us now compare IP-PTAs and L/U-PTAs. We first need the following lemma,
stating that any reachable symbolic state of an L/U-PTA contains an integer
parameter valuation.

Lemma 3. Let (l, C) be a reachable symbolic state of an L/U-PTA. Then C↓P
contains at least one integer point.

Proof. Consider a (non-empty) reachable symbolic state (l, C) of an L/U-PTA.
Let v |= C↓P . From the well-known monotonicity property of L/U-PTAs (exhib-
ited in [13]), any parameter valuation such that the lower-bound parameters p−

i

are lower or equal to v(p−
i ) and upper-bound parameters p+j are greater than or

equal to v(p+j ) also belong to C↓P . In particular, this is the case of the integer
parameter valuation assigning 0 to all lower-bound parameters, and assigning to
upper-bound parameters p+j the smallest integer greater than or equal to v(p+j ).

��
The previous lemma that ensures the presence of an integer parameter valua-
tion in any symbolic state does not guarantee that an L/U-PTA is an IP-PTA,
because clocks may have non-integer values.

Proposition 1. The class of IP-PTAs is incomparable with the class of L/U-
PTAs.

Proof

– Consider an L/U-PTA with a transition guarded by x > 0 and resetting no
clock, followed by a second location with invariant x < 1; then, necessarily,
the symbolic state associated with this second location contains no integer
point (as x ∈ (0, 1) in that symbolic state).
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– It is easy to exhibit an IP-PTA that is not an L/U-PTA. This is for example the
case of a simple PTA with only one location, one clock x and one parameter p
with a self-loop with guard x = p and resetting x. ��

However, we can prove that any closed L/U-PTA, i.e., with only non-strict
inequalities, is an IP-PTA. In order to show that the class of closed L/U-PTAs
is included in IP-PTAs, we need the following lemma.

Lemma 4. Let A be a PTA with only non-strict inequalities. Let s = (l, C)
be a symbolic state of A. Then if C↓P contains at least one integer parameter
valuation, then C contains an integer point.

Proof. Since there is at least one integer parameter valuation v in C↓P , then
v(C) is not empty. Since v is an integer valuation, v(C) is a zone of a timed
automaton with integer constants, so the vertices of v(C) are integer points.
Finally, there is at least one vertex in v(C) because all clocks are nonnegative
(and hence are bounded from below by 0), and this vertex does belong to v(C)
because it is topologically closed due to the non-strict constraints. So C contains
at least one integer point. ��
Proposition 2. The class of IP-PTAs is strictly larger than the class of closed
L/U-PTAs.

Proof. From Lemmas 3 and 4, and Proposition 1 (⇐). ��
The previous result also holds for bounded PTAs:

Proposition 3. The class of bounded IP-PTAs is strictly larger than the class
of closed bounded L/U-PTAs.

Proof. Lemma 3 extends to bounded L/U-PTAs, since the bounds are integers
(this would not hold otherwise). Then, the proof of Proposition 1 (⇐) holds with
bounded IP-PTAs and closed bounded L/U-PTAs. Applying Lemma4 concludes
the proof. ��
Proposition 4. The class of bounded IP-PTAs is incomparable with the class
of bounded L/U-PTAs. The class of bounded IP-PTAs is incomparable with the
class of L/U-PTAs.

Proof. The proof of Proposition 1 can be applied with bounded PTAs on either
side. ��
Since bounded IP-PTAs are incomparable with L/U-PTAs (for which the EF-
emptiness problem is known to be decidable), and since L/U-PTAs are the only
non-trivial subclass of PTAs for which this problem is known to be decidable,
then Theorem 3 strictly extends the subclass of PTAs for which this problem is
decidable.
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4.3 Intractability of the Synthesis

Although the EF-emptiness problem is decidable for L/U-PTAs [13], the syn-
thesis seems to pose practical problems: it was shown in [14] that the solution
to the EF-synthesis problem for L/U-automata, if it can be computed, cannot
be represented using any formalism for which emptiness of the intersection with
equality constraints is decidable. In particular, this rules out the possibility of
computing the solution set as a finite union of polyhedra.

We reuse the intuition of this result and extend it to closed bounded L/U-
PTAs.

Theorem 4. If it can be computed, the solution to the EF-synthesis problem
for closed bounded L/U-automata cannot be represented using any formalism for
which emptiness of the intersection with equality constraints is decidable.

Proof. We reuse the idea of [10] used for proving that constrained emptiness for
infinite runs acceptance properties is undecidable, and reused in [14, Theorem
2]. Suppose that the solution to the EF-synthesis problem for closed bounded
L/U-PTAs can be represented using a formalism for which emptiness of the
intersection with equality constraints is decidable. Assume a closed bounded
PTA A; for each parameter pi of A that is used both as an upper bound and a
lower bound, replace its occurrences as upper bounds by a fresh parameter pui
and its occurrences as lower bounds by a fresh parameter pli. We therefore obtain
a closed bounded L/U-PTA. Assume we can derive a solution to the EF-synthesis
problem for this closed bounded L/U-PTA, and let K be that solution. Then,
by hypothesis, we can decide whether K ∧ ∧

i p
l
i = pui is empty or not; hence,

we can solve the EF-emptiness for A, which contradicts the undecidability of
EF-emptiness for closed bounded PTAs (from Theorem2). ��
Corollary 1. If it can be computed, the solution to the EF-synthesis problem
for IP-PTAs cannot be represented using any formalism for which emptiness of
the intersection with equality constraints is decidable.

