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Abstract. Correctness of concurrent objects of safety properties such
as linearizability, sequential consistency, and quiescent consistency, and
progress properties such as wait-, lock-, and obstruction-freedom. These
properties, however, only refer to the behaviour of the object in isolation,
which does not tell us what guarantees these correctness conditions on
concurrent objects provide to their client programs. This paper inves-
tigates the links between safety and progress properties of concurrent
objects and a form of trace refinement for client programs, called contex-
tual trace refinement. In particular, we show that linearizability together
with a minimal notion of progress are sufficient properties of concurrent
objects to ensure contextual trace refinement, but sequential consistency
and quiescent consistency are both too weak. Our reasoning is carried out
in the action systems framework with procedure calls, which we extend
to cope with non-atomic operations.

1 Introduction

Concurrent objects provide operations that can be executed simultaneously by
multiple threads, and provide a layer of abstraction to programmers by managing
thread synchronisation on behalf of client programs, which in turn improves
safety and efficiency. Correctness of concurrent objects is usually defined in terms
of the possible histories of invocation and response events generated by executing
the operations of a sequential specification object. There are several notions of
safety for concurrent objects [7,12]: sequential consistency, linearizability, and
quiescent consistency being the most widely used. Similarly, there are many
different notions of progress [12,13], e.g., wait-, lock- and obstruction-freedom
are popular non-blocking conditions.

Both safety and progress properties are stated in terms of a concurrent object
in isolation, and disregard their context, i.e., the client programs that use them.
Programmers (i.e., client developers) have therefore relied on informal “folk the-
orems” to link correctness conditions on concurrent objects and substitutability
of objects within client programs. We seek to provide a formal account of this
relationship, addressing the question: “Provided concurrent object OC is correct
with respect to sequential object OA, how are the behaviours of C[OA] related
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to those of C[OC ]?”, where C[O ] denotes a client program C that uses object
O , for different notions of correctness. One of the first answers to this ques-
tion was given by abstraction theorems [9], linking safety properties: sequential
consistency and linearizability to a contextual notion of correctness called obser-
vational refinement, which defines substitutability with respect to the initial
and final state of a system’s execution. For terminating clients, linearizability is
shown to be equivalent to observational refinement, while sequential consistency
is shown to be equivalent to observational refinement provided that clients do
not communicate outside the given objects.

Since non-termination is common in many concurrent systems, e.g., oper-
ating systems and real-time controllers, our work aims to understand the
link between concurrent correctness and substitutability for potentially non-
terminating clients. Related to this aim is the work of Gotsman and Yang [10] and
Liang et al. [15], who link observational refinement to safety and progress prop-
erties of concurrent objects. However, both [10,15] assume that the concurrent
objects in question are already linearizable; in contrast, we do not assume lin-
earizability. Further, [10] aims to understand compositionality of progress prop-
erties, while [15] develops characterisations of progress properties based on their
observational guarantees.

The motivation for our work differs from [10,15] in that we take contextual
trace refinement as the underlying correctness condition when substituting OC
for OA in C, then aim to understand the safety/progress properties on OC
that are required to guarantee trace refinement between C[OA] and C[OC ]. To
this end, we develop an action systems framework that integrates and extends
existing work [1,18] from the literature, building on our preliminary results on
this topic [8]. As part of our contributions we (i) extend Sere and Waldén’s
treatment of action systems with procedures [18] with non-atomic procedures;
(ii) develop a theory for contextual trace refinement, adapting Back and von
Wright’s [1] theory for trace refinement of action systems, then reduce system-
wide proof obligations (i.e., properties of the client and object together) to proof
obligations on the objects only; (iii) show that linearizability [14] and minimal
progress [13] together are sufficient to guarantee contextual trace refinement;
and (iv) show that both sequential consistency and quiescent consistency are
too weak to ensure contextual trace refinement, even in the presence of minimal
progress.

2 Concurrent Objects and Their Clients

We motivate concurrent objects using Treiber’s stack (Sect. 2.1). An example
stack client (Sect. 2.2) is used to motivate contextual trace refinement (Sect. 2.3).

2.1 Client-Object Systems

We consider concurrent systems where a client consists of multiple threads which
interact with one or more concurrent objects and shared variables. For example,
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the following client program consists of threads 1 and 2 using a shared stack s,
and variables x, y and z.

Init x, y, z = 0, 0, 0

Thread 1: Thread 2:

T1: s.push (1); U1: s.pop(y);

T2: s.push (2); U2: z := x;

T3: s.pop(x);

Fig. 1. Abstract stack Fig. 2. The Treiber stack

Thread 1 pushes 1 then 2 onto the stack s, then pops the top element of s and
stores it in x. Concurrently, thread 2 pops the top element of s and stores it in
y, then reads the value of x and stores it in z.

The abstract behaviour of a stack is defined in terms of a sequential object, as
shown in Fig. 1. The abstract stack consists of a sequence of elements S together
with two operations push and pop (‘〈’ and ‘〉’ delimit sequences, ‘〈 〉’ denotes the
empty sequence, and ‘�’ denotes sequence concatenation). Note that when the
stack is empty, pop returns a special value empty that cannot be pushed onto
the stack.

