
Kazuhiro Ogata
Mark Lawford
Shaoying Liu (Eds.)

 123

LN
CS

 1
00

09

18th International Conference
on Formal Engineering Methods, ICFEM 2016
Tokyo, Japan, November 14–18, 2016, Proceedings

Formal Methods
and Software Engineering

Lecture Notes in Computer Science 10009

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Kazuhiro Ogata • Mark Lawford
Shaoying Liu (Eds.)

Formal Methods
and Software Engineering
18th International Conference
on Formal Engineering Methods, ICFEM 2016
Tokyo, Japan, November 14–18, 2016
Proceedings

123

Editors
Kazuhiro Ogata
School of Information Science
Japan Advanced Institute of Science and
Technology (JAIST)

Nomi
Japan

Mark Lawford
Department of Computing and Software
McMaster University
Hamilton, ON
Canada

Shaoying Liu
Department of Computer Science
Hosei University
Tokyo
Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-47845-6 ISBN 978-3-319-47846-3 (eBook)
DOI 10.1007/978-3-319-47846-3

Library of Congress Control Number: 2016954467

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The International Conference on Formal Engineering Methods (ICFEM) is a premier
conference for research in all areas related to formal engineering methods, such as
verification and validation, software engineering, formal specification and modeling,
software security, and software reliability. Since 1997, ICFEM has been serving as an
international forum for researchers and practitioners who have been seriously applying
formal methods to practical applications. Researchers and practitioners, from industry,
academia, and government, are encouraged to attend, present their research, and help
advance the state of the art. We are interested in work that has been incorporated into
real production systems, and in theoretical work that promises to bring practical and
tangible benefit.

In recent years, ICFEM has taken place in Paris, France (2015), Luxembourg (2014),
Queenstown, New Zealand (2013), Kyoto, Japan (2012), Durham, UK (2011) and
Shanghai, China (2010). The 18th edition of ICFEM took place in Tokyo during
November 16–18, 2015. The Program Committee (PC) received 64 full research papers.
Each paper received at least three reports from PC members or external reviewers. On
the basis of these reports, each submission was extensively discussed in the virtual
meeting of the PC, and the PC decided to accept 27 papers. The proceedings also include
a full paper and two short summary papers from the three keynote speakers, Tom
Maibaum (McMaster University), W. Eric Wong (University of Texas at Dallas), and
Keijiro Araki (Kyushu University).

ICFEM 2016 was organized and supported by Hosei University. The conference
would not have been possible without the contributions and the support of the fol-
lowing organizations: the Institute of Electronics, Information and Communication
Engineers (IEICE), Japan Society for Software Science and Technology (JSSST), and
The Murata Science Foundation. We thank also the Local Organizing Committee for
their hard work in making ICFEM 2016 a successful and exciting event.

The main event was preceded by three workshops and a tutorial: the 5th International
Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2016), the 6th

International Workshop SOFL+MSVL, the Workshop on Formal and Model-Driven
Techniques for Developing Trustworthy Systems, and a one day tutorial on formal
specification and verification with CafeOBJ.

We would like to thank the numerous people who contributed to the success of
ICFEM 2016: the Steering Committee members, the PC members and the additional
reviewers for their support in selecting papers and composing the conference program,
and the authors and the invited speakers for their contributions without which, of
course, these proceedings would not exist. We would like also to thank Springer for

their help during the production of this proceedings volume and the EasyChair team for
their great conference system.

August 2016 Kazuhiro Ogata
Mark Lawford
Shaoying Liu

VI Preface

Organization

Program Committee

Bernhard K. Aichernig TU Graz, Austria
Étienne André Université Paris 13, France
Toshiaki Aoki JAIST, Japan
Christian Attiogbe University of Nantes, France
Richard Banach University of Manchester, UK
Ezio Bartocci TU Wien, Austria
Michael Butler University of Southampton, UK
Ana Cavalcanti University of York, UK
Sungdeok Cha Korea University, South Korea
Yuting Chen Shanghai Jiao Tong University, China
Sylvain Conchon Université Paris-Sud, France
Frank De Boer CWI, The Netherlands
Zhenhua Duan Xidian University, China
Jeremy Gibbons University of Oxford, UK
Stefania Gnesi ISTI-CNR, Italy
Lindsay Groves Victoria University of Wellington, New Zealand
Ian J. Hayes University of Queensland, Australia
Michaela Huhn TU Clausthal, Germany
Alexei Iliasov Newcastle University, UK
Fuyuki Ishikawa National Institute of Informatics, Japan
Weiqiang Kong Dalian University of Technology, China
Fabrice Kordon LIP6/UPMC, France
Mark Lawford McMaster University, Canada
Xiaoshan Li University of Macau, SAR China
Shaoying Liu Hosei University, Japan
Yang Liu Nanyang Technological University, Singapore
Larissa Meinicke University of Queensland, Australia
Stephan Merz Inria Nancy, France
Huaikou Miao Shanghai University, China
Mohammadreza Mousavi Halmstad University, Sweden
Shin Nakajima National Institute of Informatics, Japan
Akio Nakata Hiroshima City University, Japan
Manuel Nuñez UC, Spain
Kazuhiro Ogata JAIST, Japan
Kozo Okano Shinshu University, Japan
Jun Pang University of Luxembourg
Jan Peleska TZI, Universität Bremen, Germany

Ion Petre Åbo Akademi University, Finland
Shengchao Qin Teesside University, UK
Silvio Ranise FBK-Irst, Italy
Adrian Riesco Universidad Complutense de Madrid, Spain
Jing Sun University of Auckland, New Zealand
Kenji Taguchi AIST, Japan
Jaco van de Pol University of Twente, The Netherlands
Thomas Wahl Northeastern University, USA
Xi Wang Hosei University, Japan
Alan Wassyng McMaster University, Canada
Fatiha Zaidi Université Paris-Sud, France
Jian Zhang Institute of Software, Chinese Academy of Sciences,

China
Min Zhang East China Normal University, China
Hong Zhu Oxford Brookes University, UK
Huibiao Zhu Software Engineering Institute, East China Normal

University, China

Additional Reviewers

Aiguier, Marc
Azadbakht, Keyvan
Basile, Davide
Bloemen, Vincent
Briday, Mikaël
Ciancia, Vincenzo
Colley, John
De Masellis, Riccardo
Dokter, Kasper
Fei, Yuan
Frehse, Goran
Gao, Honghao
Hartmanns, Arnd
He, Mengda
Hoang, Thai Son
Kamali, Mojgan
Khakpour, Narges
Kitamura, Takashi
Konnov, Igor
Kuruma, Hironobu
Laarman, Alfons
Li, Li
Lorber, Florian

Millet, Laure
Oh, Hakjoo
Patcas, Lucian
Petre, Luigia
Renault, Etienne
Ribeiro, Pedro
Salehi Fathabadi, Asieh
Semini, Laura
Souma, Daisuke
Steel, Jim
Su, Wen
Sznajder, Nathalie
Tappler, Martin
Taromirad, Masoumeh
Traverso, Riccardo
Wang, Luyao
Winter, Kirsten
Wu, Xingming
Xu, Zhiwu
Yang, Yilong
Yuan, Qixia
Zheng, Zheng

VIII Organization

Abstracts of Keynotes

Combinatorial Testing and Its Applications

W. Eric Wong

Advanced Research Center for Software Testing and Quality Assurance,
Department of Computer Science, University of Texas at Dallas,

Richardson, USA
http://www.utdallas.edu/*ewong

ewong@utdallas.edu

Studies have shown that combinatorial testing can help programs detect hard-to-find
software bugs that may not be revealed by test cases generated using other testing tech-
niques. The first part of this talk focuses on traditional black-box requirements-based
combinatorial testing. In particular, I will discuss results and lessons learned from two
real-life industry applications: a control panel of a rail-road system and a Linux system.
The second part extends the concept of combinatorial testing to a white-box
structure-based setting. I will present an advanced coverage criterion, Combinatorial
Decision Coverage, in conjunction with symbolic execution to achieve high coverage
cost-effectively without suffering from potential space exploration. Finally, I will explain
how combinatorial testing can be applied to a graph-based methodology for testing IoT
(Internet of Things).

Bio

W. Eric Wong received his M.S. and Ph.D. in Computer Science from Purdue
University, West Lafayette, Indiana, USA. He is a Full Professor, the Director of
International Outreach, and the Founding Director of Advanced Research Center for
Software Testing and Quality Assurance (http://paris.utdallas.edu/stqa) in Computer
Science at the University of Texas at Dallas (UTD). He also has an appointment as a
guest researcher at the National Institute of Standards and Technology, an agency
of the U.S. Department of Commerce. Prior to joining UTD, he was with Telcordia
Technologies (formerly Bellcore) as a senior research scientist and the project manager
in charge of Dependable Telecom Software Development.

Dr. Wong is the recipient of the 2014 IEEE Reliability Society Engineer of the Year.
He is also the Edit-in-Chief of the IEEE Transactions on Reliability. His research focuses
on helping practitioners improve software quality while reducing production cost. In
particular, he is working on software testing, program debugging, risk analysis, safety,
and reliability. Dr. Wong has published more than 180 papers and edited 2 books.

Dr. Wong is also the Founding Steering Committee Chair of the IEEE International
Conference on Software Security and Reliability (SERE) and the IEEE International

http://www.utdallas.edu/~ewong
http://paris.utdallas.edu/stqa

Workshop on Program Debugging. In 2015, the SERE conference and the QSIC
conference (International Conference on Quality Software) merged into one large
conference, QRS, with Q representing Quality, R for Reliability, and S for Security.
Dr. Wong continues to be the Steering Committee Chair of this new conference
(http://paris.utdallas.edu/qrs).

XII W.E. Wong

http://paris.utdallas.edu/qrs

A (Proto) Logical Basis for the Notion
of a Structured Argument in a Safety Case

Valentín Cassano(&), Thomas S.E. Maibaum, and Silviya Grigorova

McMaster Centre for Software Certification, McMaster University,
Hamilton, Canada.

{cassanv,grigorsb}@mcmaster.ca, tom@maibaum.org

Abstract. The introduction of safety cases was a step in the right direction in
regards to safety assurance. As presently practiced, safety cases aim at making a
serious attempt to explicate, and to provide some structure for, the reasoning
involved in assuring that a system is safe, generally in terms of so-called
structured arguments. However, the fact current notations for expressing these
structured arguments have no formal semantics and, at best, are loosely linked to
goal structuring ideas and to Toulmin’s notion of an argument pattern, is a
crucial issue to be addressed. History clearly demonstrates that languages that
have no formal semantics are deficient in relation to the requirements of a
serious approach to engineering. In other words, one can only go so far with
intuition, and certainly not far enough to justify the safety of complex systems,
such as Cyber Physical Systems or autonomous cars. By rehearsing Gentzen’s
program for formalizing mathematical reasoning, his famous Calculus of Nat-
ural Deduction, we show how we can begin a program of formalizing safety
reasoning by developing a working definition of a structured argument in a
safety case and a calculus for safety reasoning.

Promotion of Formal Approaches in Japanese
Software Industry and a Best Practice

of FeliCa’s Case
(Extended Abstract)

Keijiro Araki1(&) and Taro Kurita2

1 Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
araki@ait.kyushu-u.ac.jp

2 Sony Corporation, 2-10-1 Osaki, Shinagawa-ku, Tokyo 141-8610, Japan

Abstract. We have been making much effort to promote formal methods in
Japan, especially Japanese IT companies. This paper describes our activities in
Japan for almost twenty years, and shows typical reactions from such Japanese
companies for application of formal methods. We mention about the obstacles
they think to adopting formal methods in their real software development pro-
jects. On the other hand we also present a case of FeliCa Networks, Inc. as a best
practice of applying formal methods in Japan. We discuss the lessons learned
from our efforts of promoting formal methods and the FeliCa's case. Finally, we
briefly introduce our research project to support software developers in adopting
formal approaches to real projects.

Keywords: Formal methods � Rigorous specification � Practice � Development
process � FeliCa IC Chip � VDM � VDMPad � ViennaTalk

Contents

A (Proto) Logical Basis for the Notion of a Structured Argument
in a Safety Case . 1

Valentín Cassano, Thomas S.E. Maibaum, and Silviya Grigorova

Promotion of Formal Approaches in Japanese Software Industry
and a Best Practice of FeliCa’s Case (Extended Abstract). 18

Keijiro Araki and Taro Kurita

Automated Requirements Validation for ATP Software via Specification
Review and Testing. 26

Weikai Miao, Geguang Pu, Yinbo Yao, Ting Su, Danzhu Bao, Yang Liu,
Shuohao Chen, and Kunpeng Xiong

Automatic Generation of Potentially Pathological Instances
for Validating Alloy Models. 41

Takaya Saeki, Fuyuki Ishikawa, and Shinichi Honiden

A General Lattice Model for Merging Symbolic Execution Branches. 57
Dominic Scheurer, Reiner Hähnle, and Richard Bubel

A Case Study of Formal Approach to Dynamically Reconfigurable Systems
by Using Dynamic Linear Hybrid Automata . 74

Ryo Yanase, Tatsunori Sakai, Makoto Sakai, and Satoshi Yamane

Modelling Hybrid Systems in Event-B and Hybrid Event-B: A Comparison
of Water Tanks. 90

Richard Banach and Michael Butler

A System Substitution Mechanism for Hybrid Systems in Event-B 106
Guillaume Babin, Yamine Aït-Ameur, Neeraj Kumar Singh,
and Marc Pantel

Service Adaptation with Probabilistic Partial Models 122
Manman Chen, Tian Huat Tan, Jun Sun, Jingyi Wang, Yang Liu,
Jing Sun, and Jin Song Dong

A Formal Approach to Identifying Security Vulnerabilities
in Telecommunication Networks . 141

Linas Laibinis, Elena Troubitsyna, Inna Pereverzeva, Ian Oliver,
and Silke Holtmanns

http://dx.doi.org/10.1007/978-3-319-47846-3_1
http://dx.doi.org/10.1007/978-3-319-47846-3_1
http://dx.doi.org/10.1007/978-3-319-47846-3_2
http://dx.doi.org/10.1007/978-3-319-47846-3_2
http://dx.doi.org/10.1007/978-3-319-47846-3_3
http://dx.doi.org/10.1007/978-3-319-47846-3_3
http://dx.doi.org/10.1007/978-3-319-47846-3_4
http://dx.doi.org/10.1007/978-3-319-47846-3_4
http://dx.doi.org/10.1007/978-3-319-47846-3_5
http://dx.doi.org/10.1007/978-3-319-47846-3_6
http://dx.doi.org/10.1007/978-3-319-47846-3_6
http://dx.doi.org/10.1007/978-3-319-47846-3_7
http://dx.doi.org/10.1007/978-3-319-47846-3_7
http://dx.doi.org/10.1007/978-3-319-47846-3_8
http://dx.doi.org/10.1007/978-3-319-47846-3_9
http://dx.doi.org/10.1007/978-3-319-47846-3_10
http://dx.doi.org/10.1007/978-3-319-47846-3_10

Multi-threaded On-the-Fly Model Generation of Malware
with Hash Compaction. 159

Nguyen Minh Hai, Quan Thanh Tho, and Le Duc Anh

CPDY: Extending the Dolev-Yao Attacker with Physical-Layer Interactions . . . 175
Marco Rocchetto and Nils Ole Tippenhauer

Towards the Formal Verification of Data-Intensive Applications
Through Metric Temporal Logic . 193

Francesco Marconi, Marcello M. Bersani, Madalina Erascu,
and Matteo Rossi

Proving Event-B Models with Reusable Generic Lemmas 210
Alexei Iliasov, Paulius Stankaitis, and Alexander Romanovsky

Formal Availability Analysis Using Theorem Proving 226
Waqar Ahmad and Osman Hasan

Formal Verification of the rank Algorithm for Succinct Data Structures 243
Akira Tanaka, Reynald Affeldt, and Jacques Garrigue

Contextual Trace Refinement for Concurrent Objects: Safety and Progress . . . 261
Brijesh Dongol and Lindsay Groves

Local Livelock Analysis of Component-Based Models. 279
Madiel S. Conserva Filho, Marcel Vinicius Medeiros Oliveira,
Augusto Sampaio, and Ana Cavalcanti

Session-Based Compositional Analysis for Actor-Based Languages
Using Futures . 296

Eduard Kamburjan, Crystal Chang Din, and Tzu-Chun Chen

An Event-B Development Process for the Distributed BIP Framework. 313
Badr Siala, Mohamed Tahar Bhiri, Jean-Paul Bodeveix,
and Mamoun Filali

Partial Order Reduction for State/Event Systems . 329
Shuanglong Kan, Zhiqiu Huang, and Zhe Chen

Concolic Unbounded-Thread Reachability via Loop Summaries 346
Peizun Liu and Thomas Wahl

Scaling BDD-based Timed Verification with Simulation Reduction 363
Truong Khanh Nguyen, Tian Huat Tan, Jun Sun, Jiaying Li, Yang Liu,
Manman Chen, and Jin Song Dong

XVI Contents

http://dx.doi.org/10.1007/978-3-319-47846-3_11
http://dx.doi.org/10.1007/978-3-319-47846-3_11
http://dx.doi.org/10.1007/978-3-319-47846-3_12
http://dx.doi.org/10.1007/978-3-319-47846-3_13
http://dx.doi.org/10.1007/978-3-319-47846-3_13
http://dx.doi.org/10.1007/978-3-319-47846-3_14
http://dx.doi.org/10.1007/978-3-319-47846-3_15
http://dx.doi.org/10.1007/978-3-319-47846-3_16
http://dx.doi.org/10.1007/978-3-319-47846-3_17
http://dx.doi.org/10.1007/978-3-319-47846-3_18
http://dx.doi.org/10.1007/978-3-319-47846-3_19
http://dx.doi.org/10.1007/978-3-319-47846-3_19
http://dx.doi.org/10.1007/978-3-319-47846-3_20
http://dx.doi.org/10.1007/978-3-319-47846-3_21
http://dx.doi.org/10.1007/978-3-319-47846-3_22
http://dx.doi.org/10.1007/978-3-319-47846-3_23

Model Checking Real-Time Properties on the Functional Layer
of Autonomous Robots . 383

Mohammed Foughali, Bernard Berthomieu, Silvano Dal Zilio,
Félix Ingrand, and Anthony Mallet

Decision Problems for Parametric Timed Automata 400
Étienne André, Didier Lime, and Olivier H. Roux

Verifying Nested Lock Priority Inheritance in RTEMS with Java Pathfinder . . . 417
Saurabh Gadia, Cyrille Artho, and Gedare Bloom

An SMT-Based Approach to the Formal Analysis of MARTE/CCSL. 433
Min Zhang, Frédéric Mallet, and Huibiao Zhu

Checking SysML Models for Co-simulation . 450
Nuno Amálio, Richard Payne, Ana Cavalcanti, and Jim Woodcock

A CEGAR Scheme for Information Flow Analysis 466
Manuel Töws and Heike Wehrheim

Erratum to: Formal Availability Analysis Using Theorem Proving. E1
Waqar Ahmad and Osman Hasan

Author Index . 485

Contents XVII

http://dx.doi.org/10.1007/978-3-319-47846-3_24
http://dx.doi.org/10.1007/978-3-319-47846-3_24
http://dx.doi.org/10.1007/978-3-319-47846-3_25
http://dx.doi.org/10.1007/978-3-319-47846-3_26
http://dx.doi.org/10.1007/978-3-319-47846-3_27
http://dx.doi.org/10.1007/978-3-319-47846-3_28
http://dx.doi.org/10.1007/978-3-319-47846-3_29

A (Proto) Logical Basis for the Notion
of a Structured Argument in a Safety Case

Valent́ın Cassano(B), Thomas S.E. Maibaum, and Silviya Grigorova

McMaster Centre for Software Certification, McMaster University, Hamilton, Canada
{cassanv,grigorsb}@mcmaster.ca, tom@maibaum.org

Abstract. The introduction of safety cases was a step in the right direc-
tion in regards to safety assurance. As presently practiced, safety cases
aim at making a serious attempt to explicate, and to provide some struc-
ture for, the reasoning involved in assuring that a system is safe, gener-
ally in terms of so-called structured arguments. However, the fact cur-
rent notations for expressing these structured arguments have no formal
semantics and, at best, are loosely linked to goal structuring ideas and
to Toulmin’s notion of an argument pattern, is a crucial issue to be
addressed. History clearly demonstrates that languages that have no for-
mal semantics are deficient in relation to the requirements of a serious
approach to engineering. In other words, one can only go so far with intu-
ition, and certainly not far enough to justify the safety of complex sys-
tems, such as Cyber Physical Systems or autonomous cars. By rehearsing
Gentzen’s program for formalizing mathematical reasoning, his famous
Calculus of Natural Deduction, we show how we can begin a program
of formalizing safety reasoning by developing a working definition of a
structured argument in a safety case and a calculus for safety reasoning.

1 Introduction

Safety cases were introduced into safety practice as a way of making explicit
and organizing the justification for a claim that some engineered artifact is safe.
Initially, safety cases were cast as natural language documents whose nature
and structure were only informally defined, complicating the knowing of what is
required of them. The introduction of the idea that a safety case is a structured
argument, with references to Toulmin’s notion of an argument pattern (see [1]),
was a big step forward in providing a more rigorous definition of a safety case.
A lot of very useful work has been done in developing these ideas into useful
methods and notations and software based tools to support the development of
safety cases. To make further progress in transforming safety cases into a properly
grounded engineering tool, enabling a systematic and scientific construction and
analysis, we need to develop a more formal, logically principled basis for them.

What exactly do we mean by “more logically principled”? Firstly, to date,
existing notations and languages for safety cases do not have a rigorous logical
semantics. When presented with a safety case, say in GSN or CAE notation (see
[2,3]), we have no mean for deciding whether the safety case is syntactically well
c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 1–17, 2016.
DOI: 10.1007/978-3-319-47846-3 1

2 V. Cassano et al.

formed, never mind whether the reasoning it purports to represent is sound, in
the usual sense of properly defined logical systems. Though this state of affairs
has persisted for 25 years and people have developed and used safety cases with
some success, it is time to take action. The present practice of safety cases seems
to be supported by intuition and experience rather than science. This brings with
it a number of worrisome difficulties. The complexity of new systems, such as
Cyber Physical Systems or autonomous cars, increases as time goes on. How can
we expect to deal with this increase in complexity solely based on intuition? We
know that, in the end, intuition always fails us when confronted by complexity.
Would we have entrusted the lives of astronauts in our missions into space if they
were engineered based on intuition and not science? The answer is a clear NO.
So it must be with the development of safety cases for complex systems. Lastly,
there is the problem of education: How do we teach new safety professionals the
necessary rigour required in safety engineering without a scientific basis? Do we
appeal to intuition and experience?

The aim of this paper is to set off on the long road to developing a logical cal-
culus in which to incorporate the kind of reasoning involved in safety assurance.
Though we will not be presenting such a logical calculus, we do not yet know
enough to do so, we will attempt a working definition of a structured argument
in a safety case in said logical calculus. Our goal is twofold. First, to lay out a
foundation for systematization. Second, to set a standard against which progress
can be measured. Working definitions are the basis of science and engineering
and are an essential tool against which to measure scientific progress. Scientific
progress will enable us to systematize, and make more measurable, our approach
to making safety case practice more rigorous, if not yet fully formalized. We will
happily make changes as we learn more and are able to justify their necessity.

2 Preliminary Observations

We will begin by outlining some of our observations about important elements of
safety case reasoning. Perhaps the first point to make is that notations for present-
ing so called structured arguments in safety cases, such as GSN or CAE diagrams
(see [2,3]; to save us from having to continually refer to all of them, we will use
GSN as a witness of a set of similar notations) do not present arguments as such,
they present safety goal decomposition structures, goal G can be achieved via its
decomposition into sub-goals G1, . . . ,Gn, with some reference to goal decomposi-
tion justification. In GSN diagrams, this justification takes the form of strategies:
They justify why the proposed goal decomposition achieves the goal G, if appro-
priately combined. This is reminiscent of problem solving by decomposition (see
[4]), where solutions to sub-problems can be combined in a prescribed way to solve
the original problem, and also of goal structured requirements approaches such as
KAOS (see [5]), which applies problem decomposition ideas to requirements defi-
nition. However, goal decomposition and structured arguments in safety cases are
completely different things: Goal decomposition serves as a way of breaking down
the structure of complex goals into more manageable ones, in contrast, safety argu-
ments serve as a way of substantiating the notion that a safety claim follows from

A (Proto) Logical Basis for the Notion of a Structured Argument 3

others. For us, notations like GSN fall short at presenting arguments, and what
they do well at representing, goal decomposition, while very important, is hindered
by not having a properly defined semantics (in comparison, KAOS trees enjoy of a
formal semantics, well defined decomposition patterns, etc., making them better
suited for engineering use.)

To further complicate things, attempts at supporting safety reasoning by
casting it into First Order Logic (FOL) and using FOL automated deduction
support (see [6]) are bound to face a great obstacle to overcome: Safety rea-
soning is not that of FOL (and, more generally, it is quite different from that
captured by classical deductive logics). There are several reasons for this, but
we will focus only on some of them. Firstly, some of the inference licenses used
in safety reasoning are textbook examples of fallacies in FOL (e.g., judgments
from expert opinions). Secondly, some of the inference licenses used in safety
reasoning are inductive in nature (as in inductive reasoning). An obvious exam-
ple of the latter occurs in reasoning about test cases: Concluding from a test
set where every test case is successful that the corresponding program is correct
for all input data, a proper generalization, requires a truly inductive reasoning
step. Thirdly, safety case reasoning includes elements of defeasible reasoning, i.e.,
reasoning in which conclusions are open to revision or annulment (as discussed
in the field of non-monotonic logics; see [7]). We make contingent inferences in
the absence of certain information. They are contingent because further inves-
tigation may invalidate the conclusions drawn from them. Fourthly, safety case
reasoning sometimes also uses a form of reasoning called eliminative induction
(see [8]). Eliminative induction, first developed by Francis Bacon, and taken up
by philosophers such as John Stuart Mill, John Maynard Keynes, Karl Popper,
et al., works like this: Suppose that we want to conclude property A and we
have identified that A may not be true if one or more properties B1, . . . ,Bn

are true; if we can prove that no Bi holds, then we can conclude that A holds.
This form of reasoning is in fact an example of a form of probabilistic reasoning
that departs from the frequentist based reasoning of probability and is more
related to confidence (as in confidence in a scientific theory). Confidence under-
lies reasoning about scientific theories, legal cases, and in other domains. For
example, it is the basis on which semantics for statements in law like “beyond a
reasonable doubt” or “on the balance of probabilities” can be defined. In safety
reasoning confidence is absolutely necessary for it manifests the conventional wis-
dom that safety cannot be absolutely guaranteed. Lastly, safety reasoning has a
global rather than a localized inductive nature (as in mathematical induction).
Defeasible and probabilistic reasoning exhibit this particularity. In defeasible and
probabilistic reasoning it is in general not possible to just add another branch to
a proof in a soundness-preserving way (see [9]). This has grave consequences for
the possibility of devising incremental safety approaches that support the well
tried and understood concept of incremental design improvement (see [10]). The
above combined lead to the observation that FOL, and, more generally, classical
deductive settings, may be unfit for the purposes of safety reasoning.

4 V. Cassano et al.

In summary, to no one’s surprise, safety reasoning presents a challenging topic
for research with important practical implications. Taking on this challenge, we
proceed by outlining and justifying a working definition of a structured argument
in a safety case that, in our view, has some chance of having a well defined logical
semantics. We illustrate with an example how the ideas may be used in practice.

3 Safety Cases, Structured Arguments, and Evidence

The commonly found definition of a safety case reads: “A safety case is a struc-
tured argument [. . .] that provides a compelling, comprehensible, and valid case
that a system is safe for a given application in a given operating environment”
(see [11]). On the one hand, safety cases are a step in the right direction in
regards to safety assurance. They make a serious attempt to explicate, and to
provide some structure for, the inference licenses used in guaranteeing that a
system is safe. On the other hand, a striking feature of the definition of a safety
case just given is its logical vagueness. It is unclear what is to be taken as con-
stituting a structured argument, i.e., what are its defining characteristics, and
how is such a structured argument to be assessed in terms of the soundness of
the reasoning it involves. We discuss these issues from a logical point of view.

3.1 Gentzen’s Calculus of Natural Deduction

To provide some context for discussion, and to fix the terminology we will use in
what follows, let us recall some basic facts about Gentzen’s Calculus of Natural
Deduction for Classical First Order Logic (NK for short; see [12–14]). In brief,
with his NK, Gentzen aimed at developing: “A formalism that reflects as accu-
rately as possible the actual logical reasoning involved in mathematical proofs”
(see [12, p. 291]). Gentzen offers as an example of this kind of reasoning:

“(∃x∀yFxy) ⊃ (∀y∃xFxy). The argument runs as follows: Suppose there
is an x such that for all y Fxy holds. Let a be such an x. Then for all y:
Fay. Now let b be an arbitrary object. Then Fab holds. Thus there is an
x, viz., a, such that Fxb holds. Since b was arbitrary, our result therefore
holds for all objects, i.e., for all y there is an x, such that Fxy holds. This
yields our assertion” (see [12, p. 292]).

Gentzen’s program consists of the integration of the kind of mathematical proofs
carried out in an exactly defined calculus: The NK. Towards this end, Gentzen
provides precise definitions of so-called symbols, expressions, and figures. Sym-
bols are the alphabet of Classical First Order Logic (FOL for short). Expressions
are the language of FOL, i.e., the set of all formulæ defined recursively over the
alphabet of FOL. Figures are inference or proof figures. The former are written

A1, . . . ,An

B

A (Proto) Logical Basis for the Notion of a Structured Argument 5

where A1, . . . ,An,B are formulæ. The formulæ A1, . . . ,An appearing in an
inference figure such as the one given above are called upper formulæ and the for-
mula B is called a lower formula. Regarding inference figures Gentzen explains:
“We shall have inference figures and they will be stated for each calculus as they
arise” (see [12, p. 291]). The permissible inference figures which make up the
NK correspond to the well-known rules of introduction and elimination of the
logical connectives of the alphabet of FOL and the law of the excluded middle
(see [12, pp. 292–295]). Gentzen states these permissible inference figures via
inference figure schemata, such as

[A]
B

A ⊃ B ⊃−I

An inference figure schemata is to be understood as: The permissible inference
figure obtains from the inference figure schemata by instantiating the syntac-
tical variables for formulæ by corresponding formulæ. Proof figures, also called
derivations, consist of a number of formulæ which are combined to form infer-
ence figures such that: “Each formula is a lower formula of at most one inference
figure; each formula (with the exception of exactly one: the endformula) is an
upper formula of at least one inference figure; and the system of inference fig-
ures is non-circular, i.e., there is in the derivation no cycle (no series whose last
member is again succeeded by its first member) of formulæ of which each upper
formula of an inference figure has the lower formula as the next figure one in
the series” (see [12, p. 291]). The following derivation illustrates the result of
incorporating the mathematical proof given above in NK.

[∃x∀yFxy]2

[∀yFay]1

Fab
∀−E

∃xFxb
∃−I

∀y∃xFxy
∀−I

∀y∃xFxy
∃−E1

(∃x∀yFxy) ⊃ (∀y∃xFxy)
⊃−I2

(Numbering annotations above are used to identify instances of permissible infer-
ence figures and discharged assumptions.) Introducing some further terminology
that we will use later on, Gentzen calls the formulæ of a derivation that are
not lower formulæ of an inference figure, initial; the formulæ of a derivation,
D-formulæ; the inference figures of a derivation, D-inferences; and a branch in a
derivation, a series of D-formulae whose first formula is an initial one and whose
last formula is the endformula, and of which each formula but the last is an
upper formula of a D-inference figure whose lower formula is next in the branch.

3.2 Structured Arguments in Safety Cases

Why recall some basic facts about NK? First, because, indirectly via the inte-
gration of mathematical proofs into NK, Gentzen provides a precise definition

6 V. Cassano et al.

of what is a mathematical proof, enabling an analysis of its scope and limits.
Second, because we consider that the notion of a mathematical proof stands
somewhat in analogy with that of a structured argument in a safety case: While
the former aims at capturing the kind of reasoning involved in mathematics,
the latter aims at capturing the kind of reasoning involved in safety assurance.
Third, because we consider that the notion of a structured argument in a safety
case should be given a definition akin to the one that Gentzen provides for the
notion of a mathematical proof: Without such a definition it is impossible to
judge whether a proposed structured argument in a safety case is indeed such.
Fourth, because we consider that if logic, logical methods, and their history have
taught us anything at all, it is that only through the provision of precise defini-
tions and their analyses can we avoid fallacious reasoning steps: Two of the most
important results about Gentzen’s definition of a derivation are the Soundness
and Completeness Theorems (see [14]).

As an aside in light of the previous paragraph, we offer some clarifications to
avoid any subsequent confusion. We are not saying that the kind of reasoning
involved in mathematics and the kind of reasoning involved in safety assurance
are one and the same. There are most definitely some points of departure between
the two, some of which we referred to above and will further make clear below.
Moreover, we are not saying that without a definition of a structured argument
in a safety case that stands on grounds analogous to Gentzen’s definition of a
derivation, safety reasoning is vacuous. Though with some reservations, even in
the absence of such a definition of a structured argument in a safety case, we
see no major reason preempting logical progress in safety reasoning. (After all,
it is not as if mathematical reasoning was impaired before Gentzen’s definition
of derivation.) Lastly, we are not saying that the aforementioned definition of a
structured argument in a safety case shall be given from the outset. This would
be a clear impossibility given the current state of the art of safety reasoning.
Instead, our remarks are oriented towards the formulation of a working defini-
tion of a structured argument in a safety case that is (i) suitable for capturing
as accurately as possible the actual logical reasoning involved in safety assur-
ance, and (ii) amenable for the logical analyses that are needed to establish the
well-formedness and the soundness of the inference licenses to be used in safety
assurance. It is our hope that by discussing and refining such a working defi-
nition we can establish a strong logical foundation on which to improve safety
reasoning.

How to cope with the issues mentioned above? Similarly to Gentzen’s aim of
incorporating mathematical proofs into a well defined calculus, what we have in
mind is the integration of structured arguments in safety cases, safety arguments
for short, in an exactly defined calculus, which we refer to as SK. We consider
this integration provides the sought after definition of a safety argument. Thus,
we make precise first the concept of a s-derivation. Reminiscent of Gentzen’s
derivations, s-derivations consist of a number of s-formulæ which are combined
to form s-inference figures in a way such that: Each s-formula is a lower s-formula
of at most one s-inference figure; each s-formula (with the exception of exactly

A (Proto) Logical Basis for the Notion of a Structured Argument 7

one: the s-endformula) is an upper s-formula of at least one s-inference figure;
and the system of s-inference figures is non-circular. We write a s-inference figure

A1, . . . ,An

B
〈R〉

where A1, . . . ,An,B,R are s-formulæ. In a s-inference step figure the s-formula
R is optional. Following Gentzen’s terminology, for a s-inference figure such as
the one given above, we call A1, . . . ,An upper s-formulæ and B lower s-formula.
R occupies a special place in s-derivations. We will return to it later on. We
call the s-formulæ participating in a s-derivation S-formulæ and the s-inference
figures participating in a s-derivation S-inference figures. Moreover, we call the
s-formulæ of a s-derivation that are not lower formulæ of a S-inference figure
initial s-formulæ. By way of example, the figure below illustrates a s-derivation

I1

I2, I3
S1

〈R1〉 I4
S3

〈R3〉 I5
I6
S2

〈R2〉
S4

E
〈R4〉

where Ii,Sj ,Rk,E are the S-formulæ of the s-derivation, Ii are its initial
s-formulæ, E is its s-endformula, and

I2, I3
S1

〈R1〉, I6
S2

〈R2〉, S1, I4
S3

〈R3〉, I5,S2

S4
,

I1,S3,S4

E
〈R4〉

are its S-inference figures. When there is no place for ambiguities, we write a
s-derivation with initial s-formulæ I1, . . . , In and s-endformula E, I1, . . . , In D E.
The definition of SK concludes with the definition of the language of s-formulæ
and the formulation of the permitted s-inference figures via s-inference figure
schemata. We envision the language of s-formulæ as the SK counterpart of the
claims involved in safety arguments, safety claims for short, and the permitted
s-inference figures as the SK counterpart of the inference licenses used in the
formulation of safety arguments. Their precise formulation is, however, an open
research question and part of what makes the definition of a safety argument,
via its integration into an exactly defined calculus, a working definition.

3.3 Some Comments on the Logical Basis of Safety Arguments

A significant part of our working definition of a safety argument needs to be com-
pleted. We need to provide a formal definition of s-formulæ; we need to formulate
the s-inference figure schemata for the permissible s-inference figures of SK; and,
more importantly, we need to integrate a basic stock of safety arguments into
SK. Three important reasons for use of ‘Proto’ in the main title. Nevertheless,
even at this early stage, the initial definition of a s-derivation allows us to discuss
technically certain important issues regarding safety reasoning.

8 V. Cassano et al.

Regarding s-Formulæ. To provide some context for discussion: It is noted
by Gentzen in [12] that in the formalization of mathematics, to the concept of
‘object’, ‘function’, ‘predicate’, ‘variable’, ‘proposition’, and so on, there corre-
sponds certain symbols or combinations thereof. What Gentzen then assumes
implicitly is the translation of some ordinary language of mathematics into a
formal language. In Gentzen’s world, this formal language is that of FOL: The
set of all formulæ defined in the standard recursive way over an alphabet of
so-called logical and non-logical symbols; logical symbols are symbols for the
logical operators of universal truth (�), universal falsehood (⊥), conjunction
(∧), disjunction (∨), material implication (⊃), and the universal (∀) and exis-
tential (∃) quantifiers; non-logical symbols are symbols for variables, constants,
predicates, and functions (with their corresponding arity). There is, in Gentzen’s
world, no danger in assuming the translation of statements in the ordinary lan-
guage of mathematics into that of FOL. First, because, to a large extent, the
language of FOL has been designed having in mind the ordinary language of
mathematics. Second, because mathematical statements are rigorously precise
and unambiguous. For instance, no one will doubt that to the ordinary state-
ment of mathematics ‘There is no natural number whose successor is zero’ there
corresponds the formula ∀nS(n) �= 0 in the standardly defined way.

More generally, the faithfulness of the translation of an ordinary language,
such as English, into a formal language, such as that of FOL, depends on a sys-
tematic understanding of the formal language and on the suitability of such a
formal language for the problem at hand. Is there a formal language in which to
provide a precise definition for a s-formula that caters for a faithful translation
of safety claims formulated, say, in plain English? Keeping in mind that what
we are after is the integration of safety arguments into a precisely defined calcu-
lus, this question is of great relevance. The answer, however, is nontrivial. First,
because it is not at all clear how to faithfully translate logical connectives in an
ordinary language, such as English, into a formal language. Second, because a
quick perusal of some safety claims reveals a heavy use of modal logical connec-
tives (‘acceptably’, ‘sufficiently’, ‘adequately’) in combination with quantifiers of
a restricted nature (‘All identified hazards’). It is well known in classical logical
studies that modal logical connectives and logical quantifiers are not easily dealt
with. Following from these observations, perhaps Carnap’s distinction between
the observable and the theoretical in the language of science (see [15, ch. 23])
provides a better foundation than classical logical languages for formally defining
the concept of a s-formula. But this thesis needs of further investigation.

Why should we even bother in giving a formal definition of s-formulæ? First,
because formal languages are often unambiguous, easier to provide a clear seman-
tics for, and, ultimately, more amenable to analyses and tool support. Second,
because the unrestricted use of an ordinary language, such as English, is likely
to be prone to paradoxes of self-reference: ‘This sentence has five words’ or the
more hideous ‘This sentence is false’. Regarding problems of self-reference, we
consider that a version of a problem of this kind is already present in safety
claims. To explain this consideration, let us recall some basic facts of Hoare’s

A (Proto) Logical Basis for the Notion of a Structured Argument 9

Calculus (see [16]). Hoare’s Calculus is a formalism enabling us to prove deduc-
tively that a program is correct. There is, however, no expression of the formal
language of Hoare’s Calculus which captures the expression ‘The program S is
correct’. The formal language of Hoare’s Calculus consists of triples {P} S {Q}
capturing expressions of the form: ‘If (the precondition) P is true before the
initiation of (the program) S, then, (the postcondition) Q will be true upon the
completion of S’. ‘The program S is correct’ is a statement which is formulated
outside of Hoare’s Calculus and that corresponds to the concept of a derivation
which has the triple {P} S {Q} as an endformula inside the calculus. The for-
mulation of the claim ‘The program S is correct’ inside Hoare’s Calculus yields a
calculus which can assert its own provability. This gives rise to all sorts of logical
problems. Here is our observation: Though programs and systems are distinct
entities, and so is correctness and safety and the kind of reasoning they involve,
we consider that in the same way that the correctness of a program S is to be
established with respect to a property Q about S under the proviso P , the safety
of a system S is to be established with respect to a property E about S under
certain provisos Ii. A safety argument would then be in place to structure the
inference licenses which would lead us from Ii to E. This understood, a claim
such as ‘The system S is (acceptably/sufficiently/adequately) safe’ is about the
calculus for safety reasoning, our SK, and, as such, it should not belong to the
calculus itself. This is precisely the kind of problems we wish to avoid. Fallacious
reasoning begins with the use of formulæ that are, from the point of view of the
candidate calculus, already logically problematic.

In summary, we should exercise great care in the formulation of safety claims,
and what they are about, to avoid the kind of problems mentioned above, or
others of a similarly problematic logical nature. To being with, we may restrict
the formulation of safety claims to fragments of ordinary languages, such as
English, that are expressive enough to capture the safety claims we need, but that
maintain a reasonable degree of logical tractability. In doing so, we may be able
to provide a precise definition of the language of s-formulæ, and a corresponding
formal semantics, which caters for a faithful translation of safety claims.

Regarding s-Inference Figures. The definition of a s-inference figure given
in Sect. 3.2 provides a necessary level of technicality for putting in context an
important topic present in notations in which to formulate safety arguments: The
appeal to Toulmin’s argument patterns (see [1]) in the formulation of a safety
argument. We begin by setting up the context in which we discuss our ideas.
One of the research questions posited by Toumin in [1] is: How should we lay an
argument out, if we want to show the sources of its validity? In answering this
question, Toulmin identifies the following elements: claim (C), data (D), warrant
(W), qualifier (Q), rebuttal (R), and backing (B). Resorting to this basic stock of
concepts, Toulmin lays out his famous argument pattern in the following “form”

D �� So,Q,C

On account of B Since W Unless R

10 V. Cassano et al.

As is explained in [17], Toulmin articulates his argument patterns in the context
of justifying an assertion in response to a challenge. The challenge starts with
the assertion of a claim (C), of which we may be asked: What have we got to
go on? To which we would answer with the data (D). Following the acceptance
of D, we may be asked: How do you get there? (How do we get from D to C?)
Our answer to this second question would be the warrant (W). The warrant is,
thus, what allows us to infer the claim from the data. Warrants may be qualified
by modalities (Q) such as ‘probably’, ‘generally’, ‘necessarily, or ‘presumably’. If
the warrant is defeasible, i.e., open to revision or annulment, then, we ought to
state the conditions of rebuttal (R). Finally, we may be asked for a justification
of the warrant itself. Our answer to this last question would be the backing (B).

It is easy to see that, though with some restrictions, our formulation of a
s-inference figure borrows elements from Toulmin’s argument patterns and artic-
ulates them in Gentzen’s terminology. More precisely, incorporating the modal-
ities (Q) into the logical connectives of the language of s-formulæ, an inference
figure

A1, . . . ,An

B
〈R〉

may be viewed as standing in analogy with Toulmin’s triple of claim (C), data
(D), and rebuttal (R) in the obvious way, i.e., D stands in analogy with the upper
s-formulæ A1, . . . ,An, C stands in analogy with the lower s-formula B, and R
stands in analogy with the s-formula R; for the latter reason, we also call the
s-formula R a rebuttal. Rebuttals occupy a special place in s-inference figures
and we will return to them immediately below. Moreover, Toulmin’s notion of a
warrant may be viewed as standing in analogy with a s-inference figure scheme.
(If viewed in this light, [17] provides some insight into what a proper formula-
tion of a s-inference figure scheme may look like.) Lastly, Toulmin’s notion of a
backing may be viewed as standing in analogy with a soundness statement about
a s-inference figure scheme. The restrictions that we refer to are linguistic and
logical constraints on the kind of rebuttals allowed. To provide some context for
discussion: According to Toulmin, rebuttals indicate circumstances in which the
general authority of the warrant would have to be set aside (see [1, p. 94]). In
this respect, there are, at least, two possible ways in which Toulmin’s view of a
rebuttal may be understood: (i) As indicating a set of circumstances in which
the claim licensed by the warrant would have to be set aside; (ii) As indicating a
set of circumstances in which the warrant itself would have to be set aside. The
analogy between a warrant and a s-inference figure scheme allows for the follow-
ing clarification: (i) Implies that an instance of the s-inference scheme cannot be
used in a particular s-derivation; (ii) Implies that the s-inference scheme cannot
be part of the s-inference figure schemata defining our proposed calculus, SK.
If understood in this sense, (i) speaks to the defeasible aspect of s-derivations,
a point that we will return to later on, whereas (ii) results in a denial of the
proposed calculus (the so-called paradoxes of deontic logic present examples of
the second kind of rebuttals; see [18]). In defining rebuttals as s-formulæ, and
under the proviso that the language for s-formulæ cannot refer to properties of
the SK, we preempt the formulation of rebutals of the second kind. In principle,

A (Proto) Logical Basis for the Notion of a Structured Argument 11

such a restriction is not necessary and could be lifted. However, at this point, it
presents a firmer basis on which to start building a calculus for safety reasoning.

The relation between Toulmin’s argument patterns and s-inference figures
places the work of Toulmin in the context of safety reasoning: Toulmin’s argu-
ment patterns present an interesting framework in which to formulate what
s-inference figures, or s-figure schemata, may look like. However, in and of
themselves, Toulmin’s argument patterns are not s-inference figures nor s-figure
schemata. This means that Toulmin’s argument patterns do not define, at least
not obviously, a calculus for safety reasoning, our sought after SK. Such a calcu-
lus, which we view as a fundamental tool for analyzing the logical well-formedness
of safety arguments, is only defined by the provision and justification of a sen-
sible set of s-inference figures via s-inference figure schemata. In other words,
the appeal to Toumin’s argument patterns in the context of safety reasoning is
rather limited, it serves as a way of showing the sources of validity of a safety
argument, but it does not propose a way of assessing the validity of said sources.

Regarding s-Derivations. The following two questions immediately arise: (i)
Are s-derivations suitable for formalizing the kind of reasoning involved in safety
assurance? (ii) Do they support the logical analyses needed to establish the well-
formedness and soundness of the inference licenses used in said kind of reasoning?

Our answer to question (i) is, at this point, mostly an expression of desire.
Evidently, we consider that s-derivations present a suitable framework for the
formalization of safety arguments and the kind of reasoning involved in safety
assurance. This view is partly justified by safety arguments expressed as GSN
or CAE diagrams. However, whether this view is fully justified is certainly open
for debate, in particular, because we have been unable to produce an example
of the incorporation of a safety argument as a s-derivation. This inability is (a)
partly due to our own limitations and to the logical rigour that we intend to
put in place in the integration of a safety argument into a s-derivation, we refer
back to our discussion on the definition of s-formulæ and s-inference figures, and
to the upcoming discussion on s-derivations, and (b) partly due to the logical
havoc reigning over the handful of examples of safety arguments that we have
taken a close look at, a situation to reverse and that we expect to shed some
light on.

Our answer to question (ii) is, even at this point, more satisfactory, in
particular, in relation to the well-formedness of a s-derivation I1, . . . , In D E.
More precisely, given a s-derivation I1, . . . , In D E, we call another s-derivation
Ii, . . . , Ij D R, for Ii, . . . , Ij a subset of I1, . . . , In and R a rebuttal of one of the
S-inference figures of I1, . . . , In D E, a rebutting s-derivation for I1, . . . , In D E.
A s-derivation is internally coherent in the absence of a rebutting s-derivation
for it. (Note that we are calling a s-derivation coherent in the absence of a rebut-
ting s-derivation for it and not in the presence of a proof that such a rebutting
s-derivation does not exist; the latter is far more difficult to establish.) It is
obvious that s-derivations that are internally incoherent are logically ill-formed.

12 V. Cassano et al.

Moreover, the notion of internal coherence speaks to the defeasible aspects of
a s-derivation, i.e., the conditions under which a s-derivation is open to revision
or annulment. By way of example, consider the following two s-derivations

I1, I2
S1

〈R1〉 I3
E

〈R2〉
I1

I3
S2

〈R3〉
R2

If taken on its own accord, I1, I2, I3 D E is coherent. However, I1, I2, I3 D E
is incoherent when paired up with I1, I3 D R2 (for the reason that I1, I3 D R2

establishes the rebuttal of one of the S-inference figures of I1, I2, I3 D E, i.e., the
S-inference figure which has R2 as its rebuttal). In the latter scenario, the use
of the S-inference figure of I1, I2, I3 D E which has R2 as its rebuttal condition
is locally unsound in I1, I2, I3 D E; “locally unsound” for there may be other
situations in which the use of such an inference figure is perfectly permissible,
e.g., situations in which there is no s-derivation with R2 as its s-endformula.
This calls for a revision of I1, I2, I3 D E as a whole, possibly establishing its
annulment. Why possibly and not necessarily? Because, even in the presence of
I1, I3 D R2, we may still be able to “repair” I1, I2, I3 D E by resorting to a
s-inference figure which does not have R2 as a rebuttal. The discussion on the
internal coherence of a s-derivation is important, not only because it clearly sets
apart safety reasoning from mathematical reasoning but also, because it has a
bearing on compositional safety argumentation: The composition of internally
coherent s-derivations to form a larger s-derivation (a composition reminiscent
of Gentzen’s use of the cut rule) may result in a s-derivation that is incoherent.

4 Illustrating Some of Our Points

We proceed to illustrate some of the points that we made above by elaborating on
some basic elements of a safety argument intended to make a case that a warning
light is lit under certain conditions. Our emphasis will be placed on laying out
explicitly the underlying logical structure that such a safety argument may have.

For the safety argument under consideration, we list the following represen-
tative elements. Firstly, the safety claim that the safety argument makes a case
for: (E) ‘Under certain critical conditions, the warning light is lit’. The critical
conditions that E refers to will play no role in our example; we will refer to
them as C. Moreover, we will refer to the claim ‘The warning light is lit’ as W .
Secondly, an explicit inference license: (L) ‘E follows from W being the case,
assuming that C is the case’; since E is of a conditional nature (‘Under . . . ,
. . . ’), we consider an inference license involving a hypothetical reasoning step.
Thirdly, and completing the safety argument under consideration, a sub-safety
argument making a case for W being the case assuming that C is the case. We
consider this sub-safety argument to be developed from properties of an action
t (or a combination thereof) described in the design and the implementation of
the system that turns on the warning light. These properties may be: (T) ‘The
execution of t lights the warning light’, together with (Done(t)) ‘t is executed’.

A (Proto) Logical Basis for the Notion of a Structured Argument 13

We are now in a position to make explicit part of the logical structure of
the safety argument under consideration via a s-derivation. To be noted first is
that the language of s-formulæ will need to cater for the faithful translation of
E (and consequently C and W), T (and consequently t), and Done(t). Let us
suppose that in the language of s-formulæ, E is denoted by a s-formula C � W
(provided that C is denoted by a s-formula C, W is denoted by a s-formula
W, and � captures the meaning of the logical operator corresponding to the
conditional in E); T is denoted by a s-formula 〈t〉W (provided that t is denoted
by t‘, and 〈·〉 captures the meaning of the logical modality in T); and Done(t)
is denoted by Done(t). On this basis, we may formulate L as a s-inference figure

[C]
W

C � W �−I

(As usual, square brackets indicate discharged assumptions.) The complete safety
argument under consideration may be incorporated into a s-derivation such as

[C]1, 〈t〉W,Done(t)
D
W

C � W
�−I1

where [C], 〈t〉W,Done(t) D W is the s-derivation corresponding to the sub-safety
argument referred to above.

5 Discussion

There are some points worth noting about the difference in nature between the
s-derivation that we presented in the previous section, 〈t〉W,Done(t) D C � W,
and the formulation of a safety arguments typically presented, say, as GSN dia-
grams. Firstly, there is a clear distinction between the formulation of the safety
claim E from which C � W obtains and the commonly found formulation of
safety claims that play the same role. E is a specific property of the system that
turns on a warning light, the warning light being lit under certain conditions,
and C � W is a s-formula. The relation between E, and/or C � W, and ‘The
system is (acceptably/adequately/sufficiently) safe’, where ‘system’ refers to the
system that turns on the warning light, is one of design intent: Presumably, the
warning light being lit under certain critical conditions issues a warning so that
an agent can take whatever appropriate actions are necessary, serving in this way
as a safety mechanism, thus contributing to whatever conception of safety the
designer had in mind. Now, as commented on in Sect. 3.3, C � W is internal to
the calculus of safety argumentation (compare program correctness), our sought
after SK, whereas ‘The system is safe’ is about the calculus, i.e., it corresponds
to a claim about what 〈t〉W,Done(t) D C � W represents to the designer, i.e.,
there has to be an agreement that ‘The system is safe’ can be made on the basis
of C � W and the s-derivation. Secondly, there is a clear cut distinction between

14 V. Cassano et al.

E and L. Again, E is a property of the system that turns on the warning light.
Instead, L is a consequence conducive statement about E seen as a safety claim,
i.e., as part of a safety argument, and the safety claims from which it follows.
This distinction is of utmost importance for the logical analysis of the sound-
ness of inference licenses and s-inference figures. There is one last distinction
between inference licenses such as L and the kind of strategies present in GSN
diagrams that is worth noting: GSN strategies have no concept analogous to that
of discharging an assumption. Unless other measures are taken, this limitation
severely restricts most forms of conditional reasoning in the kind of Gentzen-like
logical calculi that we have considered here, making it too severe a restriction.

There are also some important elements worth noting about the formulation
of 〈t〉W,Done(t) D C � W, in particular, in relation to the standard formal-
ization of the logical concepts it involves. Firstly: Are we to interpret � as the
symbol for material implication? Thought it is known that material implication
does not cope well with ordinary understandings of conditional statements, if
we were to answer the question in the negative, say by interpreting � as rele-
vant or strict implication, then, we need to provide clarification as to how the
s-inference figure corresponding to the introduction of � differs from ⊃−I (see
[13]). Secondly, the standard interpretation of 〈t〉W reads as: There is a possi-
ble execution of t which results in W being the case. Such an interpretation of
〈t〉W is seemingly appropriate for capturing T , i.e., ‘The execution of t lights the
warning light’. After all, it is not difficult to envision scenarios where t may be
executed and yet the warning light might not be lit, e.g., scenarios where not all
things went according to plan. At the same time, the standard reading of 〈t〉W
preempts us from concluding W from the assumption that Done(t) is the case,
for we would have to ensure that the execution of t referred to by Done(t) is
one which lead us to W being the case and no other – a nontrivial matter. This
said, there may be a formulation of a s-derivation which allows us to conclude
W from 〈t〉W and Done(t) via appropriate s-inference figure schemata which
include “scenarios where not all things went according to plan” as rebuttals.
In such a s-derivation, the s-endformula W will be open to revision and poten-
tial annulment if things do not go according to plan. Altogether, the scheme of
things just discussed is not a matter of logical pedantry, but rather they are
important issues, and the leading causes of fallacies in safety reasoning, that are
being brought into the foreground by the use of appropriate logical machinery.

There is a final issue to discuss: The use of evidence in s-derivations as a way
of grounding initial s-formulæ. To provide some context for discussion, let us first
recall some basic facts about the role of initial formulæ in NK. According to
Gentzen, a distinguishing feature of NK is that derivations start from assump-
tions, some of which may subsequently be discharged, to which logical deductions
are then applied (see [12, p. 292]). These initial assumptions are the initial for-
mulæ of a derivation. An important thing to notice about Gentzen’s treatment
of initial formulæ is their assumptive nature; they are, in a sense, “true” in them-
selves, given deus ex machina, and, as such, are accepted as the basis on which
the derivation is built. In contrast, in safety reasoning, it is typically proposed

A (Proto) Logical Basis for the Notion of a Structured Argument 15

that the safety claims from which a safety argument is built need to be provided
with a rationale which justifies their postulation. This means that the initial
s-formulæ in s-derivations lack the assumptive nature enjoyed by Gentzen’s view
of initial formulæ in derivations. Providing a rationale for justifying the postula-
tion of a safety claim is reminiscent of the notion of justified belief in studies in
epistemology or scientific explanation. It is at this point where evidence makes
an appearance. Bringing in the concept of evidence in safety reasoning is a topic
for research in its own right. In this respect, without elaborating at length, we
cannot do more than offer some pointers to some of the literature which we
consider provides a proper context for discussing the use of evidence in safety
cases, and some of the challenges that this use presents (see classic texts such as
[15,19], or more recent works such as [20–22]).

6 Conclusions

The present practice of safety cases, recorded in some notation, is the result of
over 25 years of work. The object-oriented (OO) community and the Unified
Modeling Language (UML) underwent a similar situation over a similar period.
In both cases it has been pointed out that simply providing a loose syntax is
not enough. Engineering disciplines rely on scientific theories and mathematics
to enable precision in design and analyses to support sound design decisions.
This was acknowledged by the OO community, who started incorporating math-
ematical precision into its notations some years ago, not without its hurdles
and sometimes against the protests of the notation’s inventors! The safety case
community is slowly awakening to this; pushed by a need for proper engineering
guarantees about safety, especially due to the increasing complexity of safety crit-
ical systems, and by the recognition that relying on the informal understanding
and intuition of individuals, no matter how experienced, is not only unscientific,
but a historic invitation to disaster.

In this paper, we have tried to take the first steps towards developing a
proper scientific and logical basis for safety case understanding and construction:
A working definition of a safety case via its incorporation in a precisely defined
calculus. We start from two pillars. The first pillar, in line with other researchers
in the area (see [23]), is the observation that assurance case reasoning is more
akin to the argument based reasoning ideas of Toulmin than to the conventional
deductive logic reasoning well known to mathematicians and software engineers
(or computer scientists). This form of reasoning is already (more or less) well
known in domains such as legal reasoning and scientific reasoning/explanation.
The second pillar is Gentzen’s program for formalizing mathematical reasoning
in terms of a logical language, inference rules to support reasoning steps, and
proofs to capture the “informal” notion of argument used by mathematicians.
One can debate about the adequacy of Gentzen’s formalization, but if one accepts
it, and most mathematicians have, then one can make remarkable progress in
analyzing mathematical reasoning, including developing automated tools such as
theorem provers and model checkers. Though safety reasoning is very different

16 V. Cassano et al.

in character from mathematical reasoning, we can use an analogous approach
to that of Gentzen; in particular, we can focus on the same ingredients, i.e., a
formalized logical language for expressing safety claims, a well defined notion
of inference step (perhaps one based on Toulmin’s idea of an argument step),
a well defined notion of derivation (capturing the notion of safety argument),
and a new ingredient, grounded proofs, i.e., the idea that all initial formulæ in
a derivation cannot be taken for granted, i.e., gaining a proper understanding of
the notion of evidence. We hope to have taken some steps in this direction.

References

1. Toulmin, S.: The Uses of Argument. Cambridge University Press, Cambridge
(2003)

2. The GSN Working Group: Goal Structuring Notation. Version 1, November 2011
3. Adelard: Claim, Argument, Evidence Notation. Accessed 25 Jan 2016
4. Pólya, G.: How to Solve It, 2nd edn. Princeton University Press, Princeton (2004)
5. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-

els to Software Specifications. Wiley, Hoboken (2009)
6. Rushby, J.: Logic and epistemology in safety cases. In: Bitsch, F., Guiochet, J.,

Kaâniche, M. (eds.) SAFECOMP 2013. LNCS, vol. 8153, pp. 1–7. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40793-2 1

7. Bochman, A.: Non-monotonic reasoning. In: Gabbay, D., Woods, J. (eds.) Hand-
book of the History of Logic: The Many Valued and Nonmonotonic Turn in Logic,
vol. 8, pp. 555–632. North-Holland, Amsterdam (2007)

8. Goodenough, J., Weinstock, C., Klein, A.: Eliminative induction: a basis for argu-
ing system confidence. In: 35th International Conference on Software Engineering
(ICSE 2013), pp. 1161–1164 (2013)

9. Bloomfield, R., Littlewood, B.: Multi-legged arguments: the impact of diver-
sity upon confidence in dependability arguments. In: International Conference on
Dependable Systems and Networks (DSN 2003), pp. 25–34 (2003)

10. Vincenti, W.: What Engineers Know and How They Know It: Analytical Studies
from Aeronautical History. Johns Hopkins University Press, Baltimore (1993)

11. UK Ministry of Defense: Defence standard 00–56 issue 4: safety management
requirements for defence systems (2007)

12. Gentzen, G.: Investigations into logical deduction. Am. Philos. Q. 1(4), 288–306
(1964)

13. Prawitz, D.: Natural Deduction: A Proof-theoretical Study. AWE (1965)
14. van Dalen, D.: Logic and Structure, 5th edn. Springer, Heidelberg (2013)
15. Carnap, R.: An Introduction to the Philosophy of Science, 5th edn. Dover, Mineola

(1966)
16. Hoare, C.: An axiomatic basis for computer programming. Commun. ACM 12(10),

576–580 (1969)
17. Hitchcock, D.: Toulmin’s warrants. In: van Eemeren, F., et al. (eds.) Anyone Who

Has a View: Theoretical Contributions to the Study of Argumentation, vol. 8, pp.
69–82. Springer, Heidelberg (2003)

18. Åqvist, L.: Deontic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philo-
sophical Logic, vol. 8, 2nd edn, pp. 1–12. Springer, Heidelberg (2002)

19. Hempel, C.: Philosophy of Natural Science. Prentice Hall, Upper Saddle River
(1966)

http://dx.doi.org/10.1007/978-3-642-40793-2_1

A (Proto) Logical Basis for the Notion of a Structured Argument 17

20. Achinstein, P.: The Book of Evidence. Oxford University Press, Oxford (2001)
21. Haack, S.: Evidence Matters: Science, Proof, and Truth in the Law. Cambridge

University Press, Cambridge (2014)
22. Mayo, D., Spanos, A.: Error and Inference: Recent Exchanges on Experimental

Reasoning, Reliability, and the Objectivity and Rationality of Science. Oxford
University Press, Oxford (2010)

23. McDermid, J.: Safety arguments, software and system reliability. In: 2nd Interna-
tional Symposium on Software Reliability Engineering (ISSRE 1991), pp. 43–50
(1991)

Promotion of Formal Approaches in Japanese
Software Industry and a Best Practice
of FeliCa’s Case (Extended Abstract)

Keijiro Araki1(B) and Taro Kurita2

1 Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
araki@ait.kyushu-u.ac.jp

2 Sony Corporation, 2-10-1 Osaki, Shinagawa-ku, Tokyo 141-8610, Japan

Abstract. We have been making much effort to promote formal meth-
ods in Japan, especially Japanese IT companies. This paper describes
our activities in Japan for almost twenty years, and shows typical reac-
tions from such Japanese companies for application of formal methods.
We mention about the obstacles they think to adopting formal meth-
ods in their real software development projects. On the other hand we
also present a case of FeliCa Networks, Inc. as a best practice of apply-
ing formal methods in Japan. We discuss the lessons learned from our
efforts of promoting formal methods and the FeliCa’s case. Finally, we
briefly introduce our research project to support software developers in
adopting formal approaches to real projects.

Keywords: Formal methods · Rigorous specification · Practice · Devel-
opment process · FeliCa IC chip · VDM · VDMPad · ViennaTalk

1 Introduction

We promote formal methods in Japan, and reported the status of formal methods
in Japan. [1,2] Many Japanese companies are interested in formal methods in
development of software systems. Some companies introduce and apply formal
approaches successfully in their own development processes. However, there are
not so many companies apply formal methods in their real development projects.

In this paper, we report our activities to promote formal methods in Japan,
and briefly introduce our current research project.

2 Promotion of Formal Methods in Japan

2.1 Seminars and Publications

We have a variety of activities to promote formal mthods under the collabora-
tion with several kinds of organization such as SIG-FM of SEA (Software Engi-
neers Association of Japan), IPA (Information-technology Promotion Agency,
c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 18–25, 2016.
DOI: 10.1007/978-3-319-47846-3 2

Formal Approaches in Japanese Software Industry 19

Japan)/SEC (Software Engineering Center/Software Reliability Enhancement
Center), local public communities, private companies, universities, and so on.
For example, we have had a series of seminars at Hiroshima, Kumamoto, Sap-
poro, Nagoya, Osaka, Tokyo, Okinawa, Ho Chi Minh City, Fukuoka, Nagano,
Morioka, etc. We also made teaching materials for those seminars, and make
them open on the IPA/SEC site. We published several reports on formal meth-
ods. Especially the report on successful cases of formal approaches to software
development [6] focuses on eleven cases and presents many suggestions for apply-
ing formal methods in real systems.

2.2 Reactions from Japanese Companies

Many company people attend our seminars and become interested in formal
methods. Especially the successful cases in Japan are quite attractive to them,
and they want to know much in details about those cases. They also require to
know more cases which may fit for their own projects. We survey such cases, and
then they require much more. However, most of the companies will not adopt
formal methods in their own projects.

The following is seven typical reactions from the Japanese companies:

– Real successful cases are interesting and attractive.
– Formal methods exist in the perfect formal world which seems unrelated to

their everyday activities.
– Formal methods require highly trained mathematicians.
– Formal methods look difficult for them to apply by themselves.
– They need complete samples for their own problems.
– It is difficult to convince the top management of the benefits of formal

methods.
– The cost-performance and effectiveness of formal methods are unknown.

Many of the above seem just excuse not to adopt formal methods.

3 A Best Practice of Formal Approach in Japan

Yes, we have applications of formal methods in Japan. Some of them adopt
formal approaches to development of their final products. Some have continuous
effort to learn formal methods with their own training courses and trials to apply
formal methods to their projects.

We learn much about the practice of formal methods through the exchanges
and collaborations with them. Especially, A best practice of formal approach to
software development in Japan is the FeliCa’s case to develop smart IC chips.
[7,8] Fig. 1 shows the development process of FeliCa IC chip firmware with the
formal specification in VDM++.

They only describe the specification in VDM++, and did not perform any for-
mal proof nor code generation. The rigorous system description in VDM++ has
good effects on the whole development process, and then they realized extremely
high reliable products. No bug has appeared among more than 300 million chips
which are used in a very wide variety of applications.

20 K. Araki and T. Kurita

Fig. 1. VDM specification in the development process at FeliCa.

4 Formal Methods for Working Engineers

We aim to propose formal approaches applicable and effective in the real software
development projects. We focus on the way how to incorporate formal develop-
ment methodologies into the development process of each specific project in an
IT company. We propose a development process for a specific purpose as a ref-
erence model. [9,10] We recommend the developers to customize our reference
process model for their own project.

Figure 2 shows the overview of our current research project to propose formal
approaches effective over the whole software life cycle. There exist many theories,
methodologies, tools in formal methods. We believe each of them is applicable
and effective for a specific purpose at some phase(s) in the software life cycle.

We have developed several tools to support construct rigorous descriptions
for the target systems. Here we briefly introduce the following three tools:

– VDMPad: Interactive VDM-SL Tool
– ViennaTalk: IDE for Lightweight Formal Approach
– JOD: Dictional Tool Bridging Informal documents and Formal Documents

4.1 VDMPad

VDMPad is an interactive VDM-SL tool. [11] Fig. 3 shows a screen shot of VDM-
Pad. A user writes a VDM-SL description in the top window. VDMPad performs
the syntax and type checking for the VDM-SL description. If the state invariants
are included in the description, VDMPad also check the invariants. In the second
window, the user can write an expression to be evaluated by the VDMPad. And

Formal Approaches in Japanese Software Industry 21

Fig. 2. Overview of our research project.

then the result of the evaluation appears in the third window. If any error is
detected, the message is output beneath the bottom line.

VDMPad is very useful to write VDM-SL description with a simple and
interactive user interface. For beginners of VDM specification, VDMPad is easy
to use and understand how to write VDM-SL specifications. It is also a nice tool
for matured specifiers to describe components in VDM-SL and validate them
with testing at the specification level.

The VDMPad service is available on the VDMPad Server [14].

4.2 ViennaTalk

ViennaTalk is an IDE (Integrated Development Environment) for lightweight
formal approach which is a SmallTalk library to handle VDM-SL specifications.
[12,15] Major components of ViennaTalk is as follows:

– VDMBrowser - A VDM-SL browser inspired by Smalltalk’s class browsers and
inspectors

– VDMPad - A lightweight web IDE for VDM-SL with animation and diagram
presentation of data

– VDMC - A Smalltalk wrapper of VDM-SL animation
– Lively Walk-Through - A UI prototyping environment to animate UI proto-

type by VDM-SL specification
– Webly Walk-Through - A Web API server to publish VDM-SL specifications

of web APIs.

22 K. Araki and T. Kurita

Fig. 3. VDMPad: interactive VDM-SL tool.

– ViennaEngine - Animation engine wrapper
• ViennaVDMJ - Animation engine by local VDMJ process
• ViennaServer - Web server to publish animation engines
• ViennaClient - Client module of ViennaServer/VDMPad
• ViennaBankEngine - Aggregated animation engine

– ViennaTalk-Types - Smalltalk classes for VDM types
– ViennaTalk-Values - Smalltalk objects for VDM values
– ViennaTalk-Parsers - VDM parsers, Smalltalk code generators and VDM

source formatter.

At brain storming and reviewing stages in a system development process,
Informal descriptions like hand-drawn diagrams are often used. Those informal

Formal Approaches in Japanese Software Industry 23

Fig. 4. ViennaTalk: IDE for lightweight formal approach.

description can be justified with VDM-SL easily on ViennaTalk. Lively Walk-
Through and Webly Walk-Through support such work, and help the developers
to clarify and share the ideas. The interactive animation of VDMPad also helps
the validation of the ideas.

It can also generate a SmallTalk program from a VDM-SL description. The
SmallTalk program is useful to test and validate the VDM specification with
much wider data space. It also serves as a prototype of the specified system.

Figure 4 shows a screen shot of ViennaTalk. The left window shows a VDM-
SL specification. The right window show the generated SmallTalk program for
the VDM-SL specification. The small window with the value 24 is the result of
the invocation of the SmallTalk program “factorial” with the parameter 4.

4.3 JOD Tool

The third tool is JOD, Dictionary Tool to Support Rigorous System Description.
[13] It accepts informal documents written in a natural language, and manipu-
lates the documents and provides useful information to clarify the system struc-
tures and functions. It bridges between informal documents and rigorous descrip-
tions written in VDM-SL and VDL++.

24 K. Araki and T. Kurita

Fig. 5. Dictionary tool to support rigorous system description.

Figure 5 shows a screen shot of JOD. This tool is open to use and embedded
in the Overture Tool.

5 Concluding Remarks

We have promoted formal methods in Japan, and provided seminars, tutor-
ial lectures, teaching materials, reports and support tools. We always cite the
well-known “Seven Myths of Formal Methods” [5] and “Ten Commandments of
Formal Methods.” [3] We find many suggestions and insights to introduce and
adopt formal methods in real system development processes. In the seminars
and lectures, we tell those suggestions and insights with our own experiences
and thinkings.

We found one more attractive concept “Preformal” [4] and regard it as a good
guiding principle in formal approaches to system development. It is not easy
for the beginners to construct formal description in their system development
project. They need to understand the essential properties of formal methods as
well as their own project. They also need to realize what are their purpose to
apply formal methods. And then they may decide which formal method and how
to apply to their project.

We intend to propose the purpose-oriented preformal approaches to construct
rigorous/formal system description. We are sure that our tools described above
work well along the preformal approaches.

Finally, we state messages to the Japanese IT companies.

– Know thyself.
– Heaven helps those who help themselves.

Formal Approaches in Japanese Software Industry 25

These are very common teachings. We will continue to promote formal methods
in Japan and support IT engineers and users keeping the above commandments
and teachings in mind.

Acknowledgments. This work is partly supported by Grant-in-Aid for Scientific
Research (S) 2422001.

References

1. Araki, K.: Are formal methods relevant?: how to explode the seven myths in Japan.
In: Proceedings of the APSEC 1995, pp. 514–515 (1995)

2. Araki, K., Chang, H.-M.: Formal methods in Japan: current state, problems and
challenges. In: Proceedings of the Third VDM Workshop, VDM 2002 (2002)

3. Bowen, J.P., Hinchey, M.G.: Ten commandments of formal methods. IEEE Com-
put. 28(4), 56–63 (1995)

4. Gmehlich, R., Jones, C.: Experience of deployment in the automotive industry. In:
Romanovsky, A., Thomas, M. (eds.) Industrial Deployment of System Engineering
Methods, pp. 13–26. Springer, Heidelberg (2013)

5. Hall, A.: Seven myths of formal methods. IEEE Softw. 7(5), 11–19 (1990)
6. IPA/SEC: Report on Successful Cases of Formal Approaches with Rigorous Spec-

ification, WG on Rigorous Specification, IPA/SEC, Tokyo (2013) (in Japanese).
http://sec.ipa.go.jp/reports/20130125.html

7. Kurita, T., Nakatsugawa, Y.: The application of VDM to the industrial develop-
ment of firmware for a smart card IC chip. Int. J. Softw. Inf. 3(2–3), 343–355
(2009)

8. Kurita, T., Ishikawa, F., Araki, K.: Practices for formal models as docu-
ments: evolution of VDM application to “Mobile FeliCa” IC chip firmware. In:
Bjørner, N., Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 593–596. Springer,
Heidelberg (2015)

9. Kusakabe, S., Lin, H.-H., Omori, Y., Araki, K.: Developing core software require-
ments of energy management system forsmart campus with advanced software
engineering. Int. J. New Comput. Archit. Appl. 4(1), 48–55 (2014)

10. Kusakabe, S., Lin, H.-H., Omori, Y., Araki, K.: Visualizing centrality of process
area networks in CMMI-DEV. In: Proceedings of International Conference on Soft-
ware and Systems Process (ICSSP 2015), pp. 173–174 (2015)

11. Oda, T., Araki, K., Larsen, P.G.: VDMPad: a lightweight IDE for exploratory
VDM-SL specification. In: Proceedings of the 2015 IEEE/ACM 3rd FME Work-
shop on Formal Methods in Software Engineering, pp. 33–39 (2015)

12. Oda, T., Araki, K., Larsen, P.G.: ViennaTalk and assertch: building lightweight
formal methods environments on pharo 4. In: Proceedings of the International
Workshop on Smalltalk Technologies (2016, to appear)

13. Omori, Y., Araki, K., Larsen, P.G.: JODTool on the Overture Tool to manage
formal requirement dictionaries. In: Proceedings of the 13th Overture Workshop,
Co-located with FM 2015, pp. 3–17 (2015)

14. VDMPad Server: http://vdmpad.csce.kyushu-u.ac.jp/
15. ViennaTalk: https://github.com/tomooda/ViennaTalk-doc

http://sec.ipa.go.jp/reports/20130125.html
http://vdmpad.csce.kyushu-u.ac.jp/
https://github.com/tomooda/ViennaTalk-doc

Automated Requirements Validation for ATP
Software via Specification Review and Testing

Weikai Miao1(&), Geguang Pu1, Yinbo Yao1, Ting Su1,
Danzhu Bao1, Yang Liu1, Shuohao Chen2, and Kunpeng Xiong2

1 Shanghai Key Lab for Trustworthy Computing,
School of Computer Science and Software Engineering,

East China Normal University, No. 3663 North Zhongshan Rd, Shanghai, China
wkmiao@sei.ecnu.edu.cn

2 Testing Departement, Casco Signal Ltd., Mingde International Plaza,
No. 158 Minde Road, Shanghai, China

Abstract. Complete and correct requirements specification is the foundation for
developing high-quality Automatic Train Protection (ATP) software. Require-
ments validation aims at facilitating the completeness and correctness of the
specification. In this paper, we propose a novel requirements validation approach
combining diagram-guided specification review and scenario-based specification
testing for ATP software. The specification is transformed into an executable
prototype. Diagrams are generated from the prototype to visualize the interac-
tions between variables for an effective review. To check whether the specifi-
cation conforms to the user’s concerned scenarios of train operation, the
scenarios are specified as test cases for testing the prototype. The conformance is
then determined via test analysis. Through the review and the testing, the
requirements specification is validated. The case study and experiments show
that the approach achieves a higher error detection rate and while it reduces the
time costs comparing to the traditional review method used by our industrial
partner.

1 Introduction

ATP (Automatic Train Protection) software is one of the kernel components of railway
transportation system, which performs safety-critical functionalities of a train. The
validation of the ATP software requirements must be considered for ensuring the
quality of the ultimate software systems, since the requirements specification act as the
foundation of the ATP software development.

Requirements validation focuses on checking the completeness and correctness of
the requirements specification [1–3]. That is, the requirements specification needs to
cover the user’s expected functions as complete as possible. Potential scenarios of the
target system should be satisfied by the specification. Meanwhile, the requirements
specification should not contain logic errors (e.g., inconsistency). Research efforts have
been devoted to the requirements validation from both the academic and the industrial
communities, including specification review/inspection [4–7], specification testing
[18–20] and animation [13, 17]. However, effective requirements validation for the
industrial ATP software practitioners is still a challenge.

© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 26–40, 2016.
DOI: 10.1007/978-3-319-47846-3_3

One major problem is how to validate whether the user’s (e.g., the train driver)
concerned safety-critical scenarios (e.g., accelerate and then run at a designated
velocity) of the train operation are completely and correctly satisfied by the require-
ments specification. Usually there is a gap between the concerned scenarios and the
requirements specification. The specification is established by the requirements analyst
and the ATP domain expert, which describes the ATP software from the functional
perspective in terms of individual functions. However, such a specification does not
explicitly specify the scenarios of running a train in the real world. The practitioner
demands effective methods for validating whether the user’s concerned scenarios can
be satisfied by the specification.

In this paper, we propose a scenario-based specification testing approach to
requirements validation of ATP software. The ATP analyst constructs the requirements
document using a particular modeling language. To facilitate the automation of
requirements validation, the specification is transformed into an equivalent executable
ATP prototype. Since ATP software is a large-scale system that involves complex
interactions among variables, directly reviewing the specification or the code of the
prototype is tedious and error-prone. To tackle this problem, we provide an intuitive
diagram-guided specification review technique. The variable dependency diagrams and
the state transition diagrams are derived from the prototype. Potential errors of variable
interactions are detected via the diagram-guided review. To validate whether the
specification satisfies the user’s concerned scenarios, we adopt the idea of “model-based
testing”. Specifically, concerned scenarios of train operations are defined in the scenario
document using a designated scenario notation. Then the scenario document is trans-
formed into an executable test script for running the prototype. The satisfaction of the
prototype with respect to the scenarios can be evaluated via analyzing the test results.
Through the static review and the dynamic testing, the requirements specification is
rigorously validated.

To support the automation of the approach, we have developed a supporting tool
for applying this approach in practice. We have also carried out a systematic case study
for validating the efficacy of the approach in a real ATP software development project
of our industrial partner, the CASCO Signal Ltd. of China. The feedback provided by
the practitioner and the experimental results demonstrate that the approach can improve
the efficacy of the requirements validation and lead to higher productivity of the ATP
software development.

The rest of the paper is organized as follows. Section 2 overviews the state-of-art in
the area of requirements validation. Section 3 presents the technical details of the
approach. In Sect. 4, we present the case study and experiments for demonstrating the
efficacy of the approach in real ATP software development. Section 5 summarizes the
paper and points out our future research plans.

2 Related Work

Specification review is a classic technique for requirements validation, especially in the
industry. To validate whether requirements specification really satisfies the given
requirements, the authors of work [7] propose an approach based on the notion of

Automated Requirements Validation for ATP Software 27

querying a model, which is built from the requirements specification. Then scenario
questions are raised and the results are analyzed for validating whether the derived
model’s behavior satisfies the given requirements. This work inherits the advantages of
the review/inspection process. In the work [5], a mental model is introduced as the
foundation for requirements validation. The requirements are aligned with the model
and be reviews following certain criteria. A specification review approach based on
virtual prototype is proposed in the work [22]. Specification in natural language is
transformed into virtual prototype for structural and functional review. In practice,
however, when the specification is in large-scale and the logics is complex, directly
reviewing or inspecting textual requirements specification may be difficult. The effi-
cacy, to a large extent, relies on the practitioner’s experience. To facilitate the speci-
fication review, our approach recommends a diagram-based review strategy.

Animation of specification is also used for requirements validation. Specification
animation is usually done through model checking and specification execution. ProB is
a validation toolset for B formal specification that animates counter-examples by dis-
playing its state transition paths [11, 12]. UPPAAL also animates dynamic behaviors of
the target system by model checking [13, 14]. It allows system modeling with states
and transitions and explores the state space automatically. In [15], the authors propose
an approach to animating tabular specification. In [17], an animation-based inspection
approach is proposed where animation is used to guide the inspection process. By
demonstrating the relationship between input and output of the selected functional
scenarios, the efficiency of the inspection activity can be improved. In fact, the
effectiveness of animation relies on the understanding of the intended functions by
human.

Specification testing is a promising technique for requirements validation.
VDMTools is developed to support the analysis of VDM specifications [16]. It is able
to execute a large subset of VDM notations. With test cases generated by certain
criteria, VDMTools will show system behaviors by executing the concerned specifi-
cations. In [18], the authors propose a tool suite for testing software design specifi-
cations using dynamic slicing technology. In [19], the authors use testing modules to
test formal specifications. The testing modules are described in the same formalism as
the formal specification and can be automatically generated. Liu proposes a specifi-
cation testing method for reviewing task trees of the target formal specifications [20]. It
includes different strategies for generating test cases for different kinds of review task
trees. Our approach differs from them in the way of test case generation and the
automated test result analysis. The test cases in our approach are generated from
dedicated scenarios. The scenario also acts as the foundation of the test oracle of
specification testing.

Some researches adopt the formal methods for requirement validation. In the work
[8, 9], the authors present the VDM++ specification validation of ATP software. [10]
introduces a specification verification technique based on the SCADE platform. How-
ever, these approaches require that the practitioner construct the proof obligations using
complex mathematics notations. Although in recent years formal methods have been
reorganized by the industrial practitioners, exploiting these formal techniques including
formal modeling and verification in industry is still challenging. In particular, how the
formal methods can benefit traditional industrial software engineering activities such as

28 W. Miao et al.

specification review and inspection is still a problem. In our approach, we try to support
the traditional specification review and testing using the formal specification written in a
light-weight formal language for the ATP software. In this way, the precision of formal
methods can help the requirements validation without change the practitioner’s engi-
neering processes radically.

3 The Approach

3.1 Main Framework of the Approach

Before a detailed illustration of the techniques involved in the approach, we first
introduce the framework of the approach, which is described in Fig. 1.

In our approach, requirements are documented using the CASDL (Casco Accurate
Description Language) language developed for ATP software modeling. The CASDL
is a light-weight formal language for specifying the functions of an ATP system. In the
textual specification, each function is specified in terms of the relations between the
input and the output variables. In addition, there are some descriptions written in
natural language in the specification.

State Transition Diagram

Test
Results

Diagrams
Derivation

Scenarios

Variable Dependency Diagram

Test Scripts

Syntax File

Requirements
Specification

Model
Parser

ATP
Prototype

Prototype
Generation

Test Case
Generation

Diagram-guided Inspection

Scenario-based Testing

Analysis

Test
Executor

Fig. 1. Framework of the requirements validation approach

Automated Requirements Validation for ATP Software 29

Requirements validation is performed via the stages of specification review and
testing. To facilitate the automation of requirements validation, the specification needs
to be processed into an executable model by removing the natural language comments
for effective diagram generation and testing. To this end, we first transform the
requirements specification into an equivalent executable model. Firstly, the analyst
defines the syntax file for the specification language. Since the specification is basically
written using the CASDL, the syntax file here defines the CASDL syntax. The syntax
file and the requirements specification are accepted by a dedicated Model Parser. The
parser can generate an executable CASDL requirement model, i.e., the prototype of the
ultimate ATP software through analyzing the syntax file and the specification.

To facilitate a more effective specification review, we provide a diagram-guided
review technique for specification validation. Two diagrams, variable dependency
diagram (VDD) and state transition diagram (STD), are generated from the prototype to
precisely visualize the interactions among variables and state transitions of individual
variables, respectively. Through reviewing the VDDs, the analyst determines whether
the relations among the involved variables conform to the expectations. Similarly,
whether the state transitions of each concerned variable are correct can be checked via
reviewing the STDs.

Specification review only checks the defined requirements statically. To validate
whether the requirements specification satisfies the concerned operational scenarios of
the trains, we propose a scenario-based specification testing technique. User’s con-
cerned operational scenarios are first specified in the scenario document using the
CASSL (CASco Scenario Language) language that is designed for describing the train
operations in the real world. The scenario documents are then automatically trans-
formed into test scripts for running the ATP prototype. Subsequently, test report is
automatically generated. The report visualizes detailed information of the test results
(e.g., coverage of requirements) and explicitly describes the consistency between the
scenarios and the prototype. Therefore, whether the specification satisfies the expected
scenarios can be finally determined based on the test results analysis.

3.2 The Specification and the Prototype Construction

Our approach is language independent. In practice, due to the different characteristics
of the target system, various requirements description notations can be used. In our
approach, we deliberately design the CASDL modeling language for our industrial
partner. The CASDL language is a domain specific requirements specification language
for accurately describing the requirements of ATP software. Figure 2 is a simple
example of the CASDL requirements specification.

The expected functions of an ATP system are represented by individual require-
ments items. Each item consists of two parts. The first part is a section of natural
language to concisely describe the expected functions. The other part is a section of the
CASDL formal description for precisely defining the relations between the input and
output variables. Such combination of both natural language and formal notations
keeps the balance of readability and precision of the specification. Note that the ATP
software is a periodic system (i.e., computation tasks are driven according to the time

30 W. Miao et al.

period). In Fig. 2, the parameter k explicitly specifies the time period. The ATP soft-
ware just runs in a sequential non-terminating execution cycle when the power is on.
This specification describes the functionalities of the odometer monitoring component
of the ATP software. The function is responsible for monitoring the speed of the train
and the distance the train has passed. The odometer can switch between certain states.
The state transitions of the variable OdometerState is regarded as a function in the
specification. For instance, it can change from uninitialized state (i.e., NOT INITI-
ALIZED) to the state that the meter is disabled or idled (i.e., INVALID). In this example,
these functionalities are defined in terms of if-else control blocks.

Since the ATP software is a typical large-scale control system, the requirements
validation should be automated. To this end, the textual requirements specification is
transformed into an executable prototype for automated analysis and specification
testing. The transformation focuses on removing all the natural language descriptions;
meanwhile, the syntax errors in the specification are detected. We have implemented a
Model Parser that uses the ANTLR tool [21] as the foundation for the transformation.
Aided by the ANTRL (Another Tool for Language Recognition) tool, the parser can
generate an executable CASDL requirement model. Given a language and its syntax,
ANTLR can build the ASTs (Abstract Syntax Tree) for analyzing the target language.
Our parser derives the prototype through analyzing the ASTs of the CASDL
specification.

When the specification is processed, syntax errors of the CASDL specification can
be detected. In particular, the circular dependency errors of variables can be auto-
matically detected. Circular dependency error of variables is a typical logical error in
ATP software, which refers to the situation that the relations among certain variables
constitute a cycle. For instance, the value of variable A relies on the value of vari-
able B. B relies on the value of variable C and C relies on the value of A. In this case,
the variables A, B and C constitute a circular relation. From the perspective of data
flow, a circular relation refers to a cycle of the data flows between certain variables.
Such circular relations need to be detected. Otherwise, the system will be stuck in
certain states. We have the additional criterion for detecting such errors.

Fig. 2. The sample CASDL specification

Automated Requirements Validation for ATP Software 31

Criterion 1. Each variable V specified in the specification (i.e., the prototype) should
be checked whether V is involved in any circular dependency relation.

Let’s consider the CASDL statement: ImmediateNb = ImmediateNb + 1. The value of
ImmediateNb depends on itself and the value 1, which is obviously a circular depen-
dency error. The intention of this statement is to add value 1 to the previous value of
ImmediateNb and get the new value. The correct statement should be ImmediateNb
(k) = ImmediateNb(k-1) + 1 in which the state of ImmediateNb is explicitly differen-
tiated. This is a special case that the circular relation occurs on a single variable.

3.3 Diagram-Based Specification Review

An ATP specification describes the train protection functions by defining the interac-
tions between the variables. Some variables are crucial since they correspond to the
kernel functions such as the speed monitoring. Therefore, the analyst needs to validate
whether the interactions of these variables with other variables correctly represents the
intended relations. Similarly, the state transitions of the individual variables also need
to be considered. To this end, a careful and rigorous specification review is demanded.

The VDDs and the STDs are generated from the prototype for precisely visualizing
the interactions among the concerned variables and the state transitions of each indi-
vidual variable. The developer checks the diagrams and determines whether they
conform to the expectation. Meanwhile, logic errors in the prototype are also detected.

Definition 1. Avariable dependency diagram of a variable V is a tree structure in
which the root node represents V. The child nodes of V is a set of variables ranging
from V_child_1 to V_child_n(n > 0), which represents that the value of V depends on
the n variables.

The state transition diagrams of each concerned variable can also be derived from the
prototype. For the sake of space, we omit the definition of the STD here since the
definition is the same to the traditional definition of STD. The following criteria can be
applied for the validation.

Criterion 2. For each concerned variable V, generate the VDD for validating the
intended relations between the involved variables.

Criterion 3. For each concerned variable V, generate the STD for validating the state
transitions.

Following the criteria, the analyst can validate the requirements from the perspectives
of the relations among variables and the state transitions. We use the sample specifi-
cation shown in Fig. 2 as an example to illustrate the review process. Figure 3 shows a
part of the generated variable dependency diagram of the variable OdometerState.

The VDD shows that the value of this variable is determined by various variables
such as INITIALIZED. If some relations conflict with the analyst’s understanding of the
requirements or some relations are missing, then the analyst can make decision that the

32 W. Miao et al.

requirements are incorrect or incomplete. The VDD in this figure is in horizontal
manner, since the structure is relatively too large to be displayed in vertical manner.
Our tool provides both the horizontal and vertical views of the tree structures.

Similarly, the analyst can review the state transitions of a variable. Figure 4
describes the state transition of variable OdometerState.

The diagram shows that the variable cannot directly switch from the invalid state to
the initialized state. The analyst and the ATP domain engineer found this missing
transition after carefully reviewing the diagram.

3.4 Scenario-Based Specification Testing

The goal of the scenario-based specification testing is to dynamically check whether the
user’s concerned operational scenarios of the train are correctly and completely
reflected by the specification. In other words, we try to check whether the specification
satisfies the expected scenarios for running a train in the real world. The scenario-based
testing is carried out in three steps. The first step is to describe the expected scenarios
for operating the train. The second step is to transform the scenarios into executable test
scripts for running the prototype. Finally, the test results are analyzed for checking the
conformance of the prototype with respect to the scenarios. Therefore, whether the
specification satisfies the scenario can be determined.

Fig. 3. The VDD of variable OdometerState

Fig. 4. The STD of variable OdometerState

Automated Requirements Validation for ATP Software 33

Scenario Representation. The scenarios represent how the train works in the real
world. For example, the train driver may concern whether the train can stop at certain
position after an acceleration. The scenarios are defined by the user based on domain
knowledge. The domain engineer or the usermay not familiar with software requirements
modeling languages. Therefore, the scenario representation notation should be both
precise and easy to understand. Our group and the industrial partner develop a domain
specific scenario notation called CASSL for defining the expected scenarios of the train.

Definition 2. An ATP scenario is a description of train operations, which consists of
the train settings, the train actions and the event triggers.

The train settings refer to the environment information for running the train, such as the
routes and length of the train. The train actions are the primitive commands (e.g., stop
or accelerate) for running a train. The event triggers refer to the configuration infor-
mation for describing the reactions of the train with its external hardware (e.g., the
signal equipment on the tracks).

The user can freely define the expected scenarios for running a train using the
CASSL by setting the parameters values of each involved command. Figure 5
describes a scenario document in the CASSL language.

The train settings section defines the routes of the train using a sequence of blocks
on the tracks. The “start” command in the train settings section represents that the train
starts from the 0 position of the 247 block. In the train action section, the command
start(@0,30) indicates that the train starts from the 0 position 30 s later after receiving
the command. The train accelerates to the 4 speed units by the acceleration of 1 unit
and then stops at position @94.

Test Execution. The user focuses on defining the physical variables such as the speed
and the position information for the concerned scenarios. Then the scenarios are
transformed into XML test scripts for testing the prototype. For each variable x in the

Fig. 5. A scenario document for operating a train

34 W. Miao et al.

scenario, there should be a set of corresponding variables denoted by R(x) in the
prototype. Function R represents the associations between the scenario variables and
the prototype variables, which is pre-defined by the domain expert and saved as a file in
the Test Executor of the tool. For each scenario, the Test Executor deduces the input
values for running the prototype by referring to the association.

A scenario variable may correspond to several variables in the prototype.For
instance, as shown by Fig. 5, the “run” action takes a variable as input for setting the
speed of the train. This variable actually associates to the variables TrainMaxSpeed,
WheelMinSpeed and other variables in the prototype. To run the prototype, we have
implemented a CASDL execution engine as a component in the Test Executor.

Test Analysis. One major problem in automated test analysis is the construction of test
oracle. That is, the expected outputs of the scenario need to be derived. By comparing
the expected outputs of the scenario and the real outputs of the prototype, the con-
sistency between the scenario and the prototype can be determined.

The expected values of the variables in the scenario are computed based the physics
formulas stored in the Test Executor. The corresponding expected results of prototype
can be deduced by referring to the association file. Formally, for each scenario, if the
following condition holds, we say that the ATP prototype does not conforms to the
scenario.

Condition 1. 9x 2 S � RðEðxÞÞ 6¼ PðxÞ

The above condition serves as the test oracle. For each variable x of the scenario S, its
expected value is evaluated as E(x). Function R represents the associations defined in
the association file of the Test Executor. By referring to the associations, the expected
values R(E(x)) of the corresponding variables of the prototype can be computed. P(x)
denotes the execution results produced by the prototype after running the test script. If
R(E(x)) does not equal to P(x), we say that the prototype does not satisfy the scenario
S. Note that we linearise the computation of the kinematic behaviors such as the
braking curves in our tool. That is, the engineer focuses on the concerned values at each
time cycle.

For the previous example scenario, the expected speed of the train at the destination
should be 0 based on the computation formulas. The expected value of its corre-
sponding variable TrainMaxSpeed in the prototype should be 0 according to the
association file. Figure 6 is the test results.

Fig. 6. Test result of the scenario

Automated Requirements Validation for ATP Software 35

The output value −594760564 after testing obviously violates the expected value 0.
That is, the prototype does not implement the scenarios correctly.

4 Experiments

To validate the feasibility and demonstrate the efficacy of our approach, we have
applied our approach and the tool in a real ATP software project. An ATP specification
is established by the requirements analyst of our industrial partner. The specification is
a Microsoft Word file which includes 455 requirements items. Two well-trained
engineers participated in the experiments.

4.1 Specification Processing

Taking the syntax file and the textual specification as the inputs, the supporting tool
performed the specification processing. The natural language descriptions were
removed and the specification was transformed into an executable prototype. The
average time for the tool to finish the overall specification (a 450 page document)
transformation was about 3 min. During this transformation, 127 syntax errors were
detected. Moreover, the tool identified 11 circular relations.

4.2 Diagram-Guided Specification Review

Since an ATP specification contains a huge amount of variables, in practice, the
practitioner may only focus on the variables that correspond to the most important
functions. In our case study, the practitioner selected 300 variables and generates the
VDDs. The tool produced a 2 MB Excel file for storing the generated VDDs. The file
contained 46174 rows to record the dependencies of the 300 concerned variables. That
is, 300 tree structures were saved in the file. The degree of the deepest trees is 23. The
generation of the STDs is similar to the VDDs generation. The engineers were more
interested in those variables that associate to kernel functions of the ATP. In our case
study, the analyst selected 8 variables to review their state transitions. The most
complex state transition relation of a variable includes 5 states and 15 transitions.

4.3 Specification Testing

To sufficiently test the prototype derived from the specification, 317 scenario files were
constructed by the ATP engineer. To sufficiently cover the potential operating scenarios
of the train, we used real track maps in the case study. All the scenarios were auto-
matically transformed into executable XML test scripts.

4.4 Experiment Results and Analysis

Errors detected from the requirements validation are categorized into four types: syntax
error, variable circular error, functional error, and exceptions.

36 W. Miao et al.

In particular, the functional errors refer to the errors related to the functions that are
detected via specification review and testing. The exception errors are basically the
unhandled code exception in the prototype. For instance, division by zero is an
arithmetic exception. Figure 7 shows the statistics of the case study.

The tool generated both the textual test report and the visualized statistics. The chart
shows 127 syntax errors, 11 circular errors, 83 functional errors, 5 exceptions and 61
no data errors were detected through the review and testing phases. Four of the
exception errors were arithmetic errors (i.e., division by zero) and one was the out of
bound of an array definition. There is a special type of error called no data, which is
caused by the missing association definitions between the scenario variables and the
variables in the prototype.

Our tool estimates the statement coverage of functions in the prototype. This figure
shows that the statement coverage of the ATP prototype is 77.5 % after running a
certain scenario. For the 317 scenarios used in the case study, the average statement
coverage of the functions was approximately 82 %. Table 1 summarizes the compar-
ison of the error detections achieved by the manual specification review and the
automated approach.

In general, our proposed approach can reach higher error detection than the manual
specification review method applied by the industrial partner. The two engineers
reviewed the same specification manually and detected 81 syntax errors. They also
detected 2 exceptions in the specification. Similarly, the engineers detect 7 circular
errors of variables. For the functional errors, only 27 functional errors were detected
through the manual review. Most of the functional errors detected by the engineers
were the execution logic errors in individual functions, e.g., the missing of if-else
branches.

Fig. 7. Test result analysis of the case study

Automated Requirements Validation for ATP Software 37

Table 2 compares the time costs of using the two approaches.

To find out the syntax and circular errors, the two engineers spent about 0.5 week in
reviewing the specification. By the contrast, the tool only used 12 min to finish the
static checking. Most of the time was spent on transforming the Word requirements
specification to the executable CASDL prototype and the generation of the variable
relations. They spent 3 weeks in identifying the functional errors by manual work while
this task was performed within 1.5 weeks aided by the tool. When using the new
approach, most of the human efforts were devoted to the construction of the concerned
scenarios.

The results of the experiments have convinced us that the automated approach can
significantly improve the efficacy and the productivity of the requirements validation
for developing the ATP software.

5 Conclusion

Requirements validation is still a challenging problem for the ATP industrial practi-
tioners due to the lack of effective methodologies and powerful tool support. To tackle
this problem, in this paper we propose an automated requirements validation approach.
Textual requirements specification is transformed into executable ATP prototype. In
the static analysis phase, diagram-based review is conducted for validating the
requirements from the perspective of variable interactions. The dynamic phase focuses
on checking whether the requirements specification can satisfy the user’s intended train
operation scenarios. We have proposed a particular scenario description language. Test
scripts are transformed from the scenarios for running the prototype. The conformance
of the specification to the scenarios is evaluated via analyzing the test results. To
facilitate the approach in practice, we have also developed a supporting tool for
automating the activities involved in the approach.. The case study indicates that our
approach is effective in requirements validation and can significantly improve the
productivity of ATP software development.

Table 1. Comparison of the error detection

Manual review The automated approach

Syntax errors 81 127
Exceptions 2 5
Circular errors 7 11
Functional errors 27 83

Table 2. Comparison of the costs

Manual review The automated approach

Syntax and logic errors 0.5 week 12 min
Functional errors 3 weeks 1.5 weeks
Total cost 3.5 weeks 1.5 weeks

38 W. Miao et al.

We will continue to develop the approach as a long-term research project. Our
future research will be devoted to the aspects including facilitating the association or
traceability mechanism between the scenario variables and the prototype variables and
the more effective technology for defining high-quality scenarios. The tool support will
also be enhanced in our future research.

Acknowledgments. Weikai Miao is supported by NSFCs of China (No. 61402178,
No. 61572306 and No. 91418203) and the STCSM Project (No. 14YF1404300). Geguang Pu is
supported by China HGJ Project (No. 2014ZX01038-101-001) and STCSM Project
No. 14511100400. This work is also partly supported by Japan JSPS KAKENHI (No. 26240008).

References

1. Kotonya, G., Sommerville, I.: Requirements Engineering. Wiley, Hoboken (1998)
2. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proceedings of

International Conference on Software Engineering, pp. 35–41, April 2000
3. Wiegers, K.E.: Software Requirements. Microsoft Press, Redmond (2003)
4. Laitenberger, O., Beil, T., Schwinn, T.: An industrial case study to examine a non-traditional

inspection implementation for requirements specifications. In: Proceedings of Eighth IEEE
Symposium on Software Metrics, pp. 97–106 (2002)

5. Lee, G.Y.K., In, H.P., Kazman, R.: Customer requirements validation method based on
mental models. In: 2014 21st Asia-Pacific Software Engineering Conference (APSEC),
pp. 199–206, December 2014

6. Sinha, A., Sutton Jr., S.M., Paradkar, A.: Text2Test: automated inspection of natural
language use cases. In: 2010 Third International Conference on Software Testing,
Verification and Validation (ICST), pp. 155–164, April 2010

7. Aceituna, D., Do, H., Lee, S.W.: SQ2E: an approach to requirements validation with
scenario question. In: 2010 17th Asia Pacific Software Engineering Conference (APSEC),
pp. 33–42, November 2010

8. Xie, G., Hei, X., Mochizuki, H., Takahashi, S., Nakamura, H.: Model based specification
validation for automatic train protection and block system. In: Proceedings of 7th
International Conference on Computing and Convergence Technology, pp. 485–488,
December 2012

9. Xie, G., Asano, A., Takahashi, S., Nakamura, H.: Study on formal specification of automatic
train protection and block system for local line. In: Proceedings of 5th International
Conference on Secure Software Integration Reliability Improvement Companion (SSIRI-C),
pp. 35–40, June 2011

10. Wang, H., Liu, S., Gao, C.: Study on model-based safety verification of automatic train
protection system. In: Proceedings of Asia-Pacific Conference on Computational Intelli-
gence and Industrial Applications, pp. 467–470, November 2009

11. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003)

12. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method. Int.
J. Softw. Tools Technol. Transf. 10(2), 185–203 (2008)

13. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Bernardo, M., Corradini, F.
(eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)

14. Vaandrager, F.: A first introduction to UPPAAL. Deliverable no.: D5. 12 Title of
Deliverable: Industrial Handbook (2011)

Automated Requirements Validation for ATP Software 39

15. Gargantini, A., Riccobene, E.: Automatic model driven animation of SCR specifications. In:
Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 294–309. Springer, Heidelberg (2003)

16. Fitzgerald, J., Larsen, P.G., Sahara, S.: VDMTools: Advances in support for formal
modeling in VDM. ACM Sigplan Not. 43(2), 3 (2008)

17. Li, M., Liu, S.: Integrating animation-based inspection into formal design specification
construction for reliable software systems. IEEE Trans. Reliab. 65(1), 88–106 (2016)

18. Li, J.J., Horgan, J.R.: A tool suite for diagnosis and testing of software design specifications.
In: Proceedings of International Conference on Dependable Systems and Networks,
New York, USA, pp. 295–304 (2000)

19. Brockmeyer, M.: Using modechart modules for testing formal specifications. In: Proceedings
of 4th IEEE International Symposium on High-Assurance Systems Engineering,
Washington, DC, USA, pp. 20–26 (1999)

20. Liu, S.: Utilizing specification testing in review task trees for rigorous review of formal
specifications. In: Proceedings of Tenth Asia-Pacific Software Engineering Conference,
pp. 510–519 (2003)

21. http://www.antlr.org/
22. Aceituna, D., Do, H., Lee, S.W.: Interactive requirements validation for reactive systems

through virtual requirements prototype. In: Model-Driven Requirements Engineering
Workshop (MoDRE), Trento, 2011, pp. 1–10 (2011)

40 W. Miao et al.

http://www.antlr.org/

Automatic Generation of Potentially
Pathological Instances for Validating Alloy

Models

Takaya Saeki1(B), Fuyuki Ishikawa2, and Shinichi Honiden1,2

1 The University of Tokyo, Tokyo, Japan
{t-saeki,f-ishikawa,honiden}@nii.ac.jp

2 National Institute of Informatics, Tokyo, Japan

Abstract. Alloy is a formal specification language that is widely used to
verify software systems. However, while users can verify the properties of
a specification with Alloy, it is not so easy for them to validate the speci-
fication, that is, to check that the specification is written just as the users
intended. Alloy Analyzer, a tool supporting Alloy, has a feature to show
concrete instances satisfying specifications that can be help in validation,
but it does not control the order in which the instances are shown. Many
studies have been conducted on ordering to help users explore instances
in structured ways. However, not much prior research has focused on
proper ways to explore instances for validating specifications. In this
paper, we propose a method to assist users in validating specifications
by displaying a set of instances that tend to include problems when their
specifications have defects. In particular, the method applies pairwise
testing to relations of Alloy specifications. We show effectiveness of the
method in experiments using mutation analysis.

1 Introduction

Software has permeated society. Computers now control systems that in the
past have had few or limited numbers of relations, such as automobile and train
systems. As a result, it is becoming more and more important to ensure the reli-
ability of software. A formal specification language is a technique for improving
the reliability of software. It eliminates ambiguity from system specifications and
makes it easy to get software assistance such as a machine-aided proof or model
checking.

Alloy [5] is a formal specification language. It was developed by MIT and
has widely been used in research and in practical applications. Alloy is often
called a lightweight formal method. It brings the power of model checkers such
as SPIN [4] to formal specification languages. Users write specifications in Alloy
language based on first-order propositional logic. Alloy Analyzer, the official
tool of the Alloy language, then verifies their properties automatically by model
checking.

On the other hand, it is not easy to express exactly what users intend in the
specification using the mathematical notation in the Alloy language. Properties
c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 41–56, 2016.
DOI: 10.1007/978-3-319-47846-3 4

42 T. Saeki et al.

are sometimes too weak or too strong, and the specification accepts or rejects
unexpected instances. To tackle this difficulty, Alloy Analyzer offers a feature to
show concrete instances. It gives users quick feedback on what they have written
and helps them to understand the consequences of their models. Users can vali-
date their models by checking instances, or scenarios, one by one. The process of
checking concrete scenarios iteratively is called scenario exploration. The impor-
tant role of this process is “debugging” of models. In exploring scenarios, users
may find pathological instances where unexpected relations exist or instances
where expected relations do not exist. In this way, they come to notice that new
constraints should be added that they hadn’t thought of before or that some of
the current constraints are wrong.

Alloy Analyzer is useful tool for scenario exploration, but it has a problem
with how it enumerates scenarios; the order of scenario generation is not tai-
lored for validation. Alloy Analyzer shows possible scenarios one by one, and
it “tends to” start generating them from small instances, but there is no fur-
ther ordering control. During the scenario exploration process, Alloy Analyzer
shows a scenario, and the user checks it; if it has no problem, the user pushes
the “next” button and checks another scenario. This is not an effective way of
model validation. All that the user can do is push the “next” button and hope
for an interesting scenario to come along while iterating unordered scenarios one
by one.

To solve this problem, some studies have proposed ways to provide users
with methods to guide scenario generation; examples include Aluminum (2013)
[10] and the work of Macedo et al. (2015) [8]. These studies help users to reach
the scenarios they desire. For example, Aluminum offers an “augment” feature
to guide scenario generation. It enables users to add relations interactively to
current scenarios to reach the ones they want. In this way, users can explore
scenarios they are interested in manually. However, users often even do not
know what kinds of scenarios are useful to validate their models. Defects in
models often arise from unnoticed problems such as under-constraints or over-
constraints that did not come to their mind. In such cases, it is difficult for users
to guide the scenario generation because the cause of the defects is an unnoticed
gap between their intention and the actual models they write.

In this paper, we propose a way of automatically generating a set of sce-
narios that are likely to be pathological through heuristics based on pairwise
testing. The method also presents unrealizable scenarios that are likely to be
invalid when compared against the user’s intention. We call it Scenario Tour ;
it generates a set of scenarios that should be checked for validation. In other
words, it is test generation for scenario exploration. Scenario Tour helps users
validate their models without all the trouble of manually guided scenario gen-
eration. We implemented Scenario Tour on top of Aluminum and evaluated its
effectiveness by artificially adding defects to test models and checking whether
the tour offered scenarios exposing the defects. In our experiments, Scenario
Tour detected most of the mutation defects. It also detected a new defect not
known before in an example model distributed with Alloy Analyzer.

Automatic Generation of Potentially Pathological Instances 43

2 Background and Motivation

2.1 Scenario Exploration in Alloy Analyzer

Alloy Analyzer has a feature to enumerate concrete instances that satisfy con-
straints in a given model in the form of a graph to visualize the relations in each
instance. A simple gradebook model is illustrated in Fig. 1. This model is the
same as the one in the original paper on Aluminum [10], but with a gradedBy
relation added by us for the sake of explanation. There are four signatures, i.e.,
Class, Student, Professor and Assignment. A class has an instructor and
sometimes has TAs. The classes may have assignments. The assignments always
have students who submitted them and professors or students who grade them.
The constraint of gradedBy states that the professor or students who grade them
must be instructors or TAs of the classes they are submitted for. Figure 2 shows
the scenario of the gradebook model.

This gradebook model has a defect. It lacks a constraint that prohibits stu-
dents from being a TA of a class in which they have to submit their own assign-
ments; that is, they can grade their own assignments. However, simply looking
at scenarios such as in Fig. 2 does not help one to find this defect. Alloy Analyzer
is not tailored to selectively show the most effective scenarios for validation.

2.2 Scenario Minimality Through Aluminum

It is believed that small instances are more likely to expose subtle defects [5].
Thus, presenting the smallest scenario first would be a desirable feature. Here,
although Alloy Analyzer tends to present small scenarios first, this is not guar-
anteed and the order can change arbitrarily according to the situation. On the

Fig. 1. Simple grade book model

44 T. Saeki et al.

Fig. 2. Scenario of grade book model

other hand, Aluminum, an extension of Alloy Analyzer, presents only the mini-
mal scenarios [10]. A minimal scenario is one that consists of the smallest num-
ber of Aluminum terms tuples, which roughly corresponds to the number of
atoms or relations. Since the scenarios that Aluminum gives to users are always
minimal ones, users can be sure that every one of their relations is necessary.
Aluminum also offers a way to guide the scenario generation. It allows users to
“augment” scenarios; users can add arbitrary relations to given minimal models.
This enables them to explore scenarios they are interested in.

However, the manual guiding ability is not always useful. In the “debugging”
phase, users often do not know what sorts of scenarios should be checked for
defects. Model defects are often due to unnoticed gaps such as under-constraints
or over-constraints that do not come to the user’s mind. In such cases, it is
difficult for users to guide the exploration towards pathological scenarios because
the causes of the defects go unnoticed.

Therefore, it would be useful if we could generate a set of scenarios that are
likely to be pathological automatically. By checking these generated scenarios,
users would have more chance to find defects and increase their confidence in
the validity of the models. Our approach tries to generate such scenario sets
heuristically.

2.3 Other Related Work

Montaghami and Rayside (2012) suggested an Alloy extension with partial
instance declaration [9]. It enables users to declare example scenarios that should
or should not be consistent in the Alloy model. Such a feature could be useful for
testing Alloy models. However, the user has to make a manual description and
notice possible defects in advance. Thus, their extension has the same limitation
as that of Aluminum.

Automatic Generation of Potentially Pathological Instances 45

There are studies that use Alloy to generate test suites for program code
such as TestEra [7]. These studies, as well as ours, generate test suites using
Alloy, but our study is different from them in that it generates test suites for an
Alloy model itself instead of program code. There are also studies on random
test generation for program code such as Randoop [11]. Whereas these studies
generate many tests for random testing, our approach concentrates on generating
a limited number of test cases by heuristics for manual checking.

As stated above, to the best of our knowledge, there has not been any research
on generation of instance sets for finding defects by focusing on relations for first-
order logic specification languages such as Alloy.

3 Method

3.1 Scenario Generation Heuristics Overview

We stated that for effective validation it would be useful to automatically gen-
erate a set of scenarios that are likely to have defects in Sect. 2.2. Our method
generates such scenarios heuristically. The basic idea of our heuristics is that
the gaps between the user’s intention and the actual models tend to cause too
weak or strong constraints, and they often appear in the form of unexpected
co-occurrences of relations or absences of ones. We generate such scenarios that
consist of many combinations of co-occurrences or absences of relations artifi-
cially. However, checking all combinations of relations amounts to a combina-
torial explosion that is as impossible as to check as all possible scenarios. To
avoid this problem and make the number of scenarios small enough to check,
we apply pairwise testing. In addition, we assume that thorough co-occurrences
or absences make especially pathological instances; our method generates such
instances deliberately.