Proof. From the fact that a closed bounded L/U-PTA is an IP-PTA. ��

4.4 Membership

We first show that it cannot be decided in general whether a PTA is a (bounded)
IP-PTA.

Theorem 5. It is undecidable whether a PTA is an IP-PTA, even when
bounded.

Proof. Let us consider the PTA A(M) encoding the 2-counter machine M pro-
posed in our proof of Theorem1. The PTA A(M) has only one parameter a and
all the symbolic states of A(M) contain the integer value a = 0 except the states
corresponding to the location l′halt. Since all constraints are non-strict, except
that of the transition leading to l′halt, all reachable symbolic states, except those
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associated with l′halt, contain an integer point. Then the PTA A(M) reaches
the location l′halt if and only if A(M) is not an IP-PTA. As a consequence, this
PTA is an IP-PTA iff the 2-counter machine does not halt. Finally, note that
this PTA can be bounded by 0 ≤ a ≤ 1, without any change in the reasoning
above. ��

Nevertheless, Proposition 2 provides a sufficient syntactic membership con-
dition, since any closed L/U-PTA is an IP-PTA. In addition, we now define
another new non-trivial set of restrictions leading to IP-PTAs:

Definition 5 (Reset-PTA). A reset-PTA is a PTA where:

– all guards and invariants are conjunctions of constraints of the form x ≤ p+k,
x ≥ p + k, x ≤ k, or x ≥ k, with x a clock, p a parameter, and k an integer;

– and all clocks are reset to 0 on any transition with a guard or a source location
invariant in which a parameter appears.

This kind of restriction is somewhat reminiscent of those enforced by initial-
ized hybrid automata [12] to obtain decidability. We now prove that reset-PTAs
are IP-PTAs, which in turn means that the EF-emptiness problem is decidable
for bounded reset-PTAs. It is worth noting that, to the best our knowledge,
bounded reset-PTAs and L/U-PTAs are the only non-trivial sets of syntactic
restrictions of PTAs making the reachability emptiness problem decidable.

Theorem 6. Any reset-PTA is an IP-PTA.

Recall that the synthesis is intractable for bounded IP-PTAs (from
Corollary 1) and for bounded L/U-PTAs. In contrast, and although studying
reset-PTAs in detail goes beyond the scope of this work, we highly suspect that
exact synthesis can be computed for reset-PTAs (see remarks in Sect. 6).

5 New (Un)decidability Results for PTAs

In this section, we take advantage of the newly introduced class of IP-PTAs to
solve several open problems on the more general class of PTAs; these results
allow us to draw a better cartography of several subclasses of PTAs.

5.1 Undecidability of EF-Universality

We show below that, unlike L/U-PTAs, the EF-universality problem is unde-
cidable for IP-PTAs even bounded. This result differentiates the classes of
(bounded) L/U-PTAs and bounded IP-PTAs, and helps to understand better
the boundary between decidability and undecidability for subclasses of PTAs.

Theorem 7. The EF-universality problem is undecidable for bounded IP-PTAs.

Corollary 2. The EF-universality problem is undecidable for IP-PTAs, for
bounded PTAs, and for PTAs.

Proof. From Theorem 7 and from the fact that a bounded IP-PTA is an IP-PTA,
is a bounded PTA, and is a PTA. ��
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5.2 Undecidability of AF-Emptiness

It is known that AF-emptiness is undecidable for L/U-PTAs [14]; reusing the
encoding of the 2-counter machine proposed in our proof of Theorem1, we now
show that this result holds even for bounded L/U-PTAs.

Theorem 8. The AF-emptiness problem is undecidable for bounded L/U-PTAs.

Corollary 3. The AF-emptiness problem is undecidable for bounded IP-PTAs,
for IP-PTAs and for bounded PTAs.

Proof. The AF-emptiness problem is undecidable for bounded L/U-PTAs (The-
orem 8), which immediately gives the undecidability for bounded PTAs.

Furthermore, the PTA used in the proof of Theorem8 only uses non-strict
inequalities; furthermore, a− = 0 and a+ = 1 is a parameter valuation solution
of any symbolic state. Hence, from Lemma 4, this PTA is a bounded IP-PTA,
which gives the result for bounded IP-PTAs. As a consequence, the result also
holds for general IP-PTAs. ��

5.3 Summary

Before being able to summarize our results in Table 1, we need to prove two
further missing results.

Theorem 9. The EF-emptiness problem is undecidable for IP-PTAs.