If concurrent objects are implemented using fine-grained concurrency, the
call statements in their clients are not necessarily atomic because they may
invoke non-atomic operations. Furthermore, depending on the implementation
of s, we will get different traces of the client program because the effects of the
concurrent operations on s may take effect in different orders. For example, Fig. 2
presents a simplified version of a non-blocking stack example due to Treiber [19].
In this implementation, each line of the push and pop corresponds to a single
atomic step. Synchronisation of push and pop operations is achieved using a
compare-and-swap (CAS) instruction, which takes as input a (shared) variable
gv, an expected value lv and a new value nv:

CAS(gv, lv, nv) =̂ atomic { if (gv = lv)

then gv := nv ; return true

else return false }
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With this stack implementation, the executions of operations, say T1 and
U1, in the above client may overlap, and different behaviours may be observed
according to the order in which steps of the different threads are executed.
Treiber’s stack is linearizable with respect to the abstract stack in Fig. 1, so the
effect of each operation call takes place between its invocation and its response.
If a different stack implementation is used which satisfies a more permissive
correctness condition, such as sequential consistency or quiescent consistency
[12], a wider range of behaviours may be observed by its client.

2.2 Observability and Contextual Trace Refinement

With an example client-object system in place, we return to the main question
for this paper: What guarantees do correctness conditions on concurrent objects
provide to clients that use the objects? Furthermore, how can one address diver-
gence, termination and reactivity of a client? To address these, we first pin
down the aspects of the system being developed that are visible to an external
observer. Following Filipović et al. [9], we take the state of the client variables to
be observable, and the state of the objects they use to be unobservable. There-
fore, for the client program in Sect. 2.1, variables x, y and z are observable, but
none of the variables of the stack implementation s are observable. This allows
us to reason about a client with respect to different implementations of s. Sec-
ond, we define when a system may be observed. Unlike Filipović et al. [9] who
only observe the client state at the beginning and end of a client’s execution, we
assume that the states throughout a client’s execution are visible. This allows us
to accommodate, for example, reactive clients, which interact with an observer
in some way even if they are potentially non-terminating.

Therefore, our notion of correctness for the combined client-object system
will be a form of observational refinement that holds iff every (observable) trace
of a client using a concurrent object is equivalent to some (observable) trace of
the same client using the corresponding abstract specification of the object. The
end result is that from the perspective of a client program, it will be impossible
to tell whether it is using the concurrent object, or its abstract (sequential)
specification.

Example 1. Let D denote the client program in Sect. 2.1, TS denote the Treiber
stack in Fig. 2, and AS denote the abstract stack in Fig. 1. Suppose the stack s
in D is an instance of TS . Then the following is a possible observable trace of
D[TS ]:

tr =̂ 〈(x , y , z ) �→ (0, 0, 0), (x , y , z ) �→ (0, 2, 0), (x , y , z ) �→ (1, 2, 0), (x , y , z ) �→ (1, 2, 1)〉

where (x , y , z ) �→ (0, 0, 0) is shorthand for the state {x �→ 0, y �→ 0, z �→ 0},
and we ignore stuttering, i.e., consecutive states that leave the observable state
unchanged. Trace tr is obtained by initialising as specified by Init, then execut-
ing T1, T2, U1, T3, then U2 to completion; i.e. they execute their operation call
without interruption. It is straightforward to see that tr can also be generated
by D[AS ], i.e., when using the abstract stack for s. Thus tr can be accepted as
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being correct. Executions can, of course, be much more complicated than tr —
because TS consists of non-atomic operations, executions of T1, T2 or T3 may
overlap with U1 or U2. �

We say that TS contextually trace refines AS with respect to the client program
C iff every trace of C[TS ] is a possible trace of C[AS ]. In this paper, we wish
to know whether contextual refinement holds for every client program. To this
end, we say TS contextually trace refines AS iff TS contextually trace refines
AS with respect to every client program C.

2.3 Correctness Conditions on Concurrent Objects

There are many notions of correctness for concurrent objects, and these are
defined in terms of histories of invocation and response events, corresponding to
operation calls on the object [12] (see Sect. 5 for details).

Concurrent histories may consist of both overlapping and non-overlapping
operation calls, inducing a partial order on events. Safety properties define how,
if at all, this partial order is preserved by the corresponding abstract histories
generated by the corresponding sequential object [7,12]. We will consider three
different safety properties. Sequential consistency is a simple condition requiring
the order of operation calls in a concrete history for a single process to be pre-
served. Operation calls performed by different processes may be reordered in the
abstract history even if the operation calls do not overlap in the concrete his-
tory. Linearizability strengthens sequential consistency by requiring the order of
non-overlapping operations to be preserved. Operation calls that overlap in the
concrete history may be reordered when mapping to an abstract history. Quies-
cent consistency is weaker than linearizability, but is incomparable to sequential
consistency. A concurrent object is said to be quiescent at some point in its his-
tory if none of its operations are executing at that point. Quiescent consistency
requires the order of operation calls that are separated by a quiescent point to
be preserved. Operation calls that are not separated by a quiescent point may
be reordered, including operations performed by the same process.

Progress conditions on concurrent objects are necessary to ensure that clients
will eventually be able to continue execution after calling operations on the
objects they use. We consider a notion of progress called minimal progress [13],
which guarantees that after some finite number of steps, some operation of the
concurrent object terminates.