Our method also presents inconsistent scenarios, that is, scenarios that do
not meet the given constraints. Incorrect under-constraints appear in scenarios
in the form of pathological relation combinations. However, over-constraints do
not appear in such form; users have to notice the absence of the scenarios they
want, and that is more difficult than finding incorrect under-constrained scenar-
ios. Thus, presenting inconsistent scenarios that are against the user’s intention
would be useful for validation. As described above, our method generates a set
of scenarios through pairwise heuristics. Moreover, in the pairwise generation
process, our method finds those scenarios that cannot meet the constraints.
After that, it searches for the combinations of relations assigned by the pairwise
process that make the scenarios inconsistent and presents the inconsistent sce-
narios to users for them to check if the combinations of relations actually should
not meet their specifications.

3.2 Pairwise Scenario Generation

Scenario Tour generates sets of scenarios by applying pairwise test genera-
tion technique to combinations of relation co-occurrences. Pairwise testing, also

46 T. Saeki et al.

known as all-pairs testing, is a combinatorial testing method in software engi-
neering. In combinatorial testing, testers try to determine whether combinations
of input parameter values cause a bug. Testing all such combinations naively
leads to combinatorial explosion of test cases. Pairwise testing techniques dra-
matically decrease this number by only testing a test suite that covers all pairs of
individual parameter values. That is, while every combination of two parameter
values appears in at least one test case, all combinations of all values does not
necessarily appear. Empirical studies have indicated that such pair combinations
are sufficient for detecting a reasonable number of software errors [1,12].

As described before, inappropriate constraints cause gaps between the user’s
intention and the actual models, and they are likely to appear as unexpected
combinations of relations or absences of expected relations in scenarios. More-
over, checking all such combinations leads to a combinatorial explosion. Thus, it
is reasonable to apply pairwise testing to scenario generation. We take relations
into or out of the signatures as parameters, and three elements about their quan-
tifier as values of the parameters; no, one, and #relations ≥ 2. For example,
Table 1 shows the combinatorial testing table of the gradebook model for inward
relations. Those for outward relations go similarly, such as None, One, and MTE2
for Class → TAs, Class → Student, and so on. By applying pairwise testing
to them, all pairs of two relations statuses appear at least once in the scenario
generation. For the gradebook model, all pairs such as (TAs → Student: None,
gradeBy → Student: One) or (submittedBy → Student: MTE2, gradedBy →
Professor: One) are surely included in the scenarios generated by Scenario Tour.
Table 2 shows some of the test cases of pairwise testing for the gradebook model.
We consider inward relations as examples here. Each line represents a scenario
generated by Scenario Tour. For example, the scenario 1 in Table 2 represents an
instance of the constraints shown in Fig. 3. It is visualized as graphical diagrams
such as Fig. 4. In the figure, you can find “checkThisFoo” labels on some sig-
natures. They indicate the key signatures of the scenario generated by pairwise
testing.

Remember that this gradebook model has a defect, wherein the model lacks
a constraint that prohibits students from being TAs for the class they attend.
In Fig. 4, some of the assignments are graded by a student who also submitted
them. This defect appears as a co-occurrence of submittedBy and gradedBy on

Table 1. Combinatorial table for inward relations: “MTE2” is short for “More Than
or Equal to 2”. This corresponds to the constraint “#relations ≥ 2”

TAs
→ Student

gradeBy
→ Student

submittedBy
→ Student

forClass
→ Class

instructor
→ Professor

gradedBy
→ Professor

None None None None None None

One One One One One One

MTE2 MTE2 MTE2 MTE2 MTE2 MTE2

Automatic Generation of Potentially Pathological Instances 47

Table 2. Part of the results of pairwise testing for Table 1

TAs
→ Student

gradeBy
→ Student

submittedBy
→ Student

forClass
→ Class

instructor
→ Professor

gradedBy
→ Professor

Scenario 1 One One MTE2 MTE2 One None

Scenario 2 One None None None One One

Scenario 3 MTE2 MTE2 None MTE2 MTE2 None

· · ·

Fig. 3. Constraints that correspond to the scenario 1 of Table 2

Fig. 4. Scenario represented by Fig. 3

some Student. Scenario Tour surely presents a case that includes the concurrent
pair on a Student signature and points out the signature to users.

As this example for the gradebook model, we separate inward and outward
relations for pairwise scenario generation because the consequent scenarios tend
to be too complicated if we combine them. The latter pairwise testing would
be more thorough, but our experiments indicated that the separated method
is capable enough of finding the gaps. Thus, the pairwise scenario generation
process is carried out twice for inward relations and outward relations.

48 T. Saeki et al.

3.3 Scenario Presentation Order

We stated that thorough maximization or minimization of the relations tends
to make especially pathological situations. Scenario Tour follows this idea and
presents a scenario with the maximal relations as the first presented scenario
and one with the minimal relations next. Table 3 shows the first two presented
scenarios with maximal and minimal relations for a case with four relations.
Scenario Tour tries to generate these scenarios first. If these scenarios are not
possible due to the constraints in the model, it tries to generate scenarios as close
to them as possible (e.g., MTE2 for three relations and One for one relation as
close as possible to the maximal). This presentation order enables users to notice
most defects that emerge as inappropriate co-occurrences or absences of relations
in the first or second scenario. For example, the defect of the gradebook model
we explained in Sect. 3.1 will be detected in the first scenario. Common defects
about incorrect multiplicity constraints of signatures will be detected in these
scenarios, as well.

Table 3. The ideal first and second scenarios

Relation A Relation B Relation C Relation D

First scenario MTE2 MTE2 MTE2 MTE2

Second scenario None None None None

3.4 Inconsistent Scenario

Checking instances satisfying a specification is not sufficient by itself to detect
gaps between the intended and actual models. Constraints that are uninten-
tionally too strong make some instances inconsistent and never appear during
the scenario exploration. It is often difficult to notice such defects by checking
consistent scenarios. Rather, it would be useful to show users inconsistent sce-
narios that may not be intended. Even if the inconsistent scenarios shown by
Scenario Tour are not against intention, checking them would still help the users
understand their model in a complementary way to scenario exploration with
consistent scenarios.

Our heuristic can naturally present inconsistent scenarios by extending con-
sistent scenario presentation. Scenarios generated by pairwise testing sometimes
are found to be impossible because of constraints in the specification. This is
because some combinations of values assigned to parameters are not realizable
under the constraints. In such cases, the generator tries to identify which factors
in the pairwise setting make the scenario impossible. First, it checks whether each
single value (No, One, MTE2) is possible in the specification. Then, it checks
each pair (No-No, No-One, etc.). It tries to identify and present a combination
of relations that makes the scenarios impossible in the minimal form if possible.

Automatic Generation of Potentially Pathological Instances 49

Then, Scenario Tour shows the combinations as inconsistent scenarios to users
and asks them to confirm if they are exactly what they intend. After that, it
eliminates the combination, regenerates pairwise test suites, and proceeds with
the tour.

The current implementation stops searching for the cause of an inconsistency
at pair combinations because a naive full search is not realistic (e.g., a combi-
nation of 7 factors is practically impossible). In our current implementation,
Scenario Tour presents the inconsistent scenarios as “Non-minimal Inconsistent
Scenarios” in such cases. Since these scenarios can include pairs that are irrel-
evant to the inconsistency, users have to find the core reason by themselves.
In the future, we will try to improve how Scenario Tour handles non-minimal
inconsistent scenarios.

4 Implementation

4.1 Alloy Engine

We implemented Scenario Tour on the top of Aluminum [10]. It generates sce-
narios by pairwise testing and converts them into Alloy constraints; then it gives
them to Aluminum to solve. As we described in Sect. 2.2, Aluminum always gives
minimal solutions. It enables Scenario Tour to show users minimal instances that
meet the constraints of each scenario. This is a desirable feature because the con-
sequent constraints tend to be somewhat complicated. Scenario Tour stresses
the signatures to check by adding markers, but keeping instances small makes it
much easier for users to check scenarios. It is also possible to use the augment
feature of Aluminum to give users a manual exploration ability starting from
the tour.

Aluminum is built on top of Alloy Analyzer. It includes both the original
Alloy engine and the modified one for Aluminum features. We use the origi-
nal engine during the scenario generation process because it is faster than the
modified version. We use the modified one only for creating visualized scenarios
for users. Therefore, we compared the performance of Scenario Tour with not
Aluminum but Alloy Analyzer in the experiments (Sect. 5), despite that we built
Scenario Tour on the latter.

4.2 Scenario Generation and Presentation

We explained that Scenario Tour tries to identify causal combinations of relations
when it finds that the generated scenario is unrealizable. First, it checks whether
each single value is possible; then it checks each pair. In our current implemen-
tation, Scenario Tour checks all single values in advance of the pairwise process.
This makes the subsequent regular scenario generation process faster, but affects
the execution time of the first scenario generation.

In the pairwise generation process, Scenario Tour generates two scenario sets:
one for inward relations and the other for outward relations. The presentation

50 T. Saeki et al.

order is arbitrary. In our current implementation, Scenario Tour shows two maxi-
mal scenarios for inward and outward relations in order at first, and two minimal
scenarios for them next. After that, it presents the remaining scenario sets for
inward relations first, and those for outward relations next.

4.3 Pairwise Combination Generation

Pairwise testing is a popular combinatorial testing technique that requires all
combination of two values of each parameter to appear at least once. There are
well-known algorithms for it, such as IPO strategy [13]. We did not implement it
by ourselves and instead used PICT [2] as an external library. PICT is designed
for speedy test generation, ease of use, and extensibility of the core engine.
PICT offers useful features for Scenario Tour, such as support of complicated
constraints.

5 Experimental Setting

5.1 Overview of the Experiment

The purpose of Scenario Tour is to show users a set of scenarios that may be
against their intention. Users can find defects in their models or gain confidence
in their correctness. To evaluate the effectiveness of Scenario Tour, we delib-
erately seeded valid models with defects and checked whether Scenario Tour
generated scenarios that presented the defects.

The basic idea of the experiments is the same as that of mutation analysis for
program code. Mutation analysis is a software testing technique that has been
studied for three decades [6] to assess the quality of test suites for program code.
It modifies programs according to some criteria and seeds them with faults. The
modified program is called a mutant, and the quality of the test suite is assessed
by how many mutants it can kill [3]. A rule of how to seed faults is called
a mutation operator. The mutation operators represent mistakes programmers
often make. Mutation operators for swapping < and > are common mutation
operators for typical imperative programming languages.

Because we described Scenario Tour as test generation for modeling, it is
natural that we should evaluate it by mutation analysis. We call an Alloy model
into which we have deliberately added defects a mutant, in imitation of mutation
analysis for software. We also say that Scenario Tour “kills mutants” when it
generates scenarios that present invalid situation produced by mutants. We com-
pared the effectiveness of Scenario Tour with that of Alloy Analyzer in terms of
how many mutants they could kill and how many instances they required users
to check before detecting defects. We also compared their execution times. We
discuss the details in Sect. 6.

Automatic Generation of Potentially Pathological Instances 51

5.2 Mutation Operators

Because the mutation analysis for Alloy models is not common practice at
present, there are no generally accepted mutation operators for it yet. Therefore,
we defined mutation operators for our experiments by ourselves by referring to
those for imperative programming languages. In our experiments, we applied the
mutation operators in Tables 4 and 5 to the models.

Table 4 shows mutation operators that swap expressions of the models with
modified ones. Especially common mistakes are writing incorrect multiplicity and
quantifiers. This is because the core of the Alloy language is relations and first-
order logic. The other mutation operators are mutations of binary operations.
We define them so that we can apply mutations to most of the binary operations
in the models of our experiments.

Table 4. Swapping mutation operators used in experiments

Swap each multiplicity operator: (lone — one — some — set)

Swap each quantifier: (no — one — some — all)

in !in

= !=

ˆ ∗

& +

Table 5. Special mutation operators for alloy models

Remove a fact

Delete a single constraint

Replace a part of an expression with its type signature

The Alloy model below is an example of signature declaration with con-
straints.

sig sigForMutation {rel : some sigForMutation} {@rel = ~@rel}
The result of applying a mutation that changes the multiplicity some to one is
as follows.

sig sigForMutation {rel : one sigForMutation} {@rel = ~@rel}
In addition to the swapping mutation operators, we also use the mutation

operators for Alloy models listed in Table 5. These mutations apply semantic or
rather large changes; they remove a whole fact, delete a single line constraint,
or replace part of an expression with the superset type signature of it. We used
these mutations to simulate situations where users have stronger constraints in
mind but do not actually write them.

52 T. Saeki et al.

5.3 Experiment Environment

We conducted the experiments on a Microsoft Surface Pro 3/Windows 10 64
bit/Intel Core i7-4650U 1.70 – 2.30 GHz/8.00 Gb RAM. Aluminum was version
0.9. The underlying SAT solver of Aluminum was SAT4J. Microsoft PICT was
the open source version, and the current revision hash of that is f58851e. The
models were Filesystem, Grandpa, and Gradebook. Filesystem and Grandpa are
distributed together with Alloy Analyzer as sample models. We have already
presented Gradebook in Fig. 1. We chose these models because they are suited
for validation by iteratively checking concrete scenarios one by one.

6 Experimental Results

6.1 Evaluation of Mutation Results

Tables 6 and 7 show the results of our experiments, while Tables 8 and 9 explain
the table headings. The results of the mutation analysis shown in Table 6 suggest
that Scenario Tour is useful for both quick incremental checks of Alloy specifi-
cations during the modeling process and careful validation of them at the end
of the modeling process.

The ST First numbers are almost the same as the number of Killed by
next, and this indicates that in Scenario Tour, users can notice invalid scenarios
in earlier or as early scenarios as they can do in scenarios generated incrementally
by Alloy Analyzer. This is accomplished by the scenario presentation order that
shows the combinations of all MTE2 and all NONE first and second at the start
points of the pairwise generation. In fact, the most of faults about multiplicity
or quantifier are detected at the first or second scenario. This is a very useful
feature for making quick checks in incremental modeling processes.

Killed by The Inconsistent indicates how many mutants were killed by
inconsistent scenarios. We cannot evaluate the effect of inconsistent scenarios
quantitatively since Alloy has no comparable feature. However, they killed many
mutants that Alloy Analyzer could not. In addition, we found a new defect
that was not known before in an official example model through an inconsistent

Table 6. Summary of results for kill rate and number of scenarios

Model Name M
ut

an
t

K
ill

ed
by

ne
xt

K
ill

ed
by

ST

K
ill

ed
by

T
he

In
co

ns
is
te

nt
ST

F
ir
st

C
on

si
st

en
t

In
co

ns
is
te

nt
N
M

I

Grandpa 15 12 15 7 11 15.42 8.83 0

Filesystem 40 24 39 17 17 14.66 23.19 6.81

Gradebook 18 13 18 6 12 24.39 9.17 0

Automatic Generation of Potentially Pathological Instances 53

Table 7. Summary of results for running time

Model name Inward relation Outward relation Alloy (ms)

First scenario (ms) Median (ms) First scenario (ms) Median (ms)

Grandpa 1176.267 39 505.67 24 17

Filesystem 6708 68 2533.33 74 28.97

Gradebook 1275.67 29 369.17 25 11.94

Table 8. Explanation of Table 6

Heading Description

Mutant This shows the number of mutations applied to the model.
We eliminate mutants that make a scenario unrealizable.
Thus, Mutant means the number of valid mutants

Killed by next This is the number of mutants killed by the next iteration,
the regular scenario iteration feature of Alloy Analyzer. Note
that next can iterate all possible scenarios. Thus, if Killed by
next is smaller than Mutant, it means there are mutants that
can be only killed by presenting inconsistent scenarios. For
instance, such mutations that change the “set” multiplier to
“some” never show their pathology through observable
consistent scenarios because the defect caused by them is the
absence of some relation

Killed by ST “ST” means “Scenario Tour”. This is the number of mutants
killed by Scenario Tour

Killed by
The Inconsistent

This is the number of mutants killed by the especially
inconsistent scenario presentation in Scenario Tour. This
number does not include mutants killed by NMI

ST First This may be the most difficult one to grasp as to its meaning.
This is the number of mutants that the number of instances
Scenario Tour requires users to check before killing is smaller
or as small as that of the regular Ally Analyzer scenario
iteration feature

Consistent This shows the average number of regular consistent scenarios
generated by Scenario Tour for each model

Inconsistent Similarly, this is the average number of inconsistent scenarios

NMI “NMI” is an abbreviation for “Non-Minimal Inconsistent”.
This is the average number of non-minimal inconsistent
scenarios for each model

scenario, as we will describe later. This fact also indicates the usefulness of
presenting inconsistent scenarios. NMI scenarios are complex and inconsistent
ones not showing minimal constraints. The NMI numbers indicate that the NMI
scenarios are fewer by comparison with the inconsistent or (minimal) inconsistent
cases.

54 T. Saeki et al.

Table 9. Explanation of Table 7

Heading Description

Inward relation
and outward
relation

As we described in the Methods section, Scenario Tour generates
two sets of scenarios; the first is based on pairwise inward
relation combinations and the second is based on pairwise
outward ones. Though Scenario Tour can take scenarios out of
the two sets in arbitrary order, we measured the generation time
for them separately

First scenario This shows the time spent to generate the first scenario

Median This is the median of the running times for generating scenarios.
We used the median instead of the average since the very long
running time for the first scenario affects the average too much

Alloy This is the median of the running times of Alloy to generate
scenarios by next

6.2 Evaluation of Running Time

Table 7 indicates that the running time of Scenario Tour is generally longer than
that of the simple next iteration of Alloy Analyzer. This is natural because
Scenario Tour generates scenarios by adding somewhat complicated constraints
to the original models. The running time for the first scenarios of each tour is
especially long. This must be because Scenario Tour checks for inconsistency
in all single relation values in advance of the pairwise process, as we described
before.

However, we think that the running time (a few seconds) is not too long for
practical use. Even if it is not suitable for quick checks in incremental modeling,
waiting for a few seconds does not seem to be problem for careful validation to
complete the model.

6.3 Notable Finding

As we described before, Filesystem is an official example model distributed with
Alloy Analyzer. In our evaluation experiments, we found a defect in it, which
has not been noticed before. Filesystem is a simple model that consists of files,
directories, a root directory, and a current directory. Scenario Tour showed us
that the scenario represented by Fig. 5 is an inconsistent one. This means the
current directory must be an entry of some directories. However, this would be
a strange arrangement in most of the popular file systems because the situation
would be fine when the current directory is the root directory. We investigated
the model and found that both Cur and Root signatures are defined as below.

one sig Root extends Dir {} { no parent }
lone sig Cur extends Dir {}

Automatic Generation of Potentially Pathological Instances 55

Fig. 5. “Inconsistent” scenario of Filesystem

As can be seen, they both extend signature Dir. This makes them disjoint; thus,
Scenario Tour reported that the current directory cannot be the root directory.
For correct modeling of Filesystem, the author should have defined Cur by “in”.
After we fixed the definition, Scenario Tour told us that the situation was now
a consistent scenario. Thus, we found an unnoticed defect of an official example
model through our method. This indicates the usefulness of Scenario Tour.

7 Conclusion

We introduced “Scenario Tour”, which helps users validate Alloy models by
automatically generating scenarios that are likely to present gaps between the
intentions of users and what actually they write. Scenario Tour also presents
inconsistent scenarios that the regular scenario iteration feature of Alloy Ana-
lyzer never would present. Through this feature, we found a heretofore unno-
ticed defect in an example model distributed with Alloy Analyzer, and this sug-
gests the usefulness of Scenario Tour in practice. Scenario Tour has a limitation
as regards non-minimal inconsistent scenarios and its generation performance.
However, mutation analysis suggests that it is powerful enough for practical use.

References

1. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an
approach to testing based on combinatorial design. IEEE Trans. Softw. Eng. 23(7),
437–444 (1997)

2. Czerwonka, J.: Pairwise testing in the real world: practical extensions to test-case
scenarios. In: Proceedings of 24th Pacific Northwest Software Quality Conference,
pp. 419–430. Citeseer (2006)

3. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for
the practicing programmer. Computer 4, 34–41 (1978)

4. Holzmann, G.: Spin Model Checker, the: Primer and Reference Manual, 1st edn.
Addison-Wesley Professional, Boston (2003)

5. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2012)

6. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

7. Khurshid, S., Marinov, D.: Testera: specification-based testing of Java programs
using sat. Autom. Softw. Eng. 11(4), 403–434 (2004). doi:10.1023/B:AUSE.
0000038938.10589.b9

http://dx.doi.org/10.1023/B:AUSE.0000038938.10589.b9
http://dx.doi.org/10.1023/B:AUSE.0000038938.10589.b9

56 T. Saeki et al.

8. Macedo, N., Cunha, A., Guimarães, T.: Exploring scenario exploration. In:
Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 301–315. Springer,
Heidelberg (2015)

9. Montaghami, V., Rayside, D.: Extending alloy with partial instances. In:
Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S.,
Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 122–135. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30885-7 9

10. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
principled scenario exploration through minimality. In: Proceedings of the 2013
International Conference on Software Engineering, pp. 232–241. IEEE Press (2013)

11. Pacheco, C., Ernst, M.D.: Randoop: feedback-directed random testing for Java. In:
Companion to the 22nd ACM SIGPLAN Conference on Object-oriented Program-
ming Systems and Applications Companion, OOPSLA 2007, pp. 815–816. ACM,
New York (2007). http://doi.acm.org/10.1145/1297846.1297902

12. Smith, B.D., Feather, M.S., Muscettola, N.: Challenges and methods in testing the
remote agent planner. In: AIPS, pp. 254–263 (2000)

13. Tai, K.C., Lie, Y.: A test generation strategy for pairwise testing. IEEE Trans.
Software Eng. 28(1), 109 (2002)

http://dx.doi.org/10.1007/978-3-642-30885-7_9
http://doi.acm.org/10.1145/1297846.1297902

A General Lattice Model for Merging Symbolic
Execution Branches

Dominic Scheurer(B), Reiner Hähnle, and Richard Bubel

Department of Computer Science, TU Darmstadt, Darmstadt, Germany
{scheurer,haehnle,bubel}@cs.tu-darmstadt.de

Abstract. Symbolic execution is a software analysis technique that has
been used with success in the past years in program testing and verifi-
cation. A main bottleneck of symbolic execution is the path explosion
problem: the number of paths in a symbolic execution tree is exponen-
tial in the number of static branches of the executed program. Here we
put forward an abstraction-based framework for state merging in sym-
bolic execution. We show that it subsumes existing approaches and prove
soundness. The method was implemented in the verification system KeY.
Our empirical evaluation shows that reductions in proof size of up to
80 % are possible by state merging when applied to complex verification
problems; new proofs become feasible that were out of reach so far.

1 Introduction

Symbolic execution [7,20] is a classic program analysis technique that was used
with considerable success in the past years, for example, in program testing [8]
and program verification [4]. One of the main bottlenecks of symbolic execution
is the path explosion problem [8]. It stems from the fact that symbolic execu-
tion must explore all symbolic paths of a program to achieve high coverage (in
testing), respectively, soundness (in verification). As a consequence, the num-
ber of paths from the root to the leaves in a symbolic execution tree is usually
exponential in the number of static branches of the executed program.

Various strategies are in use to mitigate path explosion, including subsump-
tion [3,9], method contracts [5] and value summaries [23]. The last two allow one
to perform symbolic execution per method: different symbolic execution paths
are merged into the postcondition of a contract or a value summary (a con-
ditional execution state over guard expressions). Summaries are computed on
the fly and bottom-up, while contracts characterize all possible behaviors and
must at least partially be written by hand. Unfortunately, even the use of rich
contracts (instead of inlining) is insufficient to deal with complex problems [15].

A seemingly obvious technique to alleviate state explosion in symbolic execu-
tion trees consists of merging the states resulting from a symbolic execution step
that caused a split (e.g., guard evaluation, statements that can throw exceptions,
polymorphic method calls). After all, graph-based data structures are standard
in model checking for the exploration of symbolic state spaces [10], as well as

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 57–73, 2016.
DOI: 10.1007/978-3-319-47846-3 5

58 D. Scheurer et al.

in other static software analyses. Indeed, several state merging variants were
suggested for symbolic execution [18,21,23], but there are problems:

(1) State merging does not come for free, but creates considerable overhead:
states must be merged, graph data structures are more complex than trees,
path conditions as well as summaries tend to grow fast and must be simpli-
fied. Eager state merging can make things worse [18], therefore, it has to be
carefully controlled. Simplification of intermediate expressions with the help
of automated deduction is indispensable.

(2) All mentioned approaches assume that merged states are identical to corre-
sponding unmerged states, possibly up to the differences encoded in value
summaries. This is insufficient to merge large numbers of different behaviors.

In the present paper we address both issues. Regarding the second, we observe
that instead of encoding merged states precisely into a conditional state, one
might also abstract from the precise value of a variable. This results in a loss of
precision, but reduces complexity. For example, consider symbolic execution of
“if (b) x= 1 else x= 2;” in state σ. Precise state merging would result in a state
identical to σ except the value of x is “x �→ (1, if σ(b) = true) |x �→ (2, if σ(b) =
false)”. This does not avoid path explosion, it only delays it. Now, assume that
we define an abstract domain A for the possible values of x, where α(x) is the
abstraction of x and A is an upper semilattice �. For example, A might be the
sign lattice {⊥,−, 0,+,�}. Then the merged state can be over-approximated by
the partially abstract state that is identical to σ except x �→ +. Path explosion
is avoided. We lost precision about the exact value of x, but for many analyses
this is acceptable provided that the abstract lattice is suitably chosen.

Based on the theory of symbolic execution with abstract interpretation [6],
in the present paper we put forward a general lattice-based framework for state
merging in symbolic execution where a family of abstract lattices is defined by
formulas of a program logic. Our framework preserves soundness of verification
and we show that it subsumes earlier approaches to state merging [18,21,23].

Regarding issue (1) above, as a second contribution, we improved automation
by implementing suitable proof macros for KeY as well as an extension of the
Java Modeling Language (JML)1 which allows software engineers to annotate
Java source code with instructions on when to perform state merges.

We implemented the framework in the state-of-art verification system KeY[5],
where contracts are available to mitigate state explosion. Since the latter must
be partially written by hand, state merging is a complementary technique that
promises a high degree of automation. We confirmed the usefulness of our app-
roach empirically with an extensive evaluation: Results for small to medium sized
programs are, as expected, mixed, because of the overhead of state merging. The
strength of symbolic execution with state merging emerges when applied to com-
plex verification problems like the TimSort implementation in the Java standard
library [15], where we observe reductions in proof size of up to 80 %. Additionally,
some proofs become feasible that were elusive before.

1 http://www.eecs.ucf.edu/∼leavens/JML//OldReleases/jmlrefman.pdf.

http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf

A General Lattice Model for Merging Symbolic Execution Branches 59

We continue with Sect. 2, which provides sufficient theoretical background
to make the paper self-contained. Section 3 sets up our abstract lattice model.
Section 4 defines the actual merge rules, states a soundness theorem and briefly
mentions implementation issues. Section 5 contains the empirical evaluation,
Sect. 6 lessons learned as well as future work, and Sect. 7 related work plus a
brief conclusion.

2 Background

We formalize our theory in the program logic JavaDL [5], but the approach is
easily adaptable to any program logic with an explicit notion of symbolic state.

2.1 Program Logic and Calculus

Our framework is realized in JavaDL, a sorted first-order dynamic logic [19] for
sequential deterministic Java programs. For the sake of presentation, we restrict
ourselves to a simplified JavaDL variant (simple imperative Java programs over
primitive types int, boolean) and only give the essential definitions. The actual
implementation is based on KeY which covers most sequential Java features:
inheritance, dynamic dispatch, reference types, recursive methods, exceptions,
and strings. Not covered are generic types (which are translated away), floating
point types and lambda expressions. We refer the reader to [5] for a full account.

JavaDL extends sorted first-order logic by two modalities to express partial
and total correctness of programs. For space reasons, we restrict ourselves to the
former, the box modality [·]·. Its first argument is a program (more precisely,
an executable sequence of Java statements); the second argument can be any
JavaDL formula, possibly containing further modal operators. Given a program
p and a JavaDL formula ϕ, the informal meaning of the formula [p]ϕ is: if the
program p terminates then the formula ϕ holds in the final state.

The syntax of terms and formulas is standard except for a few extra cases like
modalities, conditional terms/formulas (Example 1) as well as updates. The set
of all programs is Prg ; the set of all program variables is denoted by PV. Updates
represent state changes: an elementary update has the form l := t with l ∈ PV
and t a term of a type compatible with l. Informally, an update has the same
meaning as an assignment, where the program variable on the left-hand side is
assigned the value of the right-hand side. Elementary updates are combined to
parallel updates U1 ‖ · · · ‖ Un which represent simultaneous assignments. In
case of a clash where the same variable l is assigned different values in a parallel
update, the syntactically later assignment wins. The set of all updates is Upd,
skip is the “empty update”. Updates U can be applied to terms t, written {U}t,
and formulas ϕ, written {U}ϕ. We give the non-standard cases of the inductive
definitions of terms and formulas:

Definition 1 (Terms). Let ϕ denote a formula, t1, t2 are terms of type T1 and
T2 and U an update, then (i) {U}t1 is a term of type T1 (ii) if (ϕ) then (t1) else (t2)
is a term of type T where T is the least common supertype of T1 and T2. The
set of all terms is denoted by Trm.

60 D. Scheurer et al.

Definition 2 (Formulas). Let ϕ,ψ1, ψ2 denote formulas, U an update and p
a program, then each of (i) [p] ϕ (ii) {U}ϕ and (iii) if (ϕ) then (ψ1) else (ψ2) is a
formula. For open formulas with free variables v we use the notation ϕv to make
their occurrence explicit. The set of all formulas is denoted by Fml.

Example 1. Let i, j be program variables and x, y logic variables, all of sort int.

– The formula ∀x, y;
(
i .= x ∧ j .= y → {i := j ‖ j := i}(i .= y ∧ j .= x)

)
uses a

parallel update to exchange the values of i and j.
– The formula i > j → [i = i − j;]i > 0 expresses that if program [i = i − j;] is

executed in a state where the value of i is greater than the value of j and it
terminates, then in its final state i is positive.

– if (i > j) then (i) else (j) ≥ 0 means that the maximum of i and j is positive.

Formulas are evaluated in first-order structures with a non-empty domain D
and an interpretation function I giving meaning to sort, function and predicate
symbols. To reason about programs, we extend this to Kripke structures K =
(D, I, S, ρ). The values of program variables depend on the current program
state and cannot be evaluated by the static interpretation function I. Instead
they are assigned values by Kripke states σ :PV → D ∈ S. The state transition
function ρ : Prg → (S → 2S) captures the program semantics (here: Java’s
semantics [14]).2

As our programs are deterministic, the value of ρ(p)(σ) (for any program p
and state σ) is either the empty set (p does not terminate when started in state
σ) or a singleton. Formulas and terms are assigned meaning by an evaluation
function val (K,σ, β; ·), parametric in a Kripke structure K, a state σ and a vari-
able assignment β. The evaluation function assigns terms a value in their domain
and formulas one of the truth values tt , ff . Figure 1 shows some inductive defini-
tion cases. For expressions without free logic variables, we write val (K,σ; ·); for
sets of closed formulas C, we write val (K,σ;C) meaning val

(
K,σ;

∧
ϕ∈C ϕ

)
.

A sequent calculus [12], [5, Chap. 3] is used to prove the validity of JavaDL
formulas. The rules for the first-order logic connectives are standard, those for
programs follow the symbolic execution paradigm. Formulas with programs are
transformed into pure first-order formulas by symbolically executing the pro-
grams in a forward manner and thereby computing the weakest precondition.
Each execution step transforms or eliminates the first statement until the pro-
gram is eliminated. We write � ϕ if a formula ϕ is provable using the calculus.

2.2 Symbolic Execution

We explain how the notions and concepts introduced in the standard litera-
ture [7] relate to our logic-based setting. Symbolic Execution (SE) of a program
2 Our notion of Kripke structure is derived from that commonly used in modal logic

[13] and slightly differs from the one often used in model checking. E.g., we require
no fixed set of initial states, and the labeling function is given implicitly by the
interpretation and Kripke state which is natural for imperative programs. There is
no essential difference, however.

A General Lattice Model for Merging Symbolic Execution Branches 61

Programs val (K, σ, β; ·) : Prg → (S → 2S) with val (K, σ, β; p) (σ1) = ρ(p)(σ1)

Terms val (K, σ, β; ·) : Trm → D with
val (K, σ, β; (f(t1, . . . tn)) = I(f)(val (K, σ, β; t1) , . . . , val (K, σ, β; tn))

val (K, σ, β; if (ϕ) then (t1) else (t2)) =

{
val (K, σ, β; t1) val (K, σ, β; ϕ) = tt

val (K, σ, β; t2) otherwise

val (K, σ, β; {U}t) = val (K, val (K, σ, β; U) , β; t)

Formulas val (K, σ, β; ·) : Fml → {tt ,ff } with

val (K, σ, β; [p]ϕ) =

{
val (K, σ′, β; ϕ) val (K, σ, β; p) (σ) = {σ′}
tt otherwise

val (K, σ, β; {U}ϕ) = val (K, val (K, σ, β; U) , β; ϕ)

Updates val (K, σ, β; ·) : Upd → S with

val (K, σ, β; l := t) = σ′ where σ′(x) =

{
σ(x) if x �= l

val (K, σ, β; t) otherwise

Fig. 1. Excerpt of the definition of val (K, σ, β; ·)

results in a Symbolic Execution Tree (SET) consisting of SE states, i.e., triples
(U,C, ϕ) with (1) an update U, the symbolic state, capturing the changes made
to program variables in the course of the execution, (2) the path condition C,
a set of closed formulas comprising the decisions leading to this particular SE
path as well as additional preconditions, and (3) the program counter ϕ, a closed
formula, typically containing the remaining program to be executed as well as
the postcondition to prove.

Please note that we generalize the usual notion of a program counter, which
is normally only a pointer to a statement in the executed program. In our set-
ting, a program counter may be an arbitrary closed formula. This generalization
facilitates reasoning about the validity of SE states.

Definition 3 (Validity of SE States). An SE state s = (U,C, ϕ) is called
valid iff for all Kripke structures K and states σ either val (K,σ;C) = ff or
val (K,σ; {U}ϕ) = tt holds. We write valid (s).

Consider an SE state s = (U,C, [p]ϕ). Intuitively, if the path condition C
does not hold in s, then the state is unreachable and trivially valid. Otherwise,
all final state(s) reached when executing p in state val (K,σ;U) must satisfy ϕ.

SET transitions are constrained by a rule-based SE transition relation δ :
2SEStates → 2SEStates , where SEStates is the set of all SE states. Again, this is
a generalization of traditional SE, since the result of applying δ does not have
to be a singleton. Based on Definition 3, we introduce a soundness notion for δ.

Definition 4 (Soundness of Symbolic Execution). An SE transition rela-
tion δ : 2SEStates → 2SEStates is called sound iff for each input-output pair
(I,O) ∈ δ it is the case that

∧
o∈O valid (o) =⇒ ∧

i∈I valid (i).

The intuition behind the above definition is that, whenever one input state
is not valid, also at least one output state must not be valid. Otherwise, it would
be possible to derive an invalid property about a program.

62 D. Scheurer et al.

2.3 Running Example

Listing 1. Distance of two positive integers

1 public int dist(int x, int y) {
2 if (y < x) {
3 int tmp = x;
4 x = y;
5 y = tmp;
6 } else {}
7 return y − x;
8 }

The program in Listing 1 is
our running example. It com-
putes the absolute difference
(distance) between two positive
numbers. Aiming to prove that
the result is never negative, we
start with the SE state below
as initial SE state (the return
value is assigned to the global
program variable “result”):

(

U︷︸︸︷
skip ,

C︷ ︸︸ ︷
{x > 0, y > 0},

ϕ︷ ︸︸ ︷
[if(y < x) {...} else {} result = y − x;] result ≥ 0)

The SE state (U,C, ϕ) given above is valid iff for any Kripke state σ satisfying
the path condition C, whenever we execute the program if (y<x) ... ; in σ, then
in the reached final state the value of program variable result is non-negative.

We explain how the SET for the example is constructed by stepwise symbolic
execution: Symbolic execution of the first statement (by applying the appropriate
calculus rule) splits the SET into the following two new intermediate states:

(skip, {x > 0, y > 0, y < x}, [{...} result = y − x;] result ≥ 0)
(skip, {x > 0, y > 0, ¬y < x}, [{} result = y − x;] result ≥ 0)

On each branch, either the body of the then-branch or the else-branch has to be
executed, followed by the remaining program. The remaining program is just a
single assignment statement here, but could be arbitrarily complex in general. In
addition, the path condition in each branch has been extended by the conjunct
y < x and its negation, respectively. Continuing symbolic execution on the first
branch results in the state

((x := y ‖ y := x), {x > 0, y > 0, y < x}, [result = y − x;] result ≥ 0)).

The motivation for state merging becomes very clear now: on each branch the
same remaining program has to be executed.

3 The General Lattice Model

Symbolic Execution can be cast as abstract interpretation [11]. Each SE state
describes a potentially infinite set of concrete states. As abstract interpretation
demands a complete semilattice with join operation, partial order, least and top
element, we define a concretization function from SE states to concrete states as
well as a partial order relation between SE states.

Definition 5 (Concrete Execution States). A concrete execution state is a
pair (σ, ϕ) of a Kripke state σ and a formula ϕ (the program counter).

A General Lattice Model for Merging Symbolic Execution Branches 63

A concrete execution state for a given program counter assigns to each program
variable a concrete value of the universe. We define the semantics of SE states
by stipulating a concretization function from SE states to concrete states based
on the evaluation function val (K,σ; ·) (β is not needed as formulas are closed).

Definition 6 (Concretization Function). Let s = (U,C, ϕ) be an SE state.
The concretization function concr maps s to the set of concrete states

concr (s) :=
{

(σ′, ϕ) : σ′ = val (K,σ;U) and K,σ is an arbitrary

structure/Kripke state such that val (K,σ;C) = tt
}

The set of concrete states for a symbolic state s contains all pairs of Kripke
states σ′ and the program counter such that σ′ can be reached via some state σ
satisfying s’s path condition in some Kripke structure. So the set concr (s) con-
tains exactly the concrete states that are described by the SE state s. Consider,
for instance, the SE state (x := c, {c > 0}, ϕ): The set of concretizations for this
state consists of all pairs (σ, ϕ), where σ is any function mapping the program
variable x to a strictly positive integer.

Based on Definition 6, we define a weakening relation expressing that one
symbolic execution state describes more concrete states than another one.

Definition 7 (Weakening Relation). Let s1, s2 be two SE states. State s2 is
weaker than (a weakening of) s1 (written: s1 � s2) iff concr (s1) ⊆ concr (s2).

Given a state s1 with satisfiable path condition, Definitions 6 and 7 imply that
a state s2 can only be weaker than s1 if both have syntactically the same pro-
gram counter. States with unsatisfiable path condition have an empty set of
concretizations and hence are stronger than any other state.

Consider the SE states s1 = (x := c, {c > 0}, ϕ) and s2 = (x := c, {c ≥ 0}, ϕ).
The set of concretizations of s2 contains all concrete states of s1 and additionally
all concrete states that map x to zero, hence s2 is a weakening of s1 (s1 � s2).

Consider the SE state s3 = (x := if (true) then (c) else (t), {c > 0}, ϕ).
Although s1 and s3 are syntactically different, all Kripke models coincide on
the value of x and we would actually prefer to consider them as equal. Hence, we
define an extensional equality s1

concr= s2 :⇔ concr (s1) = concr (s2) stating that
symbolic execution states are equal iff they evaluate to the same set of concrete
execution states. Using concr= as equality, we can state the following lemma:

Lemma 1. The weakening relation � is a partial order relation.

The core of our formal framework is a family of join-semilattices parametric
in a join operation. The partial order induced by the join operation is constrained
by the semantic weakening relation, see Definition 7.

Definition 8 (Induced Join-Semilattice of States). Let ϕ ∈ Fml be a
closed formula. The carrier set Sϕ for ϕ is defined as

Sϕ := { (U,C, ϕ)| (U,C, ϕ) is an SE state} .

64 D. Scheurer et al.

A join-semilattice of SE states is a structure (Sϕ, �̇) over Sϕ with operator �̇ s.t.
the semilattice properties(based on concr=) (SEL1)–(SEL3) hold for all a, b, c ∈ Sϕ:

(SEL1) Idempotency: a �̇ a
concr
= a (SEL2) Commutativity: a �̇ b

concr
= b �̇ a

(SEL3) Associativity: (a �̇ b) �̇ c
concr
= a �̇ (b �̇ c)

Furthermore, we require that the partial order relation � on Sϕ defined as

a � b :⇔ a �̇ b
concr= b

satisfies (SEL4) and (SEL5)3 for a = (Ua, Ca, ϕ) ∈ Sϕ and b = (Ub, Cb, ϕ) ∈ Sϕ:

(SEL4) Correctness: a � b implies a � b
(SEL5) Conservativity: a � b implies that Cb is logically equivalent to a

formula C ∧ Axv [c /v], where (1) c are all uninterpreted Skolem
constants occurring in b but not contained in a, (2) C does not
contain any of the c, (3)

∧
Ca → C is provable, and (4) the

formula ∃v;Ax v is provable.

We call {Lϕ}ϕ∈Fml := {(Sϕ, �̇)}ϕ the induced family of join-semilattices for �̇.

We term (SEL4) correctness since it enables, together with (SEL5), to prove
the correctness of our state merging rule (Theorem 1 below). The conservativ-
ity property (SEL5) imposes restrictions on merge operations that introduce
Skolem constants (thus extending the signature), such as the abstraction tech-
nique introduced in Sect. 4.3. Property (SEL5) enforces that the path condition
of a merged state is divisible into (1) a formula C without new constants which
is implied by the states that are merged (for example, the disjunction of the
path conditions of the merged states) and (2) a formula Ax v [c /v] providing
restrictions on the values of the new constants. In addition (3) it must be possi-
ble in every structure to assign values to the new constants such that Ax v [c /v]
holds. This is achieved by proving ∃v;Ax v in the unextended signature of the
merged states. Axv may be seen as a (generalized) defining axiom [24] for the
c: we only demand the existence condition � ∃v;Ax v and explicitly forgo the
uniqueness condition to facilitate abstraction. In summary, (SEL5) allows only
“conservative” extensions to a merged path condition. An example for a for-
mula Ax v [c /v] is c > 0, where c is a constant introduced in the merging step.
Example 2 (Sect. 4.2) shows a fragment of a join-semilattice induced by a join
operation based on the if (·) then (·) else (·) operator.

4 State Merging Techniques

We instantiate our framework with two join operations: the If-Then-Else (ITE)
technique, a “classic” of state merging for symbolic execution (e.g., [18,21,23])

3 ψv

[
t
/
v
]

denotes the substitution of the terms t for the free variables v in ψv.

A General Lattice Model for Merging Symbolic Execution Branches 65

with full precision; and an abstraction-based technique which trades efficiency
with potential loss of precision. To simplify specification of the join operations,
we define a pattern that can be instantiated with specific merging techniques.

4.1 A State Merging Pattern

Definition 9. Given two SE states sj = (Uj , Cj , ϕ), j = 1, 2, with program
variables x1, . . . , xn ∈ PV of type T occurring in the Uj. A merge technique M
defines two functions joinVal (s1, s2; x, cx) and constraints (s1, s2; x, cx) mapping
s1, s2, program variable x and a fresh (for x) Skolem constant cx to a closed
term and a JavaDL formula, respectively. The join operation �̇M is defined by

s1 �̇M s2 := (U∗, C∗, ϕ) = ((U1, C1) � (U2, C2) , (U1, C1) � (U2, C2) , ϕ)

where U∗ = (U1, C1) � (U2, C2) := (x1 := t1 ‖ x2 := t2 ‖ · · · ‖ xn := tn). To define
the terms ti, let cx1 , cx2 , . . . , cxn

be fresh Skolem constants of suitable types. Then

ti :=

{
{U1} xi if () holds
joinVal (s1, s2; xi, cxi

) otherwise

Define C∗ = (U1, C1) � (U2, C2) := (
∧

C1 ∨ ∧
C2) ∧ {U∗}(∧

Cabs
i

)
where

Cabs
i :=

{
true if () holds
constraints (s1, s2; xi, cxi

) otherwise

Condition () holds if xi is evaluated identically in either state and is defined as

() � (C1 → {U1} P (xi)) ↔ (C2 → {U2} P (xi))

where P is a fresh (for U1, U2, C1, C2, ϕ) predicate symbol.

The provability relation “�” in () is undecidable, but it can be safely approxi-
mated in practice. For example, a prover may simply return “unprovable” after
exceeding a fixed time limit. This way soundness is maintained at the cost of
completeness due to overapproximation in some situations. The update applica-
tion of {U∗} to

(∧
Cabs

i

)
allows to take into account relations between values of

program variables changed by the merge (e.g., the merge by predicate abstrac-
tion for the dist example in Sect. 5). Otherwise, only relations between constants
and values before the merge would be reflected.

4.2 The If-Then-Else Technique

Definition 10 (If-Then-Else Merge). Given two SE states sj = (Uj , Cj , ϕ),
j = 1, 2, the join operation �̇ite is defined by

joinVal (s1, s2; x, cx) := if
(∧

C1

)
then ({U1}x) else ({U2}x)

constraints (s1, s2; x, cx) := true

66 D. Scheurer et al.

(x := if (y < x) then (y) else (x) ‖ y := if (y < x) then (x) else (y) , Γ, ϕ)

(x := y ‖ y := x, Γ ∪ {y < x} , ϕ) (x := x ‖ y := y, Γ ∪ {y ≥ x} , ϕ)

Fig. 2. Small excerpt of (Sϕ, �̇ite) for the dist example.

The definition can be generalized by allowing a distinguishing formula for the
first argument of the if (·) then (·) else (·) term instead of

∧
C1. It suffices to find

a set of sub-conjuncts of C1 whose negation implies C2. Often one can simply
choose the guard of the conditional statement which caused the SET to branch.

Proposition 1. The “If-Then-Else Merge” technique induces a family of join-
semilattices of SE states, i.e., the operation �̇ite and its associated partial order
relation � satisfy axioms (SEL1)–(SEL5) of Definition 8.

Example 2. Figure 2 depicts a fragment of the join-semilattice (Sϕ, �̇ite) induced
by �̇ite for Listing 1. The two states at the bottom of the figure correspond to
the outcome of the execution until the end of the if block, where Γ represents a
common set of preconditions. Since the values for both x and y differ in those
states, the If-Then-Else construction is applied. The differing formulas in the
path conditions, y < x and y ≥ x, vanish in the path condition of the merged
state since their disjunction can be simplified to true.

4.3 Abstract Weakening and Predicate Abstraction

Our General Lattice Framework, along with the state merging technique pro-
posed below, at least partially closes the gap between symbolic execution and
abstract interpretation [11] by facilitating merges based on abstract domain lat-
tices. We first define the notion of abstract domain elements.

Definition 11 (Abstract Domain Element). An Abstract Domain Element
is a function defAx : Trm → Fml mapping terms to closed formulas.

Intuitively, an abstract domain element models an infinite set of defining
axioms for JavaDL terms. If an axiom is true for a given term, then this term
is described by the corresponding abstract domain element. This rather techni-
cal, syntactic definition is beneficial for the application in branch merging and
allows for a straightforward embedding of predicate abstraction [16]. However,
in contrast to predicate abstraction we allow infinite domains.

Definition 12 (Abstract Domain Lattice). An Abstract Domain Lattice is
a join-semilattice AT = (AT ,�) with the induced partial order relation � for a
countable set AT of abstract domain elements accepting terms of some fixed type
T as arguments. We impose the following requirements on AT and �:

(1) AT includes two elements with ⊥ (t) = false, � (t) = true for any t ∈ Trm.
(2) For a, b ∈ AT with a � b, �a (t) → b (t) holds for any term t of type T .
(3) For all a ∈ AT except for ⊥, it holds that � ∃v; a (v).

A General Lattice Model for Merging Symbolic Execution Branches 67

Example 3 below illustrates the above definitions in the context of predicate
abstraction. As usual, we have a bottom and a top element, where the bottom
element is the only one that is not satisfiable. Furthermore, for each lattice
element a that is more concrete than an element b (a � b), also the defining axiom
of a has to be stronger than that of b. Now we are in a position to generalize the
“If-Then-Else Merge” technique: instead of using conditional terms for the result
of joinVal (s1, s2; x, cx) as in Definition 10, we compute a sound abstraction of the
SE states to be merged. Technically, we employ the symbols cx and constrain
them by defining axioms computed from a suitable join in the join semi-lattice.

Definition 13 (Abstract Weakening Merge Method). Let AT = (AT ,�)
be an abstract domain lattice. Given two SE states sj = (Uj , Cj , ϕ), j = 1, 2, the
join operation �̇abstr is defined by

joinVal (s1, s2; x, cx) := cx constraints (s1, s2; x, cx) := (defAx 1 � defAx 2) (cx)

where, for k ∈ 1, 2, defAxk ∈ AT are abstract domain elements such that Ck →
defAxk ({Uk} x) is provable and there is no element defAx ′

k ∈ AT with defAx ′
k �=

defAxk and defAx ′
k � defAxk.

The constraints on defAxk state that they must be contained in the abstract
domain lattice. There is not necessarily a unique element such that Ck →
defAxk ({Uk} xi) is provable. Any element for which there is no strictly smaller
one suffices. For countable abstract lattices with an enumerable linearization,
the functions defAxk are computable, in particular, for finite domains an enu-
meration is obtained by topological sorting. For the sign analysis domain, one
enumeration is ⊥,−, 0,+,�. Generally, infinite domains should support widen-
ing [11] to ensure that suitable abstractions can be computed.

In Definition 13 we consider lattices with a uniform type. It is possible to use
different lattices for different types in the merge technique. When no lattice is
specified for some type, If-Then-Else merges are used as fallback. Depending on
the situation, it may also be appropriate to define multiple lattices for the same
type (see Example 3 and Fig. 3 for a concrete example for �̇abstr).

Proposition 2. The abstract weakening merge method induces a family of join-
semilattices of SE states, i.e. the operation �̇abstr and its associated partial order
relation � satisfy the axioms (SEL1)–(SEL5) of Definition 8.

�

int v �→ v ≥ x int v �→ v ≥ 0

int v �→ v ≥ x ∧ v ≥ 0

⊥

Fig. 3. Abstract domain for Example 3

Predicate abstraction [16] is an instance of
abstract weakening where the domain ele-
ments are constructed from combinations
of a given finite set of unary predicates.
The following example defines a domain
for predicate abstraction that captures
relations between program variables.

68 D. Scheurer et al.

Example 3 (Predicate Abstraction as Abstract Domain). Consider Listing 1. To
prove that the result is non-negative, we need after the merge (line 7) the fact
that the value of y is not smaller than the value of x. To capture this relation
among the variables, we choose as abstraction predicates v ≥ x and v ≥ 0, where
v is a placeholder for the input term. The resulting abstract domain is built from
the conjunctions of all subsets of those predicates, see Fig. 3.

State Merging with Join-Semilattices. The following theorem establishes the cor-
rectness of state merges with induced join-semilattices in the course of symbolic
execution. We omit the proof for space reasons, and refer the reader to [22].

Theorem 1 (Correctness of Merging with Induced Join-Semilattices).
Let ϕ ∈ Fml be a formula and Lϕ an induced join-semilattice for a join oper-
ation �̇. Then, merging two SE states si = (Ui, Ci, ϕ), i = 1, 2, to a state
s∗ = s1 �̇ s2 is sound, i.e. if s∗ is valid, then both s1 and s2 are valid.

Example 4 (Continuation of Example 3). After symbolic execution of the condi-
tional statement, we are left with two states that have identical program coun-
ters. So we can merge them using the abstraction predicates of Example 3 and
end up in a single (valid) SE state as shown in Fig. 4.

...
(x := y ‖ y := x, {C1, y ≤ −1 + x} , ϕ)

...
(x := x ‖ y := y, {C2, y ≥ x} , ϕ)

(x := c1 ‖ y := c2, {(
∧

C1) ∨ (
∧

C2) ,
{ x := c1 ‖ y := c2}(c1 ≥ x ∧ c1 ≥ 0 ∧ c2 ≥ x ∧ c2 ≥ 0)} , ϕ)

Fig. 4. Example: merging by predicate abstraction

5 Evaluation

To assess the efficacy of our state merging methods, we implemented them in the
KeY verification system and applied them on a micro benchmark suite consisting
of four Java programs. We also present the results of a highly complex case study
on the TimSort method [15], which has been redone using our implementation.

5.1 Micro Benchmarks

Our micro benchmarks comprise the dist method (→ Listing 1), method abs
(→ Listing 2) computing the absolute of a given integer parameter, method gcd
(→ Listing 4) computing the Greatest Common Divisor (GCD) of two integers,
and method posSum computing the absolute of the sum of two positive integers

A General Lattice Model for Merging Symbolic Execution Branches 69

Listing 2. abs example

1 public int abs(int num) {
2 int result ;
3 if (num < 0) { result = −num; }
4 else { result = num; }
5 return result;
6 }

Listing 3. posSum example

1 public int posSum(int x, int y) {
2 while (x > 0) { y++; x−−; }
3 return abs(y);
4 }

Listing 4. gcd example

1 public static int gcd(int a, int b) {
2 if (a < 0) a = −a;
3 if (b < 0) b = −b;
4 int big, small;
5 if (a > b) {
6 big = a;
7 small = b;
8 } else {
9 big = b;

10 small = a;
11 }
12 return gcdHelp(big, small);
13 }

(→ Listing 3). In the dist example, the SE states after the execution of the if
statement are suitable for merging. For abs, where the proof goal is to show
that the result is positive, we use state merging after the execution of the if
block before Line 5. In the case of gcd, we aim to prove that the returned result
is actually the GCD of the input; state merging techniques are applied after
Lines 2 and 3. Method posSum demonstrates the application of state merging
for a while loop. Our goal is to prove that the returned result is the absolute of
the sum of the inputs. To render the SET finite, we constrain the value of x by
the upper bound 5. Thus, the loop is unwound five times during SE, giving the
opportunity of four merges before the call to the method abs in Line 3.

For each example, we compare the number of rule applications in a proof
without merging to the corresponding number in a proof containing merge rule
applications on the basis of the If-Then-Else as well as the predicate abstraction
technique. Results are shown in Table 1. In the last column, the predicates used
for abstraction are listed; v is a placeholder for an input term of type int. The
choice for abs induces a standard abstract domain for sign analysis of integers;
in the other cases, the predicates are tailored to the specific situations.

The result for dist demonstrates that If-Then-Else merging can even increase
the proof size when states are merged close to the end of SE. Merging with pred-
icate abstraction was beneficial in all cases. However, If-Then-Else merging is
easy to automate, whereas it is a harder problem to automatically infer abstrac-
tion predicates. Furthermore, the TimSort case study affirms that If-Then-Else
merges can substantially decrease the sizes of larger proofs.

5.2 TimSort

In 2015, de Gouw et al. [15] discovered a bug in the TimSort implementation of
the JDK library, Java’s default sorting routine. The bug triggered, under certain
circumstances, an uncaught exception. The authors fixed the bug and proved its
absence as well as that of any other uncaught exception. An extended journal
version of [15] is currently under preparation, where all verification proofs are
being redone using the state merging approach presented in this paper. De Gouw

70 D. Scheurer et al.

Table 1. Micro benchmark results

Example # Rule Apps Diff. (%) #Merges Merge Techn. Abstr. Predicates
w/o merge with merge

dist 219 254 -15.98 % 1 ITE –
dist 219 206 5.94 % 1 PRED (conj) {v ≥ 0, v ≤ y}
abs 156 137 12.18 % 1 ITE –
abs 156 132 15.38 % 1 PRED (disj) {v > 0, v = 0, v < 0}
gcd 9,056 8,758 3.29 % 2 ITE –

gcd 9,056 7,591 16.18 % 2 PRED (conj)
{v ≥ 0, (v = a ∨ v = −a)}
{v ≥ 0, (v = b ∨ v = −b)}

posSum 1,422 926 34.88 % 4 ITE –
posSum 1,422 911 35.94 % 4 PRED {v = x + y}

PRED (conj/disj): predicate abstraction with conjunctions/disjunctions of the predicates
ITE : the If-Then-Else merge technique.

et al. kindly allowed us to include their current results as part of our evaluation.4

Table 2 provides a comparison of the proof sizes with and without merging. It
shows that the proof sizes improved significantly for most proofs. All merges
used, if not stated otherwise, the If-Then-Else technique and thus required no
expert knowledge. In particular, state merging allowed to verify the method
mergeHi which was out of reach in [15] due to the path explosion problem.

For ensuresCapacity, where merging with If-Then-Else actually increased
the proof size, we created a new proof using a merge based on predicate abstrac-
tion. The resulting proof size is 15 % smaller compared to the version without
merging and even 25 % smaller than the proof with If-Then-Else based merging.

Table 2. Statistics comparing proofs with and without state merging

Method #Rule Apps #Rule Apps #Merges Percentage Changes
(in [1]) (with Merging) with State Merging

ensuresCapacity 44,346 50,707 1 -14%

ensuresCapacity* 44,346 37,815 1 15%

mergeAt 279,155 63,309 6 77%

gallopLeft 303,716 88,332 6 71%

sort(a,lo,hi,c) 235,632 152,752 1 35%

mergeHi N/A 460,409 5 NaN

*) Proof by authors of this paper, uses predicate abstraction rather than If-Then-Else.

6 Lessons Learned and Future Work

The proposed state merging approach transforms an SET into a connected and
rooted Directed Acyclic Graph (DAG). Changing the underlying data structures
in a complex verification system such as KeY would be a substantial undertaking.
We implemented a different solution by adding the new merge node as a child to
only one of the parents and linking the second parent to it. Our implementation

4 Available at http://www.key-project.org/timsort/stats.html.

http://www.key-project.org/timsort/stats.html

A General Lattice Model for Merging Symbolic Execution Branches 71

ensures that, if the subtree below a merge node is closed (or the merge node is
pruned away), then the linked node is also closed (or “unlinked”).

It is important to automate state merging as much as possible, in par-
ticular for less complex verification tasks that are otherwise fully automatic.
To help this, we extended the specification language JML with the annota-
tion / ∗ @merge proc < join operator > @ ∗ /. It is placed in front of a Java
block after which the merge is supposed to happen. For certain join opera-
tors, for example the If-Then-Else join operator, this requires much less expert
knowledge than the definition of a block contract, i.e. an annotation of a block of
statements with pre- and postconditions, as an alternative way of tackling path
explosion.

In our experiments, we discovered that state merging with the If-Then-Else
technique is most beneficial when applied in situations where (1) a substantial
amount of code remains to be executed, and thus a lot of repetition can be
avoided, and (2) the difference between the states to be merged is as small as
possible. “Difference” means the number of variables attaining different values in
the symbolic states and the number of different formulas in the path conditions.

Predicate abstraction-based state merging is applicable to a wider range of
constellations. However, to come up with suitable predicates requires a certain
amount of expertise. An unsuitable choice of abstraction predicates can cause
the unfeasibility of the proof goal, because abstraction loses precision. At this
time, to merge states with predicate abstraction is comparable in difficulty to
writing block contracts. Nevertheless, we think that state merging is more suit-
able for automation, because it can be performed on-the-fly during the proof
process. Future work will aim at integrating heuristic approaches to improve the
performance of If-Then-Else state merging [21] as well as methods developed for
specification generation to automatically infer abstraction predicates [17,25].

7 Related Work and Conclusion

Existing work on state merging in symbolic execution employs If-Then-Else
based techniques [2,18,21,23] or addresses the automatic generation of loop
invariants by the means of abstraction [6,25]. Kuznetsov et al. [21] try to assess
the “cost-benefit ratio” of If-Then-Else based merges by heuristically trading off
the reduction of states against the complexity of the resulting expressions. Bubel
et al. [6] use value abstraction and Weiß et al. [25] use predicate abstraction for
merging states in the course of the automatic generation of loop invariants.

In contrast to previous work, our approach is not limited to a particular state
merging technique. We devised a general lattice-based framework for join opera-
tions and proved soundness of a state merging rule for join operations conforming
to our framework. The two most popular state merging techniques in the liter-
ature, If-Then-Else and predicate abstraction, are instances of our framework.
Our implementation is based on the state-of-the-art verification system KeY [1].
It has been extensively evaluated with the highly complex TimSort case study
and it was demonstrated that significant improvements can be gained. This led
to proofs that were out of reach before.

72 D. Scheurer et al.

Acknowledgment. We would like to thank the authors of [15] for the permission to
quote data from the extended journal version of their paper under preparation.

References

1. Ahrendt, W., et al.: The KeY platform for verification and analysis of Java pro-
grams. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471,
pp. 55–71. Springer, Heidelberg (2014)

2. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven compositional symbolic
execution. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol.
4963, pp. 367–381. Springer, Heidelberg (2008)

3. Anand, S., Păsăreanu, C.S., Visser, W.: Symbolic execution with abstract sub-
sumption checking. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 163–181.
Springer, Heidelberg (2006)

4. Beckert, B., Hähnle, R.: Reasoning and verification. IEEE Intell. Syst. 29(1), 20–29
(2014)

5. Beckert, B., Hähnle, R. (eds.): Verification of Object-Oriented Software: The KeY
Approach. Springer, Berlin (2006)

6. Bubel, R., Hähnle, R., Weiß, B.: Abstract interpretation of symbolic execution
with explicit state updates. In: Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 247–277. Springer, Heidelberg (2009)

7. Burstall, R.M.: Program proving as hand simulation with a little induction. In:
Information Processing, pp. 308–312. Elsevier (1974)

8. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013)

9. Chu, D.-H., Jaffar, J., Murali, V.: Lazy symbolic execution for enhanced learning.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 323–339.
Springer, Heidelberg (2014)

10. Clarke, E.M., Grumberg, O., et al.: Model Checking. The MIT Press, Cambridge
(1999)

11. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for sta-
tic analysis of programs by construction or approximation of fixpoints. In: 4th
Symposium of POPL, pp. 238–252. ACM Press, January 1977

12. Fitting, M.C.: First-Order Logic and Automated Theorem Proving, 2nd edn.
Springer, Berlin (1996)

13. Fitting, M.C., Mendelsohn, R.: First-Order Modal Logic. Kluwer, Dordrecht (1998)
14. Gosling, J., Joy, B., et al.: The Java (TM) Language Specification, 3rd

edn. Addison-Wesley Professional, Wokingham (2005). http://psc.informatik.uni-
jena.de/languages/Java/javaspec-3.pdf

15. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s
Java.utils.Collection.sort() is broken: the good, the bad and the worst case. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 273–289.
Springer, Heidelberg (2015)

16. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In:
Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg
(1997)

17. Hähnle, R., Wasser, N., et al.: Array abstraction with symbolic pivots. In:
Ábrahám, E., Bonsangue, M., et al. (eds.) Theory and Practice of Formal Methods.
LNCS, vol. 9660, pp. 104–121. Springer, Berlin (2016)

http://psc.informatik.uni-jena.de/languages/Java/javaspec-3.pdf
http://psc.informatik.uni-jena.de/languages/Java/javaspec-3.pdf

A General Lattice Model for Merging Symbolic Execution Branches 73

18. Hansen, T., Schachte, P., Søndergaard, H.: State joining and splitting for the sym-
bolic execution of binaries. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS,
vol. 5779, pp. 76–92. Springer, Heidelberg (2009)

19. Harel, D., Tiuryn, J., et al.: Dynamic Logic. MIT Press, Cambridge (2000)
20. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–

394 (1976)
21. Kuznetsov, V., Kinder, J., et al.: Efficient state merging in symbolic execution. In:

Proceedings of the 33rd Conference on PLDI, pp. 193–204. ACM (2012)
22. Scheurer, D.: From trees to DAGs: a general lattice model for symbolic execu-

tion. Master’s thesis, Technische Universität Darmstadt (2015). http://tinyurl.
com/Trees2DAGs

23. Sen, K., Necula, G., et al.: MultiSE: multi-path symbolic execution using value
summaries. In: 10th Joint Meeting on Foundations of Software Engineering, pp.
842–853. ACM (2015)

24. Shoenfield, J.R.: Mathematical Logic. Addison-Wesley, Wokingham (1967)
25. Weiß, B.: Predicate abstraction in a program logic calculus. In: Leuschel, M.,

Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 136–150. Springer, Heidelberg
(2009)

http://tinyurl.com/Trees2DAGs
http://tinyurl.com/Trees2DAGs

A Case Study of Formal Approach
to Dynamically Reconfigurable Systems

by Using Dynamic Linear Hybrid Automata

Ryo Yanase1(B), Tatsunori Sakai1, Makoto Sakai1, and Satoshi Yamane2

1 Graduate School of Natural Science and Technology,
Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan

ryanase@csl.ec.t.kanazawa-u.ac.jp
2 Institute of Science and Engineering, Kanazawa University,

Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan

Abstract. Networking systems and embedded systems are able to
change their configuration, components and modules at run-time. Such
a system is called dynamically reconfigurable system. For guaranteeing
safety of the system, model checking is one of the effective methods.
This paper presents a dynamic linear hybrid automaton (DLHA) as a
specification language for designing dynamically reconfigurable systems.
As a practical experiment, we describe an embedded cooperative system
consisting of CPU and DRP by DLHAs and verify several properties for
the system with a model checker that performs the reachability analysis
by using monitor automata.

Keywords: Verification · Model checking and hybrid automata

1 Introduction

1.1 Background

Dynamically reconfigurable systems are being used in a number of areas
[11,13,15]. The major methods of checking system safety include simulation
and testing; however, it is often difficult for them to ensure safety precisely,
since these methods don’t check all states. In such cases, model checking is a
more effective method. In this paper, we propose the Dynamic Linear Hybrid
Automaton (DLHA) specification language for describing dynamically reconfig-
urable systems and provide a reachability analysis algorithm for verifying system
safety.

1.2 Features of Dynamically Reconfigurable Systems Consisting
of CPU and DRP

The target of our research is an embedded system in which a CPU and dynam-
ically reconfigurable hardware, e.g., DRP or D-FPGA [3] operate cooperatively.
c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 74–89, 2016.
DOI: 10.1007/978-3-319-47846-3 6

A Case Study of Formal Approach to Dynamically Reconfigurable Systems 75

The dynamically reconfigurable processor (DRP) is a coarse-grained program-
mable processor developed by NEC [15] and it manages both the power con-
servation and miniaturization. The DRP is used to accelerate the computations
of a general purpose CPU with through cooperating operations, and it has the
following features:

– Dynamically creation/destruction of the function: when a process occurs, the
DRP constitutes a private circuit for processing it. The circuit configuration
is released after the process finishes.

– Hybrid property: the operation frequency changes whenever a context switch
occurs.

– Parallel execution: the DRP executes several processes on the same board at
the same time.

– Queue for communication: the DRP asynchronously receives processing
requests from the CPU.

For the experiments, we specified a dynamically reconfigurable embedded
system consisting of a CPU and DRP, and verified the some of its important
features. This is the first time that specification and verification of dynamic
changes have been tried in a practical case.

1.3 Related Work

Specification. We developed a new specification language (DLHA) based
on a linear hybrid automaton [2] with both creation/destruction events and
unbounded FIFO queues. DLHA is different from existing research in the fol-
lowing points:

– Varshavsky and others proposed the GALA (Globally Asynchronous - Locally
Arbitrary) modeling approach including timed guards [18]. This approach can-
not describe hybrid systems since it is the specification language based on dis-
crete systems. Thus, GALA cannot represent changes in operating frequency.

– Minami and others have specified a dynamically reconfigurable system using
linear hybrid automata and have verified it by using a model checker, HyTech
[14]. Since linear hybrid automata cannot describe changes to the configura-
tion and asynchronous communications by using unbounded FIFO queues, the
system has been specified as a static system.

– Attie and Lynch specified systems whose components are dynamically cre-
ated/destroyed by using I/O automata [4]. I/O automata cannot describe
changes in variables, for example, changes in clock and operating frequency.

– Yamada and others proposed hierarchical linear hybrid automata for specify-
ing dynamically reconfigurable systems [19]. They introduced concepts such
as class, object, etc., to the specification language. However, as the scale of a
system to be specified increases, the representation and method of analysis in
the verification stage tend to be complex.

76 R. Yanase et al.

– Boigelot and Godefroid specified a communication protocol in terms of finite-
state machines and unbounded FIFO buffers (queues), and they verified it [6].
Since the finite-state machine also cannot describe changes in variables, it is
unsuitable in our case.

– Bouajjani and others proposed a reachability analysis for pushdown automata
and symbolic reachability analysis for FIFO-channel systems [8,9]. However,
since their analysis don’t provide for continuous changes in variables, in lan-
guages cannot be used for designing hybrid systems.

Verification Method. The originality of our work on the verification method
twofold:

– Our method targets systems that dynamically change their configurations,
which is something the existing work, such as HyTech, has studied. We
extend the syntax and semantics of linear hybrid automata with special actions
called creation actions and destruction actions. We define a state in which an
automaton does not exist and transitions for creation and destruction.

– Our method is a comprehensive symbolic verification for hybrid properties,
FIFO queues and creation/destruction of tasks.

2 Dynamic Linear Hybrid Automaton

2.1 Syntax

A dynamic linear hybrid automaton (DLHA) is an extended linear hybrid
automaton and represented as a 8-tuple (L, V, Inv,Flow,Act, T, t0, Td), where

– L is a finite set of nodes called locations.
– V is a finite set of variables.
– Inv : L → Φ(V) is a function that assigns an invariant to each location, where

Φ(V) is a set of all constraints over V .
– Flow : L → F (V) is a function that assigns a flow condition to each location,

where F (V) is a set of all flow conditions over V .
– Act = Actin ∪ Actout ∪ Actτ is a finite set of actions.

• Actin is a finite set of input actions, and each input action has the form
a?. An input action m? denotes receiving the message m.

• Actout is a finite set of output actions, and each output action has the
form a!. An output action m! denotes broadcasting the message m to
each DLHA.

• Actτ is a finite set of internal actions that denote other events.
Moreover, we formalize the following special actions:

• A creation action that has the form Crt A′? or Crt A′! denotes a message
for creation of the DLHA A′. Crt A′? is an input action, and it represents
that A′ has been created. Crt A′! ∈ Actout is an output action, and
represents a request for creating A′.

A Case Study of Formal Approach to Dynamically Reconfigurable Systems 77

• A destruction action that has the form Dst A′? or Crt A′! denotes a
message for a destruction of DLHA A′. Dst A′? ∈ Actin is an input action
that indicates A′ has been destroyed.

• An enqueue action that has the form q!m denotes enqueueing of message
m into a queue q. This action is an internal one, that is, q!m ∈ Actτ .

• A dequeue action that has the form q?m denotes dequeueing of message
m from the top of queue q.

– T ⊆ L × Φ(V) × Act × 2UPD(V) × L is a finite set of edges called transitions.
Here, a constraint φ ∈ Φ(V) is called a guard condition, and λ ∈ 2UPD(V)

are called update expressions. Each update expression has the form x := c or
x := x + c, where x ∈ V and c ∈ Q.

– t0 ∈ L × (Actin ∪ Actτ) × 2UPD(V) is an initial transition.
– Td ⊆ L × Φ(V) × Actout is a finite set of destruction-transitions.

2.2 Operational Semantics

A state σ of a DLHA (L, V, Inv,Flow, A, T, t0, Td) is defined as ⊥ | (l, ν), where
l ∈ L is a location, ν : V → R is an assignment called evaluation of variables,
and ⊥ denotes an undefined value.

The semantics M of the DLHA is defined as (Σ,⇒, σ0), where Σ is a set of
states, ⇒ is a set of time transitions and discrete transitions and σ0 is the initial
state.

Time Transition. For arbitrary δ ∈ R≥0,

– ⊥⇒δ⊥,
– (l, ν) ⇒δ (l, ν′) if ν′ = ν + δ · Flow(l) ∈ Inv(l),

where ν′ = ν + δ · Flow(l) denotes an evaluation such that ∀x ∈ V.ν′(x) =
ν(x)+δ · ẋ ·Flow(l)(x), and ν′ ∈ Inv(l) denotes that ν′(x) satisfies the constraint
Inv(l) for any x ∈ V .

Discrete Transition. For an evaluation ν and update expressions λ ∈ 2UPD(V),
ν[λ] denotes an evaluation updated by λ.

– For any transition (l, φ, a, λ, l′) ∈ T , (l, ν) ⇒a (l, ν[λ]) if ν ∈ φ and ν[λ] ∈
Inv(l′).

– (Creation of a DLHA) For the initial transition t0 = (l0, a0, λ0), ⊥⇒a0

(l0,0[λ0]) where 0 is an evaluation such that ∀x ∈ V.[0(x) = 0].
– (Destruction of a DLHA) For any destruction-transition (l, φ, a) ∈ Td,

(l, ν) ⇒a⊥ if ν ∈ φ.

For the initial transition (l0, a0, λ0), the initial state σ0 is defined as

σ0 =

{
⊥ (a0 ∈ Actin)
(l0,0[λ0]) (otherwise).

78 R. Yanase et al.

3 Dynamically Reconfigurable Systems

To describe an asynchronous communication among DLHAs in a dynamically
reconfigurable system, we use a queue (unbounded FIFO buffer) as a model
of the communication channel. We assume that the system performs lossless
transmission, so we can let the queue be unbounded.

A dynamically reconfigurable system S = (A,Q) consists of a finite set A =
{A1, . . . ,A|A|} of DLHAs and a finite set Q = {q1, . . . , q|Q|} of queues.

A state s of the dynamically reconfigurable system is a tuple 〈σ,wQ〉 where
σ is a vector of states of DLHAs and wQ is a vector of contents of queues.

Time Transition. For an arbitrary δ ∈ R≥0, the time transition is defined as

〈σ,wQ〉 →δ 〈σ′,wQ〉 ⇐⇒ ∀i.σi ⇒δ σi.

Discrete Transition. Let σ,σ′,wQ and w′
Q be σ = (σ1, . . . , σ|A|), σ′ =

(σ′
1, . . . , σ

′
|A|), wQ = (w1, . . . , w|Q|) and w′

Q = (w′
1, . . . , w

′
|Q|).

– For any output action a!, 〈σ,wQ〉 →a 〈σ′,wQ〉

iff ∃i.σi ⇒a! σ′
i ∧ ∀j �= i.σj ⇒a? σj ∨ ((¬∃σ′

j .σj ⇒a? σ′
j) ∧ σj = σ′

j).

An output action is broadcasted to all DLHAs, and a DLHA receiving the
action moves by synchronization if the guard condition holds in the state.

– For an internal action aτ ,
• in the case of aτ = qk!w, 〈σ,wQ〉 →qk!w 〈σ′,w′

Q〉,

iff ∃i.σi ⇒qk!w σ′
i ∧ ∀j �= i.σj = σ′

j ∧ w′
k = wkw ∧ ∀l �= k.wk = w′

k,

• while in the case of aτ = qk?w, 〈σ,wQ〉 →qk?w 〈σ′,w′
Q〉,

iff ∃i.σi ⇒qk?w σ′
i ∧ ∀j �= i.σj = σ′

j ∧ wk = ww′
k ∧ ∀l �= k.wl = w′

l,

• otherwise, 〈σ,wQ〉 →aτ
〈σ′,wQ〉, iff ∃i.σi ⇒aτ

σ′
i ∧ ∀j �= i.σj = σ′

j .

A run (or path) ρ of the system S is the following finite (or infinite) sequence
of states.

ρ : s0 →δ0
a0

s1 →δ1
a1

· · · →δi−1
ai−1 si →δi

ai
· · ·

where →δi
ai

between si and si+1 is defined as follows:

si →δi
ai

si+1 ⇐⇒ ∃s′
i.si →δi

s′
i ∧ s′

i →ai
si+1.

The initial state s0 is a tuple 〈(σ01 . . . , σ0|A|), (w01, . . . , w0|Q|)〉, where each
σ0i is the initial state of DLHA Ai and each w0j is empty; that is, ∀j.w0j = ε.

A Case Study of Formal Approach to Dynamically Reconfigurable Systems 79

4 Reachability Analysis

4.1 Reachability Problem

We define reachability and the reachability problem for a dynamically reconfig-
urable system as follows:

Definition 1 (Reachability). For a dynamically reconfigurable system S =
(A,Q) and a location lt, S reaches lt if there exists a path s0 →δ0

a0
· · · →δt−1

at−1 st

such that st has a DLHA-state which contains the location lt.

Definition 2 (Reachability Problem). Given a dynamically reconfigurable
system S = (A,Q) and a location lt, we output “yes” if S can reach lt, and “no”
otherwise.

4.2 Algorithm of Reachability Analysis

Figure 1 show the algorithm of the reachability analysis. Our method introduces
convex polyhedra for the reachability analysis in accordance with [12]. In this
algorithm, we define a state s in the reachability analysis as (L, ζ,wQ), where
L is a finite set of locations, ζ is a convex polyhedron, and wQ is a vector of
contents of queues. Figure 1 is an overview of the reachability analysis, and this
algorithm is performed by using the extended method of [1] with a set Q of
queues. The analysis is performed as follows:

1. Compute the initial state s0 of the system S (ll.1–3).
2. Initialize a traversed set Visit and a untraversed set Wait of states by ∅ and

{s0} (line 4).
3. While Wait is not empty, repeat the following process (ll.5–16).

(a) Take a state (L, ζ,wQ) from Wait and remove the state from Wait (ll.6–
7).

(b) If the set L of locations contains the target location, return “yes” and
terminate (ll.8–10).

(c) If the state has not been traversed yet ((L, ζ,wQ) �∈ Visit) (line 11),
i. add the state to Visit (line 12),
ii. compute the set Spost of successors by using the subroutine Succ (line

13), and
iii. add all components of Spost to Wait (line 14).

The subroutine Succ computes successors of a state. Successors for a state
s together with a transition that has an output action are computed by the
following procedures:

1. Initialize Spost by ∅.
2. Compute a convex polyhedron ζδ for time transition.
3. For each Ai in the system S, compute the set Tsi of transitions that are

outgoing from the state by using the input action al?.
4. Compute a set Δ of combinations of Tsi.

80 R. Yanase et al.

5. For each combination T = (t1, . . . , tn) ∈ Δ, the successor s′ = (L′
T , ζ ′

T ,wQ)
is computed and Spost := Spost ∪ {s′}.

The correctness of this algorithm is implied by Lemmas 1 and 2.

Lemma 1. If this algorithm terminates and returns “lt is not reachable”, the
system S holds the safety property.

Lemma 2. If this algorithm terminates and returns “lt is reachable”, the system
S does not hold the safety property.

By definition, all linear hybrid automata are DLHAs. Our system dynam-
ically changes its structure by sending and receiving messages. However, the
messages statically determine the structure, and the system is a linear hybrid
automaton with a set of queues. It is basically equivalent to the reachability
analysis of a linear hybrid automaton. Therefore, the reachability problem of
dynamically reconfigurable systems is undecidable, and this algorithm might
not terminate [1].

Moreover, in some cases, a system will run into an abnormal state in which
the length of a queue becomes infinitely long, and the verification procedure does
not terminate.

Input: a system S and a target location lt
Output: “yes” or “no”
1: L0 ← {l0i | t0i = (l0i, a0i, λ0i), a0i = Crt Ai?}
2: λ0 ← {λ0i | t0i = (l0i, a0i, λ0i), a0i = Crt Ai?}
3: s0 ← (L0,0[λ0], (ε, . . . , ε)) /* Compute the initial state */
4: Visit ← ∅, Wait ← {s0} /* Initialize */
5: while Wait = ∅ do
6: (L, ζ,wQ) ← s ∈ Wait
7: Wait ← Wait \ {(L, ζ,wQ)}
8: if lt ∈ L then
9: return “yes”

10: end if
11: if (L, ζ,wQ) Visit then
12: Visit ← Visit ∪ {(L, ζ,wQ)}
13: Spost ← Succ((L, ζ,wQ), S) /* Compute the set of post-states */
14: Wait ← Wait ∪ Spost

15: end if
16: end while
17: return “no”

Fig. 1. Reachability analysis

A Case Study of Formal Approach to Dynamically Reconfigurable Systems 81

5 Practical Experiment

5.1 Model Checker

We implemented a model checker of dynamically reconfigurable systems consist-
ing of DLHAs in Java (about 1,600 lines of code) by using the LAS, PPL, and
QDD external libraries [5–7,17]. For the verification, we input the DLHAs of the
system, a monitor automaton, and the error location to the model checker, and
it output “yes (reachable)” or “no (unreachable)”. The monitor automaton had
a special location (we call it the error location), and checked the system without
changing the system’s behavior [12]. The monitor automata had to be specified
to reach the error location if the system didn’t satisfy the properties.

For the specification of the input model, we extended the syntax and seman-
tics of DLHA as follows:

– A transition between locations can have a label asap (that means ‘as soon as
possible’). For a transition labeled asap, a time transition does not occur just
before the discrete transition.

– Each DLHA can have constraints and update expressions for the variables of
another DLHA in the same system. That is, for each DLHA, invariants, guard
conditions, update expressions and flow conditions can be used by all DLHAs.

5.2 Specification of Dynamically Reconfigurable Embedded System

A Cooperative System Including CPU and DRP. We have specified a
dynamically reconfigurable embedded system consisting of a CPU and DRP
for the model described in our previous research [14]. A DRP has computation
resources called tiles (or processing elements), and it dynamically sets the context
of a process if there are enough free tiles. In addition, a DRP can change the
operating frequency in accordance with running processes. In this paper, we
assume that the number of tiles and the operating frequency for each process
have been set in advance and that the operating frequency of the DRP is always
the minimum frequency of the running co-tasks.

Figure 2 shows an overview of the system. This system processes jobs sub-
mitted from the external environment through the cooperative operation of the
CPU and DRP. The CPU Dispatcher creates a task when it receives a call mes-
sage of the task from the external environment. When a task on the CPU uses
the DRP, The CPU Dispatcher sends a message to the DRP Dispatcher. The
DRP Dispatcher receives the message asynchronously and creates a co-task (it
means ‘cooperative task’) in a first-come, first-served manner if there are enough
free tiles. Here, we will assume that this system has two tasks and two co-tasks
that have the parameters shown in Tables 1 and 2.

The system, whose components are illustrated in Fig. 3, consists of 11 DLHAs
and 1 queue. The external environment consists of EnvA (Fig. 4) and EnvB
(Fig. 5) that periodically create TaskA (Fig. 7) and TaskB (Fig. 8). That is, EnvA
uses Crt taskA! to create TaskA every 70 ms, and EnvB uses Crt taskB! to create

82 R. Yanase et al.

Fig. 2. Overview of the CPU-DRP
embedded system

Fig. 3. Components of the system

Table 1. Parameters of tasks

Task Period Deadline Priority Process

A 70 ms 70ms High 20ms, co-task a0,

10ms, co-task b0

B 200 ms 200ms Low co-task a1, 97 ms

TaskB with every 200 ms. The Scheduler (Fig. 6) performs scheduling in accor-
dance with the priority and actions for creation and destruction of DLHAs. For
example, when TaskA is created by EnvA with Crt taskA! and TaskB is already
running, The Scheduler receives Crt taskA? from EnvA and sends Act Preempt!
to TaskA and TaskB. Then, Act Preempt! causes TaskA to move to RunA and
TaskB to move to WaitB.

TaskA and TaskB send a message to The Sender if they need a co-task. The
Sender (Fig. 9) enqueues the message to create a co-task to q when it receives
a message from tasks. When TaskA sends Act Create a0! and moves to RunA
from WaitA, The Sender receives Act Create a0? and enqueues cotask a0 in q
with q!cotask a0.

The DRP Dispatcher (Fig. 10) dequeues a message and creates cotask a0
(Fig. 12), cotask a1 (Fig. 13), and cotask b0 (Fig. 14) if there are enough free
tiles. The Frequency Manager (Fig. 11) is a module that manages the operat-
ing frequency of the DRP. When a DLHA of a co-task is created, The Fre-
quency Manager moves to the location that sets the frequency to the minimum
value.

Table 2. Parameters of co-tasks

Co-task Processing time Deadline Tiles Rate of frequency

a0, a1 10ms 15 ms 2 1

b0 5ms 10 ms 6 1/2

A Case Study of Formal Approach to Dynamically Reconfigurable Systems 83

Fig. 4. External environment: EnvA Fig. 5. External environment: EnvB

Fig. 6. CPU scheduler: scheduler

Other Cases. We have the parameters of the model in Subsect. 5.2 and con-
ducted experiments with it.

– Modified Tasks: We modified the parameters of the tasks on the CPU as
shown in Table 3. Here, the parameters of the co-tasks are the same as those
in Table 2.

– Modified co-tasks: We modified the parameters of the co-tasks on the DRP,
as shown in Table 4. Parameters of the tasks are the same as those in Table 1.

Table 3. Modified parameters of tasks

Task Period Deadline Priority Process

A 90ms 80ms High 20 ms, co-task b0,

20 ms, co-task a0

B 200ms 150ms Low co-task a1, 70ms

84 R. Yanase et al.

Fig. 7. Task: TaskA Fig. 8. Task: TaskB

Fig. 9. Message sender to DRP: sender

5.3 Verification Experiment

We verified that the embedded systems described in Subsect. 5.2 provide the
following properties by using monitor automata. The verification experiment
was performed on a machine with an Intel (R) Core (TM) i7-3770 (3.40 GHz)
CPU and 16 GB RAM running Gentoo Linux (3.10.25-gentoo).

A Case Study of Formal Approach to Dynamically Reconfigurable Systems 85

Fig. 10. DRP Dispatcher

Fig. 11. Frequency Manager

Fig. 12. cotask a0 Fig. 13. cotask a1 Fig. 14. cotask b0

Table 4. Modified parameters of co-tasks

Co-task Processing time Deadline Tiles Rate of frequency

a0, a1 5ms 10 ms 4 1

b0 10ms 20 ms 5 1/3

86 R. Yanase et al.

Fig. 15. Monitor automaton checking schedulability

Verification properties are below:

– Schedulability: Here, schedulability is a property in which each task of the
system finishes before its deadline. Let EA be the total processing time and
DA be the deadline in task A (Fig. 7); the remaining processing time is repre-
sented as EA − eA, and the remaining time till the deadline is represented as
DA − rA. Therefore, the monitor automaton moves the error location if the
task A is created and it satisfies the condition EA − eA > DA − rA (Fig. 15).

– Creation of co-tasks: In the embedded system, each co-task must be created
before the remaining time in the task calling it reaches its deadline. When
the message create a0 is received from task A, the monitor automaton starts
counting time for co-task a0. If the waiting time exceeds the deadline of
task A before it receives the message Crt cotask a0, the monitor moves to
error location. Figure 16 shows the monitor automaton for the case of Table 1
for co-task a0. Monitor automata for co-tasks a1 and b0 can be similarly
described.

– Destruction of co-tasks: Each co-task must be destroyed before the waiting
time reaches its deadline. For the co-task a0, when the message Crt cotask a0
is received from the dispatcher DRP Dispatcher, the monitor automaton
checks the message Dst cotask a0. Figure 17 shows the monitor automaton
for the case of Table 2.

– Frequency management: Creating or destroying a co-task, the DRP changes
the operating frequency corresponding to the co-tasks being processed. Since
this system requires that the frequency is always at the minimum value, the

A Case Study of Formal Approach to Dynamically Reconfigurable Systems 87

Fig. 16. Monitor automaton checking
creation of co-task a0

Fig. 17. Monitor automaton checking
destruction of co-task a0

Fig. 18. Monitor automaton checking
frequency management

Fig. 19. Monitor automaton checking
tile management

monitor checks whether the frequency manager (Frequency Manager) moves
to the correct location when it receives a message for creating a co-task.
For example, when co-task a0 and co-task b0 are running on the DRP, Fre-
quency Manager must be at location L Freq b. Figure 18 show the monitor
automaton for the case of Table 2.

– Tile Management: When the DRP receives a message for creating of a co-task
and the number of free tiles is enough to process it, the dispatcher creates the
co-task. The dispatcher then updates the number of used tiles. The monitor
automaton checks whether the number tiles in DRP Dispatcher is always
between 0 and the maximum number, 8 in this case (Fig. 19).

The experimental results shown in Table 5 indicate that the modified tasks
cases and the modified co-tasks cases were verified with less computation
resources (memory and time) than were used by the original model. This reduc-
tion is likely due to the following reasons:

– Regarding the schedulability of the modified tasks model, the processing time
is shorter than that of the original model since the verification terminates if
a counterexample is found.

– In the cases of the modified co-tasks, the most obvious explanation is that
the state-space is smaller than that of the original model since the number of
branches in the search tree (i.e. nondeterministic transitions in this system)

88 R. Yanase et al.

Table 5. Experimental results

Model Property Satisfiability Memory [MB] Time [sec] States

Original: Schedulability Yes 168 180 1220

Creation of co-tasks Yes 92 315 1220

Destruction of co-tasks Yes 154 233 1220

Frequency management Yes 173 265 1220

Tile management Yes 167 234 1220

Modified tasks: Schedulability No 105 10.2 91

Creation of co-tasks Yes 117 145 771

Destruction of co-tasks Yes 82 151 771

Frequency management Yes 197 115 771

Tile management Yes 135 107 771

Modified co-tasks: Schedulability Yes 83 141 768

Creation of co-tasks Yes 85 183 768

Destruction of co-tasks Yes 86 191 768

Frequency management Yes 104 141 768

Tile management Yes 119 134 768

is reduced by changing the start timings of the tasks and co-tasks with the
parameters.

– In cases other than those of the modified tasks, it is considered that the
state-space is smaller than that of the original model because this system is
designed to stop processing when a task exceeds its deadline.

6 Conclusion and Future Work

In this paper, we proposed a dynamic linear hybrid automaton (DLHA) as a
specification language for dynamically reconfigurable systems. We also devised
an algorithm for reachability analysis and developed a model checker for veri-
fying the system. Our future research will focus on a more effective method of
verification, for example, model checking with CEGAR (Counterexample-guided
abstraction refinement) and bounded model checking based on SMT (Satisfia-
bility modulo theories) [10,16].

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theor. Comput. Sci. 138, 3–34 (1995)

2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algo-
rithmic approach to the specification and verification of hybrid systems. In: Gross-
man, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993)

A Case Study of Formal Approach to Dynamically Reconfigurable Systems 89

3. Amano, H., Adachi, Y., Tsutsumi, S., Ishikawa, K.: A context dependent clock
control mechanism for dynamically reconfigurable processors. Technical report of
IEICE, vol. 104, no. 589, pp. 13–16 (2005)

4. Attie, P.C., Lynch, N.A.: Dynamic input/output automata, a formal model for
dynamic systems. In: Proceedings of the Twentieth Annual ACM Symposium on
Principles of Distributed Computing, PODC 2001, pp. 314–316 (2001)

5. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

6. Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with
infinite state spaces using QDDs. Form. Methods Syst. Des. 14(3), 237–255 (1999)

7. Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The power of QDDs (extended
abstract). In: Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 172–186.
Springer, Heidelberg (1997). doi:10.1007/BFb0032741

8. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

9. Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel sys-
tems with nonregular sets of configurations. In: Degano, P., Gorrieri, R., Marchetti-
Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 560–570. Springer, Hei-
delberg (1997)

10. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

11. Garcia, P., Compton, K., Schulte, M., Blem, E., Fu, W.: An overview of reconfig-
urable hardware in embedded systems. EURASIP J. Embed. Syst. 2006(1), 1–19
(2006)

12. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: a model checker for hybrid.
Softw. Tools Technol. Transf. 1(Cav 97), 110–122 (1997)

13. Lockwood, J.W., Moscola, J., Kulig, M., Reddick, D., Brooks, T.: Internet worm
and virus protection in dynamically reconfigurable hardware. In: Military and
Aerospace Programmable Logic Device (MAPLD), p. E10 (2003)

14. Minami, S., Takinai, S., Sekoguchi, S., Nakai, Y., Yamane, S.: Modeling, specifica-
tion and model checking of dynamically reconfigurable processors. Comput. Softw.
28(1), 190–216 (2011). Japan Society for Software Science and Technology

15. Motomura, M., Fujii, T., Furuta, K., Anjo, K., Yabe, Y., Togawa, K., Yamada, J.,
Izawa, Y., Sasaki, R.: New generation microprocessor architecture (2): dynamically
reconfigurable processor (DRP). IPSJ Mag. 46(11), 1259–1265 (2005)

16. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL
modulo theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI),
vol. 3452, pp. 36–50. Springer, Heidelberg (2005). doi:10.1007/978-3-540-32275-7 3

17. Ono, Y., Yamane, S.: Computation of quantifier elimination of linear inequalities of
first order predicate logic. COMP Comput. 111(20), 55–59 (2011). IEICE Technical
report

18. Varshavsky, V., Marakhovsky, V.: GALA (Globally Asynchronous - Locally Arbi-
trary) design. In: Cortadella, J., Yakovlev, A., Rozenberg, G. (eds.) Concurrency
and Hardware Design. LNCS, vol. 2549, pp. 61–107. Springer, Heidelberg (2002)

19. Yamada, H., Nakai, Y., Yamane, S.: Proposal of specification language and verifi-
cation experiment for dynamically reconfigurable system. J. Inf. Process. Soc. Jpn.
Program. 6(3), 1–19 (2013)

http://dx.doi.org/10.1007/BFb0032741
http://dx.doi.org/10.1007/978-3-540-32275-7_3

Modelling Hybrid Systems in Event-B
and Hybrid Event-B: A Comparison

of Water Tanks

Richard Banach1(B) and Michael Butler2

1 School of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, UK

banach@cs.man.ac.uk
2 School of Electronics and Computer Science, University of Southampton,

Highfield, Southampton SO17 1BJ, UK
mjb@ecs.soton.ac.uk

Abstract. Hybrid and cyberphysical systems pose significant challenges
for a formal development formalism based on pure discrete events. This
paper compares the capabilities of (conventional) Event-B for modelling
such systems with the corresponding capabilities of the Hybrid Event-B
formalism, whose design was intended expressly for such systems. We
do the comparison in the context of a simple water tank example, in
which filling and emptying take place at different rates, necessitating a
control strategy to ensure that the safety invariants are maintained. The
comparative case study is followed by a general discussion of issues in
which the two approaches reveal different strengths and weaknesses. It is
seen that restricting to Event-B means handling many more things at the
meta level, i.e. by the user, than is the case with its Hybrid counterpart.

1 Introduction

Hybrid [9] and cyberphysical [10] systems pose significant challenges for a for-
mal development formalism based on discrete events. A number of compromises
are needed in order to allow a discrete event formalism to relate to the impor-
tant continuous aspects of the behaviour of such systems. Formalisms that are
more purpose built address such concerns more easily. This paper compares the
capabilities of (conventional) Event-B (EB) for modelling such systems with the
capabilities of the more purposely designed Hybrid Event-B (HEB). We do the
comparison in the context of a simple water tank example, in which filling and
emptying take place at different rates, necessitating a control strategy to ensure
that the required safety invariants are maintained. This familiar scenario makes
the discussion easier to follow. The example was modelled using EB in [8] using
facilities built in EB for expressing certain continuous features of behaviour.

The rest of this paper is as follows. Section 2 overviews the HEB framework,
and shows how EB results from forgetting the novel elements of HEB. Section 3
briefly recalls the water tank problem. Then Sect. 4 overviews the development
in [8], which is a detailed study of the water tank example in the EB framework.

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 90–105, 2016.
DOI: 10.1007/978-3-319-47846-3 7

Modelling Hybrid Systems in Event-B and Hybrid Event-B 91

Section 5 looks at a comparative (though on-paper-only) study of the same prob-
lem in HEB. Section 6 then embarks on a general comparison of the pros and
cons of the EB and HEB approaches. Section 7 concludes.

2 An Outline of Hybrid Event-B, and of Event-B

In this section we outline Event-B and Hybrid Event-B for a single machine.
Because it is more complex, we describe Hybrid Event-B first via Fig. 1, and
show how it reduces to Event-B (which of course came earlier) by erasing the
more recently added elements.

Figure 1 shows a schematic Hybrid Event-B machine. It starts with decla-
rations of time and of a clock. Time is a first class citizen in that all variables
are functions of time (which is read-only), explicitly or implicitly. Clocks are
assumed to increase like time, but may be set during mode events. Variables are
of two kinds. There are mode variables (like u) which take their values in discrete
sets and change their values via discontinuous assignment in mode events. There
are also pliant variables (such as x, y), declared in the PLIANT clause, which
typically take their values in topologically dense sets (normally R) and which are
allowed to change continuously, such change being specified via pliant events.

Next are the invariants. These resemble invariants in discrete Event-B, in that
the types of the variables are asserted to be the sets from which the variables’
values at any given moment of time are drawn. More complex invariants similarly
are predicates that are required to hold at all moments of time during a run.

Then, the events. The INITIALISATION has a guard that synchronises
time with the start of any run, while all other variables are assigned their initial
values as usual.

Mode events are analogues of events in discrete Event-B. They can assign all
machine variables (except time). The schematic MoEv of Fig. 1, has parameters
i?, l, o!, (input, local, and an output), and a guard grd. It also has the after-value
assignment specified by the before-after predicate BApred, which can specify the
after-values of all variables (except time, inputs and locals).

MACHINE HyEvBMch
TIME t
CLOCK clk
PLIANT x, y
VARIABLES u
INVARIANTS
x, y, u ∈ R,R,N

EVENTS
INITIALISATION
STATUS ordinary
WHEN
t = 0

THEN
clk, x, y, u := 1, x0, y0, u0

END
.

.
MoEv
STATUS ordinary
ANY i?, l, o!
WHERE
grd(x, y, u, i?, l, t, clk)

THEN
x, y, u, clk, o! :|
BApred(x, y, u, i?, l, o!,
t, clk, x′, y′, u′, clk′)

END
.

.
PliEv
STATUS pliant
INIT iv(x, y, t, clk)
WHERE grd(u)
ANY i?, l, o!
COMPLY
BDApred(x, y, u,
i?, l, o!, t, clk)

SOLVE
D x =

φ(x, y, u, i?, l, o!, t, clk)
y, o! :=
E(x, u, i?, l, t, clk)

END
END

Fig. 1. A schematic Hybrid Event-B machine.

92 R. Banach and M. Butler

Pliant events are new. They specify the continuous evolution of the pliant vari-
ables over an interval of time. Figure 1 has a schematic pliant event PliEv. There
are two guards: iv, for specifying enabling conditions on the pliant variables, clocks,
and time; and grd, for specifying enabling conditions on the mode variables.

The body of a pliant event contains three parameters i?, l, o!, (input, local,
and output, again) which are functions of time, defined over the duration of the
pliant event. The behaviour of the event is defined by the COMPLY and SOLVE
clauses. The SOLVE clause contains direct assignments, e.g. of y and output o!
(to time dependent functions); and differential equations, e.g. specifying x via
an ODE (with D as the time derivative).

The COMPLY clause can be used to express any additional constraints that
are required to hold during the pliant event via the before-during-and-after pred-
icate BDApred. Typically, constraints on the permitted ranges of the pliant vari-
ables, can be placed here. The COMPLY clause can also specify at an abstract
level, e.g. stating safety properties for the event without going into detail.

Briefly, the semantics of a Hybrid Event-B machine consists of a set of system
traces, each of which is a collection of functions of time, expressing the value of
each machine variable over the duration of a system run.

Time is modeled as an interval T of the reals. A run starts at some initial
moment of time, t0 say, and lasts either for a finite time, or indefinitely. The dura-
tion of the run T , breaks up into a succession of left-closed right-open subinter-
vals: T = [t0 . . . t1), [t1 . . . t2), [t2 . . . t3), Mode events (with their discontinuous
updates) take place at the isolated times corresponding to the common endpoints
of these subintervals ti, and in between, the mode variables are constant, and the
pliant events stipulate continuous change in the pliant variables.

We insist that on every subinterval [ti . . . ti+1) the behaviour is governed
by a well posed initial value problem D xs = φ(xs . . .) (where xs is a relevant
tuple of pliant variables). Within this interval, we seek the earliest time ti+1 at
which a mode event becomes enabled, and this time becomes the preemption
point beyond which the solution to the ODE system is abandoned, and the next
solution is sought after the completion of the mode event.

In this manner, assuming that the INITIALISATION event has achieved
a suitable initial assignment to variables, a system run is well formed, and thus
belongs to the semantics of the machine, provided that at runtime:

• Every enabled mode event is feasible, i.e. has an after-state, and on its
completion enables a pliant event (but does not enable any mode event).1

• Every enabled pliant event is feasible, i.e. has a time-indexed family of
after-states, and EITHER:
(i) During the run of the pliant event a mode event becomes enabled. It

preempts the pliant event, defining its end. ORELSE
(ii) During the run of the pliant event it becomes infeasible: finite termination.

ORELSE
(iii) The pliant event continues indefinitely: nontermination.

1 If a mode event has an input, the semantics assumes that its value only arrives at a
time strictly later than the previous mode event, ensuring part of (1) automatically.

Modelling Hybrid Systems in Event-B and Hybrid Event-B 93

Thus in a well formed run mode events alternate with pliant events. The last
event (if there is one) is a pliant event (whose duration may be finite or infinite).
In reality, there are several semantic issues that we have glossed over in the
framework just sketched. We refer to [5] for a more detailed presentation (and to
[6] for the extension to multiple machines). The presentation just given is quite
close to the modern formulation of hybrid systems. See e.g. [13,15], or [9] for a
perspective stretching further back.

If, from Fig. 1, we erase time, clocks, pliant variables and pliant events, we
arrive at a skeleton (conventional) Event-B machine. This simple erasure process
illustrates (in reverse) the way that Hybrid Event-B has been designed as a clean
extension of the original Event-B framework. The only difference of note is that
now—at least according to the (conventional) way that Event-B is interpreted in
the physical world—(the mode) events (left behind by the erasure) execute lazily,
i.e. not at the instant they become enabled (which is, of course, the moment of
execution of the previous event).2

3 The Water Tank Problem

The water tank problem is a familiar testing ground for approaches to control
problems in event based frameworks like the B-Method. The purpose of the
water tank controller is to maintain the water level in the tank between a low
and a high level. There is a mechanism, assumed to act continually, by which
water drains from the tank. To counteract this, there is a filling mechanism,
acting faster than the draining mechanism, that can be activated at the behest
of the controller to refill the tank when the water level has become too low—it
is deactivated once the level has become high enough.

4 The Event-B Water Tank Development

EB PliEv
ANY t, f
WHERE
t ≥ clk + ε
f ∈ ctsF(clk, t)
f (clk) = m(clk)
P(f)

THEN
clk,m := t,m ∪ f

END

Fig. 2. The EB pattern for
representing a pliant event.

In [8] there is a development of the water tank in
EB. Since EB has no inbuilt continuous facilities, a
considerable amount of continuous infrastructure had
to be built behind the scenes using the theory plugin
of the Rodin tool [3,14]. A fragment of this, the EB
pattern for a pliant event in the style used in [8],
is shown in Fig. 2. This treats update to continuous
behaviour monolithically (i.e. by adding the whole
piece from clk to t in a single action).

In more detail, there is a clock clk, and the pre-
sumption is that the event describes what happens

2 We observe however, that it is considerably easier to simulate lazy execution
semantics using eager semantics (e.g. via guards that depend on nondeterministi-
cally/probabilistically set auxiliary variables), than to achieve eager behaviour using
lazy semantics.

94 R. Banach and M. Butler

MACHINE EB Tank1

VARIABLES level, now
INVARIANTS
0 ≤ now
level ∈ ctsF(0, now)
ran level ⊆ (L . . .H)
now ∈ dom level

EVENTS
INITIALISATION

BEGIN
now := 0
level := const(0, 0, L)

END
ModeChange

ANY t, l
WHERE
now ≤ t ∧
ε ≤ t − now ∧
l ∈ ctsF(now, t) ∧
level(now) = l(now) ∧
ran l ⊆ (L . . .H)

THEN
now, level := t, level ∪ l

END
END

MACHINE EB Tank2
REFINES EB Tank1
VARIABLES level, now
INVARIANTS

level(now) ∈ (L . . .H)
EVENTS
INITIALISATION
REFINES INITIALISATION
BEGIN
now := 0
level := const(0, 0, L)

END
Fill
REFINES ModeChange
ANY t, l
WHERE
now ≤ t ∧
ε ≤ t − now ∧
l ∈ ctsF(now, t) ∧
level(now) = l(now) ∧
l(t) ⊆ (L . . .H) ∧
l ∈ mono inc

THEN
now, level := t, level ∪ l

END
Empty
REFINES ModeChange
ANY t, l
WHERE
now ≤ t ∧
ε ≤ t − now ∧
l ∈ ctsF(now, t) ∧
level(now) = l(now) ∧
l(t) ⊆ (L . . .H) ∧
l ∈ mono dec

THEN
now, level := t, level ∪ l

END
END

MACHINE EB Tank3
REFINES EB Tank2
VARIABLES level, now

EVENTS
INITIALISATION
REFINES INITIALISATION
BEGIN
now := 0
level := const(0, 0, L)

END
Fill
REFINES Fill
ANY t, l
WHERE
now ≤ t ∧
ε ≤ t − now ∧
l ∈ ctsF(now, t) ∧
level(now) = l(now) ∧
l(t) ⊆ (L . . .H) ∧
der(l) = const(now, t, RU)

THEN
now, level := t, level ∪ l

END
Empty
REFINES Empty
ANY t, l
WHERE
now ≤ t ∧
ε ≤ t − now ∧
l ∈ ctsF(now, t) ∧
level(now) = l(now) ∧
l(t) ⊆ (L . . .H) ∧
der(l) = const(now, t, RD)

THEN
now, level := t, level ∪ l

END
END

Fig. 3. Event-B machines for the water tank.

in a time interval following clock value clk. A parameter t is introduced, greater
than clk by at least ε (to prevent Zeno behaviour, though Zeno behaviour would
not be detectable, nor cause any upset, in an Event-B proof). Another para-
meter f , describes the graph of a continuousFunction on the interval [clk . . . t]
by which the function m, defined hitherto only on the interval [0 . . . clk], is to
be extended. Defining functions set theoretically by their graphs, the extension
of the function m is just the union of its previous value and f . Of course, clk
must also be updated to t, ready for the next increment. For the function m
to be continuous, its preceding final value must match the initial value of the
increment f , as stated in the guard m(clk) = f(clk). Finally, P (f) expresses any
further properties that the increment f is required to satisfy.

In Fig. 3 we see the main thread of the EB water tank, essentially as in [8].
Aside from what is shown, there are two contexts c1 and c2, which introduce
various constants used in the development.

Modelling Hybrid Systems in Event-B and Hybrid Event-B 95

The Fig. 3 development starts with EB Tank1. This introduces the water
level variable, as well as the now variable (the analogue of clk in Fig. 2). Ini-
tialisation fixes now at 0 and level to the constant function over the degenerate
closed interval [0 . . . 0] with value L, the lower water level.

MACHINE EB Tank30
REFINES EB Tank2
VARIABLES
level, now, step, slevel,mode

INVARIANTS
step ∈ R

slevel ∈ ctsF(now, step)
mode = UP ⇒

slevel ∈ mono inc
mode = DOWN ⇒

slevel ∈ mono dec
level(now) = slevel(now)
slevel(step) = (L . . .H)

EVENTS
INITIALISATION
REFINES INITIALISATION
BEGIN
now := 0
level := const(0, 0, L)
step := 0
slevel := const(0, 0, L)
mode := UP

END
StepUp
ANY l
WHERE
mode = UP ∧
slevel(step) ≤ HT ∧
l ∈ ctsF(step, step+P) ∧
slevel(step) = l(step) ∧
l ∈ mono inc ∧
l(step) ≤ l(step + P) ∧
l(step + P) ≤
l(step) + (RU × P) ∧

l(step + P) ≤ H
THEN
step := step + P
slevel := slevel ∪ l

END
EndFill
REFINES Fill
WHEN
mode = UP ∧
¬ (slevel(step) ≤ HT)

WITH
l = slevel
t = step

THEN
now := step
level := level ∪ slevel
mode := DOWN
slevel := const(step, step,

slevel(step))
END

StepDown
EndEmpty

END

Fig. 4. The EB Tank30
machine.

There is one event ModeChange, which illus-
trates how continuous behaviour is handled in the
EB modelling style of [8]. As is clear, this is a simple
instantiation of the pattern of Fig. 2.

From its name, one can infer that ModeChange is
intended to model the transitions between filling and
emptying episodes. However, there is nothing in its
definition that forces this—the event merely extends
the level function, defined by its graph, by some non-
empty chunk into the future (that obeys the restric-
tion on its range).

EB Tank1 is refined to EB Tank2. The variables
are the same, and another invariant level(now) ∈
(L . . . H) is introduced to aid proof (of course, it
follows mathematically from the earlier invariants
level ∈ ctsF (0, now) and ran level ⊆ (L . . . H)).
The previous event ModeChange, is refined to two
separate events, Fill and Empty. These events
have additional contraints in their guards, l ∈
monotonically increasing functions for Fill, and l ∈
monotonically decreasing functions for Empty. So
each chunk that increments the level function is
increasing or decreasing, but cannot oscillate.

Again, from their names, we might infer that Fill
and Empty are intended to model the full filling and
emptying episodes, which we expect to alternate. But
there is no requirement that filling results in a level
anywhere near H, nor analogously for emptying; also
there is nothing to prevent successive filling, or suc-
cessive emptying episodes.

EB Tank2 is refined to EB Tank3. The vari-
ables are the same, and there are no new invariants.
The only change now is that monotonic behaviour
is implemented by an axiomatic form of an ordinary
differential equation. Thus, l ∈ mono inc in Fill is
replaced by der(l) = const(now, t, RU), which says
that the derivative of l is a constant function over the
interval [now . . . t], with value RateUp. This, and the
analogously modified Empty, covers what is shown
in Fig. 3.

96 R. Banach and M. Butler

Aside from the machines in Fig. 3, there is a further machine, Tank30, in the
development discussed in [8]. This is also a refinement of EB Tank2, although
a different one. This one models a putative implementation of EB Tank2 using
a time triggered loop. A new variable step is introduced, whose job, like that
of now, is to model increments of time, but on this occasion small ones, whose
duration is determined by a constant P . Another new variable slevel models
the small increments or decrements to the water level accrued in each interval
of length P . The events modelling these small increments or decrements also
follow the pattern described earlier. Most of this machine is shown in Fig. 4 (the
parts omitted are the details of events StepDown and EndEmpty, which are
straightforward analogues of events StepUp and EndFill).

Unlike the models of Fig. 3, there is a variable mode ∈ {UP,DOWN} to
enforce filling or emptying behaviour until the boundary values are approached.
And since, when using fixed time increments of length P , it is not realistic to
expect filling and emptying to reach the limits H or L ‘on the nose’, thresh-
olds HT and LT are introduced (respectively less than and greater than H and
L), upon reaching which, the mode changes. Technically, the ‘intermediate’ fill-
ing and emptying events, StepUp and StepDown, are ‘new’ events, refining a
notional skip in EB Tank2. The ‘endpoint’ events, EndFill and EndEmpty,
refine Fill and Empty in EB Tank2, determining the needed values of now and
level to achieve refinement.3

Finally, we comment on the methodology used to arrive at these results. The
properties of the reals, and of real functions, were axiomatised using the theory
plugin of the Rodin tool [3,14]. One aspect of this is that derivatives, expressed
using axioms for der, are axiomatised as belonging to the continuous functions
ctsF , for convenience (see [8]). If we then look at the way that these are used in
EB Tank3, we see that the derivatives specified are always constant functions.
But filling episodes have a positive derivative of the l function, and emptying
episodes give l a negative derivative. Joining two such episodes cannot yield a
continuous derivative.

This apparent contradiction is resolved by noticing that each element of
ctsF is only defined with respect to its domain. Thus, a function f1 defined on
[t1 . . . t2] may have one continuous derivative, and a different function f2 defined
on [t2 . . . t3] may have a different continuous derivative. Even if f1 and f2 can
be joined at t2, the exclusive use of closed intervals for domains of continuous
behaviour (which happens quite commonly in formulations of hybrid systems, see
e.g. [9,13,15]) does not enable us to deduce that their derivatives can be joined
at t2. While consistent, the consequence of this is that the joined f1 ∪ f2 cannot
be regarded as a differentiable function on [t1 . . . t3], and in fact, an attempt

3 The use of thresholds HT and LT rather than the precise limits H and L, correlates
with the absence of guards to check reaching H or L in the corresponding EB Tank1
and EB Tank2 events. However, since the behaviour stipulated is nondeterministic
monotonic, adding an extra constraint to demand that the behaviour exactly reached
the required limit in events EndFill and EndEmpty would be perfectly feasible
(mathematically, if perhaps not practically).

Modelling Hybrid Systems in Event-B and Hybrid Event-B 97

to regard it as such would lead to multiple values of the putative derivative at
t2. While relatively innocuous in the present example, it indicates a number of
things. The first is that what is true can depend delicately on the axioms adopted.
The second is that care needs to be taken in case the unexpected consequences
of the axioms lead one astray. The third is a caution regarding the scalability of
such an approach, as the number of counterintuitive cases proliferates.

5 The Hybrid Event-B Water Tank Development

In Fig. 5 we see a development of the water tank problem in HEB. It consists
of three machines: HEB TankAbs, an abstract formulation, which is refined
by HEB TankMon which includes the pump, and which is in turn refined
by HEB TankODE. These are relatively straightforward analogues of the
machines EB Tank1, EB Tank2, EB Tank3 in the last section. The main
difference between the two treatments is that in HEB, functions of time are
manipulated solely using expressions for their values at any individual instant,
and not en bloc, as graphs over (some portion of) their domain. This aligns the
way that pliant and mode updates can be regarded, and simplifies many less
trivial matters. For ease of comparison, we keep the names of constants in the
two treatments the same, but alter other names to aid distinguishability.