Proof. The proof of the undecidability of the EF-emptiness problem for general
PTAs in [2] can be interpreted over integer parameter valuations. Any symbolic
state contains at least one integer parameter valuation (the one that is large
enough to correctly encode the value of the two counters), as well as all larger
parameter valuations. Furthermore, since the proof only uses non-strict inequal-
ities (in fact only equalities), from Lemma4, all symbolic states contain at least
one integer point. Hence the PTA used in [2] to encode the 2-counter machine
is an IP-PTA. ��
Finally, we show below (without surprise) that the EF-emptiness problem (shown
to be decidable for L/U-PTAs [13]) and the EF-universality problem (shown to
be decidable for integer-valued L/U-PTAs [10]) are also decidable for bounded
L/U-PTAs.

Table 1. Decidability results for PTAs and some subclasses

Class bL/U-PTAs bIP-PTAs L/U-PTAs IP-PTAs bPTAs PTAs

EF-empt. Th. 10 Th. 3 [13] Th. 9 [15] [2]

EF-univ. Th. 10 Th. 7 [10] Cor. 2 Cor. 2 Cor. 2

AF-empt. Th. 8 Cor. 3 [14] Cor. 3 Cor. 3 [14]
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Theorem 10. The EF-emptiness and EF-universality problems are decidable
for bounded L/U-PTAs.

Proof. In [10,13], it is shown that decreasing a lower-bound parameter p−
i or

increasing an upper-bound parameter p+j in an L/U-PTA A can only add behav-
iors. Hence, deciding EF-emptiness can be done by testing the reachability of
the location in the TA obtained from A by instantiating all p−

i s with 0 and
all p+j s with ∞. (Recall that testing the reachability of a location in a TA is
decidable [1].) For a bounded L/U-PTA, this can be done in a similar manner,
by testing the reachability of the location in the TA obtained from A by instan-
tiating all p−

i s with their minimal value and all p+j s with their maximal value in
the (closed) bounded parameter domain.

EF-universality can be solved similarly, except that p−
i s are replaced with

their upper bound and p+j s are replaced with their lower bound. ��
We give a summary in Table 1. We give from left to right the (un)decidability for
bounded L/U-PTAs, bounded IP-PTAs, L/U-PTAs, IP-PTAs, bounded PTAs,
and PTAs. Decidability is given in bold green, whereas undecidability is given
in thin red. Our contributions are depicted using a plain background, whereas
existing results are depicted using a light background.

We give another summary in Fig. 2. Note that bounded L/U-PTAs and L/U-
PTAs are in fact incomparable of terms of expressiveness [7]; they are therefore
not included into each other in the figures. Decidability (resp. undecidability) is
depicted in plain green (resp. dashed red); open problems are depicted in dotted
black. Our contributions are depicted in thick.

bounded L/U

L/U

IP-PTA

closed L/U

bounded PTAs

PTAs

(a) EF-emptiness

bounded L/U

L/U

IP-PTA

closed L/U

bounded PTAs

PTAs

(b) EF-universality

bounded L/U

L/U

IP-PTA

closed L/U

bounded PTAs

PTAs

(c) AF-emptiness

Fig. 2. Decidability results for PTAs and subclasses (Color figure online)

6 Conclusion

In this paper, we exhibited a new subclass of PTAs (namely bounded IP-PTAs)
for which the EF-emptiness problem is decidable. By showing that bounded IP-
PTAs are incomparable with L/U-PTAs, we strictly extend the set of PTAs for
which this problem is decidable. Although we showed that it cannot be decided
whether a PTA is an IP-PTA, we introduced a new syntactic subclass of IP-
PTAs, namely reset-PTAs, for which, when bounded, the EF-emptiness problem
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is decidable. It is worth noting that, to the best our knowledge, there is no
other non-trivial set of syntactic restrictions making the reachability emptiness
problem decidable for PTAs (aside from L/U-PTAs, of course).

In a second part, we considered three decision problems, and contributed in
solving several open problems for PTAs and subclasses: this was achieved thanks
to the results proved for IP-PTAs, and to (variations of) an original proof for
the undecidability of the EF-emptiness problem for general PTAs with a single
bounded rational-valued parameter and only non-strict constraints.

Future Works. Our new class of reset-PTAs seems promising in terms of synthe-
sis, as the symbolic states have a very special form. Using a proper extrapolation,
exact synthesis might be achievable. In addition, we are interested in extending
this class to hybrid systems, and combining its restrictions with the condition
of initialized hybrid automata [12]. The AF-universality problem is not treated
in this paper, as it connects in an interesting manner with the problems of the
existence of deadlocks or livelocks, which warrants a study on its own: in [5], we
show in particular that the AF-universality problem is decidable for bounded
L/U-PTAs with a closed parameter domain, and becomes undecidable if we lift
either the assumption of boundedness or of closedness. Finally, all problems
undecidable for L/U-PTAs remain open for L-PTAs and U-PTAs.
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