3 Modelling Client-Object Systems

Our formal framework for reasoning about contextual trace refinement is based
on existing work on action systems with procedures [18], which we extend to cope
with potentially non-atomic operations. We let Var and Val denote the types
of variables and values, respectively. We distinguish between unobservable and
observable variables using VarU and VarO , respectively, where VarU ,VarO ⊆
Var and VarU ∩ VarO = ∅. A state is a function ΣV =̂ V → Val , where
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V ⊆ Var , and a predicate of type K is of type PK =̂ K → B, e.g., a state
predicate over V is of type PΣV .

The abstract syntax of an action system is of the form:

A ::= |[varu L; varo G ; proc ph1 = P1 . . .proc phn = Pn ; I ; do A od ]|
where L ⊆ VarU is a set of unobservable variables and G ⊆ VarO a set of
observable variables; each phi = Pi is a (non-recursive) procedure declaration;
I is an action modelling initialisation; and A is the main action. Within each
phi = Pi , Pi is an action and phi is a procedure heading pi(val v , res x ) with
procedure name pi and optional call-by-value and call-by-result parameters v
and x . Procedure declarations may additionally be parameterised by thread
identifiers.

The abstract syntax of actions is of the form:

A ::= var x | rav x | skip | x :∈ E | x := e | p(in, out) | A1; A2 | b → A | A1 � A2

where x is a variable, E is a set-valued expression, e is an expression, p is a
procedure name, in and out are inputs and outputs to a procedure (which may
be a value or a variable), and b is a predicate. Actions var x and rav x introduce
and remove variable x from the state space, respectively, skip is an action that
leaves the state unchanged, x :∈ E denotes non-deterministic assignment, x := e
denotes assignment, p(e, x ) is a procedure call with value parameter e and result
parameter x , A1; A2 is sequential composition of A1 and A2, b → A is a guarded
action, and A1 	 A2 is (demonic) choice between A1 and A2.

The meaning of parameterless procedures is given by syntactically replacing
each procedure call p in A by the procedure body, P . Procedure parameters
are handled by introducing new local variables with the same name; for call-
by-value, the new variable is initialised with the value of the actual parameter,
while for call-by-results, the final value is copied to the variable passed as the
parameter (see [18]). We give examples of these in Examples 2 and 3 below.

When invoking non-atomic operations, it will be important to detect when
the invoked operation has terminated. To this end, we assume that a variable
p̂ct is used to control the flow of execution within an operation; thus p̂ct must
be declared whenever thread t is currently executing an operation. Formally, we
use state predicate

dec.v =̂ λσ • v ∈ dom(σ)

which holds iff variable v is declared in the domain of the given state. We use
‘.’ for function application.

Example 2. Consider again the client program D from Sect. 2.1 and suppose
it uses the abstract stack object AS in Fig. 1. The action system modelling
the client-object system is D[AS ], given below. The shared stack is a sequence
modelled by an unobservable variable S . The client consists of variables x , y and
z , as well as program counters pc1 and pc2 (which we distinguish from p̂ct). We
assume

npct(k) =̂ (dec.p̂ct → skip) 	 (¬dec.p̂ct → pct := k)

is an action that sets pct to k if t completes the operation it is currently executing.



Contextual Trace Refinement for Concurrent Objects: Safety and Progress 267

|[ varu S ; varo x , y , z , pc1, pc2;

proc pusht(val in) = S := 〈in〉 � S
proc popt(res out) = S = 〈 〉 ∧ ¬dec.p̂ct → var ret , p̂ct ; ret := empty ; p̂ct := 1

� S 	= 〈 〉 ∧ ¬dec.p̂ct → var ret , p̂ct ;
ret ,S := head .S , tail .S ; p̂ct := 1

� p̂ct = 1 → out := ret ; rav ret , p̂ct ;
S , pc1, pc2 := 〈 〉,T1,U 1; x , y , z := 0, 0, 0;
do pc1 = T1 → push1(1); npc1(T2)

� pc1 = T2 → push1(2); npc1(T3)
� pc1 = T3 → pop1(x ); npc1(⊥)
� pc2 = U 1 → pop2(y); npc2(U 2)
� pc2 = U 2 → z , pc2 := x , ⊥ od ]|

�

Example 3. The pusht operation of the Treiber stack is defined as follows. We
assume newNode.n =̂ n :∈ Nodes ; Nodes := Nodes\{n} assigns n to be a new
node from the available set of nodes Nodes. For simplicity, we assume Nodes is
an infinite set (e.g., the natural numbers), so a new node is always available.
Thus we have:

proc pusht(val in) = ¬ dec.p̂ct → var p̂ct , vt ,nt , sst ; vt := in; p̂ct := H 1
	 p̂ct = H 1 → newNode.nt ; p̂ct := H 2

...
	 p̂ct = H 6 → rav p̂ct , vt ,nt , sst

The pop operation is similar, except that it additionally sets the output variable
to the returned value.

proc popt(res out) = ¬ dec.p̂ct → var p̂ct , sst , ssnt , lvt ; p̂ct := P1
...

	 p̂ct = P7 → out := lvt ; rav p̂ct , sst , ssnt , lvt

The action system resulting from using the Treiber stack (which we will refer to
as TS ) as the shared concurrent object in Sect. 2.1 is D[TS ]. It is similar to the
action system in Example 2, except that the unobservable variables are Nodes
(the set of all available nodes), Head (a pointer to a node, or null), val (a partial
function of type Nodes �→ Val), next (a partial function of type Nodes → Node);
the procedure declarations above are used; and initialisation of the object is
Nodes,Head , val ,next := N,null , ∅, ∅. �

We now make the concept of an object and the notation C[O ] for an object
O and client C more precise. An object is a triple O =̂ (L,P , I ), where L is a
set of variables, P =̂ {ph1,t = P1,t , . . . , phn,t = Pn,t} is a set of (potentially
parameterised) procedure declarations, and I is an initialisation action. A client
is a triple C =̂ (G ,A, J ), where G is a set of variables, and A and J are the main
and initialisation actions, respectively. Then C[O ] is the action system

|[varu L; varo G ; proc ph1,t = P1,t . . .proc phn,t = Pn,t ; I ; J ; do A od ]|.
The next section formalises the semantics of action systems and defines our

notion of contextual trace refinement for it.
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4 Semantics and Contextual Trace Refinement

We now give the semantics for action systems and define contextual trace refine-
ment, which extends the existing theory on trace refinement [1]. Note that we
only use part of the action systems framework. In particular, to develop a more
direct link to trace refinement, we only give a relational semantics for actions.

We assume that expressions are functions from states to values. A relation
is of type R(K ,K ′) =̂ K → PK ′, thus a state relation is of type R(ΣV , ΣV ′),
where V ,V ′ ⊆ Var . Assume r , r1 and r2 are state relations, b is a predicate and
S is a set. We let

– (r1 ◦ r2).γ.γ′ =̂ ∃ γ′′ • r1.γ.γ′′ ∧ r2.γ′′.γ′ denote relational composition,
– (b � r).γ.γ′ =̂ b.γ ∧ r .γ.γ′ denote domain restriction, and
– S −� r = {(γ, γ′) ∈ r | γ 
∈ S} denote domain anti-restriction.

For a function f , we let f ⊕ {x �→ v} =̂ λ z ∈ dom(f ) • if z = x then v else f .z
denote functional overriding.

Definition 1. The (relational) semantics of an action A is given by rel .A:

rel .(var x ) =̂ λ σ • λ σ′ • rel .skip =̂ id
({x} −� σ′) = σ ∧ dec.x .σ′ rel .(b → A1) =̂ b � rel .A1

rel .(rav x ) =̂ λ σ • λ σ′ • ({x} −� σ) = σ′ rel .(A1; A2) =̂ rel .A1 ◦ rel .A2

rel .(x := e) =̂ λ σ • λ σ′ • σ′ = σ ⊕ {x �→ e.σ} rel .(A1 � A2) =̂ rel .A1 ∨ rel .A2

rel .(x :∈ E) =̂ λ σ • λ σ′ •
∃ k : E .σ • σ′ = σ ⊕ {x �→ k}

Recall that the semantics of a procedure call is given by substitution as described
in Sect. 3. We let grd .A.γ =̂ γ ∈ dom(rel .A) denote the guard of A. Because
an action system is a loop with a non-deterministic choice over actions [1], we
frequently use iteration in our reasoning. Formally, finite iteration of relation r
(denoted r∗) is defined as follows:

r0 =̂ id rk+1 =̂ r ◦ rk r∗ =̂ ∃ k ∈ N • rk

The semantics of an iterated action is defined by lifting from iteration defined
on relations, namely, rel .A∗ =̂ (rel .A)∗. We say an iterated execution of A ter-
minates from state γ iff term.A.γ =̂ ∃ k • ∀ γ′ • (rel .A)k .γ.γ′ ⇒ ¬grd .A.γ′. Note
that ¬grd .A.γ ⇒ term.A.γ holds for all actions A and states γ.

We use seqX to denote (possibly infinite) sequences of elements of type X ,
and assume indices start from 0.

Definition 2. A possibly infinite sequence of states s is a trace of action system
A iff ∃σ • rel .I .σ.(s.0) ∧ ∀ i : dom(s)\{0} • rel .A.(s.(i − 1)).(s.i) holds.

A trace is complete iff either the trace is of infinite length or the guard of A does
not hold in the last state of the trace. The set of all complete traces of an action
system A is denoted �A �.

Traces (Definition 2) provide a conceptually simple model for a system’s exe-
cution, and trace refinement provides a conceptually simple notion of substi-
tutability [1]. Typically, because a concrete system is more fine-grained than
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the abstract, one must remove stuttering from a trace. An action system may
also exhibit infinite stuttering by generating a trace that ends with an infi-
nite sequence of consecutive stuttering steps. After infinite stuttering, one will
never be able to observe any state changes, and hence, we treat infinite stut-
tering as divergence, which is denoted by a special symbol ‘↑ 
∈ Σ’. For any
trace s ∈ �A �, we define Tr .s to be the non-stuttering observable sequence
of states, possibly followed by ↑, which is obtained from s as follows. First,
we obtain a sequence s ′ by removing all finite stuttering in s and replac-
ing any infinite stuttering in s by ↑. Second, for each i ∈ dom(s ′), we let
(Tr .s ′).i = if s ′.i 
= ↑ then VarU −� s ′.i else ↑. It is straightforward to define
functions that formalise both the steps above (see for example [6]).

Definition 3. Abstract action system A is trace refined by concrete action sys-
tem C (denoted A � C ) iff ∀ s ′ ∈ �C � • ∃ s ∈ �A � • Tr .s = Tr .s ′ holds.