HEB TankAbs has only the water level variable wl, which is pliant, tak-
ing values in R. The behaviour of wl is required to be CONTINUOUS (to pre-
vent discontinuous jumps), and the nontrivial invariant wl ∈ [L . . . H] confines
the water level to the real closed interval [L . . . H]. In HEB, invariants are
properties that have to hold at all times, so wl ∈ [L . . . H] is sufficient to
express the safety property that wl is required to never leave [L . . . H]. The
only non-INITIALISATION event in HEB TankAbs is the pliant event
WaterInRange. This merely requires the behaviour to COMPLY (with the)
INV ARIANTS. So HEB TankAbs specifies the required safety property and
does not concern itself with how that safety property is to be maintained. The
ability to do this properly in a hybrid/cyberphysical setting is an important
feature of development in HEB. So HEB TankAbs mirrors EB Tank1 quite
closely.

The next machine HEB TankMon, starts to engage with how the key
invariant is maintained. It introduces the EB-style mode variable pump ∈
{ON,OFF}. The pump is turned on and off by mode events PumpOn and
PumpOff . These are like EB events aside from their eager behaviour—they
execute as soon as their guards become true.

Again illustrating the ability to postpone implementation details, the behav-
iour of wl in the presence of the pump is merely specified to be MONotonically
DECreasing when the pump is OFF , and to be MONotonically INCreasing when
it is ON : in pliant events WaterEmpty and WaterF ill respectively. Note that
the pump variable, introduced earlier than in EB, prevents successive filling or
successive emptying episodes (unless we had additional mode events to interleave
them, to conform with (1) and (2)).

98 R. Banach and M. Butler

MACHINE HEB TankAbs

PLIANT wl

INVARIANTS
wl ∈ [L . . .H]
CONTINUOUS (wl)

EVENTS
INITIALISATION

STATUS ordinary
BEGIN
wl := L

END
WaterInRange
STATUS pliant
COMPLY INVARIANTS
END

END

MACHINE HEB TankMon
REFINES HEB TankAbs
PLIANT wl
VARIABLES pump
INVARIANTS
wl ∈ [L . . .H]
CONTINUOUS (wl)
pump ∈ {ON,OFF}

EVENTS
INITIALISATION
REFINES INITIALISATION
STATUS ordinary
BEGIN
wl, pump := L,ON

END
WaterFill
REFINES WaterInRange
STATUS pliant
WHEN pump = ON
COMPLY MONINC(wl)
END

PumpOff

STATUS ordinary
WHEN
wl = H ∧ pump = ON

THEN pump := OFF
END

WaterEmpty
REFINES WaterInRange
STATUS pliant
WHEN pump = OFF
COMPLY MONDEC(wl)
END

PumpOn

STATUS ordinary
WHEN
wl = L ∧ pump = OFF

THEN pump := ON
END

END

MACHINE HEB TankODE
REFINES HEB TankMon
PLIANT wl
VARIABLES pump
INVARIANTS
wl ∈ [L . . .H]
CONTINUOUS (wl)
pump ∈ {ON,OFF}

EVENTS
INITIALISATION
REFINES INITIALISATION
STATUS ordinary
BEGIN
wl, pump := L,ON

END
WaterFill
REFINES WaterFill
STATUS pliant
WHEN pump = ON
SOLVE Dwl = RU
END

PumpOff
REFINES PumpOff
STATUS ordinary
WHEN
wl = H ∧ pump = ON

THEN pump := OFF
END

WaterEmpty
REFINES WaterEmpty
STATUS pliant
WHEN pump = OFF
SOLVE Dwl = RD
END

PumpOn
REFINES PumpOn
STATUS ordinary
WHEN
wl = L ∧ pump = OFF

THEN pump := ON
END

END

Fig. 5. Hybrid Event-B machines for the water tank.

Importantly, HEB TankMon is a formal refinement of HEB TankAbs
according to the detailed definition in [5], as we would wish. Both of
WaterEmpty and WaterF ill refine the abstract WaterInRange, in that
monotonic continuous behaviour is a refinement of continuous behaviour. The
relevant PO expresses this by saying the following. For all times t during an
execution of a concrete event, WaterF ill say, that started at some time tL say,
if the value that wl reached at t due to executing WaterF ill from its starting
value wl(tL) was wl(t), then the same value can be reached by executing the
abstract event WaterInRange from tL to t.

Mode events PumpOn and PumpOff are ‘new’ events in EB parlance,
updating only the ‘new’ mode variable pump, so there is no change to abstract
variable wl when they execute. However, there is no VARIANT that they
decrease when they execute. The abstract event that they relinquish control
to upon completion is the immediately succeeding pliant event, WaterEmpty
for PumpOff or WaterF ill for PumpOn. An auxiliary (pliant) variable could

Modelling Hybrid Systems in Event-B and Hybrid Event-B 99

be introduced that was increased by these events and decreased by the mode
events to create a variant, but this would clutter the model. Thus we see
that HEB TankMon mirrors EB Tank2 quite closely, aside from the presence
of pump and its controlling events, which fix the durations of the monotonic
episodes to be maximal, and ensures that switching takes place at the extreme
values of the range.

Machine HEB TankODE refines EB TankMon. This time the various
events are refined 1-1, so there are no ‘new’ events to worry about. The monotonic
continuous behaviour of WaterEmpty and WaterF ill is further refined to be
given by ODEs in which the derivative of the water level variable wl is RD for
WaterEmpty and RU for WaterF ill, as in EB. This appears in the SOLVE
clauses of these events. Once more, HEB TankODE mirrors EB Tank3 quite
closely, aside from issues concerning pump, which we have discussed already.

Supplementing the machines of Fig. 5, machines analogous to the EB Tank30
machine appear in Fig. 6. Machine HEB TankTTL is a time triggered devel-
opment of HEB TankMon, and comparing it with Tank30 is instructive.
Note that there are no new variables, just new behaviour of events. Thus
WaterF ill is refined to WaterF illNormal and to WaterF illEnd. The for-
mer of these is enabled when the water level is below the threshold HT . It
demands increasing wl behaviour, but restricted to a filling rate no greater than
RU . Occurrences of WaterF illNormal are interleaved by occurrences of mode
event WaterF illObs, which runs at times that are multiples of P , provided the
water level is not actually H itself. Since WaterF illNormal is increasing wl,
WaterF illObs merely skips. Once above HT , WaterF illEnd runs. This is like
WaterF illNormal except for an additional condition insisting that wl hits H
at the end of the interval.4 And once wl has reached H, PumpOff runs, as
previously. While this design is unimpeachable mathematically, it is, of course,
much more questionable from a practical perspective, as we pointed out in foot-
note 3. It does have the virtue though, of providing a straightforward refine-
ment from HEB TankMon. Machine HEB TankTTL is completed by events
WaterEmptyNormal, WaterEmptyEnd, WaterEmptyObs, PumpOn, which
do the same as the preceding, but for the emptying phase.

Machine HEB TankTTL is data refined to HEB TankIMP on the right of
Fig. 6. This ‘implementation’ machine illustrates the refinement of pliant behav-
iour interleaved by mode skips, to pliant skips interleaved by mode updates—
a major aim of HEB is to allow such a passage from a high level continu-
ous design to a discrete, digital implementation. A fresh variable mwl (moni-
tored water level) is introduced, inc/decremented at each of the mode events.
Observing wl and updating mwl at each multiple of P enables the invariant
|mwl − wl| ≤ P × max(RU,RD) to be maintained, attesting to the reasonable-
ness of the digital implementation.

What has been achieved by formulating the development in the HEB way
compared to the EB way? Firstly, there is a certain fluency in referring to con-
tinuous behaviour via expressions that denote instantaneous values rather than

4 The constraint is consistent provided the various constants are suitably related, of
course.

100 R. Banach and M. Butler

MACHINE HEB TankTTL
REFINES HEB TankMon
TIME t
PLIANT wl
VARIABLES pump
INVARIANTS
wl ∈ [L . . .H]
CONTINUOUS (wl)
pump ∈ {ON,OFF}

EVENTS
INITIALISATION
REFINES INITIALISATION
STATUS ordinary
BEGIN
wl, pump := L,ON

END
WaterFillNormal
REFINES WaterFill
STATUS pliant
INIT wl ≤ HT
WHEN pump = ON
COMPLY MONINC(wl) ∧
wl(t) − wl(L) ≤
RU × (t − L)

END
WaterFillObs
STATUS ordinary
WHEN
pump = ON ∧ wl
= H ∧
(∃ n • t = n × P)

THEN skip
END

.

.
WaterFillEnd
REFINES WaterFill
STATUS pliant
INIT wl > HT
WHENpump = ON
COMPLY MONINC(wl) ∧
wl(t) − wl(L) ≤
RU × (t − L) ∧

wl(L + P) = H
END

PumpOff
STATUS ordinary
WHEN
wl = H ∧ pump = ON

THEN pump := OFF
END

WaterEmptyNormal
WaterEmptyEnd
WaterEmptyObs
PumpOn

END

MACHINE HEB TankIMP
REFINES HEB TankTTL
TIME t
VARIABLES mwl
INVARIANTS
mwl ∈ [L . . .H]
| mwl − wl | ≤
P × max(RU, RD)

EVENTS
INITIALISATION
REFINES INITIALISATION
STATUS ordinary
BEGIN mwl := L END

.

.
WaterFillNormal
REFINES WaterFillNormal
STATUS pliant
INIT mwl = wl ∧ wl ≤ HT
WHEN pump = ON
COMPLY skip
END

WaterFillObs
REFINES WaterFillObs
STATUS ordinary
WHEN
pump = ON ∧ wl
= H ∧
(∃ n • t = n × P)

THEN mwl := wl
END

WaterFillEnd
REFINES WaterFillEnd
STATUS pliant
INIT mwl = wl ∧ wl > HT
WHEN pump = ON
COMPLY skip
END

PumpOff
STATUS ordinary
WHEN
wl = H ∧ pump = ON

THEN
pump,mwl := OFF,wl

END
WaterEmptyNormal
WaterEmptyEnd
WaterEmptyObs
PumpOn

END

Fig. 6. The HEB TankTTL and HEB TankIMP machines.

having to assemble and disassemble graphs of functions (but only in the con-
tinuous case). Secondly, there are issues of potential semantic subtlety. We saw
an example in the discussion of the differential properties of the level function
in EB Tank3: it was not formally differentiable globally, but consisted of dif-
ferentiable monotonic pieces, leading to the join points having more than one
derivative value, despite these being ‘kink’ points of the function. In HEB such
matters are handled ab inito in the semantics, by the use of closed/open inter-
vals and the Carathéodory formulation of differential equations and derivatives
(which are only required to be defined almost everywhere). Thirdly, there is also
the fluency of the passage from pliant behaviour interleaved by mode skips to
pliant skips interleaved by mode updates. Discussion of further and more general
matters appears in the next section.

6 Event-B Versus Hybrid Event-B

Based on the previous EB and HEB developments, we can draw some com-
parisons between the two approaches for modelling and formally refining hybrid
systems.

Modelling Hybrid Systems in Event-B and Hybrid Event-B 101

1. First and foremost, EB has a well developed existing tool, whereas for
HEB, tool development is, as yet, an aspiration. Having an existing tool is of
inestimable benefit when you need to get the job done.

2. In an EB development, real time has to be modelled as a normal state
variable. This imposes a responsibility on the model writer to not abuse the
capabilities this offers. In truth, time is (in physical parlance) an independent
variable—whereas other state variables correspond (physically) to dependent
variables. From a linguistic formalism point of view, staying faithful to the phys-
ical reality means that time has to be a read-only variable, and that all other
variables have to be functions of time. In an EB context, it is down to the
self-discipline of the model writer to reflect these properties properly. Clearly it
is possible to transgress them and to write unphysical models. In HEB these
realities are hardwired into the syntax and semantics, making it impossible for
the model writer to violate them.

3. An analogue of point 2 concerns the mathematical equipment of EB and
HEB. In EB all mathematical objects beyond those needed for discrete mod-
elling need to be axiomatised, typically using the theory plugin of the Rodin tool
[3,14]. Although this framework is agnostic regarding the level of abstraction of
the concepts being axiomatised, existing work emphasises a bottom up approach
(as in the case study above). This potentially creates a lot of work before the
level of abstraction needed for applications is reached, increasing risk.

The HEB perspective on this is to design the theoretical foundations of
the semantics in a way that best suits the needs of applications engineering,
giving system developers a mental model that is clear and easy to grasp, and,
importantly, is free from unexpected surprises (such as the two-valued ‘deriva-
tive’ discussed earlier). The aim would be to internalise the world of continuous
mathematics with the same level of care and consistency as the Rodin tool cur-
rently supplies for discrete mathematics and logic, and to supplement it via
extensive imported support from external tools such as Mathematica [12] for
calculational purposes. The facility for user designed rules and axiom schemes
would be retained for specialised purposes, but would not be the default app-
roach for continuous mathematics.

4. A specific example of the general remarks in the preceding point lies in the
contrast between the explicit construction of functions as relations, manipulated
via their graphs in Sect. 4 and their representation as expressions based on values
of variables at a single (arbitrary) element of their time domain in Sect. 5.

5. Connected with the previous point is the observation that in EB, the
discrete and continuous updates have to be handled by different means. Thus,
discrete transitions are written down using (in effect, pairs of) state expres-
sions, referred to via syntax such as xs := E(xs), with the accepted conventions
surrounding the syntactic machinery enabling the relevant expressions to be dis-
cerned. For continuous transitions though, because the EB framework offers no
alternative syntax for update than that which is used for discrete transitions,
updates to continuous behaviour have to be handled by updating the relation
describing (the function of time that is) the continuous behaviour as a whole, in

102 R. Banach and M. Butler

one action. Section 4 offers many examples. The discrete analogue of such an app-
roach would be to update (in one action), for a discrete variable x, a non-trivial
portion of its trace during an execution, i.e. to update say 〈xi−1, xi . . . xi+k〉,
as a whole. (Aside from anything else, this would require the introduction into
every model of an index variable (incremented at each event occurrence), as well
as suitable history variables.)

By contrast, HEB provides special purpose syntactic machinery (via the
COMPLY and SOLVE clauses) to specify continuous update incrementally and
microscopically, rather than macroscopically, which is significant from an expres-
sivity standpoint. As most physical models specify behaviour in a microscopic
way (usually via differential equations etc.), being able to write these directly in
the formal framework aids the ability to specify in a manner as close to appli-
cation domain concerns as possible. Also, since the solutions to these micro-
scopic specifications are macroscopic (describing properties of the solution over
an extended portion of time/space), specifying in a microscopic way prevents
forcing the move from microscopic to macroscopic from being done offline. In
this way, discontinuous transitions and continuous transitions are handled in a
consistent manner, via mode transitions and pliant transitions respectively, both
of which are predominantly expression based ways of specifying updates.

6. Continuing from point 5, when specifying the unavoidable handovers
between continuous and discrete behaviours while using the macroscopic, rela-
tion based, way of specifying continuous behaviour, the endpoints of the periods
of continuous behaviour need to be described within the relations themselves, so
that the domain of the relevant relation can be specified. This is potentially an
overhead for the model designer when the problem is complicated enough, since
the handovers take place when prompted by physical law. In HEB, this job is
taken over by a generic preemption mechanism, which is, in turn, much easier
to handle in the expression based way of managing pliant behaviour, since all
the details regarding the domain of applicability of the pliant behaviour do not
need to be specified in advance.

7. Another consequence of point 5 concerns invariants. Invariants are nor-
mally expressions written in the state variables, that are expected to be true at
all times. Now, when we only have the usual changes of discrete state, and we
have the conventional interpretation of Event-B in the physical world in which
discrete transitions occur at isolated times, then the state does not change in
between these discrete transitions. Thus, once true at some point of an execution
(e.g. at initialisation time), if invariants are reestablished at each discrete tran-
sition, then the invariants hold throughout the duration of the execution. Note
that this reasoning takes place largely outside of the formal EB framework.

When the discrete EB transitions are extended to encompass updates
to lumps of continuous behaviour, the preceding argument no longer holds.
Straightforward safety properties built out of natural problem entities no longer
correspond to equivalent expressions built on state variables, but need to be
extracted from the relations containing pieces of continuous behaviour, poten-
tially making the proof of safety properties more difficult.

Modelling Hybrid Systems in Event-B and Hybrid Event-B 103

The observation particularly concerns refinement. In relatively benign cases
where refinement amounts to ‘reduction of nondeterminism’, it may be possible
relatively straightforwardly to argue that, say, a continuous monotonic function
is continuous, and thus, that a chunk of continuous monotonic function refines
a continuous specification. But the challenge can get much harder when ‘data
refinement’ is involved. Then, the chunks have to be unpacked and the pointwise
expressions compared (in fact reflecting the HEB process), before anything can
be deduced.

By contrast, the HEB approach expresses all instantaneous state update,
both mode and pliant, via expressions in the state variables, which usually cor-
respond to the natural variables of the problem. This enables the invariants to be
built in the same straightforward way as in the purely discrete case. Refinement
is rendered no harder than the discrete case, though the time parameter has to
be carried around through the derivation (which, in the vast majority of cases,
imposes no overhead).

While, in principle, any invariant written using the more transparent methods
of HEB could, with effort, be translated into the more convoluted EB kind, as
a general point, we should not underestimate the impact on those aspects of the
application that are emphasised, made by the detailed formalism in which the
models and properties of a given application are written. Thus: (a) properties in
model based frameworks tend to be written as invariants on the state space, and
behavioural properties remain implicit in the enabledness (or not) of events in the
after-states of preceding events; (b) properties in behaviourally based frameworks
tend to be written as temporal logic expressions, and say little or nothing about
states or whether behaviours other than ones described are permissible; (c) the
architectural structure of a system leads to an emphasis on the properties of the
individual components, whether state based or behavioural, and properties of the
system as a whole that depend on the correct execution of protocols by collections
of components are downplayed (other than in approaches focused specifically on
protocols), etc. So the difference between the EB and HEB approaches can lead
to subtle bias in the safety properties that are written, and later checked during
verification.

8. Although not a feature of the EB treatment here, a number of treat-
ments of continuous phenomena using EB, describe continuous, time dependent
phenomena via lambda expressions such as λτ • E(τ). Extraction of a value
is done via application of such an expression to a parameter. This technique
makes even more distant (than in the EB technique used here) the connection
between problem quantities and actual model variables, since there needs to be
even more packing and unpacking of these lambda expressions to get at the
juice inside (than in the present case). From a formal point of view, a binder
like λ typically binds its variable: moreover, the bound variable is formally alpha
convertible [7,11], which can change its name arbitrarily. If this is the case, the
identification of the variable τ in the given expression with a problem domain
quantity like the time, lies completely outside the formal framework—it becomes
an application level convention. This contrasts with the practice in conventional

104 R. Banach and M. Butler

descriptions of physical phenomena, of naming physical quantities using free
variables, leading to the possibility of being able to correlate the mention of
the same quantity at different places by simple lexical identity. Of course this
practice is reflected in the design of HEB.

However, we have to be a little careful. In many similar formalisms, such as in
the refinement calculus [4], alpha conversion is an intrinsic part of the machinery,
leading precisely to the phenomenon being discussed. However in the logical
language of EB, the not-free-in property is used instead when introducing binders.
This is based on the idea that provided wise, non-clashing choices of bound
variables are made at the point of introduction, those choices will never need to
be overridden in the reasoning algorithms, precluding the need for formal alpha
conversion. In the B-Book [1], the not-free-in property is explicitly correlated
with the quantified variable in the predicate that specifies the lambda expression
(B-Book p. 89, & ff.). In the EB-Book [2], the lambda variable is a pattern, and
although the formalities of its role as bound variable are not explicitly discussed,
similar properties may be inferred (EB-Book p. 331 & ff.). Thus, in the context
of the not-free-in technique, in theory, it might be possible to use the free problem
variables as lambda variables in sufficiently simple situations where this would
cause no untoward clashes, but in practice this is not something that could be
expected to be applicable with any generality.5

A genuine reconciliation of the issues just discussed would run as follows.
A richer language of type names would be introduced. These names would be
free identifiers. Complex (or built-in) types could be given a name, and name
equivalence (rather than structural equivalence) would decide type equality and
compatibility. That way, a type of time could be distinguished from a type of
lengths, even though both are based on R under the bonnet. Alpha conversion
would apply to lambda expressions etc. as usual, but not to the type name
expressions that declared their types. We would have reinvented the free name
convention of HEB, removed one level!

It is notable how most of the issues identified in the above list do not concern
the details of the EB and HEB formalisms themselves, but engage with ques-
tions that surround how the formalism connects with the wider requirements
and applications environment. This is another illustration of the observation
that the more naturally a formal framework relates to the problem domain, the
more useful its contribution to overall system dependability is likely to be.

7 Conclusions

In the previous sections we reviewed Event-B and its hybrid extension, and then
summarised the water tank development in the two formalisms. This provided
the background for a more thorough comparison of the two ways of develop-
ing hybrid systems in Sect. 6. What this showed was that although many issues
5 Strictly speaking, not-free-in means ‘does not occur free—but may occur bound—in’.

Thus, the possibilities for alpha conversion are latent in the B-Method, even if they
are downplayed.

Modelling Hybrid Systems in Event-B and Hybrid Event-B 105

that were rather natural to express in Hybrid Event-B could be handled, with
some effort, in Event-B, doing it that way placed more and more reliance on
conventions that lay outside the formal Event-B framework. Obviously, the aim
of having a formal framework is to open the possibility of having a system
whereby properties directly relevant to the application can be checked mechan-
ically, instead of relying on informal conventions verified by humans for their
enforcement. Thus the pure Event-B approach to hybrid system design and
development will inevitably struggle increasingly, as the scale of the problem
being tackled grows.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. STTT 12, 447–466 (2010)

4. Back, R.J.R., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Springer, Heidelberg (1998)

5. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core hybrid Event-B I: single
hybrid Event-B machines. Sci. Comput. Program. 105, 92–123 (2015)

6. Banach, R., Butler, M., Qin, S., Zhu, H.: Core Hybrid Event-B II: Multiple Coop-
erating Hybrid Event-B Machines (2015, submitted)

7. Barendregt, H.: The Lambda Calculus its Syntax and Semantics. Elsevier,
Amsterdam (1981)

8. Butler, M., Abrial, J.R., Banach, R.: Modelling and refining hybrid systems in
Event-B and Rodin. In: Petre, S. (ed.) From Action System to Distributed Systems:
The Refinement Approach. Dedicated to Kaisa Sere, pp. 29–42. CRC Press/Taylor
and Francis, Oxford/Boca Raton (2015)

9. Carloni, L., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.: Languages and
tools for hybrid systems design. Found. Trends Electron. Des. Autom. 1, 1–193
(2006)

10. Geisberger, E., Broy (eds.), M.: Living in a Networked World. Integrated Research
AgendaCyber-Physical Systems (agendaCPS) (2015). http://www.acatech.de/
fileadmin/user upload/Baumstruktur nach Website/Acatech/root/de/Publikation
en/Projektberichte/acaetch STUDIE agendaCPS eng WEB.pdf

11. Hindley, R., Seldin, J.: Introduction to Combinators and λ-Calculus. Cambridge
University Press, Cambridge (1986)

12. Mathematica. http://www.wolfram.com
13. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex

Dynamics. Springer, Heidelberg (2010)
14. RODIN Tool. http://www.event-b.org/, http://sourceforge.net/projects/rodin-b-

sharp/
15. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach.

Springer, Heidelberg (2009)

http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Projektberichte/acaetch_STUDIE_agendaCPS_eng_WEB.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Projektberichte/acaetch_STUDIE_agendaCPS_eng_WEB.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Projektberichte/acaetch_STUDIE_agendaCPS_eng_WEB.pdf
http://www.wolfram.com
http://www.event-b.org/
http://sourceforge.net/projects/rodin-b-sharp/
http://sourceforge.net/projects/rodin-b-sharp/

A System Substitution Mechanism for Hybrid
Systems in Event-B

Guillaume Babin, Yamine Aı̈t-Ameur(B), Neeraj Kumar Singh,
and Marc Pantel

Université de Toulouse, IRIT/INPT-ENSEEIHT,
2 Rue Charles Camichel, Toulouse, France

guillaume.babin@irit.fr, {yamine,nsingh,marc.pantel}@enseeiht.fr

Abstract. Changes like failure or loss of QoS are key aspects of hybrid
systems that must be handled during their design. Preserving the system
state is a common requirement that can be ensured by reconfiguration
relying on system substitution. The specification and design of these sys-
tems usually rely on continuous functions whereas their implementation
is discrete. Moreover, the associated safety properties are characterized
by a safety envelope defining safe system states. This paper presents
a novel approach for formalizing the system substitution mechanism for
hybrid systems, in which the system substitution maintains a safety enve-
lope of the given hybrid system during system failure or switching from
one supporting system to another. Proving the correctness of the discrete
implementation of the defined reconfiguration mechanism for hybrid sys-
tems is a challenging problem. In this purpose, we propose to combine
system substitution and incremental system modeling to ensure correct
discretization. We rely on the Event-B method and the Rodin Platform
with the Theory plug-in to develop the system models and carry out the
proofs on dense real numbers.

Keywords: System reconfiguration and substitution · Continuous and
discrete behaviors · Formal methods · Refinement and proof · Event-B

1 Introduction

Context. Cyber Physical Systems refer to the tight integration and coordination
between computational and physical resources [18]. In these systems, a software
component, the controller, manages the physical parts of the system. The early
models for such systems usually rely on continuous functions. The controller is
then implemented in a discrete manner thus combining continuous environment
models with discrete controller models, building an hybrid system.

Proving the correctness of discrete implementations of continuous controllers
is a challenging problem. Formal methods allow checking the correctness of such
system functional requirements, including the required safety properties. Due
to these core benefits, they have been adopted for designing and developing

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 106–121, 2016.
DOI: 10.1007/978-3-319-47846-3 8

A System Substitution Mechanism for Hybrid Systems in Event-B 107

the new age of discrete controllers that must satisfy their original continuous
specification [19] for building safe and reliable hybrid systems.

To prevent a system failure, controllers must react according to environment
changes to keep a desired state or to meet minimum requirements that maintain
a safety envelope for the system. A safety envelope is a safe over-approximation
of system states. It can be modeled as invariants that define a set containing all
possible system states under its nominal conditions. One key property studied
in system engineering is the ability to take actions according to an evolving
behavior. It may occur in different situations (e.g. failures, quality of service
change, context evolution, maintenance, etc.). Most safety critical systems, such
as avionics, nuclear, automotive and medical devices, whose failure could result
in loss of life, including reputation and economical damage, use reconfiguration or
substitution mechanisms to prevent losing the quality of system services required
for system stability when a random failure occurs.

In our earlier work, we proposed both a correct by construction system sub-
stitution mechanism [8,9] and a strategy to derive discrete controllers from con-
tinuous specifications [6]. In [8,9], we defined the reconfiguration mechanism
to maintain a safety property for a system (defined as a state-transitions sys-
tem) during failure or to switch from one supporting system to another. The
defined approach has been successfully applied, for the discrete case, on web
services [7]. But it is not applicable straightforwardly for hybrid systems which
need to handle continuous features. In [6], we presented the formal development
of a continuous controller that is refined by a discrete one preserving the contin-
uous functional behavior and the required safety properties. This work helped us
formulating more general strategies, that we aim to develop in this paper, for the
development of system substitution for hybrid systems using formal techniques.

Objective of this Paper. We target modeling hybrid systems, and providing
modeling patterns for reconfiguration, using a correct by construction approach.
We provide a generic system substitution mechanism for hybrid systems that
allows maintaining a safety envelope during the system failure or switching from
one supporting system to another using stepwise refinement in Event-B [3]. More-
over, we show how the defined substitution or reconfiguration mechanism applies
to handle hybrid systems characterized by continuous functions using discrete
functions. More precisely, we investigate the modeling of continuous systems in
discrete form by preserving the continuous behavior. For hybrid systems, the
system substitution is usually not instantaneous as it takes time to restore the
state of the substituted system. We propose a special treatment to handle it.
The primary use of the models is to assist in the construction, clarification, and
validation of the continuous controller requirements to build a digital controller
in case of system reconfiguration or system substitution. In this development, we
use the Rodin Platform [4,16] to manage model development, refinement, proofs
checking, verification and validation.

108 G. Babin et al.

Paper Organization. The remainder of this paper is organized as follows.
Section 2 presents preliminary details for system substitution mechanisms and
the required modeling framework. Section 3 summarizes the studied systems and
associated problems, including the informal requirements of the selected system.
Section 4 explores an incremental proof-based formal development of system
substitution for hybrid systems. Section 5 discusses our approach, and Sect. 6
presents related work and compares the results of this work with existing work.
Finally, Sect. 7 concludes the paper with some future research directions.

2 Preliminaries

This section provides a comprehensive overview on system substitution mecha-
nisms, for both continuous and discrete functions, that illustrates our proposal,
and a basic overview on the Event-B modeling framework.

2.1 System Substitution Mechanism

System substitution allows to replace a system by another system that provides
the same service. It can be used to ensure high availability in case of failure
as required for safety critical systems such as avionics, nuclear, automotive and
medical devices, where failure could result in loss of life, including reputation
and economical damage. In general, system substitution can occur in any state of
the system. We focus on warm start tagged as Dynamic substitution, where the
substitute system will recover as much data and state variable values as possible
from the halting state of the original system. Dynamic substitution allows replac-
ing a failed system SysS with a new one SysT starting from the last running
state of SysS . Thus, SysT must be initialized according to the last running state
of SysS . In order to ensure that both systems provide the same services, they
must implement the same specification Spec according to the recovery states.

2.2 The Modeling Framework

Event-B [3] is a formal modeling notation, in which the event-driven approach
extends the B-method [2]. The Event-B language has two main components,
context and machine, to characterize the systems. A context describes the static
structure of a system using carrier sets, constants, axioms and theorems, and a
machine describes the dynamic structure of a system using variables, invariants,
theorems, variants and events. Table 1 shows a formal organization of a model,
in which various clauses (i.e. VARIABLES, EVENTS) are used to introduce the
required modeling components for specifying the given system requirements. For
instance, the clause VARIABLES represents the state and the clause EVENTS
represents the transitions (defined by a Before-After predicate (BA)) of a sys-
tem. A list of events can be used to model possible system behaviors that modify
the state variables by providing appropriate guards in a machine. A model also

A System Substitution Mechanism for Hybrid Systems in Event-B 109

Table 1. Model structure Table 2. Proof obligations

contains INVARIANTS and THEOREMS clauses to represent its relevant prop-
erties to check the correctness of the formalized behavior. A VARIANT clause
can be used to introduce convergence properties in a machine. Moreover, the
terms like refines, extends, and sees are mainly used to describe the relation
between components of Event-B models.

The Event-B modeling language supports a correct by construction approach
to design an abstract model and a series of refined models for developing any
large and complex system. The refinement, introduced by the REFINES clause,
decomposes a model (thus a transition system) into another transition system
containing more design decisions when moving from an abstract level to a less
abstract one. Refinement supports modeling a system gradually by introducing
safety properties at various refinement levels. New variables and new events may
be introduced in a new refinement level. These refinements preserve the relation
between the abstract model and its corresponding refined concrete model, while
introducing new events and variables to specify more concrete behaviors of the
system. The defined abstract and concrete state variables are linked by intro-
ducing gluing invariants.

The Rodin Platform provides rich tool support for model development using
the Event-B language. It includes project management, model development,
proof assistance, model checking, animation and automatic code generation.
Once an Event-B model is modeled and syntactically checked in the Rodin Plat-
form, then a set of proof obligations is generated with the help of the Rodin tools.
Theses generated proof obligations are further passed to the inbuilt Rodin prover.
The main proof obligations associated to an Event-B model are listed in Table 2,
in which the prime notation is used to denote the value of a variable after an
event is triggered. More details on proof obligations can be found in [3].

110 G. Babin et al.

The Theory Plug-In. A recent extension of the Event-B language allows
extending it with theories [5] similar to algebraic specifications. In the Rodin
Platform, this is provided by the Theory plug-in [13]. We formalize and analyze
a system substitution mechanism applied to hybrid systems, that use the REAL
datatype for state variables. Thus, we rely on the Real theory, written by Abrial
and Butler1 that provides a dense mathematical REAL datatype with arithmetic
operators, an axiomatic semantics and proof rules.

3 Studied Systems

Fig. 1. Behavior of studied systems Fig. 2. System substitution

In this section, we describe the studied family of simple systems as patterns
including the mechanism for system substitution. These ones are depicted in
Fig. 1 for the system and Fig. 2 for the substitution mechanism. They are for-
malized as state-transition systems. Their behaviors are characterized by three
states: boot (1), progress (2) and stopped (3). The boot state is the initial state,
and the progress state is the nominal running state. According to Fig. 1, after
initialization, a system enters the booting state, denoted as state 1, which may
take a certain amount of time. If a system does not require the booting phase,
then the system initialization is followed by a start transition without any delay.
After this one, the system moves into the progress state, denoted as state 2. If
the system stops, it switches into the stopped state, denoted as state 3.

3.1 Problem Statement

The substitution mechanism allows maintaining the running state of a given
system in case of failure or decreasing QoS by replacing it with another one that
provides the required behavior. A basic substitution pattern is defined by the
state-transitions system of Fig. 2. When a failure occurs, the running system is
halted (fail transition), then repaired in state 3 where the state of the substitute
system is restored from the halted system. Finally, the control is given to the
substitute system (transition repaired from state 3 to state 2). The substitution
correctness has been studied in different cases (equivalent, degraded or upgraded
cases). This mechanism (Fig. 2) shall satisfy the following requirements: (1) Pre-
serving the required system behavior of the original system; (2) Restoring the
halted system correctly.

1 http://wiki.event-b.org/index.php/Theory Plug-in#Standard Library.

http://wiki.event-b.org/index.php/Theory_Plug-in#Standard_Library

A System Substitution Mechanism for Hybrid Systems in Event-B 111

Refinement is used to fulfill the first requirement. Several refinements may
implement the same specification thus providing a class of systems that are
candidate for substitution. The second requirement is expressed as a relation
restoring the state variables of the substituted and substitute systems that must
preserve the invariant and properties of the original specification. Details can be
found in [8,9]. Substitutions can be instantaneous when it consists in restoring
state variables that fulfill the specification invariant as shown in the case of web
services compensation from [7]. But, for hybrid systems, it may require some
time. The repair transition on state 3 of Fig. 2 must handle the repair process
duration. This case is adressed in this contribution and the system behavior
must be preserved during that duration.

3.2 Informal System Requirements

The hybrid systems behaviors models usually rely on continuous functions over
time. Figure 3a depicts such a function f whose nominal value (after initializa-
tion) must stay in the safety enveloppe [m,M]. The time intervals [A,B],]B,C]
and]C,D] correspond respectively to state 1, 2 and 3 of Fig. 1. Any system con-
troller, including a reconfiguration one, must observe the behavior of the system
(here the function f) and act (preserve or change the system mode) to keep the
observation in the safety enveloppe. Such observations and actions are usually
implemented by a software that requires the discretization of the continuous
functions. Figure 3b depicts such a discrete form for f . The time intervals [E,F]
]F,H] and]H, I] correspond respectively to state 1, 2 and 3 of Fig. 1. In the
software that implements such controllers, time is observed according to specific
clocks and periods. Therefore, it is mandatory to define a correct discretization
of time that preserves the observed continuous behavior introduced previously.
This preservation entails the introduction of other requirements on the defined
continuous function. With respect to a time interval δt, the margin z is defined
as respecting: z ≥ maxt,δt∈R+ |f(t) − f(t + δt)| (the evolution of f is assumed to
be bounded) and m + z < M − z (for consistency). Note that, in practice, these

Fig. 3. Examples of the evolution of the function f

112 G. Babin et al.

requirements are usually satisfied by the physical plant (f is usually a smooth
continuous function).

Two continuous functions f and g characterize the behavior of two hybrid
systems Sysf and Sysg. We assume that these systems maintain their observed
output within the safety envelope [m,M]. Thus, they can substitute each other
since they fulfill the same safety requirement. In this paper, we study the substi-
tution of Sysf by Sysg after a failure occurrence (see requirements of Table 3).

Figure 4a and b show the substitution scenario in both continuous and dis-
crete cases. The X axis describes time change and the vertical dashed lines model
state transitions according to the behavior depicted in Fig. 2. Observe that dur-
ing the repairing process (state 3 of Fig. 2) function f (associated with Sysf)
decreases due to its failure while function g (associated with Sysg) is booting.
The invariant states that f + g belongs to the safety envelope [m,M] during the
repair (between C and D in the continuous case of Fig. 4a or G and H in the
discrete case on Fig. 4b). Finally, the progress state 2 is reached a second time
with Sysg as the running system.

Table 3. Requirements in the abstract specification.

At any time, the feedback information value of the controlled system shall be
less or equal to M in any mode

Req. 1

At any time, the feedback information value of the controlled system shall
belong to the safety envelope [m,M] in progress mode

Req. 2

The system feedback information value can be produced either by f , g or
f + g (f and g being associated to Sysf and Sysg)

Req. 3

The system Sysf may have feedback information values outside [m,M] Req. 4

At any time, in the progress mode, when using Sysf , if the feedback
information value of the controlled system equals to m or to M , Sysf must
is stopped

Req. 5

Fig. 4. Examples of the evolution of the function f

A System Substitution Mechanism for Hybrid Systems in Event-B 113

4 Formal Development

This section describes the stepwise formal development of studied systems in an
abstract model and a sequence of refined models. The abstract model formalizes
only the system initial behavior, while the refined models are used to define the
concrete and more complex behaviors in a progressive manner that preserves the
required safety properties at every refinement level.

Due to the limitation of the paper length, we only include a brief description
of the model development and refinements. We invite readers to rely on the
complete formal model available at [1] to understand the basic steps of the
formal development, refinements and associated safety properties.

4.1 The Required Contexts

Contexts define the relevant concepts needed for our developments. The context
C reals (see Listing 1.1) defines the positive real numbers and theorems helpful
for discharging the proofs. This context uses the REAL type for real numbers
defined in the Theory Real by Abrial and Butler. Listing 1.2 introduces the con-
stants MODE X defining the different system modes (F,G and R for Sysf , Sysg

and Repair modes) belonging to the MODES set.

CONTEXT C reals −− Continuous functions
CONSTANTS

REAL POS, REAL STR POS
AXIOMS −− Axioms and theorems

−− for continuous functions
def01: REAL POS = {x | x ∈ REAL ∧ 0≤ x)}

....

END

Listing 1.1. Context C reals

CONTEXT C modes
SETS

MODES
CONSTANTS

MODE F, MODE R, MODE G
AXIOMS

axm1: partition(MODES, {MODE F},
{MODE R}, {MODE G})

END

Listing 1.2. Modes definition

The previous two contexts (C envelope and C margin) deal with the defini-
tion of a safety envelope. As mentioned in the requirements defined in Table 3,
we define the interval of safe values as [m,M] in the continuous case and
[m + z,M − z] with margin z in the discrete case.

CONTEXT C envelope −− Safety envelope
EXTENDS C reals
CONSTANTS

m, M
AXIOMS

axm01: m ∈ REAL STR POS
axm02: M ∈ REAL STR POS
axm03: smr(m,M)

THEOREMS
thm01: m ≤ M
thm02: 0 ≤ m
thm06: 0 ≤ M
thm03: ∀x · m ≤ x ⇒ x ∈ REAL POS
thm05: ∀a · m ≤ a ⇒ 0 ≤ a

END

Listing 1.3. Context C envelope

CONTEXT C margin −− Safety envelope margin
EXTENDS C envelope
CONSTANTS

z
AXIOMS

axm01: z ∈ REAL POS −− z ∈ R+
axm02: M−m > 2∗z

THEOREMS
thm03: 0 ≤ M−z
thm06: z ≤ M−m
thm07: m ≤ M−z
thm08: m+z ≤ M
thm10: m+z ≤ M−z

...
END

Listing 1.4. Context C margin

114 G. Babin et al.

4.2 Abstract Model: Definition of a Mode Controller

As shown in Fig. 2, we use three states to define a simple abstract controller (a
mode automata) that models the system substitution through mode changes.
Machine M0 (see Listing 1.5) describes the abstract specification of the recon-
figuration state-transitions system depicted in Fig. 2. The modes are used in
the events guards to switch from one state to another. At initialization, Sysf

is started (MODE F), it becomes active when the active variable is true (Sysf

ended the booting phase). When a failure occurs, progress of Sysf is stopped.
The controller enters in the repairing mode MODE R. Once the system is
repaired, the mode is switched to MODE G and Sysg enters the progress state.

MACHINE M0
SEES C modes
VARIABLES

active −− true when the system is started
md −− running mode of the system

INVARIANTS
type01: active ∈ BOOL
type03: md ∈ MODES
tech01: active = FALSE ⇒ md = MODE F

EVENTS
INITIALISATION=
THEN

act1: active := FALSE
act2: md := MODE F

END
boot = WHERE

grd1: active = FALSE
grd2: md = MODE F

END
start= WHERE

grd1: active = FALSE
grd2: md = MODE F

THEN
act1: active := TRUE

END

progress = WHERE
grd2: active = TRUE
grd1: md = MODE F ∨ md = MODE G

END
fail = WHERE

grd2: active = TRUE
grd1: md = MODE F

THEN
act1: md := MODE R

END
repair= WHERE

grd2: active = TRUE
grd1: md = MODE R

END
repaired = WHERE

grd2: active = TRUE
grd1: md = MODE R

THEN
act1: md := MODE G

END
END

Listing 1.5. The mode automata

4.3 First Refinement: Introduction of the Safety Envelope

The first refinement introduces the safety envelope [m,M]: the main invari-
ant satisfied by all functions: f initially, f + g during substitution and g after
substitution. Machine M1, defined in Listing 1.6, refines M0. It preserves the
behavior defined in M0 and introduces two kinds of events: environment events
(event name prefixed with ENV) and controller events (event name prefixed
with CTRL) [23]. The ENV events produce the system feedback observed by
the controller.

In this refinement, three new real variables f, g and p are introduced. f
and g record the feedback information of Sysf and Sysg individually, while
p records the feedback information of both systems before, during and after
substitution. The variable p corresponds to f of Sysf in MODE F, g of Sysg in
MODE G and f + g of combined Sysf and Sysg in MODE R corresponding to
the system reparation (invariants mode01 to mode05). In all cases, p shall belong
to the safety envelope (invariants envelope01 and envelope02). The CTRL events
correspond to refinements of the abstract events of M0. They modify the control
variable active and md. The ENV events observe real values corresponding to

A System Substitution Mechanism for Hybrid Systems in Event-B 115

the different situations where Sysf and Sysg are running or when Sysf fails and
Sysg boots. This last situation corresponds to the reparation case.

MACHINE M1 REFINES M0
SEES C envelope, C modes
VARIABLES

active , md, p, f , g
INVARIANTS

...
envelope01: p ≤ M
envelope02: active = TRUE ⇒ m ≤ p

mode01: md = MODE F ⇒ p = f
mode04: md = MODE F ⇒ g = 0
mode02: md = MODE R ⇒ p = f + g
mode03: md = MODE G ⇒ p = g
mode05: md = MODE G ⇒ f = 0

THEOREMS
....

EVENTS
INITIALISATION=
....
CTRL started REFINES start =
WHERE

grd3: m ≤ p ∧ p ≤ M
END
ENV evolution f REFINES progress =
ANY new f
WHERE

grd2: active = TRUE ∧ md = MODE F
grd5: f 	= m ∧ f 	= M
grd3: m ≤ new f
grd4: new f ≤ M

THEN
act1: f := new f
act2: p := new f

END

CTRL limit detected f REFINES fail =
WHERE

grd5: f = m ∨ f = M
END

ENV evolution fg REFINES repair =
ANY new f, new g
WHERE

grd3: m ≤ new f + new g
grd4: new f + new g ≤ M
grd5: 0 ≤ new f
grd6: new f ≤ f
grd7: g ≤ new g
grd8: new g ≤ M

THEN
act1: f := new f
act2: g := new g
act3: p := new f + new g

END

CTRL repaired g REFINES repaired =
WHERE

grd3: m ≤ g
grd4: g ≤ M
grd5: f = 0 −− f+g to g is continuous

END

ENV evolution g REFINES progress =
...

END

Listing 1.6. Refinement with ENV and
CTRL events

4.4 Second Refinement: Continuous Behavior and Dense Time

The behaviors of continuous controllers defined on dense time are modelled by
continuous functions introduced by this refinement. This behavior is modelled
in Machine M2 (See Listing 1.7). It corresponds to Fig. 4a. Once the modes and
the observed values are correctly set, the next refinements are straightforward.
They correspond to a direct reuse of the development of a correct discretization
of a continuous function proposed in [6].

Continuous functions fc, gc, pc corresponding to variables f, g, p from M1 are
introduced. A real positive variable now represents the current time. The gluing
invariants (glue01 for example p = pc(now)) connect the variables of machine M1
with the continuous functions values at time now. In the same way, each event
of M1 is refined. Time steps dt are introduced and the continuous functions are
updated by the environment ENV events. The continuous functions are updated
on the interval [now, now + dt] and now is updated to now := now + dt. The
control CTRL events observe the value pc(now) to decide whether specific actions
on the mode mdc variable are performed or not. Listing 1.7 shows an extract of
this machine and a detailed description of this refinement is given in [1,6].

116 G. Babin et al.

MACHINE M2 REFINES M1
SEES C corridor, C thms
VARIABLES

now, p c, f c , g c
...

INVARIANTS
type01: now ∈ REAL POS
glue01: p = p c(now)
glue02: f = f c(now)
glue03: g = g c(now)
corridor01: ∀t · t ∈ [0,now] ⇒ p c(t) ≤ M
...

EVENTS
...
ENV evolution f

REFINES ENV evolution f =
ANY dt, new f c
WHERE

...
grd5: f c (now) = new f c(now)
grd6: ∀ t · t ∈ [now,now+dt] ⇒

new f c(t) ∈ [m,M]
WITH

new f: new f = new f c(now + dt)
THEN

act1: now := now + dt
act2: p c := p c �− new f c
act3: f c := f c �− new f c
...

END
...
END

Listing 1.7. Machine M2

MACHINE M3 REFINES M2
SEES C discrete, ...
VARIABLES

p d, f d , g d
i −− the current instant number
et −− time elapsed from previous discrete

−− value sampling time
...

INVARIANTS
type01: f d ∈ 0..i → REAL POS

−− similar for p d and g d
type04: i ∈ N

glue01: ∀ n· n ∈ 0..i ⇒ f c(n∗tstep)=f d(n)
−− similar for p d and g d

glue02: now = i∗tstep + et
...
EVENTS
...

ENV evolution f on tick
REFINES ENV evolution f =

ANY dt, new f c
WHERE

new f c ∈ [now,now+dt] → REAL POS
...

THEN
act01: f := new f
act02: now := now + dt
act03: f c := f c �− new f c
act04: i := i + 1
act05: f d(i+1) := new f c(now+dt)
act06: et := 0
...

END
...
END

Listing 1.8. Machine M3

4.5 Third Refinement: Discretization of the Continuous Behavior

This last refinement models a discrete controller. A discrete function is associated
to values of the continuous function at each discrete time steps. The discrete
behavior is given in Machine M3 (See Listing 1.8). It models the behavior from
Fig. 4b following the work in [6]. Again, we follow the same approach as for the
refinement of the continuous behavior. As mentioned in the context C margin,
the margin z is defined, such that 0 < z ∧m+z < M −z ∧ M −m > 2×z. This
margin defines, at the discrete level, the new safety envelope [m + z,M − z] ⊂
[m,M]. The new discrete variables fd, gd, pd of M3 are glued to fc, gc, pc of
M2. They correspond to discrete observations of fc, gc, pc. The discretization
step is defined as δt. Each environment event corresponding to a continuous
event is refined into three events: the first one corresponds to discrete time now,
the second one to discrete time now + δt and the third one to any time in
]now, now + δt[. In this discrete modeling, the last event ensures the correctness
of refinement. Moreover, it must be Zeno free, so we introduce a decreasing
variant in this refinement. The discrete controller observes only the events on
time jumps from now to now + δt. Note that due to the discretization and the
introduction of the z margin, a possible failure can be detected when pd(now) ∈
[m,m + z[∨ pd(now) ∈]M − z,M]. The predicted behavior is enforced by the
discrete controller that detects a limit before the value of m or M is reached.
This situation is depicted in Fig. 4b at instant G.

A System Substitution Mechanism for Hybrid Systems in Event-B 117

4.6 Model Analysis

This section gives the proof statistics through detailed data about generated
proof obligations. Event-B supports consistency checking which shows that a list
of events preserves the given invariants, and refinement checking which ensures
that a concrete machine is a valid refinement of an abstract machine. The whole
formal development is presented through one abstract model and a sequence of
three refinement models to cover the possible operations of system substitution
of hybrid systems.

Table 4. Proof Statistics

Model Total number of POs Automatic proof Interactive proof

Abstract model (M0) 5 5 (100%) 0 (0%)

First refinement (M1) 93 48 (52%) 45 (48%)

Second refinement (M2) 209 71 (34%) 138 (66%)

Third refinement (M3) 425 78 (18%) 347 (82%)

Total 732 202 (28%) 530 (72%)

Table 4 gives the proof statistics for the development using the Rodin tool.
To guarantee the correctness, we established various invariants in the incre-
mental refinements. This development resulted in 732 (100 %) proof obligations,
of which 202 (28 %) were proved automatically, and the remaining 530 (72 %)
were proved interactively using the Rodin prover (see Table 4). These interactive
proof obligations are mainly related to the complex mathematical expressions
and the use of Theory plug-in for REAL datatype, which are simplified through
interaction, providing additional information to assist the Rodin prover.

5 Discussion

System substitution is a mechanism that allows to maintain the running state of
a given system in case of any failure by preserving the required behavior. Spe-
cially, for developing critical systems, it is highly required to mitigate any risk
of failure. On the other hand, stepwise refinement always plays an important
role in designing a complex and large system systematically through progressive
development. For developing the system substitution mechanism for hybrid sys-
tems, the stepwise refinement played an important role to preserve the required
behavior and safety properties. As mentioned earlier, refinement is a core con-
cept in Event-B development, and applying the refinement steps in a systematic
order is always useful for designers to know what decisions must be taken for
introducing system behaviors in each new refinement level. We identified the
following development steps to integrate our system substitution mechanism for
hybrid systems: (1) Define a set of modes for the controller; (2) Define a safety

118 G. Babin et al.

envelope to preserve the desired behavior; (3) Handle the continuous behavior
and dense time; (4) Model the discretization of the continuous function.

The proposed work is an extension of our previous work [6,8]. In [8], we
have developed a generic formal model for system substitution and in [6], we
have proposed the stepwise formal development for modeling continuous func-
tion using concrete functions. In this paper, we have used our existing approaches
for addressing the challenges related to formal modeling and verification for the
system substitution for hybrid systems. As far as we know, there are no similar
published work. This work is a preliminary step for applying a system substi-
tution mechanism for hybrid systems. We use the Theory plug-in for describing
the hybrid systems and the required properties. In this experiment, we found
that proof are quite complex and the existing Rodin tool support is not powerful
enough to prove the generated proof obligation automatically. In fact, we need
to assist the Rodin provers to find the required assumptions and predicates to
discharge the generated proof obligations. On the other hand, we also found that
the Theory plug-in is not yet complete. We have defined several assumptions and
theorems in our model to help the proving process with the Real theory.

6 Related Work

Cyber-physical systems are strongly connected to their operating environment.
Thus, the systems can adapt to environment changes to ensure the functional
correctness. System reconfiguration is a key element to implement such kinds of
systems that is proposed by several researchers. In [11], π-calculus and process
algebra are used for system modeling, including reconfiguration, by exploiting
behavioral matching based on bi-simulation. An Event-B approach was also pro-
posed in [9]. The B-method is used for validating dynamic re-configuration of
the component-based distributed systems using proofs techniques for consis-
tency checking and temporal requirements [17]. Dynamic reconfiguration allows
to stay in a system in a stable state using self-configuration and self-healing tech-
niques. Rodrigues et al. [22] presented the dynamic membership mechanism as
a key element of a reliable distributed storage system. Event-B is demonstrated
in the specification of cooperative error recovery and dynamic reconfiguration
for enabling the design of a fault-tolerant multi-agent system, and to develop
dynamically reconfigurable systems to avoid redundancy [20]. Model checking
of timed automata has been used by [15] to model and study the robustness of
self-adaptive decentralized systems.

Cyber-physical systems belong to the class of hybrid systems, thus hybrid
automata can be used to model the system requirements. The developed model
can be verified through model checking tools, such as HyTech [14]. This approach
enables automatic verification by exploring state space and required properties.
Usually, model checking tools suffer from state explosion problem that impairs
the use of any large model during verification process. Alternatively, theorem
provers can be used to analyze and verify hybrid programs. The KeYmaera [21]
tool, including an interactive theorem prover, is dedicated to hybrid system

A System Substitution Mechanism for Hybrid Systems in Event-B 119

modeling and verification. In [12,23], the development of an hybrid system is
proposed using the correct by construction approach, where first, it specifies the
discrete model and then refines each event by introducing the continuous ele-
ments. It includes the use of a “now” variable, a “click” event that jumps in time
to the next instant where an event can be triggered and simulated real numbers.
In our work [6], we use this notion of “now” variable on dense time, and time
progression is defined by events. We use the Theory plug-in to model the con-
tinuous functions, and another layer of refinement that introduces discretization
of continuous elements. Banach et al. [10] proposed Hybrid Event-B that is an
extension of Event-B, which contains pliant events to model continuous behavior
by using differential equations during system modeling. However, there is cur-
rently no tool support for this extension, whereas our approach [6] enabled us to
develop and to prove the models using available tools. In our work, we use real
numbers defined by a minimal set of axioms without addressing floating-point
numbers, which is out of the scope of this paper.

7 Conclusion

Hybrid systems are dynamic systems that combine continuous and discrete
behaviors to model complex critical systems, such as avionics, medical, and auto-
motive, where an error or a failure can lead to grave consequences. For critical
systems, recovering from any software failure state and correcting the system
behavior at runtime is mandatory. The substitution mechanism is an approach
that can be used to recover from failure by replacing the failed system. Its use
for hybrid systems is a challenging problem as it requires to maintain a safety
envelope through discrete implementation of continuous functions. To address
this problem, we have presented a refinement based formal modeling and veri-
fication of system reconfiguration or substitution for hybrid systems by proving
the preservation of the required safety envelope during the process of system
substitution. In this paper, we have extended our work on system substitution
to handle systems characterized by continuous models. First, we formalized the
system substitution at continuous level, then we developed a discrete model
through refinement by preserving the original continuous behavior. The whole
approach is supported by proofs and refinements based on the Event-B method.
Refinements proved useful to build a stepwise development which allowed us
to gradually handle the requirements. Moreover, the availability of a theory of
real numbers allowed us to introduce continuous behaviors which usually raise
from the description of the physics of the controlled plants. All the models have
been encoded within the Rodin Platform [4]. These developments required many
interactive proofs in particular after the introduction of real numbers. The inter-
active proofs mainly relate to the use of the Theory plug-in for handling real
numbers. Up to our understanding, the lack of dedicated heuristics due to the
representation of real numbers as an axiomatically-defined abstract data type,
and not as a native Event-B type together with our limited experience in defining
tactics led to this number of interactive proofs.

120 G. Babin et al.

This work opened several research directions. First, the models defined in
this work handled a single parameter for information feedback with a simple
safety envelope (interval that the value must belong to). We plan to investigate
the reformulation of this problem when several parameters will be considered.
In this case, the safety envelope becomes a more complex expression (a con-
straint solving problem). The second possible extension of this work is related
to parametrization of the safety envelope with time. In other words, instead
of having constant interval bounds, we may define bound functions m(t) and
M(t). Other properties like elasticity could be expressed. However, this exten-
sion requires a powerful prover on real numbers and constraint solving problems
techniques. Another possible extension of this work is the development of sim-
ulation. The integration of simulation or co-simulation to validate the formal
model hypotheses will undoubtedly strengthen the approach. Finally, studying
particular systems through realistic case studies is another objective of our work.

References

1. Models. http://babin.perso.enseeiht.fr/r/ICFEM 2016 Models/
2. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge Uni-

versity Press, Cambridge (1996). http://ebooks.cambridge.org/ebook.jsf?bid=
CBO9780511624162

3. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

4. Abrial, J.R., Butler, M., Hallerstede, S., Hong, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010)

5. Abrial, J.R., Butler, M., Hallerstede, S., Leuschel, M., Schmalz, M., Voisin, L.:
Proposals for mathematical extensions for Event-B. Technical report (2009)

6. Babin, G., Aı̈t-Ameur, Y., Nakajima, S., Pantel, M.: Refinement and proof based
development of systems characterized by continuous functions. In: Li, X., et al.
(eds.) SETTA 2015. LNCS, vol. 9409, pp. 55–70. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-25942-0 4

7. Babin, G., Aı̈t-Ameur, Y., Pantel, M.: Formal verification of runtime compensation
of web service compositions: a refinement and proof based proposal with Event-B.
In: IEEE International Conference on Services Computing, pp. 98–105 (2015)

8. Babin, G., Aı̈t-Ameur, Y., Pantel, M.: Correct instantiation of a system reconfig-
uration pattern: a proof and refinement-based approach. In: IEEE International
Symposium on High Assurance Systems Engineering (HASE), pp. 31–38 (2016)

9. Babin, G., Aı̈t-Ameur, Y., Pantel, M.: Trustworthy cyber-physical systems engi-
neering. In: Romanovsky, A., Ishikawa, F. (eds.) A Generic Model for System
Substitution. Chapman and Hall/CRC, Boca Raton (2016)

10. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core hybrid Event-B I: single
hybrid Event-B machines. Sci. Comput. Program. 105, 92–123 (2015)

11. Bhattacharyya, A.: Formal modelling and analysis of dynamic reconfiguration of
dependable systems. Ph.D. thesis, Newcastle University, January 2013

12. Butler, M., Abrial, J.R., Banach, R.: From Action Systems to Distributed Systems:
The Refinement Approach, chap. Modelling and Refining Hybrid Systems in Event-
B and Rodin, pp. 29–42. Chapman and Hall/CRC., April 2016

http://babin.perso.enseeiht.fr/r/ICFEM_2016_Models/
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511624162
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511624162
http://dx.doi.org/10.1007/978-3-319-25942-0_4

A System Substitution Mechanism for Hybrid Systems in Event-B 121

13. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol.
8051, pp. 67–81. Springer, Heidelberg (2013)

14. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: a model checker for
hybrid systems. Int. J. Softw. Tools Technol. Transf. 1(1–2), 110–122 (1997).
http://dx.doi.org/10.1007/s100090050008

15. Iftikhar, M.U., Weyns, D.: A case study on formal verification of self-adaptive
behaviors in a decentralized system. In: Kokash, N., Ravara, A. (eds.) 11th Inter-
national Workshop on Foundations of Coordination Languages and Self Adaptation
(FOCLASA 2012), EPTCS, vol. 91, pp. 45–62 (2012)

16. Jastram, M., Butler, M.: Rodin User’s Handbook: Covers Rodin V.2.8. CreateSpace
Independent Publishing Platform, USA (2014). ISBN 10: 1495438147, ISBN 13:
9781495438141, http://handbook.event-b.org

17. Lanoix, A., Dormoy, J., Kouchnarenko, O.: Combining proof and model-checking to
validate reconfigurable architectures. Electron. Notes Theor. Comput. Sci. 279(2),
43–57 (2011)

18. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems - A Cyber-Physical
Systems Approach. LeeSeshia.org, 1.5 edn. (2014). http://leeseshia.org/

19. Lin, H.: Mission accomplished: an introduction to formal methods in mobile robot
motion planning and control. Unmanned Syst. 02(02), 201–216 (2014)

20. Pereverzeva, I., Troubitsyna, E., Laibinis, L.: A refinement-based approach to
developing critical multi-agent systems. Int. J. Crit. Comput.-Based Syst. 4(1),
69–91 (2013)

21. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg (2010). http://symbolaris.com/lahs/

22. Rodrigues, R., Liskov, B., Chen, K., Liskov, M., Schultz, D.: Automatic reconfig-
uration for large-scale reliable storage systems. IEEE Trans. Dependable Secure
Comput. 9(2), 145–158 (2012)

23. Su, W., Abrial, J.R., Zhu, H.: Formalizing hybrid systems with Event-B and the
Rodin platform. Sci. Comput. Program. 94, 164–202 (2014)

http://dx.doi.org/10.1007/s100090050008
http://handbook.event-b.org
http://leeseshia.org/
http://symbolaris.com/lahs/

Service Adaptation with Probabilistic Partial
Models

Manman Chen1(B), Tian Huat Tan1, Jun Sun1, Jingyi Wang1, Yang Liu2,
Jing Sun3, and Jin Song Dong4

1 Singapore University of Technology and Design, Singapore, Singapore
2 Nanyang Technological University, Singapore, Singapore

manman chen@sutd.edu.sg
3 The University of Auckland, Auckland, New Zealand

4 National University of Singapore, Singapore, Singapore

Abstract. Web service composition makes use of existing Web services
to build complex business processes. Non-functional requirements are
crucial for the Web service composition. In order to satisfy non-functional
requirements when composing a Web service, one needs to rely on the
estimated quality of the component services. However, estimation is sel-
dom accurate especially in the dynamic environment. Hence, we propose
a framework, ADFlow, to monitor and adapt the workflow of the Web
service composition when necessary to maximize its ability to satisfy
the non-functional requirements automatically. To reduce the monitor-
ing overhead, ADFlow relies on asynchronous monitoring. ADFlow has
been implemented and the evaluation has shown the effectiveness and
efficiency of our approach. Given a composite service, ADFlow achieves
25%–32 % of average improvement in the conformance of non-functional
requirements, and only incurs 1 %–3% of overhead with respect to the
execution time.

1 Introduction

Service Oriented Architecture (SOA) is emerging as a methodology for building
Web applications by using of existing Web services from different enterprises as
components. Web services provide an affordable and adaptable framework that
can produce a significantly lower cost of ownership for the enterprises over time.
Web services make use of open standards, such as WSDL [8] and SOAP [14],
which enable the interaction among heterogeneous applications.

The Web service composed by Web service composition is called a composite
service (e.g., Travel Agency service) and the Web services that constitute the
composite service are called component services (e.g., American Airline booking
service). Non-functional requirements are an important class of requirements for
Web services. They are concerned with quality of service (QoS) (e.g., response
time, availability, cost) of Web services. The non-functional requirements are

This work is supported by research project T2MOE1303.

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 122–140, 2016.
DOI: 10.1007/978-3-319-47846-3 9

Service Adaptation with Probabilistic Partial Models 123

often an important clause in service-level agreements (SLAs), which is the con-
tractual basis between service consumers and service providers on the expected
QoS level. For example, nowadays, many big players in the market (e.g., Netflix,
Amazon, and Microsoft Azure) have adopted microservice architecture [2]. It
works by decomposing their existing monolithic applications into smaller, and
highly decoupled services (also known as microservices). These microservices
are then composed to fulfill their business requirements. For example, Netflix
decomposed their monolithic DVD rental application into microservices that
work together, and then stream digital entertainment to millions of Netflix cus-
tomers every day.

In this work, the requirements of QoS for the composite service can be spec-
ified as global constraints. For example, an example of the global constraint is
that the response time of the Web service composition must be less than 8 ms.
To guarantee the SLAs between the Web service composition and its users, the
design of Web service composition involves the estimation of QoS of component
services. The QoS of component services could be solicited from the providers
of component services either in the form of SLAs or based on past history of
executions by making use of existing approaches (e.g., KAMI [9]).

However, due to the highly evolving and dynamic environment that the Web
service composition is running, the design time assumptions for Web service com-
position, even if they are initially accurate, may later change during runtime. For
example, the execution time of a component service may increase unexpectedly
due to reasons such as network congestion, which could affect the response time
of the composite service. Furthermore, at runtime, the non-functional proper-
ties of a composite service rely on the behaviors of component services offered
by third-party partners. The distributed ownership makes the non-functional
properties of Web service composition subject to changes. For instance, compo-
nent service providers could modify existing component Web services, and usage
profiles of the component Web services may change over time. These behaviors
may result in potential violations of SLA of the composite Web service. Since
estimations are seldom accurate, it is desirable that Web service compositions
could dynamically adapt themselves to their environment with little or no human
intervention in order to meet the guaranteed QoS levels. The loose coupling and
binding features of SOA systems make them particularly suitable for runtime
adaptation.

Existing works [5,15,17,18] address this problem by replacing component ser-
vices or invoke component services adaptively, which we denote it as point adap-
tation strategy. Point adaptation strategy suffers several disadvantages. First,
there are cases where such a strategy does not work. For example, there is no
alternate service that can satisfy the non-functional requirements. In addition,
there might not exist an alternating service that could be switched directly.
Secondly, there maybe incur much cost as they may invoke another service to
compensate it.

In this work, we propose the usage of workflow adaptation strategy to
address this issue. A workflow adaptation strategy involves modifying the work-

124 M. Chen et al.

flow to find a path for execution that can maximize the ability to satisfy the
non-functional requirements. Therefore, we present runtime ADaptation frame-
work based on workFlow (ADFlow), a framework to alleviate the management
problem of complex Web compositions that operate in rapidly changing environ-
ments. We propose the notion of probabilistic partial model, which is extended
from the previous notion of partial model [11], to capture the uncertainties of
system execution with probabilistic. The global constraints of the composite
service are decomposed into local requirements for each state of a probabilistic
partial model. When a possible violation of the global constraints is detected,
adaptive actions are taken preemptively based on the probabilistic partial model,
to avoid unsatisfactory behaviors or failures. In particular, the adaptive action
chooses the execution that could maximize the likelihood of conformance of the
global constraints.

Our contributions are summarized as follows.

1. We propose the probabilistic partial model to capture the runtime uncertain-
ties of Web service composition.

2. We propose a runtime adaptation framework, ADFlow for Web service com-
position. ADFlow monitors the execution of Web service composition based
on local requirements of the probabilistic partial model. If a possible violation
of the global constraints of the composite service is detected, adaptive actions
would be taken preemptively to prevent the violation.

3. To reduce the monitoring overhead, we propose to use asynchronous mon-
itoring where the execution status is monitored asynchronously whenever
possible. We show that this approach reduces the overhead significantly.

4. We have evaluated our method on real-world case studies, and we show that
it significantly improves the chance of the composite service to conform to
the global constraints.

Outline. The rest of paper is structured as follows. Section 2 describes a moti-
vating example. Section 3 introduces the probabilistic partial model used for Web
service compositions. Section 4 presents our ADFlow adaptation framework for
runtime adaptation. Section 5 evaluates the performance of our approach in sev-
eral scenarios with the increasing complexity. Section 6 discusses related work.
Section 7 concludes the paper and describes future work.

2 Motivating Example

In this work, we introduce four elementary compositional structures for compos-
ing the component services, i.e., the sequential (〈sequence〉), parallel (〈flow〉),
loop (〈while〉) and conditional (〈if〉) compositions, which are all the essential
structures of many programming languages; therefore, our work can be applied
to other languages potentially. In addition, there are three basic activities to
communicate with component services, i.e., receive (〈receive〉), reply (〈reply〉),
and invocation (〈invoke〉) activities. The 〈receive〉 and 〈reply〉 activities are
used to receive requests from and reply results to the users of the composite

Service Adaptation with Probabilistic Partial Models 125

service respectively. The 〈invoke〉 activity is used to invoke component services
for their functionalities. There are two kinds of 〈invoke〉 activities, i.e., synchro-
nous and asynchronous 〈invoke〉 activities. The synchronous 〈invoke〉 activity
invokes the component service and wait for the reply, while the asynchronous
〈invoke〉 activity moves on after the invocation without waiting for the reply.

2.1 Running Example – Travel Booking Service

In this section, we introduce the Travel Booking Service (TBS) as a running
example in this work. TBS is designed for providing a combined budget flight
and hotel booking composite service by incorporating with several existing com-
ponent services. The workflow of TBS is sketched in Fig. 1a.

TBS has five component Web services, namely a flight searching service (FS),
three budget flight booking services (BF1, BF2 and BF3), and a hotel booking
service (HB). Upon receiving the request from the customer (Receive User),
a 〈flow〉 activity (denoted as) is triggered, and Invoke FS and Invoke HB
are executed concurrently; Invoke HB invokes the HB service to book the hotel
(All invocation activities in this work are assumed to be synchronous, unless
otherwise stated). Invoke FS invokes the FS service to search for budget flights.
Upon receiving the reply from the FS service, a conditional activity (denoted as

) is followed. If the ticket price of BF1 is the lowest (represented by the guard
condition g1), BF1 is invoked (Invoke BF1) to book the flight ticket. If the ticket
price of BF2 is the lowest (represented by the guard condition g2), then BF2 is
invoked (Invoke BF2) to book the ticket. Otherwise, BF3 is invoked to book the
ticket (Invoke BF3). Upon completion of the concurrent activities, TBS replies
the user with a booking confirmation message (Reply User).

TBS provides an SLA for their service consumers such that it must respond
within 600 ms upon any request with at least 95 % availability. The cost per
invocation of TBS is 8 dollars – therefore TBS service provider needs to ensure
it does not spend more than 8 dollars for its component services.

Receive User

Invoke HB

Invoke FS

Invoke BF3Invoke BF1 Invoke BF2

Reply User

g1 g2

(a) Travel Booking Service (TBS)

QoS Attribute FS HB BF1 BF2 BF3

Response Time (ms) 300 200 300 200 100

Availability 1 1 0.95 0.9 0.95

Cost ($) 2 1 2 2 1

(b) QoS for component services of TBS

Fig. 1.

126 M. Chen et al.

Now, let us consider a scenario where the flight searching service takes 500 ms.
Classic point adaptation strategy may switch some service to an alternating
service [5,15,17,18], which has been mentioned in the introduction, as it involves
retrying or switching of a particular service. There are cases where such a strat-
egy does not work. For example, there is no alternate service that can satisfy the
non-functional requirements. In addition, there might not exist an alternating
service that could be switched directly. In such a case, our workflow adaptation
strategy, could be used.

2.2 Service Composition Notations

We use the syntax below to specify the workflow of a service composition suc-
cinctly.

– P1;P2 and P1|||P2 are used to denote sequential and concurrent executions of
the activities P1 and P2 respectively.

– C([g1]P1, [g2]P2, · · · , [gn]Pn, P0) is used to denote the conditional activity,
where gi is a guard with i ∈ {1, 2, · · · , n}. The guards are evaluated sequen-
tially from g0 to gn, and activity Pi is executed for the first gi that is evaluated
to true. If all the guards are evaluated to false, the activity P0 is executed.

– sInv(P) and aInv(P) are used to denote the synchronous and asynchronous
invocations respectively of the activity P .

– pick(S1⇒P1, S2⇒P2) is used to denote the pick activity, which contains two
branches of onMessage activities where exactly one branch would be executed.

PTBS = {({[sInv(FS)]64;C([g1][sInv(BF1)]
3
3, [g2][sInv(BF2)]

2
2, [sInv(BF3)]

1
1)

3
1}6

4|||[sInv(HB)]22)
6
4; [reply]

0
0}6

4

(a) Process Description of TBS
s0:(S,< (64), (

0.9
0.95), (

5
4) >)

s1:(P1, < (22), (
0.9
0.95), (

3
2) >) s2:(P2, < (64), (

0.9
0.95), (

4
3) >)

s3:(P3, < (33), (
0.95
0.95), (

3
3) >)s4:(P4, < (22), (

0.9
0.9), (

3
3) >)s5:(P5, < (11), (

0.95
0.95), (

2
2) >) s6:(P6, < (31), (

0.9
0.95), (

2
1) >)

s7:(P7, < (22), (
1
1), (

1
1) >) s8:(P8, < (33), (

0.95
0.95), (

2
2) >) s9:(P9, < (22), (

0.9
0.9), (

2
2) >) s10:(P10, < (11), (

0.95
0.95), (

1
1) >)

s11:(reply,< (00), (
1
1), (

0
0) >)

s12:(stop,< (00), (
1
1), (

0
0) >)

sInv(FS) sInv(HB)

sInv(HB)if [g1], p1 elseif [g2], p2 else, p3 sInv(FS)

if [g1], p1 elseif [g2], p2 else, p3sInv(BF1) sInv(BF2) sInv(BF3)

sInv(HB) sInv(BF1) sInv(BF2) sInv(BF3)

reply

where S=(sInv(FS);A)|||(sInv(HB)); reply, P1=A|||sInv(HB); reply, P2=sInv(FS);A; reply, P3=P7|||sInv(BF1); reply,
P4=P7|||sInv(BF2); reply, P5=P7|||sInv(BF3); reply, P6=A; reply, P8=sInv(BF1); reply, P9=sInv(BF2); reply, P10=sInv(BF3);
reply, A=C([g1]sInv(BF1), [g2]sInv(BF2), sInv(BF3)))

(b) Probabilistic Partial Model of TBS

Fig. 2. TBS example

Service Adaptation with Probabilistic Partial Models 127

Activity P1 is activated when the message from the component service S1 is
received, while activity P2 is activated if the message from the component
service S2 is received.

The process description of TBS, PTBS is shown in Fig. 2a. The numbers anno-
tated to each activity will be introduced in our technical report [3].

3 Preliminaries

In this section, we introduce various notions used in this work. A composite
service CS is constructed using a finite number of component services. We use
SCS = 〈s1, s2, . . . , sn〉 to denote the set of all component services used in CS.

Table 1. Aggregation function

QoS attribute Sequential Parallel Loop Conditional

Response time
n∑

i=1

q(si)
n

max
i=1

q(si) k ∗ (q(s1))
n∑

i=1

pi ∗ q(si)

Availability
n∏

i=1

q(si)
n∏

i=1

q(si) (q(s1))
k

n∑

i=1

pi ∗ q(si)

Cost
n∑

i=1

q(si)
n∑

i=1

q(si) k ∗ (q(s1))
n∑

i=1

pi ∗ q(si)

3.1 QoS Attributes

In this work, we use three QoS attributes, i.e., response time, availability and
cost as examples to demonstrate our approach. The response time r ∈ R≥0 of
a service is defined as the delay between sending the request to the service and
receiving the response from it. The availability a ∈ R ∩ [0, 1] of a service is
the probability of the service being available. The cost of a service is the price
that incurs by invoking the service. We use R(a), A(a) and C (a) to denote the
response time, availability and cost of the activity a respectively. Table 1 lists
QoS values for component services of TBS, that will be used in the subsequent
sections. There are two kinds of QoS attributes, positive and negative ones.
Positive attributes, e.g., availability, provide good effect on the QoS; therefore,
they need to be maximized. While negative attributes, e.g., response time and
cost, need to be minimized. Our QoS attributes could be addressed similarly as
these three QoS attributes. For example, reliability could be handled in the same
way as availability.

128 M. Chen et al.

3.2 QoS for Composite Services

The values of QoS attributes for composite service CS are aggregated from
each component service based on internal compositional structures. There are
four types of compositional structures: sequential, parallel, loop and conditional
compositional structures. Table 1 shows the aggregation function for each com-
positional structure. In the parallel composition, the response time is the maxi-
mum one among response times of all participating component services since all
participating component services execute concurrently. In the loop composition,
it is aggregated by summing up the response time of the involved component
service for k times where k is the number of maximum iteration of the loop
and it could be inferred by using loop bound analysis tools (e.g., [10]). In the
conditional composition, we use the expected value as the evaluation of guards
is not known at the design time, where qi is the probability for executing the
service si.

3.3 Probabilistic Partial Models

Our approach is grounded on probabilistic partial models, which extend partial
models introduced in [11]. In the following, we define various related notions
before introducing the probabilistic partial model.

Definition 1 (State). A state s is a tuple (P, V,Q), where P is a service
process, V is a (partial) variable valuation that maps variables to their values,
and Q is a vector which represents the local estimation of the state s, which will
be discussed in Sect. 4.3. We introduce the details of local estimation in Sect. 4.3.

Given a state s = (P, V,Q), we use the notation P (s), V (s), and Q(s) to
denote the process, valuation, and local estimation of the state s respectively.
Two states are said to be equal if and only if they have the same process P , the
same valuation V and the same QoS attribute vector Q.

Definition 2 (Transition System). A transition system is a tuple
〈S, s0,Σ, R〉, where
– S is a set of states; s0 ∈ S is the initial state; Σ is a set of actions
– R ⊆ S × Σ × S is a transition relation

For convenience, we use s
a→ s′ to denote (s, a, s′) ∈ R. Given a state s ∈ S,

Enable(s) denotes the set of states reachable from s by one transition, formally,
Enable(s) = {s′|(s′ ∈ S)∧(a ∈ Σ)∧(s a→ s′ ∈ R)}. An action a is enabled by s if
there exists a state s′ such that s

a→ s′. Act(s) is denoted as the set of actions that
can be triggered from s, formally, Act(s) = {a|(a ∈ Σ)∧(s′ ∈ S)∧(s a→ s′ ∈ R)}.
An execution π is a finite alternating sequence of states and actions 〈s0, a1,
s1, . . . , sn−1, an, sn〉, where {s0, . . . , sn} ∈ S and si

ai+1→ si+1 for all 0 ≤ i < n.
We denote the execution π by s0

a1→ s1
...→ sn−1

an→ sn. A state s is reachable if
there exists an execution that starts from the initial state s0 and ends in the

Service Adaptation with Probabilistic Partial Models 129

state s. A state s is called a terminal state if Act(s) is empty. Given an action
a ∈ Σ, A(a), R(a) and C(a) denote the availability, response time and cost of
the action a. The transition system is generated based on the formal semantics
of service process described in [12]. Given a composite service CS, we use T (CS)
to denote the transition system of CS.

Definition 3 (Probabilistic Partial Models). A probabilistic partial model
is a tuple 〈M,F , Cg,P〉, where M = 〈S, s0,Σ, R〉 is a transition system, F is
a function: S × Σ → B, where B is the set {True,False,Maybe}, and Cg =
〈CR

g , CA
g , CC

g 〉 is the global constraints for the model where CR
g (resp., CA

g , CC
g)

is the global response time (resp., availability, cost) constraint. P is a function:
S × Σ → p where p ∈ R ∩ [0, 1].

For convenience, given a composite service CS, we use P(CS) to denote the
probabilistic partial model of CS. P(CS) is extended from T (CS) by mapping
values (e.g., True, or Maybe, 0.5) for transitions on T (CS). We illustrate how
the value on transitions of P(CS) are decided. Given an action a ∈ Act(s),
F (s, a) denotes whether action a ∈ Σ could be executed from state s, P (s, a)
provides the probability of executing the action a ∈ Σ at the state s. Clearly,
F (s, a) = False and P (s, a) = 0 if a �∈ Act(s). F (s, a) = True and P (s, a) =
1 if action a ∈ Act(s) and could always be executed regardless the valuation
of the variables. Otherwise, F (s, a) = Maybe and

∑

a∈MAct(s)

P (s, a) = 1 where

MAct(s) = {a|a ∈ Act(s) ∧ (F(s, a) = Maybe)}. MAct(s) represents a set of
Maybe actions from s, where exactly one of actions a ∈ MAct(s) would be
executed. The execution of a Maybe action depends on the evaluation of the
guard (e.g., 〈if〉 activity), or dependent on the response from other component
services (e.g., 〈pick〉 activity). We also use TAct(s) to denote the set of True
actions enabled by s; formally, TAct(s) = {a|a ∈ Act(s)∧ (F(s, a) = True)}. For
example, actions if [g1], elseif [g2], and else (with p1, p2 and p3 as their respective
probabilities) are Maybe actions, since the execution of these actions dependent
on the evaluation of the guard conditions. In contrast, actions FS and HB are
True actions, since both actions are triggered concurrently at state s0.

Consider the probabilistic partial model of TBS, P(TBS), as shown in
Fig. 2b. Recall that a state is represented as (P, V,Q). Since V = ∅ for all states
in P(TBS), we represent states in P(TBS) as (P,Q) for simplicity. An edge is
shown using solid (resp., dotted) arrow if the triggered action is a True (resp.,
Maybe) action, and an edge is labelled with probability if the triggered action is
a Maybe action. Since the probability is 1 if the action is a True action, we omit
the 1 in the P(TBS).

4 ADFlow Framework

In the following, we introduce a framework for supporting self-adaptation based
on runtime information. The goal is to satisfy the system’s global constraints
with best efforts. We first introduce the architecture of the ADFlow framework

130 M. Chen et al.

based on asynchronous monitoring. After that, we focus on the local estimation
of probabilistic partial model and demonstrate how it can be used for the runtime
adaptation.

In the following, Sect. 4.1 describes the architecture of ADFlow, Sect. 4.2
introduces the notion of controllability for activities. Section 4.3 introduces cal-
culations for pessimistic and probabilistic estimation, and then Sect. 4.4 shows
how the framework adaptively chooses an action based on the probabilistic esti-
mation. Section 4.5 presents the asynchronous monitoring technique used in our
approach.

4.1 Architecture of ADFlow

The architecture of ADFlow is shown in Fig. 3b. ADFlow consists of two
essential components: the Runtime Monitor and Adapter (Adapter) and the
Runtime Execution Engine (Executor). The Adapter monitors and keeps
track of the execution of the programs using the probabilistic partial model, and
provides adaptation if needed based on the local estimation of the probabilistic
partial model. On the other hand, the Executor provides the environment for
the execution of the service programs.

During the deployment of a composite service CS on Executor, the corre-
sponding probabilistic partial model of CS, P(CS), will be automatically gener-
ated (before the execution of CS), stored and maintained by Adapter. As for
each action execution of CS, Adapter will update the active state pointer that
points to the current execution state sa ∈ S of P(CS). We call sa the active
state of P(CS). During the execution of CS, for every action performs by the
Executor (e.g., invocation of a component service), a timer is used to record
the duration of the action. Upon completion of the action, a state update mes-
sage containing the information of the completed action and the duration is sent
by the Executor to the Adapter, so that Adapter could update the current
active state of the probabilistic partial model.

4.2 Controllability of Activity

Controllable activities are the activities that could be controlled by Adapter.
They must be the activities that use Maybe actions (i.e., activities 〈if〉 and
〈pick〉). The reason for not controlling activities using True actions is that,
True actions of an active state would definitely be executed at some point of
the execution. Therefore, it will not provide any improvement for QoS of the
composite service by controlling True actions. For example, consider TBS at
the initial state s0 in Fig. 2b, the enabled True actions sInv(FS) and sInv(HB),
must be executed at some points for all executions that start from the initial
state s0 and end at the terminal state s12. On the other hand, for Maybe actions
(e.g., if [g1]), they may or may not be executed (e.g., depends on the evaluation
of their guards). Suppose Adapter detects the possible violation of the global
constraints, and if the action to be executed next is controllable by Adapter,

Service Adaptation with Probabilistic Partial Models 131

then Adapter could choose an action, that maximizes the chance of satisfying
the global constraints, to be executed by Executor.

Consider TBS with active state at state s1 in Fig. 2b, which has three Maybe
actions, i.e., if [g1], elseif [g2], and else. For an 〈if〉 activity, it is the evalua-
tion of guard conditions that decides which branch to execute. It is a violation
of the semantics of the 〈if〉 activity if Executor, simply follows a different
action (e.g., elseif [g2]) chosen by Adapter, without checking the evaluation
of the guard condition. For this purpose, we extend the 〈if〉 activity with an
attribute ctr, so that users are allowed to specify whether the 〈if〉 activity is
controllable by Adapter. If ctr is set to true, then Executor would send an
Adaptation Query message to Adapter to consult which action to be executed
next. Adapter would either select an action to be executed or decide not to
control if there is no potential violation of the global constraints detected, and
then replies to Executor. If Adapter chooses an action, Executor would
disregard the valuation of guard condition and execute the action that is chosen
by Adapter.

Given an activity P , Ctrl(P) ∈ {true, false} denotes the controllability of
P , which is defined recursively with Eq. (1). If P is a sequential activity P1;P2,
the controllability of P is decided on the controllability of process P1. For a
concurrent activity P = P1|||P2, P is controllable if either activity P1 or activity
P2 is controllable, since activities P1 and P2 are triggered at the same time. For
conditional activity P = C([g1]P1, [g2]P2, . . .), the controllability is decided by
the user-specified controllability of the conditional activity C.

Ctrl(P)=

⎧
⎪⎨

⎪⎩

Ctrl(P1) if P (s) = P1;P2

Ctrl(P1) ∨ Ctrl(P2) if P (s) = P1|||P2

Ctrl(C) if P (s) = C([g1]P1, [g2]P2, . . .)

(1)

4.3 Local Estimation

In this section, we introduce the local estimation and the method to calculate it.
The local estimation of a state s provides an estimation of QoS from two perspec-
tives, pessimistic and probabilistic, for all executions starting from state s.

Pessimistic Estimation. The pessimistic estimation of a QoS attribute a pro-
vides a conservative estimation of the attribute a for all executions starting from
the state s. For example, the pessimistic estimation of state s for the response
time attribute is the maximum response time that is required for all executions
starting from state s. The pessimistic estimation is used to help Adapter to
decide whether to take over the composite service at the active state sa. For
example shown in Fig. 3a, suppose the total response time from the initial state
s0 to state sa takes 1 s, and the global constraints for the response time is
2 s. If the pessimistic estimation of the response time at state sa is r seconds,
where r > 1, then the runtime adaptation is required. The reason is that since
1+r > 2 s, there exists an execution path that could violate the global constraint
of the response time.

132 M. Chen et al.

s0 sa sn. . .

r1
r2

rn

rn-1

...

1 second

Global response time requirement: 2
seconds

(a) ADFLOW Example

Runtime Monitor and Adapter
 (Adapter)

State Update Message
(Asynchronous)

messsage
queue

Runtime Execution Engine
(Executor)

Adaptation Query
Message (Synchronous)

<BPEL>

< />
....
</BPEL>

(b) ADFLOW Architecture

Fig. 3. ADFlow

Probabilistic Estimation. The probabilistic estimation of the QoS attribute
a provides the expected value for the attribute a for all possible executions start-
ing from state s. The probabilistic estimation is used to guide the Adapter to
choose an action to be executed next in order to maximize the chances to satisfy
the global constraints. The local estimation Q(s) of a state s is represented by a
vector 〈LR(s), LA(s), LC(s)〉, where LR(s), LA(s) and LC(s) represent the local
estimation of response time, availability and cost for the state s respectively. The
local estimation of a QoS attribute is a vector (pepr), where pe, pr ∈ R represent the
pessimistic and probabilistic estimation of the QoS attribute respectively. Hence-
forth, we denote the pessimistic and probabilistic estimation of the response time
of a state s by Lpe

R (s) and Lpr
R (s) respectively. We define Lpe

A (s), Lpr
A (s), Lpe

C (s),
and Lpr

C (s) in a similar manner.
Different QoS attributes might have different aggregation functions for dif-

ferent compositional structures. For QoS attributes (e.g., cost, availability) that
only make use of summation and multiplication aggregation functions, we only
require backward value propagation (discussed in our technical report [3]) for
calculating the local estimation. For QoS attributes (e.g., response time) that
involve the usage of maximization or minimization aggregation functions, back-
ward tagging propagation (discussed in our technical report [3]) need to be
applied, before backward value propagation.

4.4 Runtime Adaptation

Given a set of Maybe actions, Adapter needs a metric to decide the best action
for execution. The local optimality value of an action a, denoted by L(a) is
used to provide a value that represents the worthiness of choosing the action a.
In this section, we introduce the calculation of local optimality value, and the
adaptation algorithm.

Local Optimality Value. We first introduce the notion of QoS optimality
value of an action a which will be used for calculation of local optimality value
for the action a.

Given a state s, and an action a ∈ MAct(s), the QoS optimality value of
the action a, denoted by Q(a), is the expected QoS of all (finite) executions by
executing the action a at s. It is calculated using a Simple Additive Weighting
(SAW) method [24]. For the purpose of normalization, the action a compares the

Service Adaptation with Probabilistic Partial Models 133

Algorithm 1. Algorithm ChooseAction

input : s, the active state
input : ctime, current time
input : stime, execution start time
input : c, cost that has been incurred so far
output: a, the next action to execute

1 if Ctrl(P (s)) then
2 Sr ← ((ctime − stime + Lpe

R (s)) ≤ CR
g);

3 Sa ← (Lpe
A (s) ≥ CA

g); Sc ← ((c + Lpe
C (s)) ≥ CC

g);
4 if ¬(Sr ∧ Sa ∧ Sc) then
5 return argmax

a∈MAct(s)

(0.5·Q(a) + 0.5·fb(Sr(a) ∧ Sa(a) ∧ Sc(a)));

6 return ∅;

probabilistic estimations of its QoS attributes with the maximum and minimum
probabilistic estimations of all enabled Maybe actions. The calculation of Q(a)
is provided in Eq. (2), where wi ∈ R

+ is the weight with
∑3

i=1 wi = 1. The local
optimality value of an action a, denoted by L(a), is calculated using Eq. (3),
where Sr(a), Sa(a), Sc(a) ∈ {true, false} denote whether the execution of action
a could allow potential satisfaction of global constraints of response time, avail-
ability and cost respectively. Function fb(b) takes an input b ∈ {true, false}.
When b is true, fb(b)=1, otherwise, fb(b)=0. The local optimality value of the
action a ranges from 0.5 to 1 if Sr(a)∧Sa(a)∧Sc(a), otherwise L(a) ranges from
0 to 0.5. Therefore, it could guarantee that the local optimality values of actions
that could possibly satisfy the global constraints are higher than the one that
could not.

Q(a) = w1 · U
(r)
Max(s) − a.probtag

U
(r)
Max(s) − U

(r)
Min(s)

+ w2 · A(a) · Lpr
A (s ′) − U

(a)
Min(s)

U
(a)
Max(s) − U

(a)
Min(s)

+ w3 · U
(c)
Max(s) − (C(a) + Lpr

C (s ′))

U
(c)
Max(s) − U

(c)
Min(s)

with

U
(r)
M (s) = M

a∈MAct(s)
(a.probtag)

U
(a)
M (s) = M

a∈MAct(s)
(A(a) · Lpr

A (s ′))

U
(c)
M (s) = M

a∈MAct(s)
(C(a) + Lpr

C (s ′))

M ∈ {min,max}

(2)

L(a) = 0.5·Q(a) + 0.5·fb(Sr(a) ∧ Sa(a) ∧ Sc(a)) (3)

Adaptation Algorithm. The adaptation algorithm is shown in Algorithm1,
which is used to choose the action to execute next. In Algorithm 1, the variable
s ∈ S is the active state reached by the execution, ctime and stime are the
current time and start time of the execution respectively, and c ∈ R≥0 is the
cost that has been incurred from the initial state to state s. Line 1 checks whether
Runtime Adapter could control the activity P (s). If P (s) is controllable, then the

134 M. Chen et al.

algorithm proceeds in checking the potential satisfaction of global constraints.
In line 2, it calculates the potential satisfaction of global constraint of response
time, Sr, by checking that the duration of execution so far (ctime − stime)
added with the pessimistic estimation of state s (Lpe

R (s)) is not larger than the
global constraint of response time CR

g . If the result is false, then there exists an
execution that could violate CR

g ; otherwise, any execution from state s would
allow satisfaction of CR

g . The calculation of Sa and Sc (line 3) can be described
in a similar manner.

If not all the global constraints for response time, availability and cost are
detected to be satisfiable based on the pessimistic estimation (line 4), then
the algorithm will return a best action with the highest local optimality value
(line 5). Otherwise, the algorithm will return an empty action (line 6), which
signals that an adaptation is not required.

4.5 Asynchronous Monitoring

Adapter might require to deal with multiple concurrent state update messages
due to the concurrent execution of activities in the composite service (recall that
service composition supports the parallel composition). Synchronous communi-
cation between the Adapter and the Executor for each state update message
could result in high overhead and the parallel execution in the Executor can
be “sequentialized”. To be efficient, ADFlow adopts an asynchronous moni-
toring mechanism. That is, asynchronous communication is used between the
Adapter and the Executor during normal situations, and synchronous com-
munication is used when it is necessary. In particular, all the state update mes-
sages are sent asynchronously to the message queue, and the Adapter updates
states in batches on the probabilistic partial model. Synchronous communication
is used only when the Executor encounters controllable activities. In such a
case, an adaptation query message is sent to the message queue synchronously
(i.e., the Executor waits for the reply before continuing execution) to consult
whether there is a need for adaptation before their execution. The asynchronous
monitoring of ADFlow is shown in Fig. 3b. We have shown that synchronous
monitoring has effectively reduced the overhead for monitoring (see Sect. 5 for
the evaluation).

5 Evaluation

To reduce the external noise and control the non-functional aspect of a service,
we make use of controlled experiment to evaluate our approach. We aim to
answer the following research questions:

RQ 1. What is the overhead of ADFlow?
RQ 2. What is the improvement provided by ADFlow on the conformance of

global constraints?
RQ 3. How is the scalability of ADFlow?

Service Adaptation with Probabilistic Partial Models 135

The evaluation was conducted using two different physical machines, which
are connected by a 100 Mbit LAN. One machine is running ApacheODE [1] to
host the Runtime Engine to execute the service program, configured with Intel
Core I5 2410M CPU with 4 GiB RAM. The other machine is to host the Runtime
Adapter, configured with Intel I7 3520M CPU with 8 GiB RAM.

We use two case studies in this paper to evaluate our approach: Travel Book-
ing Services and Large Service. Component services used in both services are
real-world services that are set up on the server.

Travel Booking Service (TBS). This is the running example that has been
used through out the paper.

Large Service (LS). To evaluate the scalability of our approach, we construct a
large service LS with sequential execution of k base activities. The base activity
is constructed by sequential execution of a synchronous invocation, followed by
a controllable conditional activity with three branches which one branch has a
better QoS, and subsequently followed by a concurrent activity. We denote the
composite service with sequential execution of k base activities as LS(k), which
would consult Adapter for adaptation for k times since there are k controllable
conditional activities.

5.1 Setup of Controlled Experiments

Given a composite service CS, we denote all component services that are used
by CS as SCS . Given a component service si ∈ SCS , we use Re(si), Ae(si),
and Ce(si) to denote the estimated response time, availability and cost of the
component service si, which are either recorded in SLA or predicted based on
historical data.

To test the composite service under controlled situation, we introduce the
notion of execution configuration. An execution configuration which defines a
particular execution scenario for the composite service. Formally, an execution
configuration E is a tuple (M,Q), where M decides which path to choose for
〈if〉 and 〈pick〉 activities and Q is a function that maps a component service
si ∈ SCS , to a vector 〈R(si), A(si), C(si)〉. R(si), A(si) and C(si) are QoS values
for response time, availability, and cost of si. We discuss how an execution con-
figuration E = (M,Q) is generated. M is generated based on the probabilities
of each branch of the conditional activities. Q is generated based on confor-
mance parameter pc ∈ R ∩ [0, 1] and the estimated QoS attribute values. Given
a composite service CS, we denote the estimated value of response time for a
component service si ∈ SCS as Re(si). R(si) will be assigned with a value from
[0, Re(si)] normally with the probability of pc, and assigned with a value from
[Re(si), 3 · Re(si)] normally with the probability of 1 − pc. Values A(si) and
C(si) are generated similarly.

Given a composite service CS, and an execution configuration E, we denote
a run as r(CS,A,E), where the second argument A ∈ {ADFlow, ∅} is the
adaptive mechanism where ∅ denotes no adaptation. Two runs r(CS,A,E) and
r(CS′, A′, E′), are equal, iff CS = CS′, A = A′ and E = E′. Noted that all
equal runs have the same execution paths, aggregated response times, availabili-
ties costs.

136 M. Chen et al.

5.2 Evaluation

We conduct three experiments E1, E2, and E3, to answer the research ques-
tion RQ1, RQ2, and RQ3, respectively. Each experiment is repeated for 10000
times, and a configuration generation E is randomly generated for each repeti-
tion. We show the experiments and their results in the following.

E1: The overhead of our approach mainly comes from two sources: the asyn-
chronous monitoring and synchronous adaptation. Given a composite service
CS, in order to measure the overhead, we first generate an execution config-
uration E = (M,Q) for an adaptive run r(CS,ADFlow, E). Adaptive run
may not select a branch according to M , since the selection of a branch could
also be decided by the Adapter, in the case where Adapter decides to con-
trol a controllable conditional structure. Therefore, after the adaptive run, we
modifies M to M ′, according to the actual conditional branch selected by the
Adapter. Then, using the M ′, we perform the non-adaptive run r(CS, ∅, E′),
where E′ = (M ′, Q). These ensure that both adaptive run and non-adaptive
run have the same execution, which allow effective measurement of the overhead
introduced by ADFlow. In this experiment, we set the conformance of each
component service to 0.8. We compare the overhead of the following:

No Adaptation. Execution of the service program without the adaptation,
for which we append the name of case studies with a subscript N , i.e., TBSN ,
LS (10)N .

Synchronous Adaptation. Runtime adaptation using synchronous monitor-
ing (in contrast to our asynchronous monitoring approach) with ADFlow, for
which we append the name of case studies with a subscript S, e.g., TBSS ,
LS (10)S .

ADFLOW Approach. Runtime adaptation using ADFlow, for which the case
studies are specified without any subscript, e.g., TBS , LS (10).

Results. The experiment results can be found in Fig. 4a. Note that due to the
space constraint, the result of LS (10)S is not shown in our results. The average
running time of TAS with adaptation is 278.28 ms and the average running
time of TAS without adaptation is 271.69 ms; therefore the overhead is only
6.59 ms, 2.3 % of the running time. In contrast, the overhead for synchronous
monitoring is 179.12 ms for TAS. On the other hand, the average running time of
LS(10) is 457.65 ms and the average running time of LS(10) without adaptation
is 450.66 ms; therefore, average overhead is 6.99 ms. In contrast, the overhead
for the adaptation using synchronous monitoring is around 1100 ms. The results
show that our approach has a little overhead, and compared to the adaptation
using synchronous monitoring, our approach reduces the overhead noticeably.

Service Adaptation with Probabilistic Partial Models 137

2,000 4,000 6,000 8,000 10,000
200

300

400

500

Number of Repetition

R
un
ni
ng

T
im

e
(m

s)
TBS
TBSN

TBSS

LS(10)

LS(10)N

(a) Overhead

2,000 4,000 6,000 8,000 10,000
0

0.2

0.4

Number of Repetition

Im
pr
ov
em

en
t

TBS
LS(10)

(b) Conformance

2,000 4,000 6,000 8,000 10,000
0

20

40

Number of Repetition

O
ve
rh
ea
d
(m

s)

LS(10)

LS(20)

LS(30)

LS(40)

LS(50)

LS(60)

LS(70)

LS(80)

LS(90)

LS(100)

(c) Scalability (Conformance)

2,000 4,000 6,000 8,000 10,000
0

0.2

0.4

Number of Repetition

Im
pr
ov
em

en
t

LS(10)

LS(20)

LS(30)

LS(40)

LS(50)

LS(60)

LS(70)

LS(80)

LS(90)

LS(100)

(d) Scalability (Improvement)

Fig. 4. Experiment results

E2: In this experiment, we measure the improvement for the conformance
of global constraints due to ADFlow. Given a composite service CS, a ran-
domly generated execution configuration E, two runs r(CS,ADFlow, E) and
r(CS, ∅, E) are conducted. Nse is the number of executions that satisfy global
constraints for composite service with ADFlow, and Ne is the number of execu-
tions that satisfy global constraints for composite service without ADFlow. The
improvement is calculated by the formula Improvement = (Nse − Ne)/10000.
We perform the experiment for 10000 times.

Results. The experiment results can be found in Fig. 4b. We notice that
although the improvement fluctuates at the beginning, ADFlow always pro-
vides an improvement, compared to no adaptation. We also notice that the
improvement provided by ADFlow starts to converge when the number of rep-
etition grows. Overall, our approach improves 0.283 over TBSN and improves
0.3 over LS(10)N . The experiment results show that our approach noticeably
improves the conformance of global constraints.

E3: We compare the overhead and improvement with respect to the size of LS ,
ranging from 10 to 100.

138 M. Chen et al.

Results. The experiment results can be found in Fig. 4c and d. In Fig. 4c, the
overhead increases with the size of LS , due to the reason that more synchronous
adaptations are required with the size of the composite service increases. Nev-
ertheless, we still have low overhead compared to the total running time, which
is around 1 %–3 %. In Fig. 4c, we observe that the improvement for each case
studies fluctuates between 0.2–0.42 at the beginning. The improvement starts
to converge when the number of repetition grows. On average, the improvement
for the case studies is between 25 %–32 %. This is consistent to our observations
in experiment E2. Together, these show our approach scales well.

6 Related Work

In [5], Cardellini et al. propose to use a set of service components to implement
the functionality of a component service adaptively. Their work focuses on adapt-
ing a single service for the purpose of decreasing response time and increasing
availability. In [17], Moser et al. propose a framework that uses non-intrusive
monitoring based on aspect-oriented programming (AOP), to detect failure ser-
vice and replace them at runtime. In [15], Irmert et al. present the CoBRA
framework to provide runtime adaptation, where the infeasible component ser-
vices are replaced at runtime. In [18], Mukhija and Glinz propose an approach to
adapt an application by recomposing its components dynamically, which imple-
mented by providing alternative component compositions for different states of
the execution environment. This work is orthogonal to our approach, they adopt
point adaptation strategy, while we adopt workflow adaptation strategy.

Our work is also related to the non-functional aspect of Web service compo-
sition. In [13], Fung et al. propose a message model tracking model to support
QoS end-to-end management. In [16], Koizumi and Koyama present a business
process performance model which integrates the Timed Petri model and sta-
tistical model to estimate process execution time. Epifani et al. [9] present the
KAMI approach to update model parameters by exploiting Bayesian estimators
on collected runtime data. These aforementioned works are concerned with the
prediction of QoS attributes, while our work focuses on runtime adaptation based
on QoS attributes. In [20], given the response time requirement of the composite
service, Tan et al. propose a technique to synthesize the local time requirement
for component services that are used to compose the service. In [6,7,19,23], we
focus on verification of combined functional and non-functional properties of the
web service composition based on QoS of each component service. In [21,22], we
propose to solve the optimal selection problem and recovery problem so that it
could satisfy the requirements. The aforementioned works are orthogonal to this
work.

7 Conclusion

In this paper, we have presented ADFlow, a novel approach for monitoring and
self-adapting the running of Web service composition to maximize its ability to

Service Adaptation with Probabilistic Partial Models 139

satisfy the global constraints. ADFlow uses workflow adaptation strategy, by
selecting the best path for execution when necessary. In addition, ADFlow
adopts asynchronous monitoring to reduce the overhead. The evaluation has
shown the efficiency and effectiveness of our approach. In particular, given a
composite service, we achieve 25 %–32 % of average improvement in the con-
formance of non-functional requirements, and only incur 1 %–3 % of overhead
with respect to the execution time. For future work, we plan to investigate the
applicability our approach to other domains such as sensor networks [4].

References

1. Apache ODE. http://ode.apache.org/
2. Microservices. http://microservices.io/patterns/microservices.html
3. Technical report. http://tianhuat.bitbucket.org/technicalReport.pdf
4. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E., et al.: A survey on

sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)
5. Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Presti, F.L., Mirandola, R.:

Moses: a framework for qos driven runtime adaptation of service-oriented systems.
TSE 38(5), 1138–1159 (2012)

6. Chen, M., Tan, T.H., Sun, J., Liu, Y., Dong, J.S.: VeriWS: a tool for verification of
combined functional and non-functional requirements of web service composition.
In: ICSE, pp. 564–567 (2014)

7. Chen, M., Tan, T.H., Sun, J., Liu, Y., Pang, J., Li, X.: Verification of functional and
non-functional requirements of web service composition. In: ICFEM, pp. 313–328
(2013)

8. Chinnici, R., Moreau, J.-J., Ryman, A., Weerawarana, S.: Web services description
language (WSDL) version 2.0. http://www.w3.org/TR/wsdl20/

9. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-
time parameter adaptation. In: ICSE, pp. 111–121 (2009)

10. Ermedahl, A., Sandberg, C., Gustafsson, J., Bygde, S., Lisper, B.: Loop bound
analysis based on a combination of program slicing, abstract interpretation, and
invariant analysis. In: WCET (2007)

11. Famelis, M., Salay, R., Chechik, M.: Partial models: towards modeling and reason-
ing with uncertainty. In: ICSE, pp. 573–583 (2012)

12. Foster, H.: A rigorous approach to engineering web service compositions. Ph.D.
thesis, Citeseer (2006)

13. Fung, C.K., Hung, P.C.K., Wang, G., Linger, R.C., Walton, G.H.: A study of
service composition with QoS management. In: ICWS, pp. 717–724 (2005)

14. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H.F.,
Karmarkar, A., Lafon. Y.: Simple object access protocol (SOAP) version 1.2.
http://www.w3.org/TR/soap12/

15. Irmert, F., Fischer, T., Meyer-Wegener, K.: Runtime adaptation in a service-
oriented component model. In: SEAMS, pp. 97–104. ACM (2008)

16. Koizumi, S., Koyama, K.: Workload-aware business process simulation with sta-
tistical service analysis and timed Petri Net. In: ICWS, pp. 70–77 (2007)

17. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adap-
tation for WS-BPEL. In: WWW, pp. 815–824 (2008)

18. Mukhija, A., Glinz, M.: Runtime adaptation of applications through dynamic
recomposition of components. In: ARCS, pp. 124–138 (2005)

http://ode.apache.org/
http://microservices.io/patterns/microservices.html
http://tianhuat.bitbucket.org/technicalReport.pdf
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/soap12/

140 M. Chen et al.

19. Tan, T.H.: Towards verification of a service orchestration language. In: ISSRE, pp.
36–37 (2010)

20. Tan, T.H., André, É., Sun, J., Liu, Y., Dong, J.S., Chen, M.: Dynamic synthesis
of local time requirement for service composition. In: ICSE, pp. 542–551 (2013)

21. Tan, T.H., Chen, M., André, É., Sun, J., Liu, Y., Dong, J.S.: Automated runtime
recovery for QoS-based service composition. In: 23rd International World Wide
Web Conference, WWW 2014, Seoul, Republic of Korea, 7–11 April 2014, pp.
563–574 (2014)

22. Tan, T.H., Chen, M., Sun, J., Liu, Y., André, É., Xue, Y., Dong, J.S.: Optimizing
selection of competing services with probabilistic hierarchical refinement. In: ICSE,
pp. 85–95 (2016)

23. Tan, T.H., Liu, Y., Sun, J., Dong, J.S.: Verification of orchestration systems using
compositional partial order reduction. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 98–114. Springer, Heidelberg (2011)

24. Yoon, K., Hwang, C.: Multiple Attribute Decision Making: An Introduction. Sage
Publications, Incorporated, Thousand Oaks (1995)

A Formal Approach to Identifying Security
Vulnerabilities in Telecommunication Networks

Linas Laibinis1(B), Elena Troubitsyna1, Inna Pereverzeva1, Ian Oliver2,
and Silke Holtmanns2

1 Åbo Akademi University, Turku, Finland
{linas.laibinis,elena.troubitsyna,inna.pereverzeva}@abo.fi

2 Nokia Corporation, Espoo, Finland
{ian.oliver,silke.holtmanns}@nokia.com

Abstract. The number of security attacks on the telecommunication
networks is constantly increasing. To prevent them, the telecom sector is
looking for new automated techniques facilitating a discovery of poten-
tial network vulnerabilities and rectification of them. In this paper, we
propose an approach for identifying potential attack scenarios and defin-
ing recommendations for preventing them. The approach is formalised in
the Event-B framework. It allows us to not only formalise the analysed
part of the network architecture and verify consistency of the control
and data flow of the associated services but also employ model checking
to generate and analyse attack scenarios. By applying the proposed app-
roach, the designers can systematically explore network vulnerabilities
and propose recommendations for attack prevention.

1 Introduction

Over the last few years the number of attacks on the telecom networks has
increased. The network operators observe the attempts of call and SMS inter-
ceptions, unauthorised call re-directions or alternations of billing information,
etc. By using the services provided by the standard network protocols, e.g., such
as SS7-MAP [16], the attackers can masquerade themselves as trusted network
components and exploit network vulnerabilities with malicious intent. To pre-
vent further escalation of the number of attacks, the telecom sector is looking for
novel techniques that can help systematically, in a highly automated manner,
analyse the existing network protocols, identify potential vulnerabilities, and
propose recommendations for rectifying them.

In this paper, we propose a formal approach that allows the designers to auto-
matically generate a set of potentially harmful scenarios and analyse possibilities
for their prevention. Our approach consists of four steps: a representation of the
standardised telecom operations and aggregated services in terms of input and
output data, consistency analysis of such a representation, generation of feasible
execution scenarios and identification of the harmful ones, and finally, suggesting
recommendations for hardening the system against the identified attacks.

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 141–158, 2016.
DOI: 10.1007/978-3-319-47846-3 10

142 L. Laibinis et al.

Our approach is formalised in Event-B [1] – a state-based formalism that is
particularly suitable for rigorous modelling of complex distributed systems. A
specification in Event-B consists of two parts: a context and a (state) machine. A
context constitutes the static model part specifying the desired data structures
and their properties. Hence the context is suitable for defining the architectures
of the analysed services in terms of the types of input and output parameters as
well as internally generated data. Such a formalisation of service architectures
allows us to rely on proofs to verify their consistency. The machine part specifies
the dynamic behaviour of the system. In our approach, a state machine is used
to define a generic pattern for modelling the dynamics of aggregated service
execution. Model checking is used to generate all feasible execution traces under
the constraints defined in the context. Each generated scenario can either match
a valid scenario implementing a particular service or represent a potentially
harmful scenario allowing an attacker to gain access to some sensitive data.

The recommendations for attack prevention are formulated as changes in
definition of telecom operations in terms of the involved data. The recommen-
dation feasibility is established by proving consistency of the modified service
architectures and ensuring by model checking that no desired service is disabled.

The Rodin platform provides us with an automatic support for both proof-
based verification and model checking in Event-B [12]. In particular, the model
checking and animation extension of Rodin (called ProB [17]) helps us to iden-
tify the attack scenarios and then “replay” them to facilitate formulating the
recommendations for system hardening, i.e., explore different ways of breaking
the identified harmful execution sequences.

The rest of the paper is organised as follows. In Sect. 2 we present motivation
as well as our formal view on security hardening of telecom networks. In Sect. 3
we give a short overview of the Event-B formalism and its associated model
checker ProB. In Sect. 4 we present our formal approach for identifying security
vulnerabilities. Finally, in Sect. 5 we provide an overview of related work and
present some concluding remarks.

2 Identifying and Rectifying Network Vulnerabilities

2.1 Motivation: Security in Telecommunication Protocols

Telecommunication networks consist of heterogeneous components executing
specific operations that can be composed to implement complex aggregated ser-
vices. The SS7 protocol suite [15] standardises interfaces of the services and
operations that guarantees interoperability of services from different providers.
The mobile application part (MAP) [16] of SS7 defines an application layer – a
set of standard operations – used to build a variety of services that support the
GSM network including such services as billing, roaming, text messaging, etc.

The SS7 protocol suite was standardised under the assumption that only the
trusted parties (government and large companies) would be operating telecom
networks. Hence, the protocol suit does not have any in-built authentication and
security protection. However, nowadays the situation has drastically changed: it

A Formal Approach to Identifying Security Vulnerabilities 143

Fig. 1. Network architecture

became easy to get access to the network services, which has attracted not only
a variety of small service providers but also attackers. The network operators
report on increasing number of denial of service (DOS) attacks, call and SMS
interception or re-direction, illegal alternation of the user profile data, etc.

Let us consider the component interaction while executing the “Provide
roaming number” service. Figure 1 shows a (simplified) architecture of two cel-
lular networks – A and B. Assume that a subscriber – a holder of a mobile
phone – is “native” to A, i.e., his/her data are stored in Home Location Register
(HLR) of A. This data includes a mobile subscriber’s id, the user profile data
(including the subscription details and billing address), current location, etc.
Assume also that the user moves from A to B. When a base station in the B net-
work detects a new foreign id, it contacts the Gateway of Mobile Switch Centre
(MSC/Gateway) of B. In its turn, MSC/Gateway of B identifies the id origins
and sends a request to the MSC/Gateway of A. MSC/Gateway of A checks the
subscription info for the given id in HLR of A and replies to MSC/Gateway of B
with the confirmation of user validity or notification of the invalid request. In the
case of success, MSC/Gateway of B makes a request to Visitor Location Register
(MSC/VLR) of B to associate a roaming number with the given id. Once this
number is obtained, the services of B become available to the subscriber.

Since the protocol assumes the presence of trusted parties only, each request
sent by a network element with a valid id is replied either with the requested
data or an error diagnostic message. Nowadays an attacker can relatively easy
obtain a valid network element id that allows him/her to intrude the trusted
environment. Once it is done, the attacker can start to send requests to the net-
work components, collect and analyse responses, and thus accumulate sufficient
information to masquerade himself as a trusted party with the corresponding
privileges and rights. For instance, it can result in associating a random (victim)
subscriber id with the attacker’s phone and interception of sensitive data.