Back and von Wright have developed simulation rules (details elided due to lack
of space) for verifying trace refinement of action systems [1], which we adapt to
reason about client-object systems in Lemmas 1 and 2. First, we formalise the
meaning of contextual trace refinement. The notion is similar to the notion of
data refinement given by He et al. [3,11], but extended to traces, which enables
one to cope with non-terminating reactive systems.

Definition 4. An abstract object OA is contextually trace refined by a concrete
object OC , denoted OA ̂� OC, iff for any client C we have C[OA] � C[OC ].

In this paper, for simplicity, we assume that (atomic) actions do not abort [3],
therefore the proof obligations for aborting actions do not appear in Lemmas 1
and 2 below – it is straightforward to extend our results to take aborting behav-
iour into account. However, like Back and von Wright [1], our notion of refine-
ment ensures total correctness of the systems we develop, i.e., the concrete system
may only deadlock (or diverge) if the abstract system deadlocks (or diverges).
Thus, in addition to the standard step correspondence proof obligations for
ensuring safety of the concrete system, we include Back and von Wright’s proof
obligations that ensure progress.

Because the entire state of the client is observable, the proof obligations
pertaining to the client can be trivially discharged, leaving one with proof oblig-
ations that only refer to the object. For procedure declarations P =̂ {ph1,t =
P1,t , . . . , phn,t = Pn,t}, we let tact .v .x .t .P =̂ p1,t(v , x ) 	 · · · 	 pn,t(v , x ) denote
the choice between procedures in P for inputs v and x and thread t then define:

act .P =̂
�

v ,x ,t tact .v .x .t .P rem.P =̂
�

v ,x ,t dec.p̂ct → tact .v .x .t .P

To simplify the syntax, we implicitly assume that in tact .v .x .t .P the inputs
v and x are of the correct type for each procedure. Guard dec.p̂ct is used to
detect whether the procedure being executed by thread t has terminated — if
t is executing a procedure, say phi,t , we know dec.p̂ct will hold and when this
procedure terminates ¬dec.p̂ct will hold, which disables thread t . The intention
is to use rem.P in (4) below, which attempts to execute the remaining steps of
the running operations by each thread to completion.
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Lemma 1 (Forward Simulation). If OA = (LA,PA, IA) and OC =
(LC ,PC , IC ) are objects, then OA ̂� OC if there exists a relation R and the
following hold for any states σ, τ and τ ′:

rel .IC .τ.τ ′ ⇒ ∃σ′ • R.σ′.τ ′ ∧ rel .IA.σ.σ′ (1)
R.σ.τ ∧ rel .(act .PC ).τ.τ ′ ⇒ ∃σ′ • R.σ′.τ ′ ∧ rel .(act .PA)∗.σ.σ′ (2)
R.σ.τ ∧ ¬grd .(act .PC ).τ ⇒ ¬grd .(act .PA).σ (3)

true ⇒ term.(rem.PC ).τ (4)

The first three proof obligations are straightforward. Proof obligation (4) requires
that the main action of the concrete object OC terminates if threads do not
invoke new operations after the operation currently being executed has termi-
nated. Note that (4) does not rule out infinite stuttering within the program
C[OC ], but it does ensure that any infinite stuttering is caused by the client
as opposed to the object OC , and hence, this infinite stuttering must also be
present within C[OA]. Therefore, if (4) holds, so does Back and von Wright’s
non-termination condition.

Dually to forward simulation, there exists a method of backward simulation,
which requires that the abstract action system under consideration is continuous.
An action system A with main action A is continuous iff for all σ, the set
{σ′ | rel .A.σ.σ′} is finite, i.e., A does not exhibit infinite non-determinism.

Lemma 2 (Backward Simulation). Suppose OA = (LA,PA, IA) and OC =
(LC ,PC , IC ) are objects and C is a client such that C[OA] is continuous. Then
C[OA] � C[OC ] holds if there exists a total relation R and for any states σ′ and
τ, τ ′ condition (4) as well as each of the following hold:

rel .IC .τ.τ ′ ∧ R.σ′.τ ′ ⇒ ∃σ • rel .IA.σ.σ′ (5)
rel .(act .PC ).τ.τ ′ ∧ R.σ′.τ ′ ⇒ ∃σ • R.σ.τ ∧ rel .(act .PA)∗.σ.σ′ (6)

¬grd .(act .PC ).τ ⇒ ∃σ • R.σ.τ ∧ ¬grd .(act .PA).σ (7)

Lemmas 1 and 2 reduce the proof obligations for trace refinement of client-object
systems to the level of objects only. This allows one to explore properties of
objects in isolation to guarantee contextual trace refinement.

5 Events and Histories

This section provides background for defining safety (e.g., linearizability) and
progress (e.g., lock-freedom) properties of concurrent objects [12]. We define
both types of properties in terms of histories of invocation and response events
[12,14] that record the externally visible interaction between a client and the
object it uses. The type of an event is Event , which is defined as follows [4]:

Event :: = inv〈〈N × Op × (Val ∪ {⊥})〉〉 | ret〈〈N × Op × (Val ∪ {⊥})〉〉
The components of each event are the thread identifier, the operation name and
input/output values. We use ⊥ 
∈ Val to denote an invocation (return) event
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that has no input (output). Thus, for example, inv(1, push, 2) denotes an push
invocation by thread 1 with value 2, and ret(1, push,⊥) denotes a return from
this invocation.