Even if we only focus on the SS7 Core network shown on Fig. 2, it is possible
to construct such attack scenarios. For instance, if the attacker obtains the id
(called global title) of the SMS-C (Short Message Service Center) component,
this may eventually, e.g., by subsequent requests to MSC/VLR and HLR, lead to
getting access to the user profile and changing such sensitive data as the address

144 L. Laibinis et al.

Fig. 2. SS7 core network

of the component responsible for customer billing. We will consider this scenario
in more detail, while presenting our formal approach in Sect. 4.

A seemingly obvious solution is to introduce an authentication for each
request. However, since a typical scenario consists of several steps, the resulting
performance deterioration will be unacceptable. Hence, to harden the protocol,
we should explore other ways to prevent an intruder from accumulating suffi-
cient knowledge for an attack. A combination of such accumulated data and the
command sequence represents a potential attack vector. To disable the execu-
tion of the identified scenario, we may try alter the associated data flow, i.e.,
to augment commands with additional inputs available only for trusted parties
or remove some (redundant) outputs. In both cases, however, we should ensure
that no valid execution scenarios are disabled as a result of such hardening.

2.2 A Formal Outlook on Security Hardening

Let us now take a more formal view on security hardening of telecommunica-
tion networks. A telecommunication network is a typical example of a complex
distributed system composed of heterogeneous components. The network compo-
nents interact with each other by sending and receiving a number of standardised
telecommunication commands. We assume that every such command uniquely
determines (the types of) the involved sending and receiving components.

We introduce the set C to represent all commands defined in the SS7-MAP
standard. For each c ∈ C, we can define the associated data types used as its
inputs, outputs, and other data1. Suppose that DataTypes is a collection of
such data types. Then the command inputs and outputs can be defined as the
functions

Inputs ∈ C → P(DataTypes) and Outputs ∈ C → P(DataTypes),

where P is the powerset constructor.
In general, certain commands, called composite, represent aggregated ser-

vices, i.e., they encapsulate sequences of commands executed by different com-
ponents. A component requested to execute a composite command becomes a
service director. It requests execution of different commands from other com-
ponents, forwards the necessary inputs, and collects the intermediate results to
1 Examples of such data types could be User ID, Global Title, etc.

A Formal Approach to Identifying Security Vulnerabilities 145

produce the (final) output of the composite command, i.e., it orchestrates the
service execution and data flow. We introduce the function

CommSeq ∈ C → seq(C),

where seq is a sequence constructor to represent composite commands. In such
a way, most of protocol scenarios (starting with a particular command) may be
formalised. If, for some c ∈ C, CommSeq(c) = ∅, we call such a command single.

For composite commands, it is sometimes important to refer to additional
data elements that are produced by the associated service director and then
forwarded as extra inputs to the lower layer commands or returned as extra
outputs. We define this as the function

Produced ∈ C → P(DataTypes).

If a command is single, its produced data elements coincide with its outputs.
The introduced definitions of the command inputs, outputs and produced

data elements allows us to explicitly formulate the properties for consistency of
a particular data flow. We aim at ensuring that, for composite commands, there
is always a component associated with each produced output or forwarded input.
Formally, for all c ∈ C, i ∈ 1..n(c),

Inputs(c[i]) ⊆ Inputs(c) ∪ Produced(c) ∪
⋃

j∈1..i−1

(Outputs(c[j])) (1)

Outputs(c) ⊆ Produced(c) ∪
⋃

j∈1..n(c)

(Outputs(c[j])), (2)

where c[i] = CommSeq(c)(i) and n(c) = size(CommSeq(c)).
Essentially, we require that a service director accumulates the necessary

knowledge (consisting of its inputs, the internally produced values, and the inter-
mediate results of the supervised lower layer commands) to ensure the overall
data flow consistency of such execution. The first property requires that any
lower layer command should be collectively enabled by such knowledge to be
executed. The second property describes the consistency of completing the pre-
defined scenario encoded by a composite command.

The above definitions allow us to formalise commands of SS7-MAP protocols,
their interrelationships, and their collaborative execution. The formulated data
consistency conditions can be also used to describe the requirements for building
possible scenarios (command sequences) from the set of standardised commands.

Let us consider such a scenario S ∈ seq(C), the initial user knowledge Initials
and the target results Finals. We can denote the fact that the results Finals are
reachable from the initial knowledge Initials by the scenario S as

Initials �S Finals

provided that

∀i ∈ 1..n(S). Inputs(S[i]) ⊆ Initials ∪
⋃

1..i−1

(Outputs(S[j])),

146 L. Laibinis et al.

and
∀i ∈ 1..n(S). F inals(c) ⊆

⋃

1..n(c)

(Outputs(c[j])),

where S[i] = CommSeq(S)(i) and n(S) = size(CommSeq(S)).
We assume that we can distinguish the critical knowledge (specific combina-

tions of data type elements) that is not supposed to be leaked to an unauthorised
external user. Accessing such a knowledge in many cases would indicate scenarios
that can be used for malicious purposes by the intruder. Moreover, we assume
that all such scenarios where this knowledge is accessed safely and legally or the
scenarios that we want to exclude from consideration are known beforehand.

Let us introduce two constants –

Critical ∈ P(DataTypes) and KnownSequences ∈ seq(C),

formalising the described notions. We also assume the presumed initial knowl-
edge given in the constant Initials ∈ P(DataTypes).

Our goal is to identify a scenario S such that S /∈ KnownSequences and

Initials �S Critical.

This scenario indicates a possible intruder attack. To prevent such an attack,
we need to break this sequence by modifying one of the involved commands.
Specifically, we may try to add inputs, removing some (redundant) outputs,
adding a combination of internally produced data and lower layer inputs, etc.

The attempted modification of a specific command should not preclude all
the situations it is validly used. In other words, for the identified “weak link”,
say the command c1 ∈ S, we have to first show that,

¬(Initials �S[c1/c1′] Critical),

where S[c1/c1′] denotes a sequence where c1 was substituted with the modified
command c1′. Moreover, the above data consistency conditions 1 and 2 should
be shown to hold for the modified set C[c1/c1′]. This ensures that all the other
commands that rely on the substituted command c1 are still functional.

The proposed command modifications together with the consistency
conditions 1 and 2 define the basis for system hardening against attacks. In
Sect. 4, after a short Event-B background description given in the next section,
we demonstrate how it can be implemented within the Event-B framework.

3 Background: Event-B and ProB

Event-B is a state-based formal approach that promotes the correct-by-construc-
tion development and formal verification by theorem proving [1]. In Event-B,
a system model is specified as an abstract state machine. An abstract state
machine encapsulates the model state, represented as a collection of variables,
and defines state operations, i.e., it describes the dynamic system behaviour. The
variables are strongly typed by the constraining predicates that, together with

A Formal Approach to Identifying Security Vulnerabilities 147

other important system properties, are defined as model invariants. Usually,
a machine has an accompanying component, called a context, which includes
user-defined sets, constants and their properties given as a list of model axioms.

The dynamic behaviour of the system is defined by a collection of atomic
events. Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, Ge is the event guard,
and Re is the event action.

The guard is a state predicate that defines the conditions under which
the action can be executed, i.e., when the event is enabled. If several events
are enabled at the same time, any of them can be chosen for execution non-
deterministically. If none of the events is enabled then the system deadlocks.
The occurrence of events represents the observable behaviour of the system.

In general, the action of an event is a parallel composition of deterministic
or non-deterministic assignments. In Event-B, this assignment is semantically
defined as the next-state relation Re. A deterministic assignment, x := E(x, y),
has the standard syntax and meaning. A non-deterministic assignment is denoted
either as x :∈ S, where S is a set of values, or x :| P (x, y, x′), where P is a
predicate relating initial values of x, y to some final value of x′. As a result of
such an assignment, x can get any value belonging to S or according to P .

Event-B employs a top-down refinement-based approach to system develop-
ment. A development starts from an abstract specification that nondeterministi-
cally models most essential functional requirements. In a sequence of refinement
steps, we gradually reduce nondeterminism and introduce detailed design deci-
sions. The consistency of Event-B models, i.e., verification of well-formedness,
invariant preservation as well as correctness of refinement steps, is demonstrated
by proving the relevant verification theorems – proof obligations [1].

Modelling, refinement and verification in Event-B is supported by an auto-
mated tool – Rodin platform [12]. The platform provides the designers with an
integrated modelling environment, supporting automatic generation and proving
of the proof obligations. Moreover, various Rodin extensions allow the modeller
to transform models from one representation to another. They also give access
to various verification engines (theorem provers, model checkers, SMT solvers).

For instance, the ProB extension [17] of Rodin supports automated consis-
tency checking of Event-B machines via model checking, constraint based check-
ing, and animation. ProB supports analysis of liveness properties (expressed in
linear or computational tree logic (LTL/CTL)), invariant violations as well as
the absence of deadlocks.

148 L. Laibinis et al.

4 Identifying and Preventing Security Attacks by Formal
Verification and Model Checking

4.1 Overview of the Approach

In this paper, we propose a formal approach for identifying and preventing pos-
sible security attacks based on formal modelling and model checking in Event-B.
In Sect. 2.2 we discussed how we can formally reason about telecommunication
commands, their execution scenarios, the involved data and control flows, the
critical knowledge,“leakage” of which should be prevented, etc. We will show
how to capture these notions in the Event-B framework.

We start by giving a short outline of the overall approach. We propose an
iterative method consisting of four phases (see Fig. 3), discussed in detail below.

In Phase 1, we create or subsequently modify the Event-B context com-
ponent, containing the (types of) involved data elements and the definitions of
protocol commands of interest. The structure of the commands (inputs, outputs,
internally produced values, the lower layer commands) corresponds to the one
described in Sect. 2.2. The context also introduces the initial knowledge of the
attacker as well as the critical knowledge that should not be “leaked”.

In Phase 2, we rely on the created Event-B (machine) model to simulate
execution of all the defined above commands and then model check this model
in ProB looking for inconsistencies or gaps in their execution. Essentially, any
violations of the data flow consistency conditions 1 and 2 lead to deadlocking the
model, which in turn indicate such inconsistencies in the command definitions.

If such a deadlock is found, we return to the first phase for necessary modi-
fications of one or several commands. Otherwise, we proceed to Phase 3.

In Phase 3, we rely on other created Event-B (machine) model that simulates
random “intruder” attacks, trying to access the predefined critical knowledge.

Phase 1:

Phase 2:
Checking consistency of the control and

Phase 3:
Simulating of intruder attacks while

distinguishing them from legal scenarios

Phase 4:
Analysing and modifying command

attacks

Fig. 3. Phases of the approach

A Formal Approach to Identifying Security Vulnerabilities 149

A “successful attack” is stored as the corresponding command sequence. We
also rely on the given valid or known scenarios to filter out some of these found
sequences. The construction of such random attacks and filtering out known com-
mand sequences is done by the model checker ProB. A found invariant violation
indicates a possible successful attack (a sequence of protocol commands).

In Phase 4, the obtained sequence of a possible attack is analysed. The
purpose of such an analysis is to come up with one or several recommendations
for command modifications. These recommendation in turn would become an
input for the first phase, thus starting a new iteration of the proposed method.
Let us now describe in detail the corresponding formalisation in Event-B.

4.2 Phase 1

Phase 1 focuses on introducing (or modifying) existing definitions of the target
telecommunication commands, which will be used as the basis for the subsequent
phases. In the corresponding Event-B formalisation, the involved data elements
and commands are defined as a number of the respective sets and constants in
the Event-B context component, presented in Figs. 4 and 6.

We assume that the specified commands have the predefined structure, as
described in Sect. 2.2. The structure is expressed in terms of the involved data
as well as other related commands (see Fig. 4). The underlying sets of all possible
commands and data elements are introduced as the abstract sets Commands and
Data. For each command, the functions Inputs, Outputs and Produced return the
respective associated collections of data elements, while the function CommSeq
returns the sequence of the involved lower layer commands. The data structures
Critical, KnownSequences, and Initial define respectively the critical knowledge
(data elements), the valid or already known command sequences that may lead
to such data, and the presumed initial knowledge of the intruder.

To illustrate our methodology and, in particular, the application of model
checking technique, we use a simple running example involving a small subset
of commands. The hierarchical structure on the involved commands and their
corresponding inputs and outputs is depicted in Fig. 5.

CONTEXT CommData
SETS Commands, Data
CONSTANTS Inputs, Outputs, Produced, CommSeq, KnownSequences, Initial, Critical, ...
AXIOMS

axm1: Inputs ∈ Commands → P(Data)
axm2: Outputs ∈ Commands → P(Data)
axm3: Produced ∈ Commands → P(Data)
axm4: CommSeq ∈ Commands → (N �→ Commands)
axm5: KnownSequences ∈ P(N �→ Commands)
axm6: Initial ∈ P(Data)
axm7: Critical ∈ P(Data) ...

END

Fig. 4. The context CommData (part 1)

150 L. Laibinis et al.

Fig. 5. Running example

The first command, SRI4SM, stands for a composite service “Send Routing
Info”, sent by SMS-C to MSC/Gateway. The required inputs are SMSC GT,
the global title (id) of SMS-C, and MSISD, the customer’s mobile number. The
command results are IMSI, International Mobile Subscriber Identity, as well as
HLR GT and VLR GT – global titles of the involved HLR and MSC/VLR network
components. The SRI4SM request is further decomposed to the respective lower
layer commands (subservices) to the MSC/VLR and HLR components.

The second command, UL4SM, stands for a single service “Update Location”,
sent by MSC/VLR to HLR. As a result, a snapshot of the user profile informa-
tion, UPI, is returned, including user services, forwarding settings, as well as the
billing platform address. Finally, the third command, ISD4HLR, stands for a sin-
gle service “Insert Subscriber Data”, sent by HLR to MSC/VLR. The last input
parameter, Billing GT, is a new billing platform address to update the current
one. The command result is simply a confirmation of successful update.

All three commands are internal services provided within a trusted network.
However, as we will see later, they can be combined by the attacker to access and
update sensitive information. In the remaining part of the context component
(see Fig. 6), we instantiate the abstract data structures (e.g., Commands, Data,
Inputs, Outputs, Produced, and CommSeq) for the chosen example.

axm8: Commands = {SRI4SM,SRI4MSC,SRI4V LR, SRI4HLR,UL4V LR, ISD4HLR}
axm9: Data = {SMSC GT,MSISD,MSC GT, V LR GT, V LR OK,HLR GT, IMSI,

UPI,Billing GT, ISD OK}
axm10: Inputs = {SRI4SM {→� SMSC GT,MSISD}, SRI4MSC {→� MSISD,MSC GT},

SRI4VLR {→� V LR GT,MSISD}, SRI4HLR {→� HLR GT,MSISD},
UL4V LR {→� V LR GT,MSCI}, ISD4HLR {→� HLR GT,UPI,Billing GT}}

axm11: Outputs = {SRI4SM {→� HLR GT, V LR GT, IMSI},
SRI4MSC {→� HLR GT, V LR GT, IMSI}, UL4V LR {→� UPI},
SRI4VLR {→� V LR OK}, SRI4HLR {→� IMSI}, ISD4HLR {→� ISD OK}}

axm12: Produced = {SRI4SM {→� MSC GT}, SRI4MSC {→� V LR GT},
SRI4VLR �→ ∅, SRI4HLR �→ ∅, UL4V LR �→ ∅, ISD4HLR �→ ∅}

axm13: CommSeq = {SRI4SM {→� 1 �→SRI4MSC},SRI4MSC {→� 1 �→SRI4VLR, 2 �→
SRI4HLR},SRI4VLR �→ ∅, SRI4HLR �→ ∅, UL4V LR �→ ∅, ISD4HLR �→ ∅}

axm14: KnownSequences = ∅

axm15: Initial = {SMSC GT,MSISD} ∧ Critical = {UPI, ISD OK}

Fig. 6. The context CommData (part 2)

A Formal Approach to Identifying Security Vulnerabilities 151

The internally produced data elements are instantiated using the following
principle: all the data that are passed to the lower layer or returned to the
higher layer can be either one of the command inputs, received outputs, or
internally produced values. In other words, to guarantee consistency of the data
flow, no data can come from nowhere. The only exception is for the lowest layer
commands, where all their outputs coincide with internally produced ones.

4.3 Phase 2

The results of Phase 1 serve as a basis for the subsequent Phases 2 and 3. Before
identification of possible intruder attacks (which will be the focus of Phase 3),
we need to check/ensure that the given (or modified) command definitions are
consistent, e.g., they do not contain loops and gaps in their execution.

To ensure such consistency, we employ the interplay of formal verification
and model checking in Event-B. We model the process of intended command
execution in general and then rely on model checking techniques (checking for
deadlocks in Phase 2 and invariant violations in Phase 3) to find inconsistencies,
incompleteness and security holes in the given concrete command definitions.

Specifically, in Phase 2 we rely on the Event-B model (machine) that

– non-deterministically picks a (still unchecked) command from the concrete
collection defined in the context component;

– simulates execution of this command. The command can be either single or
composite. In the latter case, its execution is decomposed into a sequence of
commands of the lower layer.

– maintains what is “known” at each execution layer (for the component calling
a command) and checks both data and control flow consistency;

– terminates when all the defined commands are successfully checked.

Then, for the created model, we employ model checking to find deadlocks.
The presence of such deadlocks would mean that the hierarchy of commands is
broken because some required inputs, outputs or produced data are missing.

Let us consider the Event-B model in more detail. Its overall structure is
given in Fig. 7. The model introduces five variables. The variable chosen indi-
cates whether a particular command is currently chosen for simulated execution,

MACHINE Phase 2 SEES CommData
VARIABLES chosen, stacklevel, step, knows, Sequence
INVARIANT

chosen ∈ BOOL ∧ stacklevel ∈ N ∧ step ∈ N �→ N1 ∧ knows ∈ N �→ P(Data) ∧
Sequence ∈ N �→ (N �→ Commands) ∧ dom(step) = 0..stacklevel ∧
dom(knows) = 0..stacklevel ∧ dom(Sequence) = 0..stacklevel ∧
chosen = FALSE ⇒ stacklevel = 0 ...

EVENTS
choose = ... execute single = ... start seq = ...
finish seq = ... finish = ...

END

Fig. 7. The machine Phase 2

152 L. Laibinis et al.

while stacklevel models the current stack level of command execution. The func-
tion variables step, knows, and Sequence respectively store, for each stack level,
the current execution step, the accumulated knowledge (in terms of received or
produced data), and the sequence of the lower layer commands to be executed.

The model events specify choosing a new command (the event choose), exe-
cuting a single lowest layer command (execute single), starting execution of a
sequence of the lower layer commands (start seq), thus increasing stacklevel, and
finishing execution of a sequence of the lower layer commands (finish seq), thus
decreasing stacklevel. Finally, the event finish checks that the whole command
hierarchy has been executed and thus a new command may be chosen.

Below we present the specifications of a couple of model events. The event
execute single models execution of a single command. In that case, the knowl-
edge of the calling command is updated with the produced outputs, while the
execution step in the considered command sequence is increased.

execute single =
any curr comm where

chosen = TRUE ∧ step(stacklevel) ∈ dom(Sequence(stacklevel)) ∧
curr comm = Sequence(stacklevel)(step(stacklevel)) ∧
CommSeq(curr comm) = ∅ ∧ Inputs(curr comm) ⊆ knows(stacklevel) ∧

then
knows(stacklevel) := knows(stacklevel) ∪ Outputs(curr comm) ‖
step(stacklevel) := step(stacklevel) + 1

end

Note that the guard Inputs(curr comm) ⊆ knows(stacklevel) serves here as a data
flow consistency condition, violation of which would lead to a model deadlock.

The event start seq models the opposite situation, i.e., when the execution
moves to the higher stack level. The affected variables knows, step, and Sequence
are updated accordingly. The dual event finish seq decreases the stack level and
updates the affected values associated with the higher level.

start seq =
any curr comm where

chosen = TRUE ∧ step(stacklevel) ∈ dom(Sequence(stacklevel)) ∧
curr comm = Sequence(stacklevel)(step(stacklevel)) ∧ CommSeq(curr comm) �= ∅ ∧
Inputs(CommSeq(curr comm)(1)) ⊆ Inputs(curr comm) ∪ Produced(curr comm)

then
knows(stacklevel + 1) := Inputs(curr comm) ∪ Produced(curr comm) ‖
step(stacklevel + 1) := 1 ‖ stacklevel := stacklevel + 1 ‖
Sequence(stacklevel + 1) := CommSeq(curr comm)

end

The required data flow consistency condition (for start seq) is given as the guard

Inputs(CommSeq(curr comm)(1)) ⊆ Inputs(curr comm) ∪ Produced(curr comm).

The interplay between verification by theorem proving and model checking
allows us to achieve “separation of concerns”. Verification by theorem proving
is employed to ensure the correctness of the modelled process of command exe-
cution. This correctness (as model invariants) can be proved for an arbitrary

A Formal Approach to Identifying Security Vulnerabilities 153

collection of commands following the pre-defined structure (see Fig. 4), thus
disregarding concrete command instantiations for the chosen example (Fig. 6).
Model checking, on the other hand, is predominantly used to find inconsistencies
and gaps (as deadlocks) in the concrete command definitions of Fig. 6.

4.4 Phase 3

The main focus of Phase 3 is the identification of possible intruder attacks. This
phase is based on the results of the previous phases. We build a formal model
simulating different service scenarios and then rely on model checking to check
for invariant violations indicating possible intruder attacks.

The Event-B model that we rely on in Phase 3

– simulates intruder attacks trying to obtain the predefined critical data. The
attack is represented as the corresponding command sequence. This sequence
is built by starting from the critical knowledge and simulating random com-
mand execution leading to it. The building process is completed when the
presumed initial knowledge (data) of the intruder is reached;

– reverses the resulting command sequence in order to represent it in the form
convenient for further analysis (i.e., a command sequence that starts with the
initial data as an input and reaches the critical data);

– distinguishes whether the found command sequence is already known or not.
If the found sequence matches one of the predefined known sequences, the
search for intruder attack scenarios continues until all scenarios are analysed.

Further, for the created Event-B model, we employ model checking to
find possible invariant violations. We formulate the invariant property stating
that the collective critical data can be obtained only by executing the known
sequences. In the case, when the resulting command sequence does not belong to
the set of such sequences, a violation is found by model checking. Consequently,
a found sequence becomes an input to Phase 4. If a command sequence matches
a known one, the model checker continues to build another sequence, if possible.
If no invariant violation is found, then, for the current command definitions, no
attack scenarios can be constructed to obtain the predefined critical data.

The overall Event-B model structure described above is presented in Fig. 8.
Due to the lack of space, we will only highlight the most interesting aspects of
it. The variable to be obtained defines the knowledge of the intruder that he/she
still needs to obtain for a successful attack. The constructed attack is stored as
the corresponding command sequence in the variable commands.

Overall, Phase 3 is split into the sequential execution of several steps: con-
structing an attack (represented as a backward command sequence), reversing
of the found sequence, and checking whether it is already known or not. The
boolean variables found, reversed, finished enforce this predefined event order.

Next we briefly describe some machine events modelling steps of Phase 3. The
event search (shown below) models finding the backward command sequence of
the intruder attacks trying to obtain the critical data. Specifically, we start with

154 L. Laibinis et al.

MACHINE Phase 3 SEES CommData
VARIABLES commands, to be obtained, found, reversed, finished, result, ...
INVARIANT

commands ∈ N �→ Commands ∧ to be obtained ⊆ Data ∧ found ∈ BOOL ∧
reversed ∈ BOOL ∧ finished ∈ BOOL ∧ result ∈ BOOL ∧
reversed = TRUE ⇒ found = TRUE ∧ finished = TRUE ⇒ reversed = TRUE ∧
finished = TRUE ⇒ result = TRUE ∧ found = TRUE ⇒ to be obtained ⊆ Initial ...

EVENTS
search = ... reverse = ... comparison = ...

END

Fig. 8. The machine Phase 3

the Critical data as the initial value of the variable to be obtained and look
which commands can produce one or more items from it. If such a command is
found, the critical data it produces are removed from to be obtained and replaced
with the required command inputs. We repeat this process until all required data
from to be obtained belong to Initial. This condition is repeatedly re-checked and
the corresponding boolean value is assigned to the variable found.

search =
any comm, var where

found = FALSE ∧ comm ∈ dom(Inputs) ∧ comm /∈ ran(commands) ∧
Outputs(comm) ∩ to be obtained �= ∅ ∧ var = Outputs(comm) ∩ to be obtained

then
to be obtained := (to be obtained \ var) ∪ Inputs(comm) ‖ num := num + 1 ‖
commands := commands ∪ {num �→ comm} ‖ jj := num ‖
found := bool(((to be obtained \ var) ∪ Inputs(comm)) ⊆ Initial)

end

The second step of the Phase 3 (the event reverse) is used to reverse the
obtained command sequence stored in the variable commands. Specifically, the
resulting sequence will be the command sequence that the first command inputs
uses the initial data and outputs of the last command lead to the critical data.

Finally, the event comparison specifies checking whether the obtained com-
mand sequence is known or not. The command sequence is considered as known
if it matches one of the predefined known sequences, i.e., belongs to KnownSe-
quences. The comparison outcome is stored in result.

The resulting Event-B model is model checked against invariant violations. In
particular, in Phase 3 we are interested to find possible new command sequences
leading to the critical knowledge. Therefore, we check the created Event-B model
against the property stating that the collective critical data elements can be
obtained only by the given known sequences. This property is formulated as the
following model invariant: finished = TRUE ⇒ result = TRUE.

The result of model checking indicating a violation of this invariant is the
command sequence that leads to the critical knowledge. If such an illegal com-
mand sequence leading to critical knowledge is found, it becomes an input to
Phase 4. To try model checking techniques on our running example (see Fig. 5),
we instantiated the initial and critical data with concrete values in the Event-B
model context. Namely, we assumed that the attacker initially knows the global
title of SMS-C as well as the phone number of the user he/she wants to defraud,

A Formal Approach to Identifying Security Vulnerabilities 155

i.e., Initial = {SMSC GT,MSISD}. The successful attack would be obtaining
the access of the user profile and updating this profile with the attacker supplied
billing address, i.e., Critical = {UPI, ISD OK}.

Then we checked the Event-B model for invariant violations. For the given
values of our running example, the result of such verification was the following
command sequence: {1 �→ SRI4SM, 2 �→ UL4V LR, 3 �→ ISD4HLR}, indicating a
specific command chain to obtain the predefined critical data.

4.5 Phase 4

In Phase 4, we analyse the identified attack vector to propose the recommenda-
tions for hardening. Our goal is to identify the feasible ways to modify the data
flow associated with the analysed scenario. The feasibility is checked by repeat-
ing Phase 1 of our approach with the modified service definitions as the input.
Currently we assume that the recommendations for hardening rely on the man-
ual inspection of the identified attack vectors. However, model animation can
significantly facilitate this process by allowing us to replay the identified attack
scenario and considering inputs and outputs of each command individually.

At the current stage, we have experimented with a subset of SS7-MAP stan-
dard proposed by our industrial partners. Model animation has allowed us to
visualise the attack scenarios that, in turn, facilitated discussion of the possi-
ble ways to harden the system by modifying the data flow. In the future we are
planning to automate this stage as well. The automation may rely on, e.g., intro-
ducing additional information about the minimal sufficient types of inputs and
outputs for each command and consequent automatic alternations of the com-
mand inputs and outputs. An automated analysis would allow us to significantly
speed up identification of possible combinations for system hardening.

A few simple guidelines that we propose below can also serve as a basis of
future automation of this task. Specifically, to break the identified command
sequence constituting a possible attack scenario, we may try to (i) add extra
input to some command, thus requiring extra information before executing the
command, (ii) remove some redundant output from a command, because it may
be possibly used for malicious purposes, (iii) add new produced data for some
command together with some extra input for one of its (sub)commands it relies
on (e.g., special data element that is added to guarantee that a couple of com-
mands are used only in that particular way, by one calling the other).

It is easy to check that proposed command modifications (i.e., the results
of Phase 4) indeed break the obtained harmful sequence. However, since any
command may be a part of some predefined execution scenarios, we also need
to check that the modifications are feasible, i.e., they do not disable any defined
valid scenarios. To ensure that, we need to go through Phases 1–2. If Phase 2
demonstrates that some predefined command execution scenario is broken, then
we have to return to Phase 4 and reconsider the suggested command modifica-
tions. If the proposed modifications do not affect the valid scenarios, then we
can proceed to Phase 3 to find new possible attacker sequences and so on.

156 L. Laibinis et al.

5 Related Work and Conclusions

Related Work. The problem of analysis of security protocols has been studied
over several decades [2,13] in the different application domains: web services [4,
14], mobile and sensor networks [11], operating systems [5], etc. There are several
approaches proposed to model attacks and perform security evaluation for main
types of attacks [3,6,8–10]. For instance, Armando et al. [3] demonstrate how to
relate a specification of security protocols and their implementations to enable
model-based security testing. In particular, they show how to use the traces of
potential attacks found by a model checker to generate the corresponding test
suits for verifying a protocol implementation. Our approach also employs model
checking to generate possible attack scenarios. However, we also go further and
propose recommendations for rectifying the found vulnerabilities. By combining
proofs and model checking, we can verify that the proposed recommendations
are feasible and correct, i.e., they do not disable the execution of the intended
services yet prevent an execution of attack scenarios.

A cyber attack modelling and assessment of their impact are investigated in
the work by Kotenko and Chechulin [9]. The authors introduce a framework that
comprises an explicit representation of the intruder’s behaviour, generation of
attack graphs, as well as calculation of different security metrics. In our work, we
rather focus on analysing the attack possibilities that the system architecture
opens for an intruder. We assume that, e.g., by using social engineering, an
intruder can gain an access to different data about the network components. By
relying on formal modelling and verification, we construct an attack vector and
identify the ways to prevent it.

There are several works that rely on Event-B or the B method to reason
about security. For instance, the B4MSecure platform proposed in [7] introduces
facilities for graphical modelling of access control policies as UML class diagrams
and automates a translation of the graphical models into B specifications. Event-
B has been also combined with Alloy to formally verify a security model of
an operating system [5]. The authors investigate verification of integrity and
confidentiality requirements. In our approach, we address these requirements
by identifying possible ways an intruder can masquerade himself as a trusted
party and get access or even alter sensitive data. Currently, the attack scenarios
are analysed using model animation. However, we are planning to extend our
approach to support graphical representation of scenarios as sequence diagrams.

Conclusions. In this paper, we have proposed a formal approach to identify-
ing security vulnerabilities in the telecommunication protocols and defining the
recommendations for rectifying them. The approach relies on formal modelling
in Event-B that allowed us, in a unified way, to not only generate potentially
harmful scenarios but also explore various alternatives for rectifying the identi-
fied vulnerabilities. The proposed approach is iterative: it enables a systematic
analysis of all potential vulnerabilities and provides an immediate feedback on
feasibility of the proposed hardening actions.

A Formal Approach to Identifying Security Vulnerabilities 157

Event-B and the Rodin platform have offered us a suitable basis for the for-
malisation and automation of our approach. Event-B supports a separate treat-
ment of static and dynamic parts of the model. In the static part of the model
– the context – we defined the architectures of the analysed services. To verify
feasibility of the proposed recommendations, we had to modify the context only.
The dynamic part remained essentially unchanged and represented a generic
pattern of service execution under the given constraints. Such a separation of
concerns allowed us to significantly reduce the involved efforts.

The availability of the automated tool support – the Rodin platform – has
been critical for ensuring applicability of our approach. The provers have been
used to verify consistency of the architectures and the Pro-B model checker to
find attack scenarios. Moreover, model animation has facilitated analysis of the
scenarios as well as the recommendations for hardening. We believe that inte-
gration of these techniques allowed us to create a powerful support for security
analysis of complex telecommunication protocols.

The proposed approach can be also used to provide an input for standard-
isation activities, and in particular for the currently on-going evolution of the
SS7 protocol suite. As a future work, we are planning to investigate the idea of
generating test suits on the basis of the identified attack scenarios.

References

1. Abrial, J.R.: Modeling in Event-B. Cambridge University Press, Cambridge (2010)
2. Armando, A., et al.: The AVISPA tool for the automated validation of internet

security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005). doi:10.1007/
11513988 27

3. Armando, A., Pellegrino, G., Carbone, R., Merlo, A., Balzarotti, D.: From model-
checking to automated testing of security protocols: bridging the gap. In: Brucker,
A.D., Julliand, J. (eds.) TAP 2012. LNCS, vol. 7305, pp. 3–18. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30473-6 3

4. Backes, M., Mödersheim, S., Pfitzmann, B., Viganò, L.: Symbolic and cryp-
tographic analysis of the secure WS-ReliableMessaging scenario. In: Aceto, L.,
Ingólfsdóttir, A. (eds.) FoSSaCS 2006. LNCS, vol. 3921, pp. 428–445. Springer,
Heidelberg (2006). doi:10.1007/11690634 29

5. Devyanin, P.N., Khoroshilov, A.V., Kuliamin, V.V., Petrenko, A.K.,
Shchepetkov, I.V.: Formal verification of OS security model with alloy
and event-B. In: Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS,
vol. 8477, pp. 309–313. Springer, Heidelberg (2014)

6. Goldman, R.P.: A stochastic model for intrusions. In: Wespi, A., Vigna, G., Deri,
L. (eds.) RAID 2002. LNCS, vol. 2516, pp. 199–218. Springer, Heidelberg (2002).
doi:10.1007/3-540-36084-0 11

7. Idani, A., Ledru, Y.: B for modeling secure information systems. In: Butler, M.,
Conchon, S., Zäıdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 312–318. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-25423-4 20

8. Ingols, K., Chu, M., Lippmann, R., Webster, S.E., Boyer, S.W.: Modeling mod-
ern network attacks and countermeasures using attack graphs. In: 25th Annual
Computer Security Applications Conference (ACSAC), pp. 117–126. IEEE (2009)

http://dx.doi.org/10.1007/11513988_27
http://dx.doi.org/10.1007/11513988_27
http://dx.doi.org/10.1007/978-3-642-30473-6_3
http://dx.doi.org/10.1007/11690634_29
http://dx.doi.org/10.1007/3-540-36084-0_11
http://dx.doi.org/10.1007/978-3-319-25423-4_20

158 L. Laibinis et al.

9. Kotenko, I., Chechulin, A.: A cyber attack modelling and impact assessment frame-
work. In: Proceedings of the 5th International Conference on Cyber Conflict.
NATO CCD COE Publications (2013)

10. Noel, S., Wang, L., Singhal, A., Jajodia, S.: Measuring security risk of networks
using attack graphs. IJNGC 1(1), 135–147 (2010)

11. Rekhis, S., Boudriga, N.: Formal reconstruction of attack scenarios in mobile ad
hoc and sensor networks. J. Wirel. Commun. Netw. 39 (2011)

12. Rodin: Event-B Platform. http://www.event-b.org/
13. Ryan, P.Y.A., Schneider, S.A.: Modelling and Analysis of Security Protocols.

Addison-Wesley-Longman, Boston (2001)
14. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services

using process algebra. In: Proceedings of the IEEE International Conference on
Web Services (ICWS 2004), p. 43. IEEE Computer Society (2004)

15. SS7: Signalling System No.7. http://www.informit.com/library/content.aspx?
b=Signaling System No 7&seqNum=15/

16. SS7-MAP: SS7 - Mobile Application Part. http://www.informit.com/library/
content.aspx?b=Signaling System No 7&seqNum=114/

17. The ProB Animator and Model Checker. http://www.stups.uni-duesseldorf.de/
ProB/index.php.5/

http://www.event-b.org/
http://www.informit.com/library/content.aspx?b=Signaling_System_No_7&seqNum=15/
http://www.informit.com/library/content.aspx?b=Signaling_System_No_7&seqNum=15/
http://www.informit.com/library/content.aspx?b=Signaling_System_No_7&seqNum=114/
http://www.informit.com/library/content.aspx?b=Signaling_System_No_7&seqNum=114/
http://www.stups.uni-duesseldorf.de/ProB/index.php. 5/
http://www.stups.uni-duesseldorf.de/ProB/index.php. 5/

Multi-threaded On-the-Fly Model Generation
of Malware with Hash Compaction

Nguyen Minh Hai1(B), Quan Thanh Tho1, and Le Duc Anh2

1 HoChiMinh City University of Technology, Ho Chi Minh City, Vietnam
{hainmmt,qttho}@cse.hcmut.edu.vn

2 Tokyo University of Agriculture and Technology, Tokyo, Japan

Abstract. This paper introduces multi-threaded implementation of our
binary code analyzer BE-PUM for malware. On-the-fly model gener-
ation by BE-PUM is combined with duplication detection and hash
compaction method to minimize the resource consumption. The method
operates in three phases including parallel expansion of states, duplica-
tion detection and update of the state space. A notable feature of our
algorithm is that it requires very little synchronization or cooperation
between threads, which is often a bottleneck of multi-threading, due to
our strategy of local resource management. The experiments on 125 real-
world malware show good performance improvement.

Keywords: Concolic testing · Pushdown system · Malware detection ·
Binary code analysis · Hash compaction · Multi-threaded

1 Introduction

Model checking is one of the main approaches for detecting malware [10]. The
underlying idea consists of two steps including model generation and model check-
ing. Model generation phase disassembles the infected executables and extracts
the control flow graph (CFG) which contains nodes presenting all explored
instructions in targeted file and edges linking between them. After a CFG
(abstract model) is generated, the second phase is applied with popular analy-
sis techniques like model checking [2,10]. Among them, model generation phase
takes a very important task.

However, this model generation phase is not easy. The main drawback of this
phase bases on the problem of obfuscation techniques, e.g. indirect jump, Struc-
tured Exception Handling (SEH) and self-modifying code. Model generation is
implemented in many binary analysis tools, e.g. CodeSurfer/x86 [1], McVeto [18],
JakStab [9], and a commercial product, IDA Pro1 which is claimed to be one
of the most popular and powerful tools for binary code analysis. However, they
are quite limited when dealing with obfuscation techniques, e.g. indirect jumps.
In [15,16], we propose a new tool, BE-PUM which applies an on-the-fly push-
down model generation of x86 binaries based on dynamic symbolic execution.
1 http://www.datarescue.com/idabase/.

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 159–174, 2016.
DOI: 10.1007/978-3-319-47846-3 11

http://www.datarescue.com/idabase/

160 N.M. Hai et al.

BE-PUM traces precise control flow against obfuscation techniques including
indirect jump, self-modifying code.

However, the symbolic simulation process of x86 instructions and Windows
APIs in BE-PUM implies a significant resource consumption which causes this
tool running quite slowly when dealing with real-world malware. Thus, speeding
up BE-PUM by means of multiple threads to parallelize its operations comes as
a natural approach. Nevertheless, as BE-PUM explores the CFG in an on-the-
fly manner, it is necessary to synchronize all of sub-CFGs explored by all the
threads, which supposedly causes a bottleneck issue. In addition, the problem
of overlapping states explored by threads also results in redundant resource
consumption.

Contributions. Inspired by [5], this paper studies an approach for reducing the
processing time of exploring states in BE-PUM by applying the computational
power of multiple threads. Our key contributions are summarized as follows.

1. We propose an algorithm of using multiple threads for speeding up the process
of exploring states in BE-PUM. Our algorithm needs very little synchro-
nization or cooperation between threads due to our strategy to handle local
resources.

2. We combine our parallel algorithm with hash compaction method [7,8] to
minimize the amount of memory necessary for storing the table of visited
states.

3. We apply a method of duplication detection for eliminating redundant threads
i.e. ones that cannot traverse new nodes.

The rest of this paper is organized as follows. Section 2 briefly introduces
basic concepts of BE-PUM and presents the hash compaction method. Section 3
describes the high-level overview of our algorithm using a small example. An
implementation of our approach is introduced in Sect. 4. Section 5 shows our
experiment evaluation on 125 real-world malwares mainly collected from Virus-
Total2. Section 6 presents the related works. Finally, the Sect. 7 discusses the
conclusion and some future works.

2 Background

2.1 On-the-Fly Pushdown Model Generation of BE-PUM

BE-PUM [15,16] (Binary Emulation for PUshdown Model generation) targets
on generating the precise CFG from binary code of malware. It applies an on-
the-fly pushdown model generation of x86 binaries based on dynamic symbolic
execution. BE-PUM traces precise control flow against obfuscation techniques.
The current version of BE-PUM supports 300 of the most frequently occurring
x86 (32bit) instructions and 450 of the most frequently occurring Win32 APIs.

2 https://www.virustotal.com/en/.

https://www.virustotal.com/en/

Multi-threaded On-the-Fly Model Generation of Malware 161

Pushdown Systems. As described in [13], many obfuscation techniques in
malware adopt the operation over the stack via the effects of call, push and pop
instruction. Therefore, modeling the stack of the program is very important for
analyzing precisely malware. In this part, we formulate the pushdown system
adopted by BE-PUM. There are two approaches for a context-sensitive model,
i.e. context-cloning and context-stacking. BE-PUM chooses context-stacking
with the assumption that malware mainly modifies the top stack frame (i.e.
return address/value).

Definition 1. A pushdown system (PDS) is a triplet 〈P, Γ,Δ〉 where

– P is a finite set of states,
– Γ is finite stack alphabet, and
– Δ ⊆ P × Γ≤2 × P × Γ≤2 is a finite set of transitions, where (p, v, q, w) ∈ Δ is

denoted by (p, v → q, w).

We use α, β, γ, · · · to range over Γ , and w, v, · · · over words in Γ ∗. A config-
uration 〈p,w〉 is a pair of a state p and a stack content (word) w. As convention,
we denote configurations by c1, c2, · · · . One step transition ↪→ between configu-
rations is defined as follows. ↪→∗ is the reflexive transitive closure of ↪→.

〈p, γw〉 ↪→ 〈p′, γ′w〉
(p, γ → p′, γ′) ∈ Δ

inter
〈p, γw〉 ↪→ 〈p′, αβw〉
(p, γ → p′, αβ) ∈ Δ

push
〈p, γw〉 ↪→ 〈p′, w〉
(p, γ → p′, ε) ∈ Δ

pop

A PDS enjoys decidable configuration reachability, i.e., given configurations
〈p,w〉, 〈q, v〉 with p, q ∈ P and w, v ∈ Γ ∗, decide whether 〈p,w〉 ↪→∗ 〈q, v〉.

On-the-Fly CFG Generation. The CFG construction in BE-PUM is designed
in an on-the-fly manner. As described in the figure below, when encountering a
conditional jump, BE-PUM applies concolic testing to decide next destinations.

Let us formulate the notation as follows.

– k is an address in M and k0 is the entry address,
– asm is an x86 assembly instruction,
– asm, obtained by disassembly of a binary sequence starting from k ∈ M , is

referred by asm = instr(EnvM , k),

162 N.M. Hai et al.

The state of program can be represented by a pair 〈(k, asm), Env〉 with an
address k, an x86 instruction asm and an environment Env consisting of values
of registers R, flags F , and a memory status M (which includes the status of the
stack S) after the execution starting from the entry point. When self-modifying
code appears, which modifies the assembly code at k from asm to asm′, BE-PUM
introduces a new CFG node as a pair (k, asm′). Thus, BE-PUM distinguishes
(k, asm) and (k, asm′) as different CFG nodes. This idea is also presented in
McVeto [18].

Concolic Testing. BE-PUM applies the concolic testing, a combination of
static analysis and symbolic execution for calculating the next address when
encountering indirect jump. The main idea of symbolic execution [11] (SE) is to
symbolically execute a program. SE maintains a symbolic state 〈p, ψ〉 with a CFG
node p = (k, asm) and a path formula ψ which accumulates the precondition
of the execution of the path starting from the entry CFG node to p. BE-PUM
verifies the satisfiability of ψ by SAT/SMT solvers.

After solving the path condition ψ, BE-PUM generates test-cases and con-
tinues to explore multiple destinations. The figure below describes two ways to
explore possibly multiple destinations of BE-PUM.

– Static Symbolic Execution (SSE) applies the static detection for next
destination candidates and the feasibility of each destination p′ is checked by
the satisfiability of ψ ∧ next = p′.

– Dynamic Symbolic Execution (DSE) applies testing for checking the fea-
sibility with a satisfiable instance of ψ (concolic testing), which requires a
binary emulator. This process continues until ψ ∧ next = p′ ∧ next = p′′....
becomes UNSAT for exploring next destinations p′, p′′, ..., like in [4].

Motivating Example. We illustrate the operation of BE-PUM with a small
example in Fig. 1. This example depicts BE-PUM’s advantage of handling self-
modification, system API invocation and indirect jump. Also, the problem when
multi-thread issue is concerned is also discussed.

At a first look, the execution follows the looping path P = (start → 0 →
1 → 2 → 3 → 4 → 1). However, the instruction at the location 3 overwrites
the code at offset L1 + 1, which modifies the opcode at 1 from EB 00 to
EB 0A. This means that jmp L2 at 1 is updated to jmp L3. This is a basic

Multi-threaded On-the-Fly Model Generation of Malware 163

Fig. 1. The running example

self-modification technique. JakStab, IDA Pro, MetaASM3 and Hooper4 fail to
trace this technique, whereas BE-PUM correctly generates

(0,′′ xor eax eax′′) → (1,′′ jmp L2′′) → (2,′′ mov eax, offset l1 + 1′′)
→ (3,′′ mov byte ptr [eax], 0Eh′′) → (4,′′ jmp L1′′) → (1,′′ jmp L3′′) → · · ·

At each location, BE-PUM applies a single-step disassembly i.e. the instruc-
tion at this location is generated dynamically when a path reaches there. This
feature enables BE-PUM to handle self-modification.

3 http://metasm.cr0.org/.
4 http://www.hopperapp.com/.

http://metasm.cr0.org/
http://www.hopperapp.com/

164 N.M. Hai et al.

Following the path from location 8, one can observe that at 9, there is a
system call of the API GetModuleHandleA. Then, there is an indirect jump
at 12.

Currently, most of binary analysis tools suffer from difficulties when deal-
ing with such system API invocation and indirect jump. BE-PUM success-
fully tackles those obstacles due to its mechanism of dynamic symbolic sim-
ulation. In BE-PUM, GetModuleHandleA at 9 is invoked with parameter 0.
BE-PUM simulates its symbolic execution using JNA5. The return value by exe-
cuting this API is the base address of this program and stored in register eax.
In the meantime, BE-PUM also evaluates the corresponding path formula as
(start → 0 → 1 → 2 → 3 → 4 → 1 → 5 → 6 → 8 → 9 → 10 → 11 → 12) is
(ebx == 1000). To decide the next destination at 12, BE-PUM applies concolic
testing by setting the value (ebx = 1000) (as a satisfiable instance detected by
Z3 4.3), and finds a new destination 14 (13 is dead node described with dotted
line).

From 15, BE-PUM follows two paths P1 = (15 → 16 → 17 → 18 → 16 →
... → 18 → 19) and P2 = (15 → 20 → 21 → 22 → 21 → ... → 22 → 23 → 24 →
17 → 18 → 16 → 17 → ... → 18 → 19).

Issues Raised from the Motivating Example. Since BE-PUM operates in
single thread, its processing time is the sum of processing time for executing the
two paths P1 and P2. This is the first problem, which can be potentially solved
by applying multiple-thread mechanism.

However, in order to apply this approach, one needs to handle the issue of
unnecessary duplication when BE-PUM explores states in different paths using
different threads. For example, assume that there is one thread executing the
first path P1 and reaches the final node at 19. In the meantime, another thread
is executing the second path P2. After unrolling the loop described in green
line, the second thread reaches 24. From 24, it continues with the node 17 and
processes the loop (17 → 18 → 16 → 17 → ...). However, as this loop is already
explored in P1 by the first thread, to continue exploring this loop again should
be a waste of resources. For solving this problem, we propose a mechanism of
duplicate detection to significantly reduce the chance that that one thread visits
states already visited by other threads. To achieve that, we need to collect all of
states visited by all concurrent threads and store those states in multiple local
lists. Obviously, it is important to reduce the memory consumption used for
state storage in those lists. We handle this problem by applying the well-known
hash compaction method [7,8].

2.2 Hash Compaction

Hash compaction [7,8,19] is well-known method introduced by Holzmann for
minimizing the memory consumption in storing the visited states. The main idea

5 https://jna.java.net/.

https://jna.java.net/

Multi-threaded On-the-Fly Model Generation of Malware 165

of this approach is to apply a hash function H which maps from state vector V
to the fixed length of bit strings B. The length of B can be typically 32 or 64 bits.
V is a data structure which unambiguously represents a state. For each visited
state s stored in a list, instead of storing full state descriptor, only the hash
value H(s) is stored. Clearly, the main drawback of this method is that the hash
function can produce the same output for different inputs. It implies that the two
different state vectors can be mapped to the same value. The problem of hash
collision can be alleviated by applying multiple hash functions [17,19]. Although
this approach cannot guarantee collision-free, the probability of collision can be
kept small enough to be applied in practice.

3 Algorithm of Multi-threaded On-the-Fly Model
Generation

3.1 Running Example

We start this section by a running example showing how our approach can han-
dle the problems pointed out in the motivating example. It is illustrated again
by Fig. 1 but now we focus on the execution flow starting from 15, where two
possible paths are generated and to be explored by two individual threads. In
the naive design, when BE-PUM explores multiple paths, it sequentially tra-
verses one by one. In this new design, BE-PUM supports multiple threads for
exploring multiple paths at the same time, hence speeding up the process of
CFG generation.

In this multi-threaded approach, we use global list Q for keeping all explored
states of all threads and local list Li for storing all visited states in each thread Ti.
From 15, BE-PUM follows two paths P1 = (15 → 16 → 17 → 18 → 16 → ... →
18 → 19) and P2 = (15 → 20 → 21 → 22 → 21 → ... → 22 → 23 → 24 → 17 →
18 → 16 → 17 → ... → 18 → 19). Let us assume that at this time there are two
threads, T1 and T2, which explore P1 and P2 respectively. Those threads explore
states in depth-first manner and update new visited states in their corresponding
local lists, L1 and L2. As described in Fig. 1, when T1 explores states 16, 17 and
18, these states are stored in the local list L1.

When a local list is full, we will update the states in the local list to the
global list. If there is a state in the local list already kept in the global list,
it means this state is already visited by another thread previously. Thus, the
corresponding thread will be terminated.

For example, we assume that after T1 explores 16, 17 and 18 and T2 explores
20, 21 and 22, their local lists are full. Then, two threads update their internal
states into the global list Q, resulting in Q keeping all of 6 those states, as
presented in Fig. 1(b). Next, T2 continues explores 23, 24, 17 and its local list L2

is full again. At this point, T2 again updates its internal states into Q and finds
out that its internal state 17 is already in Q as depicted in Fig. 1(c) (since it is
explored by T1 beforehand). Thus, T2 is terminated with no further exploration.

166 N.M. Hai et al.

Remarks. There are two remarks for the approach we just describe as follows.
First, to minimize the memory consumption of storing states in global list and
local list, we implement the hash compaction mechanism as previously discussed
in Sect. 2.2. Secondly, when applied in real program, the chance that two local
lists are updated into the global list at the same time is quite relatively small,
since each thread is basically exploring a different path in the CFG. That is why
our approach requires very little synchronization or cooperation between threads
when handling real malware samples.

3.2 Algorithm Overview

Let us consider state S = (k, asm,H1(Env),H2(Env)) with k is location and
asm is instruction. Given H1(Env) and H2(Env) are hash functions which map
the environment Env denoted in Sect. 2 to 32 bit fixed size string. We use two
hash functions for minimizing the probability of hash collision as described in
Sect. 2.2.

Let T = (t1, t2, ..., tn) be the set of threads participating in the exploration
of states. We denote L = (l1, l2, ..., ln) as the set of local list which is stored in
each thread.

In our proposed parallel approach, the primary data structures include the
global list Q containing all explored states of all threads and local lists li storing
all visited states in each thread ti. As depicted in Fig. 2, each thread operates
in three phases. In the first phase, thread ti explores state in depth-first manner
and updates new state in local list li. When local list is full, the second phase
performs duplication detection to find duplicated states, i.e. states in li that are
represented in Q. If duplication is detected, ti is halted. If there is no state of
li stored in Q, the thread starts the third phase which moves all the states of li
into Q.

Within each phase, all threads work independently and it does not need to
synchronize or cooperate before the algorithm proceeds to the next phase. This
is the main feature of our algorithm.

Fig. 2. Overview of three phases

Multi-threaded On-the-Fly Model Generation of Malware 167

3.3 Algorithm Details

This section describes three phases of our algorithm in details. Figure 3 illustrates
the partial state space where the initial state s0 is assumed to have three new
successors of s1, s2 and s3. These states are handled by three threads, t1, t2 and
t3 respectively.

Fig. 3. Initial tree Fig. 4. Expansion of state

Phase 1: Expansion of State Space. Threads explore state space using
depth-first search algorithm. State tree is expanded and new states are put in
local list corresponding to each thread. Since each thread ti inserts states in the
local list li only, there is no requirement of synchronization. Figure 4 depicts this
first step of the algorithm. The dotted elements in Fig. 4 (right) describe the
expansion of node. The final result of updating local list in each thread is also
illustrated in Fig. 4 (left). This phase ends when local list is full. Although this
figure just describes 3 threads, the expansion can be performed independently
by any number of threads.

Fig. 5. Check for condition in
duplicate detection phase

Fig. 6. Halting the thread

Phase 2: Duplication Detection. The second phase starts when local list li
of thread ti is full. It first check whether any states in li are stored in Q. Note
that two states are duplicated if the values of location k, instruction asm and two

168 N.M. Hai et al.

hash value of environment H1(Env),H2(Env) are the same. If no duplication
detected, thread starts Phase 3. In Fig. 5, s1, s4 and s7 of l1 are not in Q, thus
thread t1 starts Phase 3. In contrast, a thread is halted if duplication occurs.
A halted thread discards the visited states and can be assigned new exploring
task later. For instance, let us consider the example in Fig. 6, thread t3 is halted
since state s2 of the local list l3 is contained in global list Q.

Phase 3: Update of the State Space. In this third phase, thread moves all
the state in local list to global list. Then, Phase 1 starts all over again. Figures 7
and 8 illustrate this phase. In Fig. 7, t1 moves s7, s4 and s1 from l1 to Q. In
Fig. 8, t2 moves s8, s5 and s2 from l2 to Q. Note that each thread basically
explores a different path in the CFG. Thus, the chance that their local lists are
updated into the global lists at the same time is quite relatively small. Hence,
each thread can perform its three phases independently, without concern of the
status of other threads.

Fig. 7. Update of t1 Fig. 8. Update of t2

4 Implementation Issues

We have implemented our approach in the new version of BE-PUM. This section
discusses the most important aspects in our implementation.

4.1 Implementation Details

This implementation inherits Thread library of Java to execute multiple threads.
We implement a thread manager for monitoring threads operations, includ-
ing creation of new thread, suspension, condition verification or deletion of
thread. The thread manager just allows a certain number of threads running
concurrently at the same time. For performance balance, the allowed maximum
number of activating threads is equal to number of cores of CPU. However,
this value can be manually modified. When a branch in the graph has to be
explored but all threads are already used, the thread manager will store the
position of this branch for assigning to free thread. The thread manager class is
designed to be a singleton pattern and each thread is only allowed to interact
with this single object for centralized management. An important requirement
is the implementation of the primary data structure, i.e. global list and local
list. We implemented them using HashSet library in Java. The main advantage

Multi-threaded On-the-Fly Model Generation of Malware 169

of HashSet is that it provides constant time performance for the basic opera-
tions (addition, removal). Moreover, seeking operation of HashSet requires O(1)
time. In worst case, it produces O(n) times when all elements have the same
hash value. At some points, many threads can access HashSet concurrently. For
resolving the concurrency, we declare the external synchronization using the
Collections.synchronizedSet method.

4.2 Empirical Study on Deciding the Size of Local List

A notable feature of our algorithm is that it requires very little synchronization
or cooperation between threads, which is often a bottleneck of multi-threading.
The main reason of this characteristics is that we adopt the local list for pre-
venting the persistent synchronization between threads when accessing global
list. Note that thread examines global list when its local list is full. However, the
size of local list requires much study since it has significant influence on perfor-
mance of our algorithm. If the size of local list is too small, threads continuously
update global list which easily causes conflict. If the size of local list is too large,
threads stay too long in the first phase. For solving this problem, we have per-
formed experiments on 8 small toy examples. These samples have the number of
reachable states ranging from thousands to millions of states e.g. demo1 contains
21 states, demo8 stores more than 1000000 states. Table 1 presented our results.
The second column Processing Time shows the computational time in seconds

Table 1. Experimental results on deciding size of local list

Buffer
Size

Processing Time (ms)

Demo 1 Demo 2 Demo 3 Demo 4 Demo5 Demo 6 Demo 7 Demo 8

(≈21(s)) (≈272(s)) (≈4120(s)) (≈65540(s)) (≈1048580(s)) (≈16112143(s)) (≈16515071(s)) (≈16777221(s))

10 2172 2188 2563 8329 98953 1625562 1645547 1552906

20 2172 2203 2578 8281 99485 1527421 1598438 1570156

30 2172 2203 2594 8218 100312 1537157 1593218 1563516

40 2172 2188 2593 8250 98485 1610703 1645218 1562469

50 2172 2203 2579 8531 99406 1599312 1635500 1555171

60 2172 2219 2578 8250 99235 1561719 1582953 1570281

70 2172 2219 2562 8203 98954 1519828 1552016 1565406

80 2234 2203 2610 8250 99078 1518015 1577485 1550953

90 2187 2219 2625 8281 99219 1514421 1537172 1566032

100 2172 2219 2578 8203 99813 1506063 1540875 1559641

120 2219 2234 2579 8141 99922 1520391 1556547 1560000

150 2172 2203 2578 8234 92094 1413203 1462031 1499609

170 2187 2204 2579 8235 98313 1523453 1547282 1553453

200 2171 2234 2594 8234 98781 1535859 1562922 1563078

250 2172 2204 2578 8343 99781 1513812 1542609 1543468

300 2172 2219 2578 8297 98734 1517641 1541672 1558547

350 2171 2204 2578 8219 99234 1515328 1547390 1543297

400 2187 2219 2579 8234 99313 1500062 1538734 1555094

450 2204 2250 2578 8219 101047 1508828 1537344 1552453

500 2157 2203 2578 8234 100734 1479438 1544359 1553359

550 2156 2204 2578 8156 98641 1509984 1544812 1552812

600 2156 2203 2609 8250 99312 1510860 1558109 1546656

650 2172 2204 2563 8437 101391 1481281 1544297 1551547

700 2188 2219 2625 8235 100437 1500610 1543843 1566360

170 N.M. Hai et al.

of our approach with different buffer size. Empirical results show that best result
achieves when the size of local list is 150.

4.3 On-Demand Hashing Generation

In this implementation, one major priority is choosing hashing algorithms which
maintain uniqueness and high speed performance in calculating. For achieving
these goals, BE-PUM implements Murmur36 and FNV-17 hashing algorithms
due to the balance between collision-resistant property and speed performance.

Hashing generation often takes a lot of time. For tackling this problem, BE-
PUM uses on-demand hashing generation strategy. That is, it adopts a local
cache for storing the last result of hashing generation. If there is no change
in the environment, i.e. the values of registers, flags, stacks and memory do
not change, BE-PUM returns the value of cache as the hash result. If there is
modification of environment, it generates the new hash value and stores it in
cache.

5 Experiments

5.1 Experimental Setup

For evaluating our approach, we have preformed our experiments on 125 real-
world malwares collected mainly from VirusTotal8. Their sizes mostly range from
a few to hundreds of kilobyte. All experiments are performed on 4-core machine,
Windows XP with 2.9 GHz and 8 GB memory. We have conducted our algorithm
on each malware with 1 to 4 worker threads and no multicore. Note that, in the
case of no multicore, our approach reduces to the sequential algorithm which is
implemented in the old version of BE-PUM.

5.2 Experimental Results

Figure 9 presents our experimental results. Malwares identified by the hash value
are described on the vertical axis of the figure. The horizontal axis presents the
execution time (in seconds) when applying our algorithm with different number
of working threads on each malware. Our approach produces the better results
in processing time when the number of worker threads increases.

Table 2 extracts some examples from Fig. 9. In Table 2, the second column
Malware indicates the short presentation of unique hash value of malware. The
third column Processing Time shows the computational time in seconds of our
approach with 4 cores, 3 cores, 2 cores, 1 core and no multicore respectively.
Clearly, this table shows a stable speed-up as the number of threads increases.
6 http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/

hash/Hashing.html.
7 http://www.java2s.com/Code/Java/Development-Class/FNVHash.htm.
8 https://www.virustotal.com/en/.

http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/hash/Hashing.html
http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/hash/Hashing.html
http://www.java2s.com/Code/Java/Development-Class/FNVHash.htm
https://www.virustotal.com/en/

Multi-threaded On-the-Fly Model Generation of Malware 171

F
ig
.
9
.
E

x
p
er

im
en

ta
l
re

su
lt

s

172 N.M. Hai et al.

Table 2. Some results of experiments

Num Malware Processing time (s)

4 cores 3 cores 2 cores 1 core No multicore

1 0166e 160 165 168 360 378

2 021f0 640 644 646 666 671

3 033f9 2951 3323 3509 5430 5445

4 034d7 1310 1571 1702 2617 2672

5 038a9 3806 3891 5770 6424 6501

6 040f8 150 151 152 160 194

7 041cf 135 150 158 238 301

8 042b2 309 372 403 623 692

9 042ea 313 354 375 725 785

10 044c4 117 119 119 182 218

11 045ba 3300 3809 4063 5843 6192

12 051ab 1607 1998 2193 2909 3101

13 053eb 2359 2604 2727 3176 3327

14 056ad 113 117 120 157 184

15 060a6 204 216 221 250 219

16 066b9 3033 3269 3387 3505 3548

17 067dc 120 137 145 230 264

18 070f0 134 151 159 302 319

19 073cf 712 744 759 923 1192

20 089d5 239 245 247 319 342

21 096e8 1632 1691 1721 2148 2237

22 101a0 1392 1489 1537 2360 2410

23 102ad 1363 1656 1803 3318 3391

24 116c1 177 180 181 205 219

25 122d3 992 1091 1342 1849 1904

26 130a7 349 354 356 416 432

27 132a6 107 127 136 237 249

28 22e1f 140 148 152 219 299

29 23c46 128 130 131 149 192

30 23c95 1510 1775 1908 2836 3012

31 23ff6 810 885 922 1558 1932

32 24f09 413 479 512 633 779

33 36e1f 2234 2438 2540 3255 3394

Multi-threaded On-the-Fly Model Generation of Malware 173

In some cases, the increase is significant e.g. in analyzing malware 038a99, the
processing time reduces approximately 59% from 6501 (s) for no multicore to
3806 (s) for 4 cores.

However, looking at the results closely, there are some cases in which the
increase of working threads does not reduce the processing time, e.g. 040f8. The
reason is that this malware just traces one path which is not suitable for multiple
threads. However, this case does not commonly happen in real-life malware.

6 Related Works

There is a considerable model generation tools from binary executables, e.g.
CodeSurfer/x86 [1], McVeto [18], JakStab [9], BIRD [14], and BINCOA/OS-
MOSE [3]. However, to the best of our knowledge, we are not aware of existing
research on multi-threaded model generation.

Many approaches have been designed for multi-threaded model checking or
reachability analysis [5,12]. All of them avoid to use the locks. Among them, our
approach is the most similar to [5] as it adopts the idea of state compression and
duplicate detection. However, our algorithm has a notorious advantage over [5].
In [5], threads operates in three phases. Within each phase, all threads must
synchronize and cooperate before moving to the next phase. This is a significant
bottleneck of multi-threading. As presented in Sect. 3, our approach requires
very little cooperation between threads. Each thread can work independently
without synchronization.

7 Conclusion

This paper proposes a logical continuation of our previous work based on an
approach of using multiple thread for reducing the processing time. It is com-
bined with hash compaction method and duplicate detection for minimizing the
resource consumption. The main feature of our algorithm is that it requires very
little synchronization between threads. The method is implemented as an option
of BE-PUM (Binary Emulator for PUshdown Model generation). Experiments
and observation confirm that this new version of BE-PUM explores state with
significant increase in processing time. However, hash compaction is an incom-
plete method. Since two states can be mapped to the same value, our approach
can ignore some parts of the state space. In the future work, we intend to apply
the idea of Comback Method [6] for solving this problem.

Acknowledgments. This research is funded by Vietnam National Foundation for Sci-
ence and Technology Development (NAFOSTED) under grant number 102.01-2015.16.

9 The real malware’s name is 038a994d075553b5cbc6b46ad033bf893b3ddc889d8c713c3c
245e320c693d36. For short presentation, we use the first 5 bytes of malware’s name.

174 N.M. Hai et al.

References

1. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In:
Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg
(2004)

2. Balakrishnan, G., Reps, T., Kidd, N., Lal, A.K., Lim, J., Melski, D., Gruian,
R., Yong, S., Chen, C.-H., Teitelbaum, T.: Model checking x86 executables with
codeSurfer/x86 and WPDS++. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 158–163. Springer, Heidelberg (2005)

3. Bardin, S., Herrmann, P., Leroux, J., Ly, O., Tabary, R., Vincent, A.: The BINCOA
framework for binary code analysis. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 165–170. Springer, Heidelberg (2011)

4. Moser, A., et al.: Exploring multiple execution paths for malware analysis. In: SP,
pp. 231–245 (2007)

5. Evangelista, S., Kristensen, L.M., Petrucci, L.: Multi-threaded explicit state space
exploration with state reconstruction. In: Hung, D., Ogawa, M. (eds.) ATVA 2013.
LNCS, vol. 8172, pp. 208–223. Springer, Heidelberg (2013)

6. Evangelista, S., Westergaard, M., Kristensen, L.M.: The ComBack method revis-
ited: caching strategies and extension with delayed duplicate detection. In: Jensen,
K., Billington, J., Koutny, M. (eds.) Transactions on Petri Nets and Other Models
of Concurrency III. LNCS, vol. 5800, pp. 189–215. Springer, Heidelberg (2009)

7. Holzmann, G.: Design and Validation of Computer Protocols. Prentice-Hall, Upper
Saddle River (1991). International Editions

8. Holzmann, G.: An improved protocol reachability analysis technique. Softw. Pract.
Exp. 2, 137–161 (1988)

9. Kinder, J., Kravchenko, D.: Alternating control flow reconstruction. In: Kuncak,
V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 267–282. Springer,
Heidelberg (2012)

10. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting malicious code
by model checking. In: Julisch, K., Kruegel, C. (eds.) DIMVA 2005. LNCS, vol.
3548, pp. 174–187. Springer, Heidelberg (2005)

11. King, J.C.: Symbolic execution and program testing. CACM 19(7), 385–394 (1976)
12. Laarman, A., van de Pol, J., Weber, M.: Boosting multi-core reachability perfor-

mance with shared hash tables. In: FMCAD 2010, pp. 247–255. IEEE (2010)
13. Lakhotia, A., Kumar, E.U., Venable, M.: A method for detecting obfuscated calls

in malicious binaries. IEEE Trans. Softw. Eng. 31(11), 165–170 (2005)
14. Nanda, S., Li, W., Lam, L., Chiueh, T.: BIRD: binary interpretation using runtime

disassembly. In: 4th CGO, pp. 358–370 (2006)
15. Nguyen, M.H., Nguyen, T.B., Quan, T.T., Ogawa, M.: A hybrid approach for

control flow graph construction from binary code. In: APSEC, pp. 159–164 (2013)
16. Hai, N.M., Ogawa, M., Tho, Q.T.: Obfuscation code localization based on CFG

generation of malware. In: Garcia-Alfaro, J., et al. (eds.) FPS 2015. LNCS, vol.
9482, pp. 229–247. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30303-1 14

17. Stern, U., Dill, D.L.: Improved probabilistic verification by hash compaction. In:
Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 206–224.
Springer, Heidelberg (1995)

18. Thakur, A., Lim, J., Lal, A., Burton, A., Driscoll, E., Elder, M., Andersen, T.,
Reps, T.: Directed proof generation for machine code. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 288–305. Springer, Heidelberg
(2010)

19. Wolper, P., Leroy, D.: Reliable hashing without collision detection. In: Courcou-
betis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 59–70. Springer, Heidelberg (1993)

http://dx.doi.org/10.1007/978-3-319-30303-1_14

CPDY: Extending the Dolev-Yao Attacker
with Physical-Layer Interactions

Marco Rocchetto1 and Nils Ole Tippenhauer2(B)

1 SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
marco rocchetto@stud.edu.sg

2 ISTD, Singapore University of Technology and Design, Singapore, Singapore
nils tippenhauer@sutd.edu.sg

Abstract. We propose extensions to the Dolev-Yao attacker model to
make it suitable for arguments about security of Cyber-Physical Sys-
tems. The Dolev-Yao attacker model uses a set of rules to define poten-
tial actions by an attacker with respect to messages (i.e. information)
exchanged between parties during a protocol execution. As the tradi-
tional Dolev-Yao model considers only information (exchanged over a
channel controlled by the attacker), the model cannot directly be used
to argue about the security of cyber-physical systems where physical-
layer interactions are possible. Our Dolev-Yao extension, called Cyber-
Physical Dolev-Yao (CPDY), allows additional orthogonal interaction
channels between the parties. In particular, such orthogonal channels
can be used to model physical-layer mechanical, chemical, or electrical
interactions between components. In addition, we discuss the inclusion
of physical properties such as location or distance in the rule set. We
present an example set of additional rules for the Dolev-Yao attacker,
using those we are able to formally discover physical attacks that pre-
viously could only be found by empirical methods or detailed physical
process models.

1 Introduction

In recent years, security of Cyber-Physical systems (CPS) has received increasing
attention by researchers from the domain of computer science, electrical engi-
neering, and control theory [20,29]. We use the term CPS to refer to systems
that consist of networked embedded systems, which are used to sense, actuate,
and control physical processes. Examples for such CPS include industrial water
treatment facilities, electrical power plants, public transportation infrastructure,
or even smart cars. All those systems have seen a rapid increase in automation
and connectivity, which threatens to increase vulnerability to malicious attacks.

Security analysis of any system relies on well-defined attacker and system
models [3,16]. While the system model provides an appropriate abstraction of the
system under attack, the attacker model ideally fully defines the possible inter-
actions between the attacker and the attacked system. In particular, the model

M. Rocchetto—The work was carried out while Marco was with iTrust at Singapore
University of Technology and Design.

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 175–192, 2016.
DOI: 10.1007/978-3-319-47846-3 12

176 M. Rocchetto and N.O. Tippenhauer

will also define constraints for the attacker (e.g. finite computational resources,
no access to shared keys).

In contrast to the domain of information security, where the Dolev-Yao
attacker model [16] (DY) is widely used for protocol analysis, the state-of-the-
art for CPS security does not have a common terminology for attacker models.
Even if the topic has been broadly discussed in the CPS research community, e.g.,
in [12], only a small number of tentative works (e.g., [18,35]) have addressed that
problem. The DY model used by the information security community represents
a very strong attacker, who can access and manipulate all network traffic arbi-
trarily. One could directly translate this attacker to CPS by allowing the attacker
to intercept any communication in a real system (e.g. local fieldbus communica-
tion), or to be within physical proximity of all (unprotected) devices. However,
such an attacker would only be capable of finding attacks on the network level
of the CPS. Since the network traffic of CPS does not contain information about
all interactions possible in a CPS, it is not sufficient for comprehensive analysis.
As a result, there likely are (physical-layer) interactions between the attacker
and the system that cannot be captured by the DY paradigm.

In this paper, we investigate the application of the DY attacker model for
security analysis of CPS. We present a set of extensions to allow for a more
general attacker model for CPS, that we named CPDY (Cyber-Physical Dolev-
Yao) [24]. The CPDY attacker model allows us to consider the interaction of an
attacker on the communication network, the physical presence of attackers, and
the physical interaction with the mechatronics component of the CPS.

We summarize our contributions as follows:

– We discuss the general limitations of the DY attacker model for analysis of
CPS, and physical layer interactions between the attacker and the attacked
system.

– We propose a number of rule extensions to analyze CPS using the DY model.
– We implement these rule extensions in the ASLan++ [37] formal language,

and present use case examples.

Structure. In Sect. 2, we summarize the DY attacker model. We discuss the use
of the DY model in the context of CPS in Sect. 3, and show that the traditional
attacker and system model is only able to represent a subset of possible interac-
tions. We propose extensions to the DY attacker model in Sect. 4, and show our
results on a real word water treatment plant use case in Sect. 5. We summarize
the related work in Sect. 6 and we conclude the paper in Sect. 7.

2 Background

2.1 Modeling Systems and Communications

Level of Modeling Detail. Formal languages, e.g. HLPSL [36] and ASLan++
[37], permit a modeler to define not only the exchanged messages but also the

CPDY: Extending the Dolev-Yao Attacker with Physical-Layer Interactions 177

behavior of entities involved in the communication. Some of the security valida-
tion tools allow a modeler to benefit of some algebraic properties (e.g., [8,27])
but these are typically represented symbolically by a set of constraints. Intu-
itively, a high level of details (e.g., a concrete highly detailed representation of
the behavior of an agent) may result in non-termination problems while per-
forming the analysis. In addition, even if we could afford such a level of details,
it might not be useful to analyze security protocols against security properties
at that level of detail. Some of the most common attacks (such as man-in-the-
middle and replay attacks) that violate confidentiality or authentication can be
found without the need of detailing the encryption scheme in the protocol.

Modeling Simplifications. In the so called perfect cryptography assump-
tion, the security encryption scheme is suppose to be “perfect”, without any
exploitable flaw, and so the only way for the attacker to decrypt a message is
by using the proper key. That assumption is widely accepted in the security
protocol community, and most of the formal reasoning tools for the analysis of
security protocols abstract away the mathematical and implementation details
of the encryption scheme [4,8,25,32].

Modeling Architectures. Following the same line of reasoning, when one
considers more complicated architecture representation, such as web applica-
tions or Service Oriented Architecture (SOA), some of the components are com-
monly assumed to be “perfect”, in the same way as encryption schemes. Sev-
eral examples are shown by the case studies of the AVANTSSAR and SPaCIoS
projects [3,34] where researchers have developed several abstract models of SOAs
and web applications using the ASLan++ language, e.g., in [5]. In order to give
some specific examples, databases in SQLi analysis in [10], CSRF token gener-
ation in [23] are assumed to be “perfect”. This is due to the fact that (as the
security of security protocols is not guaranteed only by encryption schemes) the
security of web applications is not guaranteed only by store procedures or perfect
random generation of token. Another example has been presented in [11], where
authors search for attacks in zero-knowledge proof systems abstracting away
some of the mathematical and implementation details of the zero-knowledge
algorithms.

2.2 Cyber-Physical Systems

In this work, we use the term Cyber-Physical System (CPS) to refer to systems
that consist of networked embedded systems, which are used to sense, actuate,
and control physical processes. Examples for such CPS include industrial water
treatment facilities, electrical power plants, public transportation infrastructure,
or even smart cars. All those systems have seen a rapid increase in automation
and connectivity, which threatens to increase vulnerability to malicious attacks.
While details on network topology, protocols, and control differ between engi-
neering domains, the fundamental architecture is similar. We now explain that
architecture using an industrial control system (ICS).

178 M. Rocchetto and N.O. Tippenhauer

Fig. 1. (a) Example CPS architecture. (b) Use case scenario of water tank with motor-
ized valve and pump controlled by a PLC. A level meter reports to the PLC. A manual
valve is placed between tank and pump.

A modern industrial control system typically consists of several layers of net-
works. An example industrial control network is illustrated in Fig. 1a. The phys-
ical process is measured by distributed sensors, and manipulated by actuators.
These sensors and actuators operate by receiving and sending analog signals.
The analog signals are converted into digital signals by Programmable Logic
Controllers (PLCs). The digital signals are then exchanged between PLCs and
a central supervisory control system (SCADA) using industrial communication
protocols (e.g. Modbus/TCP).

Modeling CPS. CPS can also be seen as a set of communicating agents [12]
(often with one node acting as a controller), and related work focuses on the
representation of the concrete behavior of the CPS [1,2,31,33]. This is believed
to help the discovery the new attacks specific for CPS, e.g. resonance attacks [12].
However, that can lead researchers to over-complicating the system models even
when searching for security attacks.

2.3 The Dolev-Yao Model

The DY attacker model [16] is a de-facto standard for the formal analysis of
information security. The usage of such an attacker model is usually employed
for the identification of cyber-related attacks, e.g., Web applications and Service-
Oriented architectures as proposed in [3,23]. Attacker models à la DY have
been proposed [26,30] to reason on CPS. In this work, we consider the standard
DY [16] model of an active attacker who controls the network but cannot break
cryptography.

The attacker can intercept messages and analyze them if he possesses the
corresponding keys for decryption, and he can generate messages from his knowl-
edge and send them under any agent name. As usual, for a set M of messages,
we define DY (for “Dolev-Yao” knowledge) to be the smallest set closed under
the generation (G) and analysis (A) rules of the system given in Fig. 2. The
G rules express that the attacker can compose messages from known messages
using pairing, asymmetric and symmetric encryption. The A rules describe how
the attacker can decompose messages.

CPDY: Extending the Dolev-Yao Attacker with Physical-Layer Interactions 179

M1 ∈ M

M1 ∈ DY
Gaxiom

M1 ∈ DY M2 ∈ DY

[M1,M2] ∈ DY
Gpair

M1 ∈ DY M2 ∈ DY

{M1}M2 ∈ DY
Gcrypt

M1 ∈ DY M2 ∈ DY

{|M1|}M2 ∈ DY
Gscrypt

[M1,M2] ∈ DY

Mi ∈ DY
Apairi

{|M1|}M2 ∈ DY M2 ∈ DY

M1 ∈ DY
Ascrypt

{M1}M2 ∈ DY inv(M2) ∈ DY

M1 ∈ DY
Acrypt

{M1}inv(M2) ∈ DY M2 ∈ DY

M1 ∈ DY
A−1
crypt

Fig. 2. The system of rules of the Dolev-Yao attacker

The algebra of messages, which tells us how messages are constructed, is
defined following [8], in the standard way. In this paper, we consider the following
operations:

– {M1}M2 represents the asymmetric encryption of M1 with public key M2;
– {M1}inv(M2) represents the asymmetric encryption of M1 with private key

inv(M2) (the mapping inv(·) is discussed below);
– {|M1|}M2 represents the symmetric encryption of M1 with symmetric key M2;
– [M1,M2] represents the concatenation of M1 and M2.
– inv(M) gives the private key that corresponds to public key M

3 The Dolev-Yao Model Is Not Enough

Although the classic DY model can be applied to CPS security analysis straight
away, we argue that it will not be able to detect a large set of attacks possible in
that context (i.e. those that involve physical-layer interactions). To illustrate that
argument, we now provide three example scenarios. For the sake of simplicity,
we start by presenting the intuition behind the model and the goal. Further
details on the ASLan++ prototype of these scenarios along with our results are
provided in Sect. 5 and [24].

3.1 Application of Dolev-Yao for CPS

We base our example on a minimal setup in a water treatment system (see
Fig. 1b). In particular, we use a subprocess of a real water treatment testbed
depicted in Fig. 6 (the SWaT testbed [1,33]). A similar scenario has been con-
sidered in [21,22]. The scenario we considered contains five different components
and a PLC:

1. A motorized inflow valve, initially open, let water flows into a tank through
a pipe

2. A tank is equipped with a sensor which checks the level of the water inside
the tank

3. The sensor communicates its reading of the level of the water inside the tank
to a PLC

180 M. Rocchetto and N.O. Tippenhauer

4. When the level of the water reaches a certain upper threshold, the PLC
communicates to the motorized inflow valve to close and to the pump to start

5. Symmetrically, when the water reaches a certain lower threshold, the PLC
communicates to the inflow valve to open and to the pump to stop

6. A manual valve (placed between the tank and the pump) can be manually
opened/closed, e.g., to prevent the water to flow into the rest of the testbed
in case the water in the tank is contaminated or the pump broken

7. A central SCADA control that communicates with the PLC over the network

In the following, we assume that the attacker’s goal is to cause a water spillage
(or burst) in the tank component. The abstract messages exchanged over the
network are quite simple (see Fig. 3a). The valve controls the inflow of the water
to the tank. The sensor of the tank reports the current fill state to the PLC as
analog signals. The PLC converts the analog signals into digital messages (value
in the picture) that it sends to the SCADA. If the water level in the tank has
crossed certain high/low thresholds, the SCADA sends a close/open message to
the inflow valve and on/off to the pump. We note that in this setting, there is no
distinction between the tank and the sensor. Nothing prevents us in considering
them as two separate entities, but this would complicate the model without
benefit in terms of attacks.

We analyzed the ASLan++ model using the AVANTSSAR platform, and
found a simple attack (as expected). In that attack, the attacker drops the
messages from the PLC to the SCADA. As result, the tank will overflow and the
attacker will achieve his goal. Even if the attack is simple, it shows that one can
easily use state-of-the-art verification tools and the standard DY attacker model
to search for attacks on a CPS model. This basic example demonstrates that it is
possible to reason on similar scenarios without considering the (fluid) mechanics
of the process under attack. In particular, even in such a simple example the
equations describing the flow of the water are far from trivial and are usually
considered when reasoning on similar scenarios. In the remainder of this section,
we consider a modification of this scenario in which the network-only DY attacker
model cannot find the attack.

Fig. 3. (a) Physical interaction (dashed line) and digital interaction (solid line) between
components in the first example. (b) Example interactions, with direct (out-of-band)
communication between PLC, sensor, and actuator.

CPDY: Extending the Dolev-Yao Attacker with Physical-Layer Interactions 181

3.2 Limitations of Dolev-Yao for CPS

The previous examples demonstrates that the DY attacker model can be used to
reason on network-related security aspects of CPS. We now consider a scenario
in which the agents also interact through physical-layer interactions. In particu-
lar, in real-world CPS the communication between PLCs, sensors and actuators
usually uses analog signals. When a distributed control scheme is used, the logic
of the system is usually integrated directly into the PLC, instead of relying on
the SCADA component. In addition, components can interact though the phys-
ical layer directly (e.g. by exchanging water from a pipe into a tank). To reflect
such a setting, we modify the system in the previous example as follows: the
inflow valve and the pump are now directly controlled by the PLC based on
analog signals from the sensor. In other words, the valve and the pump operate
without interrogating the SCADA. As a result, the messages on the network and
SCADA are not directly involved in the operations of the valve and the pump.
We can consider the setting as one in which there is just one entity whose inter-
nal behavior encapsulate the behaviors of the valves, sensor, tank, pump and
PLC (see Fig. 3b). Since there is no communication over the network related to
the opening/closing of the valve or to the level of the water, there is no way
for the DY attacker model to achieve the goal, i.e., overflowing the tank. We
confirmed this intuition with a related model in ASLan++ and evaluation in
the AVANTSSAR platform. No successful attack is found.

Nevertheless, it could be expected that attacks by a physically present
attacker are possible in the given setting, in particular if a physically present
attacker can manually open or close the valves. Our ASLan++ model does not
find such an attack because potential malicious physical-layer interactions with
the system have not been considered.

3.3 Proposed Approach

We claim that, (so far) the related work generally models the operation of a CPS
as a set of messages exchanged between entities over a network (see Sect. 6). For
that reason, we consider prior work as limited modification of the DY attacker
model. However, consideration of the physical actions is often crucial to find
real-world attacks on CPS (e.g. attacks such as Stuxnet [38]). For that reason,
we propose an extension of the DY attacker model with new physical interac-
tion rules to support reasoning on the physical-layer security of CPS. We will
introduce those rules in Sect. 4. Before that, we briefly discuss two aspects of our
proposed approach in more detail: abstraction of physical process behavior, and
whether verification tools or model checkers are better suited.

Abstraction of Physical Processes. In our proposed approach, physical layer
interactions will be modeled as abstract interactions between components. In
particular, we do not model all the details of the behavior of an agent for CPS.
We believe that it will be very challenging for a security verification tool (or a
model checker in general) to consider all details of the behavior of an agent for

182 M. Rocchetto and N.O. Tippenhauer

CPS. For example, differential equations that model the behavior of an ultra-
filtration process will be difficult to consider by the DY model or verification
tool.

In this work, we abstract away all these details, similar to the way that
perfect cryptography is used for security protocols analysis where we abstract
from cryptographic primitives (see [15] for more details). In security protocols,
that abstraction is justified by the observation that most of the attacks rely
on the logical aspects of the protocol. Encryption schemes are treated as black
box and the attacker cannot learn any useful information from an encrypted
message without the proper decryption key. As such, a generic predicate over a
term defines the encryption as {M1}M2 in Sect. 2. In CPS, we assume that all
the physical processes can be abstractly represented.

Verification Tools vs. Model Checkers. In particular, we propose to use a
DY verification tool, and not a general model checker. Our argument for that is
the following: in order to model a CPS to formally validate it against an attacker
model, CPS (or subparts) are often modeled with languages supported by tools
which do not implement the DY attacker model, e.g. NuSMV, SPIN [14]. How-
ever, it has been shown [7] that an ad-hoc implementation of the DY is more
advanced in terms of efficiency and coverage than using a “general purpose”
model checker with the DY model-hard coded in the specification. That is par-
ticularly evident when considering the numerous amount of verification tools
developed specifically to reason on the security aspects of various systems, e.g.,
[4,8,9,17,32].

4 Physical-Layer Interactions for the Dolev-Yao Attacker

In this section, we present our proposed extensions of the DY model in order to
make it suitable to argue about security of Cyber-Physical Systems. In partic-
ular, we discuss the introduction of additional rules for the DY attacker model
to describe physical-layer interactions.

4.1 New Rules for the DY Attacker and System

New Rules for the System. The new rules for our system model aim to cap-
ture the diverse physical-layer interactions between components in the system
under attack. The interactions are usually constrained by the laws of physics,
which will never be violated. A very exhaustive coverage of all kinds of physical
layer interactions and laws of physics would potentially result into a large set
of additional rules (potentially automatically extracted from a system specifi-
cation, e.g., [28]). In the following, we will consider only few additional rules
to model specific interactions. In Fig. 4, we present rules that represent laws
of physics related to our example (Fig. 1b). With a slightly abuse of notation,
each rule represents a modification of the system status Sys from preconditions

CPDY: Extending the Dolev-Yao Attacker with Physical-Layer Interactions 183

Tank(level,value) ∈ Sys Pump(status,off) InflwoValve(status,open) ∈ Sys

Tank(level,value′) ∈ Sys∧ (value′ > value)
raise1(Tank)

Tank(level,value) ∈ Sys ManualValve(status,close) ∈ Sys InflowValve(status,open) ∈ Sys

Tank(level,value′) ∈ Sys∧ (value′ > value)
raise2(Tank)

C(status,damaged) ∈ Sys C(contains,water) ∈ Sys C(level,value) ∈ Sys

C(level,value′) ∈ Sys∧ (value′ < value)
damaged(C)

C(operate,manual) ∈ Sys C(status,open)∨C(status,close) ∈ Sys

C(status,close) ∈ Sys
close(C)

C(operate,manual) ∈ Sys C(status,open)∨C(status,close) ∈ Sys

C(status,open) ∈ Sys
open(C)

Fig. 4. Examples of rules that represent physical-layer interactions in the system

(top) to postconditions (bottom). Sys is a set collecting all the physical prop-
erties of the systems (e.g., water level, temperature, pressure) for each compo-
nent in the system (e.g., tank). The properties are expressed with the predicate
C (property , value) (C(·) as short form of Component(·)). In Fig. 4, raise1 (Tank)
and raise2 (Tank) relates a system configuration with its physical effects, i.e.,
the increase of the water level in the tank. damaged(C) expresses the effect of
the burst of the tank, and close(C) and open(C) defines the effect of physical
interactions with a component (e.g., a valve) which can be manually operated
to change its status.

Rules for DY Attacker. The new rules for our attacker model aim to cap-
ture the diverse physical-layer interactions between the attacker and the system
(see Fig. 5). Similar to the system specification rules, the interactions between
attacker and system are usually constrained by the laws of physics—even a strong
attacker would not be able to create or consume arbitrary amounts of energy,
move at infinite speed, or similar.

DYProp(distance,physical access) DYProp(tool,damage)

C(status,damaged) ∈ Sys
damageDY

DYProp(distance,physical access) C(operate,manual) ∈ Sys C(status,open) ∈ Sys

C(status,close) ∈ Sys
manualCloseDY

DYProp(distance,physical access) C(operate,manual) ∈ Sys C(status,close) ∈ Sys

C(status,open) ∈ Sys
manualOpenDY

Fig. 5. Examples of rules that represent physical-layer capabilities of attacker

4.2 Implementation of New Rules for DY

We base our attacker model on a review of related work that aims to profile
attackers for CPS [12,13,18,33]. We found that they all share the idea of defining

184 M. Rocchetto and N.O. Tippenhauer

the attacker by means of a set of dimensions. These dimensions can be seen as
properties of the attacker, e.g., distance with respect to the CPS, knowledge
of the physics of the components of the system, tools (software and hardware)
available to the attacker, financial support, and preference to stay hidden. We
can use dimensions together with physical properties of the system to define new
rules for the attacker as follows.

attacker property system property
result of action action

where one or more attacker’s properties along with the knowledge of one or
more system property (that might be related to the knowledge of some physical
laws connected to the system property) are the precondition to perform an action
action which results are expressed as postconditions. In other words, an attacker
is a malicious agent that can take advantage from the improper use of some
device of the system.

In our first example, we can add the damageDY in Fig. 5 which express that
an attacker who has physical access to the CPS could damage or manually
operate a component, for example, a tank. Other examples are rules expressing
that if the attacker has physical access to the CPS can (as we will discuss in
Sect. 5.3) heat the tank and increase its pressure. In Sect. 5, we will show how
we can leverage those attacker rules to find new attacks on a CPS which involve
physical-layer interactions.

4.3 DY Rule Extension Using Horn Clauses

In order to apply our idea to a concrete example, we require a verification tool
such that: (i) allows modification to the DY rules, and (ii) provides a language
expressive enough to model a CPS. It is not easy to find a security verification
tool with such constraints and, to the best of our knowledge, there is no tools
in the literature.

In this work, we propose the following two workarounds that allow us to
implement our additional rules even without a tool that satisfies the mentioned
requirements: (i) we have used Horn Clauses (HC) to add extra rules to the DY
attacker model, and (ii) we have used databases (shared memories) to store the
state of the components the system, e.g., the level of the water of a tank. Using
both ideas, we require only a tool that supports Horn Clauses and Shared Mem-
ories. We chose the ASLan++ specification language [37] which supports both
HC and shared memories. Using ASLan++, we have implemented several case
studies and obtained preliminary results that support our proposed approach.

5 Case Studies

In this section, we first show that a DY verification tool can be used to check
security goals in CPS models. We have used the ASLan++ specification lan-
guage [37] to define our examples which are based on a process of the SWaT

CPDY: Extending the Dolev-Yao Attacker with Physical-Layer Interactions 185

Fig. 6. Process P1 (raw water treatment) – SWaT testbed

testbed [19] depicted in Fig. 6 (see Fig. 3a for the message sequence chart). We
start by providing more details on the example summarized in Sect. 3. In particu-
lar, we present a network-only modeling of the CPS and potential attacks, which
shows that the DY model can be used to find attacks similar to ones discussed
in related work (e.g., man-in-the-middle attacks in [2,33]). For that analysis,
we abstract away the implementation details of the CPS and detect the same
(network related) security flaw of most of the approaches we have found in the
literature. We then modify the specification (as depicted in Fig. 3b) to show
that when some physical operations (which are the at very core of a CPS) are
involved in the process, the standard DY attacker model might not be able to
find all attacks. To mitigate this, we modify the DY model to let him physically
interact with the system under certain constraints. This allows the attacker to
detect new attacks which involves physical interaction with the system. We show
that almost all the attacks which relay on attackers’ physical actions cannot be
found. We propose a first investigation on how to extend the DY model in order
to capture both cyber and physical attacks. Our results, along with timing, are
summarized in Table 1.

Table 1. Summary of the analysis on the use cases

Attack found Timing

DY CPDY Analysis Total

Network (Sect. 5.1) � � 220ms 1.7 s

Manual (Sect. 5.2) � 8ms 1.3 s

Heating (Sect. 5.3) � 4ms 1.0 s

Total includes time for translation, analysis and attack
trace generation

5.1 Network-Based Communication Use Case

This section briefly summarizes an implementation of the scenario proposed in
Sect. 3.1. We focus on three aspects:

186 M. Rocchetto and N.O. Tippenhauer

– The status of the system (e.g., the level of water and measurements of sensors)
– The behavior of each entity (i.e., tank, valves, pump, PLC and SCADA)
– The communication between various entities (analog and network channels)

In this example, the PLC converts the analog signals to digital messages and
sends them to the SCADA control. To be coherent with the example, we model
an analog channel (e.g., by using a database) between the inflow valve, the
tank, the pump, and the PLC. The PLC then translates and communicates
the tank/valve/pump status over a network channel with the SCADA. For the
sake of readability, we assume the PLC automatically converts and sends the
tank/valve/pump status. As a result, the valve, the tank, and the pump directly
communicate with the SCADA over a network channel. The full implementation
is reported in [24].

System Status. CPS can be seen as communicating over two channels: one is
the network channel (maybe itself divided into several layers or regions) and the
other is the physical flow of the events, e.g., electricity in power grids or water
in water treatment or distribution CPS. We believe that an understanding on
how to model the physical flow of a CPS, integration of that with the network
(in such a way that an attacker model can concretely find new attacks) is still
not well defined in the literature.

In this work, the status of the system is defined by a database systemStatus,
shared between all the entities (but hidden to the DY attacker). The database
is defined as a set of pairs (agent , status) that keeps track of the status of all
entities of the specification.

Inflow Valve/Pump. The valve/pump specification describes a scenario where a
SCADA changes the status of the valve/pump, e.g., from open/on to close/off,
by sending to the valve a message through the PLC.

Manual Valve. The behavior of the manual valve is the same as the inflow valve.
The only difference is that the manual valve can only be manually operated (e.g.,
to change its status from open to close), i.e., cannot be operated using network
messages.

Tank. In the real testbed the PLC interrogates the sensor of the tank in order to
obtain the level of the water inside the tank. For simplicity, we do not distinguish
between the tank as a container and its sensors. We also assume that the sensor
sends the sensed data of the level of the water whenever the level is above or
below a certain threshold. We can obviously consider the more complicated and
realistic tank specification containing a sensor that waits for the PLC to inter-
rogate it. This complicates the analysis but the performance of the validation
phase does not change order of magnitude (there is a variation of some millisec-
onds) and the result of the analysis remains the same. We recall that messages
are directly sent to the SCADA instead of PLC for readability.

The tank model checks for two, mutually exclusive, status of the tank.

CPDY: Extending the Dolev-Yao Attacker with Physical-Layer Interactions 187

– If the level of the water has reached an upper threshold overT , the inflow valve
is closed, the pump is on, and the manual valve is open, the systemStatus data-
base is updated as if the water level had lowered to a lower threshold underT .
After the status update, the tank communicates its new status underT to the
SCADA.

– Symmetrically, if the level of the water has reached a threshold underT , the
inflow valve is open, and either the manual valve is closed or the pump is off,
the systemStatus database is updated as if the water level had reached the
upper threshold overT .

SCADA. As for the valve entity, we have defined the behavior of the SCADA
waiting for incoming messages from the tank entity. When the tank communi-
cates to the SCADA that the water has reached the upper threshold overT , the
SCADA closes the inflow valve and turns on the pump. Symmetrically, when the
tank reaches the lower threshold, the SCADA opens the inflow valve and turns
off the pump.

Initial Status of the System. The initial status of the specification is defined
with the tank empty (i.e., the level of the water is underT in the systemStatus
database), the inflow and the manual valve are open, and the pump is off.

Goal. The goal is to overflow the tank and in ASLan++ we can define our goal
as the following LTL (Linear Temporal Logic) formula.

�(inflowValve(status, open) ∈ Sys ⇒
manualValve(status, open) ∈ Sys ∧ (tank(status, underT) ∈ Sys ∨ pump(status, on) ∈ Sys))

In the formula, we define that whenever the inflow valve is open, i.e. the
systemStatus database contains valve(status, open), then the manual valve is
open, and either the tank must be empty or the pump turned on. In other words,
if we find a configuration of the system such that the inflow valve is opened, the
tank is full of water, and the pump is off, then the tank is overflowing. The �
at the beginning of the goal states that the goal must hold in every state of the
system (i.e., LTL global operator).

Security Analysis. The AVANTSSAR platform finds a violation of the goal (i.e.,
a states where the goal does not hold). The goal is violated because there is a
state of the system in which the tank has reached the overT but the valve is
still open and the pump is switched off. In order to achieve the goal, an attacker
have to drop the packet, communicating the overT status, sent from the tank
to the SCADA.

5.2 Physics-Based Interaction Use Case

We now modify the scenario by removing the communication of the level of the
water between the PLC and the SCADA, i.e., between tank/valve/pump and
SCADA in the previous specification. For that reason, we assume that the PLC

188 M. Rocchetto and N.O. Tippenhauer

automatically close the inflow valve when the level of the water inside the tank
reaches the threshold level overT . The DY attacker cannot spoof or eavesdrop
the communication between entities anymore since there is no more network
communication with the SCADA.

Security Analysis. Against the DY model, the AVANTSSAR platform does not
report any attack on the specification with respect to the goal defined in Sect. 5.1.
This result is straightforward since the attacker does not receives any message
and there is no interactions over network between various entities.

As we are considering a CPS, an attacker who could have physical access to
the system could most likely find a number of ways to overflow the tank. Being in
close proximity of the CPS could give to the attacker an advantage with respect
to a cyber-attacker who can only access the system through the network. For
example, an attacker could manually operates the valves to increase the level of
the water in the tank and burst the tank. In this perspective, it is fair to assume
that there are some attacker properties, e.g., distance, that can be exploited by
an attacker to perform some actions (or even attacks) that leads to some physical
consequences in the CPS. As a simple motivating example, the following rule has
been added to the specification (as a Horn clause as discussed in Sect. 5).

DYProp(distance, physical access) ∧ C (status, open) ∈ Sys ∧ C (operate,manual) ∈ Sys

C (status, close) ∈ Sys

The clause states that whenever the attacker has physical access to the CPS,
he can close any valve which can be manually operated. We also modeled the
opening of a valve.

When we run the AVANTSSAR platform searching for a state of the system
in which the level of the water in the tank has reached the upper threshold overT
(defined as a goal), we (unsurprisingly) find an attack. To perform the attack,
the attacker manually opens the inflow valve and closes the manual valve.

5.3 Physics-Based Interaction Use Case – A Stronger Attacker

This use case is a variation of the one in Sect. 5.2, where we add extra rules
to the attacker. In particular, we have modeled that whenever the attacker has
physical access to the CPS, he can physically interact with the system and heat
up the water in tank (e.g., through microwave or fire).

DYProp(Distance, physical access) DYProp(Tool , heating)

C (status, heating) ∈ Sys
heatDY

Note here that some system properties should hold, e.g., the tank should contain
a liquid but for the sake of simplicity we abstract away system properties in this
example.

We have modeled the corresponding physical laws and we report three
examples in Fig. 7. heat1 (C) and heat2 (C) express the temperature and pres-
sure increase when heating a generic component containing water respectively.
heat3 (C) defines the direct proportionality between temperature and pressure
in the presence of water inside a component.

CPDY: Extending the Dolev-Yao Attacker with Physical-Layer Interactions 189

C(status,heating) ∈ Sys C(contains,water) ∈ Sys C(temperature,Level) ∈ Sys

C(temperature,Level′) ∈ Sys∧Level′ > Level
heat1(C)

C(status,heating) ∈ Sys C(contains,water) ∈ Sys C(pressure,Level) ∈ Sys

C(pressure,Level′) ∈ Sys∧Level′ > Level
heat2(C)

C(status,heating) ∈ Sys C(contains,water) ∈ Sys C(temperature,TLevel) ∈ Sys C(pressure,PLevel) ∈ Sys

C(temperature,TLevel′) ∈ Sys∧C(pressure,PLevel′) ∈ Sys∧ (PLevel′ > PLevel)∧ (TLevel′ > TLevel)
heat3(C)

Fig. 7. Rules that represent physical laws in use case of Sect. 5.3

Goal. We check if the attacker can burst the tank, increasing the pressure of the
tank.

�(Tank(pressure, overT) �∈ Sys)

Security Analysis. The AVANTSSAR platform reports a violation of the goal.
The two clauses heat2 and heatDY have been used to heat the tank component
and then to raise its pressure, bursting the tank.

6 Related Work

The formal verification of security properties of CPS is a non trivial task, as CPS
introduce physical properties to the system under analysis. SAT/SMT solvers
used by security analysis tools (e.g.,[3]) do not support such properties. In order
to overcome this limitation, one could simulate the process (e.g., [2]) or adapt the
level of abstraction of CPS components. In [35], the author presents a formal
definition of an attacker model for CPS. The attacker is defined as a set of
pairs representing locations and capabilities. Capabilities are defined as a set
of tuples expressing actions, cost (energy/time) and range (with respect to the
topology) of the attacker. The attacker is assumed to perform two types of
attacks: physical, against a device and cyber against the communications; where
the first requires physical access while the second proximity to the node. The
actions of the attacker are WSN actions (remove, read/write, reveal, reprogram,
starve) and cyber actions (block, eavesdrop, inject).

In [6,26], the authors present a formalization to reason on security properties
of wireless networks (including a considerations of physical properties related
to those networks). The authors present an attacker model as a variation of
the DY attacker model. The attacker is a malicious agent of the network who
cannot break cryptography. He has a fixed location, while the usual DY controls
the entire network, a set of transmitters and receivers, an initial knowledge
with his private/public keys which can use to create and analyze messages. The
authors also consider constraints on the distance of communicating parties. An
attacker can only intercept messages at his location and colluding attackers do
not instantaneously exchange knowledge, they are constrained by the network
topology.

190 M. Rocchetto and N.O. Tippenhauer

7 Conclusions and Future Work

In this paper, we argued that (to the best of our knowledge) current approaches
for the formal reasoning on the security of CPS do not consider most of the
physical interaction between the attacker and the system. Instead, the works we
reviewed only focus on the network interaction between components of a CPS,
which is indeed important but not sufficient for an extensive security analysis.
One of the main difficulties of considering physical interaction of the CPS is that
usually this leads to the definition of the physical processes of various components
of the CPS.

We proposed several basic uses cases in which the physical behavior of both
the CPS and the attacker can be used to produce attacks that rely on physical
actions of the attacker that are outside the normal behavior of the CPS. To
alleviate that problem, we presented the idea of extending the DY attacker
to a CPDY attacker model that allows to include physical-layer interaction.
We implemented that CPDY model in ASlan++ and used the AVANTSSAR
platform to show that our extended attacker model is indeed able to discover
the physical-layer attacks in CPS.

Acknowledgments. This work was supported by the National Research Foundation
of Singapore under grant NRF2014NCR-NCR001-40.

References

1. Adepu, S., Mathur, A.: An investigation into the response of a water treatment
system into cyber attacks. In: IEEE Symposium on High Assurance Systems Engi-
neering (HASE) (2015)

2. Antonioli, D., Tippenhauer, N.O., MiniCPS: a toolkit for security research on
CPS networks. In: Proceedings of Workshop on Cyber-Physical Systems Security
& Privay (SPC-CPS), co-located with CCS, October 2015

3. Armando, A., et al.: The AVANTSSAR platform for the automated validation of
trust and security of service-oriented architectures. In: Flanagan, C., König, B.
(eds.) TACAS 2012. LNCS, vol. 7214, pp. 267–282. Springer, Heidelberg (2012)

4. Armando, A., Compagna, L.: SATMC: a SAT-based model checker for security
protocols. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 730–733. Springer, Heidelberg (2004)

5. AVANTSSAR. Deliverable 5.3: AVANTSSAR Library of validated problem cases
(2010). www.avantssar.eu

6. Basin, D., Capkun, S., Schaller, P., Schmidt, B.: Formal reasoning about physical
properties of security protocols. Trans. Inf. Syst. Secur. (TISSEC) 14(2), 16 (2011)

7. Basin, D., Cremers, C., Meadows, C.: Model checking security protocols. In: Hand-
book of Model Checking (2011)

8. Basin, D., Mödersheim, S., Viganò, L.: OFMC: a symbolic model checker for secu-
rity protocols. J. Inf. Secur. 4(3), 181–208 (2005)

9. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
Computer Security Foundation Workshop (CSFW). IEEE (2001)

www.avantssar.eu

CPDY: Extending the Dolev-Yao Attacker with Physical-Layer Interactions 191

10. Buchler, M., Hossen, K., Mihancea, P., Minea, M., Groz, R., Oriat, C.: Model infer-
ence and security testing in the spacios project. In: IEEE Conference on Software
Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE) (2014)

11. Camenisch, J., Mödersheim, S., Sommer, D.: A formal model of identity mixer.
In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS, vol. 6371, pp. 198–214.
Springer, Heidelberg (2010)

12. Cárdenas, A.A., Amin, S.M., Sinopoli, B., Giani, A., Perrig, A., Sastry, S.S.: Chal-
lenges for securing cyber physical systems. In: Workshop on Future Directions in
Cyber-physical Systems Security. DHS, July 2009

13. Cárdenas, A.A., Roosta, T., Sastry, S.: Rethinking security properties, threat mod-
els, and the design space in sensor networks: a case study in scada systems. Ad
Hoc Netw. 7(8), 1434–1447 (2009)

14. Choi, Y.: From NuSMV to SPIN: experiences with model checking flight guidance
systems. Formal Methods Syst. Des. 30(3), 199–216 (2007)

15. Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in
cryptographic protocols. J. Comput. Secur. 14(1), 1–43 (2006)

16. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theor. 29(2), 198–207 (1983)

17. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.)
FOSAD 2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009)

18. LeMay, E., Ford, M.D., Keefe, K., Sanders, W.H., Muehrcke, C.: Model-based secu-
rity metrics using adversary view security evaluation (ADVISE). In: Proceedings
of Conference on Quantitative Evaluation of Systems, QEST (2011)

19. Mathur, A., Tippenhauer, N.O.: A water treatment testbed for research and train-
ing on ICS security. In: Proceedings of Workshop on Cyber-Physical Systems for
Smart Water Networks (CySWater), April 2016

20. Mo, Y., Kim, T.-H., Brancik, K., Dickinson, D., Lee, H., Perrig, A., Sinopoli, B.:
Cyber-physical security of a smart grid infrastructure. Proc. IEEE 100(1), 195–209
(2012)

21. Morris, T., Srivastava, A., Reaves, B., Gao, W., Pavurapu, K., Reddi, R.: A con-
trol system testbed to validate critical infrastructure protection concepts. J. Crit.
Infrastruct. Prot. 4(2), 88–103 (2011)

22. Reaves, B., Morris, T.: An open virtual testbed for industrial control system secu-
rity research. J. Inf. Secur. 11(4), 215–229 (2012)

23. Rocchetto, M., Ochoa, M., Torabi Dashti, M.: Model-based detection of CSRF.
In: Cuppens-Boulahia, N., Cuppens, F., Jajodia, S., Abou El Kalam, A., Sans, T.
(eds.) SEC 2014. IFIP AICT, vol. 428, pp. 30–43. Springer, Heidelberg (2014)

24. Rocchetto, M., Tippenhauer, N.O.: CPDY (Cyber-Physical Dolev-Yao) (2016).
http://research.scy-phy.net/cpdy/

25. Rocchetto, M., Viganò, L., Volpe, M., Vedove, G.D.: Using interpolation for the
verification of security protocols. In: Accorsi, R., Ranise, S. (eds.) STM 2013.
LNCS, vol. 8203, pp. 99–114. Springer, Heidelberg (2013)

26. Schaller, P., Schmidt, B., Basin, D.A., Capkun, S.: Modeling and verifying phys-
ical properties of security protocols for wireless networks. In: Computer Security
Foundations Symposium (CSF), pp. 109–123 (2009)

27. Schmidt, B., Sasse, R., Cremers, C., Basin, D.A.: Automated verification of group
key agreement protocols. In: Symposium on Security and Privacy (S&P), pp. 179–
194 (2014)

28. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data.
Science 324(5923), 81–85 (2009)

http://research.scy-phy.net/cpdy/

192 M. Rocchetto and N.O. Tippenhauer

29. SPaCIoS. Deliverable 3.3.2: Methodology and technology forvulnerability-driven
security testing (final version) (2014). http://www.spacios.eu

30. Steinmetzer, D., Schulz, M., Hollick, M.: Lockpicking physical layer key exchange:
weak adversary models invite the thief. In: Proceedings of ACM Conference Wire-
less Security (WiSeC) (2015)

31. Taormina, R., Galelli, S., Tippenhauer, N.O., Salomons, E., Ostfeld, A.: Simula-
tion of cyber-physical attacks on water distribution systems with EPANET. In:
Proceedings of Singapore Cyber Security R&D Conference (SG-CRC), January
2016

32. Turuani, M.: The CL-Atse protocol analyser. In: Pfenning, F. (ed.) RTA 2006.
LNCS, vol. 4098, pp. 277–286. Springer, Heidelberg (2006)

33. Urbina, D., Giraldo, J., Tippenhauer, N.O., Cardenas, A.: Attacking fieldbus com-
munications in ICS: applications to the SWaT testbed. In: Proceedings of Singapore
Cyber Security R&D Conference (SG-CRC), January 2016

34. Viganò, L.: The spacios project: secure provision and consumption in the internet
of services. In: Software Testing, Verification and Validation (ICST), pp. 497–498.
IEEE (2013)

35. Vigo, R.: The cyber-physical attacker. In: Ortmeier, F., Daniel, P. (eds.) SAFE-
COMP Workshops 2012. LNCS, vol. 7613, pp. 347–356. Springer, Heidelberg (2012)

36. von Oheimb, D.: The high-level protocol specification language HLPSL developed
in the EU project AVISPA. In: Proceedings of APPSEM 2005 workshop, pp. 1–17
(2005)

37. von Oheimb, D., Mödersheim, S.: ASLan++ — a formal security specification
language for distributed systems. In: Aichernig, B.K., Boer, F.S., Bonsangue, M.M.
(eds.) Formal Methods for Components and Objects. LNCS, vol. 6957, pp. 1–22.
Springer, Heidelberg (2011)

38. Weinberger, S.: Computer security: is this the start of cyberwarfare? Nature 174,
142–145 (2011)

http://www.spacios.eu

Towards the Formal Verification
of Data-Intensive Applications Through Metric

Temporal Logic

Francesco Marconi1, Marcello M. Bersani1(B), Madalina Erascu2,
and Matteo Rossi1

1 DEIB, Politecnico di Milano, Milan, Italy
{francesco.marconi,marcellomaria.bersani,matteo.rossi}@polimi.it

2 Institute e-Austria Timisoara and West University of Timisoara, Timisoara,
Romania

merascu@info.uvt.ro

Abstract. We present an approach for the automated formal verifica-
tion of distributed systems based on the Storm technology. The approach
is based on a formal model of the behavior of Storm topologies given in
terms of the CLTLoc metric temporal logic extended with counters. We
present a tool-supported mechanism to automatically generate formal
models from high-level description of Storm topologies. The Zot formal
verification tool is then used to check whether some desired properties
hold for the modeled system or not. The analyzed properties concern the
growth of the queues of the nodes of the Storm topology. Some experi-
ments performed on example topologies show how the timing features of
the modeled system influence the behavior of the queues of the nodes.

Keywords: Data-intensive applications · Distributed systems · Formal
verification · Storm technology · Metric temporal logic

1 Introduction

Big Data is a prominent area, involving both academia and industry, researching
innovative solutions to support the entire life-cycle (from design to deployment)
of so-called data-intensive applications (DIAs), which are able to process huge
amounts of information. Hence, defining frameworks for the development of DIAs
that leverage Big Data technologies is nowadays of major importance.

The DICE project [9] defines techniques and tools for the data-aware quality-
driven development of DIAs. In the DICE approach, designers model DIAs
through UML diagrams tagged with suitable annotations capturing the features
of Big Data applications, and in particular their topology. A topology provides
an abstract representation of a DIA through directed graphs, where nodes are
of two kinds: computational nodes implement the logic of the application by
elaborating information and producing an outcome, whereas input nodes bring
information into the application from the environment.
c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 193–209, 2016.
DOI: 10.1007/978-3-319-47846-3 13

194 F. Marconi et al.

The semantics underlying the topology typically changes depending on
the target Big Data technology. In this paper we focus on the Apache
Storm [1] technology—in which computational nodes are called bolts, and
input nodes are called spouts—a framework which is widely used in appli-
cations that need reliable processing of unbounded streams of data, e.g.
Groupon (www.groupon.com), The Weather Channel (www.weather.com), Spo-
tify (www.spotify.com), etc. In Apache Storm applications, one of the key con-
cerns is that time-related parameters such as emission rates of data do not induce
an excessive load on the topology by accumulating data in nodes’ queues. The
latest version of the framework offers options to adapt these parameters at run-
time (e.g., by slowing down the input nodes) to mitigate the issue, but this might
negatively and unpredictably impact other features of the application. Hence,
one would like to design the topology from the beginning in a way that run-time
adaptation is not necessary.

In this paper, we approach such design with three contributions.
We define a formal model of DIAs based on the Storm technol-

ogy. This model, which we call the timed counter networks model, is expressed
through the Constraint LTL over clocks (CLTLoc) [7] metric temporal logic
enriched with positive counters. CLTLoc allows users to express time delays,
and the addition of positive counters allows for the description of memory usage
issues such the evolution of the length of nodes’ queues.

We allow for the automated verification of such formal models
through the D-VerT (DICE Verification Tool) prototype tool. By performing
formal verification tasks through D-VerT, designers can detect bad configura-
tions producing undesired consequences, such as data processing delays causing
an unbounded use of memory.

We define sufficient conditions for guaranteeing the soundness of
the verification results obtained through D-VerT. In fact, the extension of
CLTLoc with unbounded counters makes the logic undecidable in general, so
we must guarantee that the conditions and abstractions introduced to make the
verification technique applicable in practice do not generate spurious results.

The rest of the paper is structured as follows. Section 2 presents some related
works and Sect. 3 gives an overview of the Apache Storm technology. Section 4
introduces CLTLoc extended with counters, and a sufficient condition guaran-
teeing the soundness of its satisfiability checking procedure. Section 5 introduces
the formal model of Storm topologies, and Sect. 6 describes some experimental
results carried out with the D-VerT tool. Section 7 concludes.

2 Related Works

Formal verification of distributed systems has been the focus of several decades
of software engineering research. Challenging tasks in this context are: (i) find-
ing the right abstraction for the formal model of the real world (formalization);
(ii) developing techniques to prove the correctness of the modeled systems (veri-
fication); and (iii) bridging the gap between formalization and verification, since

https://www.groupon.com/
https://www.weather.com/
https://www.spotify.com/

Towards the Formal Verification of DIAs Through Metric Temporal Logic 195

the formal model is often too complex to be tackled by the verification methods.
Various approaches exist for the formalization of distributed systems; however,
to the best of our knowledge none focuses on Storm-like streaming technologies.

Timed counter networks, the novel model of Storm topologies introduced in
this paper, are inspired from vector addition systems with states (VASS) [14]
and Timed Petri Nets [13]. VASS are a subclass of counter systems; that is,
they are finite-state automata augmented with counters, whose values are non-
negative integers, and which can be incremented and decremented. VASS are
also equivalent to Petri nets for decision problems such as boundedness, covering
and reachability [15]. Since distributed systems have unreliable communication,
timed counter networks are also similar to lossy VASS [8], an abstraction of
FIFO-channel systems, when only the number of messages is relevant, but not
their ordering. Unlike (lossy) VASS, timed counter networks can express timing
constraints along system executions through the notion of clocks.

Timed counter networks are inherently non-deterministic, and their behavior
is effectively captured through formalisms such as the counter-augmented CLT-
Loc. At first glance they also seem expressible in terms of formalisms such as
Timed Petri Nets (TPN) [13]. However, CLTLoc is more suitable to this end
because, typically, TPN-based models adopt, both in theory and in practice, an
urgent semantics for the firing of transitions [4], where an enabled transition
must fire when it reaches its upper time bound if it is not disabled earlier. This
makes modeling the possible occurrence of events in timed counter networks (e.g.,
failures in Storm topologies) less natural. Moreover, the typical semantics of the
firings of transitions in TPNs does not allow for the modeling of a policy such
as the following: dequeuing always removes the maximum number of available
elements in the queue, but never more than k elements at the same time. The
model in Sect. 5, instead, makes use of this abstraction to represent the behavior
of a node when it extracts new elements from its queue to process them.

Concerning formal verification issues, the reachability problem is decidable
for lossy unbounded FIFO-channel models [3,12] which implies the decidability
of the verification problem of safety properties for lossy VASS. To the best of
our knowledge, lossy VASS have been investigated only from a theoretical point
of view, and no verification tools handling them currently exist.

3 Overview of Apache Storm

Apache Storm [1] is a stream processing system that allows parallel, distrib-
uted, real-time processing of large-scale streaming data on horizontally scalable
systems.

The key concepts in Storm applications are streams and topologies. Streams
are infinite sequences of tuples that are processed by the application. Topologies
are directed graphs of computation, whose nodes correspond to the operations
performed over the data flowing through the application, and whose edges indi-
cate how such operations are combined, i.e., the streaming paths between nodes.

There are two kinds of nodes, spouts and bolts (in the following also referred
to as topology components). Spouts are stream sources. They generally get data

196 F. Marconi et al.

Fig. 1. Example of storm topology. Parameters σ and α are described in Sec. 5.

from external systems such as queuing brokers (e.g., Kafka, RabbitMQ, Kestrel)
or from other data sources, e.g., Twitter Streaming APIs. Bolts apply transfor-
mations over the incoming data streams and generate new output streams to be
processed by the connected bolts. When a topology component generates new
data into an output stream, it is said to emit tuples. Connections are defined at
design time by the subscription of the bolts to other spouts or bolts. Figure 1
shows an example of Storm topology that will be used in Sect. 6.

Spouts can be reliable or unreliable. The former keep track of all the tuples
they emit, and if one of them fails to be processed by the entire topology within a
certain timeout, then the spout re-emits it into the topology. The latter, instead,
always emit each tuple only once, without checking for successful processing.
Single bolts usually perform simple operations, such as filtering, join, functions,
database interaction, which are combined in the topology to apply more complex
transformations. IRichBolt and IRichSpout are the main Java interfaces to use
for implementing the components of a topology. execute() is the method of
IRichBolt defining the functionality of bolts; it reads the input tuples, processes
the data, and emits (via the emit() method) the transformed tuples on the
output streams. When the spouts are reliable, bolts have to acknowledge the
successful or failed processing of each tuple at the end of the execution.

The Storm runtime is designed to leverage the computational power of dis-
tributed clusters. At a high level, its architecture is composed of one master node,
and several worker nodes. One or more worker processes can be instantiated on
a worker node, each of them executing different parts of the same topology.
Each worker process runs a JVM where one or more executors (i.e. threads) are
spawned. Executors can run one or more tasks which, in turn, can execute a
spout or a bolt. The configuration of the topology defines the number of worker
processes and, for each component (spout or bolt), the number of executors run-
ning it in parallel (the value of parallelism in Fig. 1) and the total number of
tasks over those executors. Since each executor corresponds to a single thread,
multiple tasks run serially on the same executor. However, each executor usually
runs exactly one task (default option). Intra-worker and inter-worker commu-
nications are managed through queues. Each executor has its own input queue
and output queue. Tuples are read from the input queue and processed by the
thread handling the spout/bolt logic; they are emitted on the outgoing queue
and then are moved to the parent worker’s transfer queue by a send thread.

Towards the Formal Verification of DIAs Through Metric Temporal Logic 197

4 Constraint LTL over Clocks with Counters

The temporal logic model of Sect. 5 is expressed in terms of the CLTLoc logic [7]
enriched with discrete unbounded counters, an extension of LTL allowing arith-
metical variables to occur in atomic formulae and be incremented or decremented
by an integer value. The decision procedure for determining whether a CLTLoc
formula with counters is satisfiable or not is at the basis of the prototype tool
used in Sect. 6 to formally verify Storm topologies. In this section we define
the logic and we provide a method to check the soundness of the outcome of
the satisfiability procedure for the defined logic when a trace is returned. The
assessment is partial, in the sense that if the produced trace does not pass the
soundness check, then nothing can be said of the satisfiability of the formula
until a model passing the check is found.

The logic allows for two kinds of atomic formulae. Atomic formulae over
(R, {<,=}) contain arithmetical variables which behave as clocks of Timed
Automata [13]. For instance, a possible atomic formula over clock x is x < 4,
where x ∈ R. Atomic formulae over (N, {<,=},+, 0, 1) predicate over arithmeti-
cal variables that have no semantic restrictions. For instance, an atomic formula
of this second kind is y + z < 4, where both y and z are in N.

A clock x measures the time elapsed since the last “reset” of x, which occurs
when x = 0. Since the values of clocks can be compared with constants in
constraints of the form x ∼ c (where c ∈ N and ∼∈ {<,=}), clocks are used to
constrain the time elapsing between relevant events of topologies. A counter y,
instead, stores a value that can be incremented, decremented and tested against
a constant value. We use counters to represent the size of bolts’ queues. We also
exploit the modality X applied to integer variables, introduced in [10]: if y is an
integer variable, term Xy represents the value of y in the next position of time.

Let V be a finite set of variables over N. Atomic formulae θ over V are
quantifier-free Presburger formulae over terms α of the form y or Xy, with y ∈ V .

Then, if C is a finite set of clock variables over R, and AP is a finite set of
atomic propositions, CLTLoc formulae with counters are defined as follows:

φ := p | x ∼ c | θ | φ ∧ φ | ¬φ | Xφ | Yφ | φUφ | φSφ

where p ∈ AP , x ∈ C, c ∈ N, ∼∈ {<,=}, and X, Y, U and S are the usual
“next”, “previous”, “until” and “since” operators of LTL [13].

An interpretation of a formula is a pair (π, σ), where π : N → ℘(AP), and
σ : N×{C∪V } → R is a mapping associating every variable in C∪V with a value
in R, but restricting values of the elements in V to N. The semantics of CLTLoc
is defined as for LTL, except for formulae x ∼ c and θ. Let AV be the ordered
set of all terms of the form y and Xy, with y ∈ V , and let n−1 be its cardinality;
for each αj ∈ AV , its depth |αj | is such that |αj | = 0 if αj = y, and |αj | = 1 if
αi = Xy for some y ∈ V . Given a mapping v : AV → N, θ[v(α0), . . . , v(αn−1)]
is the valuation of θ through v, which is obtained by replacing each term αj

occurring in θ with value v(αj). If θ[v(α0), . . . , v(αn−1)] is true we write v |= θ.
Let t(αj) = y if αj is either y or Xy. The following holds for each i ∈ N, where

198 F. Marconi et al.

the underlying assignment v is such that v(αj) = σ(i + |αj |, t(αj)):

(π, σ), i |= x ∼ c iff σ(i, x) ∼ c
(π, σ), i |= θ iff θ[σ(i + |α0|, t(α0)), . . . , σ(i + |αn−1|, t(αn−1))]

If φ is a formula, interpretation (π, σ) is a model for φ if (π, σ), 0 |= φ holds.
The satisfiability problem for CLTL and CLTLoc is decidable [7,10] and can

be practically computed through the Bounded Satisfiability Checking (BSC)
technique [6,7]. In general, a BSC decision procedure, given a formula φ, looks
for an ultimately periodic model of φ of the form α(sβ)ω, where |αsβ| = k.
To achieve this, it looks to build a bounded structure of the form αsβs, i.e.,
where a state s is repeated. In the case of LTL formulae, a state corresponds to
a set of subformulae of φ. For CLTL (resp., CLTLoc) formulae, a state includes
also arithmetic constraints capturing the relationships among variables (resp.,
clocks), even those that do not appear explicitly in the formula as atomic for-
mulae. For these logics it is guaranteed that, when the decision procedure finds
a structure of the form αsβs for formula φ, this can be extended to an infinite
model of the form α(sβ)ω. These results, however, cannot be extended to CLT-
Loc augmented with counters, since the logic is in general undecidable, as it
contains CLTL over quantifier-free Presburger formulae [11], i.e., the absence of
ultimately periodic models for a formula does not entail its unsatisfiability.

As a consequence, we pursue a limited approach that stems from the analysis
of the shape of the formulae defining the semantics of Sect. 5, which is still
meaningful to discover possible dangerous executions of a Storm topology, i.e.,
those originated from a periodic behavior of its abstract model and representing
undesired executions of running topologies (see Sect. 6). More precisely, we adapt
the techniques developed in [6,7] into a procedure that, given a CLTLoc formula
with counters and a bound k, tries to build a suitable structure αsβs, with
|αsβ| = k and: (i) if no such structure is found, it concludes that no ultimately
periodic models of length smaller than k exist; (ii) if a structure is found, it
performs a check to determine whether the structure can be extended to an
infinite model α(sβ)ω and, if the check succeeds, it returns αsβ as representative
of the infinite model. If the check fails, the result is inconclusive, and a new
structure must be looked for.

First of all, we remark that, since clocks and counters cannot be compared
against each other, we can deal with them separately. In particular, the extend-
ability ad infinitum of the assignments of values to clocks is guaranteed through
the results of [7]. In the rest of this section, we outline a sufficient condition for
extending ad infinitum a bounded assignment of values to counters.

In [6,10] the key abstraction that allows us to deal with the fact that vari-
ables have infinite domains is the notion of symbolic valuation, which captures
the relationships between the values of the variables in a symbolic way. For exam-
ple, if x, y, z are the variables appearing in formula φ, an example of symbolic
valuation is the set of formulae {x < y, y < z, x < z}. In fact, symbolic valua-
tions take into account also the fact that a CLTL formula can relate the values
of variables at different time instants through the X operator. For example, if

Towards the Formal Verification of DIAs Through Metric Temporal Logic 199

x,Xy are the terms appearing in formula φ, an example of symbolic valuation
is {x < y, x = Xx,Xx < y,Xx < Xy, y < Xy}. Notice that a symbolic valua-
tion can contain formulae (and even terms) that do not appear explicitly in φ,
such as x = Xx in the previous example, in order to provide a complete picture
of the relationships among variables over a sufficient horizon. Since in CLTLoc
with counters we allow for richer constraints on variables (e.g., we can write
formulae such as Xx = 2x + y), we cannot exhaustively capture the relation-
ships among possible terms. Hence, we introduce the notion of partial symbolic
valuation (p.s.v.). More precisely, given a formula φ such that Θφ is the set of
all its atomic formulae over counters, its set of partial symbolic valuations pSVφ

is simply ℘(Θφ). For example, if Θφ = {x < y,Xx = y + z,Xy < x + Xz},
an example of partial symbolic valuation is set {x < y,Xx = y + z}. Given a
p.s.v. ρi, it symbolically satisfies an atomic formula θ iff θ ∈ ρi, in which case we
write ρi |=psv θ. We can extend the notion of symbolic satisfaction to sequences
of p.s.v.’s and CLTLoc formulae with counters in a straightforward way; for
example, if ρ = ρ0ρ1 . . . is a sequence of p.s.v.’s, ρ, 0 |=psv X(Xx = y + z) iff
ρ1 |=psv Xx = y+z. In addition, given a set AV of terms, a mapping v : AV → N,
and a p.s.v. ρi, we say that v satisfies ρi, written v |= ρi iff for each θ ∈ ρi it
holds that v |= θ. Notice that, given a mapping v and a set of formulae Θφ, v
induces a maximal p.s.v., which is simply the set of all θ ∈ Θφ such that v |= θ.

The goal of our decision procedure is, given a formula φ, to find a bounded
sequence σk : [0, k] × V → N of assignments to variables—which in turn cor-
responds to a sequence of mappings v0v1 . . . vk−1 such that vi(y) = σ(i, y) and
vi(Xy) = σ(i+1, y) for all y,Xy ∈ AV —such that, if ρ0ρ1 . . . ρk−1 is the sequence
of maximal p.s.v.’s induced by v0v1 . . . vk−1: (i) there is 0 ≤ l < k such that
ρ0 . . . ρl−1(ρl . . . ρk−1)ω, 0 |=psv φ; (ii) σk can be extended to an infinite sequence
of assignments σ : N × V → N, whose corresponding sequence of mappings
v0v1 . . . is such that, for all i ≥ k, it holds that vi |= ρl+(i−k) mod (k−l).

This corresponds to finding a bounded sequence σk+1 : [0, k + 1] × V → N,
whose induced sequence of maximal p.s.v.’s ρ0ρ1 . . . ρk is such that ρk = ρl, and
all subformulae of φ that hold at position l also hold at position k. In addition, as
sufficient condition for the finite sequence of assignments to be extendable to an
infinite one, we require that in the loop the evolution of each variable y ∈ V has
the same shape, as exemplified in Fig. 2. This entails that, for example, in the
second iteration the value of y is the same as in the first iteration, plus the offset
between the value of y in the first positions of the two iterations, represented
as Δy in Fig. 2. Notice that, for the loop to be repeated ad infinitum with the
same shape, Δy cannot be negative, since y ∈ N.

For a bounded sequence σk+1 to be extendable we check that, for each posi-
tion i inside the loop (i.e., such that l ≤ i < k), for each successive itera-
tion n, with n > 0, for each y ∈ V , each atomic formula θ of φ has the same
value whether y is σk+1(i, y) or σk+1(i, y) + nΔy (for example, if θ = y > 3,
σk+1(i, y) = 5, and Δy = 2, both σk+1(i, y) > 3 and σk+1(i, y) + nΔy > 3 hold).

200 F. Marconi et al.

y0 y1 yl yl+1 yk-1 yk

y

y

yk+1 y2k-l-1 y2k-l

Fig. 2. Example of repeated shape for the evolution of variable y.

To perform the check, we ask whether Presburger formula (1) is satisfiable.

∀n

⎛

⎜
⎜⎜
⎜
⎝

n > 0 ⇒

∧

l≤i<k
θ∈Θφ

⎛

⎜
⎝

θ[σk+1(i, y1), σk+1(i + 1, y1), . . . , σk+1(i, ym), σk+1(i + 1, ym)]

⇔
θ[σk+1(i, y1) + nΔy1 , . . . , σk+1(i + 1, ym) + nΔym]

⎞

⎟
⎠

⎞

⎟
⎟⎟
⎟
⎠

(1)

In Formula (1), the set of variables V is {y1, . . . , ym}; the terms
σk+1(i, yj) are constants defined by the sequence of assignments σk+1 to check;
θ[σk+1(i, y1), σk+1(i+1, y1), . . . , σk+1(i, ym), σk+1(i+1, ym)] (resp. θ[σk+1(i, y1)+
nΔy1 , . . . , σk+1(i + 1, ym) + nΔym

]) is the value of atomic formula θ when
each term of the set AV is replaced by its assigned value, where AV =
{y1,Xy1, . . . , ym,Xym}; and for each yj ∈ V , Δyj

= σk+1(k, yj)−σk+1(l, yj). As
mentioned above, if Formula (1) is false, then we cannot conclude that σk+1 can
be extended to an infinite model, nor that formula φ admits a model.

5 Formal Model of Storm Topologies

This section describes the CLTLoc (with counters)-based model of Storm topolo-
gies. We first outline the chosen abstraction level and assumptions and then we
introduce the temporal logic model of each component. The model focuses on
the behavior of the queues of the bolts of Storm topologies. It describes how
the timing parameters of the topology, such as the delays with which tuples are
input to the topology by spouts and the processing time of tuples for each bolt,
affect the accumulation of tuples in the queues. We use clocks to capture timing
features and counters to describe the evolution of the size of the queues.

Although the model refers to Storm topologies, for example in the assump-
tions made, it essentially consists of a set of nodes processing and exchanging
information—more precisely, tuples—and storing incoming data in queues, for-
malized through counters. For this reason, we call this model an example of
timed counter network, an abstraction for the behavior of Storm-like topologies.

The formal model allows for the definition of topologies in a compositional
way, similarly to how topologies are created by code developers. We formalized
the behavior of the relevant features and parameters of spouts and bolts by
reverse-engineering the IRichSpout and IRichBolt interfaces and we used them
as building blocks for creating topologies, under the following assumptions:

Towards the Formal Verification of DIAs Through Metric Temporal Logic 201

– Deployment details, such as the number of worker nodes and the features of
the (possibly) underlying cluster are abstracted away; topologies are assumed
to run on a single worker process and each executor runs a single task, which
is the default configuration of the runtime, as described at the end of Sect. 3.

– Each bolt has a single receive queue for all its parallel instances and no sending
queue, while the workers’ queues are not represented, since we assume to be
in a single-worker scenario. For generality, all queues have unbounded size.

– We do not detail the contents of tuples, but only their quantities, since we
measure the size of queues by the number of tuples they contain.

– The external sources of information from which spouts pull data are not explic-
itly represented, since they are outside of the perimeter of the application.
Then, spouts are sources of tuples, so their queues are not represented.

– For each component, the duration of each operation or the permanence in a
given state has a minimum and a maximum time.

A Storm topology is a directed graph G = {N, Sub} where the set of nodes
N = S

⋃
B includes in the sets of spouts (S) and bolts (B), and Sub ⊂ B × N

captures the subscription relation defining how the nodes are connected to one
another. If it holds that (i, j) ∈ Sub, this indicates that “bolt i subscribes to the
streams emitted by spout/bolt j”.

The behavior of both spouts and bolts can be illustrated by means of finite
state automata (see Fig. 3). Spouts can be either emitting tuples or idle, therefore
the corresponding automaton only has two states, idle and emit. Different emit
actions (whose occurrence is captured by the system being in the emit state)
can happen consecutively; also, the spout can be in the idle state for consecutive
time instants. The possible execution sequences are determined by the timing
constraints, as discussed in detail later. A bolt can alternatively be processing
tuples, idle or in a failure state. The process macro-state is composed of three
states, namely take, execute and emit. If a bolt is idle and its queue is not empty,
it eventually reads tuples from the queue, performing an instantaneous take
action, that is captured by the take state of the related finite state automaton.
Immediately after a take, each bolt starts processing the tuples, an operation
which lasts α time units, with α a parameter of the bolt, a positive real value
which represents the amount of time that a bolt requires to process one tuple.
This corresponds to the state execute in the automaton. Once the execution is
completed, the bolt emits output tuples. This instantaneous action corresponds
to the emit state. Bolts may fail and failures may occur at any moment; upon

idle emit

(a)

process

idle

take execute emit

fail

(b)

Fig. 3. Finite state automata describing the states of spout (a) and bolt (b).

202 F. Marconi et al.

a bolt failure, the system goes to the fail state and all tuples stored, at that
moment, in the queue of the failed bolt are lost, or replayed in case of a reliable
topology. If no failure occurs, after an emit a bolt goes to idle, where it stays
until it reads new tuples. Spout failures are not modeled; their effect is irrelevant
for the growth analysis of bolt queues as they would reduce the workload on
the topology. Hence, our approach focuses only on the analysis of topologies
processing a full workload, i.e., where spouts never fail.

We model the behavior of Storm topologies through a set of formulae of
CLTLoc with counters. We refer to this logic-based model as timed counter
network. We break this model down in four parts: (i) the evolution of the state
of the nodes; (ii) the behavior of the counters (i.e., the queues); (iii) timing
constraints; (iv) failures. We present here only some highlights of the model,
whose full version can be found in [5].

State Evolution. Each state is described through a combination of propo-
sitional variables. For example, a bolt j is in the macro-state process when
processj holds. In addition, it is in take (resp. emit) state when takej (resp.,
emitj) holds. The execute state, instead, corresponds to the configuration where
processj is true while both takej and emitj are false. Formula (2) defines the
conditions for processj to hold.

∧

j∈B

(
processj ⇒

(
processj S (takej ∨ (orig ∧ processj)) ∧
processj U (emitj ∨ failj) ∧ ¬failj

))
(2)

Queue Behavior. We use N-valued discrete counters to represent the amounts
of tuples moving through the topology. Whenever a component is emitting tuples
or reading from its queue, the related counters are updated according to several
constraints. Every time emitj holds for a component j, remitj

tuples are added
to the queues of all bolts subscribing to j (i.e., the variables qi representing the
occupancy level of those queues are incremented by remitj). When multiple com-
ponents subscribed by a bolt emit tuples simultaneously, the increment on its
queue is equal to the sum of all the tuples emitted, corresponding to the value
of raddj

. Dually, when takej holds, the occupancy level qj is decremented by
rprocessj

(number of tuples read by bolt j). Formulae (3)–(4) describe these sit-
uations. Notice that addj holds when at least one of the components subscribed
by j is emitting, whereas startFailj is true in the first instant of a failure state.

addj ∧ ¬takej ∧ ¬startFailj ⇒ (Xqj = qj + raddj
) (3)

takej ⇒ (Xqj = qj + raddj
− rprocessj

) (4)

The number of tuples extracted from the queue depends on the parallelism level
of the bolt (i.e., the number of parallel executors as described in Sect. 3), that
is represented in the model by the value of r̂takej

. When a take occurs, if the
number of elements in the queue plus the ones being added in the current time
instant is greater than r̂takej , the variable representing the number of tuples that
will be processed (rprocessj

) is equal to r̂takej
, otherwise it is equal to qj + raddj

Towards the Formal Verification of DIAs Through Metric Temporal Logic 203

(i.e., the bolt takes all elements from the queue). This captures how each bolt
is able to concurrently process a number of tuples that is at most equal to the
number of its executors.

(takej ∧ r̂takej ≥ qj + raddj) ⇒ (rprocessj
= qj + raddj) (5)

(takej ∧ r̂takej < qj + raddj) ⇒ (rprocessj
= r̂takej) (6)

The number of tuples emitted by the bolt j (remitj
) at the end of the processing

phase depends on parameter σj (a constant in R), representing the ratio between
output and input tuples. That is, given nin input tuples, the total number of
output tuples is equal to σ ·nin. The value of σ is either measured by monitoring
a deployed application, or defined by making assumptions based on the kind
of operation performed by the bolt. Since remitj ∈ N, simply imposing remitj =
�σ · rprocessj

 (resp., remitj
= �σ · rprocessj

�) may lead to excessive under- (resp.,
over-) approximation, especially when 0 ≤ σ · rprocess � 1. For this reason we
keep track of the number of tuples processed, but not leading to the emission of
output tuples. This is achieved through the auxiliary variable bufferj , which is
incremented as new tuples are correctly processed by the bolt. As formalized in
Formula (7), when an emit occurs on bolt j, remitj

is equal to �σ · bufferj, and
bufferj is then decremented by � remitj

σ . Conversely, Formula (8) defines that
when the bolt is not emitting, buffer keeps its value until the next emit.

∧

j∈B
¬final(j)

⎛

⎜
⎜
⎜
⎜
⎝
emitj ⇒

⎛

⎜
⎜
⎜
⎜
⎝

bufferj = Y bufferj + rprocessj
∧

remitj
≤ σjbufferj ∧

remitj
> σjbufferj − 1 ∧

Xbufferj ≥ bufferj − remitj

σ ∧
Xbufferj < bufferj − remitj

σ + 1

⎞

⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎠

(7)

∧

j∈B,¬final(j)

(¬emitj ⇒ (remitj = 0 ∧ (Xbufferj = bufferj)UXemitj)) (8)

Notice that some of the variables appearing in Formulae (3)–(8) have infinite
domains, but some range over finite domains. More precisely, variables qj for
each bolt j, raddj

for bolts subscribing to spouts, and remiti
for each spout i, are

infinite counters. Variables rprocessj
, instead, are finite counters since they have

values between 0 and r̂takej
. Variables bufferj and remitj

for each bolt, as well
as raddj

for all bolts not subscribing to spout streams, are also finite counters. In
fact, bufferj , whose behavior is defined by Formulae (7) and (8), is finite since
its value is always less than r̂takej

+ 1
σ + 1. We do not show the reasoning that

allows us to conclude the finiteness of the aforementioned counters for lack of
space. The finiteness of some of the counters allows us to write succinct formulae
where multiplications and divisions are abbreviations for long case formulae.

Timing Constraints. To measure the time spent in each state, and to impose
timing constraints between different events, for each topology component we
define a set of clock variables. Specifically, the duration of adjacent mutually
exclusive processing phases (such as idle, process and fail for a bolt, idle and

204 F. Marconi et al.

emit for a spout) is measured through two clocks, as done in [7]. At each instant
only one of the two clocks is relevant to measure the time spent in the current
processing phase; when the next phase starts, the second clock is reset and
becomes the new relevant clock, while at the same time the value of the former is
tested to verify if the measured delay satisfies the desired bound. In the following,
we use a shorthand tphase to indicate the currently relevant clock. Formula (9)
defines the conditions for resetting tphase for a bolt: in the origin, when a take
occurs, when a failure starts and when an idle phase starts.

tphase = 0 ⇔ orig ∨ take ∨ (fail ∧ ¬Yfail) ∨ (idle ∧ ¬Yidle) (9)

Formula (10) imposes that when emit occurs, the duration of the current process-
ing phase is between α − ε and α + ε, where ε � α is a positive constant that
captures possible (small) variations in the duration of the processing.

process ∧ emit ⇒ (tphase ≥ α − ε) ∧ (tphase ≤ α + ε) (10)

Measuring non-adjacent time intervals, such as the time between the end of a
failure and the start of the next one (i.e., time to failure), can be done using a
single clock, which does not need to be tested at the same time it is reset.

Failures. In our model, whenever a node fails, the tuples being processed by
the node, together with the tuples in its receive queue, are considered as failed
(not fully processed by the topology). According to the reliable implementa-
tion of Storm, the spout tuples that generated them must be resubmitted to
the topology. Since we do not keep track of single tuples, but we only con-
sider quantities of tuples throughout the topology, given an arbitrary amount
of failed tuples we can estimate the amount of spout tuples that have to be re-
emitted by the connected spouts. In order to express this relationship between
the failing tuples in a specific (failing) node and the new tuples having to be
re-emitted, we introduce the concept of impact of the node failure with respect
to another (connected) node. Imp(j, i) (“impact of node j failure on node i”) is
the coefficient expressing the ratio tuples to be replayed(i)

failed tuples(j) where j ∈ B is the fail-
ing bolt and i ∈ {S⋃

B} is another node in the topology. If there exists a path
{p0, . . . , pn|n > 0, p0 = i, pn = j} in the topology connecting the two nodes such
that ∀k ∈ [0, n − 1]Sub(pk, pk+1) holds, then a failure of node j has an impact
on node i and Imp(j, i) > 0. If such a path does not exist, then Imp(j, i) = 0.
The procedure to obtain the values of Imp(j, i) for each bolt is described in [5].
Once this coefficient is calculated for all pairs of (bolt, spout) in the topology, it
allows us to determine rreplayi

, (i.e., the number of tuples to be re-emitted by
spout i after a bolt failure) by simply multiplying the number of failed tuples
by the appropriate coefficient, as

∧
i∈S(rreplayi

=
∑

j∈B rfailji
·Imp(j, i)), where

rfailji expresses “the number of failed tuples in bolt j affecting spout i”. This
value is incremented as in Formula (11) whenever a failure starts and is reset
after all the rfailji

· Imp(j, i) tuples are emitted by the spout. Interested readers
can refer to [5] for the complete model.

Towards the Formal Verification of DIAs Through Metric Temporal Logic 205

∧

i∈S,j∈B

(startFailj ∧ ¬emiti ⇒ Xrfailji
= rfailji

+ qj + rprocessj
+ raddj

) (11)

6 Experimental Results

We present some experimental results obtained with our prototype tool D-
VerT1, whose architecture is described in [5]. As shown in Fig. 4, D-VerT
takes as input the description of a Storm topology, through a suitable JSON
format, and implements the model-to-model transformation which produces the
corresponding instance of timed counter network representing the topology. The
resulting model is fed to the Zot formal verification tool [2], which has been mod-
ified to deal with CLTLoc formulae including unbounded counters. The property
is violated if a non-spurious counterexample (i.e. a run of the system violating
the property) is found. In this case, Zot returns the violating trace (SAT result),
that is processed back and displayed graphically by D-VerT. If the verification
terminates without providing counterexamples (UNSAT result), then the prop-
erty holds limited to ultimately periodic executions represented by a prefix αsβs
of bounded length.

We consider two different topologies: a simple DIA and a more complex
topology (named “focused-crawler”) provided by an industrial partner within the
DICE consortium. In both cases, we verify the property “all bolt queues have a
bounded occupation level”. If the property holds, then we claim that all bolts are
able to process the incoming tuples in a timely manner. Otherwise, there exists a
counterexample that violates (i.e., disproves) the property and that corresponds
to an unwanted execution of the topology where at least one queue grows with an
unbounded trend. This behavior can be expressed in the k-satisfiability problem
with a formula constraining the size of the queues. Over ultimately periodic
executions, defined through a k-bounded model, a queue q grows indefinitely if
its size at position k is strictly greater than the size at position l. Therefore, to
enforce the construction of models satisfying such a constraint, we add to the
formulae defining the k-satisfiability the conjunct

∨
j∈B qj(l) + c < qj(k), where

c is a non-negative constant.

Fig. 4. D-VerT verification flow.

1 github.com/dice-project/DICE-Verification.

https://github.com/dice-project/DICE-Verification/

206 F. Marconi et al.

The first use case (depicted in Fig. 1) allowed us to test some basic structures
that may appear in a Storm topology, such as split and join of multiple streams.
On this topology, we experimented on how modifying the parallelism level of a
bolt affects its ability of processing incoming tuples. In the first analysis, run
with the configuration in Fig. 1, Zot produces a trace showing that the adopted
configuration leads to an unbounded increase of the queue occupation of B2 and
B3. By changing the parallelism level of the bolts (setting it to, respectively, 8 for
B2 and 5 for B3) we obtain a configuration showing no counterexample (up to
length k = 15) of unbounded queue increase (timings of the two configurations
– simple-DIA-cfg-1 and simple-DIA-cfg-2 – are reported in Table 1).

Table 1. Experimental analysis on commodity hardware (MacBook Air running
MacOSX 10.11.4. with Intel i7 1.7 GHz, 8 GB 1600 MHz DDR3 RAM; SMT solver
used by Zot was z3 v.4.4.1). The complete results and experimental configurations can
be found at dice-project.github.io/DICE-Verification.

Topology Bolts Time Max Memory Outcome Spurious

simple-DIA-cfg-1 3 60 s 104 MB SAT No

simple-DIA-cfg-2 3 1058 s 150 MB UNSAT N/A

focused-crawler-complete 8 2664 s 448 MB SAT No

focused-crawler-reduced-cfg-1 4 95 s 142 MB SAT No

focused-crawler-reduced-cfg-2 4 253 s 195 MB SAT No

focused-crawler-reduced-cfg-3 4 327 s 215 MB SAT No

focused-crawler-reduced-cfg-4 4 333 s 206 MB SAT No

focused-crawler-reduced-cfg-5 4 3184 s 317 MB SAT Yes

focused-crawler-reduced-cfg-6 4 1060 s 229 MB SAT Yes

The second use case represents a typical usage of Storm in big data appli-
cations. As part of a social network analysis framework, the topology depicted
in Fig. 5 is in charge of fetching and indexing articles and multimedia items
from multiple web sources. The formal analysis of the “focused-crawler” topol-
ogy is motivated by some concerns raised by the industrial partner that were

wpSpout wpDeserializer expander

mediaExtraction

articleExtraction

textIndexer

mediaTextIndexer

mediaUpdater

webPageUpdater

Fig. 5. “Focused-crawler” topology.

http://dice-project.github.io/DICE-Verification

Towards the Formal Verification of DIAs Through Metric Temporal Logic 207

Fig. 6. D-VerT output trace of bolts expander and wpDeserializer. Black solid lines
represent the number of tuples in each bolt queue over time. Dashed lines show the
processing activity of the bolt, and dotted lines show the emits from the component
upstream. Gray background highlights the suffix of the trace, that is repeated infinitely
many times.

witnessed by monitoring the deployed application. After running the verifica-
tion on the topology we pointed out the critical role of the expander bolt. Some
output traces show possible system executions, even without failures, where the
queue occupation level of such component is unbounded. Figure 6 shows two of
the graphical output traces provided by D-VerT (referring to bolts expander
and wpDeserializer). It can be noticed, by looking at the number of tuples in
the queues (black solid lines) over time, how they both represent a periodic
model in which a suffix (in gray) of a finite sequence of events is repeated infi-
nitely many times after a prefix. After ensuring that the trace is not a spurious
model, we concluded that the expander queue, having an increasing trend in the
suffix, is unbounded. In order to evaluate the performance and the scalability
of the tool, we carried out many experiments on the presented topologies, by
varying the topology parameters and the number of bolts considered. Table 1
shows some of the time and memory consumptions statistics we collected. It
can be noticed how the running time is strongly affected by both the number
of bolts and their configurations, while the memory consumption is mainly cor-
related to the topology size (therefore, the number of formulae in the model).
In the simple-DIA case study, we obtained counterexamples (SAT results) with
very different timings depending on the configuration. The configuration lead-
ing to the UNSAT result, discussed previously, took considerably more time to

208 F. Marconi et al.

terminate. In the “focused-crawler” case study, we ran the verification also on
subsets of the topology (focused-crawler-reduced). In some cases, the tool pro-
vided a spurious counterexample. Despite the long running times in some cases,
we think that the experiments show the feasibility of our approach, and we will
focus in the future to optimizing the efficiency of the tool.

7 Conclusions and Future Work

In this paper we proposed a tool-supported approach for the formalization and
automated verification of DIAs based on Storm technology. We presented a for-
mal model of the temporal behavior of Storm topologies expressed through for-
mulae of CLTLoc extended with counters. We implemented a prototype tool,
D-VerT, which takes as input a high-level description of the target topology,
produces the corresponding set of logic formulae, and carries out the verification
task via the Zot bounded satisfiability checker. We evaluated the tool through
a pair of case studies. The running times of the tool range from a few minutes
to hours, depending on the topology and on the configuration parameters. Since
the satisfiability of CLTLoc with counters is generally undecidable and the tool
introduces some approximations to make the verification feasible in practice, we
provided a procedure to determine, given a trace returned by the tool, whether
this is spurious or not.

Future extensions and improvements of this work will follow several direc-
tions. In particular, we plan to: (i) extend the range of properties to be ana-
lyzed for the target topologies; (ii) pursue a finer-grained modeling approach,
for example representing the internal messaging system with higher detail, to
support more precise analyses; (iii) model other relevant technologies, such as
Apache Spark and Apache Tez, by extending the current framework; (iv) further
study the current model from a theoretical point of view, to achieve new results
on the soundness and completeness of the analysis of timed counter networks.

Acknowledgment. Work supported by Horizon 2020 project no. 644869 (DICE).

References

1. Apache Storm. http://storm.apache.org/
2. The Zot bounded satisfiability checker. github.com/fm-polimi/zot
3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. In: Pro-

ceedings of LICS, pp. 160–170 (1993)
4. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of the

expressiveness of timed automata and time Petri nets. In: Pettersson, P., Yi, W.
(eds.) FORMATS 2005. LNCS, vol. 3829, pp. 211–225. Springer, Heidelberg (2005).
doi:10.1007/11603009 17

5. Bersani, M., Erascu, M., Marconi, F., Rossi, M.: DICE verification tool - initial
version. Technical report, DICE Consortium (2016). www.dice-h2020.eu

6. Bersani, M.M., Frigeri, A., Morzenti, A., Pradella, M., Rossi, M., Pietro, P.S.:
Constraint LTL satisfiability checking without automata. J. Appl. Log. 12(4), 522–
557 (2014)

http://storm.apache.org/
http://github.com/fm-polimi/zot
http://dx.doi.org/10.1007/11603009_17
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D3.5_DICE-verification-tools-Initial-version.pdf

Towards the Formal Verification of DIAs Through Metric Temporal Logic 209

7. Bersani, M.M., Rossi, M., San Pietro, P.: A tool for deciding the satisfiability of
continuous-time metric temporal logic. Acta Informatica 53(2), 171–206 (2016)

8. Bouajjani, A., Mayr, R.: Model checking lossy vector addition systems. In:
Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 323–333. Springer,
Heidelberg (1999). doi:10.1007/3-540-49116-3 30

9. Casale, G., Ardagna, D., Artac, M., Barbier, F., Nitto, E.D., Henry, A., Iuhasz,
G., Joubert, C., Merseguer, J., Munteanu, V.I., Perez, J., Petcu, D., Rossi, M.,
Sheridan, C., Spais, I., Vladušič, D.: DICE: quality-driven development of data-
intensive cloud applications. In: Proceedings of MiSE, pp. 78–83 (2015)

10. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. Inf.
Comput. 205(3), 380–415 (2007)

11. Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger
LTL. Technical report LSV-06-5, LSV (2006)

12. Finkel, A.: Decidability of the termination problem for completely specified proto-
cols. Distrib. Comput. 7(3), 129–135 (1994)

13. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling Time in Computing.
Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin
(2012)

14. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

15. Reutenauer, C.: The Mathematics of Petri Nets. Masson and Prentice, Paris (1990)

http://dx.doi.org/10.1007/3-540-49116-3_30

Proving Event-B Models with Reusable Generic
Lemmas

Alexei Iliasov, Paulius Stankaitis, and Alexander Romanovsky(B)

Centre for Software Reliability, School of Computing Science, Newcastle University,
Newcastle upon Tyne, UK

{alexei.iliasov,paulius.stankaitis,alexander.romanovsky}@ncl.ac.uk

Abstract. Event-B is one of more popular notations for model-based,
proof-driven specification. It offers a fairly high-level mathematical lan-
guage based on FOL and ZF set theory and an economical yet expressive
modelling notation. Model correctness is established by proving a num-
ber of conjectures constructed via a syntactic instantiation of schematic
conditions. A significant part of provable conjectures requires proof hints
from a user. For larger models this becomes extremely onerous as iden-
tical or similar proofs have to be repeated over and over, especially after
model refactoring stages. In the paper we discuss an approach to making
proofs more generic and thus less fragile and more reusable. The crux
of the technique is offering an engineer an opportunity to complete a
proof by positing and proving a generic lemma that may be reused in
the same or even another project. To assess the technique potential we
have developed a plug-in to the Rodin Platform and used it to prove a
number of pre-existing Event-B models.

Keywords: Proofs · Automated theorem proving · Why3 · Rodin plug-
in · Proof reusability · Schematic lemmas

1 Introduction

There was a concerted effort, funded by a succession of several EU research
projects [12,15], to make Event-B [4] and its toolkit, the Rodin Platform [19],
appealing and competitive in an industrial setting. One of the lessons of this
mainly positive exercise is the general aversion of industrial users to interactive
proof. It is possible, in principle, to learn, through experience and determination,
the ways of underlying verification tools and master refinement and decompo-
sition to minimise proof effort. The methodological implications are far more
serious: building a good model is necessarily a trial and error process; one often
has to start from a scratch or do considerable refactoring to produce an ade-
quate model. This, obviously, necessitates redoing proofs and makes time spent
proving dead-end efforts seem pointlessly wasted. Hence, proof-shy engineers too
often do not make a good use of formal specification stage as they tend to hold
on to the very first, often incoherent design.

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 210–225, 2016.
DOI: 10.1007/978-3-319-47846-3 14

Proving Event-B Models with Reusable Generic Lemmas 211

We want to change the way proofs are done, at least in an industrial set-
ting. In place of an interactive proof - something that is inherently a one-off
effort in Event-B and comparable model-based notations - we incite modellers
to gradually accumulate a library of general support condition called a schematic
lemmas. The principle here is that a fitting schematic lemma added to hypothesis
set would discharge an open proof obligation. Such a lemma may not refer to any
model variables or user-defined types and is, in essence, a property supporting
the definition of the underlying mathematical language1. From our experience,
a modelling project has a fairly distinctive usage of mathematical language and,
we hypothesise, this leads to a distinctive set of supporting lemmas.

Since a schematic lemma does not reference model-specific variables or types
it can be immediately reused in a new context and thus is a tangible and per-
sistent outcome of a modelling effort, even an abortive one. It is not affected
by model refactoring and restructuring of refinement steps. In a long term, we
see schematic lemmas as a methodological tool promoting wider application of
model restructuring (or even restarting from scratch) and thus helping engineers
to construct better models and not feel constrained by the cost of a proof effort.

Another intriguing possibility, yet untested in practice, is that for a narrow
application domain combined with tailored development patterns it is feasible
to reach a point where a schematic lemma library makes modelling nearly free
of interactive proofs.

The rest of the paper is organised as follows. In Sect. 2 we briefly present the
Event-B modelling notation as well as its verification rules; we also introduce the
Why3 plug-in that makes use of the Why3 umbrella prover [8]. Section 3 expands
on the idea behind schematic lemmas and their potential role as a proof process.
We present some experimental results in Sect. 4 and summarise the findings in
Sect. 5.

2 Background

2.1 Event-B

Event-B [4] belongs to a family of state-based modelling languages that represent
a design as a combination of state (a vector of variables) and state transforma-
tions (computations updating variables).

In general, a design in Event-B is abstract: it relies on data types and
state transformations that are not directly realisable. This permits terse models
abstracting away from insignificant details and enables one to capture various
phenomena of a system with a varying degree of detail. Each statement about
the effect of a certain computation is supported by a formal proof. In Event-
B, one is able to make statements about safety (this incorporates the property
of functional correctness) and progress. Safety properties ensure that a system

1 There are, however, cases where the modeller’s insight is critical in providing a
witness or case split. These, we believe, should be handled at the specification as
discussed, for instance, in [10].

212 A. Iliasov et al.

never arrives at a state that is deemed unsafe (i.e., a shaft door is never open
when a lift cab is on a different floor). Progress properties ensure that a system
is able to achieve its operational goals (i.e., a lift cab eventually arrives).

Being a general-purpose formalism, Event-B does not attempt to fit any
specific application domain. It has found applications in hardware modelling,
validation of high-level use case scenarios, verification of business process logics
and even as a friendly notation for a mathematician looking for a support from
machine provers.

An Event-B development starts with the creation of a very abstract specifi-
cation. A cornerstone of the Event-B method is the stepwise development that
facilitates a gradual design of a system implementation through a number of
correctness-preserving refinement steps. The general form of an Event-B model
(or machine) is shown in Fig. 1. Such a model encapsulates a local state (pro-
gram variables) and provides operations on the state. The actions (called events)
are characterised by a list of local variables (parameters) vl, a state predicate
g called event guard, and a next-state relation S called substitution or event
action.

Fig. 1. Event-B machine structure

Event parameters and guards may be omitted leading to syntactic short-cuts
starting with keywords when and begin.

Event guard g defines the condition when an event is enabled. Relation S
is given as a generalised substitution statement [3] and is either deterministic
(x := 2) or non-deterministic update of model variables. The latter kind comes
in two notations: selection of a value from a set, written as x :∈ {2, 3}; and a
relational constraint on the next state v′, e.g., x :| x′ ∈ {2, 3}.

The invariant clause contains the properties of the system, expressed as state
predicates, that must be preserved during system execution. These define the safe
states of a system. In order for a model to be consistent, invariant preservation
is formally demonstrated. Data types, constants and relevant axioms are defined
in a separate component called context.

Model correctness is demonstrated by generating and discharging proof oblig-
ations - theorems in the first-order logic. There are proof obligations for model
consistency and for a refinement link - the forward simulation relation - between
the pair of abstract and concrete models.

Proving Event-B Models with Reusable Generic Lemmas 213

More details on Event-B, its semantics, method and applications may be
found in [4] and also on the Event-B community website [1]. A concise discussion
of the Event-B proof obligations is given in [9].

2.2 Why3 Plug-In

Development in Event-B is supported by the Rodin Platform [1] that has been
under active development since 2005. It has been long recognised that the Rodin
Platform may significantly benefit from an interface between Event-B and TPTP
[20] provers. To simplify translation we decided to use the Why3 [8] umbrella
prover that offers a single and quite palatable input notation and also supports
SMT-LIB compliant provers. Why3 supports 16 external automatic provers (not
counting different versions of the same tool), these include all the state-of-the-art
tools like Z3 [5], SPASS [25], Vampire [22] and Alt-Ergo [14].

Given that provers are CPU and memory intensive and there is a great
potential for exploiting parallel processing, from the outset we were aiming at a
provers-as-a-service cloud architecture. Indeed, running a collection of (distinct)
provers on the same conjecture is a trivial and fairly effective way to speed
up proofs given plentiful resources. Usability perception of interactive modelling
methods such as Event-B is sensitive to peak performance when a burst of activ-
ity (new invariant) is followed by a relatively long period of idling (modeller
thinking and entering model). The cloud paradigm, where only the actual CPU
time is rented, seems well suited to such scenario. Also, the cloud’s feature of
scalability plays a critical role in this situation.

A plug-in to the Rodin Platform was realised [16] to map between the Event-
B mathematical language and the Why3 theory input notation (we do not make
use of its other part - a modelling language notation). The syntactic part of the
translation is trivial: just one Tom/Java class mapping between Event-B and
Why3 operators. The bulk of the effort is in the axioms and lemmas defining the
properties of the numerous Event-B set-theoretic constructs. We have a working
prototype able to discharge (via provers like SPASS and Alt-Ergo) a number of
properties that previously required interactive proof. At the same time, we realise
that axiomatisation of a complex mathematical language like the one of Event-B
is likely to be an ever open problem. It is apparent that different provers prefer
differing styles of operator definitions: some perform better with an inductive
style (i.e., to define set cardinality one may say that the size of an empty set is
zero, adding one element to a set increases its size by one) while others prefer
regress to already known concepts (there exists a bijection such that ...). Since
we do not know how to define one best axiomatization, even for any one given
prover, we offer an open translator with which a user may define, with as many
cross-checks as practically reasonable, a custom embedding of Event-B into the
Why3.

The Why3 theory library we have developed in the support of the axiomati-
sation of the Event-B mathematical language does not appear optimal yet. For
most cases the Why3 plug-in performs on a par with or better than the SMT
plug-in [21] although it takes longer while using more provers at the back-end.

214 A. Iliasov et al.

With one model (of a train control system), we had a disappointing result of
32 undischarged proof obligations with the Why3 plug-in against 5 left undis-
charged by the SMT plug-in.

3 Schematic Lemmas

There is a number of circumstances when existing interactive proofs become
invalidated and a new version of an undischarged proof obligation appears.

On rare occasions a model or its sizeable part are changed significantly so
that there is no or little connection between old and new proof obligations. Far
more common are incremental changes that alter the goal, set of hypotheses,
identifier names or types. During the refactoring of a refinement tree it is very
common to lose a large proportion of manual proofs.

While there is a potential to improve the way the Rodin Platform handles
interactive proofs, the fragility of such proofs has mainly to do with their nature.
Unlike more traditional theorems and lemmas found in maths textbooks, model
proof obligations have no meaning outside of the very narrow model context. And
since Event-B relies on syntactic proof rules for invariant and refinement checks,
even fairly superficial syntactic changes would result in new proof obligations
which are, in fact, if not logically equivalent are often quite similar to the deleted
ones.

Even in the case of a significant model change, it is, in our experience, likely
that proof obligations similar to those requiring an interactive proof re-appear.
In addition, there is a large number of essentially identical interactive proofs
re-appearing in different projects due to specific weaknesses in the underlying
automatic provers.

The key to our approach is understanding what ‘similar’ means in the relation
to some two proof obligations. One interpretation is that similar conditions can
be discharged by the same proof scripts. To make it practical, this has to be
relaxed with some form of a proof script template [24]. The interpretation we
take in this work is that two proof obligations are similar if they both can be
discharged by adding same schematic lemma to the set of their hypotheses.
This definition is rather intricately linked with the capabilities of underlying
automated provers: adding a tautology (a proven lemma) to hypotheses does
not change a conjecture but it might help to guide an automated prover to
successful proof completion.

It is our experience that the existing the Rodin automatic provers do not
benefit from adding a schematic lemma (with instantiated type variables, to
make it first order) to hypotheses and they still need to be instantiated manually
by manually by an engineer to have any effect. However, in the case of the Why3
plug-in, with which this approach has a close integration, it is different: a fitting
schematic lemma in hypotheses makes proof nearly instantaneous.

Proving Event-B Models with Reusable Generic Lemmas 215

There are situations when the only viable way to complete a proof is by
providing a proof hint. One such case - refinement of event parameters - is
adequately addressed at the modelling notation level where a user is requested
to provide a witness as a part of a specification. There are proposals to generalise
this, for the majority of situations, and define hints at the model level [10].

A schematic lemma considered on its own is of a little use. But if a proof
obligation can be proven by adding a schematic lemma, then the construction
of a schematic lemma in itself a proof process. As a simple illustration, consider
the following (trivial) conjecture:

library ∈ BOOKS → N

b ∈ BOOKS ∧ c ∈ N

. . .
�
library �− {b �→ c} ∈ BOOKS → N

And suppose there were no automated prover capable of discharge it. It is
clear that the crux of the statement is in the interaction of functional override,
totality and functionality. The above can be rewritten as

f ∈ A → B
�
∀x, y · x ∈ A ∧ y ∈ B ⇒ f �− {x �→ y} ∈ A → B

Since the Event-B mathematical language does not have type variables such
a condition may only be defined either for specific A’s and B’s, or, in a slightly
altered form, using the Theory plug-in [6]. But to discharge the original proof
obligation one still needs to find this lemma and instantiates it. It is a tedious
and error-prone process for a human but a fairly trivial task for a certain kind
of automated provers.

The example above is quite generic in the sense it is potentially useful for in
many other contexts. At times a schematic lemma need to be fairly concrete (see
examples in Sect. 4. It is also easier to write a lemma that narrowly targets a proof
obligation. This distinction between ‘general’ and ‘specific’ is, at the moment,
completely subjective and relies on the modeller’s intuition. To reflect the fact
that a more general lemma is more likely to be reused, schematic lemmas are
classified into three visibility classes: machine (single model), project (collection
of models) and global. A machine-level lemma will be considered for a proof
obligation of the machine with which the lemma is associated; similarly, for
the project-level attachment. A global schematic lemma becomes a part of the
Event-B mathematical language definition for the Why3 plug-in.

Just as model construction is often an iterative process, we have discovered
during our experiments that finding a good schematic lemma may require several
attempts. A common scenario is that an existing lemma may be relaxed so that
while it is still strong enough to discharge conditions that were dependent on it, it
can also discharge some new ones. For instance, we have seen several cases where
a fairly narrow and detailed lemma would gradually slim down to a simple (and

216 A. Iliasov et al.

much more valuable) statement about distributivity of certain operators. It does
require at times a considerable effort to come up with an abstract and minimal
covering condition but the result is rewarding and reusable across projects.

3.1 Automatically Including Relevant Lemmas

Once there is a library of lemmas in place, it is vital that there is a way to auto-
matically use them in every new proof obligation. Including all the lemmas in the
hypotheses of every conjecture would simply overwhelm provers and effectively
preclude automated proof. To discover relevant schematic lemmas we match the
structure of a lemma against the structure of conjecture goals and hypotheses.
Recall that a schematic lemma has no free identifiers and thus matching must
be over structure.

Directly comparing a lemma and a conjecture is expensive: a straightforward
algorithm (tree matching) is quadratic unless memory is not an issue. We use
a computationally cheap proxy measure known as the Jaccard similarity which,
as the first approximation, is defined as JS(P,Q) = card(P ∩ Q)/card(P ∪ Q).

The key is in computing the number of overall and common elements and,
in fact, defining what an “element” means for a formula. One immediate issue
is that P and Q are sets and a formula, at a syntactic level, is a tree. One
common way to match some two sequences (e.g., bits of text) using the Jaccard
similarity is to use shingles of elements to attempt to capture some part of the
ordering information. A shingle is a tuple preserving order of original elements
but seen as an atomic element. Thus sequence [a, b, c, d] could be characterised by
two 3-shingles P = {[a, b, c], [b, c, d]} (here [b, c, d] is just a name) and matching
based on these shingles would correctly show that [a, b, c, d] is much closer to
[a, b, c, d, e] than to [d, c, b, a]. To account for trees structure we do matching on
a set of paths from a root to all leaves and also on the the set of sequences of
the form [p, c1, . . . , c2] where p is a parent element and c1, . . . , c2 are children.
This immediately gives a set of n-shingles that might need to be converted into
shorter m-shingles to make things practical.

As an example, consider the following expression a ∗ (b + c/d) + e ∗ (f −
d ∗ 2). We are not interested in identifiers and literals so we remove them to
obtain tree +(∗(+/))(∗(−∗)) which has the following 3-shingles based on paths,
[∗,+, /], [+, ∗,+], [+, ∗,−], [∗,−, ∗], and only 1 3-shingle, [+, ∗, ∗], based on the
structure. The shingles are quite cheap to compute (linear to formula size) and
match (fixed cost if we disregard low weight shingles, see below). Let sd(P) and
sw(P) be set of depth and structure shingles of formula P . Then the similarity
between some P and Q is computed as

s(P,Q) =
∑

i∈I1

wd(i) + c
∑

i∈I2

ww(i) I1 = sd(P) ∩ sd(Q), I2 = sw(P) ∩ sw(Q)

where w∗(i) = cnt(i)−1 and cnt(i) is number of times i occurs in all hypotheses
and support lemmas. Very common shingles contribute little to the similarity
assessment and may be disregarded so that there is some k such that card(I1) <
k, card(I2) < k.

Proving Event-B Models with Reusable Generic Lemmas 217

3.2 Schematic Lemma Plug-In

We have built a prototype implementation of the schematic lemma mechanism
as a plug-in to the Rodin Platform. It integrates into the prover perspective and
offers an alternative way to conduct an interactive proof either at a root node
level or indeed for any open sub-branch of a proof obligation. At the moment,
the notation employed is the native notation of Why3 but the first release will
support entering a schematic lemma in the Event-B mathematical notation.

There are three main parts to the definition of a schematic lemma: identifiers,
hypotheses and the goal. The identifier definition may use either one of the two
built-in types (boolean and integer) or a fresh type variable (i.e., type0 in Fig. 2).
Hypotheses are defined by a list of predicates (while logically order should not
matter, in practice it does and it is advantageous to have more constricting
hypotheses first); these predicates may not mention any model variables but can
refer to the identifiers defined in the lemma. And the goal is a predicate over the
lemma identifiers.

The plug-in automatically constructs the first attempt at a schematic lemma
through a simple syntactic transformation of a context proof obligation. All
the identifiers occurring in either hypotheses or goal of the proof obligation
are mapped into schematic lemma identifiers and then this mapping is used to
translate hypotheses and the goal.

From this starting point it is up to the modeller to construct a promising
lemma. A prepared lemma is committed where the Why3 plug-in is used to prove
that the lemma holds, and also that adding it to the proof obligation in context

Fig. 2. Schematic lemma prover interface. Instead of working with the built-in interac-
tive prover, a modeller attempts to construct a provable schematic lemma that would
discharge the current proof obligation

218 A. Iliasov et al.

discharges the proof obligation. If either fails, a user gets an indication of what
has happened and it is not until both generic and concrete proofs are carried
out that the schematic lemma may be used in the local library and assigned a
binding level (machine, project or global). In the case of a success, the current
open goal is closed.

To aid in the construction of a schematic lemma, the plug-in provides some
simple productivity mechanisms. A hypotheses can be deselected without remov-
ing it to check whether both the lemma goal and the context proof obligation are
still provable. An identifier may also be deselected and this automatically dese-
lects all the hypotheses mentioning the identifier. It will take more experiments
to arrive at methodological guidelines on constructing lemmas.

4 Case Study

In this section we discuss the experience of applying the schematic lemmas tech-
nique to prove several pre-existing models. Since this is an on-going project, we
also discuss perceived advantages and disadvantages of doing proofs with our
technique.

As the case study we consider four models, some of them fairly well known
to the Event-B community. They are not very large but still have a reasonable
number of proof obligations and make a good use of refinement and the Event-B
modelling notation. Our intention was to take models from different domains
constructed by different people to see how the technique performs in different
settings. On the whole we were pleased to find that such diverse models still share
a lot of schematic lemmas and it supports our conjecture that it is worthwhile to
build lemma library. We do not have enough to show that this process definitely
leads to a saturation point but we did observe that each subsequent model we
tackled was a little bit easier since lemmas are reused.

In the following subsections we start by addressing the importance of auto-
matic part of the verification process providing statistics on recent experiment
results. Then we demonstrate an example of how the schematic lemma method
was used to discharge a single goal and how lemmas propagate within a model.

4.1 Automatic Proving

The core of the experiment was to apply the schematic lemma plug-in to sev-
eral diverse models and compare results with the existing proof infrastructure
including the Why3 plug-in not equipped with schematic lemmas. The Rodin
Platform provides facility to define automatic tactics, combining certain rewrite
rule and automatic provers, and apply them redo all the proofs of a project. For
this experiment, we have defined four such tactics and compared their perfor-
mance. We have made every attempt to make best use of the available tools such
as the Atelier-B ML prover, built-in PP and nPP provers, and, of course, the
SMT plug-in that relies on some of the same back-end SMT provers.

Proving Event-B Models with Reusable Generic Lemmas 219

Table 1. Comparative performance of four proof tactics; the first column is the overall
number of generated proof obligations, the following four columns give the number of
proof obligations remaining open (undischarged) after applying, from a scratch (that
is, purging any previous proofs) the certain proof tactic. The final column gives in
brackets the number of schematic lemmas used in the model (but not necessarily defined
specifically for the model).

Model Proof
obligations

Open,
Tactic1

Open,
Tactic2

Open,
Why3

Open,
Why3 (+SL)

Order/supply communication [2] 276 24 4 8 4 (+2)

Fisher’s algorithm [11] 82 16 4 1 0 (+1)

Train control system [4] (Chap. 17) 133 36 5 32 32 (+0)

B2B communication prot. [18] 498 63 25 20 8 (+5)

Automated teller machine [17] 962 77 28 1 0 (+1)

Total 1951 216 66 62 44

Table 1 summarises the results of our experiment. We use two tactics that are
commonly available to the Rodin users. Tactic1 applies a number of rewrite rules
and then tries nPP, PP and ML provers; Tactic2 does the same with addition of
the SMT plug-in. The Why3 tactic is similar to Tactic1 but with the Why3 plug-
in as the sole automatic prover. This tactic does not use any schematic lemmas
and relies solely on the basic axiomatisation library defining various Event-B
operators. In the last column, the Why3 plug-in is able to locate an include
suitable schematic lemmas. This is a completely automatic process: one can
define a number of schematic lemmas (when doing interactive proofs), then purge
all the proofs and the lemmas will be picked up automatically when relevant.
The last number (+x) is the number of used schematic lemmas.

With one of the models (Train Control System) not only the Why3 plug-in
showed a lacklustre performance compared to the SMT plug-in but we also found
it hard to come up with any useful schematic lemmas. Two of the remaining
models were not proven completely as we have found it quite hard to read large
proof obligations and deduce what is really happening there. It should, we hope,
easier for a modeller who has a ready intuition as to what is the underlying
meaning of a given proof obligation.

4.2 Nesting Lemmas

In this subsection we go a bit a deeper and discuss one specific example where
a schematic lemma is used to complete a proof. We approached the experiment
in a more or less blind style where a model itself was not analysed in any detail
and we were generally concerned only with the specifics of a proof obligation -
its goal and hypothesis, - in an attempt to deduce a schematic lemma strong
enough to discharge the condition.

220 A. Iliasov et al.

There are situations where a suitable schematic lemma, which we believed
to be correct, and which as well discharged the context proof obligation could
not be proven by the Why3 plug-in. Initially, this was a puzzling scenario as
one would not want to comprise on the form of a schematic lemma. A possible
back-door solution is to add (in a safe way, with a proof) a lemma to the Why3
library of the Event-B axiomatisation and include the lemma in every single
proof obligation. However, we knew from the earlier experiments with the Why3
plug-in that a large number of supporting lemmas may overwhelm provers and
then, in an extreme, pretty much nothing is provable.

The solution is to allow a modeller to construct chains of lemmas of which
only the last one is used in the capacity of a schematic lemma and the rest help
to prove it. With extra support lemmas one should be able to handle pretty much
any case of forward or backward proof. These additional lemmas are visible in
the context and saved with the schematic lemma so that one is able to redo
all the proofs strictly on the basis of the Why3 axiomatisation library. Another
possibility, offered by the Why3 itself, is to transition to a far more capable
environment of Isabelle or Coq and complete a proof there. We have not tried
this route so far and it is not clear how to embed an external proof script in a
schematic lemma.

One example where we discovered a need for nesting lemmas is a relatively
common case of proving that an overridden restricted relation is a member of a
function. The effect of overriding f �−{x �→ y} is replacing mapping {x �→ f(x)}
with {x �→ y} in f . In example below, function database is overridden by a
singleton pair and one needs to check it remains a total function.

· · · � database �− {ai �→ a} ∈ Attr id → Attrs

After unsuccessful attempts to prove it automatically, we used a schematic
lemma technique to discharge it. Firstly, we added a schematic lemma shown
below.

lemma lemma_total_overriding:

forall f:rel ’a ’b, s:set ’a, t:set ’b, x: ’a, y : ’b.

mem f (s --> t) /\ mem x s /\ mem y t ->

mem (f <+ singleton (x, y)) (s --> t)

It seems to be a promising start as the original proof obligation was now
discharged by Alt-Ergo (among others) in just 0.03 s. Yet the lemma itself could
not be proven.

We discovered two new lemmas that should be added in the context of the
schematic lemma and are enough to discharge it. They state some simple prop-
erties about domain overriding, and the functionality of an overridden function.

lemma lemma_total_overriding_help0:

forall f : rel ’a ’b, x : ’a, y : ’b.

subset (dom f) (dom (f <+ (singleton (x, y))))

lemma lemma_total_overriding_help1:

forall f:rel ’a ’b, s:set ’a, t:set ’b, x: ’a, y : ’b.

Proving Event-B Models with Reusable Generic Lemmas 221

mem f (s --> t) /\ mem x s /\ mem y t ->

mem (f <+ singleton (x, y)) (s +-> t)

Both statements were proven. For Alt-Ergo the times are 1.74 s and 1.08 s
respectively. It is important to note that these lemmas only appear in the context
of proving lemma total overriding.

4.3 Lemma Reuse

As we have stated previously, it has been one of the goals of this research to
establish to what degree schematic lemmas are reusable at least within the same
project. Clearly, it would not make any sense to write a dedicated lemma for
each open proof obligation.

In this experiment, we address the problem of proof re-usability by shifting
the focus from proving a single verification condition to validating remaining
undischarged proof obligations of the model. We use a publicly available model
Buyer/Seller B2B Communication protocol [18]. In our view, it is a fairly typical
example of a model not constructed solely for illustration purposes, i.e., there is
some scale and purpose to it.

A Buyer/Seller B2B Communication protocol model has 11 refinement steps
and 498 verification conditions. Combining all the default tactics with all the
available automatic provers and the SMT plug-in results in 25 undischarged
verification conditions (63 without the SMT plug-in).

Our standard routine based on the Why3 plug-in consists in first applying
the plug-in without any schematic lemmas with increasingly longer timeouts
and only afterwards reviewing remaining conditions for the purpose of writing
schematic lemmas.

For this specific experiment, we used an incremental timeout tactic with
three theorem provers: Z3, EProver and Alt-Ergo. The initial timeout was set
to 5 s then to 15 s and finally 45 s which roughly the point when provers start
to run out of memory. The vast majority of conditions were proven under 5s,
only few more between 5 and 15 s, and no new conditions were proven with the
45 s timeout. The Why3 plug-in on its own has discharged a significant part
of the obligations: only 4.6 % of the 498 open verification conditions were not
automatically proven which is better than the SMT plug-in.

One immediately satisfying result that the schematic lemmas defined for two
other models (Order/Supply Communication and Fisher’s Algorithm) - com-
pletely unrelated in terms of domain and provenance - discharged ten proof
obligations of the B2B model. After that, we have added further five schematic
lemmas each discharging between 2 and four proof obligations. Table 2 shows
the proof progress taking the model from 20 POs to 8 via five schematic lem-
mas. The remaining 8 could not be easily done with this approach. We have not
arrived at a definite conclusion of whether there is a sizeable class of proof oblig-
ations for which one cannot construct meaningful lemmas or if it is just the case
of unfamiliarity with the model making writing schematic lemmas inordinately
difficult.

222 A. Iliasov et al.

Table 2. The dynamics of proving the B2B communication protocol model using the
schematic lemma technique. The numbers show how each next lemma (L1, L2, ...)
affects the overall number of open proof obligations.

Model Open,
Why3

Open,
+L1

Open,
+L2

Open,
+L3

Open,
+L4

Open,
+L5

B2B Communication prot. 20 16 14 12 10 8

To pick but few simpler examples we show again a variation of reasoning
about functional override and finiteness. Some lemmas coming from previous
models were useful although some properties were still missing, i.e., overridden
functions domain and range properties. Nonetheless, we managed to narrow
down few of these properties and reduce the number of unsatisfied verification
conditions by 10. The fundamental idea behind this proving style is to virtually
break down a statement into pieces and consider what basic properties that
could be missing.

For instance, the following trivial condition has discharged a large of seem-
ingly unrelated proof obligations in several models.

lemma lemma_natural_increment:

forall x, n : int.

mem x bnatural1 /\ n >= 0 ->

mem (x + n) bnatural1

A fairly common tactic in the schematic lemma approach, when not familiar
with the model, and the condition appears to be true, is to try and identify the
few key hypothesis and come up with a lemma that would bridge them to the
goal. Although it sounds fairly trivial, proof obligations may contain tens if not
hundreds hypotheses so just visually spotting the right few one might be tricky.
We are working on heuristics to automatically filter and rank schematic lemma
hypotheses.

As an illustration of the finiteness properties consider the following simple
example.

finite(B 2 S proposal)
B 2 S counter proposal ∈ B 2 S proposal � dom(B 2 S rejection)
�
finite(B 2 S counter proposal)

It is not hard to prove it by hand by it is tedious to do it over an over again.
So we added the following schematic lemma and all such and similar cases are
now instantly discharged.

lemma lemma_finite_partial_domain:
forall f : rel ’a ’b, s : set ’a, t : set ’b.

finite (dom f) /\ mem f (s +-> t) ->
finite f

Proving Event-B Models with Reusable Generic Lemmas 223

There is a fine interplay between the functioning of the schematic lemmas
plug-in and the Why3 plug-in filtering mechanism. The Why3 plug-in uses the
shingles technique to rank and filter hypothesis and originally aimed at just
filtering out irrelevant hypothesis. We had to slightly adjust matching weights
as there are no common identifiers between a proof obligation and a schematic
lemma so a bigger emphasise has to be made on structural patterns.

Throughout experiments with a collection of the Why3 back-end provers we
noticed that not only different provers are better for certain problems, but they
also prefer specific style of a writing a lemma. For instance, the order clauses in
the conjunction in the left-hand side of an implication may have discernible effect
not only on a proof time but also on proof success for some provers. Therefore, it
is, to some extent, an experimental process requiring trying out different forms
of the same argument.

5 Discussion

Completely automating a verification process is a largely debatable idea and a
grand challenge for automated reasoning community. Nonetheless, we were keen
to experiment with a handful of models and our tool, which exploits modern
state-of-the-art theorem provers and identify on how far are we from the ultimate
objective.

The models we have chosen for the case study are not particularly large. We
have on purpose avoided taking some of the large industry-constructed as they
have unusually high proportion of interactive proofs and may argue that Event-
B abstraction mechanisms were not used to full extend to manage complexity
and reduce the proof workload. In the longer term, however, we would want to
tailor our technique to the needs of an industrial user. We believe, and this is
supported by our experiments, that with a carefully lemma library and a domain-
specific modelling guidance document, industrial user will be able to construct
large and useful models without doing a single interactive proof. Failed proof
obligations will still be reported, in slightly different style from now, to inform a
modeller what is wrong and how it can be fixed. Any proof obligation remaining
undischarged after throwing at it all possible automatic provers will be treated
as a modelling error irrespective of whether the condition can be potentially
proven or not. A similar mindset of restricting the usage of modelling notation
in order to gain productivity has been with some great success for the Classical
B refinement process [13].

The schematic lemma technique has the potential to significantly alter the
way models are proved while proof persistence encourages frequent and deep
model refactoring. We also hypothesise that at a certain stage accumulated
schematic lemma make automatic proof support so complete that interactive
proofs are no longer necessary and an undischarged proof is treated as failed
and must be dealt with at a model level.

The idea of generalisation for the purpose of proof reuse has been explored
in different settings. Perhaps the most well-known example to aspire to is the

224 A. Iliasov et al.

tactic or meta-proof language supported by general purpose interactive theorem
provers such as Isabelle [23]. It is far more flexible and powerful technique but
also requires a different level of expertise from a user. A much simpler technique
is having a customisable set of rewrite or simplification rules. In principle, this
is offered to some extent by the Theory plug-in; the Atelier-B interactive prover
allows a modeller to define custom rewrite rules although this is can be extremely
unsafe [7]. Reusable theory components with embedded lemmas, tautologies and
rewrite rules are widely used in many verification tools from Maude to ACL2
and also recently available, thanks to the Theory plug-in, in Event-B. Schematic
lemmas are far less topical than such theory components but then their inclusion
is triggered automatically via syntactic matching rather than through direct
instructions from a user.

As one extension of this work we see investigation of guidelines on schematic
lemma construction to help an engineer decide when and what kind of a
schematic might be used. The Why3 plug-in may optionally record all the proof
attempts in a database. We would like to explore whether a form of automated
data mining of failed proof obligations may be employed to automatically syn-
thesise schematic lemma candidates.

In this work we have tried to weave the process of constructing generalised
proofs into the very process of model construction and address two long standing
challenges of model-based design: turning proofs into tangible artefacts that can
survive deep model refactoring, and making interactive proof on organic part of
model construction rather than an unfortunate side activity.

Acknowledgments. This work is supported by the RSSB/UK project SafeCap+:
SafeCap for integrated optimum capacity, safety and energy strategies at multiple
nodes, the EPSRC/UK project STRATA: Layers for Structuring Trustworthy Ambient
Systems and the EPSRC IAA account project on Formal Data Analytics in Railway.

References

1. Event-B and the Rodin Platform. http://www.event-b.org/
2. Furst, A.: Event-B model of the Order/Supply Chain A2A Communication. http://

deploy-eprints.ecs.soton.ac.uk/129/
3. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
4. Abrial, J.-R.: Modelling in Event-B. Cambridge University Press, Cambridge

(2010)
5. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

6. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z.,
Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods.
LNCS, vol. 8051, pp. 67–81. Springer, Heidelberg (2013)

7. Clearsy. Atelier B.: User and Reference Manuals. http://www.atelierb.societe.com/
index uk.html

8. Marché, C., Paskevich, A., Bobot, F., Filliâtre, J.-C.: Why3: shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, pp. 53–64, August 2011

http://www.event-b.org/
http://deploy-eprints.ecs.soton.ac.uk/129/
http://deploy-eprints.ecs.soton.ac.uk/129/
http://www.atelierb.societe.com/index_uk.html
http://www.atelierb.societe.com/index_uk.html

Proving Event-B Models with Reusable Generic Lemmas 225

9. Hallerstede, S.: On the purpose of Event-B proof obligations. In: Börger, E., Butler,
M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 125–138. Springer,
Heidelberg (2008)

10. Hoang, T.S.: Proof hints for Event-B (2012). CoRR, abs/1211.1172
11. Iliasov, A., Bryans, J.: A proof-based method for modelling timed systems. In:

Voronkov, A., Virbitskaite, I. (eds.) PSI 2014. LNCS, vol. 8974, pp. 161–176.
Springer, Heidelberg (2015)

12. Industrial deployment of system engineering methods providing high dependability
and productivity (DEPLOY), IST FP7 project. http://www.deploy-project.eu/

13. Burdy, L.: Automatic refinement. In: Proceedings of BUGM at FM 1999 (1999)
14. Conchon, S., Contejean, É., Kanig, J., Lescuyer, S.: CC(X): semantical combi-

nation of congruence closure with solvable theories. In: Post-proceedings of the
5th International Workshop on Satisfiability Modulo Theories (SMT 2007), vol.
198, no. 2 of Electronic Notes in Computer Science, pp. 51–69. Elsevier Science
Publishers (2008)

15. Rigorous Open Development Environment for Complex Systems (RODIN), IST
FP6 STREP project. http://rodin.cs.ncl.ac.uk/

16. Iliasov, A., Stankaitis, P., Adjepon-Yamoah, D., Romanovsky, A.: Rodin platform
Why3 plug-in. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ
2016. LNCS, vol. 9675, pp. 275–281. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-33600-8 21

17. Said, M.Y., Butler, M., Snook, C.: Language and tool support for class and state
machine refinement in UML-B. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009.
LNCS, vol. 5850, pp. 579–595. Springer, Heidelberg (2009)

18. Hoang, T.S.: Event-B model of the Buyer/Seller B2B Communication. http://
deploy-eprints.ecs.soton.ac.uk/128/

19. The RODIN platform. http://rodin-b-sharp.sourceforge.net/
20. TPTP: Thousands of Problems for Theorem Provers. www.tptp.org/
21. Deharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating SMT solvers in Rodin.

Sci. Comput. Program. 94(Part 2), 130–143 (2014)
22. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In:

Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35.
Springer, Heidelberg (2013)

23. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

24. Freitas, L., Whiteside, I.: Proof patterns for formal methods. In: Proceedings of
FM 2014: Formal Methods - 19th International Symposium, Singapore, 12–16 May
2014, pp. 279–295 (2014)

25. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 140–
145. Springer, Heidelberg (2009)

http://www.deploy-project.eu/
http://rodin.cs.ncl.ac.uk/
http://dx.doi.org/10.1007/978-3-319-33600-8_21
http://dx.doi.org/10.1007/978-3-319-33600-8_21
http://deploy-eprints.ecs.soton.ac.uk/128/
http://deploy-eprints.ecs.soton.ac.uk/128/
http://rodin-b-sharp.sourceforge.net/
www.tptp.org/

Formal Availability Analysis Using Theorem
Proving

Waqar Ahmad(B) and Osman Hasan

School of Electrical Engineering and Computer Science,
National University of Sciences and Technology (NUST), Islamabad, Pakistan

{waqar.ahmad,osman.hasan}@seecs.nust.edu.pk

Abstract. Availability analysis is used to assess the possible failures and
their restoration process for a given system. This analysis involves the
calculation of instantaneous and steady-state availabilities of the indi-
vidual system components and the usage of this information along with
the commonly used availability modeling techniques, such as Availability
Block Diagrams (ABD) and Fault Trees (FTs) to determine the system-
level availability. Traditionally, availability analyses are conducted using
paper-and-pencil methods and simulation tools but they cannot ascer-
tain absolute correctness due to their inaccuracy limitations. As a com-
plementary approach, we propose to use the higher-order-logic theorem
prover HOL4 to conduct the availability analysis of safety-critical sys-
tems. For this purpose, we present a higher-order-logic formalization
of instantaneous and steady-state availability, ABD configurations and
generic unavailability FT gates. For illustration purposes, these formal-
izations are utilized to conduct formal availability analysis of a satellite
solar array, which is used as the main source of power for the Dong Fang
Hong-3 (DFH-3) satellite.

Keywords: Higher-order logic · Unavailability fault tree · Availability
Block Diagram · Theorem proving

1 Introduction

Availability analysis is used to identify and assess the causes and frequencies
of system failures. The outcomes of availability analysis play a vital role in
ensuring failure-free operation of the given system. Due to the rapid increase
in the usage of technological systems in safety and mission-critical domains,
such as transportation and healthcare, the demand of their availability and thus
availability analysis is also growing dramatically.

The first step, in the availability analysis, is the evaluation of basic metrics of
reliability and maintainability, such as mean-time to failure (MTTF) [1], mean-
time between failure (MTBF) [1] and mean-time to repair (MTTR) [1], at the

The original version of this chapter was revised. The spelling of the author
Waqar Ahmad has been corrected. The erratum to this chapter is available at
DOI: 10.1007/978-3-319-47846-3 30

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 226–242, 2016.
DOI: 10.1007/978-3-319-47846-3 15

http://dx.doi.org/10.1007/978-3-319-47846-3_30

Formal Availability Analysis Using Theorem Proving 227

individual component level of the given system. These metrics are then used to
calculate the availability of each component of the system by using the reliability
and the maintainability distributions, such as Exponential or Weibull, with fail-
ure and repair rates, λ = 1

MTTF and μ = 1
MTTR . The next step is the selection of

an appropriate availability modeling technique, such as Availability Block Dia-
grams (ABD) [2] and unavailability Fault Trees (FT) [2]. These techniques are
the extension of traditionally used reliability modeling techniques, such as Relia-
bility Block Diagram (RBD) [1] and Fault Tree (FT) [1], for availability analysis
purposes. Besides these two techniques, Markov chains [3] have also been used
for availability assessment. In practice, it provides much more detailed analy-
sis compared to ABD and UFT. However, the major problem with the Markov
chain based availability analysis is its exponential growth in the state-space as
the system complexity increases [3]. For instance, consider the large Multistage
Interconnection Networks (MINs) [3] that are mainly used in the supercomput-
ers and multi-process systems to realize communication among thousands of
processors. To conduct the Markov chain based availability analysis of a 8× 8
MIN consisting of 16 switching elements, we need to consider 216 possible states
[3]. Although, we can somewhat reduce the number of states by taking appropri-
ate assumptions but it can compromise the accuracy of the availability results [3].
On the other hand, ABD and UFT are intuitive and transparent methods that
can be used to describe the availability of large and complex systems, like MINs
[4]. The ABD and UFT based modeling techniques also allow us to estimate
the availability of the given system at the system level and play a particularly
useful role at the design stages of the system to scrutinize the design alternatives
without building the actual system. Once an appropriate availability model is
obtained then the next step is to perform the system level availability analysis
of the model using an appropriate analysis technique.

Traditionally, simulation tools, such as ReliaSoft [5] and ASENT [6], are used
to analyze the availability models. However, these techniques cannot be termed
as accurate due to their inherent incompleteness and the involvement of pseudo-
random numbers and numerical methods. Given the safety and financial-critical
nature of many technological systems these days, a slight unavailability of such a
system, at a particular instant, may lead to disastrous situations, including the
loss of human lives or heavy financial setbacks. For instance, it is reported that
the Amazon Web Service (AWS) suffered an unavailability for 12 h, in April 21,
2011, causing hundreds of high-profile Web sites to go offline [7], which resulted
in a loss of 66,240 US$ per minute downtime of its services.

Model checking techniques have been used to overcome the above-mentioned
limitations for conducting the reliability analysis (e.g., [8,9]), which is in turn
used to assess the failure free operation of a system in a given interval and is thus
quite closely related to availability analysis. Stochastic Petri Nets (SPN) have
also been utilized to formalize RBD and FT, which are then used to analyze the
availability [10]. However, a major disadvantage of using these approaches is their
inability to analyze large size systems. Moreover, the computation of probabili-
ties in these methods [8,9] involves numerical methods, which compromises the

228 W. Ahmad and O. Hasan

accuracy of the results. Leveraging upon the high expressiveness of higher-order
logic and a recent formalization of probability theory [11], the higher-order-logic
theorem prover HOL4 has been recently used for the formalization of Reliability
Block Diagrams (RBD) [12,13] and Fault trees (FT) [14]. These efforts clearly
indicate the effectiveness of using a higher-order-logic (HOL) theorem prover for
conducting reliability and failure analysis and, in the current paper, we develop
the reasoning support for availability analysis by extending the HOL4 formal-
izations of RBD and FT. It is important to note that our proposed approach of
using HOL theorem proving for availability analysis is primarily based on deduc-
tive reasoning. The availability properties are verified by using sound reasoning
process and it is supported by the fact that every new theorem is derived from
already verified theorems [15]. Therefore, the analysis is much more rigorous and
accurate compared to computer algebra systems (CAS), such as Mathematica
[16], which simplify the given closed form expressions and returns the results in
the form of symbolic expressions. This fact can be illustrate with this example
that the simplification of the expression (x2−1)

(x−1) by CAS yields (x + 1) without
explicitly mentioning (x �= 1) [17]. On the other hand, HOL theorem prover
cannot verify the same expression without this premise.

The main contribution of the paper is to formalize the ABD, unavailability
FT gates and steady-state availability to develop a formal library of availabil-
ity theory foundations. This library can then be used to model and analyze
both component and system level availability properties of any system within
the sound core of a theorem prover. The main challenge faced in this formal-
ization, compared to our earlier formalizations related to reliability theory, was
to introduce the notion of an availability event that is associated with each sys-
tem component. Each one of these availability events consists of a sequence of
multiple random variables that are functioning over time. In order to illustrate
the effectiveness of our proposed formalization, we present a formal availability
analysis of a satellite solar array [18,19] that has been used as a main power
source for the Dong Fang Hong-3 (DFH-3) satellite. In addition, we also provide
some automated reasoning support for the availability analysis. This automa-
tion allows us to quantitatively compute the availability and unavailability of
the DFH-3 satellite solar array from the given values of the failure and repair
rates.

2 Probability and Reliability in HOL

Mathematically, a measure space is defined as a triple (Ω,Σ, μ), where Ω is a
set, called the sample space, Σ represents a σ-algebra of subsets of Ω, where
the subsets are usually referred to as measurable sets, and μ is a measure with
domain Σ. A probability space is a measure space (Ω,Σ,Pr), such that the
measure, referred to as the probability and denoted by Pr, of the sample space
is 1. In the HOL formalization of probability theory [11], given a probability
space p, the functions space, subsets and prob return the corresponding Ω, Σ
and Pr, respectively. This formalization also includes the formal verification of

Formal Availability Analysis Using Theorem Proving 229

some of the most widely used probability axioms, which play a pivotal role in
formal reasoning about reliability properties. A random variable is a measurable
function between a probability space and a measurable space. The measurable
functions belong to a special class of functions, which preserves the property that
the inverse image of each measurable set is also measurable. A measurable space
refers to a pair (S,A), where S denotes a set and A represents a nonempty
collection of sub-sets of S. Now, if S is a set with finite elements, then the
corresponding random variable is termed as a discrete random variable otherwise
it is called a continuous one.

Now, reliability R(t) is defined as the probability of a system or component
performing its desired task over certain interval of time and expressed mathe-
matically in terms of random variable as R(t) = Pr(X > t). This concept can
be formalized in HOL4 as follows:

� ∀ p X t. Reliability p X t = distribution p X {y | Normal t < y}

where the variables p : (α → bool)#((α → bool) → bool)#((α → bool) → real),
X : (α → extreal) and t : real represent a probability space, a random variable
and a real number respectively. The function Normal takes a real number as its
inputs and converts it to its corresponding value in the extended − real data-
type, i.e., it is the real data-type with the inclusion of positive and negative
infinity. The function distribution takes three parameters: a probability space
p, a random variable X and a set of extended − real numbers and outputs the
probability of a random variable X that acquires all the values of the given set
in probability space p.

3 Instantaneous and Steady-State Availabilities

The instantaneous or point availability Ainst(t) of a system or component can
be defined as the probability that the given system or component is properly
functioning at a given time instant t. If there are no repairs required after the
fault has occurred then the availability A(t) is simply equal to the reliability
R(t) of the system. However, if the system or component requires repair, then
the availability can be considered as the function of two random variables, i.e.,
Xi = Ti +Di, where Ti is the working time in the ith period and Di is the repair
time in the ith period. If the time when a system starts working in the kth period
is Sk =

∑k−1
i=1 Xi then the considered system is said to be available at time t

when there exists a period such that Sk ≤ t < Sk + Tk. Now, the corresponding
availability event constituted by these random variables can be formalized in
HOL4 as follows:

Definition 1. � ∀ p X t. avail event p L n t =

{x | SIGMA (λa. FST (EL a L) x + SND (EL a L) x) (count n) ≤ t ∧
t < SIGMA (λa. FST (EL a L) x + SND (EL a L) x) (count n) +

FST (EL n L) x} ∩ p space p

230 W. Ahmad and O. Hasan

The above definition takes a probability space p, a list of random variable pairs
L, representing the working and repair time random variables, a number n and
a time variable t and returns the corresponding availability event. The function
SIGMA takes an arbitrary function f and a set s and returns the sum of all the
values obtained by applying the function f on each element of the given set.
The HOL4 function count takes a number n and returns a set containing all the
natural numbers less than the given number n. Similarly, the function EL takes
an index variable and a list and retrieves the list element located at the given
index number. The HOL4 functions FST and SND are primarily used to access the
first and second elements in a pair. Definition 1 models the corresponding event
of the ith working interval only. To cover all the working intervals, we take the
union of these availability events, corresponding to the pairs of random variable
in list L, in HOL4 as follows:

Definition 2. � ∀ p L t. union avail events p L t =

BIGUNION (IMAGE (λa. avail event p L a t) (count (LENGTH L)))

An interesting property of the availability event is that its probability, also
known as instantaneous availability, is always greater or equal to the correspond-
ing reliability, i.e., RT1(t) ≤ Ainst(t), where T1 is the first time-to-work random
variable. This property can be formally verified, based on Definitions 1 and 2,
in HOL4 as follows:

Theorem 1. � ∀ p t L. prob space p ∧ (0 ≤ t) ∧ ¬NULL L ∧
(∀n. avail event p L n t ∈ events p) ∧
(∀a b. (a �= b) ⇒
DISJOINT (avail event p L a t) (avail event p L b t)) ⇒
(Reliability p (FST (HD L)) t ≤ prob p (union avail events p L t))

The first two assumptions ensure that p is a valid probability space and time
index t must be positive. The next two assumptions make sure that the given
list of random variables must not be empty and the availability events are in
the events space p. The last assumption ensures that the availability events are
disjoint. The conclusion models the property that the instantaneous availabil-
ity is always greater or equal to reliability. The function Reliability takes a
probability space p, a random variable that is associated with the system or
component and a time variable t and returns the reliability of the system or
component [12].

Consider that the failure and repair random variables are exhibiting expo-
nential distributions with failure and repair rates λ and μ, respectively, then the
instantaneous availability at the component level can be expressed mathemati-
cally as follows [1]:

Ainst(t) =
μ

μ + λ
+

λ

μ + λ
e−(λ+μ)t (1)

where the failure and repair rates are the mean-time-to-failure (MTTF) and
mean-time-to-repair (MTTR), i.e. λ = 1

MTTF and μ = 1
MTTR , which are basic

metrics for reliability and maintainability, respectively.

Formal Availability Analysis Using Theorem Proving 231

Now, we can formalize the instantaneous availability, given in Eq. 1, as fol-
lows:

Definition 3. � ∀ p L m. inst avail exp p L m =

∀t. prob p (union avail events p L (&t)) =

SND m

(SND m + FST m)
+

FST m

(SND m + FST m)
* exp (-(SND m + FST m) * &t)

where the variables FST m and SND m represent failure and repair rates, respec-
tively.

The steady-state availability of any component, which reflects the long-term
availability after the system becomes stable, can be evaluated by taking the limit
as t approaches infinity in Eq. (1).

Asteady = lim
t→∞

Ainst(t) =
μ

μ + λ
(2)

The above equation can be formally verified in HOL4 as follows:

Theorem 2. � ∀ p L m. prob space p ∧ (0 < FST m ∧ 0 < SND m) ∧
(∀t. (∀a b. a �= b ⇒
DISJOINT (avail event p L a t) (avail event p L b t)) ∧
(∀n. avail event p L n t ∈ events p)) ∧ inst avail exp p L m ⇒

(lim (λt. prob p (union avail events p L (&t))) =
SND m

(SND m + FST m))

The assumptions of the above theorem are quite similar to those used in Theo-
rem 1. The proof of Theorem 2 is primarily based on the fact that the negative
exponential function tends to zero as its exponent tends to infinity.

4 Availability Block Diagrams

Availability Block Diagram (ABD) are graphical structures that represent the
system components and their interconnections in the form of blocks and connec-
tor lines, respectively. The system is termed as available, if at least one path of
properly available components from the input to output exists.

The availability of a system with components connected in series is considered
to be available at time instant t only if all of its components are available at
time t, as depicted in Fig. 1(a). If Ainsti(t) is a mutually independent event
that represents the instantaneous availability of the ith component of a serially
connected system with N components at time instant t, then the steady-state
availability of the complete system can be expressed as [20]:

lim
t→∞

Pr(

N⋂

i=1

Ainsti(t)) =

N∏

i=1

(
μi

μi + λi
) (3)

The series ABD configuration can be formalized as:

Definition 4. � (∀ p. series struct p [] = p space p) ∧
(∀ p h t. series struct p (h::t) = h ∩ series struct p t)

232 W. Ahmad and O. Hasan

(a) (b)

(c) (d)

Fig. 1. ABDs (a) Series (b) Parallel (c) Series-Parallel (d) Parallel-Series

The above function takes a list of events corresponding to the availability of
individual components of the given system and the probability space p and
returns the intersection of all of the elements in a given list and the whole
probability space, if the given list is empty. Based on this definition, Eq. (3) can
be formally verified as follows:

Theorem 3. � ∀ p L M. (A1): prob space p ∧ (A2): (0 ≤ t) ∧
(A3): (∀z. MEM z M ⇒ 0 < FST z ∧ 0 < SND z) ∧
(A4): (LENGTH L = LENGTH M) ∧
(A5): (∀t’. ¬NULL (union avail event list p L (&t’)) ∧
(A6): (∀z. MEM z (union avail event list p L (&t’)) ⇒ z ∈ events p) ∧
(A7): mutual indep p (union avail event list p L (&t’))) ∧
(A8): inst avail exp list p L M ⇒
(lim (λt. prob p (series struct p (union avail event list p L (&t)))) =

list prod (steady state avail list M))

where the function union avail event list can be obtained by mapping the
function union avail event on every element of the given random variable list.
The function list prod returns the product of given real number list. The first
two assumptions (A1–A2) ensure that p is a valid probability space and the
time t must be positive. The assumptions (A3–A4) guarantee that the failure
and repair rates are positive and the length of failure-repair random variable
and the corresponding rate lists are equal. The next two assumptions (A5–A6)
make sure that the length of availability event list, representing the availability
of individual components, must not be empty and each availability event in a
avail event list is in events space p. The last two assumptions (A7–A8) pro-
vide the mutual independence among all the availability events and the instanta-
neous availability of each component. The conclusion of the theorem represents

Formal Availability Analysis Using Theorem Proving 233

Eq. (3) as the function steady state avail list takes a list of pairs, represent-
ing the failure and repair rates, and returns a list of steady-state availabilities,
corresponding to each component of the given system.

Similarly, the availability of a system with parallel connected components,
depicted in Fig. 1(b), mainly depends on the component with the maximum
availability. In other words, the system will continue functioning as long as at
least one of its components remains functional. Mathematically [20]:

lim
t→∞

Pr(
N⋃

i=1

Ainsti(t)) = 1 −
N∏

i=1

(1 − μi

μi + λi
) (4)

Now, the availability of a system with a parallel structure is defined as:

Definition 5. � (parallel struct [] = {}) ∧
(∀ h t. parallel struct (h::t) = h ∪ parallel struct t)

The function parallel struct accepts a list of reliability events and returns
the parallel structure reliability event by recursively performing the union oper-
ation on the given list of reliability events or an empty set if the given list is
empty. We can now verify Eq. (4) as follows:

Theorem 4. � ∀p L M.

(lim (λt. prob p (parallel struct p (union avail event list p L (&t)))) =

1 - list prod (one minus list (steady state avail list M))

The above theorem is verified under the same assumptions as Theorem 3. The
conclusion of the theorem represents Eq. (4) where, the function one minus
list accepts a list of real numbers [x1, x2, · · · , xn] and returns the list of real
numbers such that each element of this list is 1 minus the corresponding element
of the given list, i.e., [1−x1, 1−x2 · · · , 1−xn]. The proof of Theorem 4 is based
on Theorem 3 along with the fact that given a list of n mutually independent
events, the complement of these n events are also mutually independent.

If in each serial stage the components are connected in parallel, as shown
in Fig. 1(c), then the configuration is termed as a series-parallel structure. If
Ainstij (t) is the event corresponding to the instantaneous availability of the jth

component connected in an ith subsystem at time instant t, then the steady-state
availability of the complete system can be expressed as follows [20]:

lim
t→∞

Pr(
N⋂

i=1

M⋃

j=1

Ainstij (t)) =
N∏

i=1

(1 −
M∏

j=1

(1 − μij

μij + λij
)) (5)

By extending the ABD formalization approach, presented in Theorems 3 and
4, we formally verify the generic availability expression for series-parallel ABD
configuration, given in Eq. (5), in HOL4 as follows:

Theorem 5. � ∀ p L M. prob space p ∧ (LENGTH L = LENGTH M) ∧
(∀z. MEM z (FLAT M) ⇒ 0 < FST z ∧ 0 < SND z) ∧
(∀n. n < LENGTH L ⇒ (LENGTH (EL n L) = LENGTH (EL n M))) ∧
(∀t’. (∀z. MEM z (list union avail event list p L (&t’)) ⇒ ¬NULL z) ∧

234 W. Ahmad and O. Hasan

(∀z’. MEM z’ (FLAT (list union avail event list p L (&t’))) ⇒
z’ ∈ events p) ∧

mutual indep p (FLAT (list union avail event list p L (&t’)))) ∧
two dim inst avail exp p L M ⇒
(lim (λt. prob p

(series parallel struct p (list union avail event list p L (&t)))) =

list prod (one minus list (MAP (λa. compl steady state avail a) M)))

where the function list union avail event list is obtained by mapping the
function union avail event list on each element of the given random variable
list.

The function series parallel struct models the series-parallel ABD by
first mapping the function parallel struct on each element of the given event
list and then applying the function series struct to this obtained list. Simi-
larly, the function compl steady state avail returns a list of one minus steady-
state availabilities.

The functions list prod and one minus list are used to model the product
and complement of steady-state availabilities, respectively. The assumptions are
similar to the ones used in Theorems 3 and 4 with the extension that the given
lists are two-dimensional lists. The HOL4 function FLAT is used to convert a
two dimensional list into a single list. The conclusion models the right-hand-
side of Eq. (5). The proof of the above theorem uses Theorems 3 and 4 and also
requires a lemma that given the list of mutually independent reliability events,
an event corresponding to the series-parallel structure and a reliability event are
also independent in probability.

If the components in these reserved subsystems are connected serially then
the structure is called a parallel-series structure, as depicted in Fig. 1(d). If Aij(t)
is the event corresponding to the availability of the jth component connected in
a ith subsystem at time t, then the steady-state availability becomes:

lim
t→∞

Pr(
M⋃

i=1

N⋂

j=1

Aij(t)) = 1 −
M∏

i=1

(1 −
N∏

j=1

μij

μij + λij
) (6)

The above equation is also verified as a HOL4 theorem in our development and
more details about it can be found in [21].

5 Unavailability Fault Trees

Unavailability FT is a graphical technique consisting of internal nodes, which are
represented by gates like OR, AND and XOR, and the external nodes, that model
the unavailability events, which are associated with the occurrence of faults in
components of the given system. The generic nature of these gates allows us to
construct an efficient and accurate unavailability fault tree (FT) model for any
given system. This FT can in turn be used to investigate the potential causes of
a fault occurrence, which makes the system unavailable, and the calculation of
minimal number of unavailability events, known as minimal cut-set (MCS), that

Formal Availability Analysis Using Theorem Proving 235

contribute towards the occurrence of a top event, i.e., a critical event, which can
cause the whole system unavailable upon its occurrence.

We can formalize the unavailability event of a system by taking the comple-
ment of the availability event with respect to the probability space p.

Definition 6. �∀ p X t.

union unavail events p L t = p space p DIFF union avail events p L t

The instantaneous unavailability of the system can be expressed as follows:

Ainst(t) =
λ

μ + λ
− λ

μ + λ
e−(λ+μ)t (7)

The HOL4 formalization of the above equation is as follows:

Definition 7. � ∀ p L m. inst unavail exp p L m =

∀t. prob p (union unavail events p L (&t)) =

FST m

(SND m + FST m)
-

FST m

(SND m + FST m)
* exp (-(SND m + FST m) * &t)

If the occurrence of the unavailability event at the output is caused by the
occurrence of all the input unavailability events then this kind of behavior can
be modeled by using the AND unavailability FT gate, as shown in Table 1.

Pr(

N⋂

i=2

Ainsti(t)) =

N∏

i=2

λi

λi + μi
(8)

The above equation can be formalized in HOL4 as follows:

Theorem 6. � ∀ p L M. prob space p ∧
(∀z. MEM z M ⇒ 0 < FST z ∧ 0 < SND z) ∧ (LENGTH L = LENGTH M) ∧
(∀t’. ¬NULL (union unavail event list p L (&t’)) ∧
(∀z. MEM z (union unavail event list p L (&t’)) ⇒ z ∈ events p) ∧
mutual indep p (union unavail event list p L (&t’))) ∧
inst unavail exp list p L M ⇒
(lim (λt.

prob p (AND unavail FT gate p (union avail event list p L (&t)))) =

list prod (steady state unavail list M))

The assumptions of the above theorem are similar to the ones used in Theorem2
and the conclusion of Theorem 5 represents Eq. (8).

In the OR unavailability FT gate, the occurrence of the output unavailability
event depends upon the occurrence of any one of its input unavailability event.
The function OR unavail FT gate, given in Table 1, models this behavior as it
returns the union of the input unavailability list L by using the recursive function
union list. The NOR unavailability FT gate, modeled by using the function
NOR unavail FT gate, given in Table 1, can be viewed as the complement of the
OR unavailability FT gate and its output unavailability event occurs if none of
the input unavailability event occurs.

Similarly, the NAND unavailability FT gate, represented by the function
NAND unavail FT gate in Table 1, models the behavior of the occurrence of an

236 W. Ahmad and O. Hasan

Table 1. HOL formalization of fault tree gates

output unavailability event when at least one of the unavailability events at its
input does not occur. This type of gate is used in unavailability FTs when the
non-occurrence of the unavailability event in conjunction with the other unavail-
ability events causes the top unavailability event to occur. This behavior can be
expressed as the intersection of complementary and normal events, where the
complementary events model the non-occurring unavailability events and the
normal events model the occurring unavailability events. The output unavail-
ability event occurs in the 2-input XOR unavailability FT gate if only one, and
not both, of its input unavailability events occur. The HOL4 representation of
the behaviour of the XOR unavail FT gate is also presented in Table 1. The
function NOT unavail FT gate accepts an unavailability event A and probabil-
ity space p and returns the complement to the probability space p of the given
input unavailability event A. The verification of the corresponding unavailabil-
ity expressions, of the above-mentioned unavailability FT gates, is presented
in Table 2. These expressions are verified under the same assumptions as the
ones used for Theorem 6 and the proofs are mainly based on some fundamental
mutual independence properties of the given unavailability events along with
some axioms of probability theory.

The principle of inclusion exclusion (PIE) forms an integral part of the rea-
soning involved in verifying the unavailability of a FT. In FT based unavailability
analysis, firstly all the basic unavailability events are identified that can cause the

Formal Availability Analysis Using Theorem Proving 237

Table 2. Unavailability fault tree gates

occurrence of the system top unavailability event. These unavailability events are
then combined to model the overall fault behavior of the given system by using
the fault gates. These combinations of basic unavailability events, called cut sets,
are then reduced to minimal cut sets (MCS) by using set-theory rules, such as
idempotent, associative and commutative. The PIE is then used to evaluate the
overall failure probability of the given system.

If Ai represent the ith basic unavailability event or a combination of unavail-
ability events then the overall unavailability of the given system can be expressed
in terms of the probabilistic inclusion-exclusion principle as follows:

P(

n⋃

i=1

Ai) =
∑

J �={},J⊆{1,2,...,n}
(−1)|J|−1

P(
⋂

j∈J

Aj) (9)

The above equation has been formalized in HOL4 as follows [14]:

Theorem 7. � ∀ p L t. prob space p ∧
(∀ x. MEM x (union avail event list p L t) ⇒ x ∈ events p) ⇒

(prob p (union list (union avail event list p L t)) =

sum set {y | y ⊆ set (union avail event list p L t) ∧ y �= {}}
(λt. -1 pow (CARD y - 1) * prob p (BIGINTER y)))

238 W. Ahmad and O. Hasan

The function sum set recursively sums the return value of the function f , which
is applied on each element of the given set s. In the above theorem, the set s is
represented by the term {x|C(x)} that contains all the values of x, which satisfy
condition C. Whereas, the λ abstraction function (λt. -1 pow (CARD t - 1) * prob
p (BIGINTER t)) models (−1)|J|−1

P(
⋂

j∈J Aj), such that the functions CARD and
BIGINTER return the number of elements and the intersection of all the elements
of the given set, respectively.

The proof script [21] of the above-mentioned formalizations of ABD and
unavailability FT gates and the PIE principle is composed of more than 9000
lines of HOL script and took about 350 man-hours. The main outcome of this
formalization is that the definitions and theorems of ABDs and FT gates can be
used to capture the behavior of wide variety of real-world systems and analyze
their corresponding availability in higher-order logic.

6 Application: Satellite Solar Arrays

As an illustrative application to demonstrate the effectiveness of our availability
theory related formalization, we consider a solar array that has been used in
the DFH-3 Satellite, which was launched by the People’s Republic of China
on May 12, 1997 [18,19]. Solar arrays are one of the most vital components of
the satellites because the mission success heavily depends upon the continuous
reliable source of power. The satellite’s solar array is a mechanical system, which
mainly consists of various mechanisms, including: deployable, synchronization,
locking and orientation.

The solar array can be modeled by using series-parallel ABD configurations,
shown in Fig. 2, and based on the availability of its individual components, such
as electric detonator (ED), the cutting knife (CK), the starting spring (SS), hing
bearing (HB) and hing of locking mechanism (HL), the overall availability of the
solar array can be evaluated [18]. The HOL4 formalization of the solar array
ABD (Fig. 2) is as follows:

Fig. 2. Solar array ABD

Definition 8. � ∀p X ED X CK X SS X HB X HL t.

RO ABD p X ED X CK X SS X HB X HL t =

series parallel struct p

(list union avail event list

([[X ED;X ED];[X CK];[X SS;X SS];[X HB];[X HB];[X HL;X HL]]) t)

Formal Availability Analysis Using Theorem Proving 239

We verified the following theorem for the availability of the satellite solar array:

Theorem 8. � ∀p X ED X CK X SS X HB X HL.

(lim (λt. prob p (RO ABD p X ED X CK X SS X HB X HL &t)) =

(1 - (1 - steady state avail ED) pow 2) * steady state avail CK *

(1 - (1 - steady state avail SS) pow 2) *

((steady state avail HB) pow 2) * (1 - (1 - steady state avail HL) pow 2)

We have omitted the assumptions of this theorem here due to space limitations
and the complete formalization is available at [21]. The proof of the above the-
orem is primarily based on Theorem 5 and is very straightforward.

An unavailability FT can be constructed by considering the faults in the
solar array mechanical components, which are the fundamental causes of satel-
lite’ solar array mechanisms failure. The unavailability FT for the solar array
of the DFH-3 Satellite that was launched by the People’s Republic of China
on May 12, 1997 [19] is depicted in Fig. 3 and we formally analyze this FT
in this paper. The proposed FT formalization (functions OR unavail FT gate
and AND unavail FT gate, given in Table 1) is used to model the MCS of the
unavailability of the solar array as follows:

Fig. 3. Solar array unavailability FT

Definition 9. � ∀ p x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 t.

Solar unavail FT p x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 t =

OR unavail FT gate

240 W. Ahmad and O. Hasan

[OR unavail FT gate (union avail event list p [x1; x2; x3; x4] t);

AND unavail FT gate p (union avail event list p [x5; x6] t);

OR unavail FT gate

(union avail event list p [x7; x8; x9; x10; x11; x12; x13; x14] t)]

The overall unavailability of a solar array can now be verified as follows:

Theorem 9. � ∀ p x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14.

(lim(λt.
Solar unavail FT p x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 &t)) =

1 - (list prod (steady state unavail list [x5;x6]) *

(1 - list prod (one minus list (steady state unavail list

[c1;c2;c3;c4;c6;c7;c8;c9;c10;c11;c12;c13;c14]))))

Again all quantifiers and the assumptions of the above theorem have not been
included due to space limitations and the complete theorem can be found at
[21]. The proof of the above theorem utilizes the PIE principle (Theorem7) and
the unavailability FT gates with their corresponding mathematical expression,
given in Tables 1 and 2.

The proof script [21] for Theorems 8 and 9 is composed of about 100 lines
of HOL code compared to about 9000 lines of code that had to be written to
formalize the foundational availability concepts. This straightforward reasoning
clearly indicates the usefulness of our work. The distinguishing features of the
formally verified Theorems 8 and 9, compared to the other existing availabil-
ity analysis alternatives, include their generic nature, i.e., all the variables are
universally quantified and thus can be specialized to obtain the availability for
any given failure and repair rates, and their guaranteed correctness due to the
involvement of a sound theorem prover in their verifications. Moreover, the usage
of a theorem prover in their verification ensures that all the required assump-
tions for the validity of the results are explicitly included in the theorems, which
is quite important for designing accurate systems.

In order to facilitate the use of our formally verified results by industrial
design engineers for their availability analysis, we have also developed a set
of SML scripts to automate the simplification step of these theorems for any
given failure and repair rate values corresponding to the DFH-3 satellite solar
array components. For instance, the auto solar RBD avail script automatically
computes the availability up to 12 decimal places based on Theorem8 as follows:

� prob space p ∧
(∀t’. (∀z. MEM z (FLAT (list union avail event list

[[X ED;X ED];[X CK];[X SS;X SS];[X HB];[X HB];[X HL;X HL]] (&t’))) ⇒
z ∈ events p) ∧
mutual indep p (FLAT

(list union avail event list

[[X ED;X ED];[X CK];[X SS;X SS];[X HB];[X HB];[X HL;X HL]] (&t’)))) ∧
two dim inst avail exp p

[[X ED;X ED];[X CK];[X SS;X SS];[X HB];[X HB];[X HL;X HL]]

[[(0.1,0.3);(0.1,0.3)];[(0.2,0.5)]; [(0.3,0.4); (0.3,0.4)]; [(0.7,0.8)];

[(0.7,0.8)]; [(0.5,0.5); (0.5,0.5)]] ⇒
lim (λt. prob p (RO ABD p X ED X CK X SS X HB X HL &t)) = 0.116618075802

Formal Availability Analysis Using Theorem Proving 241

This auto solar RBD avail script can be used for any values of the failure
and repair rates and can be easily extended to be used for the instantiation
of the generic result of Theorems 9 [21]. With a very little modification, these
kind of automation scripts can facilitate industrial design engineers to accurate
determine the availability of many other safety-critical systems.

7 Conclusion

The foremost requirements to conduct the formal availability analysis within a
theorem prover is to formalize the ABD configurations, i.e., series, parallel, series-
parallel and parallel-series, unavailability FT gates, such as AND, OR, NAND,
NOR, XOR and NOT, and instantaneous and steady-state availability. This
paper fulfills the above-mentioned requirement and thus provides a framework,
which can be used to carry out the formal availability analysis of any system
within a sound core of HOL4 theorem prover. For illustration, our formalizations
are utilized to conduct the formal availability analysis of an satellite solar array
and the results have been found to more rigorous than the existing availability
analysis alternatives. However, this formalization is only limited to static ABD
and UFT models and cannot express the time varying system states, dependent
systems and non-series-parallel topologies. This limitation can be removed by
extending the present formalization to dynamic ABD and dynamic UFT. This
can be done by combining this formalization of ABD and UFT with the recently
proposed Markov chain formalization [22] in HOL4.

References

1. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing and Computer
Science Applications, 2nd edn. Wiley, London (2002)

2. Stapelberg, R.F.: Handbook of Reliability, Availability, Maintainability and Safety
in Engineering Design. Springer Science & Business Media, Berlin (2009)

3. Blake, J.T., Trivedi, K.S.: Multistage interconnection network reliability. Trans.
Comput. 38(11), 1600–1604 (1989)

4. Bistouni, F., Jahanshahi, M.: Analyzing the reliability of shuffle-exchange networks
using reliability block diagrams. Reliab. Eng. Syst. Saf. 132, 97–106 (2014)

5. ReliaSoft (2016). http://www.reliasoft.com/
6. ASENT (2016). https://www.raytheoneagle.com/asent/rbd.htm
7. Bailis, P., Kingsbury, K.: The network is reliable. Queue 12(7), 20 (2014)
8. Robidoux, R., Xu, H., Xing, L., Zhou, M.: Automated modeling of dynamic reli-

ability block diagrams using colored Petri nets. IEEE Trans. Syst. Man Cybern.
Part A: Syst. Hum. 40(2), 337–351 (2010)

9. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: The
COMPASS approach: correctness, modelling and performability of aerospace sys-
tems. In: Buth, B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol.
5775, pp. 173–186. Springer, Heidelberg (2009)

10. Signoret, J.P., Dutuit, Y., Cacheux, P.J., Folleau, C., Collas, S., Thomas, P.: Make
your Petri nets understandable: reliability block diagrams driven Petri nets. Reliab.
Eng. Syst. Saf. 113, 61–75 (2013)

http://www.reliasoft.com/
https://www.raytheoneagle.com/asent/rbd.htm

242 W. Ahmad and O. Hasan

11. Mhamdi, T., Hasan, O., Tahar, S.: On the formalization of the Lebesgue integration
theory in HOL. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172,
pp. 387–402. Springer, Heidelberg (2010)

12. Ahmed, W., Hasan, O., Tahar, S., Hamdi, M.S.: Towards the formal reliability
analysis of oil and gas pipelines. In: Watt, S.M., Davenport, J.H., Sexton, A.P.,
Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 30–44. Springer,
Heidelberg (2014)

13. Ahmed, W., Hasan, O., Tahar, S.: Formal reliability analysis of wireless sensor
network data transport protocols using HOL. In: Wireless and Mobile Computing,
Networking and Communications, pp. 217–224. IEEE (2015)

14. Ahmed, W., Hasan, O.: Towards formal fault tree analysis using theorem proving.
In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015.
LNCS, vol. 9150, pp. 39–54. Springer, Heidelberg (2015)

15. Gordon, M., Melham, T.: Introduction to HOL: A Theorem Proving Environment
for Higher-Order Logic. Cambridge Press, Cambridge (1993)

16. Mathematica (2008). www.wolfram.com
17. Harrison, J., Théry, L.: Extending the HOL theorem prover with a computer alge-

bra system to reason about the reals. In: Joyce, J.J., Seger, C.-J.H. (eds.) HUG
1993. LNCS, vol. 780, pp. 174–184. Springer, Heidelberg (1994)

18. Wu, H.C., Wang, C.J., Liu, P.: Reliability analysis of deployment mechanism of
solar arrays. Appl. Mech. Mater. 42, 139–142 (2011)

19. Wu, J., Yan, S., Xie, L.: Reliability analysis method of a solar array by using
fault tree analysis and fuzzy reasoning Petri net. Acta Astronaut. 69(11), 960–968
(2011)

20. Ebeling, C.E.: An Introduction to Reliability and Maintainability Engineering.
Tata McGraw-Hill Education, Maidenherd (2004)

21. Ahmed, W.: Formalization of Availability Block Diagram and Unavailability FT
(2016). http://save.seecs.nust.edu.pk/availability/

22. Liu, L.Y.: Formalization of discrete-time Markov chains in HOL. Ph.D. thesis,
Concordia University (2013)

www.wolfram.com
http://save.seecs.nust.edu.pk/availability/

Formal Verification of the rank Algorithm
for Succinct Data Structures

Akira Tanaka1(B), Reynald Affeldt1, and Jacques Garrigue2

1 National Institute of Advanced Industrial Science and Technology (AIST),
Tsukuba, Japan

tanaka-akira@aist.go.jp
2 Nagoya University, Nagoya, Japan

Abstract. Succinct data structures are designed to use a minimal
amount of computer memory in a time-efficient way. Their correct imple-
mentation is essential to big data analysis. Yet, succinct data structures
are difficult to verify because they rely on bit-level manipulations bet-
ter achieved with low-level languages. In this paper, we report on the
formal verification of the standard Jacobson rank algorithm using the
Coq proof-assistant and extract an OCaml implementation from it. This
requires overcoming the mismatch between Coq being a purely functional
programming language and succinct data structures being inherently
imperative. To enjoy the best of both worlds, we propose to use code
extraction from Coq to OCaml but with an original (tested but unver-
ified) implementation of bitstrings. We can then use Coq to formalize
correctness, including important claims about storage requirements, and
still obtain efficient native code. To the best of our knowledge, this is the
first application of formal verification to succinct data structures.