The history of an object is a (potentially infinite) sequence of events, i.e.,
History =̂ seqEvent . A history of an object is generated by an execution of a
most-general client for the object [5]. We formalise the concept of a most general
client in our framework in Definition 5 below, but first we describe how invoca-
tions and responses are recorded in a history. For an object O =̂ (L, {ph1,t =
P1,t , . . . , phn,t = Pn,t}, I ) assuming H 
∈ L is a history variable, we let PH

i,t

be the history-extended procedure derived from Pi,t by additionally recording
invocation and response events in H (also see [4]).

Example 4. The history-extended procedure for pusht from Example 2 is:

H := H � 〈inv(t , push, in)〉; S := 〈in〉 � S ; H := H � 〈ret(t , push,⊥)〉
while the history-extended version of pusht procedure from Example 3 is:

¬ dec.p̂ct → var p̂ct , vt ,nt , sst ; vt := in;
H := H � 〈inv(t , push, in)〉; p̂ct := H 1

...

	 p̂ct = H 6 → H := H � 〈ret(t , push,⊥)〉; rav p̂ct , vt ,nt , sst

�

Definition 5. The most general client of O =̂ (L, {ph1,t = P1,t , . . . , phn,t =
Pn,t}, I ) is the action system M[O ] below, where H 
∈ L is its history, tt 
∈ L is a
fresh variable that models termination and PH =̂ {ph1,t = PH

1,t . . . phn,t = PH
n,t}

is the set of history extended procedures:

M[O ] =̂ |[varu L ∪ {H , tt}; varo VarO ;
proc ph1,t = PH

1,t . . .proc phn,t = PH
n,t ;

I ; H := 〈 〉; tt := false ;
do ¬tt → act .PH 	 (

�
w :VO ,a:Val w := a) 	 tt := true od ]|

Thus, M[O ] includes unobservable variables H (initially 〈 〉) and tt (initially
false), which model the history and termination of M[O ], respectively. Provided
tt is false, at each iteration of the action system either

– a step of a history-extended procedures of O is executed, or
– some observable variable is set to a non-deterministically chosen value, or
– M[O ] terminates by setting tt to true.

The intention of M[O ] is to model all possible client behaviours, including for
instance faults (where a thread stops running) or a divergence (where a thread
repeatedly executes the same operation).

Definition 6. The set of histories of an object O is given by

{h ∈ seqEvent | ∃ s : �M[O ]� • ∃ i : dom(s) • h = (s.i).H }
.
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6 Contextual Trace Refinement: Progress

The progress condition we will consider is minimal progress, which guarantees
system-wide progress, even though there may be individual threads that may not
make progress [13]. To formalise minimal progress, we say event e1 matches e2 iff
matches(e1, e2) =̂ ∃ t , o, u, v • e1 = inv(t , o, u) ∧ e2 = ret(t , o, v) holds, i.e., e1
is an invocation of an operation by a thread and e2 is the corresponding return.
We say m ∈ dom(h) is a pending invocation iff pi(m, h) =̂ ∀n ∈ dom(h) • m <
n ⇒ ¬matches(h.m, h.n) holds.

An object O satisfies minimal progress iff for every trace tr of the M[O ], it
is always the case that in the future, either M[O ] terminates, or there is some
pending operation invocation that completes and returns.

Definition 7. An object O satisfies minimal progress iff for every s ∈ �M[O ]�
and i ∈ dom(s), there exists a j ∈ dom(s) such that i � j and

(s.j ).tt ∨ ∃m • pi(m, (s.j ).H ) ∧ ¬pi(m, (s.(j + 1)).H ) .

That is, for any trace s of M[O ] and index i ∈ dom(s) there is a state s.j (where
j � i) from which some pending operation in s.j completes. There are a variety
of objects that satisfy minimal progress, e.g., wait-, lock-free objects under any
scheduler, and obstruction-free objects under isolating schedulers (see [13] for
details). Objects that do not satisfy minimal progress include obstruction free
implementations that are executed using a weakly fair scheduler.

The lemma below states that any object that satisfies minimal progress does
not suffer from deadlock, and is guaranteed to terminate if no additional opera-
tions are invoked.

Lemma 3. If O = (L,P , I ) satisfies minimal progress, then for any γ ∈ �M[O ]�
and i ∈ dom(γ), both grd .(act .P).(γ.i) and condition (4) hold.

Using Lemma 3, we simplify and combine Lemmas 1 and 2. In particular, we are
left with the proof obligations for safety only as in the theorem below.

Theorem 1. Suppose OA = (LA,PA, IA) and OC = (LC ,PC , IC ) are objects,
OC satisfies minimal progress, and R ∈ R(ΣLA

, ΣLC
). Then

1. OA ̂� OC if both (1) and (2) hold, and
2. for any client C such that C[OA] is continuous, C[OA] � C[OC ] holds if R is

total and both (5) and (6) hold.