1 Towards Formal Verification for Succinct Data
Structures

Succinct data structures are data structures designed to use an amount of com-
puter memory close to the information-theoretic lower bound in a time-efficient
way (see [18] for an introduction). They are used in particular to process big data.
Concretely, succinct data structures make it possible to provide data analysis
with a significantly reduced amount of memory (for example, one order of mag-
nitude less memory for string search facilities in [2]). Thanks to an important
amount of research, succinct data structures are now equipped with algorithms
that are often as efficient as their classical counterparts. In this paper, we are
concerned with the most basic one: the rank algorithm, which counts the number
of 1 (or 0) in the prefixes of a bitstring (for example, rank is one of the few basic
blocks in the implementation of [2]—see Appendix A of the technical report).
The salient property of the rank algorithm is that it requires o(n) storage for
constant-time execution where n is the length of the bitstring (see Sect. 2 for
background information).

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 243–260, 2016.
DOI: 10.1007/978-3-319-47846-3 16

244 A. Tanaka et al.

Our long-term goal is to provide formal verification of algorithms for succinct
data structures. In particular, we aim at the construction of a realistic library
of verified algorithms. Such a library could significantly improve the confidence
in software implementation of big data analysis. However, software implemen-
tations of algorithms for succinct data structures are difficult to verify. Indeed,
since these data structures are designed at the bit-level and since performance
is a must-have, they are usually written in low-level languages (e.g., C++ for
SDSL [16]). The direct verification of C-like languages is now possible [14] but it
requires a substantial infrastructure (concretely, an instrumented formal seman-
tics of the target language) whose development is orthogonal to the problem of
verifying succinct data structures.

In this paper, we show how to develop a verified implementation of an algo-
rithm for succinct data structures using the Coq proof-assistant [5]. Coq provides
us with the ability to reason about the correctness of the algorithm: its func-
tional correctness but also the important properties about storage requirements.
We can also derive an efficient implementation thanks to the extraction facility
from Coq to the OCaml language and the imperative features of the latter. The
main issue when dealing with algorithms for succinct data structures in Coq is
that, since Coq is a purely functional language, arrays are better represented as
lists to perform formal verification. However, lists do not enjoy constant-time
random-access, making it difficult to use the extraction facility of Coq to gener-
ate efficient OCaml algorithms. As a solution, we provide an OCaml library for
bitstrings with constant-time random-access that matches the interface of Coq
lists so that we can use real bitstrings in the extracted code. This approach aug-
ments the trusted base but in the form of a localized, reusable library of OCaml
code whose formal verification can anyway be carried out at a later stage. We
think that this is a reasonable price to pay compared to the benefits of carrying
out formal verification in Coq.

Paper Overview. In this paper, we demonstrate our approach by building a
verified implementation of the rank function using the Coq proof-assistant. More
precisely, we provide formal verification for the rank function (formal proof of
functional correctness in Sect. 5.2 and formal proof for storage requirements in
Sect. 5.3) and extraction to executable OCaml code (by providing in particu-
lar a new library for bitstrings with constant-time random-access in Sects. 4.2
and 4.3). We will be able to check that the time-complexity of the extracted code
is as expected (i.e., execution is constant-time, see Sect. 6.2). In the process, we
discuss thoroughly the choices we made, in particular, the modular approach
we took when formalizing the rank function in the Coq proof-assistant (generic
version in Sect. 3.1 and its instantiation in Sect. 5.1).

2 A Formal Account of the rank Algorithm

We explain what the rank algorithm is supposed to achieve (its functional cor-
rectness, Sect. 2.1) and how Jacobson’s rank actually achieves it (in particular,

Formal Verification of the rank Algorithm for Succinct Data Structures 245

its storage requirements, Sect. 2.2). These points are addressed formally using
Coq resp. in Sects. 5.2 and 5.3.

2.1 Specification of the Functional Correctness of the rank
Algorithm

Given a bitstring s and an index i in s, ranks(i) counts the number of 1’s up to i
(excluded). For example, in Fig. 1 (the first and second-level directories will be
explained in Sect. 2.2), s contains 26 1’s, ranks(4) = 2, ranks(36) = 17, and
ranks(58) = 26.

The mathematically-inclined reader would formally specify the rank algorithm
as ranks(i) = |{k ∈ [0, . . . , i) | s[k] = b}| where b is the query bit (b = 1 in the
example above). Using the Coq proof-assistant, such a specification can be for-
malized directly. For bits, one can use the Coq type for Booleans bool. An input
bitstring can be formalized as a list of Booleans (type seq bool in Coq). An index
i is a natural number (type nat in Coq). A functional programmer would formally
specify the rank algorithm as list surgery and filtering. For example:

We regard this Coq function as the specification of the functional correctness of
the rank algorithm. Note that it does not provide an efficient implementation:
it can be executed (both in Coq and as an extracted OCaml program) but
computation would (hopefully) be linear-time. In this paper, we provide Coq
functions that are more realistic in the sense that they can be extracted to
executable OCaml code.

2.2 Jacobson’s rank Algorithm and Its Space Complexity

Jacobson’s rank algorithm [11] is a constant-time implementation of rank. It uses
auxiliary data structures, in particular two arrays called the first and second-level
directories that essentially contain pre-computed values of rank for substrings of
the input bitstring s of size n (see Fig. 1). More precisely, each directory contains

second-level
directory

first-level
directory

input
bitstring

n

sz1

sz2 sz2 sz2 sz2

sz1

sz2 sz2 sz2 sz2

sz1

sz2 sz2 sz2 sz2 sz2 sz2

1001 0100 1110 0100 1101 0000 1111 0100 1001 1001 0100 0100 0101 0101 10

2 3 6 3 3 7 2 4 5 2 4

7 15 21

Fig. 1. Illustration for the rank algorithm (sz2 = 4, sz1 = 4 × sz2, n = 58). Example
extended from [13].

246 A. Tanaka et al.

fixed-size integers, whose bit-size is large enough to represent the intended values,
so that the bit-size for each directory depends on n.

Let sz2 be the size of the substrings used for the second-level directory. Here-
after, we refer to these substrings as the “small blocks”. The size of the substrings
used for the first-level directory is sz1 = k × sz2 for some k. We refer to these
substrings as the “big blocks”. The first-level directory is precisely an array of
n/sz1 integers such that the ith integer is ranks((i + 1) × sz1). The second-level
directory is also an array of integers. It has n/sz2 entries and is such that the
ith entry is the number of bits among the (i%k + 1) × sz2 bits starting from the
((i/k) × sz1)th bit (/ is integer division and % is the remainder operation). One
can observe that when i%k = k − 1, the ith entry of the second-level directory
(the hatched rectangles in Fig. 1) can be computed from the first-level directory
and therefore does not need to be remembered.

Given an index i, Jacobson’s rank algorithm decomposes i such that ranks(i)
can be computed by adding the results of (1) one lookup into the first-level
directory, (2) one lookup into the second-level directory, and (3) direct com-
putation of rank for a substring shorter than sz2. For example, in Fig. 1,
ranks(36) = ranks(2 × 16 + 1 × 4 + 0) is computed as 15 + 2 and ranks(58) =
ranks(3 × 16 + 2 × 4 + 2), as 21 + 4 + 1. Since the computation of rank for a
substring shorter than sz2 in (3) can also be tabulated or computed with a single
instruction on some platforms, rank’s computation is constant-time.

It can be shown (and we will do it formally in Sect. 5.3) that the directories
require only n

log2 n + 2n log2 log2 n
log2 n ∈ o(n) bits with integers of the appropriate size

(not necessarily the word size of the underlying architecture).

3 Our Approach: Extraction from a Generic rank
Function

In a nutshell, our approach consists in (1) providing a generic implementa-
tion of the rank algorithm to keep formal proofs as high-level as possible and
(2) extracting OCaml code from a concrete instantiation of the rank algorithm.
As explained in Sect. 1, this approach makes it difficult to obtain efficient OCaml
code because of the conflicting requirements between the data structures at the
formal proof level and at the implementation level. We make this idea clearer
in Sect. 3.2 where we also justify our approach. Before that, we explain the
(generic) rank algorithm that we will verify and extract (instantiation to be
found in Sect. 5.1).

3.1 A Generic Rank Algorithm Formalized in Coq

The generic version essentially consists of two functions: one that constructs the
directories and one that performs the lookup.

Formal Verification of the rank Algorithm for Succinct Data Structures 247

To simplify the presentation, we first explain a function that counts bits in
a naive way1. bcount b i l s counts the number of bits b (0 or 1) inside the
slice [i, . . . ,i + l) of the bitstring s (essentially a list of booleans—see Sect. 4.1):

In the code below, we use notations from the Mathematical Components [7]
library: .+1 is the successor function, %/ and %% are the integer division and
modulo operators, and if x is xp.+1 then e1 else e2 means: if x is greater
than 0 then return e1 with xp bound to x − 1, else return e2.

Construction of the Directories. The function buildDir computes both
directories in one pass (it returns a pair). It has been written with extraction in
mind. In particular, it uses tail calls, and indexing instead of list pattern-matching.

j is a counter for small blocks (we start counting from nn, the total number of
small blocks, i.e., n/sz2). i is a counter to count small blocks in one big block. n1
contains the number of bits counted so far for the current big block. n2 contains
the number of bits counted so far for the current small block. D1 (resp. D2) are
abstract data types meant for the first-level (resp. second-level) directory (so that
emptyD1, pushD1, etc. are meant to be instantiated with concrete functions later).

The function buildDir iterates over the number of small blocks. At each
iteration, the number of bits in the current small block is stored in m (line 2) (b
is the query bit, sz2 is the size of small blocks, inbits is the input bitstring).
For each small block, n2 is stored in the second-level directory (line 4). After a
big block has been scanned, the number of bits counted so far for the current
big block n1 + n2 is stored in the first-level directory (line 8). The number of
small blocks in one big block (kp plus 1) is used to control the iteration inside a
big block (line 10).

Observe that the directories built by buildDir are slightly different from the
data structures explained in Sect. 2.2: they start with a 0 (stored at line 8 for the
first-level directory and stored at line 9 for each group of small blocks) which is
of course not necessary but this simplifies the lookup function.

1 The function bcount is not intended to be extracted as it is but replaced by a more
efficient function. It could be tabulated as explained in Sect. 2.2, but in this paper,
it will be replaced by a single gcc built-in operation (see Sect. 4.2).

248 A. Tanaka et al.

Lookup. The function rank lookup gen is a generic implementation of the
lookup function. It computes the rank for index i:

j1 (resp. j2) is the index of the block in the first-level directory (resp. second-
level directory). They are computed using the size of small blocks sz2 and the
ratio between the size of big and small blocks k (or in other words, sz1 = k *
sz2). lookupD1 (resp. lookupD2) is meant to perform array lookup; it will be
instantiated later.

3.2 Our Approach w.r.t Extraction

In the code above, lookup in the directories is meant to be performed by the
functions lookupD1 and lookupD2. Constant-time execution for these functions
is required for Jacobson’s rank function to be efficient. If we implement these
functions with nth-like access to standard lists (which is linear-time), Coq will
not generate OCaml functions with the desired time complexity. At first, one
may think of looking for an ingenious implementation scheme that may cause
Coq to generate efficient OCaml code. This approach seems to us too optimistic
as a first step towards the goal of providing a verified library of functions for
succinct data structures for the following two reasons:

– Coming up with new implementation schemes is likely to make more diffi-
cult the task of proving formally the functional correctness and the storage
requirements of algorithms.

– The code extraction facility of Coq is not optimized in any way (by design,
because it is part of the trusted base). In practice, it tends to generate inef-
ficient code for convoluted formalizations. As a matter of fact, previous work
shows that Coq requires significant engineering to handle imperative features
and native data structures (e.g., [3]).

Instead, our approach consists in (1) making the best we can out of list-like data
structures in Coq and (2) providing an efficient OCaml implementation of the
list interface that we will substitute to Coq-generated functions.

4 An OCaml Bitstring Library for Coq Lists of Booleans

Direct extraction of Coq lists and list functions suffers two major problems w.r.t.
succinct data structures: (1) memory usage is very inefficient (assuming 64-bit
machine words, it would take 192 bits to represent one Boolean), (2) random-
access will be linear-time instead of the required constant-time complexity. We
now explain an OCaml implementation for the interface of Coq lists that solves
above problems.

Formal Verification of the rank Algorithm for Succinct Data Structures 249

4.1 Bitstrings Formalized in Coq

We define bitstrings as an inductive type which wraps Coq lists:

The type bits is isomorphic to the type of lists of booleans. In con-
sequence, many functions for bits are easily derivable from Coq stan-
dard functions size, nth, ++ (concatenation), etc. In particular, we
equip our formalization with a coercion that transparently turns the
type bits into the type seq bool. Concretely, this coercion is the func-
tion Definition seq of bits s := match s with bseq l => l end. that is
automatically inserted by Coq to make types match. For example, size s below
should actually read as size (seq of bits s).

However, code extracted from above functions does not achieve the desired
complexity. For example, the code extracted from bsize, bnth, and bcount
(Sect. 3.1) would be linear-time because these functions scan the lists obtained
from bits2. Regarding memory usage, the list constructor cons would allocate
one memory block per argument (see Fig. 2, on the left, for an illustration).
In addition, OCaml needs one more word for each block to manage memory.
Assuming the machine word is 64 bits, cons would therefore need 192 bits to
represent a Coq bool, that was supposed to represent a single bit. . .

In the next section (Sect. 4.2), we provide OCaml definitions to replace the
Coq type bits, its constant bnil and the functions bsize, bnth, bappend, etc.
How the OCaml definitions are substituted for the Coq definitions is explained
in Sect. 6.1.

4.2 Bitstrings Implemented in OCaml

The main idea to achieve linear-time construction and constant-time random-
access in OCaml is to implement bitstrings using a datatype that allows for
random-access of bits. For this purpose, we use the type bytes introduced in
OCaml 4.02.03. The resulting OCaml type is as follows4:

type bits_buffer = { mutable used : int; data : bytes; }

type bits = Bdummy0 | Bdummy1 | Bref of int * bits_buffer (* len, buf *)

2 Let s be a bitstring of length n. bsize s is O(n), bnth i s is O(i), bcount b i l

s is O(i + l). bcount requires an additional O(i) because of the drop function (see
Sect. 3.1).

3 Currently, bytes is the same as string; OCaml plans to change string to
immutable.

4 The OCaml definitions below belong to the module Pbits; the prefix Pbits. is
omitted when no confusion is possible.

250 A. Tanaka et al.

b0 b1 b2 len b0b1b2 . . .

len

used

Fig. 2. A Coq bits on the left and the corresponding OCaml bits on the right

Bitstrings are stored in a bits buffer as a value of type bytes together with
the number of bits used so far. (The first bit is the least significant bit of the first
byte in the bytes.) Let us first explain the constructor for arbitrary-length bit-
strings (Bref) and then explain how short bitstrings are implemented as unboxed
integers (this will explain Bdummy0 and Bdummy1).

bits Represented with Bref. The data structure Bref(len, buf) (depicted
on the right of Fig. 2) represents the prefix of size len of the bitstring buf . Let
us call used the value of the field used of the corresponding bits buffer data
structure.

The dynamics of Bref is as follows. Initially, a Bref has 0 as len and refer-
ences a bits buffer with used as 0, which means that the bitstring is empty.
When a bit is appended to the Bref, the bits buffer is destructively updated
and a new Bref is allocated. The bit is assigned to the usedth bit in data and
used is incremented. A new Bref is allocated with incremented len and reference
the bits buffer. (When the bits buffer is full (i.e., 8 × |data| = used), data
is copied into a new bytes with a doubled length before the bit is appended.)
Array construction always append a bit to Bref which len is equal to used .

The constructor Bref can represent any bitstring but it requires memory
allocation for each value, even to represent an empty bitstring, a single boolean,
etc. We can improve efficiency by avoiding memory allocation for bitstring that
fit in machine words. Note that there is no soundness problem in losing sharing
of bitstrings, because bitstrings bits are immutable in Coq.

bits Represented with Unboxed Integers. In summary, we use the unboxed
integers of OCaml to represent short bitstrings. In OCaml, values are represented
by w-bit integers, w being the number of bits in a machine word (32 or 64). These
integers represent either (1) a (w − 1)-bit unboxed integer or (2) a pointer to a
block allocated in the heap. OCaml datatypes use unboxed integers for constant
constructors, and pointers to blocks otherwise. Therefore, we can represent short
bitstrings by unboxed integers. More precisely, we represent bitstrings of length

u ≤ w−2 as a (w−1)-bit integer using the following format:

w−u−2
︷ ︸︸ ︷
0 . . . 0 1bu−1 . . . b1b01

(the position of the topmost 1 represents the length of the bitstring and the
trailing 1 is a tag bit to distinguish unboxed integers from pointers). To treat
the latter integers as bits we use Obj.magic. For example, bnil (0 . . . 011) is
defined as follows.

Formal Verification of the rank Algorithm for Succinct Data Structures 251

let bits_from_int bn = ((Obj.magic (bn : int)) : bits)
let bnil = bits_from_int 1 (* the tag bit is invisible in OCaml *)

The reason for adding the constructors Bdummy0 and Bdummy1 to the datatype
bits is technical. Without them, OCaml optimizes pattern-matching (discrimi-
nation of values with match) if a datatype has no constant constructor (assum-
ing that the value must be a pointer), or if it has only one constant constructor
(assuming that any non-zero value must be a pointer). Adding two constant
constructors disables these optimizations, and allows us to safely use pattern-
matching to discriminate unboxed integers from Bref blocks.

OCaml Functions for Bitstrings. Using the OCaml bits datatype, we have
implemented OCaml functions that match the Coq functions of Sect. 4.1 but
with better complexities, as summarized in Table 1. For this purpose, we make
use of OCaml imperative features such as destructive update and random access
in bytes.

Table 1. Time complexity of OCaml functions w.r.t. their Coq counterparts (n and
n′ are the lengths of s and s’)

Function Complexity in Coq Complexity in OCaml

bsize s O(n) O(1)

bnth s i O(i) O(1)

bappend s s’ O(n) O(n′) (amortized, for array construction)

bcount b i l s O(i + l) O(l)

4.3 From Natural Numbers to Fixed-Size Integers

At the abstract level, the rank algorithm stores natural numbers in directo-
ries but a concrete implementation manipulates fixed-size integers instead. For
this reason, we extend our Coq formalization and OCaml implementation of
bitstrings with functions to manipulate fixed-size integers:

Table 2. Interface and implementation of the first-level directory using generic array
functions

Interface Implementation

D1Arr bits

emptyD1 : D1Arr bnil

pushD1 w1 s n : D1Arr bappend s (bword w1 n)

lookupD1 w1 i s : nat getword (i * w1) w1 s

252 A. Tanaka et al.

– bword u n builds a short bitstring from the lower u ≤ w − 2 bits of a nat-
ural number n in constant-time. In OCaml, a natural number is formatted as
bw−2 . . . b1b01, where w is the number of bits in a machine word. In order to
construct short bitstrings as unboxed integers following the format explained
in Sect. 4.2, we use simple bit operations: clear the higher bits, bw−2 . . . bu+1,
and set the topmost bit, bu.

– getword i u s looks for the u ≤ w − 2 bits (ordered with least significant
bit first) starting from index i in s, regarding them as a natural number. In
OCaml, this function is implemented by accessing data at the level of bytes
(not bits) to reduce the overhead (number of bit operations and number of
loops).

Using these functions, it becomes possible to provide a concrete instantiation
of directories. For example, let us consider the first-level directory, that stores
fixed-size integers of size w1. Its implementation is summarized in Table 2. Let
D1Arr be the type of the first-level directory. An empty first-level directory is
implemented by an empty array emptyD1 that is just an empty bitstring bnil.
The result of appending an unboxed integer n (seen as a w1-bit bitstring) to the
first-level directory s is implemented by the array pushD1 w1 s n. lookupD1 w1
i s is the ith pushed in the first-level directory s.

5 Formal Verification of an Instance of the Generic rank
Algorithm

We instantiate the generic rank function of Sect. 3.1 to obtain a concrete imple-
mentation of Jacobson’s rank algorithm. Then, we prove that this implementa-
tion indeed computes rank (as specified in Sect. 2.1) and fulfills storage require-
ments (as seen at the end of Sect. 2.2).

5.1 Instantiation of the rank Algorithm

We instantiate the functions from Sect. 3.1 (rank lookup gen and
rank init gen) with the array of bits from Sect. 4.3. The parameters of this
instantiation (number and size of blocks in the directories, etc.) are important
because they need to be properly set to achieve the storage requirements speci-
fied in Sect. 2.2. For the sake of clarity, we isolate these parameters by means of
two datatypes. Record Param carries the parameters of Jacobson’s algorithm.
Record Aux essentially carries the results of the execution of the initialization
phase:

Formal Verification of the rank Algorithm for Succinct Data Structures 253

Jacobson’s algorithm is parameterized by the number of small blocks (minus 1)
in a big block (or sz1/sz2 − 1) (field kp of, line 2), the number of bits (minus
1) in a small block (or sz2 − 1) (line 3), the number of small blocks (line 4),
and the bit-size of fixed-size integers for each directory (lines 5–6). The instan-
tiation of rank init gen returns the query bit (line 8), the input bitstring (line
9), the parameters of Jacobson’s algorithm (line 10), the first and second-level
directories themselves (line 11).

The instantiation of rank init gen is a matter of passing the appropriate
parameters and the functions D1Arr, D2Arr, etc. that we explained in Sect. 4.3:

Similarly, rank lookup gen is instantiated with the parameters resulting from
the execution of rank init together with the functions D1Arr, D2Arr, etc. from
Sect. 4.3:

5.2 Functional Correctness of Jacobson’s Algorithm in Coq

The functional correctness of Jacobson’s algorithm is stated using the generic
rank function (rank lookup gen, Sect. 3.1) with its formal specification (rank,
Sect. 2.1). As a matter of fact, we do not need to assume any concrete instantia-
tion of the directories to establish functional correctness, the generic properties
of arrays are sufficient.

The many parameters D1Arr, D2Arr, etc. come from the array interface that we
implemented using the Section mechanism of Coq.

5.3 Space Complexity of Auxiliary Data Structures

The required storage depends on the parameters of Jacobson’s algorithm
explained in Sect. 5.1. They should be chosen appropriately to achieve o(n) space

254 A. Tanaka et al.

complexity. We use the following parameters. They are taken from [4, Sect. 2.2.1].
We add 1 to sz2 and k to make them strictly positive for all n ≥ 0.

k = �log2(n + 1)� + 1
sz2 = �log2(n + 1)� + 1
sz1 = k × sz2 = (�log2(n + 1)� + 1)2

w1 = �log2(�n/sz2� × sz2 + 1)�
w2 = �log2((k − 1) × sz2 + 1)�

The formalization in Coq of above parameters is direct. Below, bitlen n5 is
Coq code for �log2(n + 1)�:

Using these parameters, we showed that the asymptotic storage require-
ment for the auxiliary data structures is indeed o(n), more precisely n

log2 n +
2n log2 log2 n

log2 n , similarly to [4, Theorem 2.1].
For the sake of illustration, let us show how we prove in Coq that the con-

tribution of the first-level directory to space complexity is n
log2 n . First, we fix

rank’s parameters using the following declaration:

rank default param has been explained just above. rank param w neq0 is just
a technicality to take care of the uninteresting case where the length of input
bitstring is zero6. The contribution of the first-level directory to space complex-
ity is the length of the bitstring that represents it, i.e., size (directories
(rank init b s)).1 (.1 stands for the first projection of a pair). In Coq, we
proved the following lemma about this length:

(.-1 is notation for the predecessor function.)
For the sake of readability, we write this Coq expression using mathematical

notations (in the case where n ≥ 3):
⎛

⎝
n

�log2(n + 1)� + 1

m + 1
+ 1

⎞

⎠ p

with :
m = �log2(n + 1)�
p = �log2(

n
m+1

· (m + 1) + 1)�
where ·· is the Euclidean division

5 This function is implemented in C using gcc’s builtin clzl [6], which counts the
number of leading zeros in a long value. gcc generates LZCNT instructions (since
Intel AVX2 [8]).

6 In this case, w1 and w2 become 0 and our word array cannot distinguish an empty
array and non-empty array.

Formal Verification of the rank Algorithm for Succinct Data Structures 255

When n is large, we observe that m ∼ p, thus the whole expression is asymp-
totically equal to n

log2 n , as desired. See [19] for the 2n log2 log2 n
log2 n contribution of

the second-level directory to space complexity.

6 Final Extraction and Benchmark

We extract the rank function from Sect. 5.1 using the OCaml library for bit-
strings from Sect. 4.2 and benchmark the result to check that its execution is
constant-time.

6.1 Extraction of the Verified rank Function

Concretely, extraction from Coq is the matter of the command Extraction (see
file Extract.v [19]).

Extraction of Coq Lists. To replace inductive types and functions with cus-
tom OCaml code, we provide the following hints:

At line 1, we replace the Coq inductive type bits with the OCaml type
Pbits.bits defined in OCaml. Pbits.bseq and Pbits.bmatch are specified
to replace the constructor and pattern-matching expression which converts list
of booleans to Pbits.bits and vice versa. Pbits.bseq and Pbits.bmatch are
defined but our application doesn’t use them to avoid memory-inefficient list of
booleans.

From line 3, the constant and functions bnil, bsize, bnth, etc. from
Sect. 4.1 are replaced by Pbits.bnil, Pbits.bsize, Pbits.bnth etc. to be
explained in Sect. 4.2.

Extraction of the rank Algorithm. Because we used abstractions in Coq,
we must be careful about inlining at extraction-time to obtain OCaml code
as efficient as possible. In particular, we need to ensure that the function
parameters we have introduced for modularity using Coq’s Sections are
inlined. Concretely, we inline most function calls using the following Coq
command: Extraction Inline emptyD1 pushD1 lookupD1 As a result,
rank lookup looks like an hand-written program, prefix notations aside. As for
the function buildDir in rank init, we obtain a tail-recursive OCaml func-
tion, like the one we wrote in Coq, so that it should use constant-size stack
independently of the input bitstring.

Since we obtain almost hand-written code, we can expect ocamlopt to pro-
vide us with all the usual optimizations. There are however specific issues

256 A. Tanaka et al.

due to Coq idiosyncrasies. For example, the pervasive usage of the successor
function .+1 for natural numbers is extracted to a call to the OCaml func-
tion Pervasives.succ that ocamlopt luckily turns into an integer increment.
(One can check which inlining ocamlopt has performed by using ocamlopt
-dclambda.) In contrast, anonymous function calls produced by extraction may
be responsible for inefficiencies. For example, the mapping from Coq nat to
OCaml int is defined as follows (file ExtrOcamlNatInt.v from the Coq stan-
dard library):

It is responsible for calls of the form (fun fO fS n -> ...) (fun -> E1)
(fun jp -> E2) that ocamlopt unfortunately cannot β-reduce.

6.2 Benchmarking of the Verified rank Function

Figure 3 shows the performance of a single lookup invocation for the rank func-
tion by measuring the time taken by rank lookup aux i for inputs up to
1000Mbit (recall that the input string s is part of aux). We make measure-
ments for 1000 values of the input size n. For each n, we make 10 measures for
i between 0 and n. The measurement order is randomized (n and i are picked
randomly).

�

�

�

�

�

�

�
�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�
�
��

�
�

�

�

�

�

��
�
�

�
�

�

���
�

�

����

�

�

�

�
�

�

�

�

��

�

�

�
�

�

�

��

���

�

����
�
���

�

�
�
�
�

�

�
�

�

�

�

�
��
�
�

�

�

�

�

�

��
�

�

�
���

�

�

���

��

�

�

�

�

�

�

�
�
�
�

�

�

��

�

�

�
�
�

�

�
�
��

�

�

��
�
��
�
�
�

�

�

����
��
�
�

�

�

�
��

�
��
�
�

�

�

�
�
���
�
��

�

���
�

��

�

�

�

�

����

�

��
��

�

��
�
�

��
�
�
�

�

�

�

�
��
���
�

�

�
�

�

�

�

�

���

�

�

�

�

��

�
�

��

�

�

�
��
�
�
�
�
�

�

� ����
� �
�
�

�

�

�
��
�
�

�

��

�

�

�

�

�

�

��

�

�

�

�

�

�
��
�
�
�
�

�

�
��
���
�
��

�

�
�
��
�
�
��
�

�

�
��
�
�
�

�

�

�

�

�
�
�
�
��

��
�

�

�

���

�
�
��

�

�

�

�

���

�

�

�

�

�

�
�

�

��

�
�

�

�

�

�
��

�

�

���

�

�

�

�
�
��

�

�
�

�

�

�

�����
�
�

�

�

�
�
��

�

�
�
��

�

�
�
��
����
�

�

�
�
�
�

��
��
�

�

�

�
���

�
��
�

�

�

�
�
�
����
�

�

�

�

�
�
�

�

�

��

�

�

��

�

�

�
�

�

�

�

��

���
��
�
�

�

��
�

�

�
��
��

�

�

�
�
�
�
�

��

�

�

�
�

�

�

��
�

��

�

�

�
�
�

�

�

�

�

�

�

��
�

�

�

�

�

�

�

�

��

�

�
��
�

�

�

�

�
��
��

��
�
�

�

�
�
�
�
��

��

�

�

�
�

�

��

�

��

�

�

�
���

��
��
�

�

�
� ����

�
�
�

��

�

�

�
�

�

��
�

�

�
��
�

�

��

�
�

�

�
�

�
�
�
�

�
�

�

�

�

�

���
����

�

�

�

�
���
��

�

�

��
�
�
��

�

�

�

�

�
�

��
�

�
���

�

�
���

�

�
�

�

�

�

��
����

���

�

�
�

�

�
�

�

�
�
�

�

�
�

�

�
�

��

�
�

�

�
��

�

�
�

�
�

�

�

��
�
�

�
���

�

�

��
�

������

�

�
������

�

�

�

�

���

�

��

�
�

�

�

�
����

�

��

�

�

��
��

�

�

��

�

�

��
�
���
��

�

�
�
��
�
��

�

�

�

�

�
�
�
�

�
�
�

�

�

�
�
�

�
��
���

�

��

�

�

�

�
�
�

�

�

�

����
�
��
�

�

��
�
�

���

�

�

�

�

�

�
��

�
�
��

�

��

�

�

���

�

�

�

�

��

�

�

�

�

�
�

�

�
��
��

�

�

�
�

�

�

�

��

�

�

�
��

�

�
���

�

�
�
�
�

�

�

�

�

����
�
�

�

�
�

��

�

�

�

��

�

�

�

�

��

��
�
�

�

�

�

��
���
�
�

�

��
�
�
��
�
�

�

�

��

�

�
�

�

�

��

�

�

������
�
�

�

�
��

�
�
�
���

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�
��
��

�

�

��

�

�
�

�

�
�

�

�

�
��

�

�
�

�

�

�

�
�

��

�

�

�

�
�

�

�

���

�
�
�
��

�

�
�
�
��

�

��

�

�

�
�

�

�

�
�
�
��

�

���
�
���

�

�

�

��

�

�

�����

�

�

�

�

�

���

�

�

�

�
�
��

�

�
��
�

�

��
�
�����
�

�

����
�
�

���

�

��
�

�
�
�
���

�

�
�
�
�

��

�

�

�

�

�
�

�
�
�

�
��
�

�

��

�
��
���

�

�

�

���
�
��
�

�

�

�

�
��
�����

�

�
�
��

�

�
�
�

�

�

�
�

�

�
��
��

�

�

�

��
��

�

�
�
�

�

�
�
��
�
�

�

�
�

�

�

��
�

�

��
�
�

�

�

�

��
�
�

�

�

�

�

�

�

�
�
�

��

�

�

�

�

�
�
�

��
���

�

�
�
�

��
�

��

�

�

�

�

�
�

�
�

���

�

��

� �

�
�
���

�

�
�
�
���
�
�

�

�

�
��

�

�

��
�

�

�

�
����

�
�
��

�

����

�

�
���

�

�
�
�
�

��

�

�

�

�

��

�
�
�

�

��
�

�

�

�
�
�

��
��
�

�

�
��

�

�

�

�

�

�

�

�

�

�

��
�

�

�
�

�

�
�

�
��
��
�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�
��

�

�
�
��
�

�
�
�

�

�

�

��
�
���
�
�

�

�
�

�

�

�
�
�
�

�

�

���
���

�
�
�

�

�

�

��
��

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
��

�

���

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

����

�

�

���
�
�
�
�
�

�

�

��
�
�

��
�

�

�

�
�
���
���
�

�

�

��
��

�
�
��

�

�

�

�

�
�

�

�
�

�

�

�
���
�

�

��

�

�

��
�
�

�

����

�

�

�
���
��

�

�

�

�

�
�

�
��
��
�

�

��

��

�
�

�
��

�

�
�

�

������

�

�
�

�
�

�
�
��

�

�

�

�

�

�

�

�

�
�
�

�

��

�

��
�
�

�

�

�

����

��

�

�
�

�

�

�

�

���
�

��

�

�
��
�
�

�

�
�
�

�

�
��
���

�
��

�

�

�
�
���
���

�

�

��

�

���

�

�

�

�

�
��
��
�

��

�

�

�
�

�

��
��
�

�

�

����
�

�
�
�

�

�

�

�
��

�

�
��

�

�
�
�

�

��

�

�

�

�

�

��

�
���

�

�

�

��
��
��
��
�

�

�

��
�����
�

�

�

�

�

�

�
��
�
�

�

�

�

�

�
�

�
�
��

�

�

�� � ��
�
�
�

�

�

�
��

�
�

�

��

�

�

�
�
�
��

�
��

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�
�
�
�
�

�

�

�

�

��
�
��
�
�

�

�
�

�
�
�

�

�
�
�

�

�
���

�

�

�
�

�

�

�
�
��

���
�
�

�

�

�
�

�

�
�
�
��

�

�

���
�
�
�
�
�

�

�

�
���
�
���

�

�

�
�

�

�
�
�

��

�

�
�
�
�

�
���

�

�

�

�
�

��
�

�

�

�

�

��
��
��
��
�

�

�
�

�

��

�

�
��

�

�
��

�

�

�
�
�

�

�

�

�

�
��

�

�
�

�

�

�

�

�

�

�
�
�
��

�

�

����

�

�

��

�

��

�

�
�
�
��

�

�

�

�

�

���

�

��

�

�

�

��

�

��
�

�

�

�

���

��

�
��

�

�
�

�

�

�

��

�

�

�

��
�
�

��

��
�

�

��
�

�

�����

�

��

��

�

�
���

�

�

�
�

��
�

�

�
�

�

�

�

�
��

��

�
�

�

�

�

�
��

�

� �
�

�

�

�
�

�

�

��

�

�

�

�

�

�

�

���
�
�

�

�

�

�

����
�
�

�

�
�
��
��
�
�
�

�

��

�

��
����

�

�

���
�
�
�

�
�

�

��

��

�

�

�

�

�

�

�

��
�

���
��

�

�
�
�
�
�
�
��

�

�

�

�
�

���
�

��

�

��
�

�

��

�

�

�

�

�

��
�

�

�

�

�
�

�

��

�

��

�
�
�

�

�

�

�
�
�
�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�
�

�

�

�

��
�

�

�

�
��
����
�

�

�

��
�

�

�
�
��

�

�

�

�
�

�

�

�

�
��

�

�

�
�

��

���

�

�

����

��

��

�

�

�

�

�
�

�

�
���

�

�
�

�
�

�
�

��
�

�

������
�

�

�

�

�

��

�

�

�

�
��

�

�
��
�����
�

�

�
�

���
��

�

�

�

���
��
�

�

�
�

�

��

�
��

�
�
�

�

�

�

�

�
�

��
�
��

�

��
�
�

��
�

��

�

�
�
���
�

�

��

�

�
�

�
�����
�

�

�

�

�

�
��

�

�

�

�

�

�
�

�
�
��
�
�

�

�

�

�

�

�

���
�

�

�

�

�

�
���
�
�

�

�

�

�
��

�

�

�

�

�

�

�
�
��
�
�
�
�

�

�

��

�
�

�
�
�
�

�

�

�

�

�
�
�
�
�
�

�

�

�
�

�

�

�

�

�

�

�

�

��
���
���

�

�

�
�

�

��

�

�
�

�

�

���
�
�

���

�

��
�
�
��
���

�

�

�
��

�

�
�

�

�

�

�
�
��
�

�
�
�
�

�

�
�

�
�

�

�
���

�

�

��

�
�

�

�

�

�

�

�

�

��

�

�

��

�

�

��

�

����
�
�

�

�
�

�

�

�

�
�

�
�

�

��
�

�

�
�
�

�

�

�

�

��

�
���
�
�

�

�

��
�

�

��
�
�

�

��

�

� �
��
�
�

�

�

�
�
���

�

��

�

�
�
�

��

�

���

�

�

��
�

�

��

�

�

�

�
����
�

�
�
�

�

�

���
��
�
� �

�

�
��

��� �
�
�

�

�
��

�

�
�

�

��

�

���

���

�

�
�

�

�
�

�

�
�
�

��
�

�

�

�
�
���
���

�

�

�

�
��
�
�

�

�

�

��
��
�����

�

�

��
���
�

�

�

�

�

�

�

��
�

�

�

�

�

�
��

�

���
�

�

�

��
�
�
��

�

�

�

�

�

�
��
�

�

��
�

�

�

�

�
��

�

���

�

�
�
�
����

��

�

�
�
�

�

�
��
�
�

�

��

�

���
��
�

�

��

�

�

�

�

�

��

�

�

� �
��
�
�
�
�

�

�

�
�
�
�

�

�

�

�

�

�
�
���
�
�
��

�

�
�
�
��

�

�

��

�

�

��
��

�

���

�

�
���
�
�
�
��

�

�

�
����
�
��

�

�

�

�

�

�

�

�

�
�

�

�

�
�

��
��

��

�

�

�

�
�
��
�

��

�

�
�
�

�
�
��
�
�

�

�
�
�� �
���
�

�

�

�

�

��
�

�
�
�

�

�

�
�

��
�

�

�

�

�

��

���
��

�

�

�

��

��

�

���
�

�

�

��

�
�
��
��

�

��

��
�

�
��
�

�

�

�

�
���
�
��

�

���

�

�
���
�

�

�
���
���

��

�

��
�

�

�

���

�

�

�

�

�
�

�

����

�

�
��

�

��

�

�
�

�

��
��

�

�
�
� �

�

��

�

�
�

�

�

�

�

�

�

�
�
���

�

�

�

�

�

�

�

�

�

���
�

�

�

�

��
�

�

�
�

�

�

����
�
�
�

�
�

�

�
���
�
���
�

�

�

��

��
�

�

�
�

�

�

�

�

�

�

�

�
�
�

�

�

��

�

��
�
�

�

�

�

�
�
�
�

� ���

�

�

�
�
�
�
��

�

�

�

�
�
��
�
�
�
��

�

��

�

�
�

�

�

�
�

�

�

�

�

���

�

��

�

����

�

�
�
�
�

�

�

���
�
�
�
�
�

�

�

���
�

�

���

�

�

�
�

�

�

�

��

�

�

��

��

�

�
�
�
�

�

�

���
�
�

�

��

�

��

�

�

���
�

�

�

�
�

�

�

��

�

�

�

�

��

�

�
��
�

�
�

�

�

��
�
���

�

�

�

��

����
�
�
�

�

��
�
�
��

�

��

�

�
�
�

�

�

��
�
�

�

�
�

�

�

�

�

�

��

�

�

�
�

��
��
� �

�

�

��

�

�

��
�
�

�

�
�
�

�

���
�
�

�

�
�

�

�

�
�

�

��

�

�

��
����
��

�

�

�
�
��

�

�
�
�

�

�

�
�
���
�

�
�

�

�

��
�
���
��

�

�
�
�
�
��

�

�

�

�

�

��
��

�

���

�

�
�

�

�
�

�

�

�
�

�

�
��
�����
�

�

�

�

�
�

���
�

�

�

�

��
��
��

�

�

�

�

�

�
��
��

�

�

�

�
�
�
��

����

�

�
�
�
�

�
�
��
�

�

�
�
�
���
���

�

�
���
��
���

�

�
�
��
��
�
�

�

�

�

�
�

��
����

�

�
�
�
�
�
�
��
�

�

�

��

�

�

�
�

�

�

�

�
�
�
�
�
�
�

�
�

�

�

�
��
�
�
�
�
�

�

��

�

�

�

�

�
��

�

�

�

�

�

�

�

�

�
�

�

�

��
�

�
��
�
�

�

��
�
��

�

�
�
�

�

�
��
�

�

�

�

�

�

�

��

�
�
��

�

��

�

�
�
�

�

��
�

�
�

�

�
�

�
�

�

���
�

�

�

�
�

�

�

��

�

�

�

�

�

�

���
�

�
�

�

��

�

���
���

�

�

�

���

�

�
�
�

�

��
�

�

�

�
��
�

�

�

�

�

�

�

�
�

��

�

�

�
�����
�
�

�

���
��
����

�

�
�
�
�
�
���
�

�

�

�

�
��

�
�

�

�

�

� ��
�

�
�

�

�
�

�

�
�
��
�

�

�

�

�

�

������
�

��

�

�

�

�
�
�
�
��
�

�

���

�

��

�

��

�

����

�

��
��

�

�
�
�

�

�

�

�
��

�

�

����
�
�
�
�

�

���
�

�

��
�
�

�

�
�

��

�

����

�

���
��

� �

�

�

�

�

�
�
��
��

�

�

�

��

�

�

���

�
�

�

�

�
�

�
�
�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�
��

��
�

�
�

�

�

�
��������

�

�
�
�

��

�

�

��

�

�

�
�
�����
�

�

�

�

�

�

�

�

�

�

�

�

�

��
�
�
�
�

�

�

�

�
�
��
���

�
�

�

�

� �����

�
�

�

�

��
��
�

�
��

�

�
��
��
��
�

�

�

�

��

�

�

�
�
�
�

�

�

�
�
��

�

�

��

�

����
�

�

�
�
�

�

��

�

����

�

�

�

�
����
���
�

�

�

�

��
�

�

��

�

�

�

���
�
�
�

�

�

�

�
�

�

�
��
���

�

�
�
��

�
��

�

�

�

��

�
�
�
�

�

�
�

�

�

�

�
�

�� �
�

�

�

�

�
�

�

�
�

�
�
�

�

�

�
�
�

�

�
���

�

��
�
�
�
���
�

�

�
�

�

�

���

�

�

�

��

�
�
�
�

�

�
�

�

�
��
�

�

��
��

�

��
�
�����

�

�

�

�

�

�

�

�
�

�

�

�

�

��
�
��
�
��

�

�����
���

�

�

�
�
��

�

�

�

��

�

�

��
��

�

�
�

�

�

�
�

� ��
�
�
��

�

�
�
��
���
�
�

�

�

�

�
�

�����

�

��
�
�
�

��
�
�

�

�

�
�

�

�

�
�

�

�

�

�

�
���

�
��

�

�

�

�

�

�

�

��
�
�

�

�

��
�

���
��

�

�

��
��

�

�
�
�

�

�
�
�

���

�

�

�

�

�
�

�

�

�
�
�

�
�

�

��

��
��

�

��

�

��
�
��
��
�

�

�

�

��

�

�

�
��
�

�

�

�
�
� �

�

�
�
�

�

�

��
�

�

���
�

�

�

�

���

�

���

�

�

�

�

�
�
�
��

�

�

�
�
�

�

�
�

�

�
�

�

��

�

�

�

�

�
�
�

�

�
�
�

��

�

�

�

�

�

��
�
�

���
�
�

�

�

�

�

�

��
�

�
�

�

�

�
��
����
�

�

�

��

�

�
�

�
�
�

�

�
��

�

�

�

�
��

�

�
���
�

�
���

�

��
�

�

�

�
��
�

�

�
���
��
��
�

�

�

�

��

�

�

�

�

�

�

�

�
����
���

�

�

�

�
��

�

�
��

�

�
�
�

�
�
��
��

�

����
�

�

�

�
�

�

�
�
�

�

�

�

�

�

�

�

�

��
��

����

�

�

�

�

�

�

�

�
�
�

�

�

�
�����

�

�

�

�
�
�
�
��
�

�

�

�

�
�

�

�
�

�

�

�

�

�

�
��
�

��

�
�
�

�

�

�
���
�
��
�

�

�

�

��
�
�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
��
���
�

�

�

�

��
�

�

�
���

�

�����

��

��

�

�
���
�

����

�

�

�
�
�

�
��

�

�

�

�

���
���

�

�

�

�

��

���
�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
�

�

�

�

�

��

�

�
�
�

�

�

�

�

�

�

�

� �

�

�

�
�

�

�
�

�

��

�
�

�

�

�
�
�

�

�

�
�

�

�
�
�
�
�

�

�

�
�

�

��
�

�
�

�

�

�

�
�

�

���
�

�

��

��

�

��
�

�

�

�
�

�

��
��

�

�

�

��

��

�

�

�

�

�

�

�
�

��

�

�

�
�
�

�

��
�
�
�

�

�
�
�

�

�
��

���

�

��

�

�
�
�
�

��� ��

�

�

����
�

�
�

�

�

�
�
�
��

�
���

�

�

��
�

���
��

�

�
�

�

�

��
�

�
�

�

�
�
���
�

�

�

�

�

�
�

�

��
�
�

��

�

�
�
��
��
�
�
�

�

���
�
�

�

�

�

�

�

� �
�

��
�

��

�

�

�

�

�

�

��� �

�

�

�
�
�

�
�
����

�

��
�
���
�

�

�

�

�

��
�
�

��
�
�

�

�

�

�
�
�

�

�
�
�

�

�
��

�

�
�

�
��

�

�

�

�

�
��

�

�

�

�

��

�

�

�

�

��

�

�

���

�

�

�

�

�

�
�

�
�
�
�
�
�
�

�

�

�

�

�
�

�
�
�

�
�
�

�

�

�
�����
�
�

�

���

�

��

�

��

�

�

����
�
� ��

�

�

�
�
��

�
��

�

�

�

�

�

�
�

�

�

�

�

�

�

�

���

�

�

��

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

���
�

�

�

�
�
�

�

�

�

�

�
�

�

�

�
�

�
��

�

�

�

�

��

�

��
�
���

�

�

��

��

��

�
�

�

����
�

�

�

�

�

�

�

�
��

�

��

�

�

�

�
�
�� ��
��
�

�

�

�

��
��

�

�

�

�

�

�
�

�
�

�

�
�
�

�

��
�
�
�

�

�

�

�

�

�

�
�
�
�
�
��
�

�

�
�

���

��

�
�

�

�
�

��
�
�
���

�

�

��

�

�
�

��

�

�

�

�
�
�

�

�

�
�

�

�

�
�
��
�
�
�
�
�

�

�

�
��

�

�

�

�

�

�

�

�
�
�

�
�

�

�

�

�

�

�

�

����
�

�

�

�
��

�
�

�

��
�

�

�

�

�

�

�
�

��

�

�

�
�
��
�

�

�

�

�

�

�
�

�

��
�
��
�

�

�

�

�

�
�

��

�
�

�

�

�

�

�

�

�

��
�

�

�

�
�

�
��

�

��

�

��

�

��
� �
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

�

�

�

���������

�

�
�
�
�

�

��

�

�

�

�

�

�
��
����

�

�

�
�

�

�

�

�
�

�

�

��

�
��
�
�

�

�

�

�
��
�

�
�
�
�
�

�

�
�

�
��

�

�

�
�

�

�
��

�
�

�

�
�
�

�

�

�
�

�

��
�

�

�

�

��

�

�

��

�

�

�

�

�

��
���
�
�
�

�

�
�

��
�

�
�
��

�

�

�

�

�

�

�

��

�

�

�

�

��

�

�

�

�

�

�

�
��
��
���

�

�

�
�
��

�
��
�
�

�

�

�
�

��

�

�

��

�

�
�
�
�
�

�

�

�
�

�

�

�

�

�
�

�

��
�

�

�

�

��
�
�
��
�

�

�

�
��

�

�
�
�

�

�

��
��
�
�
��

�

�

��

�
�
�
�

��

�

�

�
��
���

�

�

�

�

�

�

�

�

�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

��

�

�

�

�

�

��

�

�
�

�

�

��
��
��
��

�

�

�

�

�
���
�

�

�

��

��
�

�

�

�

�

�

�

��
�
���

�

�

�

�

�
�

�

�

�

�

�

�

�

�

���
��
���

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

��

�

�

�

�

��

�

�
�
�
�
�
�

�

�

�

�

�

��
�

�
�

�

�

��
�
�����

�

�
�
���
����

�

���
���

�

��

�

�

�
�

�

�

�
���

�

�

��
�
�

�

�

�

�

�

�

�
��
�
��

�

�

�

��
�
�

�

�

�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�
�

�
�

�

�

�

�

����

�

�

�

�
�
��
�

�

�
�

�

�

����

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�
�

�

�

�

��
��

�

�

�

�

����

�

�

�

��

�

�

�
�

�

�
�

��

�

�

�

�

�

�
�

�

�

�

�

�

�

��
�

�

�

�

��

�

�
�

�
�

�

�

�
��

�

�
��

���
�
�

�

�

�

�

�

�

�

��

��

�

�

�
�

�

��

�

�

�

�

�

�

�

�
�

�

��

�

�

�

�
�

�

���

�

�

�

�

�

�

�

�
�

�

�

�

�

��
��
�

�

�
�

�

�

�

�

��
�

�

�
��

�

�

�
�
�
�

�

�

�
�

�

�
���
����
�

�

�
�

�
�
�
�

�

�

�

�

�
������
�
�

�

�
�

�

�

�

�

�

�
�

�

�

�
�
�
��
�
��

�

��

�
�

�
�
�

�

�

�

�

�

��

�
���
�

�

��������

�

�

�

�

�

�

�

�
�
��

�

�
��

�

�

�

�

�
�

�

�

�
�

�

�
�

��
�

�

�
�

�
�

��

�

�

�

�

�

�

��

��

�
�
�

�

�

�
���
�

�
�

�

�

�
�

�
�

�

��

�

�

�

�

�
������
�

�

�
��
�

�

�

�

�

�

�

�

�

�
�
��

�

�

�

�

�

�
��
��
�

��

�

�

�

�

�

�

��
�

�

�

�

�

�

��

��
�
�

�

�

��

�
�

� ���

�

�

�
�
�
�

� �
�
�

�

�
��

�

��
���

�

�
�
�
������

�

�

�
�
��
�

�

�

�

�

�
�
�

�

�

�

��

�

�

�

�

�

�

�

�

��

�

�

�

��
�
�
���

�

�

�

�
�

�

�

�
�

�

�

�

�
�

�

�

�
�
�

�

�

�

�

��

�

�
�

�
�

�

�

�

�
�

�

�

�
�

�
�

�

�

��

�
�

�

�
��

�

�

�

��

�

�

�

�

�

�

�

��
�
�

�
�
�
�

�

�

�

�

�
��

�

�

�

�

�
�

�

�
�
�

�

�

�

�

��

�

�

�

�
�

�

�

�

�

������
��

�

�

�

�
�

���

�
�

�

���

�

�

�
�

��

�

��

�

�

�
�

�

��

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

��
�
�

�

�

�

�

�

�

�

��

�

�

�

�����
��
��

�

�

�

�

�

�
�

�
�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

��
��
�
�

�
�

�

�

�

�
�

�

�

�

�

�

�

�
�
��
���

�
�

�

�

�

�

�

�

�

�

�

�

�

�

��
�����

�

�

��

�

�
�
�

�

�
�

�

�
�

�

�

�

�
�
��

�

�

�
�

�

�

��

�

�

�

�
�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

��

�

�

�
�
�

�

�

�

�

�

���
����

�

�

�

�

�

�

�

�

�

�

�

�

�
��

��
�
�
�

�

�

���
�

�

�

�
�

�

�
��

�

�
�

�
�

�

�

�
�

�

�

�
�
�

�

�

�

��

�
��
�
��
�

�
�

�

��

�

�

�

�

�

�

�
��
�
����
�

�

�
�
���
�� �
�

�

�
��
������

�

��
�
�
�
�
��
�

�

� �

�

�

�
�
�
��

�

�

�

��

�

�
�

�

�

�

�

�

��

�

�

�

�

�

�

�

�
� ���
�
��

�

�
�

��

�

�
��

�

�

�

�
��
� ���
�

�

�

�

�

�

��
�

�

�

�

��

�

�

�

�

�

�

�

�

�

����

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�
�
�

�

�

�

�

�

�

�

�

�
�
�

�

�

�
�

�

��

�

�

�

��

�
�

�

�

�
�

�
�
�
�

�
�

�

���
��

�

�
��

�

�
�

�

�

�

�

�

�
�

�

�
���
�

�
��
�

�

�
��
�
�

�

�
�

�

�

�

�
��

�
�
�

�
�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
�

�

��

�

�

�

�

�
�
�

�
�

�

�
�

�

�

�

�

�

�

��
�
��

�

�

�

�
�

�

�
�

��

�

�

����

�
�

�
�

�

���

�
���
�

�

�

�

�

���

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

���

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�
��
��

�

���

�

�
�

�
�

��

�

��

�

���

�

�
����

�

��
��

�
�

�

��

�

�
�
�

�

�

�

�

�

�

�

�

�

�

�
��

��

�

�

� �
�
�
��
�

�

�

�

�
�

�

�
�

�

�

�

�

�

��

�

�

�

�
��

�

�

�

�

�

�
�
�
�

�

�

�

�

�
�
�

�
�
�

�

�

�

���
�

�

��
�
�

�

�

�
���
����

�

�
�
�

�

�

�

�

�

�

�

�
��
�

�
�

�
��

�

�
��
��
�
�

�

�

�

�
��

�

�

�

�

�

�

�

�
���
�
��
�
�

�

�
��

�

��
��

�

�

��

�

�

�

�

�
�

�

�

�
�
�
�

�
��
�
�

�

�

�

�

��
����

�

��

�

�

�

��
��

�

�
�
�

�

�

�
�
�
�

�

�

�

�

�

�

�

��
�

��

�

�

�

�

�

�

�

�

�

�
���

�

�
�

�

�

�

���

��

�
�

�

�
�

�

�
�

�
�
�
�

�
�

�

�

��
�
�
�

�

��

�

�

�
�
�
�

�

�

��

�

�
����
����

�

�
�
�

�

�
�
� �
�

�

�

�

��

�

�

�

�

�

�

�
�

�
�
� ���
�

�

�

�

�

�
�
�

��
�

�

�
�

�

�

�

�

�
��

�

�

����
�

�

�

�

�

�
�
�
�

�

��

�

�

�

�

�
�
��

�

�

�

�

�

�

�

�

��

�
�

�

�

�

�
�

�

�

��

�

�

�

�

�

�

�

�

���
��

�

�

�
�
����
��

�

�

�

�
�

�

�

�

�

�

�

��
�

�
��
�
��

�
�

�

�

�

�

�

�

�

�

�

�

�

��
��

��

�

�

�

�

��

�
�
��

�

�

��
�
�
�

�

���

�

�
�
�

�

�

�

�

�

�

�

�

��

�

��

�

�

�

�

�

�
�

�
�

�

��
�

�

�
� ���
�
�

�

�

�

�
�

��

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�
���

�
�

�

��

�

�

�
��

�

�

�

�

�

�

�

��
�

���
�
�

�

�

�

�

�

�

��

��

�

�
�
�
�
�
�
�

�

�

�

�

�

��

�
�

�

�
�

�

�

��

�
�

�
�

�
�

�

�

�

�

�

�

��

�
�

�

�

�

�

��
�

�

��

�

�
�
���
�
��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

��

�

�
�

�

�

��

�

�

�

��

�
�

�

�

�����

���

�

�

��

�

�
�
�

�
�

�

�

��
�
�

�
�

�

�

�

�

�
�
�
�
���
�

�

�

�
�
�
�
�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

��

�

�

�

�
�
�
��
�
�

�

�
�

�

�
�

�

�

�

�

�

�
����

�

��
�

�

�

��

�

�
�
�

�

�

�

��

�

�

�
�

�

�

�

�

��
�

��
����

�

�

�
�
��
���
�

�

��

�

�
�

�
�

��

�

�

�
�
�

��

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�
�
�
�

�
�

�

�
�
�
�

�

����

�

�

��

�

�

�
��
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
����
�

�

��

�
�
�
� ��
�

�

��
�

�
��

�

�

�

�

�
��
�

�

�

�

�

�

�

�������
��

�

�

���

�

�
�

��

�

��

�
�
�
�

�

��

�

�

�
�

�
�

�

�

�
�

�

�

�

�

���

�

�

�

�

�

�

�
�

�

��

�

�

�

�

�

�
�

�

�
�

�

�

�

���

�

�

�
���

�

�

���

�

�

�

��

�

��
��
�

����

�

��
��

�

��
�

�

�

�

�

�

�

�

�
��

�

�

�

�
�

�

�

�

�

�

�

�

�

��
�

�

��

�

�

�

�

�

����

�

�

�

�

��
�
�
��

�

�
�

�

�

���
�

�

�

�

�

�

�
�
�

�

�

�

�

�
�

�

��
�

��

��
�

�

�

�
�

�

��

�

�

�

�

�

�

��

��

�

��

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

���

���

�

�
�

�

�
�

�

�

�

�

�

��

�

�
�

�

�

�
�

�
�

�

�

�

�

�

��

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�
���
�
��

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

��

�

�
��

�

�

�

�

�

�

�

���
��
�

�

�

����
��
��

�

�
�

�

�

�

�

�

�

�

�

�
�

��

�

��

��

�

�

�

�
�

�

�

�
�

�

�

�
�
�
�

�
�

���

�

�
�

�

�

�

���
�

�

�

�

�

��

�

�

�

�

�

�

��

�

�

�

�
�

�

�

�
�
���

��
�

�

�

�

�

��

�
�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
����

�

�

�

�
�
�
��

�

�
�

�

�

�
�
��
�

����

�

��
�

�

�

�
�

�
�

�

��
��

�

�

�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

���

�

�
�

�

�

�

�

�

�

�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

��
�

��
�
�

�

�

�
�

�

�

�

�
��

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

��

��

�

�
��

�

��

�

�

�

�

��

�

�

�

�

�

�
�

�

�
�

�

�

�
�

�

�
�

�

�

��
�
�

�

��

�

�

�

�
�

�
�
�

�

�

�

�

�

�

�

��

�

�

�

�

�

��

��

�
�

�

�
�

�

��

�

�

�

��
�

�

�

�

��
������

�

�
�

�
�
�

�

�

�

�

�

�
��
�
��
�
� �

�

��

�

�
�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

�

�

��
�
�

�

�

�

��

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

��
�

�

�
��������

�

�

���
��
�
�
�

�

�
��
�

�

�
�

��

�

�
�

�

�

�

��

��

�

�
�
�

�
�

�

�
�
�

�

��

�

�

�

�

�

�

�

�

�

�
�
��

�

�

�

�

�

�

�

�

�
�

�
���

�

�

�

�

�
�
�
���

�

�

�

�

�

�

��

�

�

�

�

�
�

��

�
�

�

�

�

�

��

�

�

�

�

�

�

�

�

�
�
���
���

�

�

����

�

�
�

�

�

��
�

�
�
��

��

�

�

�

��

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�

�

�

�

�

�
�

��

��

�

���
�

�

�
��

�

�

�
�

�

�
�

�

��
�

�

�
��
�

�

�

�

��

�

�

��

�

�

�

�

�

�

�

�

��

�

�
��
�
�

�

�

�

�

�

��

��
�

�

�

��

�
�

�
�
�

�

�

�

�

�

�

�
�

�

��

�

�
�

��

�
���

�

�

�

�

�

�

�

���

�

�

� �
������
�

�

�

�

�
��
��
��

�

�
�

��

�

�

�

�

�

�

�

��

�
�
�

�

�

�

�

�
����
��

�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�
�
�

�
�

�

�

�

�
�

�

�
�
�

��

�

�
�

�

�

�

��

�
�

�

�
�

�����

�

�

�

��
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

��

�

�

�

�

�
�
�

�

�

�

��

�

��
�

�

�

�
�

��

�

��
��

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�
�

�
�
�
�
��

�

�

�

�
�
�
�
��
�

�

�

�

�
�

�
�

�
�

�

�

�

�

�

�

�

���

�

�

���
�

�

�

�
�

�

�

�

�

�

�

��

�

�
�

�

�

�

�

�
��

�

��

�

�
�
�
��

�

�

�

�

�

�
�

���
�

�
�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

��

�

�

�

�

���

�

�
�

�

�

�

�

�

�
�

�

�

�
��

�

�

�

�
�
�

�

�
�
�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

��

� �

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�
�

�

�
�

��
�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

��

�

�

�

�
�

�

�
��

�
�
����
���

�

�

�
��
�

�

��

�

��

�

��

��
�

�

�

�

�

�

�
�

�
��
�

�

�

�

�

���
�
��
�

�

����

�

�
���

�

�

��

�

�

�

��
�

�

�

�

�

�

�

�
��

�

�

��
�

�

�

�

�

��

�

�

�
��
�

���

�

�

�
�

�
��
����

�

�
�

�

�

�

�

�

�

�

�

���
���
��

�

�

�
���

�

����

�

�

��

�

�

�

�

�

�

�

�

��������

�

��
�
�
�
�

�

��

�

��
��

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�����
�

�

�

�

�

�

�

�

�
�

�

�

��

�

�

�
�
�

�

�

�

���
�

�
��
�
�

�

�

���
�
�

�

�

�

�

�

�

�
�

�

�

�
�
�

�

�

�

�

�

�
�
�

�

�

�

�

��

�

�
���
�

0

2

4

6

0 500 1000
input size[Mbit]

tim
e [

s]

Fig. 3. Performance of rank lookup

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

��

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

0.0
0.5
1.0
1.5
2.0
2.5

0 500 1000
input size[Mbit]

tim
e [

s]

Fig. 4. Performance of rank initialization

Execution seems constant-time (0.83µs on average) w.r.t. the input size. One
can observe that execution seems a bit faster for small inputs. We believe that
this is the effect of memory cache. One can also observe that the result is noisy.
We believe that this is because of memory cache with access patterns and some
instructions, such as IDIV (integer division), that use a variable number of clock
cycles [9].

Figure 4 shows the performance of initialization for the rank function by
measuring the time taken by rank init for inputs up to 1000 Mbit. We make
measurements for 1000 values of the input size. As expected, the result seems
linear. There are several small gaps, for input size 537 Mbit for example. This
happens because the parameters for Jacobson’s rank algorithm are changed at

Formal Verification of the rank Algorithm for Succinct Data Structures 257

this point: sz2 and k are changed from 30 bit to 31 bit, w1 is changed from 29 bit
to 30 bit. As a result, the size of the first-level directory decreases from 17.3 Mbit
to 16.8 Mbit and the second-level directory, from 179 Mbits to 174 Mbits, leading
to a shorter initialization time.

Benchmark Environment. The operating system is Debian GNU/Linux
8.4 (Jessie) amd64 and the CPU is the Intel Core i7-4510U CPU (2.00 GHz,
Haswell). The time is measured using the clock gettime function with the
CLOCK PROCESS CPUTIME ID resolution set to 1 ns. The rank implementation is
extracted by Coq 8.5pl1 and compiled to a native binary with ocamlopt version
4.02.3. C programs are compiled with gcc 4.9.2 with options -O -march=native
(-march=native is used to enable POPCNT and LZCNT of recent Intel proces-
sors).

About OCaml’s Garbage Collector. Gc.full major and Gc.compact are
invoked before each measurement to mitigate the GC effect. Garbage collec-
tion does not occur during lookup measurements (major collections and
minor collections in Gc.stat are unchanged). During initialization measure-
ments, the GC has a small impact. Indeed, in Fig. 4, major garbage collection
happens at most 226 times during one initialization measurement. Moreover,
using another experiment with gprof, we checked that the time spent by the GC
(with Gc.full major and Gc.compact disabled) during the rank init bench-
mark accounts for less than 5 %.

7 Discussion and Perspectives

About Complexity. For the time being, we limited ourselves to benchmarking
the extracted code for time-complexity. It would be more convincing to perform
formal verification using a monadic approach (e.g., [15]). We have addressed the
issue of space-complexity in Sect. 5.3. In general, one may also wonder about the
space-complexity of intermediate data structures. In this paper, we obviously
did not build any but this could also be addressed by counting the number of
cons cells using a monad.

About Extraction of Natural Numbers. In this paper, there is no problem
when we extract Coq nat to OCaml int, despite the fact that nat has no upper-
bound. OCaml ints are (w − 1)-bit signed integers that can represent positive
integers less than 2w−2 (w is the number of bits in a machine word) [12]. However,
the maximum number of bits in an OCaml bytes is 2w−10w bits because one
OCaml block may not contain more than 2w−10 words [12]. Since 2w−10w < 2w−2

for w = 32 and w = 64, an int can always represent the number of bits in a
bytes. For this reason, nat arguments of functions such as bnth or intermediate
values in the rank algorithm do not overflow when turned into int. This can be
ensured during formal verification by using a type for fixed-size integers (such
as int : nat -> Type in [1]) instead of natural numbers.

258 A. Tanaka et al.

About Alignment. The extracted code can be further optimized by insist-
ing on having the sizes (w1, w2 in this paper) of the integers in the direc-
tories to be multiples of 8. This removes the need for masking an shifting
when reading entries from the directories. This can be enforced by modifying
rank default param.

About the Correctness of OCaml Code. The OCaml part of the library
has not been formally proved, but it has been extensively tested for functional
correctness. We have implemented a test suite for the OCaml bitstring library
using OUnit [17]. Concretely, we test functions for bits by comparison with
list functions using random bitstrings. We also test the extracted rank function
by comparison with the rank function defined in specification like style, i.e.,
count mem b (drop i s). Since we plan to reuse this library for other func-
tions, it will endure even more testing. Formal verification of the OCaml part
would be interesting, but it seems difficult as of today, because we are relying
on unspecified features regarding optimization, Obj.magic, and C.

Our rank function is careful to use bitstrings in a linear way (i.e., it never
adds bits twice to the same bitstring), but the correctness of the OCaml bitstring
library does not rely on this fact. Whenever it detects repeated addition to a
shared buffer, which can be seen through a discrepancy between the used field
of the bits buffer and the len part of the Bref, it copies the first len bits to a
new buffer before adding the extra bits.

Formal verification of the Coq library may be used to further guarantee
the time-complexity properties of the OCaml library. For example, to achieve
linear-time construction of arrays with bappend (Sect. 4.2), bappend s s’ must
be called on s at most once. The approach that we are currently exploring to
ensure this property is to augment the rank function with an appropriate monad.

About Performance of the Extracted Implementation. We have not yet
undertaken a thorough benchmark comparison with existing libraries for suc-
cinct data structures. This is mostly because the focus of this paper is first and
foremost verification, but also because the libraries we have checked so far do not
seem to implement the same rank algorithm, making comparison difficult. Never-
theless, we can already observe that extracted OCaml code does not suffer from
any significant performance loss compared to existing libraries. For example, we
have observed that the SDSL [16] rank function for H0-compressed vectors exe-
cutes in about 0.1 ∼ 1.8µs depending on algorithm’s parameters while our rank
function executed in 0.83µs (see Sect. 6.2). (To be fair, it is likely that our rank
function consumes more memory since Jacobson’s algorithm does not compress
its input.) We believe that this is an indication that our approach can indeed
deliver acceptable performance with the benefit of formal verification.

Formal Verification of the rank Algorithm for Succinct Data Structures 259

8 Conclusion

We discussed the verification of an OCaml implementation of the rank func-
tion for succinct data structures. We carried out formal verification in the Coq
proof-assistant, from which the implementation was automatically extracted.
We assessed not only functional correctness but also storage requirements, thus
ensuring that data structures are indeed succinct. To obtain efficient code, we
developed a new OCaml library for bitstrings whose interface match the Coq
lists used in formal verification. To the best of our knowledge, this is the first
application of formal verification to succinct data structures.

We believe that the libraries developed for the purpose of our experiment are
reusable: the OCaml library for bitstrings of course, the array interface for direc-
tories (that are used by other functions for succinct data structures), lemmas
developed for the purpose of formal specification of rank (as we saw in Sect. 5.2,
verification of functional correctness can be carried out at the abstract level). We
also discussed a number of issues regarding extraction from Coq to OCaml: the
interplay between inlining at extraction-time and by the OCaml compiler, the
soundness of code replacement at extraction-time, etc. Based on the results of
this paper, we are now tackling formal verification of rank’s counterpart function
select and plan to address more advanced algorithms.

Acknowledgments. The authors are grateful to the anonymous reviewers for their
helpful comments. This work is partially supported by a JSPS Grant-in-Aid for Scien-
tific Research (Project Number: 15K12013).

References

1. Affeldt, R., Marti, N.: An approach to formal verification of arithmetic functions
in assembly. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp.
346–360. Springer, Heidelberg (2008)

2. Agarwal, R., Khandelwal, A., Stoica, I.: Succinct: enabling queries on compressed
data. In: NSDI 2015, pp. 337–350. USENIX Association (2015). Technical report:
http://people.eecs.berkeley.edu/∼rachit/succinct-techreport.pdf

3. Armand, M., Grégoire, B., Spiwack, A., Théry, L.: Extending Coq with imperative
features and its application to SAT verification. In: Kaufmann, M., Paulson, L.C.
(eds.) ITP 2010. LNCS, vol. 6172, pp. 83–98. Springer, Heidelberg (2010)

4. Clark, D.: Compact pat trees. Doctoral dissertation, University of Waterloo (1996)
5. The Coq Development Team: Reference Manual. Version 8.5. INRIA (2004–2016).

http://coq.inria.fr
6. Free Software Foundation: GCC 4.9.2 Manual (2014). http://gcc.gnu.org/

onlinedocs/gcc-4.9.2/gcc
7. Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension for the

Coq system. Version 16. Technical report RR-6455, INRIA (2015)
8. Intel Advanced Vector Extensions Programming Reference, June 2011
9. Intel 64 and IA-32 Architectures Optimization Reference Manual, September 2015

10. Intel SSE4 Programming Reference, April 2007
11. Jacobson, G.: Succinct static data structures. Doctoral dissertation, Carnegie

Mellon University (1988)

http://people.eecs.berkeley.edu/~rachit/succinct-techreport.pdf
http://coq.inria.fr
http://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc
http://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc

260 A. Tanaka et al.

12. Jones, R.W.M.: A beginners guide to OCaml internals (2009). https://rwmj.
wordpress.com/2009/08/04/ocaml-internals

13. Kim, D.-K., Na, J.C., Kim, J.E., Park, K.: Efficient implementation of rank and
select functions for succinct representation. In: Nikoletseas, S.E. (ed.) WEA 2005.
LNCS, vol. 3503, pp. 315–327. Springer, Heidelberg (2005)

14. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an operating-system kernel. Commun.
ACM 53(6), 107–115 (2010)

15. Nipkow, T.: Amortized complexity verified. In: Urban, C., Zhang, X. (eds.) ITP
2015. LNCS, vol. 9236, pp. 310–324. Springer, Berlin (2015)

16. SDSL: Succinct Data Structure Library. https://github.com/simongog/sdsl-lite
17. OUnit: Unit test framework for OCaml. http://ounit.forge.ocamlcore.org/
18. Okanohara, D.: The world of fast character string analysis. Iwanami Shoten (2012).

(in Japanese)
19. Tanaka, A., Affeldt, R., Garrigue, J.: Formal Verification of the Rank Function

for Succinct Data Structures. https://staff.aist.go.jp/tanaka-akira/succinct/index.
html

https://rwmj.wordpress.com/2009/08/04/ocaml-internals
https://rwmj.wordpress.com/2009/08/04/ocaml-internals
https://github.com/simongog/sdsl-lite
http://ounit.forge.ocamlcore.org/
https://staff.aist.go.jp/tanaka-akira/succinct/index.html
https://staff.aist.go.jp/tanaka-akira/succinct/index.html

Contextual Trace Refinement for Concurrent
Objects: Safety and Progress

Brijesh Dongol1(B) and Lindsay Groves2

1 Brunel University London, London, UK
Brijesh.Dongol@brunel.ac.uk

2 Victoria University of Wellington, Wellington, New Zealand
lindsay@ecs.vuw.ac.nz

Abstract. Correctness of concurrent objects of safety properties such
as linearizability, sequential consistency, and quiescent consistency, and
progress properties such as wait-, lock-, and obstruction-freedom. These
properties, however, only refer to the behaviour of the object in isolation,
which does not tell us what guarantees these correctness conditions on
concurrent objects provide to their client programs. This paper inves-
tigates the links between safety and progress properties of concurrent
objects and a form of trace refinement for client programs, called contex-
tual trace refinement. In particular, we show that linearizability together
with a minimal notion of progress are sufficient properties of concurrent
objects to ensure contextual trace refinement, but sequential consistency
and quiescent consistency are both too weak. Our reasoning is carried out
in the action systems framework with procedure calls, which we extend
to cope with non-atomic operations.

1 Introduction

Concurrent objects provide operations that can be executed simultaneously by
multiple threads, and provide a layer of abstraction to programmers by managing
thread synchronisation on behalf of client programs, which in turn improves
safety and efficiency. Correctness of concurrent objects is usually defined in terms
of the possible histories of invocation and response events generated by executing
the operations of a sequential specification object. There are several notions of
safety for concurrent objects [7,12]: sequential consistency, linearizability, and
quiescent consistency being the most widely used. Similarly, there are many
different notions of progress [12,13], e.g., wait-, lock- and obstruction-freedom
are popular non-blocking conditions.

Both safety and progress properties are stated in terms of a concurrent object
in isolation, and disregard their context, i.e., the client programs that use them.
Programmers (i.e., client developers) have therefore relied on informal “folk the-
orems” to link correctness conditions on concurrent objects and substitutability
of objects within client programs. We seek to provide a formal account of this
relationship, addressing the question: “Provided concurrent object OC is correct
with respect to sequential object OA, how are the behaviours of C[OA] related
c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 261–278, 2016.
DOI: 10.1007/978-3-319-47846-3 17

262 B. Dongol and L. Groves

to those of C[OC]?”, where C[O] denotes a client program C that uses object
O , for different notions of correctness. One of the first answers to this ques-
tion was given by abstraction theorems [9], linking safety properties: sequential
consistency and linearizability to a contextual notion of correctness called obser-
vational refinement, which defines substitutability with respect to the initial
and final state of a system’s execution. For terminating clients, linearizability is
shown to be equivalent to observational refinement, while sequential consistency
is shown to be equivalent to observational refinement provided that clients do
not communicate outside the given objects.

Since non-termination is common in many concurrent systems, e.g., oper-
ating systems and real-time controllers, our work aims to understand the
link between concurrent correctness and substitutability for potentially non-
terminating clients. Related to this aim is the work of Gotsman and Yang [10] and
Liang et al. [15], who link observational refinement to safety and progress prop-
erties of concurrent objects. However, both [10,15] assume that the concurrent
objects in question are already linearizable; in contrast, we do not assume lin-
earizability. Further, [10] aims to understand compositionality of progress prop-
erties, while [15] develops characterisations of progress properties based on their
observational guarantees.

The motivation for our work differs from [10,15] in that we take contextual
trace refinement as the underlying correctness condition when substituting OC
for OA in C, then aim to understand the safety/progress properties on OC
that are required to guarantee trace refinement between C[OA] and C[OC]. To
this end, we develop an action systems framework that integrates and extends
existing work [1,18] from the literature, building on our preliminary results on
this topic [8]. As part of our contributions we (i) extend Sere and Waldén’s
treatment of action systems with procedures [18] with non-atomic procedures;
(ii) develop a theory for contextual trace refinement, adapting Back and von
Wright’s [1] theory for trace refinement of action systems, then reduce system-
wide proof obligations (i.e., properties of the client and object together) to proof
obligations on the objects only; (iii) show that linearizability [14] and minimal
progress [13] together are sufficient to guarantee contextual trace refinement;
and (iv) show that both sequential consistency and quiescent consistency are
too weak to ensure contextual trace refinement, even in the presence of minimal
progress.

2 Concurrent Objects and Their Clients

We motivate concurrent objects using Treiber’s stack (Sect. 2.1). An example
stack client (Sect. 2.2) is used to motivate contextual trace refinement (Sect. 2.3).

2.1 Client-Object Systems

We consider concurrent systems where a client consists of multiple threads which
interact with one or more concurrent objects and shared variables. For example,

Contextual Trace Refinement for Concurrent Objects: Safety and Progress 263

the following client program consists of threads 1 and 2 using a shared stack s,
and variables x, y and z.

Init x, y, z = 0, 0, 0

Thread 1: Thread 2:

T1: s.push (1); U1: s.pop(y);

T2: s.push (2); U2: z := x;

T3: s.pop(x);

Fig. 1. Abstract stack Fig. 2. The Treiber stack

Thread 1 pushes 1 then 2 onto the stack s, then pops the top element of s and
stores it in x. Concurrently, thread 2 pops the top element of s and stores it in
y, then reads the value of x and stores it in z.

The abstract behaviour of a stack is defined in terms of a sequential object, as
shown in Fig. 1. The abstract stack consists of a sequence of elements S together
with two operations push and pop (‘〈’ and ‘〉’ delimit sequences, ‘〈 〉’ denotes the
empty sequence, and ‘�’ denotes sequence concatenation). Note that when the
stack is empty, pop returns a special value empty that cannot be pushed onto
the stack.

If concurrent objects are implemented using fine-grained concurrency, the
call statements in their clients are not necessarily atomic because they may
invoke non-atomic operations. Furthermore, depending on the implementation
of s, we will get different traces of the client program because the effects of the
concurrent operations on s may take effect in different orders. For example, Fig. 2
presents a simplified version of a non-blocking stack example due to Treiber [19].
In this implementation, each line of the push and pop corresponds to a single
atomic step. Synchronisation of push and pop operations is achieved using a
compare-and-swap (CAS) instruction, which takes as input a (shared) variable
gv, an expected value lv and a new value nv:

CAS(gv, lv, nv) =̂ atomic { if (gv = lv)

then gv := nv ; return true

else return false }

264 B. Dongol and L. Groves

With this stack implementation, the executions of operations, say T1 and
U1, in the above client may overlap, and different behaviours may be observed
according to the order in which steps of the different threads are executed.
Treiber’s stack is linearizable with respect to the abstract stack in Fig. 1, so the
effect of each operation call takes place between its invocation and its response.
If a different stack implementation is used which satisfies a more permissive
correctness condition, such as sequential consistency or quiescent consistency
[12], a wider range of behaviours may be observed by its client.

2.2 Observability and Contextual Trace Refinement

With an example client-object system in place, we return to the main question
for this paper: What guarantees do correctness conditions on concurrent objects
provide to clients that use the objects? Furthermore, how can one address diver-
gence, termination and reactivity of a client? To address these, we first pin
down the aspects of the system being developed that are visible to an external
observer. Following Filipović et al. [9], we take the state of the client variables to
be observable, and the state of the objects they use to be unobservable. There-
fore, for the client program in Sect. 2.1, variables x, y and z are observable, but
none of the variables of the stack implementation s are observable. This allows
us to reason about a client with respect to different implementations of s. Sec-
ond, we define when a system may be observed. Unlike Filipović et al. [9] who
only observe the client state at the beginning and end of a client’s execution, we
assume that the states throughout a client’s execution are visible. This allows us
to accommodate, for example, reactive clients, which interact with an observer
in some way even if they are potentially non-terminating.

Therefore, our notion of correctness for the combined client-object system
will be a form of observational refinement that holds iff every (observable) trace
of a client using a concurrent object is equivalent to some (observable) trace of
the same client using the corresponding abstract specification of the object. The
end result is that from the perspective of a client program, it will be impossible
to tell whether it is using the concurrent object, or its abstract (sequential)
specification.

Example 1. Let D denote the client program in Sect. 2.1, TS denote the Treiber
stack in Fig. 2, and AS denote the abstract stack in Fig. 1. Suppose the stack s
in D is an instance of TS . Then the following is a possible observable trace of
D[TS]:

tr =̂ 〈(x , y , z) �→ (0, 0, 0), (x , y , z) �→ (0, 2, 0), (x , y , z) �→ (1, 2, 0), (x , y , z) �→ (1, 2, 1)〉

where (x , y , z) �→ (0, 0, 0) is shorthand for the state {x �→ 0, y �→ 0, z �→ 0},
and we ignore stuttering, i.e., consecutive states that leave the observable state
unchanged. Trace tr is obtained by initialising as specified by Init, then execut-
ing T1, T2, U1, T3, then U2 to completion; i.e. they execute their operation call
without interruption. It is straightforward to see that tr can also be generated
by D[AS], i.e., when using the abstract stack for s. Thus tr can be accepted as

Contextual Trace Refinement for Concurrent Objects: Safety and Progress 265

being correct. Executions can, of course, be much more complicated than tr —
because TS consists of non-atomic operations, executions of T1, T2 or T3 may
overlap with U1 or U2. �

We say that TS contextually trace refines AS with respect to the client program
C iff every trace of C[TS] is a possible trace of C[AS]. In this paper, we wish
to know whether contextual refinement holds for every client program. To this
end, we say TS contextually trace refines AS iff TS contextually trace refines
AS with respect to every client program C.

2.3 Correctness Conditions on Concurrent Objects

There are many notions of correctness for concurrent objects, and these are
defined in terms of histories of invocation and response events, corresponding to
operation calls on the object [12] (see Sect. 5 for details).

Concurrent histories may consist of both overlapping and non-overlapping
operation calls, inducing a partial order on events. Safety properties define how,
if at all, this partial order is preserved by the corresponding abstract histories
generated by the corresponding sequential object [7,12]. We will consider three
different safety properties. Sequential consistency is a simple condition requiring
the order of operation calls in a concrete history for a single process to be pre-
served. Operation calls performed by different processes may be reordered in the
abstract history even if the operation calls do not overlap in the concrete his-
tory. Linearizability strengthens sequential consistency by requiring the order of
non-overlapping operations to be preserved. Operation calls that overlap in the
concrete history may be reordered when mapping to an abstract history. Quies-
cent consistency is weaker than linearizability, but is incomparable to sequential
consistency. A concurrent object is said to be quiescent at some point in its his-
tory if none of its operations are executing at that point. Quiescent consistency
requires the order of operation calls that are separated by a quiescent point to
be preserved. Operation calls that are not separated by a quiescent point may
be reordered, including operations performed by the same process.

Progress conditions on concurrent objects are necessary to ensure that clients
will eventually be able to continue execution after calling operations on the
objects they use. We consider a notion of progress called minimal progress [13],
which guarantees that after some finite number of steps, some operation of the
concurrent object terminates.

3 Modelling Client-Object Systems

Our formal framework for reasoning about contextual trace refinement is based
on existing work on action systems with procedures [18], which we extend to cope
with potentially non-atomic operations. We let Var and Val denote the types
of variables and values, respectively. We distinguish between unobservable and
observable variables using VarU and VarO , respectively, where VarU ,VarO ⊆
Var and VarU ∩ VarO = ∅. A state is a function ΣV =̂ V → Val , where

266 B. Dongol and L. Groves

V ⊆ Var , and a predicate of type K is of type PK =̂ K → B, e.g., a state
predicate over V is of type PΣV .

The abstract syntax of an action system is of the form:

A ::= |[varu L; varo G ; proc ph1 = P1 . . .proc phn = Pn ; I ; do A od]|
where L ⊆ VarU is a set of unobservable variables and G ⊆ VarO a set of
observable variables; each phi = Pi is a (non-recursive) procedure declaration;
I is an action modelling initialisation; and A is the main action. Within each
phi = Pi , Pi is an action and phi is a procedure heading pi(val v , res x) with
procedure name pi and optional call-by-value and call-by-result parameters v
and x . Procedure declarations may additionally be parameterised by thread
identifiers.

The abstract syntax of actions is of the form:

A ::= var x | rav x | skip | x :∈ E | x := e | p(in, out) | A1; A2 | b → A | A1 � A2

where x is a variable, E is a set-valued expression, e is an expression, p is a
procedure name, in and out are inputs and outputs to a procedure (which may
be a value or a variable), and b is a predicate. Actions var x and rav x introduce
and remove variable x from the state space, respectively, skip is an action that
leaves the state unchanged, x :∈ E denotes non-deterministic assignment, x := e
denotes assignment, p(e, x) is a procedure call with value parameter e and result
parameter x , A1; A2 is sequential composition of A1 and A2, b → A is a guarded
action, and A1 	 A2 is (demonic) choice between A1 and A2.

The meaning of parameterless procedures is given by syntactically replacing
each procedure call p in A by the procedure body, P . Procedure parameters
are handled by introducing new local variables with the same name; for call-
by-value, the new variable is initialised with the value of the actual parameter,
while for call-by-results, the final value is copied to the variable passed as the
parameter (see [18]). We give examples of these in Examples 2 and 3 below.

When invoking non-atomic operations, it will be important to detect when
the invoked operation has terminated. To this end, we assume that a variable
p̂ct is used to control the flow of execution within an operation; thus p̂ct must
be declared whenever thread t is currently executing an operation. Formally, we
use state predicate

dec.v =̂ λσ • v ∈ dom(σ)

which holds iff variable v is declared in the domain of the given state. We use
‘.’ for function application.

Example 2. Consider again the client program D from Sect. 2.1 and suppose
it uses the abstract stack object AS in Fig. 1. The action system modelling
the client-object system is D[AS], given below. The shared stack is a sequence
modelled by an unobservable variable S . The client consists of variables x , y and
z , as well as program counters pc1 and pc2 (which we distinguish from p̂ct). We
assume

npct(k) =̂ (dec.p̂ct → skip) 	 (¬dec.p̂ct → pct := k)

is an action that sets pct to k if t completes the operation it is currently executing.

Contextual Trace Refinement for Concurrent Objects: Safety and Progress 267

|[varu S ; varo x , y , z , pc1, pc2;
proc pusht(val in) = S := 〈in〉 � S
proc popt(res out) = S = 〈 〉 ∧ ¬dec.p̂ct → var ret , p̂ct ; ret := empty ; p̂ct := 1

� S 	= 〈 〉 ∧ ¬dec.p̂ct → var ret , p̂ct ;
ret ,S := head .S , tail .S ; p̂ct := 1

� p̂ct = 1 → out := ret ; rav ret , p̂ct ;
S , pc1, pc2 := 〈 〉,T1,U 1; x , y , z := 0, 0, 0;
do pc1 = T1 → push1(1); npc1(T2)

� pc1 = T2 → push1(2); npc1(T3)
� pc1 = T3 → pop1(x); npc1(⊥)
� pc2 = U 1 → pop2(y); npc2(U 2)
� pc2 = U 2 → z , pc2 := x , ⊥ od]|

�

Example 3. The pusht operation of the Treiber stack is defined as follows. We
assume newNode.n =̂ n :∈ Nodes ; Nodes := Nodes\{n} assigns n to be a new
node from the available set of nodes Nodes. For simplicity, we assume Nodes is
an infinite set (e.g., the natural numbers), so a new node is always available.
Thus we have:

proc pusht(val in) = ¬ dec.p̂ct → var p̂ct , vt ,nt , sst ; vt := in; p̂ct := H 1
	 p̂ct = H 1 → newNode.nt ; p̂ct := H 2

...
	 p̂ct = H 6 → rav p̂ct , vt ,nt , sst

The pop operation is similar, except that it additionally sets the output variable
to the returned value.

proc popt(res out) = ¬ dec.p̂ct → var p̂ct , sst , ssnt , lvt ; p̂ct := P1
...

	 p̂ct = P7 → out := lvt ; rav p̂ct , sst , ssnt , lvt

The action system resulting from using the Treiber stack (which we will refer to
as TS) as the shared concurrent object in Sect. 2.1 is D[TS]. It is similar to the
action system in Example 2, except that the unobservable variables are Nodes
(the set of all available nodes), Head (a pointer to a node, or null), val (a partial
function of type Nodes �→ Val), next (a partial function of type Nodes → Node);
the procedure declarations above are used; and initialisation of the object is
Nodes,Head , val ,next := N,null , ∅, ∅. �

We now make the concept of an object and the notation C[O] for an object
O and client C more precise. An object is a triple O =̂ (L,P , I), where L is a
set of variables, P =̂ {ph1,t = P1,t , . . . , phn,t = Pn,t} is a set of (potentially
parameterised) procedure declarations, and I is an initialisation action. A client
is a triple C =̂ (G ,A, J), where G is a set of variables, and A and J are the main
and initialisation actions, respectively. Then C[O] is the action system

|[varu L; varo G ; proc ph1,t = P1,t . . .proc phn,t = Pn,t ; I ; J ; do A od]|.
The next section formalises the semantics of action systems and defines our

notion of contextual trace refinement for it.

268 B. Dongol and L. Groves

4 Semantics and Contextual Trace Refinement

We now give the semantics for action systems and define contextual trace refine-
ment, which extends the existing theory on trace refinement [1]. Note that we
only use part of the action systems framework. In particular, to develop a more
direct link to trace refinement, we only give a relational semantics for actions.

We assume that expressions are functions from states to values. A relation
is of type R(K ,K ′) =̂ K → PK ′, thus a state relation is of type R(ΣV , ΣV ′),
where V ,V ′ ⊆ Var . Assume r , r1 and r2 are state relations, b is a predicate and
S is a set. We let

– (r1 ◦ r2).γ.γ′ =̂ ∃ γ′′ • r1.γ.γ′′ ∧ r2.γ′′.γ′ denote relational composition,
– (b � r).γ.γ′ =̂ b.γ ∧ r .γ.γ′ denote domain restriction, and
– S −� r = {(γ, γ′) ∈ r | γ ∈ S} denote domain anti-restriction.

For a function f , we let f ⊕ {x �→ v} =̂ λ z ∈ dom(f) • if z = x then v else f .z
denote functional overriding.

Definition 1. The (relational) semantics of an action A is given by rel .A:

rel .(var x) =̂ λ σ • λ σ′ • rel .skip =̂ id
({x} −� σ′) = σ ∧ dec.x .σ′ rel .(b → A1) =̂ b � rel .A1

rel .(rav x) =̂ λ σ • λ σ′ • ({x} −� σ) = σ′ rel .(A1; A2) =̂ rel .A1 ◦ rel .A2

rel .(x := e) =̂ λ σ • λ σ′ • σ′ = σ ⊕ {x �→ e.σ} rel .(A1 � A2) =̂ rel .A1 ∨ rel .A2

rel .(x :∈ E) =̂ λ σ • λ σ′ •
∃ k : E .σ • σ′ = σ ⊕ {x �→ k}

Recall that the semantics of a procedure call is given by substitution as described
in Sect. 3. We let grd .A.γ =̂ γ ∈ dom(rel .A) denote the guard of A. Because
an action system is a loop with a non-deterministic choice over actions [1], we
frequently use iteration in our reasoning. Formally, finite iteration of relation r
(denoted r∗) is defined as follows:

r0 =̂ id rk+1 =̂ r ◦ rk r∗ =̂ ∃ k ∈ N • rk

The semantics of an iterated action is defined by lifting from iteration defined
on relations, namely, rel .A∗ =̂ (rel .A)∗. We say an iterated execution of A ter-
minates from state γ iff term.A.γ =̂ ∃ k • ∀ γ′ • (rel .A)k .γ.γ′ ⇒ ¬grd .A.γ′. Note
that ¬grd .A.γ ⇒ term.A.γ holds for all actions A and states γ.

We use seqX to denote (possibly infinite) sequences of elements of type X ,
and assume indices start from 0.

Definition 2. A possibly infinite sequence of states s is a trace of action system
A iff ∃σ • rel .I .σ.(s.0) ∧ ∀ i : dom(s)\{0} • rel .A.(s.(i − 1)).(s.i) holds.

A trace is complete iff either the trace is of infinite length or the guard of A does
not hold in the last state of the trace. The set of all complete traces of an action
system A is denoted �A �.

Traces (Definition 2) provide a conceptually simple model for a system’s exe-
cution, and trace refinement provides a conceptually simple notion of substi-
tutability [1]. Typically, because a concrete system is more fine-grained than

Contextual Trace Refinement for Concurrent Objects: Safety and Progress 269

the abstract, one must remove stuttering from a trace. An action system may
also exhibit infinite stuttering by generating a trace that ends with an infi-
nite sequence of consecutive stuttering steps. After infinite stuttering, one will
never be able to observe any state changes, and hence, we treat infinite stut-
tering as divergence, which is denoted by a special symbol ‘↑ ∈ Σ’. For any
trace s ∈ �A �, we define Tr .s to be the non-stuttering observable sequence
of states, possibly followed by ↑, which is obtained from s as follows. First,
we obtain a sequence s ′ by removing all finite stuttering in s and replac-
ing any infinite stuttering in s by ↑. Second, for each i ∈ dom(s ′), we let
(Tr .s ′).i = if s ′.i = ↑ then VarU −� s ′.i else ↑. It is straightforward to define
functions that formalise both the steps above (see for example [6]).

Definition 3. Abstract action system A is trace refined by concrete action sys-
tem C (denoted A � C) iff ∀ s ′ ∈ �C � • ∃ s ∈ �A � • Tr .s = Tr .s ′ holds.

Back and von Wright have developed simulation rules (details elided due to lack
of space) for verifying trace refinement of action systems [1], which we adapt to
reason about client-object systems in Lemmas 1 and 2. First, we formalise the
meaning of contextual trace refinement. The notion is similar to the notion of
data refinement given by He et al. [3,11], but extended to traces, which enables
one to cope with non-terminating reactive systems.

Definition 4. An abstract object OA is contextually trace refined by a concrete
object OC , denoted OA �̂ OC, iff for any client C we have C[OA] � C[OC].

In this paper, for simplicity, we assume that (atomic) actions do not abort [3],
therefore the proof obligations for aborting actions do not appear in Lemmas 1
and 2 below – it is straightforward to extend our results to take aborting behav-
iour into account. However, like Back and von Wright [1], our notion of refine-
ment ensures total correctness of the systems we develop, i.e., the concrete system
may only deadlock (or diverge) if the abstract system deadlocks (or diverges).
Thus, in addition to the standard step correspondence proof obligations for
ensuring safety of the concrete system, we include Back and von Wright’s proof
obligations that ensure progress.

Because the entire state of the client is observable, the proof obligations
pertaining to the client can be trivially discharged, leaving one with proof oblig-
ations that only refer to the object. For procedure declarations P =̂ {ph1,t =
P1,t , . . . , phn,t = Pn,t}, we let tact .v .x .t .P =̂ p1,t(v , x) 	 · · · 	 pn,t(v , x) denote
the choice between procedures in P for inputs v and x and thread t then define:

act .P =̂
�

v ,x ,t tact .v .x .t .P rem.P =̂
�

v ,x ,t dec.p̂ct → tact .v .x .t .P

To simplify the syntax, we implicitly assume that in tact .v .x .t .P the inputs
v and x are of the correct type for each procedure. Guard dec.p̂ct is used to
detect whether the procedure being executed by thread t has terminated — if
t is executing a procedure, say phi,t , we know dec.p̂ct will hold and when this
procedure terminates ¬dec.p̂ct will hold, which disables thread t . The intention
is to use rem.P in (4) below, which attempts to execute the remaining steps of
the running operations by each thread to completion.

270 B. Dongol and L. Groves

Lemma 1 (Forward Simulation). If OA = (LA,PA, IA) and OC =
(LC ,PC , IC) are objects, then OA �̂ OC if there exists a relation R and the
following hold for any states σ, τ and τ ′:

rel .IC .τ.τ ′ ⇒ ∃σ′ • R.σ′.τ ′ ∧ rel .IA.σ.σ′ (1)
R.σ.τ ∧ rel .(act .PC).τ.τ ′ ⇒ ∃σ′ • R.σ′.τ ′ ∧ rel .(act .PA)∗.σ.σ′ (2)
R.σ.τ ∧ ¬grd .(act .PC).τ ⇒ ¬grd .(act .PA).σ (3)

true ⇒ term.(rem.PC).τ (4)

The first three proof obligations are straightforward. Proof obligation (4) requires
that the main action of the concrete object OC terminates if threads do not
invoke new operations after the operation currently being executed has termi-
nated. Note that (4) does not rule out infinite stuttering within the program
C[OC], but it does ensure that any infinite stuttering is caused by the client
as opposed to the object OC , and hence, this infinite stuttering must also be
present within C[OA]. Therefore, if (4) holds, so does Back and von Wright’s
non-termination condition.

Dually to forward simulation, there exists a method of backward simulation,
which requires that the abstract action system under consideration is continuous.
An action system A with main action A is continuous iff for all σ, the set
{σ′ | rel .A.σ.σ′} is finite, i.e., A does not exhibit infinite non-determinism.

Lemma 2 (Backward Simulation). Suppose OA = (LA,PA, IA) and OC =
(LC ,PC , IC) are objects and C is a client such that C[OA] is continuous. Then
C[OA] � C[OC] holds if there exists a total relation R and for any states σ′ and
τ, τ ′ condition (4) as well as each of the following hold:

rel .IC .τ.τ ′ ∧ R.σ′.τ ′ ⇒ ∃σ • rel .IA.σ.σ′ (5)
rel .(act .PC).τ.τ ′ ∧ R.σ′.τ ′ ⇒ ∃σ • R.σ.τ ∧ rel .(act .PA)∗.σ.σ′ (6)

¬grd .(act .PC).τ ⇒ ∃σ • R.σ.τ ∧ ¬grd .(act .PA).σ (7)

Lemmas 1 and 2 reduce the proof obligations for trace refinement of client-object
systems to the level of objects only. This allows one to explore properties of
objects in isolation to guarantee contextual trace refinement.

5 Events and Histories

This section provides background for defining safety (e.g., linearizability) and
progress (e.g., lock-freedom) properties of concurrent objects [12]. We define
both types of properties in terms of histories of invocation and response events
[12,14] that record the externally visible interaction between a client and the
object it uses. The type of an event is Event , which is defined as follows [4]:

Event :: = inv〈〈N × Op × (Val ∪ {⊥})〉〉 | ret〈〈N × Op × (Val ∪ {⊥})〉〉
The components of each event are the thread identifier, the operation name and
input/output values. We use ⊥ ∈ Val to denote an invocation (return) event

Contextual Trace Refinement for Concurrent Objects: Safety and Progress 271

that has no input (output). Thus, for example, inv(1, push, 2) denotes an push
invocation by thread 1 with value 2, and ret(1, push,⊥) denotes a return from
this invocation.

The history of an object is a (potentially infinite) sequence of events, i.e.,
History =̂ seqEvent . A history of an object is generated by an execution of a
most-general client for the object [5]. We formalise the concept of a most general
client in our framework in Definition 5 below, but first we describe how invoca-
tions and responses are recorded in a history. For an object O =̂ (L, {ph1,t =
P1,t , . . . , phn,t = Pn,t}, I) assuming H ∈ L is a history variable, we let PH

i,t

be the history-extended procedure derived from Pi,t by additionally recording
invocation and response events in H (also see [4]).

Example 4. The history-extended procedure for pusht from Example 2 is:

H := H � 〈inv(t , push, in)〉; S := 〈in〉 � S ; H := H � 〈ret(t , push,⊥)〉
while the history-extended version of pusht procedure from Example 3 is:

¬ dec.p̂ct → var p̂ct , vt ,nt , sst ; vt := in;
H := H � 〈inv(t , push, in)〉; p̂ct := H 1

...

	 p̂ct = H 6 → H := H � 〈ret(t , push,⊥)〉; rav p̂ct , vt ,nt , sst

�

Definition 5. The most general client of O =̂ (L, {ph1,t = P1,t , . . . , phn,t =
Pn,t}, I) is the action system M[O] below, where H ∈ L is its history, tt ∈ L is a
fresh variable that models termination and PH =̂ {ph1,t = PH

1,t . . . phn,t = PH
n,t}

is the set of history extended procedures:

M[O] =̂ |[varu L ∪ {H , tt}; varo VarO ;
proc ph1,t = PH

1,t . . .proc phn,t = PH
n,t ;

I ; H := 〈 〉; tt := false ;
do ¬tt → act .PH 	 (

�

w :VO ,a:Val w := a) 	 tt := true od]|

Thus, M[O] includes unobservable variables H (initially 〈 〉) and tt (initially
false), which model the history and termination of M[O], respectively. Provided
tt is false, at each iteration of the action system either

– a step of a history-extended procedures of O is executed, or
– some observable variable is set to a non-deterministically chosen value, or
– M[O] terminates by setting tt to true.

The intention of M[O] is to model all possible client behaviours, including for
instance faults (where a thread stops running) or a divergence (where a thread
repeatedly executes the same operation).

Definition 6. The set of histories of an object O is given by

{h ∈ seqEvent | ∃ s : �M[O]� • ∃ i : dom(s) • h = (s.i).H }
.

272 B. Dongol and L. Groves

6 Contextual Trace Refinement: Progress

The progress condition we will consider is minimal progress, which guarantees
system-wide progress, even though there may be individual threads that may not
make progress [13]. To formalise minimal progress, we say event e1 matches e2 iff
matches(e1, e2) =̂ ∃ t , o, u, v • e1 = inv(t , o, u) ∧ e2 = ret(t , o, v) holds, i.e., e1
is an invocation of an operation by a thread and e2 is the corresponding return.
We say m ∈ dom(h) is a pending invocation iff pi(m, h) =̂ ∀n ∈ dom(h) • m <
n ⇒ ¬matches(h.m, h.n) holds.

An object O satisfies minimal progress iff for every trace tr of the M[O], it
is always the case that in the future, either M[O] terminates, or there is some
pending operation invocation that completes and returns.

Definition 7. An object O satisfies minimal progress iff for every s ∈ �M[O]�
and i ∈ dom(s), there exists a j ∈ dom(s) such that i � j and

(s.j).tt ∨ ∃m • pi(m, (s.j).H) ∧ ¬pi(m, (s.(j + 1)).H) .

That is, for any trace s of M[O] and index i ∈ dom(s) there is a state s.j (where
j � i) from which some pending operation in s.j completes. There are a variety
of objects that satisfy minimal progress, e.g., wait-, lock-free objects under any
scheduler, and obstruction-free objects under isolating schedulers (see [13] for
details). Objects that do not satisfy minimal progress include obstruction free
implementations that are executed using a weakly fair scheduler.

The lemma below states that any object that satisfies minimal progress does
not suffer from deadlock, and is guaranteed to terminate if no additional opera-
tions are invoked.

Lemma 3. If O = (L,P , I) satisfies minimal progress, then for any γ ∈ �M[O]�
and i ∈ dom(γ), both grd .(act .P).(γ.i) and condition (4) hold.

Using Lemma 3, we simplify and combine Lemmas 1 and 2. In particular, we are
left with the proof obligations for safety only as in the theorem below.

Theorem 1. Suppose OA = (LA,PA, IA) and OC = (LC ,PC , IC) are objects,
OC satisfies minimal progress, and R ∈ R(ΣLA

, ΣLC
). Then

1. OA �̂ OC if both (1) and (2) hold, and
2. for any client C such that C[OA] is continuous, C[OA] � C[OC] holds if R is

total and both (5) and (6) hold.

7 Safety and Contextual Trace Refinement

We give the formal definition of safety properties using the nomenclature in [4,7].
We say m,n ∈ dom(h) form a matching pair in h iff mp(m,n, h) holds, where
mp(m,n, h) =̂ m < n ∧ matches(h.m, h.n) ∧ ∀ i • m < i < n ⇒ π1.(h.i) =
π1.(h.m) and πi is the projection function returning the ith element of the given
tuple.

Contextual Trace Refinement for Concurrent Objects: Safety and Progress 273

Following [7], safety properties are defined in terms of a history h and a
mapping function f between indices. The sequential history corresponding to h
and f is obtained using map(h, f) =̂ {f (k) �→ h(k) | k ∈ dom(f)}. Different
safety properties are defined by placing different types of restrictions on f . The
most basic restriction is validity of a mapping. We say a function f is a valid
mapping function if, for any history h, (a) the domain of f is contained in the
domain of h, (b) the range of f is a consecutive sequence starting from 0, (c)
f only maps matching pairs in h, and (d) matching pairs in h are mapped to
consecutive events in the target abstract history. Assuming [m,n] is the set of
integers from m to n inclusive, we formalise validity for mapping functions using
VMF (h, f), where

VMF (h, f) =̂ dom(f) ⊆ dom(h) ∧ (∃n : N • ran(f) = [0,n − 1]) ∧ injective(f) ∧
(∀m,n : dom(h) • mp(m,n, h) ⇒ (m ∈ dom(f) ⇔ n ∈ dom(f))) ∧
(∀m,n : dom(f) • mp(m,n, h) ⇒ f .n = f .m + 1)

When formalising correctness conditions, one must also consider incomplete his-
tories, which have pending operation invocations that may or may not have taken
effect. To cope with these, like Herlihy and Wing [14], we use history extensions,
which are constructed from a history h by concatenating a sequence of returns
corresponding to some of the pending invocations of h. A correctness condition
Z is a predicate on a history and a mapping function.

Definition 8. A concurrent object OC implementing an abstract object OA is
correct with respect to a correctness condition Z , denoted OC |=OA Z , iff for
any history h of OC , there exists an extension he of h, a valid mapping function
f such that VMF (he, f) ∧ Z (he, f) holds and map(he, f) is a history of OA.

7.1 Linearizability

We now show that linearizability is a sufficient safety condition for discharging
the proof obligations in Theorem 1. Linearizability is a total condition, which
means that all completed (i.e., returned) operation calls in a given history h must
be mapped by f .1 In addition, it must satisfy an order condition lin, which states
that the return of an operation may not be reordered with an invocation that
occurs after it. We use inv?(e) =̂ ∃ t , o, v • e = inv(t , o, v) if e is an invocation
event and ret?(e) =̂ ∃ t , o, v • e = ret(t , o, v) if e is a response.

total(h, f) =̂ ∀m : dom(h) • ¬pi(m, h) ⇒ m ∈ dom(f)
lin(h, f) =̂ ∀m,n : dom(f) • m < n ∧ ret?(h.m) ∧ inv?(h.n) ⇒ f .m < f .n

Definition 9. We say OC is linearizable with respect to OA iff OC |=OA lin ∧
total .

First, we show contextual trace refinement for a canonical implementation [2,
16,17], which splits each sequential abstract operation call into three actions: an
invocation, an effect action and a response.
1 This is in contrast to partial conditions defined for relaxed memory (see [7] for

details).

274 B. Dongol and L. Groves

Definition 10. For an abstract procedure pht(val in, res out) = Pt , the canon-
ical implementation of the procedure is:

¬dec.p̂ct → var p̂ct ; p̂ct := 1; H � 〈inv(t , p, in)〉
	 p̂ct = 1 → pht(in, out); p̂ct := 2
	 p̂ct = 2 → rav p̂ct ; H � 〈ret(t , p, out)〉

Invocation and response actions modify the auxiliary history variable by record-
ing the corresponding event, while the effect action has the same effect as the
abstract operation call. Unlike the abstract object, the histories of a canonical
implementation are potentially concurrent.

Theorem 2 (Canonical Contextual Trace Refinement). Suppose OA and
OB are objects, where OB is a canonical implementation of OA. Then OA�̂OB.

Proof. We use Lemma 1 because OB may not satisfy minimal progress. Here,
rel .act .OB trivially satisfies (4) because by nature each procedure of a canon-
ical object terminates. The proof of (3) requires further consideration because
rel .act .OB may deadlock. For example, OB may be a stack with a pop operation
that blocks when the stack is empty. In such cases, because no data refinement
is performed, the guard of the canonical object is false when the guard of the
abstract object is false, allowing one to discharge (3). The remaining proof oblig-
ations are straightforward. �

Next, we restate a completeness result by Schellhorn et al. [17], who have shown
completeness of backward simulation for verifying linearizability. In particular,
provided OC is a linearizable implementation of OA, they show that it is always
possible to construct a backward simulation relation between the OC and the
canonical implementation of OA.

Lemma 4 (Completeness of Backward Simulation [17]). Suppose
OA,OB and OC are objects and M[OA] is continuous. If OC |=OA lin ∧ total
and OB is a canonical implementation of OA, then there exists a total relation
R such that both (5) and (6) hold between M[OB] and M[OC].

Finally, we prove our main result for linearizability, i.e., that linearizability and
minimal progress together preserves contextual trace refinement.

Theorem 3. Suppose object OC is linearizable with respect to OA, OC satisfies
minimal progress, and M[OA] is continuous. If C is a client such that C[OA] is
continuous then C[OA] � C[OC].

Proof. Construct a canonical implementation OB of OA. By transitivity of �,
the proof holds if both (a) C[OA] � C[OB] and (b) C[OB] � C[OC]. Condition (a)
holds by Theorem 2, and (b) holds by Theorem1 (part 2), followed by Lemma 4.
Application of Theorem1 (part 2) is allowed because if C[OA] is continuous then
C[OB] is continuous, whereas application of Lemma4 is allowed because if R
satisfies (5) and (6) for M[OB] and M[OC], then R also satisfies (5) and (6)
for C[OB] and C[OC]. �

Contextual Trace Refinement for Concurrent Objects: Safety and Progress 275

7.2 Sequential and Quiescent Consistency

We now consider contextual trace refinement for concurrent objects that satisfy
sequential consistency and quiescent consistency, both of which are weaker than
linearizability. Both conditions are total [7]. Additionally, sequential consistency
disallows reordering of operation calls within a thread (see sc below), while
quiescent consistency (see qc below) disallows reordering across a quiescent point
(defined by qp below).

sc(h, f) =̂ ∀m,n : dom(f) • m < n ∧ π1.(h.m) = π1.(h.n) ∧
ret?(h.m) ∧ inv?(h.n) ⇒ f .m < f .n

qp(m, h) =̂ ∀n : dom(h) • n ≤ m ⇒ ¬pi(n, h[0..m])
qc(h, f) =̂ ∀m, k ,n : dom(f) • m < k < n ∧ qp(k , h) ⇒ f .m < f .n

Definition 11. An object OC is sequentially consistent with respect to OA iff
OC |=OA sc ∧ total , and OC is quiescent consistent with respect to OA iff
OC |=OA qc ∧ total .

Our results for sequential consistency and quiescent consistency are nega-
tive — neither condition guarantees trace refinement of the underlying clients,
regardless of whether the client program in question is data independent, i.e., the
state spaces of the client threads outside the shared object are pairwise disjoint.

Theorem 4. Suppose object OC is sequentially consistent with respect to object
OA. Then it is not necessarily the case that OA �̂ OC holds.

Proof. Consider the program in Fig. 3, where the client threads are data inde-
pendent — x is local to thread 1, while y and z are local to thread 2 — and s
is assumed to be sequentially consistent. Suppose thread 1 is executed to com-
pletion, and then thread 2 is executed to completion. Because s is sequentially
consistent, the first pop (at T3) may set x to 1, the second (at U2) may set y to
2. This gives the execution:

〈(x , y , z) �→ (0, 0, 0), (x , y , z) �→ (1, 0, 0), (x , y , z) �→ (1, 0, 1), (x , y , z) �→ (1, 2, 1)〉

that cannot be generated when using the abstract stack AS from Fig. 1 for s. �

Theorem 4 differs from the results of Filipović et al. [9], who show that for data
independent clients, sequential consistency implies observational refinement. In
essence, their result holds because observational refinement only considers the
initial and final states of a client program — the intermediate states of a client’s
execution are ignored. Thus, internal reorderings due to sequentially consistent
objects have no effect when only observing pre/post states. One can develop
hiding conditions so that observational refinement becomes a special case of
contextual trace refinement, allowing one to obtain the result by Filipović et al.
[9]. Further development of this theory is left for future work. We now give our
result for quiescent consistency.

276 B. Dongol and L. Groves

Fig. 3. Counter example for
contextual trace refinement and
sequential consistency

Fig. 4. Counter example for contextual
trace refinement and quiescent consistency

Theorem 5. Suppose object OC is quiescent consistent with respect to object
OA. Then it is not necessarily the case that OA �̂ OC holds.

Proof. Consider the program Fig. 4, where the client threads are data indepen-
dent — x and y are local to thread 1, while z is local to thread 2 — and s is
a quiescent consistent stack. The concrete program may generate the following
observable trace:

〈(x , y , z) �→ (0, 0, 0), (x , y , z) �→ (1, 0, 0), (x , y , z) �→ (1, 2, 0), (x , y , z) �→ (1, 2, 3)〉

Note that the pop operations at T3 and T4 have been reordered, which could
happen if the execution of pop at U 1 overlaps with T1, T2, T3 and T4. The trace
above is not possible when the client uses the abstract stack AS from Fig. 1. �

8 Conclusions

In this paper, we have developed a framework, based on action systems with
procedures, for studying the link between the correctness conditions for concur-
rent objects and contextual trace refinement, which guarantees substitutability
of objects within potentially non-terminating reactive clients. Thus, we bring
together the previously disconnected worlds of correctness for concurrent objects
and trace refinement within action systems. We have shown that linearizability
and minimal progress together ensure contextual trace refinement, but sequen-
tial consistency and quiescent consistency are inadequate for guaranteeing con-
textual trace refinement regardless of whether clients communicate outside the
concurrent object. The sequential consistency result contrasts earlier results for
observational refinement, where sequential consistency is adequate when clients
only communicate through shared objects [9].

We have derived the sufficient conditions for contextual trace refinement
using the proof obligations for forwards and backward simulation. However,
neither of these conditions have been shown to be necessary, leaving open the
possibility of using weaker correctness conditions on the underlying concurrent
objects. Studying this relationship remains part of future work — areas of inter-
est include the study of how the correctness conditions for safety of concurrent

Contextual Trace Refinement for Concurrent Objects: Safety and Progress 277

objects under relaxed memory models [7] can be combined with different sched-
uler implementations for progress (e.g., extending [13,15]) to ensure contextual
trace refinement.

Acknowledgements. We thank John Derrick and Graeme Smith for helpful discus-
sions. Brijesh Dongol is supported by EPSRC grant EP/N016661/1. “Verifiably correct
high-performance concurrency libraries for multi-core computing systems”.

References

1. Back, R.J.R., Wright, J.: Trace refinement of action systems. In: Jonsson,
B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 367–384. Springer,
Heidelberg (1994). doi:10.1007/978-3-540-48654-1 28

2. Colvin, R., Doherty, S., Groves, L.: Verifying concurrent data structures by simu-
lation. Electr. Notes Theor. Comput. Sci. 137(2), 93–110 (2005)

3. de Roever, W.P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Meth-
ods and Their Comparison. Cambridge Tracts in Theoretical Computer Science.
Cambridge Univ. Press, Cambridge (1996)

4. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations
for linearizability. ACM Trans. Program. Lang. Syst. 33(1), 4 (2011)

5. Doherty, S.: Modelling and verifying non-blocking algorithms that use dynamically
allocated memory. Master’s thesis, Victoria University of Wellington (2003)

6. Dongol, B.: Progress-based verification and derivation of concurrent programs.
Ph.D. thesis, The University of Queensland (2009)

7. Dongol, B., Derrick, J., Smith, G., Groves, L.: Defining correctness conditions for
concurrent objects in multicore architectures. In: Boyland, J.T. (ed.) ECOOP.
LIPIcs, vol. 37, pp. 470–494. Dagstuhl (2015)

8. Dongol, B., Groves, L.: Towards linking correctness conditions for concurrent
objects and contextual trace refinement. In: REFINE Workshop (2015 to appear)

9. Filipović, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent
objects. Theor. Comput. Sci. 411(51–52), 4379–4398 (2010)

10. Gotsman, A., Yang, H.: Liveness-preserving atomicity abstraction. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 453–465. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22012-8 36

11. He, J., Hoare, C.A.R.: Data refinement refined resume. In: Robinet, B.,
Wilhelm, R. (eds.) ESOP 86. LNCS, vol. 213, pp. 187–196. Springer, Heidelberg
(1986)

12. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morg. Kauf.,
Burlington (2008)

13. Herlihy, M., Shavit, N.: On the nature of progress. In: Fernàndez Anta, A.,
Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 313–328. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25873-2 22

14. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

15. Liang, H., Hoffmann, J., Feng, X., Shao, Z.: Characterizing progress properties of
concurrent objects via contextual refinements. In: D’Argenio, P.R., Melgratti, H.
(eds.) CONCUR 2013. LNCS, vol. 8052, pp. 227–241. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40184-8 17

16. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)

http://dx.doi.org/10.1007/978-3-540-48654-1_28
http://dx.doi.org/10.1007/978-3-642-22012-8_36
http://dx.doi.org/10.1007/978-3-642-25873-2_22
http://dx.doi.org/10.1007/978-3-642-40184-8_17

278 B. Dongol and L. Groves

17. Schellhorn, G., Derrick, J., Wehrheim, H.: A sound and complete proof technique
for linearizability of concurrent data structures. ACM TOCL 15(4), 31:1–31:37
(2014)

18. Sere, K., Waldén, M.A.: Data refinement of remote procedures. Formal Asp. Com-
put. 12(4), 278–297 (2000)

19. Treiber, R.K.: Systems programming: coping with parallelism. Technical report RJ
5118, IBM Almaden Res. Ctr. (1986)

Local Livelock Analysis of Component-Based
Models

Madiel S. Conserva Filho1, Marcel Vinicius Medeiros Oliveira1(B),
Augusto Sampaio2, and Ana Cavalcanti3

1 Universidade Federal do Rio Grande do Norte, Natal, Brazil
madiel@ppgsc.ufrn.br, marcel@dimap.ufrn.br

2 Universidade Federal de Pernambuco, Recife, Brazil
3 University of York, York, UK

Abstract. In previous work we have proposed a correct-by-construction
approach for building deadlock-free CSP models. It contains a compre-
hensive set of composition rules that capture safe steps in the devel-
opment of concurrent systems. In this paper, we extend that work by
proposing and implementing a strategy for establishing livelock freedom
based on constructive rules similar to those that ensure the absence of
deadlock. Our method is based solely on the local analysis of the min-
imum sequences that lead the CSP model back to its initial state. The
effectiveness of our livelock-analysis technique is demonstrated via three
case studies. We compare the performance of our approach with that of
two other techniques for livelock freedom verification: FDR2 and SLAP.

Keywords: Component-based systems · Local analysis · Livelock

1 Introduction

Component-based System Development (CBSD) has been used to deal with the
increasing complexity of software. It focuses on the construction of systems from
reusable and independent components [1]. Its correct application, however, relies
on the trust in the behaviour of the components and in the emergent behaviour
of the composed components because failures may arise if the composition does
not preserve essential properties, especially in concurrent systems.

In [9], we have proposed a systematic design of CBSD that integrates compo-
nents via asynchronous compositions, mediated by buffers, considering a grey-
box style of composition [2], in which services that cannot be accessed by
other components remain visible to the environment. This strategy is based
on safe composition rules that guarantee, by construction, deadlock freedom.
The absence of livelock is trivially ensured since the basic components are, by
definition, livelock-free, and no operator that may introduce such a behaviour
is used. The approach is underpinned by the process algebra CSP [4,10], a well
established formal notation for modelling and verifying concurrent systems. We

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 279–295, 2016.
DOI: 10.1007/978-3-319-47846-3 18

280 M.S.C. Filho et al.

provided a component model, BRIC, that imposes constraints on the compo-
nents and their interactions. Each component is represented by a tuple, where
one of the elements is the behaviour of the system described as a CSP process.

This paper focuses on livelock analysis for asynchronous CSP models that
perform black-box compositions. It defines a component notion that seems better
aligned to CBSD, in which the internal services of components are hidden from
its environment. This, however, may introduce livelock, a clearly undesirable
behaviour. A system is livelock-free if there exists no state from which it may
perform an infinite sequence of internal actions. The traditional livelock analysis
performs a global analysis of an internal representation of a model as a labelled
transition system, in order to verify that such a state cannot be reached [10]. This
strategy is fully automated, for instance, in FDR2 [5]. One alternative is to make
a static analysis of the syntactic structure of a system, proposing syntactic rules
either to classify CSP systems as livelock-free or to report an inconclusive result.
This strategy is implemented in SLAP [7]. Another promising strategy, which
is the basis of compositional approaches, performs a local analysis that verifies
only some parts of the system. It can identify problems before compositions,
predicting, by construction, global properties based on known local properties
of the composing components. Locality provides an alternative to circumvent
the state explosion generated by the interaction of components and allows us to
identify livelock before composition.

In this paper, we present a technique for constructing livelock free systems in
BRIC using local analysis. We consider livelock freedom of BRIC components
in the context of black-boxes rather than grey-boxes compositions adopted in [9].
We introduce side conditions that guarantee, by-construction, that the BRIC
composition rules, which ensure deadlock freedom, also ensure livelock freedom.
The verification of these conditions uses metadata that allow us to record partial
results of verification, decreasing the overall analysis effort. Our strategy sup-
ports a systematic development that rules out designs with livelock. We consider
two versions of BRIC: BRIC∗, in which asynchronicity is achieved using finite
buffers, and BRIC∞, which uses infinite buffers. The possibility of introduc-
ing livelock is directly related to the finiteness of the buffer. We also present a
comparative analysis of the performance of our strategy with respect to those
implemented in FDR2 and in SLAP, based on three case studies.

In the next section, we introduce CSP. Section 3 presents the component
model BRIC that defines the building blocks of our systematic development
approach. In Sect. 4, we introduce our approach for livelock-free composition in
BRIC based on local analysis. Its performance is evaluated in Sect. 5. Finally,
we draw our conclusions, and discuss future work in Sect. 6.

2 CSP

CSP is one of the most important formalisms for modelling and verifying concur-
rent reactive systems. This process algebra can be used to describe systems as
interacting components: independent entities called processes that interact with

Local Livelock Analysis of Component-Based Models 281

each other exchanging atomic, instantaneous and synchronous messages, repre-
sented by events. The main CSP constructs used in this paper are presented
below. Further information can be found in [4,10].

There are two basic CSP processes: SKIP and STOP . The former represents
the terminating process, and the latter deadlocks. The prefixing c → P is initially
able to perform only the simple event c, and behaves like process P after that.
Events may also be compound. For instance, c.n is composed by the channel c
and the value n. If we assume that the type of c is the set {1, 2}, the production
{| c |} returns the set of all events on c, {c.1, c.2}. Communications may be
considered as outputs and inputs: c!x represents an output on some channel
c, and c?x is the syntax for an input. The process g &P behaves as P if the
predicate g is true. Otherwise, it behaves like STOP .

The process P �Q is an external choice between process P and Q : the envi-
ronment needs to make the choice by communicating an initial event to one of
the processes. When the environment has no control over the choice, we have an
internal choice P � Q . The process P ; Q combines the processes P and Q in
sequence. The process if b thenP elseQ behaves as P if b holds and as Q oth-
erwise. The parallel composition P ‖X Q synchronises P and Q on the events in
the set X ; events that are not listed in X occur independently. The interleaving
P ||| Q runs the processes independently.

The process P [[a ← b]] behaves like P except that all occurrences of a in
P are replaced by b. The hiding process P \X behaves like P , but all events in
the set X are hidden and turned into internal actions, which are not visible to
the environment. For example, P = (a → P) \ {a} is a divergent process that
indefinitely performs the event a without communicating with its environment.

In order to illustrate some CSP constructs, we use a classical example of a
concurrent system, the dining philosophers [10], which is used throughout this
paper. It consists of philosophers that try to acquire a pair of shared forks in
order to eat. The philosophers are sat at a table and there is a fork between each
pair of philosophers. Each philosopher must pick up both forks before eating.

datatype EV = up | down
datatype LF = thinks | eats
channel fk1, fk2, pfk1, pfk2 : EV
channel life : LF
Fork = (fk1.up → fk1.down → Fork) � (fk2.up → fk2.down → Fork)
Phil = life.thinks → pfk1.up → pfk2.up → life.eats →

pfk1.down → pfk2.down → Phil

The process Fork ensures that two philosophers cannot hold a fork simulta-
neously. It offers a deterministic choice between the events fk1.up and fk2.up,
where fk1 and fk2 are channels of type EV . The process Phil represents the life
cycle of a philosopher: before eating, the philosopher thinks and picks the forks
up. After eating, the philosopher puts the forks down.

There are three well-established semantic models of CSP: traces (T), stable
failures (F), and failures-divergences (FD) [10]. The set traces(P) contains all

282 M.S.C. Filho et al.

possible sequences of events in which P can engage. The set failures(P) contains
all the failures of P , that is, pairs (s,X), where s is a trace of P and X is a set
of events which P may refuse after performing s. The failures-divergences is the
most satisfactory model for analysing liveness properties of a CSP process. In
FD, a process P is represented by the pair (failures⊥(P), divergences(P)). The
set failures⊥(P) contains all failures of P , and additional failures that record
that P can refuse anything after diverging. The set divergences(P) contains all
traces of P that lead it to a divergent behaviour and all extensions of those
traces. A process P is divergence-free if, and only if, divergences(P) = ∅.

3 BRIC
The BRIC component model [9] has been originally proposed to ensure, by con-
struction, the absence of deadlock. It is an algebra that has contracts as operands
and composition rules as operators. A component contract, whose definition is
presented below, is a tuple and encapsulates a component in BRIC.

Definition 1 (Component Contract). Acomponent contractCtr: 〈B,R, I, C〉
comprises its behaviour B, which is described as a restricted form of CSP process,
I/O process, described below, a set of channels C, a set of data types I, and a total
function R : C → I from channels to their types.

We use BCtr , RCtr , ICtr and CCtr to denote the elements of the contract Ctr .
The behaviour BCtr is represented by an I/O process, which is defined as follows,
where we use αP to denote the set of events that P can communicate.

Definition 2 (I/O Process). We say a CSP process P is an I/O process if:

– whenever c.x ∈ αP , then c is either an input or an output channel;
– P has infinite traces (but finite state space);
– P is divergence free;
– P is input deterministic, that is, after every trace of P, if a set of input events

of P may be offered to the environment, they may not be refused by P after
the same trace;

– P is strongly output decisive, that is, all choices (if any) among output events
on a given channel in P are internal.

All channels of an I/O process are either input or output channels. I/O processes
are also non-terminating processes but, for practical purposes in model checking,
they have finite state spaces, and are divergence free. Input determinism and
strong output decisiveness are not relevant in the context of livelock analysis.
For this reason, we omit their formal definitions, which can be found in [8].

We illustrate the compositional development of BRIC with the construction
of an asymmetric dining table with 2 philosophers and 2 forks. The behaviour of
each philosopher and each fork is represented as a process Phili or Forki , where
i ∈ {1, 2}. The channels fk , pfk , both of type ID .ID .EV , and lf of type ID .LF ,

Local Livelock Analysis of Component-Based Models 283

where ID : {1, 2}, distinguish each philosopher and each fork, whose behaviours
are described as an instantiation of Phil and Fork described in Sect. 2.

Fork1 = Fork [[fk1 ← fk .1.1, fk2 ← fk .1.2]]
Fork2 = Fork [[fk1 ← fk .2.2, fk2 ← fk .2.1]]
Phil1 = Phil [[life ← lf .1, pfk1 ← pfk .1.1, pfk2 ← pfk .2.1]]
Phil2 = Phil [[life ← lf .2, pfk1 ← pfk .2.2, pfk2 ← pfk .1.2]]

As all forks and philosophers are represented by one process with indices on its
channels, there is a separate definition for each component contract. For example,
the contracts CtrFork1 and CtrPhil1 are:

CtrFork1 = 〈Fork1, {fk .1.1 → EV , fk .1.2 → EV }, {EV }, {fk .1.1, fk .1.2}〉
CtrPhil1 = 〈Phil1, {lf .1 → LF , pfk .1.1 → EV , pfk .2.1 → EV }, {LF ,EV },

{lf .1, pfk .1.1, pfk .2.1}〉

The contract CtrFork1 has a behaviour defined by Fork1, and two channels: fk .1.1
and fk .1.2, both of type EV . The behaviour of the contract CtrPhil1 is Phil1. This
contract has three channels, lf .1 of type LF , and pfk .1.1 and pfk .2.1 of type EV .

In BRIC, we have two types of component composition: binary composition
and unary composition. The former is defined below. It provides an asynchronous
interaction on channels ic and oc between two contracts Ctr1 and Ctr2 mediated
by a (possibly infinite) bi-directional buffer (BUFFIO).

Definition 3 (Asynchronous Binary Composition). Let Ctr1 and Ctr2 be
two distinct component contracts with disjoint sets of channels (CCtr1 ∩ CCtr2 =
∅), and ic and oc be channels within CCtr1 and CCtr2 , respectively. The asynchro-
nous binary composition of Ctr1 and Ctr2 is given by:

Ctr1〈ic〉 � 〈oc〉Ctr2 = 〈((BCtr1 ||| BCtr2) ‖{|ic,oc|} BUFFIO),RCtr3 , ICtr3 , CCtr3〉
where CCtr3 = (CCtr1 ∪ CCtr2) \ {ic, oc}, RCtr3 = CCtr3 � (RCtr1 ∪ RCtr2), and
ICtr3 = ran(RCtr3).

The behaviour of a binary composition is defined as the synchronisation of the
behaviour of Ctr1 and Ctr2 via a (possibly infinite) bi-directional buffer. The
channels used in the composition are not offered to the environment in further
compositions (CCtr3). The operator � stands for domain restriction and is used
to restrict the mapping from channels to interfaces (RCtr3) and, furthermore, to
restrict the set of interfaces of the resulting contract (ICtr3).

Unary compositions are used to assemble channels of a single component Ctr .

Definition 4 (Asynchronous Unary Composition). Let Ctr be a compo-
nent contract, and ic and oc be two distinct channels within CCtr . The asynchro-
nous unary composition of Ctr is defined as:

Ctr �∣
∣〈oc〉
〈ic〉 = 〈(BCtr ‖{|ic,oc|} BUFFIO),RCtr , ICtr , CCtr 〉

where CCtr = (CCtr \ {ic, oc}), RCtr = CCtr � RCtr , and ICtr = ran RCtr .

284 M.S.C. Filho et al.

The BRIC composition rules proposed to ensure deadlock freedom by construc-
tion are: interleave, communication, feedback and reflexive. The interleave com-
position aggregates two independent contracts such that, after composition, they
do not communicate with each other.

Definition 5 (Interleave Composition). Let Ctr1 and Ctr2 be two compo-
nent contracts, such that CCtr1 ∩ CCtr2 = ∅. The interleave composition of Ctr1
and Ctr2 is given by Ctr1 [|||]Ctr2 = Ctr1〈〉 � 〈〉Ctr2.

In this composition, components do not share any channel and no synchro-
nisation is enforced. It is a particular kind of composition that involves no
communication. In our example, philosophers and forks can be interleaved sep-
arately: Forks = CtrFork1 [|||]CtrFork2 and Phils = CtrPhil1 [|||]CtrPhil2 . These
compositions are valid since the contracts have disjoint channels.

The second rule is based on the traditional way to compose two components,
attaching two components connecting two channels, one from each component.
Here, Σ is the finite set of all events and P � X = P \ (Σ \ X) restricts the
behaviour of P to a set of events X by hiding all events but those in X .

Definition 6 (Communication Composition). Let Ctr1 and Ctr2 be two
component contracts, and ic and oc two channels, such that ic ∈ CCtr1 and
oc ∈ CCtr2 , CCtr1 ∩ CCtr2 = ∅, and BCtr1 � {ic} and BCtr2 � {oc} are strong
compatible. The communication composition of Ctr1 and Ctr2 is defined as

Ctr1[ic ↔ oc]Ctr2 = Ctr1〈ic〉 � 〈oc〉Ctr2

The proviso of strong compatibility ensures that the outputs of each process
are always accepted by the other process. Formally, considering that I s

P and Os
P

denote the inputs and outputs of a process P after a trace s, respectively, P and
Q are strong compatible if, and only if:

∀ s : traces(P) ∩ traces(Q) • (Os
P �= ∅ ∨ Os

Q �= ∅) ∧ Os
P ⊆ I s

Q ∧ Os
Q ⊆ I s

P

In our example, we are able to compose the contracts Forks and Phils using
the communication composition: PComm = Forks[fk .1.1 ↔ pfk .1.1]Phils. The
resulting contract includes all philosophers and forks. The remaining connec-
tions that are needed to complete the dining table require the connection of two
channels of the same component. For this reason, BRIC also provides unary
compositions that can be used for such connections and enables the construc-
tion of systems with cyclic topologies. Due to the existence of possible cycles,
however, new conditions are required to preserve deadlock freedom.

The unary composition rules are feedback and reflexive. The feedback com-
position represents the simpler unary composition case, where two channels of
the same component are assembled, but do not introduce a new cycle [9]. The
requirement on the independence of the channels guarantees that no cycles are
introduced. A channel c1 is independent of a channel c2 in a process when any
communication on c1 does not interfere with the communications on c2, and
vice-versa; hence, both channels are independently offered to the environment.

Local Livelock Analysis of Component-Based Models 285

Definition 7 (Feedback Composition). Let Ctr be a component contract,
and ic and oc two communication channels from CCtr that are independent in
BCtr , and such that BCtr � ic and BCtr � oc are strong compatible. The feedback
composition of Ctr hooking oc to ic is defined as Ctr [oc ↪→ ic] = Ctr �∣

∣〈ic〉
〈oc〉.

The contract PComm contains all forks and philosophers. The channels fk .2.2
and pfk .1.2, however, are independent in PComm because they occur in the
interleaved sub-components Forks and Phils, respectively. We may, therefore,
connect these channels using feedback: PFeed1 = PComm[pfk .1.2 ↪→ fk .2.2].
The channels fk .2.1 and pfk .2.1 are also independent in PFeed1. Intuitively, their
connection do not introduce a cycle; we may, therefore, connect these channels
using the feedback composition: PFeed2 = PFeed1[pfk .2.1 ↪→ fk .2.1].

The reflexive composition deals with more complex compositions that intro-
duce cycles of dependencies in the topology of the system structure, some of
which may be undesirable because they introduce divergence.

Definition 8 (Reflexive Composition). Let Ctr be a component contract,
and ic and oc two communication channels from CCtr such that BCtr � {ic, oc}
is buffering self-injection compatible. The reflexive composition is defined as
Ctr [ic ¯↪→ oc] = Ctr �∣

∣〈ic〉
〈oc〉.

The definition of the reflexive composition is similar to that of the feedback
composition. It, however, has a stronger proviso that requires buffering self-
injection compatibility, which allows one to assembly two dependent channels of
a process via a buffer, without introducing deadlocks. This property is similar to
the notion of strong compatibility, except for the fact that two distinct channels
of the same process must be compatible. Its formalisation can be found in [8].

In our example, we conclude the design of our system using the reflexive
composition to connect channels fk .1.2 and pfk .2.2.

PSystem = PFeed2[fk .1.2 ¯↪→ pfk .2.2]

This connection could not be achieved using feedback because the two channels
are not independent in PFeed2. Intuitively, their connection introduces a cycle
that causes the dependence between these channels.

4 Livelock Analysis for BRIC
In the BRIC approach livelock is not an issue because the rules do not hide
the composed channels in the CSP behaviour of the resulting contract; they are
just removed from the communication channel set, preventing further composi-
tions on them. This gives us a grey-box style of abstraction [2]. We extend the
possibilities of performing compositions in BRIC, providing a constructive strat-
egy to perform black-box compositions [11], where the components encapsulate
functionality, increasing the abstraction level of the system.

In [9], the concept of livelock is not defined at the component contract level.
We define the notion of livelock-free component contract that considers BRIC

286 M.S.C. Filho et al.

components as black-boxes. For that, we consider the component behaviour and
the communication channels that are in the component set of visible channels,
which are eligible for future compositions. As a result, a component contract Ctr
is livelock-free if the CSP process resulting from hiding all channels that are not
in the set CCtr in the behaviour BCtr is divergence free.

Definition 9 (Livelock-free Component Contract). A component contract
Ctr = 〈B,R, I, C〉 is livelock-free if, and only if, divergences(BCtr � CCtr) = ∅.
In what follows, we present the definitions used in our livelock analysis technique
and describe the local conditions that guarantee livelock-free BRIC compositions
at the component contract level. We make a clear distinction of asynchronous
compositions via finite and infinite buffers because the finiteness of the buffer
is relevant for detecting the possibility of livelock in asynchronous systems. We
consider BRIC∗, which achieves asynchronous compositions via finite buffers,
and BRIC∞, in which asynchronicity is achieved using infinite buffers.

4.1 Basic Definitions

A livelock-free contract never performs an infinite sequence of internal events
without communicating with its environment. Hence, reasoning about diver-
gences requires reasoning about infinite behaviours. Therefore, the first step of
our approach identifies the infinite behaviours of a given component. The func-
tion IP(P) returns the traces that lead a given process P to a recursion.

Definition 10 (Interaction Patterns). Let P be a CSP process. The set of
interaction patterns is defined as: IP(P) = {t : traces(P) | P ≡FD (P/t)}.
The process P/t (pronounced P after t) represents the behaviour of P after the
trace t is performed. The set IP(P) contains all traces of P after which the
process (P/t) has the same failures and divergences of P : they are equivalent in
the failures-divergences model. Hence, IP(P) gives an infinite set of traces that
leads the process P back to its initial state. In our example, the set of interaction
patterns of IP(Fork1) contains the traces that lead this fork to a recursion:

{〈fk .1.1.up, fk .1.1.down〉, 〈fk .1.2.up, fk .1.2.down〉,
〈fk .1.1.up, fk .1.1.down, fk .1.1.up, fk .1.1.down〉, . . . }

This set is infinite. Our strategy, however, only needs the set of minimal inter-
action patterns, which only contains the traces that lead the process to its first
recursion. In what follows, we use the function S◦, which, given a set of traces
S (in our case, interaction patterns), returns the concatenation closure on S ,
i.e., the set of all sequences we can obtain by taking any subset of traces from
the original S and concatenating them together (possibly with repetitions).

S◦ = {t : Σ∗ | (∃ ss : seq(Σ∗) • ran(ss) ⊆ S ∧ t = �/ ss)}

Local Livelock Analysis of Component-Based Models 287

Here, Σ∗ is the set of finite sequences of elements of Σ, seq(Σ∗) is the set of finite
sequences over Σ∗, �/ ss is the distributed concatenation of all the elements of
the sequence of sequences ss, and ran(ss) is the set of the elements of ss.

The set of Minimal Interaction Patterns of a process P , MIP(P), is the
minimal set from which we are able to generate the same traces that can be
generated from IP(P). Formally, it is a subset of any other subset of interaction
patterns S of IP(P), such that S◦ = IP(P).

Definition 11 (Minimal Interaction Patterns). Let P be a CSP process.
The set of minimal interaction patterns of P, MIP(P), is a set such that

(MIP(P))◦ = IP(P) and ∀S : P(Σ∗) | S◦ = IP(P) • MIP(P) ⊆ S .

The following constructive proposition is based on the calculation of traces pro-
posed by Roscoe [10]. It calculates the MIP for CSP processes that describe
the behaviour of the basic components, which are strictly sequential (possibly
with choices) with no hiding. Parallelism is achieved by composing component
contracts using the composition rules. We also consider only tail recursion (and
no mutual recursion), in which recursive calls may only happen after at least
one visible event (guarded tail recursions). In what follows, we use N to denote
the process name and P to represent the CSP process expression that defines
its behaviour. We also use W1 and W2 to denote CSP behaviours.

Proposition 1 (Minimal Interaction Patterns Calculation). Let N be a
process name, and P its behaviour. Then MIP(N) is given by MIPN (P):

MIPN (N) = {〈〉}
MIPN (SKIP) = MIPN (STOP) = {}
MIPN (c → W1) = {t : MIPN (W1); e : {| c |} • 〈e〉 � t}
MIPN (W1 � W2) = MIPN (W1 � W2) = MIPN (W1) ∪ MIPN (W2)
MIPN (W1[[R]]) =

⋃{t : MIPN (W1) • ren(t ,R)}
MIPN (W1; W2) =

{
t1 : traces(W1); t2 : MIPN (W2) | last(t1) = �

• front(t1) � t2

}

MIPN (g & W1) = MIPN (W1)
MIPN (if g then W1 else W2) = MIPN (W1) ∪ MIPN (W2)

The sequence front(t) contains all elements of the sequence t but the last one,
last(t) returns the last element of t , and the function ren(t ,R), presented below,
applies the renaming relation on events R to the trace t . For functional renaming,
this function returns a singleton set that contains a trace that corresponds to
t but replaces every element in the domain of the renaming function by its
image. However, relational renaming needs special care because it may turn
simple prefixing into an external choice. By way of illustration, for P = a → P ,
P [[a ← b, a ← c]] = a → P � c → P . For this reason, the function ren presented
below returns a set of traces and we need a distributed union (

⋃
) in the definition

of MIPN for renaming (see Proposition 1).

288 M.S.C. Filho et al.

ren(〈〉,R) = {〈〉}
ren(〈e〉 � t ,R) = if e ∈ dom(R) then {e ′ : R[{e}]; s : ren(t ,R) • 〈e ′〉 � s}

else {s : ren(t ,R) • 〈e〉 � s}

In Proposition 1, when MIPN is applied to N itself, the result is the empty
sequence. With our assumption that the process is guarded tail recursive, this
ensures that at this stage a minimum path is recorded. SKIP and STOP do
not contain any MIP because they terminate (either successfully or not). The
MIPN of the prefix process c → W1 is formed by concatenating the sequence 〈c〉
to the front of the sequences of MIPN (W1). The MIP of internal and external
choices are the union of the MIPN of the two operands. The MIP of W1[[R]]
are those of W1 replacing all occurrences of the events e in the domain of the
renaming relation R by the relational image of {e} in R. The MIPN (W1; W2)
are the ones of W2 prefixed by the traces of W1 that lead to termination, but
removing �. The calculation of the MIPN of guarded processes g &W1 (and
alternation if g then W1 else W2) simply ignores the guard g and takes
MIPN (W1) (and MIPN (W2)) as the result. As a consequence, our approach
may find false negatives because we consider interaction patterns which may
not be feasible depending on the evaluation of g . For instance, if we consider a
process P = g & a → P , our approach indicates the possibility of divergence in
P \ {a} because we do not analyse the value of g , which determines the existence
of either a divergence or a deadlock.

In our example, the calculation of the minimum interaction patterns for Fork1
and Phil1 yields the following result.

MIP(Fork1) = {〈fk .1.1.up, fk .1.1.down〉, 〈fk .1.2.up, fk .1.2.down〉}
MIP(Phil1) = {〈lf .1.thinks, pfk .1.1.up, pfk .2.1.up, lf .1.eats,

pfk .1.1.down, pfk .2.1.down〉}

We are now able to infer which channels can be used to compose a livelock-free
contract in BRIC. The function Allowed identifies all communication channels
that can be individually hidden with no introduction of contract livelock.

Definition 12 (Allowed). Let Ctr be a livelock-free component contract. The
set of communication channels of CCtr that can be individually hidden with no
introduction of divergence is given by Allowed(Ctr) defined below:

Allowed(Ctr) =
CCtr \ {c : CCtr | ∃ s : MIP(BCtr) • ran(s) ∩ evs(CCtr) ⊆ evs({c})}

The set evs(cs) =
⋃{c : cs • {| c |}} contains all events produced by the channels

in the set cs given as argument.
The set of Allowed channels of a given contract Ctr contains all communi-

cation channels c, such that there is no MIP(BCtr) composed only by events
on c. Using these channels on compositions does not introduce a contract live-
lock because even after individually hiding the communication on these chan-
nels, every member of MIP(BCtr) still has at least one further external com-
munication on a different channel with the environment. In our example, the

Local Livelock Analysis of Component-Based Models 289

sets of allowed channels are Allowed(CtrPhil1) = {lf .1, pfk .1.1, pfk .2.1} and
Allowed(CtrFork1) = ∅. The latter is empty because every member of MIP(Fork1)
either contains only interactions on fk .1.1 or only interactions on fk .1.2.

4.2 Conditions for Livelock Freedom in BRIC∗

An interleave composition always results in a livelock-free contract, since the
behaviour of both composing contracts are livelock-free by definition, and no
communication channel is used in this composition. The proofs of the theorems
in this paper can be found in [3].

In the communication composition via finite buffers, Ctr1[ic ↔ oc]∗Ctr2, a
contract livelock may be introduced because we hide the channels ic and oc
used in the composition, since they are removed from the set C of the resulting
component. There are, however, conditions under which this composition is safe.

For instance, we consider the composition CtrFork1 [fk .1.1 ↔ pfk .1.1]∗CtrPhil1

previously presented. Since the communication is asynchronous, after sending
the events fk .1.1.up and fk .1.1.down to the buffer, Fork1 recurses and may send
such events to the buffer again before the first ones have been consumed by
Phils1 via pfk .1.1.up and pfk .1.1.down. This, however, may be done only a finite
number of times because the buffer is finite and, at some point, the communica-
tions on pfk .1.1.up and pfk .1.1.down will be enforced causing the occurrences,
for instance, of the visible events lf .1.thinks and lf .1.eats. This composition is,
therefore, livelock-free. Along with the finiteness of the buffer, the fact that
one of the connecting channels is in the corresponding set of allowed chan-
nels (pfk .1.1 ∈ Allowed(CtrPhils1)) guarantees a resulting livelock-free contract.

We establish below a condition that ensures that a contract livelock is not
introduced in a communication composition in BRIC∗.

Theorem 1 (Livelock-free Finite Communication Compositions). Let
Ctr1 and Ctr2 be two livelock-free component contracts, and ic and oc two chan-
nels in CCtr1 and CCtr2 , respectively. The composition Ctr1[ic ↔ oc]∗Ctr2 is
livelock-free if ic ∈ Allowed(Ctr1) or oc ∈ Allowed(Ctr2).

Regarding unary compositions, due to the finiteness of the buffer, we also
only need to check if at least one of the communication channels used in the
composition belongs to the set of Allowed channels of the contract.

Theorem 2 (Livelock-free Finite Unary Compositions). Let Ctr be a
livelock-free component contract, and ic and oc two channels in CCtr . The com-
positions Ctr [ic ↪→ oc]∗ and Ctr [ic ¯↪→ oc]∗ are livelock-free if ic ∈ Allowed(Ctr)
or oc ∈ Allowed(Ctr).

We now turn our attention to the cases in which neither of the connecting
channels are in the set of Allowed . For example, let us consider three simple
livelock-free contracts Ctr1, Ctr2 and Ctr3 defined as follows.

C1 : 〈BC1 , {a → N}, {N}, {a}〉,where BC1 = a.1 → a.2 → BC1

C2 : 〈BC2 , {b → N}, {N}, {b}〉,where BC2 = b.1 → b.2 → BC2

C3 : 〈BC3 , {c → N}, {N}, {c}〉,where BC3 = c.2 → c.3 → BC3

290 M.S.C. Filho et al.

The composition Ctr1[a ↔ c]Ctr3 is valid in BRIC because a and c are strong
compatible. However, neither a or c are allowed in the corresponding contracts;
this composition yields a divergent contract. In general, however, this would
not necessarily happen. For example, Ctr1[a ↔ b]Ctr2 would not introduce a
contract livelock because the channels would not be able to synchronise. The
BRIC rules, however, require the connecting channels to be strong compatible,
that is, at every state of a in BCtr1 if a.n is offered, then b.n is also offered by
BCtr2 . In Ctr1[a ↔ b]Ctr2, a and b are not strong compatible. As a consequence
of the strong compatibility requirement, there is no case in which neither of the
connecting channels are in Allowed of their contracts and the BRIC compositions
result in a livelock-free component contract.

In BRIC∞, the assumption that communications with the buffer will halt at
some point because the buffer is full is no longer valid because the buffers are
infinite. We, therefore, need stronger conditions to ensure livelock freedom.

4.3 Conditions for Livelock Freedom in BRIC∞

In the presence of infinite buffers, the conditions for safe compositions are nec-
essarily stronger because one of the contracts may indefinitely interact with the
buffer via the connecting channel. For example, let us revisit the example of
Sect. 4.2 replacing the buffer by an infinite one. The communication composi-
tion CtrFork1 [fk .1.1 ↔ pfk .1.1]∞CtrPhil1 remains asynchronous. After sending
fk .1.1.up and fk .1.1.down to the buffer, Fork1 still recurses and may send such
events to the buffer again before the first ones has been consumed by Phils1
via pfk .1.1.up and pfk .1.1.down. This, however, may now be done indefinitely
because the buffer is infinite; there is no guarantee that Phils1 ever consumes
any message on pfk .1.1.up and pfk .1.1.down causing the occurrence, for instance,
of the visible events lf .1.thinks and lf .1.eats. For this reason, the divergence of
Fork1 affects the overall composition. Therefore, we need a stronger requirement
to ensure contract livelock freedom in a communication composition in BRIC∞.

Theorem 3 (Livelock-free Infinite Communication Compositions). Let
Ctr1 and Ctr2 be two livelock-free contracts, and ic and oc two channels in CCtr1

and CCtr2 , respectively. The composition Ctr1[ic ↔ oc]∞Ctr2 is livelock-free if
ic ∈ Allowed(Ctr1) and oc ∈ Allowed(Ctr2).

Regarding the unary compositions in BRIC∞, we have to ensure that the
pair of connecting channels can be hidden together. We define the function
AllowedBin(Ctr), which is similar to Allowed(Ctr), but characterises all pairs
of channels that can be hidden together without generating a contract livelock.

Definition 13 (AllowedBin). Let Ctr be a livelock-free contract. The set of pairs
of channels of CCtr that can be hidden with no introduction of divergence is given
by AllowedBin(Ctr) defined as:

AllowedBin(Ctr) =
{c1, c2 : CCtr | ¬ (∃ s : MIP(BCtr) • ran(s) ∩ evs(CCtr) ⊆ {| c1, c2 |})}

Local Livelock Analysis of Component-Based Models 291

For the same reason, the infiniteness of the buffers, unary compositions in
BRIC∞ have a stronger condition for ensuring livelock freedom. We require
both connecting channels to be allowed to be hidden together.

Theorem 4 (Livelock-free Infinite Unary Compositions). Let Ctr be
a livelock-free contract, and ic and oc two channels in CCtr . The compo-
sitions Ctr [ic ↪→ oc]∞ and Ctr [ic ¯↪→ oc]∞ are livelock-free if (ic, oc) ∈
AllowedBin(Ctr).

The Theorems 1 to 4 establish the conditions under which we ensure that the
result of any BRIC composition is a livelock-free component contract.

In order to be able to perform further compositions using the resulting con-
tracts in an efficient manner, we calculate the new MIP after every livelock-free
composition. This information is stored in the contracts as metadata that aims
at alleviating further verifications in our method for component composition.

4.4 Dealing with Metadata

The calculation of the MIPs of composed components can be based on the
function proposed in [10] that calculates the traces of a parallel composition as
the combination of the traces of each argument process, where the synchronised
events are shared and all other events are interleaved. In our strategy, however,
we are not concerned with the MIP generated by the interleaving of the MIPs
because livelock can only be introduced by hiding events of a basic component.

For instance, using the merge from [10] to calculate the new MIPs of the inter-
leaving composition CtrFork1 [|||]CtrFork2 , we get all possible sequences resulting
from merging MIP(Fork1) and MIP(Fork2):

{〈fk .1.1.up, fk .1.1.down, fk .2.2.up, fk .2.2.down〉
〈fk .1.1.up, fk .2.2.up, fk .1.1.down, fk .2.2.down〉,
〈fk .2.2.up, fk .2.2.up, fk .1.1.down, fk .1.1.down〉, . . . }

For any two minimum interaction patterns ip1 and ip2 from MIP(Fork1) and
MIP(Fork2), respectively, this merge includes a large number of traces that com-
municate on the same channels from ip1 and ip2, which only differ in the order
of the events. This order, however, is not relevant for our strategy because, using
BRIC, further compositions like, for instance, with a contract Ctr3, will be made
on a one channel to one channel basis. As a consequence, composing Ctr3 with
Ctr1 [|||]Ctr2 will be a communication between Ctr3 with either Ctr1 or Ctr2.
Based on this analysis, we provide a variation of the merge function from [10].
This optimisation is extremely relevant to the scalability of our approach.

Definition 14 (Optimised Trace Merge). Let xs be a set of events, x and x ′

denote members of xs, and y denote a typical member of Σ \ xs. The optimised
trace merge is defined as follows.

292 M.S.C. Filho et al.

〈〉 ‖〈s0,t0〉
xs 〈〉 = {〈〉} (1)

〈x 〉 � s ‖〈s0,t0〉
xs 〈〉 = {u | u ∈ 〈x 〉 � s ‖〈s0,t0〉

xs t0} (2)
〈〉 ‖〈s0,t0〉

xs 〈x 〉 � t = {u | u ∈ s0 ‖〈s0,t0〉
xs 〈x 〉 � t} (3)

〈y〉 � s ‖〈s0,t0〉
xs t = {〈y〉 � u | u ∈ s ‖〈s0,t0〉

xs t} (4)
s ‖〈s0,t0〉

xs 〈y〉 � t = {〈y〉 � u | u ∈ s ‖〈s0,t0〉
xs t} (5)

〈x 〉 � s ‖〈s0,t0〉
xs 〈x 〉 � t = {u | u ∈ s ‖〈s0,t0〉

xs t} (6)
〈x 〉 � s ‖〈s0,t0〉

xs 〈x ′〉 � t = { } (7)

The differences between our definition for trace merging and that of [10]
are: (1) Our merge function has the original traces s0 and t0 as arguments.
This allows us to merge n concatenations of s0 with m concatenations of t0;
(2) In the cases in which one side is willing to perform a synchronisation event
x and the other side has finished (lines 2 and 3), we “reset” the side that has
finished, enforcing at least one synchronisation on x and decreasing the size of
one of the sequences by at least one; (3) In the cases in which one side is willing
to perform an independent event (lines 4 and 5), we do not take all possible
combinations of permuting the independent events for the reasons previously
explained; and (4) In the cases in which the synchronisation is feasible (line 6),
our merge function does not include the synchronised event in the result because
they are hidden after composition. We define the merge function as follows.

Definition 15 (MIP Merge). Let Ctr1 and Ctr2 be two livelock-free compo-
nent contracts, ic and oc two communication channels in CCtr1 and CCtr2 , respec-
tively, and x a fresh channel name. The MIP merge is defined as follows.

MIPMerge(Ctr1,Ctr2, ic, oc) =
{s : MIP(BCtr1) | {| ic |} ∩ ran(s) = ∅}
∪ {t : MIP(BCtr2) | {| oc |} ∩ ran(t) = ∅}

∪ ⋃

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s : MIP(BCtr1); t : MIP(BCtr2); sx , tx : Σ∗

| {| ic |} ∩ ran(s) �= ∅ ∧ {| oc |} ∩ ran(t) �= ∅
∧ sx ∈ ren(s, {v : extensions(ic) • (ic.v , x .v)})
∧ tx ∈ ren(t , {v : extensions(oc) • (oc.v , x .v)})

• sx ‖〈sx ,tx〉
{|x |} tx

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

The resulting merge contains all MIPs from BCtr1 and BCtr2 that do not have
events on the connecting channels ic and oc, respectively. The remaining MIPs
are merged using the optimised trace merge. Before the merge, however, the
MIPs have to be unified on the events of the connecting channels. For that, we
use a fresh channel name x and the function ren to replace references to ic and
oc in BCtr1 and BCtr2 , respectively, by x . The function extensions(c) returns the
values which will ‘complete’ the channel yielding an event [10].

Next, the metadata calculation for the binary operators is as follows.

Proposition 2 (Binary Composition Metadata). Let Ctr1 and Ctr2 be two
livelock-free component contracts and ic and oc two channels in CCtr1 and CCtr2 ,
respectively. The MIP of the binary compositions are defined as follows.

Local Livelock Analysis of Component-Based Models 293

MIP(Ctr1 [|||]Ctr2) = MIP(BCtr1) ∪ MIP(BCtr2)
MIP(Ctr1[ic ↔ oc]Ctr2) = MIPMerge(Ctr1,Ctr2, ic, oc)

Finally, we formalise the metadata calculation for the unary compositions.

Proposition 3 (Unary Composition Metadata). Let Ctr be a livelock-free
component contract and ic and oc two communication channels in CCtr . The
MIP of the unary compositions are presented as follows.

MIP(Ctr [ic ↪→ oc]) = {s : MIP(BCtr) • s \ {| ic, oc |}}
MIP(Ctr [ic ¯↪→ oc]) = {s : MIP(BCtr) • s \ {| ic, oc |}}

The calculation of the resulting MIP for unary compositions simply removes
both connecting channels from the original MIPs.

5 Evaluation

In this section, we demonstrate that our constructive approach to build livelock
free models can be applied in practice to large systems involving several com-
positions. We have developed three case studies: Milner’s scheduler [6], which
schedules a number of tasks and can be modelled as a ring of cell processes
synchronised pairwisely, and two variations of the dining philosopher [10], a
livelock-free version and a version in which we have deliberately included live-
lock. All case studies are developed using the BRIC methodology, hence, we
worked with asynchronous versions of these three case studies.

For each case study, we provide a comparative analysis of three scenarios:
the global analysis of FDR2, the static analysis of SLAP, and our local analysis.
In these case studies, we have used a dedicated server with an 8 core Intel(R)
Core(TM) i7-2600K, 16 GB of RAM and 160GB of SSD in an Ubuntu system.
The CSP scripts of these case studies can be found at http://goo.gl/mAZWXq.

Table 1. Results of the livelock analysis for Milner’s scheduler in BRIC∗.

N # FDR2 SLAP (BDD) SLAP (SAT) LLA

5 5 0.123 s 0.045 s 4.196 s 0.177s

10 10 672.164 s 0.128 s 14.340 s 0.218 s

15 15 * 0.465 s 29.862 s 0.243 s

100 100 * 2428.308 s ** 0.559 s

1, 000 1, 000 * * ** 3.959 s

3, 000 3, 000 * * ** 7.578 s

Tables 1 and 2 summarise our results. The column N is the number of cells
and philosophers for Milner’s scheduler and dining philosophers, respectively.

http://goo.gl/mAZWXq

294 M.S.C. Filho et al.

Table 2. Results of the livelock analysis for the dining philosophers in BRIC∗.

Livelock-free system System with livelock

N # FDR2 SLAP
(BDD)

SLAP
(SAT)

LLA FDR2 SLAP
(BDD)

SLAP
(SAT)

LLA

3 10 2.884s 0.342 s 2.114 s 0.219 s 0.941 s 0.252 s 1.224 s 0.215 s

10 38 * 51.708 s 383.884 s 0.303 s * 26.259 s 149.091 s 0.297 s

100 398 * * * 0.778 s * * ** 0.769 s

1, 000 3, 988 * * * 3.888 s * * ** 3.431 s

10, 000 39, 988 * * * 206.689 s * * ** 185.209 s

The column # is the number of compositions, and the columns FDR2, SLAP
and LLA present the time cost of the global analysis in FDR2, SLAP Static
Analysis (using BDD and SAT), and our local analysis (LLA). The * indicates
one hour timeout and ** indicates memory overflow.

The results show that FDR2 and SLAP are unable to deal with large asyn-
chronous configurations. On the other hand, our method provided successful
results of livelock analysis for 10,000 philosophers and 10,000 forks (20,000 CSP
processes and 39,988 BRIC∗ compositions) in less than 4 min. This proved to
be a very promising result in dealing with complex and large systems.

6 Conclusion

In this paper, we propose a correct-by-construction approach for ensuring live-
lock freedom in BRIC models built using four composition rules. The develop-
ment of this strategy is based on the minimum sequences that represent patterns
of interactions after which the system recurses. Considering only these finite
sequences, we are able to locally assert livelock freedom before integrating com-
ponents. Furthermore, we use metadata for storing information that alleviate
verification conditions during component composition. To perform this analysis
in BRIC, we have provided a clear distinction of asynchronous compositions
via finite and infinite buffers because the finiteness of the buffer is relevant for
detecting the possibility of livelock in such systems.

We have used three case studies that demonstrate the scalability of our app-
roach. For larger systems, the verification using FDR2 and SLAP may easily
become costly and infeasible. On the other hand, our compositional livelock
analysis seems promising as demonstrated in our case studies.

Our approach for local and compositional livelock analysis can still be
improved. Parameters and non-tail recursion are not addressed here; they are,
however, in our research agenda, which also includes additional case studies.

Local Livelock Analysis of Component-Based Models 295

References

1. Beneken, G., Hammerschall, U., Broy, M., Cengarle, M., Jürjens, J., Rumpe, B.,
Schoenmakers, M.: Componentware - State of the Art 2003, October 2003

2. Bruin, H.: A grey-box approach to component composition. In: Czarnecki, K.,
Eisenecker, U.W. (eds.) GCSE 1999. LNCS, vol. 1799, pp. 195–209. Springer,
Heidelberg (2000). doi:10.1007/3-540-40048-6 15

3. Filho, M., Oliveira, M., Sampaio, A., Cavalcanti, A.: Local livelock analysis of
component-based models. Technical report, UFRN 2(016). http://goo.gl/zl1MQV

4. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

5. Formal Systems Ltd.: FDR2: User Manual, version 2.94 (2012)
6. Milner, R.: Communication and Concurrency. Prentice-Hall, Upper Saddle River

(1989)
7. Ouaknine, J., Palikareva, H., Roscoe, A.W., Worrell, J.: A static analysis frame-

work for livelock freedom in CSP. Log. Methods Comput. Sci. 9(3) (2013)
8. Ramos, R.T.: Systematic development of trustworthy component-based systems.

Ph.D. thesis, Federal University of Pernambuco (2011)
9. Ramos, R., Sampaio, A., Mota, A.: Systematic development of trustworthy com-

ponent systems. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850,
pp. 140–156. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05089-3 10

10. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall Series in
Computer Science. Prentice-Hall, Upper Saddle River (1998)

11. Soni, P., Ratti, N.: Analysis of component composition approaches. Int. J. Comput.
Sci. Commun. Eng. 2(1) (2013). ISSN: 2319-7080

http://dx.doi.org/10.1007/3-540-40048-6_15
http://goo.gl/zl1MQV
http://dx.doi.org/10.1007/978-3-642-05089-3_10

Session-Based Compositional Analysis
for Actor-Based Languages Using Futures

Eduard Kamburjan1(B), Crystal Chang Din2, and Tzu-Chun Chen1

1 Department of Computer Science, TU Darmstadt, Darmstadt, Germany
kamburjan@cs.tu-darmstadt.de, tc.chen@dsp.tu-darmstadt.de
2 Department of Informatics, University of Oslo, Oslo, Norway

crystald@ifi.uio.no

Abstract. This paper proposes a simple yet concise framework to sta-
tically verify communication correctness in a concurrency model using
futures. We consider the concurrency model of the core ABS language,
which supports actor-style asynchronous communication using futures
and cooperative scheduling. We provide a type discipline based on session
types, which gives a high-level abstraction for structured interactions.
By using it we statically verify if the local implementations comply with
the communication correctness. We extend core ABS with sessions and
annotations to express scheduling policies based on required communi-
cation ordering. The annotation is statically checked against the session
automata derived from the session types.

1 Introduction

While distributed and concurrent systems are the pillars of modern IT infrastruc-
tures, it is non-trivial to model asynchronous interactions and statically guar-
antee communication correctness of such systems. This challenge motivates us
to bring a compositional analysis framework, which models and locally verifies
the behaviors of each distributed endpoints (i.e. components) from the specifi-
cation of their global interactions. For modeling, we focus on core ABS [10,15],
an object-oriented actor-based language designed to model distributed and con-
current systems with asynchronous communications. For verification, we estab-
lish a hybrid analysis, which statically type checks local objects’ behaviors and,
at the same time ensures that local schedulers obey to specified policies dur-
ing runtime. We apply session types [12,21] to type interactions by abstracting
structured communications as a global specification, and then automatically gen-
erating local specifications from the global one to locally type check endpoint
behaviors.

The distinguishing features of the core ABS concurrency model are (1) coop-
erative scheduling, where methods explicitly control internal interleavings by
explicit scheduling points, and (2) the usage of futures [11], which decouple
the process invoking a method and the process reading the returned value. By

Every author contributed to this paper equally.

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 296–312, 2016.
DOI: 10.1007/978-3-319-47846-3 19

Session-Based Compositional Analysis 297

sharing future identities, the caller enables other objects to wait for the same
method results. Note that core ABS does not use channels. Communication
between processes is restricted to method calls and return values.

The order of operations on futures is fixed: First a fresh future identity is
created upon the caller invoking a method on the callee, then the callee starts the
method execution. After method termination, the callee sends the result to the
future, i.e. future is resolved. Finally, any object which can access the future can
read the value from this future. Our session-based type system ensures that the
specification respects this order. We have two kinds of communications: Caller
invoking a method at a remote callee, and callee returning values via a future
to those who know that future. The later is non-trivial since several endpoints
can read more than once from the same resolved future at any time.

To the best of our knowledge, it is the first time that session types are consid-
ered for typing the concurrency model of core ABS. Our contributions include:
(1) extending core ABS with sessions (SABS for short) by giving special anno-
tations to specify the order of interactions among concurrent class instances, (2)
establishing a session-based type system, and (3) generating session automata [2]
from session types to represent scheduling policies and typestate [20]. To cap-
ture the interactions among objects, which are running several processes, we
introduce a two-fold notion of local types: Object types defining behaviors (i.e.
including scheduling behavior) among class instances, while method types defin-
ing behaviors that processes should follow.

Outline: Section 2 gives a motivating example which is used in the rest of the
paper. Section 3 introduces the concurrency model of SABS. Section 4 defines
session types for SABS (ABS-ST for short), while Sect. 5 gives a type system.
Section 6 introduces session automata which are used to verify behaviors of
schedulers. Section 7 gives the related works, while Sect. 8 concludes our work.

2 Motivating Example: A Grading System

Fig. 1. A grading system

Consider a service (illustrated in Fig. 1),
called grading system, which offers an
expensive computation on sensitive data,
e.g. automatic evaluation of exams. This
service consists of three endpoints: A com-
putation server, denoted by c, and a ser-
vice desk, denoted by d, where a student,
denoted by s, can request their grades.
The protocol is as follows: Once c finishes
calculating the grades, it sends a publish
message containing the grades to d and an announcement, announce message, to
a student. It is not desirable that d starts a new communication with c because
c may be already computing the next exams; it is also not desirable that d
communicates to s without any request from s.

298 E. Kamburjan et al.

If a student requests his/her grades before the service desk receives the grades
from c by publish, the scheduler of d must postpone the process of request until
publish has been executed and terminated. This is not possible for core ABS,
because a scheduler in core ABS cannot be idle while waiting for a specific
message when the process queue is non-empty. Thus we propose an extension of
core ABS to ensure that the endpoints and their local schedulers behave well to
the specified communication order.

3 The Session-Based ABS Language (SABS)

This section introduces the concept of session to core ABS [10,15]. The extended
language is called session-based ABS, SABS in short. The goal of this extension
is to equip the language’s compiler with the ability to statically ensure commu-
nication correctness for applications written in core ABS.

3.1 Syntax and the Concurrency Model of Core ABS

The SABS language provides a combination of algebraic datatype, functional
sublanguage, and a simple imperative object-oriented language. The former two
kinds are kept the same in SABS as in core ABS. The imperative object-oriented
layer is extended. The syntax of SABS can be found in Fig. 2, in which the new
language extension is highlighted and will be explained in Sect. 3.2.

A SABS model, denoted by P, defines datatypes Dd , functions F , inter-
faces IF , classes CL, and main block {T x; s} to configure the initial state. In
datatype declarations Dd, an abstract datatype D has at least one constructor
Cons, which has a name Co and a list of generic types A for its arguments.

Fig. 2. SABS syntax. Terms · denote possibly empty lists over corresponding syntactic
categories, and [] optional elements. The highlighted ones are the new syntax added
to core ABS.

Session-Based Compositional Analysis 299

A future of built-in type Fut〈T 〉 expresses that the value stored in the future is
of type T. Function declarations F consist of a return type A, a function name
fn, an optional list of parameters of types A, a list of variable declarations x of
types A, and an expression e. Expressions e include boolean expressions b, vari-
ables x, (ground) terms t, the self-identifier this, the return address destiny
of the method activation, constructor expressions Co(e), function expressions
fn(e), and case expressions case e {br} where br is a branch. An interface IF
has a name I and method signatures Sg. A method signature Sg declares the
return type T of a method with name m and formal parameters x of types T .
A class CL has a name C, the fields x of type T for formal parameters and state
variables, implemented interfaces I and methods M . The right-hand side expres-
sions rhs include (pure) expressions e, asynchronous remote method invocation
e!m(e), and future fetching expression e.get. Statements s include sequential
composition, assignment, session creation, object creation, guarding statement
await e?, if, while, branching, skip and return statement.

The Concurrency Model. In SABS each object has one scheduler and one proces-
sor. It is possible to have more than one processes on an object, but at most
one process is executed by the processor on an object at a time. For a method
call, a fresh future identity, say f , is generated by the caller upon sending an
asynchronous remote method invocation to the callee. A future can be seen
as a placeholder for the method result. The callee creates a new process for the
receiving call. If the processor of the callee is busy while the new message arrives,
the created process will be put into the process pool and can later be chosen
for execution by the scheduler. Upon method termination, the callee returns
the result to f , i.e. f is resolved. Any object sharing the identity f can read
the value from f by executing f.get. This statement blocks the current process
until f is resolved and then returns the value. Since execution control is not
transferred between objects and there is no direct access from one object to the
fields of other objects, each object can be analyzed individually. SABS supports
cooperative scheduling. Each object relies on its scheduler to select a process for
execution at the explicit scheduling points, which can be upon termination of
object initialization, at await statement, and upon method termination. When a
process execution encounters statement await f?, if the future f is not resolved
yet, the processor is released and the current process is suspended and put into
the process pool. Then the processor is idle and the scheduler chooses a process
from the pool for execution based on a scheduling policy (i.e. specified by a local
specification). We say the chosen process from the pool is reactivated.

3.2 New Language Extension

SABS provides a set of new features in order to guide the scheduler to select
the intended process for execution according to the required interaction order-
ing. In Fig. 2, the statement [Protocol : G] x = new Session(e) creates a new
session with a fresh session id stored in x. The parameter e is the session name

300 E. Kamburjan et al.

of type String. The annotation [Protocol : G] describes the global commu-
nication specification G, which will be formalized in Sect. 4.1, that the newly
created session should obey. The statement [Ses : S] x = new C [(e)] creates a
new object with a fresh object id stored in x. The annotation [Ses : S] specifies
that the newly created object belongs to session S. Each object can belong to
at most one session. The annotation [Scheduler : L] is optional and can be
added in front of the class declarations. It provides the local communication
specification L to guide the scheduler of the current object.

The SABS implementation for the grading example in Sect. 2 is in Fig. 3, in
which we create a new session ses named Service. Type gradingSystem defines
this session’s global communication specification (introduced later in Sect. 4.1).
Computer server c, student s and service desk d all belong to the same session ses.
The scheduling policy for the service desk is represented by a local specification
c?fpublish.s?f ′request (introduced later in Sect. 4.2), which specifies the method
request invoked by the student s can only be executed after the execution of
method publish invoked by the computer server c.

Fig. 3. The ABS implementation for the example in Sect. 2.

Session-Based Compositional Analysis 301

4 Compositional Analysis Based on Session Types

Based on the approach of compositional analysis and the theory of session
types [12], we introduce the ABS-ST (ABS Session Types) framework: Each
object (i.e. component) is statically checked against its local specification,
which are projected from a global specification, specifying the overall interac-
tions among objects (i.e. composes objects). As multiparty session types type
interactions consisting of simple sending and receiving actions among multiple
processes, ABS-ST type interactions consisting of asynchronous remote method
calls, scheduling, and futures among objects. This work extends [16], which con-
tains proofs, full examples and definitions.

4.1 Global Types

Global types, denoted by G, define global communication specifications within
a closed system of objects. Contrary to session types [12,21], we do not specify
the datatype of a message since the message is a method call or a method return
and every method in SABS has a fixed signature. The syntax of G is defined:

Definition 1. Let p,q range over objects, denoted by Ob, f over futures, m
over method names and C over all constructors of all abstract datatypes.

G : := 0
f−→ q :m

∣
∣ G.g

g :: = p
f−→ q :m.g

∣
∣ p↓f : (C).g

∣
∣ p↑f : (C).g

∣
∣

Rel(p, f).g
∣
∣ p{gj}j∈J

∣
∣ end

∣
∣ g∗

Initialization 0
f−→ q :m starts interactions from the main block invoking object q,

e.g. we write 0
f0−→ c :pubGrd to specify the code in the main block in Fig. 3. We

use . for sequential composition and write G.g to mean interaction(s) g follows

G. Interaction p
f−→ q :m models a remote call, where object p asynchronously

calls method m at object q via future f , and then q creates a new process for this
method call. The resolving type p ↓ f : (C) models object p resolving the future
f . If the method has an algebraic datatype as its return type, then the return
value has C as its outermost constructor; otherwise we simply write p ↓ f . The
fetching type p↑f : (C) models object p reading the future f . The usage of C here
is similar to the one in p ↓ f : (C). The releasing type Rel(p, f) models p which
releases the control until future f has been resolved. This type corresponds to
await f? statement in SABS. The example below shows how Rel(p, f) works:

Example 1. Consider Grelease = 0
f0−→ a :m0.a

f1−→ b :m1.b
f2−→ a :m2.g. It does

not specify the usage of futures correctly: At the moment b makes a remote call
on m2 at a, the process computing f0 is still active at a. We shall revise it to

G′
release = 0

f0−→ a :m0.a
f1−→ b :m1.Rel(a, f1).b

f2−→ a :m2.g

Here a suspends its first process computing f0 until f1 has been resolved; during
this period, a can execute the call on m2.

302 E. Kamburjan et al.

The branching type p{gj}j∈J expresses that as p selects the jth branch, gj

guides the continuing interactions. The type end means termination.
Note that only a self-contained g can be repeatedly used. We say g is self-

contained if (1) wherever there is a remote call or releasing, there is a correspond-
ing resolving and visa versa; and (2) it contains no end, and (3) every repeated
type within it is also self-contained. We say A ∈ g if A appears in g and A ∈ G

if A ∈ g for some g ∈ G. E.g., we have q
f−→ p : m ∈ 0

f0−→ q : m.q
f−→ p : m

and q{g2} ∈ q{gj}j∈{1,2,3} and its negation means the inverse. A future f is

introduced in g (or G) if p
f−→ q ∈ g (or G).

Now we define type g∗ = fresh(g).g∗ (in case fresh(g) is a branching, we
append g∗ to the end of every branch), meaning finite repetition of a self-
contained g by giving every repetition fresh future names:

fresh(g) =

⎧
⎪⎨

⎪⎩

g{f ′
1/f1}...{f ′

n/fn} if f1, ..., fn are introduced ing and f ′
1, .., f

′
n fresh

p{fresh(gj)}j∈J ifp{gj}j∈J

Undefined otherwise

In other words, we need to keep linearity of futures for every iterations.

Example 2. We show how the global type gradingSystem, used in the code of
Fig. 3, represents the grading system discussed in Sect. 2:

gradingSystem = 0
f0−→ c :pubGrd.c

f−→ d :publish.d↓f.c
f ′
−→ s :announce.

s
f ′′
−−→ d :request.d↓f ′′.s↑f ′′.s↓f ′.c↓f0.end

The session is started by a call on c.pubGrd, while other objects are inactive
at the moment. After the call c

f−→ d : publish, the service desk d is active at
computing f in a process running publish. We position d ↓ f there to specify
that d must resolve f after it is called by c and before it is called by s (i.e.

s
f ′′
−−→ d : request). For c, it can have a second remote call c

f ′
−→ s : announce

after its first call. Thus in this case it is no harm to move d ↓ f right after

c
f ′
−→ s : announce. As d is called by s, d can start computing f ′′ in a process

running request only after d↓f , which means the process computing publish has
terminated. s will fetch the result by s ↑ f ′′ after d resolves f ′′; then s resolves
f ′. Note that, since c does not need to get any response from d nor s, c simply
finishes the session by c ↓ f0. The end is there to ensure all processes in the
session terminate. The valid use of futures is examined during generating object
types from a global type, a procedure introduced in Sect. 4.3. If s↑f ′′ is specified
before d ↓ f ′′, the projection procedure will return undefined since f ′′ can not
be read before being resolved.

4.2 Local Types

Besides global types, to statically check code, we define local types, which
describe local specifications at object level. The syntax of local types is defined:

Session-Based Compositional Analysis 303

Definition 2

L :: = p!fm.L
∣
∣ p?fm.L

∣
∣ Put f : (C).L

∣
∣ Get f : (C).L

∣
∣ Await(f, f ′).L

∣
∣ React(f).L

∣
∣ ⊕{Lj}j∈J

∣
∣ &f{Lj}j∈J

∣
∣ L∗.L

∣
∣ skip.L

∣
∣ end

We use . to denote sequential composition. The type p!fm denotes a sending
action via an asynchronous remote call on method m at endpoint p. The type
p?fm denotes a receiving action which starts a new process computing f by
executing method m after a call from p. The resolving Put f : (C) and fetching
Get f : (C) have the same intuitive meaning as their global counterparts. The
suspension Await(f, f ′) means that the process computing f suspends its action
until future f ′ is resolved. The reactivation React(f) means the process contin-
ues the execution with f . The choice operator ⊕ in ⊕{Lj}j∈J denotes that the
currently active process selects a branch to continue. The offer operator &f in
&f{Lj}j∈J denotes that the object offers branches {Lj}j∈J when f is resolved.
The type skip denotes no action and we say L.skip ≡ L ≡ skip.L.

In ABS-ST the communication happens among processes in different objects.
We list three kinds of local types:

– A method type describes the execution of a single process on a particular
future f . It has the following attributes: (1) Its first action is p?fm for some
p, m, f , and (2) if it has a branching type, the final action in every branch
is Put f : (C) for some C, f , and (3) it contains no further resolving action or
receiving action, and (4) it contains no end.

– An object type is a type which is not a method type.
– A condensed type, denoted by L̂, where L is an object type, replaces every

action, except receiving and reactivation actions, in L with skip.

Example 3 Consider object d in the grading system in Sect. 2. Its method type
on future f , which is used for calling method publish, is c?fpublish.Put f . Its
object type is L = c?fpublish.Put f.s?f ′′request .Put f ′′.end, and its condensed
type is L̂ = c?fpublish.skip.s?f ′′request .skip.skip ≡ c?fpublish.s?f ′′request .

4.3 Projection

Projection is the procedure to derive local types of endpoints from a global
type. Since in SABS data is sent between different objects by active processes,
the projection rules have two levels: (1) Projecting a global type on objects and
resulting object types and (2) projecting object types on a future and resulting
method types, which type the behavior of process for computing the target future.

4.4 Projecting a Global Type to Local Types

We say a global type is projectable if every projection on every of its partic-
ipants is defined and every future is introduced exactly once (i.e. linearity).

304 E. Kamburjan et al.

A projectable global type implies that the futures appear in it are located cor-
rectly across multiple objects; thus the object types gained from it ensure the
correct usage of futures.

We define pre(G,G′) as the set of prefixes of G:

pre(G,G′) = {G′′ | G ∈ G′ implies G′′.G ∈ G′}

and that a future f introduced in G′ is active on object o in G iff (if and
only if):

(p
f−→ o ∈ pre(G,G′)) ∧ (o↓f : (C) �∈ pre(G,G′))

∧ ((
Rel(p, f ′) ∈ pre(G,G′) ∧ f active inRel(p, f ′)

) → o↓f ′ ∈ pre(G,G′)
)

The first conjunct captures that after p
f−→ o, f becomes active on o, while after

o ↓ f : (C), f becomes inactive on o; the second conjunct captures that if f has
been suspended on f ′ (i.e. Rel(p, f ′) ∈ pre(G,G′)∧ f active in Rel(p, f ′)), then
f must have been reactivated by resolving f ′ (i.e. o↓f ′ ∈ pre(G,G′)).

Figure 4 defines the projection rules as a function pj (g,o)G projecting g to
object o, where g ∈ G. We write pj (G,o)G = G � o. The side-conditions verify
the defined cases, where the futures are used correctly; others are undefined.

The interaction type projects a sending action on the caller side and a receiv-
ing action on the callee side. A resolving type gives an action for resolving f on
the corresponding object, and generates a reactivation for every objects who are
waiting for f ; for others, it gives skip. A fetching type gives an action for fetch-
ing the result from f on the corresponding object and gives skip for others. Its
side-condition ensures that a future is resolved before fetching it. This must be
checked at a global level because resolving and fetching take place in different
objects. A releasing type gives suspension for the corresponding object and gives
skip for others. Its side-condition ensures that the releasing object does not have
any other future waiting for the same resolving. A branching type gives a choice
type for the active side and an offer for every one that either receives one of the
calls invoked by the object making the choice or reads from the active future. For
other objects, each branch should have the same behavior so that those objects
always know how to proceed no matter which branch was selected. Termination
type gives end, which means every future has been resolved and all objects are
inactive. The repetition and concatenation are propagated down.

4.5 Projecting Object Types to Method Types

Figure 4 also defines the projection of an object type L to a method type on
a future f , denoted by pjm(L, f). Since the correct usage of futures has been
checked when we do G � o, pjm(G � o, f) has ensured the valid usage of futures.

For a sending, receiving, resolving, fetching, suspending, or repetition object
type which is active on future f , the projected method type is itself; otherwise
the projection gives skip. A choice object type gives a choice method type when

Session-Based Compositional Analysis 305

Fig. 4. Projection rules

it projects on an active future used by the target object, while gives a unique
L when it projects on a future which only appears in one branch. Similarly for
the case of offer object type. A reactivation object type gives a method type
skip when it projects on any future because the next action after a suspension

306 E. Kamburjan et al.

will always be a reactivation inside a method type. Termination object type also
always gives skip for any future because it is not visible. A concatenation object
type gives a concatenation method type on any future.

5 Type System

We say the objects involving in a sequence of communications, i.e. a session, sat-
isfy communication correctness iff, during the interactions, they always comply
with some pre-defined global type. To locally check endpoint implementations
and statically ensure communication safety, which is currently not supported by
core ABS, we here introduce a type system, which is defined in Fig. 5.

We use Θ as session environments, which contain sessions associating to
global types that they follow, with information about the types of participants;
we use Γ as shared environments mapping expressions to ground types, and Δ
as channel environments mapping channels (composed by a session name and
an object) to local types. Note that, channel environments only exist in the type
system. When we write Θ,Θ′, we mean domain(Θ) ∩ domain(Θ′) = ∅, so as for
ϕ, Γ and Δ. Θ and Γ together store the shared information. For convenience, we
define role(G) returning the set of participants in G, ptypes(C) returning the
types of parameters of C, implements(C, I) returning true if C can implement
interface I, obj (C) returning an instance of class C, and fields(C) returning a
shared environment containing attributes of C. We only list the session-related
typing rules related. Others are as same as those in core ABS [15].

Rule (T-New-Session) types a session creation by checking if G in the annotation
is projectable (see Sect. 4.4), the session id s is fresh, and the type of e is String.
If all conditions are satisfied, we create Θ = {Any : 0}s:G to record mappings
of types to the participants in G. The first mapping is Any : 0, in which Any
types the session initializer. Also, a channel s[0] and its type G � 0 is created in
shared environments to specify this object playing 0 in G. Rule (T-New-Join) types
an object creation, which joins session s, which is a name (with type String) of a
session. The object creation is valid if s has been created (i.e. Θ � {ϕ}s:G) and
the type of e is ptypes(C).

Rule (T-Scheduler) is the key rule to activate session-based typing. A class with
annotation [Scheduler: L] is well-typed if its methods are well-typed (this part
is as same as the rule (T-Class) in [15]) and, by given the fact that the instance of
C has joined session s (i.e. s[obj (C)] : ∅), the local scheduler who specifies the
behavior of obj (C) against L should find L = G � p where p ∈ role(G), which
implies that obj (C), typed by I, plays as p in G when it joins s. Then we extend
Θ to Θ′ by adding I : p into {ϕ}s:G to claim that p associates to interface I,
and replacing s[obj (C)] : ∅ with s[p] : L in the channel environment.

Rule (T-Send) types an asynchronous remote method call. The object is allowed
to have such a call, specified by s[p] : q!fm, when the object calls a method m
using f (by checking x : f) at an object playing q in G (i.e. Θ has {ϕ, I : q}s:G
and Γ has e : I) and its next statement s is also well-typed.

Session-Based Compositional Analysis 307

Fig. 5. The type system for the concurrent object level of ABS (Parts: Session-related)

Rule (T-Method) types a method execution. It is valid to do so if the method
body is well-typed and the caller is an object playing q in G, known by Θ =
Θ′, {ϕ, T : q}s:G where T is either equal to I or Any. We use f ′ for returning the
computation result as long as f ′ = f (i.e. pjm(q?fm.L, f ′) = q?fm.pjm(L, f ′).)

308 E. Kamburjan et al.

Rule (T-Offer) types case e{p1 ⇒ s1, ..., pn ⇒ sn} with &f{Lj}j∈J by checking
if every branch pj ⇒ sj is well-typed by Lj and checking if f is active in Lj on
the object p in session s. Rule (T-Choice) is the counterpart of (T-Offer). Rule (T-

Await) types the await statement with Await(f, f ′). It checks if the next statament
is well-typed by React(f).L′, which specifies the next action is to reactivate the
usage of f and, since f ′ has been resolved, in L′ we have f ′ inactive on p. Other
rules are straightforward.

After locally type checking every objects’ implementations in a session based
on their corresponding local types, which are projected from a global type that
the session follows, our system ensures overall interactions among those objects
comply with communication correctness:

Theorem 1 (Communication Correctness). Let G be a projectable global
type and S a closed system in which a session s obeys to G. Let p′

1, ...,p
′
n are

objects in s and respectively act as p1, ...,pn in G. If the objects’ implemen-
tations are all well-typed by rules in Fig. 5, the interactions among p′

1, ...,p
′
n

comply with communication correctness against G.

6 Session Automata

As we type check a SABS program via rules in Fig. 5, by rule (T-Scheduler),
a local type L is assigned as a scheduling policy to the scheduler of object
[Scheduler: L] classC { ... }; the scheduler can (re)activate processes (i.e.
by executing methods) based on L. To ensure that the scheduler’s behavior fol-
lows L, we propose a verification mechanism where a scheduler uses a session
automaton [2], as a scheduling policy, to model the possible sequence of events.

In this model, when the object is idle, the object’s scheduler inputs the
processes which can be (re)activated according to the session automaton, which
is automatically generated by L. If a labelled transition, which corresponds to an
event, can fire in the automaton, the object (re)activates this event. If there are
several processes which can run such transition, the scheduler randomly selects
one of them. This mechanism is a variant of typestate [20].

Session automata, a subclass of register automata [17], only store fresh
futures; it is decideable whether two session automata accept the same lan-
guage [2]:

Definition 3 (k-Register Session Automata). Let Σ be a finite set of labels,
D be an infinite set of data equipped with equality, and k ∈ N. A k-Register
Session Automaton is a tuple (Q, q0, Φ, F) where Q is the finite set of states,
q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states and Φ ⊆
(Q × Q′) ∪ (Q × Σ × 2{1,...,k} × {1, . . . , k} × Q) is the transition relation.

Data words are words over an alphabet Σ×D. A data word automata has a data
store, which can save k data values. A transition fires for a letter (a, d) ∈ Σ ×D
if a set of equalities of the form d = ri are satisfied, where ri refers to the ith
stored data value. After a transition fires, the data store records d.

Session-Based Compositional Analysis 309

Let σ : {1, . . . , k} → D be the store. We define (q, a, I, i, q′) as a transition
in automaton from state q to state q′ upon reading (a, d) if σ[i] = d for all
i ∈ I, I = {1..n} by updating σ[i] to d, and define (q, q′) as an ε-transition that
switches the state without reading the next letter:

Definition 4 (Runs of Session Automata). A run of a k-register session automa-
ton A = (Q, q0, Φ, F) on a data word w = (a1, d1), . . . , (ak, dk) ∈ (Σ × D)k is a
sequence s ∈ (

Q × N × ({1, . . . , k} → D)
)∗. An element (q, j, σ) of the sequence

denotes that A is at state q with store σ and reads (aj , dj). To be a run of A,
the sequence s = (q0, j0, σ0), . . . , (qn, jn, σn) must satisfy the following:
(
(qi, qi+1) ∈ Φ ∧ (ji = ji+1) ∧ (σi = σi+1)

)
∨

(
(qi, (aji , dji), I, k, qi+1) ∈ Φ ∧ (ji+1 = ji + 1) ∧ (σi+1 = σi[k/dji]) ∧ ∀l ∈ I. σi(l) = dji

)

where I = {1..n} and σi[k/dji] is a function mapping the kth stored data to
dji . Now we revise Σ to Σ =

(
({invocREv} × Met) ∪ {reactEv}) and D = Fut,

where invocREv labels process activation and reactEv labels process reactiva-
tion. Given an object type, we can build a session automaton.

Definition 5. Let L be an object type. Let k be number of futures in L̂. We
assume the futures are ordered and pos(f) refers to the number of f in the
ordering. The k-register session automaton AL is defined inductively as follows:

– p?fm is mapped to a 2-state automaton which reads (invocREv,m) and
stores the future f in the pos(f)-th register on its sole transition.

– React f is mapped to a 2-state automaton which reads reactEV and tests for
equality with the pos(f)-th register on its sole transition.

– Concatenation, branching, and repetition using the standard construction for
concatenation, union, and repetition for NFAs.

When a process is activated, the automaton stores the process’s corresponding
futures; when a process is reactivated, the automaton compares the process’s
corresponding futures with the specified register. As all repetitions in types pro-
jected from a global type are self-contained, after the repetition, the futures used
there are resolved and thus the automaton can overwrite it safely. The example
below shows how a session automaton works based on an object type.

Example 4. Consider the example from Sect. 2. A simple automaton describing
the sequence for the d (Service Desk) is

1start 2 3
(invocREv, publish)

d �→ r0

(invocREv, request)

d �→ r1

The scheduler above does not need to use registers because it does not have
reactivations. The following one must read the registers to schedule reactivations:

L = (p?fm1.Await(f, f ′).p?f ′′m3.Put f ′′.React(f).Put f)∗

The generated 2-register session automaton is:

310 E. Kamburjan et al.

1start 2 3 4
(invocREv,m1)

d �→ r0

(invocREv,m3)

d �→ r1

reactEv

d = r0

(invocREv,m1)

d �→ r0

The following theorem states that the objects involving in a session are faithful
to the session’s protocol if their processes can be verified by the corresponding
schedulers, whose behaviors follow the session automata.

Theorem 2 (Fidelity). Let G be a projectable global type and S a closed sys-
tem in which a session s obeys to G. Let p′

1, ...,p
′
n are objects interacting in s

and respectively act as participants p1, ...,pn in G. Let Aj be a session automa-
ton generated from G � pj. If every scheduler for pj, j ∈ {1..n} accepts the same
language as Aj does, the implementations on objects are faithful to G.

7 Related and Future Work

The compositional approach introduced in [5,6] proposed a four event semantics
for core ABS. Their verification approach was bottom-up, i.e., class invariants
are verified and composed into system property based on history wellformed-
ness; while our approach is top-down, i.e., system property is specified in session
types and projected into class invariants. We verify class invariants based on
the scheduling policy type-checked by local session types. Besides, we introduce
session types for process suspension and process reactivation.

Session types for object-oriented languages have been studied in [3,8] and
implemented for libraries/extensions of mainstream languages like Java [13].
Also, lightweight session programming in Scala [19] was proposed by introducing
a representation of session types as Scala types. However, they do not explore
the valid usage of futures for modeling channel-based concurrency, neither verify
cooperative scheduling against specified execution orders.

Schedulers with automata for actor-based models were studied by Jaghoori
et al. [14], while user-defined schedulers for ABS were introduced by Bjørk
et al. [1]. Our use of automata is similar to the drivers of [14], where drivers
can not reject any process if the process queue is non-empty and do not con-
sider reactivations. Our schedulers enable the object to wait for a method call
to arrive.

Field et al. [7] used finite state automata (without registers) to encode type-
state, Gay et al. [8] used typestate to guide session types with non-uniform
objects, while Grigore et al. [9] established register automata for runtime verifi-
cation. In their approach the automata monitor the order of method invocations
in a sequential setting. The registers are used to store an unbounded amount of
object identities. Our automata are extended to be able to check the specified
orders of method calls. The schedulers thus can apply these automta to schedule
specified activations and reactivations in a concurrent setting.

Session-Based Compositional Analysis 311

Neykova and Yoshida [18] also consider an actor model with channels, where
processes are monitored by automata. Deniélou and Yoshida [4] used commu-
nicating automata to approximate processes and local types. However, their
approaches do not consider scheduling and validating the usage of futures.

We plan to prove that our type system ensures that interactions among
objects are deadlock-free and always progresses, and then implement a session-
based extension for the core ABS language.

8 Conclusion

We establish a hybrid framework for compositional analysis. The system prop-
erty is guaranteed by type checking each objects’ behaviors against local session
types, which are gained by projecting global types on endpoints. In summary,
we statically ensure communication correctness for concurrent processing and,
at the same time, ensure local schedulers’ behaviors will follow the specified
execution order among asynchronous communications at runtime.

Acknowledgments. We thank Reiner Hähnle and Patrick Eugster who provided the
original idea and insightful discussions for this paper. We also thank the reviewers
for their constructive comments. This work was supported by the ERC grant FP7-
617805 LiVeSoft: Lightweight Verification of Software and the EU project FP7-610582
Envisage: Engineering Virtualized Services.

References

1. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tarifa, S.L.T.: User-defined
schedulers for real-time concurrent objects. ISSE 9(1), 29–43 (2013)

2. Bollig, B., Habermehl, P., Leucker, M., Monmege, B.: A fresh approach to learning
register automata. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907,
pp. 118–130. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38771-5 12

3. Campos, J., Vasconcelos, V.T.: Channels as objects in concurrent object-oriented
programming. In: Honda, K., Mycroft, A. (eds.) PLACES 2010. EPTCS, vol. 69,
pp. 12–28 (2010)

4. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28869-2 10

5. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the
concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 517–526. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-21401-6 35

6. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared
futures. Formal Aspects Comput. 27(3), 551–572 (2015)

7. Field, J., Goyal, D., Ramalingam, G., Yahav, E.: Typestate verification: abstraction
techniques and complexity results. Sci. Comput. Program. 58(1–2), 57–82 (2005)

8. Gay, S.J., Gesbert, N., Ravara, A., Vasconcelos, V.T.: Modular session types for
objects. Logical Methods Comput. Sci. 11(4), 1–76 (2015)

http://dx.doi.org/10.1007/978-3-642-38771-5_12
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.1007/978-3-319-21401-6_35
http://dx.doi.org/10.1007/978-3-319-21401-6_35

312 E. Kamburjan et al.

9. Grigore, R., Distefano, D., Petersen, R.L., Tzevelekos, N.: Runtime verifica-
tion based on register automata. In: Piterman, N., Smolka, S.A. (eds.) TACAS
2013. LNCS, vol. 7795, pp. 260–276. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36742-7 19

10. Hähnle, R.: The abstract behavioral specification language: a tutorial introduc-
tion. In: Giachino, E., Hähnle, R., Boer, F.S., Bonsangue, M.M. (eds.) FMCO
2012. LNCS, vol. 7866, pp. 1–37. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40615-7 1

11. Halstead, R.H.: Multilisp: a language for concurrent symbolic computation. ACM
TOPLAS 7(4), 501–538 (1985)

12. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) POPL 2008, pp. 273–284. ACM (2008)

13. Hu, R., Yoshida, N., Honda, K.: Session-based distributed programming in Java. In:
Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-70592-5 22

14. Jaghoori, M.M., de Boer, F.S., Chothia, T., Sirjani, M.: Schedulability of asyn-
chronous real-time concurrent objects. J. Logic Algebraic Program. 78(5), 402–416
(2009)

15. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core
language for abstract behavioral specification. In: Aichernig, B.K., Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25271-6 8

16. Kamburjan, E.: Session Types for ABS. Technical report (2016). www.se.
tu-darmstadt.de/publications/details/?tx bibtex pi1[pub id]=tud-cs-2016-0179

17. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994)

18. Neykova, R., Yoshida, N.: Multiparty session actors. In: Kühn, E., Pugliese, R.
(eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 131–146. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-43376-8 9

19. Scalas, A., Yoshida, N.: Lightweight session programming in Scala. In: Krishna-
murthi, S., Lerner, B.S. (eds.) ECOOP 2016. LIPIcs, vol. 56, pp. 21:1–21:28. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

20. Strom, R.E., Yemini, S.: Typestate: a programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng. 12(1), 157–171 (1986)

21. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). doi:10.
1007/3-540-58184-7 118

http://dx.doi.org/10.1007/978-3-642-36742-7_19
http://dx.doi.org/10.1007/978-3-642-36742-7_19
http://dx.doi.org/10.1007/978-3-642-40615-7_1
http://dx.doi.org/10.1007/978-3-642-40615-7_1
http://dx.doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1007/978-3-642-25271-6_8
www.se.tu-darmstadt.de/publications/details/?tx_bibtex_pi1[pub_id]=tud-cs-2016-0179
www.se.tu-darmstadt.de/publications/details/?tx_bibtex_pi1[pub_id]=tud-cs-2016-0179
http://dx.doi.org/10.1007/978-3-662-43376-8_9
http://dx.doi.org/10.1007/3-540-58184-7_118
http://dx.doi.org/10.1007/3-540-58184-7_118

An Event-B Development Process
for the Distributed BIP Framework

Badr Siala1,2, Mohamed Tahar Bhiri1, Jean-Paul Bodeveix2,
and Mamoun Filali2(B)

1 Université de Sfax, Sfax, Tunisia
siala@irit.fr, tahar bhiri@yahoo.fr

2 IRIT CNRS UPS Université de Toulouse, Toulouse, France
{bodeveix,filali}@irit.fr

Abstract. We present a refinement-based methodology to design cor-
rect by construction distributed systems specified as Event-B models.
Starting from an Event-B machine, the studied process proposes suc-
cessive steps in order to split and schedule the computation of complex
events and then to map them on subcomponents. The specification of
these steps is done through two domain specific languages. From these
specifications, two refinements are generated. Eventually, a distributed
code architecture is also generated. The correctness of the process relies
on the correctness of the refinements and the translation. We target the
distributed BIP framework.

1 Introduction

In this paper, we are concerned with providing tool support to assist system
design using a safe refinement-based process. The considered systems will be
seen as a collection of interacting actors. The first levels of the process provides
a centralized view of the system behavior. It will be built by taking into account
system requirements incrementally, in the form of a series of abstract machines
written in Event-B [3]. Then, we propose dedicated, user guided, refinement gen-
erators to take into account the distributed nature of the designed system. As
a result, we obtain a set of interacting machines of which composition is proven
to conform to the abstract levels. The system can then be executed on a dis-
tributed platform via a translation to the BIP (Behavior, Interaction, Priority)
language [5]. By now, it should be clear that our aim is not to fully automate
the distribution process but to assist it. While keeping modest, the difference
is similar to that between a model checker where the proof of a judgement is
automatic and a theorem proving assistant where the user ha s to compose basic
strategies in order to make his proof. Actually, while a theorem proving assistant
helps to construct the proof of a goal, we intend to help in the elaboration of a
distributed model through refinement patterns [16].

The semantics of Event-B and BIP are based on labeled transition systems
thereby promoting their coupling. Event-B is used for the formal specification
and the decomposition of initially centralized reactive systems. BIP is used for
c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 313–328, 2016.
DOI: 10.1007/978-3-319-47846-3 20

314 B. Siala et al.

the implementation and the deployment of distributed systems specified and
verified in Event-B. The skeleton of the BIP code is automatically generated
from Event-B.

Sections 2 and 3 present Event-B composition/decomposition techniques and
the component-based model BIP. Section 4 proposes our development process of
distributed systems by coupling Event-B and BIP. This process is illustrated by
Fig. 1. Section 5 relates our distributed systems development approach to existing
work. We conclude the paper in Sect. 6 and present some perspectives.

Fig. 1. Process steps

2 Event-B

Fig. 2. Event-B develop-
ment step

The Event-B method allows the development of cor-
rect by construction systems and software [3]. To
achieve this, it supports natively a formal develop-
ment process based on a refinement mechanism with
mathematical proofs. Figure 2 illustrates a refine-
ment step where a machine M0 using a context C0
is refined by a machine M1 using an extension C1
of C0. Contexts define abstract data types through
sets, constants and axioms while machines define
symbolic labelled transition systems through vari-
ables and events specifying their evolution while preserving invariant properties.

As a running example, we will consider the electronic hotel key system case
study [15]1. The context (Listing 1.1) introduces basic data structures: guests,
rooms and cards defined as ordered pairs of keys2. State variables (Listing 1.2)
declare the current key of a room (currk), the rooms owned by a guest (owns),
the cards issued by the hotel and cards owned by a guest.

context c h o t e l
s e t s
ROOM GUEST KEY

cons tan t s
CARD

axioms
@crd CARD = KEY × KEY

end

Listing 1.1. Hotel context

machine h o t e l see s c h o t e l
v a r i a b l e s

c u r r k owns i s s u e d ca rd s
i n v a r i a n t s

@cu r r k t y c u r r k ∈ ROOM → KEY
@owns ty owns ∈ ROOM → P(GUEST)
@ i s s u e d t y i s s u e d ∈ P(CARD)
@ca rd s t y c a r d s ∈ GUEST → P(CARD)

Listing 1.2. Hotel state variables

1 The full code is available in https://dl.dropboxusercontent.com/u/98832434/
hotelrefinements.html.

2 prj1 returns the left projection of an ordered pair.

https://dl.dropboxusercontent.com/u/98832434/hotelrefinements.html
https://dl.dropboxusercontent.com/u/98832434/hotelrefinements.html

An Event-B Development Process for the Distributed BIP Framework 315

The dynamics of the system is described by events, one of which, named
register being given in Listing 1.3.

event register
any g r c
where
@tg g ∈ GUEST
@tr r ∈ ROOM
@tc c ∈ CARD
@g1 owns(r) = ∅
@g2 c �∈ issued
@g3 prj1(c) = currk(r)

then
@a1 currk(r) := prj2(c)
@a2 issued := issued∪{c}
@a3 cards(g) := cards(g)∪{c}
@a4 owns(r) := {g}

end

Listing 1.3. Hotel register event

This is a non-deterministic event, parame-
trized by the variables g for the incoming guest,
r for the room to be chosen and c for the card
to be issued. The where part specifies which of
these triples are allowed: the room should be
free (g1), the card should not have been issued
(g2) and the card should open the door (g3).
The then part specifies how the state space is
updated: the current key of the room will be
the second key of the card (a1), the card has
been issued (a2), is owned by the guest (a3)
which owns the room (a4).

Recently, Event-B has been enhanced by reuse techniques such as generic-
ity [17], abstraction [13], composition and decomposition [4,18]. In this paper, we
are mainly concerned by composition and decomposition. They allow the formal
combination of specifications through the refinement mechanism. Two methods
of composition/decomposition were identified for Event-B: shared variable [19]
and shared event [18]. Shared variable composition/decomposition is suitable for
shared-memory parallel systems whereas shared event composition/decomposi-
tion is suitable for message-passing distributed systems. In this paper, we limit
ourselves to the shared event composition/decomposition approach inspired by
CSP where processes synchronize on the same event and may exchange messages.
In Event-B, subcomponents (sub-specifications) can synchronize through shared
events and exchange data specified by the common value of their parameters.

2.1 Shared Event Composition

The shared event composition of Event-B machines is represented by a new con-
struct called composed machine [18]. This operation requires the disjointness
of the sets of state variables of the machines to be composed. It is defined as a
machine merging subcomponents’ properties: conjunction of invariants, union of
variables and parallel synchronisation of events. The composition of two events
which have common parameters p is defined as follows [18]:
E1 � any p , x where G(p , x ,m1) then S(p , x ,m1) end
E2 � any p , y where H(p , y ,m2) then T(p , y ,m2) end
E1 | | E2 � any p , x , y where G(p , x ,m1)∧H(p , y ,m2) then S(p , x ,m1) | |T(p , y ,m2) end

where x, y, p are sets of parameters from the events E1 and E2 and m1 and m2

are the variables of the two subcomponents. Sending a value v can be modeled
by using a guard of the form p = v. The other guards will constrain the sent
value either at the sending point or at the receiving point. This design pattern
originating from CSP has been proposed by Butler for action systems [7] and in
[18] for Event-B.

The composed machine is supposed to satisfy the Event-B standard Proof
Obligations (POs) related to invariants and refinements. Moreover, during the

316 B. Siala et al.

composition of several subcomponents, it is possible to add a composition invari-
ant relating the states of subcomponents.

Like CSP parallel composition, Event-B shared event composition is
monotonic under refinement [18]. Actually, the composition of refined subcom-
ponents is a refinement of the composition of initial subcomponents.

Semantics. In the following we state the semantics of the product CM of
machines Mi as a labelled transition over the variables of the subcomponents.

(e =‖i∈I Mi.e) ∈ CM (e = any Xi where Gi(Xi) then Si(Xi)) ∈ Mi∧
i∈I Gi(Xi � p)(vi),

∧
i∈I v′

i = Si(Xi � p)(vi),
∧

i/∈I v′
i = vi

〈v1, . . . , vn〉 e(p)−−→ 〈v′
1, . . . , v

′
n〉

where

– vi is the valuation of the variables of the component Mi,
– p is the valuation of the union of the parameters of the component events.

2.2 Shared Event Decomposition

Decomposition is a mean to master the complexity (divide and conquer) or to
introduce architectural aspects (see Sect. 4). It can be seen as the inverse of
composition where an Event-B model is split into several simpler subcompo-
nents. Concretely, decomposition is specified by a set of subcomponent names
and a partition of variables, each class being mapped to a subcomponent. An
important point is that the composition of subcomponents refines the initial
centralized model. However, decomposition fails if a guard or an action refers
to variables mapped to different locations. Within the scope of distributed sys-
tems, we propose a support to help solving these problems. Decomposition can
also fail if the synthesized typing invariant is not strong enough. It could to
badly formed expression where some partial functions are applied outside their
definition domain. We do not consider this problem.

2.3 Shared Event Composition/Decomposition Tool

The Rodin platform provides an interactive tool [19] as a plugin allowing the
shared event composition/decomposition of Event-B specifications. Composition
is defined by editing a composed machine which designates the subcomponents
and defines synchronization events as a product of subcomponent events. Con-
versely, decomposition is built by naming subcomponents and mapping variables
on them. In case of success, the tool generates a machine for each subcompo-
nent and a composed machine. Given that the decomposition of the invariants
depends on the scope of the variables, invariants containing variables distributed
over several subcomponents are discarded.

An Event-B Development Process for the Distributed BIP Framework 317

3 The BIP Component-Based Model

The BIP language [5] allows to build component-based systems. To achieve this,
it offers a means to describe atomic components and composition operators
describing composite components. In BIP, an architecture is a hierarchical model
consisting of a structured collection of components obtained by composition of
atomic components which represent the leaves of the hierarchical model.

3.1 Atomic Components

An atomic BIP component declares data, ports and a behavior. Data variables
(data) are typed. Ports (port) give access to some variables and constitute the
component interface. The behavior is defined by a port, a guard and a variable
update function.

According to the component-based paradigm, a BIP component is a design-
time concept (a type) and a runtime concept (an instance). This is also true for
ports. Listings 1.4 and 1.5 present, respectively, the port types and an atomic
component ty Desk produced by our BIP code generator (see Sect. 4.3).

por t t ype t y emp t y po r t ()
por t t ype t y r e g i s t e r D e s k (INT r e g i s t e r g , INT r e g i s t e r c)
por t t ype t y r e g i s t e r G u e s t (INT r e g i s t e r g , INT r e g i s t e r c)

Listing 1.4. Port types

atom type ty Desk ()
/∗ s t a t e v a r i a b l e s ∗/
data INT cu r r k . . .
/∗ temporary v a r i a b l e s ∗/
data INT r e g i s t e r g
/∗ po r t i n s t a n c e s ∗/
expor t por t t y emp t y po r t c omp u t e r e g i s t e r r ()
expor t por t t y r e g i s t e r D e s k r e g i s t e r (r e g i s t e r g , r e g i s t e r c)
p l ace P0
i n i t i a l to P0 do /∗ i n i t i a l i z e v a r i a b l e s ∗/
/∗ t r a n s i t i o n s ∗/
on c ompu t e r e g i s t e r c from P0 to P0 prov ided r e g i s t e r g c ompu t e d
on r e g i s t e r from P0 to P0 prov ided r e g i s t e r g c ompu t e d do /∗ a c t i o n ∗/

end

Listing 1.5. Atomic component ty Desk

3.2 Coordination Between BIP Components

The component-based model BIP has three layers called Behavior, Interaction
and Priority. The Behavior layer describes the behavior of atomic components
(see Sect. 3.1) whilst layers Interaction and Priority describe the architectural
aspects of a component-based system. This separation between behavioral and
architectural aspects is an asset in BIP [5]. The synchronization constraints
between BIP components are expressed through interactions defined by the con-
nector construct whereas scheduling constraints between these interactions are
expressed through the Priority concept.

318 B. Siala et al.

BIP Connectors. A connector is simultaneously a design-time and a runtime
concept. A BIP connector is defined by:

– a set of ports {p1, ..., pn} of subcomponents involved in an interaction.
– an optional port p with variables exported by the connector allowing to com-

pose the connectors.
– a set of interactions which are subsets of {p1, ..., pn}. Every interaction can

be annotated by a guard, an upstream transfer functions (up) and downstream
transfer functions (down). The guards of the interactions involve variables in
the scope of ports and connector variables. In this work, we limit ourselves to
simple connectors restricted to data transfer (Sect. 4).

For example, Listing 1.6 defines two connector types3. The first one denotes a
pure synchronization and the second one a synchronization with data exchange.

connector t ype t y c omp u t e r e g i s t e r r (t y emp t y po r t Desk , t y emp t y po r t Guest)
de f i n e Desk Guest
on Desk Guest down {}

end
connector t ype t y r e g i s t e r (t y r e g i s t e r D e s k Desk , t y r e g i s t e r G u e s t Guest)

de f i n e Desk Guest
on Desk Guest down {

Guest . r e g i s t e r c=Desk . r e g i s t e r c ; Desk . r e g i s t e r g=Guest . r e g i s t e r g ;
}

end

Listing 1.6. Connector types

Composite Component. In BIP, a composite component is both present at
design-time and runtime. It includes the following elements:

– atomic or composite components declared by the keyword component;
– connectors which connect the components forming the composite component

declared by the keyword connector;
– priority rules declared by the keyword priority;
– exported ports that define the interface of the composite component.

Listing 1.7 presents a composite component. It contains two atomic compo-
nents and a connector for coordinating them.

compound t ype t y h o t e l d e c ompo s i t i o n ()
component ty Desk Desk ()
component t y Gue s t Guest ()
connector t y r e g i s t e r r e g i s t e r (Desk . r e g i s t e r , Guest . r e g i s t e r)
. . .

end

Listing 1.7. The Hotel root component type

3 produced by our BIP code generator in Sect. 4.3.

An Event-B Development Process for the Distributed BIP Framework 319

3.3 BIP Execution and Operational Semantics

The BIP execution engine starts with the calculation of executable interactions
(Interaction layer). Then, it schedules these interactions, taking into account the
priority constraints (Priority layer). Finally, the transitions of the atomic compo-
nents involved in the interaction are executed (Behavior layer). We now give the
operational semantics of the composition of a set of components (Ci)i∈1..n con-
nected through a set of connectors γ. First, we sum up the syntax of components
and connectors as follows:

– Ci = 〈Σi, Pi,Xi,→i〉 where Σi are the locations of Ci, Pi its set of ports, Xi

its set of variables, G(Xi) is a set predicates over Xi, A(Xi) is a set of actions
over Xi and →i⊆ Σi × Pi × G(Xi) × A(Xi) × Σi its transitions labelled by a

guard and an action. We will write σi
pi/gi/ai−−−−−→i σ′

i for an element of →i.
– γ ⊆ {〈I ⊆ 1..n, (pi(xi))i∈I ∈ Πi∈IPi(Xi), p,G, (Di)i∈I , U〉} is a set of connec-

tors where for a given connector, I is the set indexes of interacting components,
(pi(xi))i∈I the selected set of ports (one in each component) with their view
xi on component variables, p the outbound port, G the connector guard, Di

the set of down functions specifying the update of subcomponent states and
U the up function specifying the outbound port data.

Then, the operational semantics of the composition is defined by the following
transitions over locations and valuations vi of the component variables. A con-
nector over enabled ports is selected. The down actions Di of the connector are
performed before the local action ai of each component.

〈I, (pi)i∈I , p,G, (Di)i∈I , U〉 ∈ γ
∧

i∈I σi
pi/gi/ai−−−−−→i σ′

i ∧ ∧
i�∈I σ′

i = σi

(
∧

i∈I gi(vi)) ∧ G(〈xi � vi | i ∈ I〉)∧
i∈I v′

i = ai(vi <+ Di(〈xj � vj | j ∈ I〉) ∧ ∧
i�∈I v′

i = vi

〈(σ1, v1), . . . , (σn, vn)〉 p(U(〈xi�vi|i∈I〉))−−−−−−−−−−−→ 〈(σ′
1, v

′
1), . . . , (σ′

n, v′
n)〉

For readability reasons, priorities are not taken into account. We should add that
the fired interaction is not hidden by ready interactions having a lower priority.

3.4 The BIP Tool-Chain

The BIP tool-chain includes translators from other languages to BIP, formal
verification tools and code generators from a BIP model. The BIP language
features a static checker called D-Finder [5]. It is a compositional verification
tool (invariants, deadlock). Likewise, the BIP language has a runtime verification
tool [11]. The code generators take the BIP model and generate single-threaded
or multi-threaded code that can be executed and analyzed [14].

320 B. Siala et al.

4 Towards a Distribution Process

Our goal is to provide a process for guiding the user refinements in order to
map an initial “centralized” design (as explained in Sect. 2) on a distributed
architecture. The proposed process can be seen as a continuation of the basic
methodology which captures requirements as successive refinements of an initial
specification. However, as we target a system engineering process, our aim is
not to propose a fully automatic distribution tool. For example, in the hotel
case study, the behavior of the guest should be mapped on a Guest component.
Figure 1 illustrates the proposed process. It is based on three steps: a splitting
step which splits events in order to allow the incremental and local resolution of
non-determinism, a mapping step which introduces components and mappings
of variables over these components and a distributed code generation step.

We reuse the shared event decomposition plugin [18]. However, it does not
apply on models where guards or actions access variables mapped on different
components as the tool would not know how to split them. Moreover, even if each
guard or action refers to only one variable, the resulting components produced
by this tool would not be usable. Consider two variables a and b mapped on
components C1 and C2 and the event ev:

ev � any p where @g1: a > p @g2: p < b then p1 := p end

Applying [18] is possible: each of C1 and C2 gets a copy of ev with respectively
g1 and g2 as their unique guard, but this leads to another problem: we get two
synchronized events specifying constraints over the parameter p. Their separate
refinement could lead to incompatible choices and thus to a deadlock resulting
from the assembly. The proposed transformations allow the user to avoid this
problem by guiding the refinement process. For this purpose, the user can provide
parameters to automatic refinement tools. As a result, the two constraints will
be located on the same component, while variables will be possibly mapped to
distinct subcomponents. Transformations are organized in three steps presented
in Sects. 4.1, 4.2 and 4.3.

Moreover, as an implementation constraint, we consider that BIP connec-
tors should not perform computations. Data usage in connectors will thus be
restricted to data transfer. This property will lead to a specific refinement of the
Event-B model during the mapping processing step (see Sect. 4.2). These steps
can be automatically performed given some user annotations. In order to sup-
port such a process, we consider two domain specific languages (DSL), one for
specifying event parameters computation order and the other for specifying the
mapping of machine variables and possibly the location of guard computations.
The transformation steps are explicitly specified through the proposed DSLs.
These two specifications are used to generate refined models and projections to
subcomponents automatically. The correctness of the refinements ensures the
correctness of the development. Our process, applied to our example, is illus-
trated by Fig. 3.

An Event-B Development Process for the Distributed BIP Framework 321

Fig. 3. Hotel transformations

4.1 The Event Splitting Step

The splitting step allows the user to inject heuristics for computing event para-
meters specified by a set of constraints: an event can be split in order to allow
the incremental resolution of its non-determinism. This transformation can be
useful if the event is non-deterministic and intended to be shared by several sub-
components. Non-determinism will be constrained to occur on local events so
that data exchanged will be locally computed before. This step is guided by the
user as he may want to control the order in which non-determinism is resolved4.

Fig. 4. Event splitting step

The Event Splitting Plugin.
Figure 4 illustrates the profile of
the transformation implemented
as a Rodin plugin. It takes as
input an Event-B machine and
a splitting specification, whose
structure is described by a domain
specific language.

event ev when p1 . . . pn parameter p init v with g1 . . . gm

when ... parameter ...

We specify for some of the model events, e.g. ev, the parameters (p) to be
computed, the parameters on which it depends (pi), the default value v of p (for
typing purposes) and the guards (gi) acting as the specification of the value of
p. The plugin generates a refinement of the input machine.

Such a specification provides a partial order on event parameters. It is used
to schedule newly introduced events aiming at computing and storing in a state
variable the value of their associated parameter. Ordering constraints are imple-
mented through the introduction of one boolean variable for each parameter, its
computed state. The machine invariant is extended by the properties of the newly
introduced variables: if a variable has been computed, its specification, given by
4 We consider here that non-determinism is only introduced through event parameters.

322 B. Siala et al.

its guards, is satisfied. When all the parameters of an event have been computed
as state variables, the event itself can be fired. The progress of parameters com-
putation is ensured by a variant defined as the number of parameters remaining
to be computed. More precisely, the previous specification for parameter p of
event ev will produce the following machine contents:

machine gene r a t ed r e f i n e s i npu t mach ine
v a r i a b l e s
ev p ev p computed //witness and status for parameter p of event ev

i n v a r i a n t s
@ev g i ev p computed ⇒ g i // where p is replaced by ev p

v a r i a n t // count of the remaining parameters to compute
{FALSE �→ 1 , TRUE �→ 0}(ev p computed) + . . .

events
event INITIALISATION extends INITIALISATION
then

@ev p ev p := v
@ev p comp ev p computed := FALSE

end

convergent event compute ev p // computes parameter p of event ev
any p where
@gi g i // guards acting as p speci f icat ion
@pi ev p i computed = TRUE //parameters , p depends on, have been computed
@p ev p computed = FALSE // p remains to be computed

then
@a ev p := p //computed value stored in state variable ev p
@computed ev p computed := TRUE // makes the variant decrease

end

event ev r e f i n e s ev
when

@p comp ev p computed = TRUE
with

@p p = ev p // parameter p of inherited event i s refined to ev p
then

@pi ev p i computed := FALSE // for a l l ev pi with updated guards
. . . // replace p by ev p in actions of the refined event

end
end

Listing 1.8. Generated machine for the splitting refinement

An important point is that we get a refinement of the input machine. It
should be proved by the user by discharging the standard proof obligations
generated by Rodin and has actually been proved for the hotel example. Three
main properties should be established: convergent events refine skip as they do
not modify inherited state variables and preserve the invariant. They cannot
be launched indefinitely as they make the variant (a natural number) decrease.
Lastly, the event ev is refined as new state variables which take place of the
parameters of the inherited event satisfy their guards. The refined invariant is
also preserved thanks to the reset of the computed state of parameters which
depend on guards using updated variables. We can also prove that absence of
deadlock is preserved: if the guards of an abstract event are true, the parameters
of this event can be or have been computed and lastly the refined event itself
can be launched.

An Event-B Development Process for the Distributed BIP Framework 323

Application to Our Example. With respect to our example, the register
event (see Listing 1.3) has three parameters: g,r,c. We specify that the parame-
ter g should be computed first as the arrival of a guest is supposed to trigger the
various actions. Then, a room is chosen in r and its associated card is computed
in c. For each parameter, we specify its initial value and the name of guards
which constitute its specification. The dependencies for the register event (see
Listing 1.3) are specified as follows:

s p l i t t i n g h o t e l s p l i t t e d
r e f i n e s h o t e l
events

event r e g i s t e r
parameter g i n i t g0 with tg // tg does ’ t depend on r , c
when g parameter r i n i t r0 with t r g1 // f ired after computation of g
when g r parameter c i n i t c0 with t c g2 g3 // f ired after g , r

end

Listing 1.9. Splitting specification

4.2 The Mapping Step

The aim of this step is to set a distributed implementation over subcompo-
nents of an Event-B centralized model. As for the splitting step, the mapping
step takes as input a machine and a mapping specification described using a
dedicated domain specific language. The user can thus provide a set of subcom-
ponent names and declare a mapping from machine variables and possibly event
guards to subcomponents. Then, the tool generates a refinement of the input
machine and one projection machine for each subcomponent. This step has two
phases: the first one, called the replication phase, replicates the variables over the
components in order to allow a local access to remote variables; the second one,
called the projection phase, isolates each component as such. The first phase gen-
erates a refinement of the input machine which is in turn refined by the product
of its projections, thanks to the shared event decomposition mechanism [19].

The Replication Phase. Given the mapping of machine variables to subcom-
ponents, this phase builds a refinement of the input machine by introducing local
copies of distant variables accessed by guards. It maps each guard or action to
a component and performs some renaming.

Fig. 5. Local copies and distant access

We suppose in the following that
variables vi are mapped on compo-
nents Ci. The convergent events are
shared by source (Ci) and destinations
(Cj) of variables remotely accessed
by guards. Refinements of inherited
events are shared by the sources (Ci)
of local copies (on Cj) of variables
accessed by guards and by compo-
nents (Ck) owning variables remotely accessed by actions. Figure 5 presents a
component-based view of the transformed model. The focus is put on event ev of

324 B. Siala et al.

component Cj . Its guard reads the local copy of vi while the action has remote
access to vk. Event synchronization ensures the local copy of vi is up-to-date
and gives access to vk by constraining the event parameter (lk in the figure,
local vk in the code pattern).

Listing 1.10 presents the transformation pattern focused on component Ci.
The resulting machine should refine the input machine. This is for the moment
verified by discharging the proof obligations generated by Rodin. As previously,
we plan to establish this result at the meta-level and the arguments will be very
similar to those given for the splitting transformation.

machine gene r a t ed r e f i n e s i npu t mach ine
v a r i a b l e s

v i // inherited variables , on Ci
C j v i // copy of vi mapped on Cj (used by a Cj guard)
v i f r e s h // true i f vi has been copied , on Ci

i n v a r i a n t s
@C j v i f v i f r e s h = TRUE ⇒ C j v i = v i // copy is synchronized

v a r i a n t
{FALSE �→ 1 , TRUE �→ 0}(v i f r e s h) + . . .

events
convergent event s h a r e v i // shared by Ci and Cj
any l o c a l v i
where

@g v i f r e s h = FALSE // on Ci
@l l o c a l v i = v i // on Ci

then
@to Cj C j v i := l o c a l v i // on Cj
@done v i f r e s h := TRUE // on Ci

end

event ev r e f i n e s ev // shared by Ci ,Cj ,Ck
any l o c a l v k
where

@v j a c c e s s l o c a l v k = vk // on Ck, access to remote variables
@v i f r e s h v i f r e s h = TRUE // on Ci , copy to Cj has been done
@g [v i := C j v i] g // inherited guard on Cj , access to loca l copy of vi

then
@a v j := [v i := C j v i | | vk := l o c a l v k] e // on Cj

end
end

Listing 1.10. replication phase

Furthermore, as for the splitting plugin, the freshness of copies is reset when
the source variable is updated by an action.

The Projection Phase. It generates a machine for each component, as would
do the shared event decomposition plugin [19]. However, thanks to the repli-
cation phase, guards and actions over remote variables are now accepted. For
component Cj , we get the following code template:

An Event-B Development Process for the Distributed BIP Framework 325

machine Cj
v a r i a b l e s v j C j v i
i n v a r i a n t s // keep only those referring vj and Cj vi
events

event s h a r e v i // sync with Ci event , import vi
any l o c a l v i then

@to Cj C j v i := l o c a l v i
end

event s h a r e v j // sync with Cl event , export vj
any l o c a l v j then

@to Cl l o c a l v j := v j
end

event ev
any l o c a l v k // read by some Cj action
where

@v j f r e s h v j f r e s h = TRUE // needed by Cl , vj has been exported
@g [v i := C j v i] g // mapped on Cj , access to copy of vi

then
@a v j := [v i := C j v i ; vk:=l o c a l v k] e

end
end

Listing 1.11. Projection phase

We have to note that some invariants may be lost: we only keep those who refer
variables local to the considered component. It means that the correctness of the
resulting machines (i.e. the fact that events preserve the remaining invariants)
should be proven. If this is not possible, invariants should be added by the user.
However, the composition of the projections, as defined in [19], to which lost
invariants are added is, by construction, the machine we had before decompo-
sition. As a consequence, thanks to the monotony of composition, the design
process can be pursued on each component machine.