7 Safety and Contextual Trace Refinement

We give the formal definition of safety properties using the nomenclature in [4,7].
We say m,n ∈ dom(h) form a matching pair in h iff mp(m,n, h) holds, where
mp(m,n, h) =̂ m < n ∧ matches(h.m, h.n) ∧ ∀ i • m < i < n ⇒ π1.(h.i) 
=
π1.(h.m) and πi is the projection function returning the ith element of the given
tuple.
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Following [7], safety properties are defined in terms of a history h and a
mapping function f between indices. The sequential history corresponding to h
and f is obtained using map(h, f ) =̂ {f (k) �→ h(k) | k ∈ dom(f )}. Different
safety properties are defined by placing different types of restrictions on f . The
most basic restriction is validity of a mapping. We say a function f is a valid
mapping function if, for any history h, (a) the domain of f is contained in the
domain of h, (b) the range of f is a consecutive sequence starting from 0, (c)
f only maps matching pairs in h, and (d) matching pairs in h are mapped to
consecutive events in the target abstract history. Assuming [m,n] is the set of
integers from m to n inclusive, we formalise validity for mapping functions using
VMF (h, f ), where

VMF (h, f ) =̂ dom(f ) ⊆ dom(h) ∧ (∃n : N • ran(f ) = [0,n − 1]) ∧ injective(f ) ∧
(∀m,n : dom(h) • mp(m,n, h) ⇒ (m ∈ dom(f ) ⇔ n ∈ dom(f ))) ∧
(∀m,n : dom(f ) • mp(m,n, h) ⇒ f .n = f .m + 1)

When formalising correctness conditions, one must also consider incomplete his-
tories, which have pending operation invocations that may or may not have taken
effect. To cope with these, like Herlihy and Wing [14], we use history extensions,
which are constructed from a history h by concatenating a sequence of returns
corresponding to some of the pending invocations of h. A correctness condition
Z is a predicate on a history and a mapping function.

Definition 8. A concurrent object OC implementing an abstract object OA is
correct with respect to a correctness condition Z , denoted OC |=OA Z , iff for
any history h of OC , there exists an extension he of h, a valid mapping function
f such that VMF (he, f ) ∧ Z (he, f ) holds and map(he, f ) is a history of OA.

7.1 Linearizability

We now show that linearizability is a sufficient safety condition for discharging
the proof obligations in Theorem 1. Linearizability is a total condition, which
means that all completed (i.e., returned) operation calls in a given history h must
be mapped by f .1 In addition, it must satisfy an order condition lin, which states
that the return of an operation may not be reordered with an invocation that
occurs after it. We use inv?(e) =̂ ∃ t , o, v • e = inv(t , o, v) if e is an invocation
event and ret?(e) =̂ ∃ t , o, v • e = ret(t , o, v) if e is a response.

total(h, f ) =̂ ∀m : dom(h) • ¬pi(m, h) ⇒ m ∈ dom(f )
lin(h, f ) =̂ ∀m,n : dom(f ) • m < n ∧ ret?(h.m) ∧ inv?(h.n) ⇒ f .m < f .n

Definition 9. We say OC is linearizable with respect to OA iff OC |=OA lin ∧
total .

First, we show contextual trace refinement for a canonical implementation [2,
16,17], which splits each sequential abstract operation call into three actions: an
invocation, an effect action and a response.
1 This is in contrast to partial conditions defined for relaxed memory (see [7] for

details).
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Definition 10. For an abstract procedure pht(val in, res out) = Pt , the canon-
ical implementation of the procedure is:

¬dec.p̂ct → var p̂ct ; p̂ct := 1; H � 〈inv(t , p, in)〉
	 p̂ct = 1 → pht(in, out); p̂ct := 2
	 p̂ct = 2 → rav p̂ct ; H � 〈ret(t , p, out)〉

Invocation and response actions modify the auxiliary history variable by record-
ing the corresponding event, while the effect action has the same effect as the
abstract operation call. Unlike the abstract object, the histories of a canonical
implementation are potentially concurrent.

Theorem 2 (Canonical Contextual Trace Refinement). Suppose OA and
OB are objects, where OB is a canonical implementation of OA. Then OA ̂�OB.

Proof. We use Lemma 1 because OB may not satisfy minimal progress. Here,
rel .act .OB trivially satisfies (4) because by nature each procedure of a canon-
ical object terminates. The proof of (3) requires further consideration because
rel .act .OB may deadlock. For example, OB may be a stack with a pop operation
that blocks when the stack is empty. In such cases, because no data refinement
is performed, the guard of the canonical object is false when the guard of the
abstract object is false, allowing one to discharge (3). The remaining proof oblig-
ations are straightforward. �

Next, we restate a completeness result by Schellhorn et al. [17], who have shown
completeness of backward simulation for verifying linearizability. In particular,
provided OC is a linearizable implementation of OA, they show that it is always
possible to construct a backward simulation relation between the OC and the
canonical implementation of OA.

Lemma 4 (Completeness of Backward Simulation [17]). Suppose
OA,OB and OC are objects and M[OA] is continuous. If OC |=OA lin ∧ total
and OB is a canonical implementation of OA, then there exists a total relation
R such that both (5) and (6) hold between M[OB ] and M[OC ].

Finally, we prove our main result for linearizability, i.e., that linearizability and
minimal progress together preserves contextual trace refinement.

Theorem 3. Suppose object OC is linearizable with respect to OA, OC satisfies
minimal progress, and M[OA] is continuous. If C is a client such that C[OA] is
continuous then C[OA] � C[OC ].

Proof. Construct a canonical implementation OB of OA. By transitivity of �,
the proof holds if both (a) C[OA] � C[OB ] and (b) C[OB ] � C[OC ]. Condition (a)
holds by Theorem 2, and (b) holds by Theorem1 (part 2), followed by Lemma 4.
Application of Theorem1 (part 2) is allowed because if C[OA] is continuous then
C[OB ] is continuous, whereas application of Lemma4 is allowed because if R
satisfies (5) and (6) for M[OB ] and M[OC ], then R also satisfies (5) and (6)
for C[OB ] and C[OC ]. �
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7.2 Sequential and Quiescent Consistency

We now consider contextual trace refinement for concurrent objects that satisfy
sequential consistency and quiescent consistency, both of which are weaker than
linearizability. Both conditions are total [7]. Additionally, sequential consistency
disallows reordering of operation calls within a thread (see sc below), while
quiescent consistency (see qc below) disallows reordering across a quiescent point
(defined by qp below).

sc(h, f ) =̂ ∀m,n : dom(f ) • m < n ∧ π1.(h.m) = π1.(h.n) ∧
ret?(h.m) ∧ inv?(h.n) ⇒ f .m < f .n

qp(m, h) =̂ ∀n : dom(h) • n ≤ m ⇒ ¬pi(n, h[0..m])
qc(h, f ) =̂ ∀m, k ,n : dom(f ) • m < k < n ∧ qp(k , h) ⇒ f .m < f .n

Definition 11. An object OC is sequentially consistent with respect to OA iff
OC |=OA sc ∧ total , and OC is quiescent consistent with respect to OA iff
OC |=OA qc ∧ total .

Our results for sequential consistency and quiescent consistency are nega-
tive — neither condition guarantees trace refinement of the underlying clients,
regardless of whether the client program in question is data independent, i.e., the
state spaces of the client threads outside the shared object are pairwise disjoint.

Theorem 4. Suppose object OC is sequentially consistent with respect to object
OA. Then it is not necessarily the case that OA ̂� OC holds.

Proof. Consider the program in Fig. 3, where the client threads are data inde-
pendent — x is local to thread 1, while y and z are local to thread 2 — and s
is assumed to be sequentially consistent. Suppose thread 1 is executed to com-
pletion, and then thread 2 is executed to completion. Because s is sequentially
consistent, the first pop (at T3) may set x to 1, the second (at U2) may set y to
2. This gives the execution:

〈(x , y , z ) �→ (0, 0, 0), (x , y , z ) �→ (1, 0, 0), (x , y , z ) �→ (1, 0, 1), (x , y , z ) �→ (1, 2, 1)〉

that cannot be generated when using the abstract stack AS from Fig. 1 for s. �

Theorem 4 differs from the results of Filipović et al. [9], who show that for data
independent clients, sequential consistency implies observational refinement. In
essence, their result holds because observational refinement only considers the
initial and final states of a client program — the intermediate states of a client’s
execution are ignored. Thus, internal reorderings due to sequentially consistent
objects have no effect when only observing pre/post states. One can develop
hiding conditions so that observational refinement becomes a special case of
contextual trace refinement, allowing one to obtain the result by Filipović et al.
[9]. Further development of this theory is left for future work. We now give our
result for quiescent consistency.
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Fig. 3. Counter example for
contextual trace refinement and
sequential consistency

Fig. 4. Counter example for contextual
trace refinement and quiescent consistency

Theorem 5. Suppose object OC is quiescent consistent with respect to object
OA. Then it is not necessarily the case that OA ̂� OC holds.

Proof. Consider the program Fig. 4, where the client threads are data indepen-
dent — x and y are local to thread 1, while z is local to thread 2 — and s is
a quiescent consistent stack. The concrete program may generate the following
observable trace:

〈(x , y , z ) �→ (0, 0, 0), (x , y , z ) �→ (1, 0, 0), (x , y , z ) �→ (1, 2, 0), (x , y , z ) �→ (1, 2, 3)〉

Note that the pop operations at T3 and T4 have been reordered, which could
happen if the execution of pop at U 1 overlaps with T1, T2, T3 and T4. The trace
above is not possible when the client uses the abstract stack AS from Fig. 1. �

8 Conclusions

In this paper, we have developed a framework, based on action systems with
procedures, for studying the link between the correctness conditions for concur-
rent objects and contextual trace refinement, which guarantees substitutability
of objects within potentially non-terminating reactive clients. Thus, we bring
together the previously disconnected worlds of correctness for concurrent objects
and trace refinement within action systems. We have shown that linearizability
and minimal progress together ensure contextual trace refinement, but sequen-
tial consistency and quiescent consistency are inadequate for guaranteeing con-
textual trace refinement regardless of whether clients communicate outside the
concurrent object. The sequential consistency result contrasts earlier results for
observational refinement, where sequential consistency is adequate when clients
only communicate through shared objects [9].

We have derived the sufficient conditions for contextual trace refinement
using the proof obligations for forwards and backward simulation. However,
neither of these conditions have been shown to be necessary, leaving open the
possibility of using weaker correctness conditions on the underlying concurrent
objects. Studying this relationship remains part of future work — areas of inter-
est include the study of how the correctness conditions for safety of concurrent
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objects under relaxed memory models [7] can be combined with different sched-
uler implementations for progress (e.g., extending [13,15]) to ensure contextual
trace refinement.
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