Application to Our Example. Listing 1.12 specifies hotel subcomponents and
the mapping of the variables currk owns issued on the component Desk and
the variable cards on the component Guest.

components Desk Guest
mappings

v a r i a b l e s c u r r k owns i s s u e d �→ Desk ;
v a r i a b l e ca r d s �→ Guest ;

Listing 1.12. Hotel components and mapping specification

4.3 The Code Generation Step

This step assumes that the input Event-B model conforms to a subset of Event-
B, we called Event-B0, which plays the role of the subset B0 of the B language
that is translated to C. In the considered subset, shared events should be those
resulting from the application of the replication phase of the mapping step.
Furthermore, we suppose that subcomponent machines do not need to be refined.
Events should be deterministic (parameters should have a value) and use a subset

326 B. Siala et al.

of the Event-B expression and predicate languages for which their exists a direct
mapping to their BIP counterparts. For this purpose, we require that used set
expressions and predicates have been refined to calls to a set library [10] of
which signature has a C implementation within the BIP framework. Here, we
present how the architectural part of the BIP code is generated. The generator
takes as input the mapping specification (subcomponent names, variable and
guards mappings) and the refined machine produced by the mapping step.

Port Type Generation. For each shared event and each component of which
variables are referenced by this event, we generate a port type taking as parame-
ter the type of exported variables (variables mapped to this component and used
by guards or actions mapped to other components). A port type for synchro-
nisation purpose only is generated for all events that do not export variables.
Listing 1.5 provides port types generated for our example.

Connector Type Generation. For each event which uses variables of several
components, we generate a connector type taking as parameters ports specified
by the previously introduced port types. They are supposed to be synchronous.
They define a down action which copies (via the ports) variables of one compo-
nent to their copies located in components which need them. Listing 1.6 illus-
trates the application of this rule in our example.

Subcomponent Skeleton Generation. For each subcomponent, we generate
an atomic BIP component. It contains:

– variables mapped to this component as well as variables of other components
referenced by guards or actions mapped to this component.

– instances of the port types associated to this component
– for each event, a transition synchronized on the corresponding port instance,

and the BIP translation of guards and actions mapped to this component.

As an illustration, Listing 1.5 gives an extract of the atomic component type
ty Desk generated by our plugin.

Composite Component Generation. The root component contains an
instance of each subcomponent and connector. Each connector instance takes
as parameter a port instance defined in one of the concerned subcomponents.
Listing 1.7 provides the code of our example resulting from this step.

The generated BIP architecture should for now be completed manually by
the data types and behaviors of atomic components. To achieve this, we envision
to use the Theory component [10] of the Rodin platform. Indeed, the Theory
component allows to develop proved mathematical theories (datatypes, oper-
ators, rewrite rules, inference rules). This allows the extension of Event-B by
useful data structures such as arrays, linked lists and hash tables.

5 Related Work

Over the last years, several formalisms such as process algebra, input/output
automata, UNITY and TLA+ have been proposed to model and mostly to reason

An Event-B Development Process for the Distributed BIP Framework 327

over concurrent and distributed systems. However, to the best of our knowledge,
their effective use within development frameworks leading to a distributed imple-
mentation has not yet been a general tendency. The automatic generation of
source code from formal specifications is supported by few formal methods such as
B and Event-B. In [6], an approach is developed allowing the generation of efficient
code from B formal developments by using an imperative intermediate language
B0. Several Event-B source code generators have been proposed [9,12,20]. Indeed,
an Event-B model can represent sequential, concurrent or distributed code as well
as reactive, distributed or hybrid systems. The work described in [20] proposes a
set of plugins for the Rodin development tool that automatically generate impera-
tive sequential code from an Event-B formal specification. These works do not take
into account Event-B composition. Whereas the works described in [9] generate
concurrent Ada code restricted to binary synchronization. The automatic refine-
ment of B machines is also possible thanks to the Bart tool [8]. Also, in Event-B,
the atomicity decomposition plugin [16] defines a DSL to parametrize the refine-
ment generator. However, the refinement pattern is dedicated to event splitting
and does not apply to our problem.

6 Conclusion

In this paper, we have presented a distribution process for system designs for-
mally expressed as Event-B models. Starting from an Event-B machine, the
studied process proposes successively the splitting step and the mapping step.
The specification of these two steps is done through two domain specific lan-
guages. Eventually, a distributed Event-B model and a distributed BIP code
architecture are also automatically generated. As we said in the introduction,
our primary aim is provide tools to assist the user in the design of distributed
systems. Providing a fully automatic process is not in our objectives as we target
system engineering and requirements may provide constraints in functions/data
to component mapping. Each proposed step generates refinements. The proof
obligations generated by Rodin for these refinements remain to be discharged in
order to assert the correctness of the developed model.

As future work, we envision to enhance the tooling of our process. Currently,
the splitting and mapping steps have been implemented with the xtext [2] lan-
guage infrastructure, the refinements and the BIP code have been generated
with the accompanying xtend language [1] which provides support for writing
code generators5. We are interested in achieving a distributed code generator
plugin for the Rodin platform by taking into account types and the translation
of Event-B expression and predicate languages.

We are also interested in studying how the proof obligations generated by the
refinements can be discharged definitively at the meta level. In the long term,
we seek to enrich the set of transformations and to provide a library of certified
transformations dedicated to the development of distributed systems for various
architectures.
5 The generated code is available at
https://dl.dropboxusercontent.com/u/98832434/hotelrefinements.html.

https://dl.dropboxusercontent.com/u/98832434/hotelrefinements.html

328 B. Siala et al.

References

1. Java 10, today! http://www.eclipse.org/xtend/. Accessed 16 Jan 2006
2. Language engineering for everyone! https://eclipse.org/Xtext. Accessed 16 Jan

2006
3. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering, 1st edn.

Cambridge University Press, New York (2010)
4. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-

crete models: application to Event-B. Fundam. Inf. 77(1–2), 1–28 (2007)
5. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H., Sifakis,

J.: Rigorous component-based system design using the BIP framework. IEEE
Softw. 28(3), 41–48 (2011)

6. Bert, D., Boulmé, S., Potet, M.-L., Requet, A., Voisin, L.: Adaptable translator of
B specifications to embedded C programs. In: Araki, K., Gnesi, S., Mandrioli, D.
(eds.) FME 2003. LNCS, vol. 2805, pp. 94–113. Springer, Heidelberg (2003)

7. Butler, M.: A CSP approach to action systems. Ph.D. thesis, Oxford University
(1992)

8. Clearsy. Bart (b automatic refinement tool). http://tools.clearsy.com/wp-content/
uploads/sites/8/resources/BART GUI User Manual.pdf

9. Edmunds, A., Butler, M.: Tasking Event-B: An extension to Event-B for generating
concurrent code. Event Dates: 2nd April 2011, February 2011

10. Edmunds, A., Butler, M.J., Maamria, I., Silva, R., Lovell, C.: Event-B code gen-
eration: type extension with theories. In: ABZ Proceedings, pp. 365–368 (2012)

11. Falcone, Y., Jaber, M., Nguyen, T.-H., Bozga, M., Bensalem, S.: Runtime veri-
fication of component-based systems in the BIP framework with formally-proved
sound and complete instrumentation. Softw. Syst. Model. 14(1), 173–199 (2015)

12. Fürst, A., Hoang, T.S., Basin, D., Desai, K., Sato, N., Miyazaki, K.: Code genera-
tion for Event-B. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739,
pp. 323–338. Springer, Heidelberg (2014)

13. Fürst, A., Hoang, T.S., Basin, D., Sato, N., Miyazaki, K.: Formal system modelling
using abstract data types in Event-B. In: Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ
2014. LNCS, vol. 8477, pp. 222–237. Springer, Heidelberg (2014)

14. Jaber, M.: Centralized and Distributed Implementations of Correct-by-
construction Component-based Systems by using Source-to-source Transforma-
tions in BIP. Theses, Université Joseph-Fourier - Grenoble I, October 2010

15. Nipkow, T.: Verifying a hotel key card system. In: Barkaoui, K., Cavalcanti, A.,
Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 1–14. Springer, Heidelberg
(2006)

16. Salehi Fathabadi, A., Butler, M., Rezazadeh, A.: A systematic approach to atom-
icity decomposition in Event-B. In: Eleftherakis, G., Hinchey, M., Holcombe, M.
(eds.) SEFM 2012. LNCS, vol. 7504, pp. 78–93. Springer, Heidelberg (2012)

17. Silva, R., Butler, M.: Supporting reuse of Event-B developments through generic
instantiation. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol.
5885, pp. 466–484. Springer, Heidelberg (2009)

18. Silva, R., Butler, M.: Shared event composition/decomposition in Event-B. In:
Aichernig, B.K., Boer, F.S., Bonsangue, M.M. (eds.) Formal Methods for Compo-
nents and Objects. LNCS, vol. 6957, pp. 122–141. Springer, Heidelberg (2011)

19. Silva, R., Pascal, C., Hoang, T.S., Butler, M.: Decomposition tool for Event-B.
Softw. Pract. Experience 41(2), 199–208 (2011)

20. Singh, N.K.: EB2ALL: an automatic code generation tool. In: Singh, N.K. (ed.)
Using Event-B for Critical Device Software Systems, pp. 105–141. Springer, London
(2013)

http://www.eclipse.org/xtend/
https://eclipse.org/Xtext
http://tools.clearsy.com/wp-content/uploads/sites/8/resources/BART_GUI_User_Manual.pdf
http://tools.clearsy.com/wp-content/uploads/sites/8/resources/BART_GUI_User_Manual.pdf

Partial Order Reduction for State/Event
Systems

Shuanglong Kan1,2(B), Zhiqiu Huang1,2, and Zhe Chen1,2

1 College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing, China

{kanshuanglong,zqhuang,zhechen}@nuaa.edu.cn
2 Collaborative Innovation Center of Novel Software Technology

and Industrialization, Nanjing, China

Abstract. State/Event Linear Temporal Logic (SE-LTL) provides a
concise and intuitive way to express properties incorporating both states
and events. However, as SE-LTL is not preserved under classical stutter-
equivalence, conventional Partial Order Reduction (POR) cannot be
directly used to check them. In this paper, we propose a novel technique
to exploit POR for checking SE-LTL. This technique detects a “state
part” of a Büchi automaton (BA) translated from an SE-LTL formula.
POR is integrated into the construction of the synchronous products of
BAs and Labeled Kripke Structures (LKS), where “state parts” direct
the use of POR. The integrated POR modifies conventional POR by
introducing an identification of visible actions with respect to events.
In addition, we compare our technique with the existing POR for weak
SE-LTL and give a method to combine them to obtain more reduction.
We have implemented our technique in the SPIN model checker. The
experimental results illustrate the potential of the technique for reduc-
tion compared with pure state-based POR and SE-LTL model checking
without POR.

1 Introduction

In modular and component-based software, communication proceeds via events
and is commonly data-dependent. In order to apply existing model checking
techniques [3,14] to such software, we need to provide formalisms which incor-
porate both events and states. Modeling techniques based on annotated finite
state automata might be either state-based or event-based. Although these two
frameworks are interchangeable, converting from one representation to the other
often results in a significant enlargement of the state space. In addition, both
approaches are not practical when it comes to modular software, in which events

This work was supported by the National High-tech R&D Program of China (863
Program) under Grant No. 2015AA015303, Funding of Jiangsu Innovation Program
for Graduate Education KYLX 0315, the Fundamental Research Funds for the Cen-
tral Universities, Joint Research Funds of National Natural Science Foundation of
China and Civil Aviation Administration of China (U1533130).

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 329–345, 2016.
DOI: 10.1007/978-3-319-47846-3 21

330 S. Kan et al.

are often data-dependent. In order to address this issue, Chaki et al. [2] provided
a framework in which both states and events can be expressed. In the frame-
work, the behavior of a system is modeled by Labeled Kripke Structures (LKS).
The property specification logic is State/Event Linear Temporal Logic (SE-LTL)
which is an extension of standard LTL [9]. SE-LTL distinguishes it from LTL
by introducing events as atomic propositions. Moreover, Chaki et al. [2] showed
that standard automata-theoretic LTL model checking algorithms can be ported
to the framework at no extra cost.

However, conventional Partial Order Reduction (POR) [6,13,16], which is
one of the most successful state space reduction techniques, cannot be directly
used to verify SE-LTL formulas. The reason is that most SE-LTL formulas are
not preserved under stutter-equivalence. Chaki et al. [2] do not introduce POR
into their framework, but they suggest it as a future direction. Benes et al. [1]
provided a POR for SE-LTL by introducing a notion of state/event stutter-
equivalence. However, the drawback of [1] is that most SE-LTL formulas are
also, in general, not preserved under state/event stutter-equivalence. So they
defined a new logic based on SE-LTL, called weak state/event LTL (wSE-LTL),
which is invariant under the state/event stutter-equivalence. In fact, wSE-LTL
is a subset of SE-LTL. Our previous work introduced a technique to exploit
POR for checking LTL with nexttime operator [11]. As each SE-LTL formula
can be converted into an LTL formula with nexttime operators, the SE-LTL
formula could be checked with the POR in [11]. This technique is suitable for
the full class of SE-LTL, but it is less efficient than the technique presented in
this paper. There is work like [15], which transforms state/event systems into
purely state-based ones and then uses conventional POR. However, this approach
enlarges the state space (the number of both states and transitions can be in the
worst case multiplied by the size of the alphabet). Lawford et al. [12] provided
a technique for compositional model reduction of real-time systems with respect
to real-time state-event temporal logic. This technique is based on state-event
equivalent relations for runs in models. Our technique also retains equivalent
runs in reduced models, but we also consider SE-LTL formulas to reduce more
states.

In this paper, we propose a novel technique to exploit POR for checking SE-
LTL. POR is integrated into the construction of the Synchronous Product (SP)
of a BA translated from an SE-LTL formula (such a BA is called SE-BA in the
sequel) and an LKS. Our technique needs some more insight into the SE-BAs. We
aim at detecting a “state part” of an SE-BA. State parts indicate that the parts
could be checked with POR. In other words, when checked against a state part of
an SE-BA, an LKS could be reduced by POR. In addition, the conventional POR
should also be modified to check SE-LTL. We need to reconsider the identification
of visible actions in an LKS with respect to events. The core of our technique
is the definition of a synchronous product of an SE-BA and an LKS with the
integration of the modified POR. State parts direct the use of the modified
POR during the construction of the SP. Our POR for SE-LTL is called SE-
POR. Moreover, we also compare our work with existing POR for checking

Partial Order Reduction for State/Event Systems 331

wSE-LTL [1] and show that SE-POR is also suitable for wSE-LTL. We give a
technique to combine SE-POR with the POR for wSE-LTL [1] to obtain more
reduction. We have implemented our technique into SPIN model checker [8] and
the experimental results show that SE-POR is much more efficient than SE-LTL
model checking without POR and pure state-based POR.

This paper is organized as follows. In Sect. 2, we present some preliminaries.
In Sect. 3, some more insight into the translation from SE-LTL formulas into
SE-BAs is presented. In Sect. 4, we introduce the POR for checking SE-LTL.
In Sect. 5, we compare our technique with the POR for wSE-LTL and combine
SE-POR with it to obtain greater state reduction. In Sect. 6, we present the
implementation and experimental results. In Sect. 7, we draw some conclusions
and discuss future work.

2 Preliminaries

In this section, we recall the basic idea of SE-LTL model checking [2] and give a
brief description of conventional POR.

Labeled Kripke Structure. A labeled Kripke structure is defined as a 6-tuple
(S, Init, P, Act, T,Ls), where (1) S is a finite set of states, (2) Init ⊆ S is a set
of initial states, (3) P is a finite set of atomic state propositions, (4) Act is a
finite set of actions, (5) T ⊆ S × Act × S is a transition relation over the sets of
states and actions, (6) Ls : S → 2P is a state-labeling function, such that for a
state s, Ls(s) denotes the set of atomic state propositions that are satisfied in
s. For each transition (s, a, s′) ∈ T , it is also written as s

a−→ s′.
The behavior of an LKS can be described by runs. An infinite run σ =

〈s0, a0, s1, a1, s2, . . .〉 in an LKS is an infinite alternating sequence of states and
actions subject to the following: for each i � 0, (si, ai, si+1) ∈ T . We use the
notation L(s) to denote the set of infinite runs that start with s. For example,
σ ∈ L(s0). An infinite run, which starts with a state in Init, is called an initial
run of the LKS. The set of all initial runs of an LKS M is denoted as L(M).

An LKS is different from a Kripke Structures (KS), which is for LTL model
checking, that actions are also considered in an LKS. We inherit the notion of
traces in KS. The trace of the run σ is defined as π(σ) = Ls(s0),Ls(s1), . . .,
which is obtained by applying the state-labeling function to each state in the
sequence of the run and actions are ignored. Two runs are stutter-equivalent if
and only if there exists a partitioning of the their traces, so that all sets of atomic
propositions in both the kth block of one trace and the kth block of the other
trace are same. Stutter-equivalence relation is the core of conventional POR.

State/Event Linear Temporal Logic. The syntax of SE-LTL is the following:

ψ :: = p | e | ¬ψ | ψ ∧ ψ | Xψ | ψUψ,

where e ranges over a set EP of events and p ranges over a set SP of atomic
state propositions. Events and atomic state propositions are all called atomic

332 S. Kan et al.

propositions. The set of atomic propositions is denoted as AP , i.e., AP = EP ∪
SP . The operators ¬ and ∧ are standard Boolean operators. The operators X
and U are temporal operators.

Note that, the terms action and event have distinct semantics in this paper,
which is different from [1] and [2], where the two terms can be used interchangely.
Actions in LKSs are responsible for the change of states while events in SE-LTL
are for verification, and events have a higher abstraction level than actions. There
is a partial map E : Act ⇀ EP from an action to an event, which means that
when the action is executed, the event is generated.

The semantics of SE-LTL is explained over runs of an LKS and a partial
map E . Let σ = 〈s0, a0, s1, a1, . . .〉 be an infinite run. Let σi = 〈si, ai, . . .〉 be the
ith suffix of σ starting with the state si. The semantics of SE-LTL is defined as
follows:

(E1) σ � p iff p ∈ Ls(s0), (E2) σ � e iff E(a0) = e,
(E3) σ � ¬ψ iff σ � ψ, (E4) σ � ψ1 ∧ ψ2 iff σ � ψ1 and σ � ψ2,
(E5) σ � Xψ iff σ1 � ψ, (E6) σ � ψ1Uψ2 iff there is some i � 0 such that

σi � ψ2 and, for all 0 � j � i − 1, σj � ψ1

SE-LTL can be extended with derived operators: (1)Fψ
def
= 	Uψ, (2)Gψ

def
=

¬F¬ψ, and (3)ψ1Rψ2
def
= ¬(¬ψ1U¬ψ2), which is the dual of the operator U.

Büchi Automata. A Büchi automaton is a 5-tuple B = (Q,Σ, T , I, F), where
(1) Q is a finite set of states, (2) Σ is a finite alphabet, let Σ′ = 2Σ , (3) T ⊆
Q×Σ′ ×Q is a total transition function, (q, α, q′) ∈ T is also denoted as q

α−→ q′,
I ⊆ Q is a set of initial states, F ⊆ Q is a set of accepting states. The definition
of BAs is transition-based, that is, each transition in a BA is labeled by an
element in Σ′. The alphabet Σ in a BA corresponds to the power set of AP
of atomic propositions (i.e., Σ = 2AP). For LTL, AP is equal to the set SP of
atomic state propositions. For SE-LTL formulas, AP = SP ∪ EP as SE-LTL
allows events in AP . BAs translated from SE-LTL formulas are called SE-BAs.

The translation from an SE-LTL formula into an SE-BA can reuse existing
translations for LTL without any modification. But the semantics of SE-BAs is
explained over runs of LKSs and is defined as follows: an infinite run σ of B over a
run 〈s0, a0, s1, a1, s2, . . .〉 in an LKS is an alternating sequence σ = 〈q0, α0, q1, . . .〉
of states and transitions in B such that q0 ∈ I, ∀i � 0, L̃s(si) ∧ Ẽ(ai) � αi,

where L̃s(s) =
∧ Ls(s) ∧ ∧{¬p | p ∈ SP\Ls(s)} and Ẽ(ai) = E(ai) ∧ ∧{¬e′ |

e′ ∈ EP\{E(ai)}}, and (qi, αi, qi+1) ∈ T . The run σ is accepting if it contains
infinitely many states in F . A run in an LKS is accepted by B if and only if
there exists an accepting run of B over it.

Synchronous Products of SE-BAs and LKSs. Chaki et al. [2] exploited standard
automata-theoretic model checking algorithms to verify SE-LTL by proposing a
definition of synchronous products of SE-BAs and LKSs.

Let M = (S, Init, P,Act, T,Ls) be an LKS and B = (Q,Σ, T , I, F) be an
SE-BA. Let E be a partial map from actions to events. The synchronous product
of M and B is defined as M ⊗ B = (Qp, Σ, Tp, Ip, Fp), where (1) Qp ⊆ S × Q, is

Partial Order Reduction for State/Event Systems 333

a set of states. Each state in Qp is denoted as a pair (s, q) where s is a state in
S and q is a state in Q, (2) Tp ⊆ Qp × Qp, is a transition function. A transition
((s, q), (s′, q′)) is in Tp iff there exists a transition (s, a, s′) in T and a transition

(q, α, q′) in T such that L̃s(s) ∧ Ẽ(a) � α, (3) Ip ⊆ Qp is a set of initial states.
A state (s, q) is in Ip iff s ∈ Init and q ∈ I, (4) Fp ⊆ Qp is a set of accepting
states. A state (s, q) is an accepting state iff q ∈ F .

The product M ⊗ B is also a BA. Its set of initial accepting runs is denoted
as L(M⊗B). The following theorem from [2] illustrates that existing LTL model
checking algorithms can be used to check SE-LTL formulas on LKSs.

Theorem 1. Let M be an LKS and B¬ψ be an SE-BA translated from an SE-
LTL formula ¬ψ. Then M � ψ iff L(M ⊗ B¬ψ) = ∅.

Partial Order Reduction. We give a rough description of the basic idea of con-
ventional POR. As LKSs can be obtained by labeling actions on transitions in
KS, here we use LKSs instead of KSs to describe conventional POR to facilitate
the successive presentation. In fact, conventional POR also needs to consider the
semantics of transitions in KSs.

For a state s in an LKS M, whose transition relation is T , The notation
enable(s) = {(s, a, s′) | (s, a, s′) ∈ T} denotes the set of all transitions that
are enabled at s. Conventional POR avoids searching redundant runs in M
by only selecting a subset of enable(s) to expand s and the subset is called
the ample set, denoted as ample(s). Since ample(s) is a subset of enable(s),
only a subset of runs of L(M) is checked, therefore some states are reduced.
The core of conventional POR is the computation of ample sets. There are
two important notions in conventional POR. For two transitions t1 and t2 in
enable(s), if they can execute concurrently then they are independent ; otherwise
they are dependent. The formal definition of dependent and independent can
be found in the textbook [4]. An action a ∈ Act is an invisible action if for
each transition (s, a, s′) in an LKS, L(s) = L(s′); otherwise a is a visible action.
Conventional POR computes an ample set of a state s by selecting a subset of
enable(s) that satisfies the following 4 conditions:

C0 ample(s) = ∅ if and only if enable(s) = ∅,
C1 along every run in the full LKS that starts at s, the following condition

holds: a transition that is dependent on a transition in ample(s) cannot be
executed without a transition in ample(s) occurring first,

C2 if s is not fully expanded (i.e., ample(s) ⊂ enable(s)), then every transition
t ∈ ample(s) is labeled by an invisible action,

C3 for any cycle in the LKS, there exists at least one state along the cycle that
is fully expanded.

3 More Insight into SE-BAs

SE-POR detects a “state part” of an SE-LTL formula. In this section, we detect
a “state part” of an SE-LTL formula by detecting a “state part” of the SE-BA
translated from the formula.

334 S. Kan et al.

Our work concentrates on transition-based SE-BAs. There are various works
discussing the translation from LTL formulas into transition-based BAs, such
as LTL2BA [5] and the translation part of the SPIN model checker [8]. All of
them could be exploited to detect “state parts”. But for our purpose, we present
a new description of the translation. During the translation, we detect a “state
part” of an SE-BA. This translation does not consider any optimization in order
to facilitate the description of SE-POR.

We first introduce two notions derived from [5]. (1) The first one is Negative
Normal Form (NNF). An LTL formula is in NNF if no operator appears in
the scope of a negative operator. Every LTL formula can be transformed into
its NNF. But pushing negations into Until (U) subformulas needs to use the
operator Release (R), which is the dual of U operator. So the translation from
SE-LTL formulas into SE-BAs also needs to consider the operator Release (R).
Henceforth, we suppose that every SE-LTL formula is in NNF. (2) The second
one is temporal formulas, which are the formulas, where the topmost operator is
neither a conjunction nor a disjunction operator. Based on the notion of temporal
formulas, we introduce an extension of Disjunction Normal Form (DNF) for SE-
LTL formulas. It is different from classical DNF for propositional logic that
temporal formulas are viewed as atomic propositions. For an SE-LTL formula
ψ, it is in DNF if ψ = φ1 ∨ . . . ∨ φn, where φi with 1 � i � n is a conjunction of
temporal formulas (atomic propositions are also temporal formulas).

The translation from SE-LTL into SE-BA consists of two steps: (1) trans-
late an SE-LTL formula into a Generalized Büchi Automata (GBA) and then
translate the GBA into an SE-BA. A GBA is a 5-tuple G = (Qg, Σ, Tg, Ig, Fg),
where (1) Qg is a finite set of states, (2) Σ is a finite alphabet, let Σ′ = 2Σ ,
(3) Tg ⊆ Qg ×Σ′×Qg is a total transition function, (q, α, q′) ∈ Tg is also denoted
as q

α−→ q′, Ig ⊆ Qg is a set of initial states, Fg = {T1, . . . , Tr}, where Tj ⊆ Tg

is a set of accepting transitions. An infinite run in a GBA is an alternating
sequence 〈q0, α0, q1, . . .〉 of states and transitions in the GBA such that q0 ∈ Ig

and (qi, αi, qi+1) ∈ Tg for i � 0. A run is an accepting run if for each 1 � j � r,
it uses infinitely many transitions from Tj .

3.1 Translation from SE-LTL into GBA

In order to translate an SE-LTL formula ψ into a GBA (Qg, Σ, Tg, Ig, Fg), it
is firstly converted to its NNF and then to its DNF. Assume its DNF is ψ =
ψ1∨ . . .∨ψn, where ψi is a conjunction of temporal formulas. The set Ig of initial
states is the n states identified with ψ1 to ψn, respectively. In order to construct
Qg and the transition function Tg, we first set Qg = Ig and then expand states
in Qg until no new state or transition is added to Qg or Tg, respectively. More
precisely, for a state q in Qg, we calculate all its outgoing transitions. For each
outgoing transition (q, α, q′), it is added to Tg and q′ is added to Qg. Each state
in Qg is identified with a conjunction of temporal formulas.

We now describe the construction of outgoing transitions of a state. Let
q be a state identified with ψi, assume ψi = φ1 ∧ . . . ∧ φm, where φj is a
temporal formula. The conjunction is also denoted as a set ψi = {φ1, . . . , φm}.

Partial Order Reduction for State/Event Systems 335

The computation of outgoing transitions of q consists of two steps, which is
presented as follows.

Step 1. The first step computes a set of pairs (P,N) for each temporal formula
in {φ1, . . . , φm}, where P is a set of literals and N is a set of temporal formulas.
A literal is an atomic proposition or its negation. Let φ be a temporal formula.
The set of pairs for φ is denoted as trans(φ). We introduce an operator ⊗ for
sets of pairs in order to compute trans(φ). Let S1 and S2 be two sets of pairs,
then S1 ⊗ S2 = {(P,N) | ∃(P1, N1) ∈ S1.∃(P2, N2) ∈ S2.P = P1 ∪ P2 and N =
N1 ∪ N2}. The recursive computation of trans(φ) is presented as follows:

1. if φ = a or φ = ¬a, where a is an atomic proposition (a is either an
atomic state proposition or an event), then its set of pairs is {({a}, ∅)} or
{({¬a}, ∅)}, respectively.

2. if φ = Xϕ and the DNF of ϕ is ϕ1 ∨ . . . ∨ ϕk then the set of pairs is
{(∅, ϕ1), . . . (∅, ϕk)}.

3. if φ = ϕ1Uϕ2 then its set of pairs is computed as trans(ϕ2) ∪ (trans(ϕ1) ⊗
{(∅, {φ})}). That is, we must first compute trans(ϕ1) and trans(ϕ2) in order
to compute trans(φ).

4. if φ = ϕ1Rϕ2 then its set of pairs is computed as trans(ϕ2) ⊗ (trans(ϕ1) ∪
{(∅, {φ})}),

5. if φ = ϕ1 ∧ ϕ2 then its set of pairs is computed as trans(ϕ1) ⊗ trans(ϕ2),
6. if φ = ϕ1 ∨ ϕ2 then its set of pairs is computed as trans(ϕ1) ∪ trans(ϕ2).

Step 2. This step constructs all outgoing transitions of q. The set of outgoing
transitions of q is trans(φ1) × . . . × trans(φm). More precisely, let (Pl, Nl) ∈
trans(φl) for 1 � l � m. One outgoing transition of q is (q, P1 ∪ . . . ∪ Pm, q′),
where q′ is identified with N ′ = N1 ∪ . . . ∪ Nm, which is also a set of temporal
formulas and q is identified with ψi = {φ1, . . . , φm}. The transition can be
explained as follows: in order to satisfy the formula ψi identified with q, the
transition selects to satisfy the conjunction of literals in P1 ∪ . . . ∪ Pm at the
current state in an LKS and satisfy the conjunction of temporal formulas in
N ′ by a run starting from the next state. We use the notation S(qi) to denote
the conjunction that the state qi is identified with. For example, S(q) = ψi and
S(q′) = N ′. For each state qt in Qg, we construct all its outgoing transitions.
Let (qt, α, q′

t) be an outgoing transition. If q′
t is already in Qg then we only

add the transition to Tg; otherwise we add q′
t and the transition to Qg and Tg,

respectively.
At last, we construct the accepting condition Fg. Let U be the set of until

subformulas of ψ, that is, the formula of type ψ1Uψ2. The accepting condition
is defined as Fg = {Tf | f ∈ U}, where Tf = {(q, α, q′) | f /∈ S(q) or ∃(P,N) ∈
trans(f).P ⊂ α and f /∈ N ⊆ S(q′)}. The definition of Tf is complex and it
comes from [5]. But we should not be concerned about it, as it has less relation
with our technique. We now define two kinds of transitions in a GBA. A literal
is an event literal if it is an event or the negation of an event.

336 S. Kan et al.

Definition 1. Let (q, α, q′) be a transition in a GBA. If there is at least one
event literal in α then the transition is called an event-transition; otherwise it is
a state-transition.

3.2 Translation from GBA to SE-BA

Let G = (Qg, Σ, Tg, Ig, Fg) be a GBA with Fg = {T1, . . . , Tr}. We define the
SE-BA B = (Q,Σ, T , I, F), where: (1) Q = Qg × {0, ..., r} is a set of states,
(2) I = Ig × {0} is a set of initial states, (3) F = Qg × {r} is a set of accepting
states, (4) T = {((q, j), α, (q′, j′)) | (q, α, q′) ∈ Tg and j′ = next(j, (q, α, q′))}
with

next(j, t) =
{

max{j � i � r | ∀j < k � i, t ∈ Tk} if j �= r
max{0 � i � r | ∀0 < k � i, t ∈ Tk} if j = r

This translation comes from [5]. We now define event-transitions and state-
transitions for SE-BA.

Definition 2. Let t = ((q, i), α, (q′, j)) be a transition in an SE-BA. The tran-
sition t is an event-transition iff (q, α, q′) is an event-transition. The transition
t is a state-transition iff (q, α, q′) is a state-transition.

{p}

q0
{e}

∅

S(q0) = {pUe}

q1

S(q1) = {	}

Fig. 1. An SE-BA trans-
lated from pUe

Figure 1 depicts an SE-BA translated from pUe,
where p is an atomic state proposition and e is an event.
The set of initial states is {q0} and the set of accepting
states is {q1}. The transition (q0, {p}, q0) is a state-
transition and (q0, {e}, q1) is an event-transition.

Let ST be the set of state-transitions. The state
part of the SE-BA is the set ST . State-transitions only
require that the system is in some states. In the follow-
ing section, we will explain how to exploit state-transitions for SE-POR.

4 Partial Order Reduction for SE-LTL Formulas

In this section, we consider SE-POR for checking SE-LTL without the X oper-
ator. The full version of this paper also considers SE-POR for SE-LTL with
the X operator. It can be download at https://sourceforge.net/projects/se-spin/
files/full version se por.pdf/download. In conventional POR for LTL, we always
select the ample set of a state s to expand s. But in SE-POR, the selection of
ample(s) or enable(s) to expand s depends on whether s is checked against a
state part of an SE-BA. In addition, since SE-LTL has atomic propositions of
events, the computation of ample sets is different from conventional POR. In
Subsect. 4.1, we introduce a synchronous product of an LKS and an SE-BA with
the integration of POR. The synchronous product illustrates when ample sets
are exploited during the verification. In Subsect. 4.2, we discuss the computation
of ample sets for SE-LTL.

https://sourceforge.net/projects/se-spin/files/full_version_se_por.pdf/download
https://sourceforge.net/projects/se-spin/files/full_version_se_por.pdf/download

Partial Order Reduction for State/Event Systems 337

4.1 Synchronous Products of SE-BAs and LKSs with POR

The synchronous product of an LKS and an SE-BA with the integration of POR
is defined as follows:

Definition 3. Let M = (S, Init, P,Act, T,Ls) be an LKS and B =
(Q,Σ, T , I, F) be an SE-BA. The synchronous product of M and B with the
integration of POR is defined as a BA M ⊗s B = (Qp, Σ, Tp, Ip, Fp), where
(1) Qp = S × Q is a set of states, (2) Ip = {(s, p) ∈ Qp | s ∈ Init and q ∈ I} is
a set of initial states, (3) Fp = {(s, q) ∈ Qp | q ∈ F} is a set of accepting states,
and (4) Tp ∈ Qp × Qp is a transition function and a transition ((s, q), (s′, q′)) is
in Tp iff one of the following two conditions holds:

(1) there exists an event-transition q
α−→ q′ in B, and there exists a transition

s
a−→ s′ in enable(s) such that L̃s(s) ∧ Ẽ(a) � α,

(2) there exists a state-transition q
α−→ q′ in B, and there exists a transition

s
a−→ s′ in ample(s) such that L̃s(s) ∧ Ẽ(a) � α.

From the definition of Tp, it can be observed that when a state s in M is checked
against a state-transition in an SE-BA, it only selects the transitions in ample(s)
to construct the synchronous product. As ample(s) ⊆ enable(s), we only select
a subset of runs in M for checking, therefore some states are reduced from the
synchronous product.

A infinite run in M ⊗s B is a sequence of states: σ = 〈(s0, q0), (s1, q1), . . .〉.
The projection of σ on M is denoted as PjM (σ) = 〈s0, a0, s1, . . .〉 and the
projection of σ on B is denoted PjB(σ) = 〈q0, α0, q1, . . .〉. The run σ is an
accepting run if and only if PjB(σ) is an accepting run of B. The notation
L(M⊗s B) denotes exactly the set of initial accepting runs in M⊗s B. We have
L(M ⊗s B) ⊆ L(M ⊗ B).

Fig. 2. An illustration of M⊗s B

Figure 2 illustrates the construction of
M ⊗s B. M ⊗s B is to expand (s0, q0) and q0
has two outgoing transitions α and β. Firstly,
consider the transition (q0, α, q1). Assume it

is a state-transition and L̃(s0) � α. The
state s0 has three outgoing transitions, i.e.,
enable(s0) = {(s0, b, s1), (s0, a, s2), (s0, a, s3)}.
Assume ample(s0) = {(s0, b, s1)}. Accord-
ing to (2) of Definition 3, we only need to
select the transition in ample(s0) to synchro-
nize with α, which constructs the transition
((s0, q0), (s1, q1)) in Fig. 2(c). Secondly, we con-
sider the transition (q0, β, q2), and assume it is
an event-transition with β = α′ ∧ e , where α′ only consists of atomic state
propositions and L̃(s0) � α′, and e is an event. Since it is an event-transition,
we select the three transitions in enable(s0) to expand (s0, q0). Assume that
E(a) = e and E(b) �= e. So only two transitions can synchronize with (q0, β, q2).

338 S. Kan et al.

The synchronized transitions are ((s0, q0), (s2, q2)) and ((s0, q0), (s3, q2)) shown
in Fig. 2(c). Therefore M ⊗s B only expands (s0, q0) with 3 transitions, while
M ⊗ B will expands (s0, q0) with 5 transitions.

4.2 Computation of Ample Sets

The computation of the ample set of a state s in conventional POR [16] is to
select a subset of enable(s) that satisfies the 4 conditions: C0, C1, C2, and C3,
which are described in Sect. 2. The computation of ample sets in SE-POR, how-
ever, needs to reconsider the condition C2 in conventional POR. The conditions
C0, C1, and C3 keep unchanged. More precisely, the identification of visible
actions in SE-POR needs to consider both events and atomic state propositions,
while conventional POR only needs to consider atomic state propositions. The
identification of visible actions with respect to atomic state propositions in SE-
POR is the same as conventional POR. We only focus on the identification of
visible actions with respect to events.

For events appearing in an SE-LTL formula, the work introduced in [1] iden-
tifies all actions, which are mapped to the events, as visible actions. This method
is suitable for the verification of weak SE-LTL [1], which is a subset of SE-LTL.
But it cannot preserve the correctness of SE-POR, which is for the full class of
SE-LTL. The work of [1] is only concerned with events but our work needs to
be concerned with event literals.

Consider an LKS M and an SE-BA B translated from an SE-LTL formula
φ. We want to check M against B. Assume φ is in NNF. Some notations are
first introduced. The notation elit(φ) is the set of event literals appearing in φ.
For example, if φ = F(e1 → G(p ∧ ¬e2)), where e1 and e2 are two events and
p is an atomic state proposition, then elit(φ) = {e1,¬e2}. Let e be an event
and Act be the set of actions in M. The notation vib(e) is defined as vib(e) =
{a ∈ Act | E(a) = e}, that is, the set of all actions mapped to e. The notation
vib(¬e) = Act − vib(e). We extend the use of vib to a set S of event literals as
follows: vib(S) =

⋃
l∈S vib(l). For example, vib(elit(φ)) =

⋃
l∈elit(φ) vib(l).

A simple and correct method for identifying visible actions with respect to
the event literals in φ is to detect all actions in vib(elit(φ)) as visible actions.
Using this method, the number of visible actions is dependent on the partial map
E from actions to events. Consider the visible actions identified by the literal ¬e,
i.e., visible actions are vib(¬e) = Act−vib(e). If there is only one action mapped
to e then the only one action in M is identified as the unique invisible action.
But if most actions in M are mapped to e then most actions are invisible actions
with respect to ¬e. Even though we cannot say that more invisible actions always
yield more reduction, but the number of invisible actions has an effect on the
efficiency of the technique. In this paper, we propose a condition, which is a
predicate, such that if an event literal l satisfies it then we can select either
vib(l) or vib(¬l) (we have ¬¬e ≡ e) as visible actions. Then the efficiency of
SE-POR is dependent on our selection of visible actions with respect to l.

Before introducing the predicate, we first present some notions. A formula ψ
is in U-form iff ψ = ψ1Uψ2. A formula ψ is in R-form iff ψ = ψ1Rψ2. The notation

Partial Order Reduction for State/Event Systems 339

UR(φ) denotes the set of all subformulas of φ, which are either U-form or R-form.
An event literal is said to be uncovered by U-form and R-form subformulas in
an SE-LTL formula if it appears outside U-form and R-form subformulas. More
formally, Let φ be an SE-LTL formula and l be an event literal appearing in φ.
The DNF of φ is φ1 ∨ . . . ∨ φn, where φi is a conjunction of temporal formulas
for 1 � i � n. If there is a conjunction φi = {ϕ1, . . . , ϕm} such that there exists
a temporal formula ϕj ∈ φi with 1 � j � m and ϕj is the literal l, then we say
that l is uncovered by U-form and R-form subformulas in φ, or l is uncovered in
φ for short. For example, let e be an event and p be an atomic state proposition.
The event e is uncovered in e∨Gp and e∧ (pUe), but not uncovered in p∧ (eUp).
We now introduce the predicate, denoted as inst(φ, l).

Definition 4. Let φ be an SE-LTL formula, which is in NNF, and l be an
event literal in φ. The predicate inst(φ, l) is false iff there exists a subformula f
in UR(φ) such that the literal l satisfies (1) if f = φ1Uφ2 then l is uncovered in
φ2, and (2) if f = φ1Rφ2 then l is uncovered in φ1; otherwise inst(φ, l) is true.

For each event literal l ∈ elit(φ), if inst(φ, l) = true, we can select either
vib(l) or vib(¬l) as visible actions. If inst(φ, l) = false, we can only select
vib(l) as visible actions. For example, assume φ = F(e1 → G(p ∧ ¬e2)), where
p is an atomic state proposition, and e1 and e2 are events. Let f1 = F(e1 →
G(p ∧ ¬e2)) ≡ 	U(e1 → G(p ∧ ¬e2) and f2 = G(p ∧ ¬e2) ≡ ⊥R(p ∧ ¬e2),
then UR(φ) = {f1, f2}. For f1, ¬e2 is not uncovered in (e1 → G(p ∧ ¬e2) and
for f2, ¬e2 does not appear in ⊥, so inst(φ,¬e2) = true. The visible actions
identified by events in φ could be vib({e1,¬e2}) or vib({e1, e2}). In this paper,
if vib(e) and vib(¬e) both could be detected as visible actions, where e is an
event, our strategy always selects vib(e). This strategy yields more reduction for
the benchmarks of our experiments. The details of our strategy are introduced
as follows. We first define the notation c(l) for the literal l.

c(l) =
{

e, if l = ¬e,where e is an event, and inst(φ, l) = true
l, otherwise

(1)

The notation elit′(φ) = {c(l) | l ∈ elit(φ)}. For all event literals in φ, our strategy
identifies all actions in vib(elit′(φ)) as visible actions with respect to these event
literals. We illustrate the strategy by an example. Consider the property that
for all states in a system, if a process sends a message to other processes then
it will eventually receive a response. It can be specified as φ = G(send → F
receive), where send and receive are events. We first translate its negation
¬φ ≡ F(send ∧ G¬receive) into an SE-BA. As inst(¬φ,¬receive) is true, so all
actions in vib({send, receive}) are identified as visible actions. Based on elit′, we
redefine state-transitions and event-transitions in SE-BAs (see Definition 2). The
new definition yields more state-transitions, so we might obtain more reduction.

Definition 5. Let (q, α, q′) be a transition in an SE-BA translated from φ. If
there exists at least one literal in both elit′(φ) and α then the transition is called
an event-transition, otherwise it is a state-transition.

340 S. Kan et al.

The product ⊗s is also correct with respect to state-transitions defined by
Definition 2. The new definition of event-transitions requires that there exists an
event literal in both elit′(φ) and α, while the old definition of event-transitions
only requires that there exists an event literal in α. So we can obtain more state-
transitions and therefore more reduction. We only prove the correctness of ⊗s

with respect to Definition 5 and vib(elit′(ϕ)).

Theorem 2. Let B be an SE-BA translated from an SE-LTL formula ¬φ with-
out X operators and M be an LKS. State-transitions are defined by Definition 5
and visible actions with respect to events are vib(elit′(¬φ)). Then M � φ iff
L(M ⊗s B) = ∅.

5 Comparison and Combination with POR for wSE-LTL

In this section, we concentrate on the relation between SE-POR and the POR
for weak SE-LTL [1], denoted as wSE-POR. Firstly, we recall the syntax and
semantics of wSE-LTL. Secondly, we show that SE-POR is also suitable for the
properties specified by wSE-LTL formulas. At last, we propose a technique to
combine SE-POR and wSE-POR to obtain more reduction.

Weak SE-LTL is introduced to characterize a class of SE-LTL formulas that
could be checked with wSE-POR. The syntax of wSE-LTL is defined as follows:

ψ :: = P̃(e) | p | ¬ψ | ψ ∧ ψ | ψUψ | X̃ψ | ψUeψ

where e ranges over a set of events EP and p ranges over a set of atomic state
propositions SP . Let σ = 〈s0, a0, s1, a1, . . .〉 be an infinite run of an LKS. The
semantics of wSE-LTL is explained over infinite runs of LKSs.

(1) σ � P̃(e) iff ∃k � 0.E(ak) = e and ∀0 � j < k.E(aj) /∈ EP ,
(2) σ � p iff p ∈ Ls(s0),
(3) σ � ¬ψ iff σ � ψ,
(4) σ � ψ1 ∧ ψ2 iff σ � ψ1 and σ � ψ2,
(5) σ � ψ1Uψ2 iff ∃k � 0.σk � ψ2 and ∀0 � j < k.σj � ψ1,
(6) σ � X̃ψ iff ∃k � 0.E(ak) ∈ EP,∀0 � j < k.E(aj) /∈ EP and σk+1 � ψ,
(7) σ � ψ1Ueψ2 iff ∃k � 0.E(ak) = e, σk+1 � ψ2 and ∀0 � j < k + 1.σj � ψ1.

The work of [1] illustrates that wSE-LTL is a subset of SE-LTL by proposing
a translation from wSE-LTL formulas into equivalent SE-LTL formulas. Let
ξ =

∧
e∈EP ¬e. The notation T (ψ) denotes the translation for the wSE-LTL

formula ψ. Then T (ψ) is the following:

T (p) := p T (P̃(e)) := ξUe

T (X̃ψ) := ξU(¬ξ ∧ XT (ψ)) T (ψUφ) := T (ψ)UT (φ)
T (ψ ∧ φ) := T (ψ) ∧ T (φ) T (¬ψ) := ¬T (ψ)
T (ψUaφ)] := T (ψ)U(a ∧ T (ψ) ∧ XT (φ))

More details of wSE-LTL could be found in [1]. The method of wSE-POR
computes an ample set for each state and use the ample set to expand the state.

Partial Order Reduction for State/Event Systems 341

The difference between wSE-POR and SE-POR is that wSE-POR always selects
ample sets to expand states in LKSs, while SE-POR only selects ample sets to
expand states when encountering state-transitions. The computation of ample
sets in wSE-POR also reconsiders the condition C2 of conventional POR.

We now compare the identification of visible actions between SE-POR and
wSE-POR. For a wSE-LTL formula φ, assume the set of events appearing in φ
is evt(φ). In Subsect. 4.2, elit(φ) denotes the set of event literals appearing in φ.
In wSE-POR, it detects the actions in vib(evt(φ)) as visible actions. That is, the
visible actions are vib(evt(φ)) = {a ∈ Act | ∃e ∈ evt(φ).E(a) = e}. In SE-POR,
we detects vib(elit′(φ)) as the set of visible actions. We will show that, in fact,
vib(evt(φ)) = vib(elit′(φ)) for any wSE-LTL formula φ (for SE-LTL formulas,
which are not wSE-LTL, they may not have the same set of visible actions).

We only need to consider the identification of visible actions with respect to
P̃(e) and ¬P̃(e) in a wSE-LTL formula φ. As T (P̃(e)) ≡ ξUe, inst(ξUe, e) =
true, so SE-POR can select either vib(e) or vib(¬e) as visible actions. Accord-
ing to elit′(φ), SE-POR always selects vib(e). For ¬P̃(e), as T (¬P̃(e)) ≡
(
∨

e′∈EP e′)R¬e, inst((
∨

e′∈EP e′)R¬e,¬e) = true, so we can select either vib(e)
or vib(¬e) as visible actions. According to elit′(φ), SE-POR always selects vib(e).
Therefore vib(evt(φ)) = vib(elit′(φ)). As both SE-POR and wSE-POR only
modify the condition C2 of conventional POR, so they compute the same ample
set for a state s. The following theorem illustrates that SE-POR could also be
applied to check wSE-LTL formulas.

Theorem 3. Let ψ be a wSE-LTL formula, φ be its equivalent SE-LTL formula,
and B be the SE-BA translated from ¬φ. Let M be an LKS. Then M � ψ iff
L(M ⊗s B) = ∅.

Theorem 3 illustrates that our technique is suitable for a larger class of SE-LTL
formulas compared with the work introduced in [1]. For example, the SE-LTL
formula FGe, where e is an event, could not be checked by wSE-POR. Since
this formula is not preserved under state/event stutter-equivalence, which is
introduced in [1], and wSE-POR requires SE-LTL formulas are preserved under
state/event stutter-equivalence. But this formula can be checked by SE-POR.

However, we must admit that SE-POR is less efficient compared with wSE-
POR when checking a wSE-LTL formula, since SE-POR checks a larger set of
runs in LKSs in order to enable a larger class of SE-LTL. But as Theorem3
indicates that our technique is also suitable for wSE-LTL, and SE-POR and
wSE-POR compute the same ample set for a state s, we provide a technique to
combine them to obtain more reduction for the formulas that incorporate both
the notions of SE-LTL and wSE-LTL. The combined logic is called Combined
State/Event LTL (cSE-LTL). The syntax of cSE-LTL is defined as follows:

φ :: = p | e | φw | ¬φ | φ ∧ φ | φUφ

where φw is a wSE-LTL formula, p ranges over a set SP of atomic state propo-
sitions, e ranges over a set EP of events. The operators ¬,∧,U are same as the

342 S. Kan et al.

definition of SE-LTL. The semantics of cSE-LTL is explained over infinite runs
of LKSs based on the semantics of SE-LTL and wSE-LTL.

In order to check a cSE-LTL formula φ, the formula should be translated into
a pure SE-LTL formula. Assume φ is translated into an SE-LTL φ′. We detect the
temporal subformulas of φ′, that are translated from wSE-LTL subformulas of φ.
The notation W(φ′) denotes the set of temporal submformulas in φ′ translated
from wSE-LTL subformulas. We introduce the notion of weak-states. Let B be
the BA translated from φ′. Let q be a state of B which is identified with S(q) =
{ψ1, . . . , ψn}. If for all ψi ∈ S(q), ψi ∈ W(φ′), then q is called a weak-state. The
following definition of synchronous products illustrates how to exploit weak-
states to reduce the sizes of the synchronous products.

Definition 6. Let M = (S, Init, P,Act, T,Ls) be an LKS and B =
(Q,Σ, T , I, F) be an SE-BA. The synchronous product of M and B with respect
to POR and weak-states is defined as M ⊗w B = (Qp, Σ, Tp, Ip, Fp), where
Qp, Ip, Fp are same as the definition of ⊗s and Tp is defined as follows: a tran-
sition (s, q) → (s′, q′) is in Tp iff

1. if q is not a weak-state then either one of the following two conditions should
hold: (1) there exists an event-transition q

α−→ q′ and there exists a transition

s
a−→ s′ in enable(s) such that L̃s(s) ∧ Ẽ(a) � α, (2) there exists a state-

transition q
α−→ q′ and there exists a transition s

a−→ s′ in ample(s) such that

L̃s(s) ∧ Ẽ(a) � α.
2. if q is a weak-state then there exists a transition q

α−→ q′ and there exists a
transition s

a−→ s′ in ample(s) such that L̃s(s) ∧ Ẽ(a) � α.

The synchronous product M ⊗w B selects ample(s) to expand s when the
state q is a weak-state or the outgoing transitions of s are synchronized with a
state-transition of q. The following theorem illustrates the correctness of ⊗w for
the checking of cSE-LTL formulas.

Theorem 4. Let M be an LKS and B be an SE-BA translated from a cSE-LTL
formula. Then L(M ⊗s B) = ∅ iff L(M ⊗w B) = ∅.

6 Implementation and Experimental Results

In order to evaluate the efficiency and effectiveness of our technique, we have
implemented a prototype tool for SE-POR based on the model checker SPIN,
called SE-SPIN. SPIN uses PROMELA [7] to model systems and LTL to specify
properties [8]. SE-SPIN extends SPIN by allowing the user to declare event vari-
ables in PROMELA models. Its syntax is as follows: [(statement)]@event name,
where statement is a statement of a PROMELA model and event name is the
name of an event. This event occurs when the statement is executed. An event
name can only be defined in PROMELA models and only be referenced in SE-
LTL formulas. Moreover, we modified the on-the-fly model checking of SPIN to

Partial Order Reduction for State/Event Systems 343

check SE-LTL formulas and integrated SE-POR into it. We conducted experi-
ments on two benchmarks. All experiments were performed on a computer with
Intel core i5, 4GB RAM and a 64-bit version of Mac OS X. The time limitation
is one hour. The source code of SE-SPIN and benchmarks can be obtained at
https://sourceforge.net/p/se-spin/code/ci/master/tree/.

Table 1. Experimental results for producer-consumer prototype

NC NP SQ States NO-POR Time (s) States POR Time (s)

2 2 5 1022333 2.56 585341 0.55

2 3 5 7984123 74.3 2858123 17.5

3 3 5 – – 29184813 276

The first benchmark is a toy model of the producer-consumer problem. The
checked property is that when an item is put into the queue, then the item will be
obtained in the future. Here put an item into the queue and get an item from the
queue are events. Experimental results are shown in Table 1, where NC, NP, and
SQ denote the number of consumers, the number of producers, and the size of
the queue, respectively. States NO-POR and States POR denote the number
of states stored during SE-LTL model checking without SE-POR and the number
of states stored during SE-LTL model checking with SE-POR. The symbol ‘−’
means that SE-POR does not terminate within one hour. The experimental
results show that SE-POR is more efficient than SE-LTL model checking without
POR, especially increasing the numbers of producers and consumers.

The second benchmark comes from [10], which checks the General Inter-Orb
Protocol (GIOP) of Common Object Request Broker Architecture. One of the
properties in [10] needs events to express it. The property is that when a user
sends a request message, it will finally receive a reply message. The property is
called S-R and can be expressed in SE-LTL as G(send → (Freceive)), where send
and receive are the two events. [10] uses labels in PROMELA to indirectly denote
events and it is a pure state-based representation. The experimental results are
shown in Table 2, where State-based POR, SE-based, and SE-based POR
denote state-based model checking with POR (used in [10]), SE-LTL model
checking without POR and SE-LTL model checking with SE-POR, respectively.
We select three models: giop1, giop2, and giop3 in [10]. The experimental results
are expressed as pairs (number of states,time), where the first element is the
number of states and the second element is the execution time in seconds. We
can see that SE-POR is more efficient than state-based model checking with
POR. The reason is that even though adding labels in PROMELA models could
represent the meaning of events but it will introduce a lot of redundant search.
The performance of SE-LTL model checking without POR is the worst.

https://sourceforge.net/p/se-spin/code/ci/master/tree/

344 S. Kan et al.

Table 2. Experimental results for GIOP

Benchmark Property State-based POR
(states, time)

SE-based
(states, time)

SE-based POR
(states, time)

giop1 S-R (450006, 5.2) (1195940, 26.4) (196472, 1.93)

giop2 S-R (161858, 2.74) (651231, 26.4) (62054, 1.09)

giop3 S-R (261200, 3.76) (1271334, 46.5) (49473, 0.82)

7 Conclusion and Future Work

In this paper, we combine SE-LTL model checking with partial order reduction to
improve the performance of the verification of systems incorporating both states
and events. The core of SE-POR is a synchronous product of an LKS and an
SE-BA with the integration of POR and the identification of visible actions with
respect to events. In addition, we compare our technique with wSE-POR and
combine them to obtain more reduction. The preliminary experimental results
illustrate the potential for reduction of SE-POR compared with pure state-based
POR and SE-LTL model checking without POR. In the future, we will focus
on the selection of visible actions of SE-POR to obtain most reduction as we
provide several strategies to identify visible actions. Moreover, we would like to
implement our technique using symbolic model checking.

References

1. Beneš, N., Brim, L., Buhnova, B., Černá, I., Sochor, J., Vařeková, P.: Partial
order reduction for state/event LTL with application to component-interaction
automata. Sci. Comput. Program. 76(10), 877–890 (2011)

2. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: Concurrent soft-
ware verification with states, events, and deadlocks. Formal Asp. Comput. 17(4),
461–483 (2005)

3. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Kozen, D. (ed.) Logics of Programs, Work-
shop, Yorktown Heights, New York. LNCS, vol. 131, pp. 52–71. Springer, Heidel-
berg (1981)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

5. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

6. Godefroid, P., Wolper, P.: A partial approach to model checking. Inf. Comput.
110(2), 305–326 (1994)

7. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice Hall,
Upper Saddle River (1990)

8. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston (2004)

Partial Order Reduction for State/Event Systems 345

9. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning About
Systems. Cambridge University Press, Cambridge (2004)

10. Kamel, M., Leue, S.: Formalization and validation of the General Inter-ORB Pro-
tocol (GIOP) using PROMELA and SPIN. STTT 2(4), 394–409 (2000)

11. Kan, S., Huang, Z., Chen, Z., Li, W., Huang, Y.: Partial Order Reduction for
Checking LTL Formulae with the Next-time Operator (2016). doi:10.1093/logcom/
exw004

12. Lawford, M., Pantelic, V., Zhang, H.: Towards integrated verification of timed
transition models. Fundam. Inform. 70(1–2), 75–110 (2006)

13. Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidel-
berg (1993)

14. Queille, J., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) International Sympo-
sium on Programming. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)

15. Sun, J., Liu, Y., Dong, J.S., Wang, H.H.: Specifying and verifying event-based
fairness enhanced systems. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol.
5256, pp. 5–24. Springer, Heidelberg (2008)

16. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) Advances in Petri Nets 1990. LNCS, vol. 483, pp. 491–515. Springer, Heidel-
berg (1991)

http://dx.doi.org/10.1093/logcom/exw004
http://dx.doi.org/10.1093/logcom/exw004

Concolic Unbounded-Thread Reachability
via Loop Summaries

Peizun Liu(B) and Thomas Wahl

Northeastern University, Boston, USA
lpzun@ccs.neu.edu

Abstract. We present a method for accelerating explicit-state backward
search algorithms for systems of arbitrarily many finite-state threads.
Our method statically analyzes the program executed by the threads for
the existence of simple loops. We show how such loops can be collapsed
without approximation into Presburger arithmetic constraints that sym-
bolically summarize the effect of executing the backward search algo-
rithm along the loop in the multi-threaded program. As a result, the
subsequent explicit-state search does not need to explore the summa-
rized part of the state space. The combination of concrete and sym-
bolic exploration gives our algorithm a concolic flavor. We demonstrate
the power of this method for proving and refuting safety properties of
unbounded-thread programs.

1 Introduction

Unbounded-thread program verification continues to attract the attention it
deserves: it targets programs designed to run on multi-user platforms and web
servers, where concurrent software threads respond to service requests of a num-
ber of clients that can usually neither be predicted nor meaningfully bounded
from above a priori. Such programs are therefore designed for an unspecified and
unbounded number of parallel threads as a system parameter.

We target in this paper unbounded-thread shared-memory programs where
each thread executes a non-recursive Boolean (finite-data) procedure. This model
is popular, as it connects to multi-threaded C programs via predicate abstrac-
tion [4,14], a technique that has enjoyed progress for concurrent programs in
recent years [7]. The model is also popular since basic program state reachability
questions are decidable. They are also, however, of high complexity: the equiv-
alent coverability problem for Petri nets was shown to be EXPSPACE hard [6].
The motivation for our work is therefore to improve the efficiency of existing
algorithms.

A sound and complete method for coverability analysis for well quasi-ordered
systems (WQOS) is the backward search algorithm by Abdulla [1]. Coverability
for WQOS subsumes program state reachability analysis for a wide class of multi-
threaded Boolean programs. Starting from the target state whose reachability

This work is supported by US National Science Foundation grant no. 1253331.

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 346–362, 2016.
DOI: 10.1007/978-3-319-47846-3 22

Concolic Unbounded-Thread Reachability via Loop Summaries 347

is under investigation, the algorithm proceeds backward by computing cover
preimages, until either an initial state is reached, or a fixpoint. This search
principle is used in several variants, such as the widening-based approach in [16].

In this paper we propose an idea to accelerate backward search algorithms
like Abdulla’s. The goal is to symbolically summarize parts of the finite-state
transition system P (our formal model for Boolean programs) executed by each
thread, in a way that reachability in the summarized parts can be reduced to
satisfiability of the summary formulas. Prime candidates for such symbolic sum-
maries are loops in P. The exploration algorithm may have to traverse them
multiple times before a loop fixpoint is reached. We instead wish to summarize
the loop statically, obtaining a formula parameterized by the number κ of loop
iterations, for the global state reached after κ traversals of the loop.

In order to enable loop summarization, our approach first builds an abstrac-
tion P of the transition graph P (i) that is acyclic, and (ii) whose single-threaded
execution overapproximates the execution of P by any number of threads. Thus,
if there is no single-threaded path to the final state in P, the algorithm returns
“unreachable” immediately. Otherwise, since P is acyclic, there are only finitely
many paths that require investigation.

For each such path, we now determine whether it is “summarizable”. This is
the case if the path either features no loops, or only simple loops: single cyclic
paths without nesting. We show in this paper how a precise summary of the
execution of standard backward search across such a path can be obtained as a
formula in Presburger arithmetic, the decidable theory over linear integer opera-
tions. Conjoined with appropriate constraints encoding the symbolic initial and
final states, reachability is then equivalent to the satisfiability of this summary.

Our algorithm can be viewed as separating the branching required in the
explicit-state traversal in Abdulla’s algorithm [1], and the arithmetic required
to keep track (via counting) of the threads in various local states. Structure P is
loop-free and can thus be explored path by path. Paths with only simple loops
are symbolically summarized into a Presburger formula. The question whether
the target state is reachable along this path can then often be answered quickly,
in part since the formulas tend to be easy to decide. Other parts are explored
using standard explicit-state traversal, restricted to the narrow slice of the state
space laid out by this path, which gives our algorithm a concolic flavor.

We conclude this paper with experiments that investigate the performance
gain of our acceleration method applied to backward search. The results demon-
strate that transition systems obtained from Boolean programs, which feature
“execution discipline” enforced by the control flow, are better suited to path-
wise acceleration than Petri nets, which often encode rule-based (rather than
program-based) transition systems and thus feature fewer summarizable paths.

Proofs to claims made in this paper can be found in the Appendix of [21].

2 Thread-Transition Diagrams and Backward Search

We assume multi-threaded programs are given in the form of an abstract state
machine called thread transition diagram [16]. Such a diagram reflects the

348 P. Liu and T. Wahl

replicated nature of programs we consider: programs consisting of threads exe-
cuting a given procedure defined over shared (“global”) and (procedure-)local
variables. A thread transition diagram (TTD) is a tuple P = (S,L,R), where

– S is a finite set of shared states;
– L is a finite set of local states;
– R ⊆ (S × L) × (S × L) is a (finite) set of edges.

An element of V = S × L is called thread state. We write (s1, l1) → (s2, l2) for
((s1, l1), (s2, l2)) ∈ R. We assume the TTD has a unique initial thread state,
denoted tI = (sI , lI); the case of multiple initial thread states is discussed in
Appendix A of [21]. An example of a TTD is shown in Fig. 1(a).

(0,0)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0)

(6,0)

(0,1) (0,2) (0,3) (0,4)

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(6,3)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(6,4)
s

l

(a)

(0,0)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0)

(6,0)

(0,1) (0,2) (0,3) (0,4)

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(6,3)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(6,4)
s

l

(b)

(0,0)

(3,2)

(4,2) (4,3)

(6,3)

(5,4)

(6,4)

(1,1)

(c)

Fig. 1. (a) A thread transition diagram P (initial state tI = (0, 0)); (b) the Expanded
TTD P+ with a path σ+; (c) the SCC quotient graph P of P+, with quotient path σ.
The black disc represents the loop in σ+ (the other SCCs are trivial)

A TTD gives rise to a family, parameterized by n, of transition systems
Pn = (Vn, Rn) over the state space Vn = S × Ln, whose states we write in the
form (s|l1, . . . , ln). This notation represents a global system state with shared
component s, and n threads in local states li, for i ∈ {1, . . . , n}. The transitions
of Pn, forming the set Rn, are written in the form (s|l1, . . . , ln) � (s′|l′1, . . . , l′n).
This transition is defined exactly if there exists i ∈ {1, . . . , n} such that (s, li) →
(s′, l′i) and for all j �= i, lj = l′j . That is, our execution model is asynchronous:
each transition affects the local state of at most one thread.1

The initial state set of Pn is {sI} × {lI}n. A path of Pn is a finite sequence
of states in Vn whose first element is initial, and whose adjacent elements are
related by Rn. A thread state (s, l) ∈ S × L is reachable in Pn if there exists a
path in Pn ending in a state with shared state s and some thread in local state l.

A TTD also gives rise to an infinite-state transition system P∞ = (V∞, R∞),
whose set of states/transitions/initial states/paths is the union of the sets of
states/transitions/initial states/paths of Pn, for all n ∈ N. We are tackling in this

1 Dynamic thread creation is discussed at end of Sect. 6.

Concolic Unbounded-Thread Reachability via Loop Summaries 349

paper the thread state reachability problem: given a TTD P and a final thread
state (s, lF), is (s, lF) reachable in P∞? It is easy to show that this question is
decidable, by reducing P∞ to a well quasi-ordered system (WQOS) [1]: let the
covers relation � over V∞ be defined as follows:

(s|l1, . . . , ln) � (s′|l′1, . . . , l′n′)

whenever s = s′ and for all l ∈ L, |{i : li = l}| ≥ |{i : l′i = l}|. The latter inequal-
ity states that the number of threads in local state l “on the left” is at least
the number of threads in local state l “on the right”. Relation � is a well quasi-
order on V∞, and (P∞,�) satisfies the definition of a WQOS, in particular the
monotonicity property required of � and �. The proof of this property exploits
the symmetry of the multi-threaded system: the threads execute the same pro-
gram P: a state (s|l1, . . . , ln) can be compressed without loss of information into
the counter notation (s|n1, . . . , n|L|), where nl = |{i : li = l}|.

The thread state reachability question can now be cast as a coverability
problem, which is decidable but of high complexity, e.g. EXPSPACE-hard for
standard Petri nets [6], which are equivalent in expressiveness to infinite-state
transition systems obtained from TTD [16].

Algorithm 1. Bws(M, I, q)
Input: initial states I,

final state q �∈ I
1: W := {q} ; U := {q}
2: while ∃w ∈ W
3: W := W \ {w}
4: for p ∈ CovPre(w)\↑ U
5: if p ∈ I then
6: “q coverable”
7: W := min(W ∪ {p})
8: U := min(U ∪ {p})
9: “q not coverable”

Algorithm 1: Infinite-state back-
ward search. Symbol ↑ U stands
for the upward closure of U :
↑ U = {u′ : ∃u ∈ U : u′ � u}.

A sound and complete algorithm to decide
coverability for WQOS is the backward search
algorithm by Abdulla et al. [1,2], a simple ver-
sion of which is shown on the right. Input is a
WQOS M , a set of initial states I, and a non-
initial final state q. The algorithm maintains a
work set W of unprocessed states, and a set
U of minimal encountered states. It iteratively
computes minimal cover predecessors

CovPre(w) = min{p : ∃w′ � w : p � w′} (1)

starting from q, and terminates either by back-
ward-reaching an initial state (thus proving
coverability of q), or when no unprocessed ver-
tex remains (thus proving uncoverability).

Strongly Connected Components. In this paper
we also frequently make use of the following
standard notions. Given a directed graph G, a strongly connected component
(SCC) is a maximal set C of vertices such that for any two vertices c1 and c2 in
C, there is a path in C from c1 to c2. If the subgraph of G induced by C has no
edge, C is called trivial.

The SCC quotient graph G of G has exactly one vertex for each SCC of G,
and no other vertices; we identify each vertex of G with the SCC it represents.
An edge (C1, C2) exists in G whenever C1 �= C2 and there is a G-edge from
some vertex in C1 to some vertex in C2. For a vertex v, we denote by v the
unique SCC that v belongs to (hence, by identification, v is also a vertex in G).
Since each cycle of G is contained entirely in one SCC, and nodes in G have no
self-loops, G is acyclic.

350 P. Liu and T. Wahl

3 Pathwise Unbounded-Thread Reachability: Overview

Our approach for accelerating backward reachability analysis is two-phased. The
first phase constructs from P an abstract structure P, with the property that any
thread state reachable in P∞ (i.e., for any number of threads) is also reachable in
P when executed by a single thread. Structure P thus overapproximates the
thread-state reachability problem for P to a much simpler sequential reachability
problem. Technically, the abstraction first adds certain edges to P, and then
collapses strongly connected components to obtain P, which is hence acyclic.
Note that this first phase performs no exploration and is in fact independent of
the underlying reachability algorithm being accelerated.

In the second phase, we analyze each path σ in the acyclic structure P from
tI to tF separately, if any. We now distinguish: if σ visits only simple SCCs, by
which we mean SCCs that represent simple loops, then we call σ simple, and we
precisely summarize the effect of traversing the path using Presburger formulas.2

Instead of executing Algorithm1, we solve these Presburger constraints, in effect
accelerating the algorithm, losslessly, along loop-free path segments and simple
loops. If σ visits at least one spaghetti SCC — an SCC that represents more
than a simple loop (e.g. a loop nest) — then we call σ spaghetti as well and
explore it using Algorithm1, restricted to the edges along σ.

At the end of this section we illustrate the overall process in more detail. We
first introduce the acyclic quotient structure P.

A Single-Threaded Abstraction of P∞. A key operation employed during
backward search is what we call expansion of a global state: the addition of a
thread in a suitable local state during the computation of the cover preimage (1).
We can simulate the effect of such expansions without adding threads, by allowing
a thread to change its local state in certain disciplined ways. To this end, we
expand the TTD data structure as follows.

Definition 1. Given a TTD P = (S,L,R), an expansion edge is an edge of
the form ((s, l), (s, l′)) (same shared state) such that l �= l′ and the following
holds:

– there exists an edge of the form . . . → (s, l) in R, and
– there exists an edge of the form (s, l′) → . . . in R, or (s, l′) = (sF , lF).

The Expanded TTD (ETTD) of P is the structure P+ = (S,L,R+) with
R+ = R ∪ {e : e is an expansion edge}.
To distinguish the edge types in P+, we speak of real edges (in R) and expansion
edges. Intuitively, expansion edges close the gap between two real edges whose
target and source, respectively, differ only in the local state. This can be seen
in Fig. 1(b), which shows the ETTD generated from the TTD in Fig. 1(a). In

2 Simple SCC nodes (representing a simple loop) are not to be confused with trivial
SCC nodes (representing a single node). Simple nodes are by definition non-trivial.

Concolic Unbounded-Thread Reachability via Loop Summaries 351

the graphical representation, expansion edges run horizontally and are shown as
dashed arrows (s, l) ��� (s′, l′).

To facilitate the identification and treatment of loops, we collapse the ETTD
P+ into its (acyclic) SCC quotient graph, denoted P. An example is shown in
Fig. 1(c). For ease of presentation, we assume that both the initial and final
thread states tI and tF of P form single-node SCCs in P, i.e. loops occur only
in the interior of a path. This can be enforced easily using artificial states.

Being acyclic, the quotient graph P contains only finitely many paths between
any two nodes. It also has another key property that makes it attractive for our
approach. Let us interpret P as a sequential transition system. That is, when we
speak of reachability of a thread state and paths in P, we assume P is executed
by a single thread from tI . (In contrast, the semantics of P is defined via the
unbounded-thread transition system P∞.) Given these stipulations, P overap-
proximates P, in the following sense:

Lemma 2. If thread state tF is reachable in P∞, then tF is also reachable in P.

By Lemma 2, if tF is not reachable from tI in P (a simple sequential reacha-
bility problem), it is not reachable in P∞. In that case our algorithm immediately
returns “unreachable” and terminates. If tF is reachable in P, we cannot con-
clude reachability in P∞, as can be seen from Fig. 1: thread state tF := (6, 4) is
easily seen to be unreachable in P∞, no matter how many threads execute the
diagram P in (a). But tF is obviously sequentially reachable in P (c). In the
rest of this paper we describe how to decide, for each path σ in P from tI to tF ,
whether it actually witnesses reachability of tF in P∞.

To give an overview of this process, consider a quotient path σ with one
simple SCC node. One such path is schematically depicted in Fig. 2, where we
have zoomed in on the SCC node �i in order to show the simple loop of P+

collapsed inside it. To analyze reachability of tF in P∞, we first consider the
path segment from tF to the exit point of the loop (see Fig. 2). The exit point
is the unique node of P+ abstracted by SCC node �i that is first encountered
when the quotient path σ is explored backward.

tI

�1

�i−1

�i

�i+1

�m−1

�m

tF

h0hm−1hm

hi

hi−1

exit point entry point

Fig. 2. A path σ in the acyclic structure P with a non-trivial and magnified SCC
node �i, representing some kind of loop structure in P+

Our approach builds a symbolic summary for this path segment. We then
do the same for the simple loop collapsed inside �i, and for the path from the
entry point of the loop back to tI . These summaries are combined conjunctively

352 P. Liu and T. Wahl

into a single Presburger expression ϕ over a parameter κ that represents the
number of iterations through the loop represented by �i. We now conjoin ϕ with
the constraint that, when backward-reaching tI along σ, no thread resides in any
local state other than lI . This condition ensures that the global state constructed
via symbolic backward execution is of the form {sI}×{lI}n, i.e. it is initial. The
claim that tF is reachable in P∞ is then equivalent to the satisfiability of the
overall formula; a satisfying assignment to κ specifies how many times the loop
in �i needs to be traversed.

In Sects. 4 and 5 we describe how loop-free path segments and simple loops,
respectively, are summarized, to obtain a symbolic characterization.

4 Presburger Summaries for Loop-Free Path Segments

Consider a path segment σ in P with only trivial (singleton) SCC nodes in its
interior; we call such segments loop-free. (The start and end state of σ may
still be non-trivial SCC nodes; the loops contracted by these SCC nodes are not
considered in this section.) The real and expansion edges along σ suggest a firing
sequence of edges during an exploration of P∞ using Algorithm 1. Each real edge
corresponds to a thread state change for a single thread; each expansion edge
corresponds to the expansion of the current global state. More precisely, given
a global state of the form (s′|l′1, . . . , l′n), Algorithm 1 computes cover preimages
(Eq. (1)), by first firing edges of R backward whose targets equal one of the
thread states (s′, l′i). Second, for each edge e whose target (s′, l′) (with shared
state s′) does not match any of the thread states (s′, l′i), Algorithm 1 expands the
global state, by adding one thread in local state l′, followed by firing e backward,
using the added thread.3

The steps performed by Algorithm 1 can be expressed in terms of updates
to local-state counters. Let edge e be of the form (s, l) → (s′, l′). If the current
global state (s′|l′1, . . . , l′n) contains a thread in local state l′, firing e backward
amounts to decrementing the counter nl′ for the target l′, and incrementing the
counter nl for the source l. If the current global state does not contain a thread
in local state l′, we first expand the state by adding such a thread, followed by
firing e backward. Together the step amounts exactly to an increment of nl.

We can execute these steps symbolically, instead of concretely, by travers-
ing path segment σ backward and encoding the corresponding counter updates
described in the previous paragraph as logical constraints over the local-state
counters. The constraints are expressible in Presburger (linear integer) arith-
metic. To demonstrate this, we introduce some light notation. For x, y ∈ Z and
b ∈ N, let x⊕by = max{x+y, b}. Intuitively, x⊕by is “x+y but at least b”. When
b = 0, we omit the subscript. We also use x
b y as a shorthand for x⊕b(−y)
(= max{x − y, b}). For example, x
 1 equals x − 1 if x ≥ 1, and 0 otherwise.
Neither ⊕b nor
b are associative: (1 ⊕ 2) ⊕ −3 = 0 �= 1 = 1 ⊕ (2 ⊕ −3). We
therefore stipulate: these operators associate from left to right, and they have
the same binding power as + and −.
3 We exploit the fact that cover preimages in systems induced by TTDs increase the

number of threads in a state by at most 1 (see [20, Lemma 1] for a proof).

Concolic Unbounded-Thread Reachability via Loop Summaries 353

Algorithm 2. Summary of a loop-free path segment
Input: path σ = t1, . . . , tk in P, i.e. (ti, ti+1) ∈ R+ for 1 ≤ i < k ; local state l
1: ei := (ti, ti+1) for 1 ≤ i < k , (si, li) := ti for 1 ≤ i ≤ k
2: summary := "nl" � summary is a string
3: for i := k − 1 downto 1
4: if ei ∈ R and li = l then
5: summary := summary."+1" � . = string concatenation
6: if ei ∈ R and li+1 = l then
7: summary := summary."-1"

8: if ei ∈ R+ \ R and li = l then
9: summary := summary."�1+1"

10: return summary

Operators ⊕/
 in Presburger formulas are syntactic sugar: we can rewrite a
formula Γ containing x⊕by, using a fresh variable v per occurrence:

Γ ≡ (Γ |(x⊕by)→v) ∧ ((x + y ≥ b ∧ v = x + y) ∨ (x + y < b ∧ v = b)) (2)

where α|β→γ denotes substitution of γ for β in α.
The summary of loop-free path segment σ is computed separately for each

local state l: Algorithm 2 symbolically executes σ backward; for certain edges
a “contribution” to counter nl is recorded, namely for each edge of R+ that is
adjacent to local state l, but only if it is real, or it is an expansion edge that starts
in local state l. Note that the three if clauses in Algorithm 2 are not disjoint:
the first two both apply when edge ei is “vertical”: it both enters and exits local
state l. In this case the two contributions cancel out.

The summary of path σ for local state l defines a function Σl : N → N

that summarizes the effect of path σ on counter nl. The summary functions for
the short path in Fig. 3 are shown next to the figure. These examples illustrate
how we can encode a loop-free quotient path into a quantifier-free Presburger
formula. The formula for Σ0(n0) implies that if we traverse the path backward
from a state with n0 = 0 threads in local state 0, at the end there will be
Σ0(0) = 0
 1 + 1 = 1 thread in local state 0. If we start with n0 = 1, we also
end up with n0 = 1. Note that the path cannot be traversed backward starting
with n2 = 0, since its endpoint is thread state (2, 2).

Non-trivial SCC nodes along σ are contractions of loops in the expanded
structure P+, to the effect that paths in P+ are no longer finite; their summaries
cannot be obtained by symbolic execution. Instead we will determine a precise
summary of simple loops that is parameterized by the number κ of times the
loop is executed. Spaghetti loops are discussed in Sect. 6.

5 Presburger Summaries for Simple Loops

In this section we generalize path summaries to the case of simple SCCs, formed
by a single simple loop, i.e., a single cyclic path without repeated inner nodes.

354 P. Liu and T. Wahl

Fig. 3. A loop-free quotient structure P with a vertical real edge

We aim at an exact solution in the form of a closed expression for the value
of local state counter nl after Algorithm 1 traverses the loop some number of
times κ.

In this section, since we need to “zoom in” to SCCs collapsed into single nodes
in P, we instead look at paths in P+. Recall that for a loop-free path σ+, the
value of counter nl after Algorithm 1 traverses σ+ can be computed using σ+’s
path summary function Σl, determined via symbolic execution (Algorithm 2).
In the case that σ+ is a loop, we would like to obtain a summary formula
parameterized by the number κ of times the loop is executed (we cannot replicate
σ+’s summary function κ times, since κ is a variable).

To this end, let σ+ = t1, . . . , tk with tk = t1 be a loop in P+, and define
(si, li):=ti for 1 ≤ i ≤ k. Let

δl = |{i : 1 ≤ i < k : (ti, ti+1) ∈ R ∧ li = l}| −
|{i : 1 ≤ i < k : (ti, ti+1) ∈ R ∧ li+1 = l}| (3)

be the real-edge summary δl ∈ Z of σ+, i.e. the number of real edges along σ+

that start in local state l, minus the number of real edges along σ+ that end
in l. Value δl summarizes the total contribution by real edges to counter nl as
path σ+ is traversed backward: real edges starting in l increment the counter,
those ending in l decrement it. Let further bl = Σl(1) if σ+ ends in local state l
(in this case the backward traversal must start with at least 1 thread in l), and
bl = Σl(0) otherwise.

Theorem 3. Let superscript (κ) denote κ function applications. Then, for
κ ≥ 1,

Σl
(κ)(nl) = nl ⊕bl δl ⊕bl (κ − 1) · δl. (4)

Recall that ⊕ is not associative (it associates from left to right); the right-hand
side of Eq. (4) can generally not be simplified to nl ⊕bl κ ·δl. Intuitively, the term
nl ⊕bl δl marks the contribution to counter nl of the first loop traversal, while
(κ − 1) · δl marks the contribution of the remaining κ − 1 traversals.

Example. We show how the unreachability of thread state (6, 4) for the TTD in
Fig. 1 is established. For each local state l ∈ {0, . . . , 4}, the following constraints

Concolic Unbounded-Thread Reachability via Loop Summaries 355

are obtained (after simplifications) from summaries of the loop-free path segment
from (6, 4) to (3, 1) (“loop exit point”), the loop inside the SCC node (black disc)
using Theorem 3, and the loop-free path segment from (1, 0) (“loop entry point”)
via (1, 1) to the initial thread state (0, 0). Parameter κ is the number of times
the loop is executed:

n0 : 0 ⊕0 0 ⊕2 2 ⊕2 (κ − 1) · 2 ⊕3 3 ≥ 1
n1 : 0 ⊕1 0 ⊕1 −1 ⊕1 (κ − 1) · −1 ⊕0 −3 = 0
n2 : 0 ⊕2 2 ⊕0 −1 ⊕0 (κ − 1) · −1 ⊕0 0 = 0
n3 : 0 ⊕0 −2 ⊕0 0 ⊕0 (κ − 1) · 0 ⊕0 0 = 0
n4 : 1 ⊕1 0 ⊕0 0 ⊕0 (κ − 1) · 0 ⊕0 0 = 0

The equation for n4 simplifies to 1 = 0 and thus immediately yields unsatisfiabil-
ity. Since there is only one path in P, we conclude unreachability of tF = (6, 4).
In contrast, for target thread state (6, 3), the equations for n3 and n4 both reduce
to true. The conjunction of all five equations reduces to 1 ⊕0 (κ − 1) · (−1) = 0.
This formula is satisfied by κ = 2, witnessing reachability of (6, 3) via a path
containing two full iterations of the loop inside the SCC.

6 Pathwise Unbounded-Thread Reachability

Consider an SCC along quotient path σ that represents several distinct simple
loops in P+. An example is an SCC with two loops A and B that have one point
in common and form an “eight” ∞. Such a double loop features paths of the
form (A|B)∗, where in each iteration there is a choice between A and B. Our
loop acceleration technique from Sect. 5 does not apply to such paths.

To solve this problem, we exploit the synergy between the pathwise analysis
suggested by the acyclic structure P, and the fact that certain — namely, sim-
ple — paths can be processed using the technique described in Sects. 4 and 5.
Spaghetti paths are explored by Algorithm1, but restricted to the narrow “slice”
of P marked by the quotient path in P.

This algorithm is shown in Algorithm 3. It takes as input the TTD P, as well
as the initial and final thread states, tI and tF . The algorithm begins by building
the quotient structure P. This acyclic structure is now analyzed pathwise. For
each path σ from tI to tF in P, we first decide whether it is spaghetti or simple.

• If σ is spaghetti (visits some spaghetti SCCs), we explore it using Algorithm 1
(Line 4). More precisely, let P∣

∣
σ

be the restriction of the given TTD to the
edges along σ, including any edges collapsed inside SCCs. Let further (P∣

∣
σ
)∞

be the infinite-state transition system derived from P∣
∣
σ

as described in Sect. 2.
We pass this transition system to procedure Bws (Algorithm 1), along with
the unchanged set of initial states, and the unchanged final state (which is also
the end-point of σ). If this invocation results in “coverable”, tF is reachable
in P∞ from tI , which is hence returned in Line 5.

356 P. Liu and T. Wahl

Algorithm 3. Pathwise Reachability
Input: TTD P, thread states tI , tF

1: P+ := expanded TTD, P := SCC quotient graph of P+

2: for all path σ in P from tI to tF

3: if σ is spaghetti then
4: if Bws((P∣∣

σ
)∞, ∪n∈N{sI} × {lI}n, tF) = “tF coverable” then

5: return “tF reachable in P∞ from tI”
6: else
7: m := number of non-trivial SCCs visited by σ � these SCCs are all simple
8: φ(κ1, . . . , κm) := Presburger summary for σ � Sect. 4, 5
9: if φ(κ1, . . . , κm) satisfiable then

10: return “tF reachable in P∞ from tI”
11: return “tF unreachable in P∞ from tI”

• If σ is simple (does not visit any spaghetti SCCs), we can accelerate explo-
ration along it using the techniques introduced in Sects. 4 and 5. We build a
Presburger summary for the path, parameterized by the loop iteration counts
κi, one for each loop.4 If this formula is satisfiable, again we have that tF is
reachable in P∞ from tI . The assignment to the κi gives the number of times
each loop needs to be traversed; from this data a multi-threaded path through
P can easily be constructed.

If none of the paths σ results in the answer “coverable” by either concrete or
symbolic exploration, tF is unreachable in P∞ from tI , which is hence returned
as the answer. Note that this happens in particular if there is no path at all from
tI to tF in P.

Correctness. Algorithm 3 terminates since P is acyclic, so the loop in Line 2 goes
through finitely many iterations. Partial correctness follows from the following
two claims. Let σ be a quotient path considered in Line 2.

1. If σ is spaghetti, then Algorithm 3 outputs “reachable” in Line 5 iff tF is
reachable in P∞ along the edges represented by σ.

2. If σ is simple, then Algorithm 3 outputs “reachable” in Line 10 iff tF is reach-
able in P∞ along the edges represented by σ.

Claim 1 is proved using soundness and completeness of Algorithm1. Claim 2 is
proved using Theorem 3. Given these claims, we obtain:

Corrolary 4 (Soundness). If Algorithm 3 returns “reachable” (Line 5 or Line
10) or “unreachable” (Line 11), then tF is reachable or unreachable, respectively,
in P∞.

4 Loop-free paths (m = 0) can be processed either using Algorithm 1, or via summaries.

Concolic Unbounded-Thread Reachability via Loop Summaries 357

Proof

• If Algorithm 3 returns “reachable”, then it does so for some σ, in Lines 5 or
10. The fact that tF is actually reachable in P∞ follows from one of the two
claims above, depending on whether σ is spaghetti or simple.

• If Algorithm 3 returns “unreachable”, then it does not reach Lines 5 or 10, for
any σ. By the above two claims, tF is not reachable in P∞ along the edges
represented by any quotient path. The fact that then σ is not reachable in
P∞ at all follows from the proof of Lemma 2: the proof shows that, if tF is
reachable, then there exists a quotient path in P from tI to tF such that tF
is reachable in P∞ along the edges represented by that quotient path. ��

Implementation. Our technique is implemented in a reachability checker named
Cutr5. We discuss some details on the implementation of Algorithm 3 in Cutr.

Line 2 selects potential paths in P. Since we can abort the algorithm once
a path is found that witnesses reachability, it makes sense to rank the paths by
“promise” of ease of processing: we begin with loop-free paths, i.e. those with
only trivial SCCs, followed by paths with simple SCCs whose edges are all real,
followed by paths with simple SCCs that feature expansion edges. Finally we
select paths with spaghetti loops inside SCCs. The length of a path is secondary.

In order to call Bws in Line 4 on the TTD restricted to the edges represented
by σ, there is no need to construct P∣

∣
σ

a priori. Instead, when computing cover
preimages, we make sure to only fire TTD edges belong σ and its loops.

To keep our computational model simple, we have excluded from the formal-
ization in Sect. 2 dynamic thread creation, where threads are spawned during
the execution of the program. This feature does not formally add expressive
power, but is often included for its presence in multi-threaded software. Our
implementation does support thread creation. Symbolically backward-executing
a thread creation edge is straightforward: the counter of the local state of the
spawned thread must be decreased, since that thread does not exist in the source
state. Our implementation performs some book-keeping to ensure the backward-
executability of such an edge: both the local state of the spawned thread, as well
as that of the spawning thread must exist in the successor state, since the spawn-
ing thread does not change its state (it only side-effects the thread creation).

7 Empirical Evaluation

In this section we provide experimental results obtained using Cutr. The goal
of the experiments is to measure the performance impact of the presented app-
roach compared to the backward search Algorithm 1. We expect our approach to
improve the latter, as it is short-cutting standard backward exploration across
simple loops and linear path segments. The question is whether solving Presburger
equations instead of concretely exploring loops actually amounts to speed-up.

5 Cutr “=” Concolic Unbounded-Thread Reachability analysis.

358 P. Liu and T. Wahl

100 101 102 103

100

101

102

103

R
O

RO

Bws (sec.)

C
u
t
r
(s
e
c
.)

unsafe BP

safe BP

100 101 102 103

100

101

102

103

R
O

RO

Bws (sec.)

C
u
t
r
(s
e
c
.)

unsafe PN

safe PN

20 40 60 80 100 124

101

102

103

RO

BP Benchmark

M
e
m
o
ry

U
sa

g
e
(M

B
.)

Bws

Cutr

10 20 30 40 49

101

102

103

RO

PN Benchmark

M
e
m
o
ry

U
sa

g
e
(M

B
.)

Bws

Cutr

Fig. 4. Performance impact (BP/PN = TTD from BP/PN). RO stands for “out of
resources”: the run reached the time or the memory limit before producing a result.
• Top row shows the comparisons of execution time. Left: comparison on BPs; Right:
comparison on PNs. Each plot represents execution time on one example.
• Bottom row shows the comparison of memory usage. Left: comparison on BPs; Right:
comparison on PNs. The curves are sorted by the memory usage of Cutr.

Experimental Setup. We collected an extensive set of benchmarks, 173
in total, which is organized into two suites. The first suite contains 124 TTDs
obtained from Boolean programs (BPs), which are in turn obtained from C source
programs (taken from [16]) via predicate abstraction. As TTDs are equivalent in
expressiveness to certain forms of Petri nets [8,16], we include PN examples in
our benchmark collection. The second suite therefore contains 49 TTDs obtained
from PNs (taken from [8]). While PNs are not the main focus of this work, we
were hoping to get insights into how complex concurrency affects our approach,
as the PNs available to us exhibited more challenging concurrent behaviors than
the BPs. The table on the right shows size ranges of the benchmarks.

Concolic Unbounded-Thread Reachability via Loop Summaries 359

BP Min. Max.

|S| 5 257
|L| 14 4097
|R| 18 20608
PN Min. Max.
|S| 6 18234
|L| 6 332
|R| 13 27724

We use Z3 (v4.3.2) [22] as the Presburger solver. For
each benchmark, we consider verification of a safety prop-
erty. In the case of BP examples, the property is speci-
fied via an assertion. There are 87 safe instances in total:
56 of the BPs, and 31 of the PNs. All experiments are
performed on a 2.3 GHz Intel Xeon machine with 64 GB
memory, running 64-bit Linux. Execution time is limited
to 30 min, and memory to 4 GB. All benchmarks and our
tool are available online6.

Comparison. We first consider TTDs obtained from BPs, the target of this
work. The runtime comparison results are given in the top left part of Fig. 4. The
results demonstrate that Cutr performs much better than Bws. In some cases,
runs that time out in Bws can be successfully solved by Cutr within 30 min;
in contrast, there is only one example such that Bws successfully completes
while Cutr runs time out. The latter situation can be explained by the path
explosion: there are more than 5000 paths for this example.

We now consider TTDs obtained from PNs; see top right of Fig. 4. Here we
see little performance difference. Investigating this further, we found that for
Petri nets the density of TTD edges is higher (explained by their more com-
plex structure and the relatively less organization and control in the concurrent
systems represented by Petri nets, compared to programs). This has two conse-
quences: (i) there are few but large SCCs, and (ii) most of them are spaghetti.
As a result, there are few paths through the quotient structure, and almost all
of them are explored via calling Bws. This makes the whole process essentially
equivalent to a single call to Bws.

The curves at the bottom left of Fig. 4 illustrate that Bws utilizes less mem-
ory on small BP benchmarks, an effect can be explained by the overhead of
pathwise analysis and Z3. On large examples Cutr tends to need less memory
resource than Bws. The memory comparison for PNs shows similar results.

The performance impact of our acceleration approach, on both runtime and
memory, can be summarized as follows. Our method analyzes a specific path at
a time. If tF is reachable, there is a good chance Cutr can find a solution early,
due to the ranking of paths, some of which permit quick decisions. Although
Cutr relies on backward search to cross nested loops, the cost of that is limited
as such exploration is confined to a small fragment of the TTD. In the extreme,
the entire TTD contains only one path with spaghetti loops. In this case Cutr
falls back on backward search.

8 Related Work

Groundbreaking results in infinite-state system analysis include the decidability
of coverability in vector addition systems (VAS) [17], and the work by German

6 Webpage: http://www.ccs.neu.edu/home/lpzun/cutr.

http://www.ccs.neu.edu/home/lpzun/cutr

360 P. Liu and T. Wahl

and Sistla on modeling communicating finite-state threads as VAS [13]. Numer-
ous results have since improved on the original procedure in [17] in practice
[11,12,23,24]. Others extend it to more general computational models, includ-
ing well-structured [10] or well quasi-ordered transition systems [1,2].

Recent theoretical work by Leroux employs Presburger arithmetic to solve
the VAS global configuration reachability (not coverability) problem. In [18], it
is shown that a state is unreachable in the VAS iff there exists an “inductive”
Presburger formula that separates the initial and final states. The theoretical
complexity of this technique is mostly left open. Practicality is not discussed and
doubted later by the author in [19], where a more direct approach is presented
that permits the computation of a Presburger definition of the reachability set
of the VAS in some cases, e.g. for flatable VAS. Reachability can then be cast as
a Presburger decision problem. The question under what exact conditions the
VAS reachability set is Presburger-definable appears to be undecided.

The results referenced above are mainly foundational in nature and target
generally harder (even undecidable) reachability questions than we do in this
paper. We emphasize that our motivation for acceleration is not to ensure con-
vergence of (otherwise possible diverging) fixpoint computations. Instead, our
goal here was to show, for the decidable problem of TTS thread state reacha-
bility, (i) how to practically compute a Presburger encoding whose satisfiability
implies reachability of the thread state, and (ii) that the resulting (quantifier-
free) formulas are often easy to decide, thus giving rise to an efficient algorithm.
Existing (typically forward) acceleration techniques for infinite-state systems
[5,9,15] were inspirational for this paper.

In recent work, Petri net marking equations are used to reduce the cover-
ability problem to linear constraint solving [8]. Follow-up work investigates a
similar approach for thread-transition systems [3]. Like the present work, these
approaches benefit from advances in SMT technology and in fact have proved to
be efficient. On the other hand, they are incomplete (the constraints overapprox-
imate coverability). Our goal here was to retain (soundness and) completeness,
and to investigate at what cost this can be achieved.

9 Conclusion

In this paper, we have presented an approach for accelerating a widely-applicable
infinite-state search algorithm for systems of unbounded numbers of threads.
A key ingredient is the construction of an acyclic quotient of the input program,
which in turn enables a finite path-by-path analysis. Loop-free paths and paths
with only simple loops can be collapsed without approximation into Presburger
arithmetic constraints that symbolically summarize the effect of executing the
backward search algorithm along these paths in the multi-threaded program.
Each path passing through loop nests is processed via standard explicit-state
backward search but confined to this particular path. We have demonstrated the
power of this method for proving and refuting safety properties of an extensive
set of TTDs obtained from Boolean program benchmarks. We conclude that

Concolic Unbounded-Thread Reachability via Loop Summaries 361

partial but exact symbolic acceleration of existing sound and complete infinite-
state search algorithms is very much feasible, and in fact very beneficial.

References

1. Abdulla, P.A.: Well (and better) quasi-ordered transition systems. Bull. Symb.
Log. 16(4), 457–515 (2010)

2. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite-state systems. In: LICS, pp. 313–321 (1996)

3. Athanasiou, K., Liu, P., Wahl, T.: Unbounded-thread program verification using
thread-state equations. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS, vol.
9706, pp. 516–531. Springer, Heidelberg (2016)

4. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: PLDI, pp. 203–213 (2001)

5. Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic
model checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707,
pp. 474–488. Springer, Heidelberg (2005)

6. Cardoza, E., Lipton, R.J., Meyer, A.R.: Exponential space complete problems for
Petri nets and commutative semigroups: preliminary report. In: STOC, pp. 50–54
(1976)

7. Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate
abstraction for shared-variable concurrent programs. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 356–371. Springer, Heidelberg
(2011)

8. Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., Niksic, F.: An SMT-
based approach to coverability analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 603–619. Springer, Heidelberg (2014)

9. Finkel, A., Leroux, J.: How to compose presburger-accelerations: applications to
broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol.
2556, pp. 145–156. Springer, Heidelberg (2002)

10. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

11. Geeraerts, G., Raskin, J.F., Begin, L.V.: Expand, enlarge and check: new algo-
rithms for the coverability problem of WSTS. J. Comput. Syst. Sci. 72(1), 180–203
(2006)

12. Geeraerts, G., Raskin, J.-F., Van Begin, L.: On the efficient computation of the
minimal coverability set for Petri nets. In: Namjoshi, K.S., Yoneda, T., Higashino,
T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 98–113. Springer, Hei-
delberg (2007)

13. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992)

14. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: CAV, pp.
72–83 (1997)

15. Jonsson, B., Saksena, M.: Systematic acceleration in regular model checking.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 131–144.
Springer, Heidelberg (2007)

16. Kaiser, A., Kroening, D., Wahl, T.: A widening approach to multithreaded program
verification. ACM Trans. Program. Lang. Syst. 36(4), 14 (2014)

362 P. Liu and T. Wahl

17. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

18. Leroux, J.: The general vector addition system reachability problem by Presburger
inductive invariants. In: LICS, pp. 4–13 (2009)

19. Leroux, J.: Presburger vector addition systems. In: LICS, pp. 23–32 (2013)
20. Liu, P., Wahl, T.: Infinite-state backward exploration of Boolean broadcast pro-

grams. In: FMCAD, pp. 155–162 (2014)
21. Liu, P., Wahl, T.: Concolic unbounded-thread reachability via loop summaries

(extended technical report). CoRR abs/1607.08273 (2016). http://arxiv.org/abs/
1505.02637

22. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

23. Reynier, P.A., Servais, F.: Minimal coverability set for Petri nets: Karp and Miller
algorithm with pruning. In: Petri Nets, pp. 69–88 (2011)

24. Valmari, A., Hansen, H.: Old and new algorithms for minimal coverability sets. In:
Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 208–227.
Springer, Heidelberg (2012)

http://arxiv.org/abs/1505.02637
http://arxiv.org/abs/1505.02637

Scaling BDD-based Timed Verification
with Simulation Reduction

Truong Khanh Nguyen1, Tian Huat Tan2, Jun Sun2, Jiaying Li2(B),
Yang Liu3, Manman Chen2, and Jin Song Dong4

1 Autodesk, San Rafael, USA
truong.khanh.nguyen@autodesk.com

2 Singapore University of Technology and Design, Singapore, Singapore
{tianhuat tan,sunjun,manman chen}@sutd.edu.sg,

jiaying li@mymail.sutd.edu.sg
3 Nanyang Technological University, Singapore, Singapore

yangliu@ntu.edu.sg
4 National University of Singapore, Singapore, Singapore

dongjs@comp.nus.edu.sg

Abstract. Digitization is a technique that has been widely used in real-
time model checking. With the assumption of digital clocks, symbolic
model checking techniques (like those based on BDDs) can be applied
for real-time systems. The problem of model checking real-time systems
based on digitization is that the number of tick transitions increases
rapidly with the increment of clock upper bounds. In this paper, we
propose to improve BDD-based verification for real-time systems using
simulation reduction. We show that simulation reduction allows us to
verify timed automata with large clock upper bounds and to converge
faster to the fixpoint. The presented approach is applied to reachability
and LTL verification for real-time systems. Finally, we compare our app-
roach with existing tools such as Rabbit, Uppaal, and CTAV and show
that our approach outperforms them and achieves a significant speedup.

1 Introduction

Timed automata are an extension of finite automata with clock variables which
represent timed constraints [3]. Interesting model checking problems of timed
automata, like the verification of the reachability and LTL properties, are shown
to be decidable through the construction of region graphs [3]. However, since
the size of region graphs grows exponentially with the number of clocks and the
maximal clock constants, verification based on region graphs is impractical.

There are two lines of work that are proposed to address this problem.
The first line of work is based on Difference Bound Matrices (DBMs). DBMs
were proposed to represent a set of clock valuations satisfying a set of convex

This work is supported by research project T2MOE1303.

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 363–382, 2016.
DOI: 10.1007/978-3-319-47846-3 23

364 T.K. Nguyen et al.

clock constraints [20] with a zone graph. The resulted zone graph is often much
smaller than the region graph, which often results in efficient verification of timed
automata models [15]. There are several problems with DBMs. First, it is diffi-
cult to verify LTL properties with non-Zeno assumption. A run is called Zeno
if there are infinite actions happening in finite time. Zeno runs are unrealistic
and therefore should be excluded during the system verification. However, this
process has shown to be fairly non-trivial [44]. Second, DBMs cannot represent
non-convex zones. Some verification/reduction techniques for timed automata
may result in non-convex zones, and novel techniques need to be invented for
handling such cases. For instance, with a particular abstraction technique called
LU abstraction [7], the resulted zone can be non-convex. In such a case, a convex
subset of LU abstraction, called Extra+

LU extrapolation [7], needs to be used.
Third, since locations and clock valuations are stored separately in zone graphs,
state space explosion is often encountered with models having many processes.

The other line of work is based on digitization [30]. It replaces the contin-
uous passage of time with a passage in discrete steps. The advantage of this
approach is that it helps transforming the problem to model checking a dis-
crete system and techniques such as BDD-based symbolic model checking [16]
can be leveraged. There are several advantages of using BDD-based verification
compared to DBMs-based verification. First, checking non-Zenoness with digi-
tization and BDDs is almost trivial. Furthermore, it has been shown to outper-
form zone-based approach in many existing works (e.g., [5,9,12,15,46]). Second,
we can store both locations and clock valuations together symbolically and is
not limited to non-convex sets. However, the problem with digitization and the
BDD-based approach is that it does not scale for large clock constants. Large
clock constants would significantly increase the number of tick transitions which
denote the passage of one time unit. As a result, a large number of iterations
are often necessary to completely explore the state space.

In this work, we propose the usage of LU simulation to address the aforemen-
tioned problem. In particular, we propose two algorithms, based on LU simula-
tion, for model checking reachability and LTL properties respectively. A desired
property of LU simulation is that it can be obtained for free in timed automata.
Our algorithms depend on two clock bounds: the maximal lower bound and the
maximal upper bound (LU bounds) [7]. By leveraging these clock bounds, we
could explore the set of all reachable states from initial states in fewer iterations.
Intuitively, this is achieved in two ways. First, during the verification, given a set
of reachable states S encoded as BDD, we actively enlarge it by adding states
which can be simulated by those in S. Thus, we have more states and it is pos-
sible to find all the reachable states with fewer iterations. Second, according to
LU simulation relation, states with clock value greater than the maximal lower
bound can simulate all states with larger clock values. Therefore, our method
could perform well even if the maximal upper bound is very large.

Scaling BDD-based Timed Verification with Simulation Reduction 365

In short, we make the following technical contributions in this work:

1. We have applied simulation reduction in a BDD efficient way for both reach-
ability and LTL properties. To the best knowledge of the authors, we are the
first to apply LU simulation relation in BDD-based approach model checking
of timed automata.

2. We have shown the soundness and completeness of our proposed algorithms.
In addition, we further prove that for the algorithm on verifying reachability
properties, our approach always requires the same or fewer iterations than
classic approaches.

3. We have compared our approaches on verifying reachability and LTL proper-
ties with state-of-the-art DBMs-based and BDD-based model checkers, e.g.,
Uppaal [31] and Rabbit [10] on benchmark systems. The results show that
our approach achieves a significant speed up and outperforms other tools.

Related Work. On the effort of improving reachability analysis of timed
automata, this work is related to studies on the abstraction techniques [7,13,
27,35] to reduce the number of states in zone graphs. The idea is to enlarge a
DBMs without violating the correctness. This work continues the research on
using BDDs and BDD-like data structures to improve the verification of real-time
systems [5,8,9,12,15,40,46,47].

This work is related to the research on simulation reduction (e.g., [21,22]) as
well as research on the emptiness checking of Timed Büchi Automata (TBA).
Note that LTL verification on timed automata can be converted to the emptiness
checking of TBA. In [44], Tripakis discovered that it is non-trivial to check
whether a run in a zone graph can induce a non-Zeno run in the original TBA.
In [45], Tripakis questioned whether coarser extrapolation techniques, specifically
inclusion abstraction [19] and LU extrapolation [7], can also be used to check
TBA emptiness. In [29], Laarman et al. showed that inclusion abstraction only
preserves the emptiness of TBA in one direction. In [32], Li showed that LU
extrapolation indeed preserves the emptiness of TBA. One result of this work is
an improved algorithm to solve non-emptiness problem based on BDDs.

This work is closely related to [7,32] and work on using downward closure [22]
based on LU simulation relation as an abstraction. While [7,32] both apply LU
simulation relation to DBMs (Extra+

LU extrapolation) for reachability analysis
and emptiness checking respectively, we apply the LU simulation relation to
BDDs for both reachability and emptiness. There are two advantages of our
approach. First, given a convex set of clock valuations, Extra+

LU is a subset of
LU abstraction. Our approach based on LU abstraction can be more efficient
than Extra+

LU [22,27], because a BDD can represent a non-convex set of clock
valuations. Second, to handle the non-Zeno condition, [32] relies on the strongly
non-Zeno transformation, which requires an additional clock and may result in
a zone graph with exponentially more states [25,26]. This work is orthogonal to
our previous works of verification [17,43] and synthesis [33] of time requirements
for service composition, and can be used to complement our previous works.

366 T.K. Nguyen et al.

Organization. The rest of the paper is organized as follows. Section 2 introduces
timed automata and the LU simulation relation in timed automata. Section 3
presents our work on the reachability analysis. Then, Sect. 4 presents our work
on the LTL verification. Next, Sect. 5 shows the experimental results. Section 6
discusses our work. Finally, Sect. 7 concludes our paper.

2 Preliminaries

2.1 Timed Automata

In this section we introduce timed automata, arguably one of the most popular
modeling languages for real-time systems. We denote the finite alphabet by Σ.
Let R≥0 be the set of non-negative real numbers. Let X be the set of non-
negative real variables called clocks. The set Φ(X) contains all clock constraints
δ defined inductively by the grammar: δ := x ∼ c |x − y ∼ c | δ ∧ δ where
x, y ∈ X, ∼∈ {<,≤,=,≥, >}, and c ∈ N. Given a set of clocks X, a clock
valuation v : X → R≥0 is a function which assigns a non-negative real value to
each clock in X. We denote R

|X|
≥0 the set of clock valuations over X. We write

v |= δ if and only if δ evaluates to true using the clock valuation v. We denote as
0 the valuation that assigns each clock with the value 0. Given a clock valuation
v and d ∈ R≥0, the clock valuation v′ = v + d is defined as v′(x) = v(x) + d for
all clocks x in X. For R ⊆ X, let [R 	→ 0]v denote the clock valuation v′ such
that v′(x) = v(x) for all x ∈ X \ R and v′(x) = 0 for all x ∈ R.

Definition 1. A timed automaton is a tuple A = (Σ,X,L, l0, T, I) where

– Σ is the finite alphabet, X is the set of clock variables.
– L is the set of locations, l0 ∈ L is the initial location.
– T ⊆ L × Φ(X) × Σ × 2X × L is the set of transitions (l, g, e, R, l′) where l

and l′ are the source and destination locations of this transition respectively,
g ∈ Φ(X) is a guard, e ∈ Σ is an event name, and R ⊆ X is a set of resetting
clocks.

– I : L → Φ(X) assigns invariants to locations.

The (continuous) semantics of a timed automaton A = (Σ,X,L, l0, T, I) is a
transition system CS(A) = (S, s0,→) where S = L × R

|X|
≥0 is a set of states,

s0 = (l0,0) is the initial state, and → is the smallest labeled transition relation
satisfying the following:

– Delay transition: (l, v) d−→ (l, v + d) if ∀0 ≤ d′ ≤ d, v + d′ |= I(l)
– Action transition: (l, v) t−→ (l′, v′) with t = (g, e,R) if there exists

(l, g, e, R, l′) ∈ T such that v |= g, v′ = [R 	→ 0]v, and v′ |= I(l′)

We write (l, v) d−→ t−→ (l′, v′) if there exists (l1, v1) where (l, v) d−→ (l1, v1) and
(l1, v1)

t−→ (l′, v′). A run of A is a sequence (l0, v0)
d0−→ t0−→ (l1, v1)

d1−→ t1−→ · · · .
A state (ln, vn) is reachable from (l0, v0) if there is a run starting from (l0, v0)

Scaling BDD-based Timed Verification with Simulation Reduction 367

and ending at (ln, vn). The duration of the run is defined as the total delay over
this run,

∑
i≥0 di. A run is called Zeno if there are infinite actions happening in

finite time. Given a timed automaton A = (Σ,X,L, l0, T, I) and a location l ∈ L,
reachability analysis is to decide whether a given state (l, v) is reachable from
the initial state (l0,0). Next, we define the emptiness checking problem for timed
automata. Let Acc ⊆ L be the set of accepting locations. An accepting run of A
is a run which visits a state in Acc infinitely often. The language of A over Acc,
L(A), is defined as the set of accepting non-Zeno runs. The emptiness problem
is to determine whether L(A) is empty, i.e., whether there exists an infinite run
which is non-Zeno and accepting. We remark that reachability analysis is often
used to verify safety problem, whereas algorithms for the emptiness checking
problem can often be extended to verify liveness properties like LTL formulae.

In the above semantics, clock values are continuous and events are observed
at real time points. Thus, the number of states is infinite and BDDs can not
be applied to verify timed automata under this semantics. In the following, we
introduce discrete semantics which are based on the assumption that events are
observed at integer time points only.

2.2 Discrete Semantics

In discrete semantics, we assume that clock constraints are always closed, i.e.,
defined by δc := x ∼c c | x − y ∼c c | δc ∧ δc where x, y ∈ X, ∼c∈ {≤,=,≥},
and c ∈ N. Timed automata with closed constraints are called closed timed
automata [5,24].

Given any clock x ∈ X, we write M(x) to denote the maximal constant to
which x is compared in any clock constraint of A. Given a clock valuation v,
v ⊕ d denotes the clock valuation where (v ⊕ d)(x) = min(v(x) + d,M(x) + 1).
Intuitively, for each clock x, once the clock value is greater than its maximal
constant M(x), its exact value is no longer important, but the fact v(x) > M(x)
matters.

The discrete semantics of a closed timed automaton A = (Σ,X,L, l0, T, I) is
a transition system DS(A) = (S, s0,→) where S = L × N|X| is a set of states,
s0 = (l0,0) is the initial state, and → is the smallest labeled transition relation
satisfying the following condition:

– Tick transition: (l, v) tick−−→ (l, v ⊕ 1) if v |= I(l) and v ⊕ 1 |= I(l)
– Action transition: (l, v) t−→ (l′, v′) with t = (g, e,R) if there exists

(l, g, e, R, l′) ∈ T such that v |= g, v′ = [R 	→ 0]v, and v′ |= I(l′)

It was shown that the discrete semantics preserves untimed properties of
closed timed automata [5,24]. Thus, DS(A) can be used in place of CS(A)
in the verification of untimed properties like untimed reachability analysis and
untimed LTL verification. It follows that BDDs can be used to encode and verify
the closed timed automata based on the discrete semantics. In this work, we
adopt the approach presented in [9,37] to encode DS(A) in BDD. Given a timed
automaton A = (Σ,X,L, l0, T, I), we denote Init, Tick, and Trans the BDD

368 T.K. Nguyen et al.

encodings of the initial states, tick transitions, and action transitions of DS(A),
respectively. Note that the encoding of the transition relation of DS(A) is the
disjunction of Tick and Trans. The tick transitions and action transitions are
encoded separately for efficiency. The details are discussed in Sect. 3.

2.3 Simulation Relation

Since our model checking algorithms use the simulation relation, we introduce
the simulation relation over timed automata in the following.

Definition 2. Given a timed automaton A, a (location-based) simulation rela-
tion over states of CS(A) is a binary relation R ⊆ S × S such that for all
((l1, v1), (l2, v2)) ∈ R,

– l1 = l2.
– if (l1, v1)

d−→ (l1, v1 + d) then there exists d′ such that (l2, v2)
d′
−→ (l2, v2 + d′)

and ((l1, v1 + d), (l2, v2 + d′)) ∈ R.
– if (l1, v1)

t−→ (l′1, v
′
1) then there exists (l′2, v

′
2) such that (l2, v2)

t−→ (l′2, v
′
2) and

((l′1, v
′
1), (l

′
2, v

′
2)) ∈ R.

hold. A state (l1, v1) is simulated by state (l2, v2) denoted as (l1, v1) � (l2, v2),
if there exists a simulation relation R such that ((l1, v1), (l2, v2)) ∈ R. By def-
inition, any state simulates itself. Given a set of states Q ⊆ S, we define the
downward closure [22] as Down(Q) = {s1 ∈ S | ∃s2 ∈ Q.s1 � s2}. Intuitively,
the downward closure of Q is the set of states which can be simulated by any state
in Q. Since the simulation relation is reflexive, it follows that Q ⊆ Down(Q).

For timed automata, there exists a simulation relation called the LU simula-
tion relation [7]. Given a clock x, the maximal lower bound L(x) (respectively
maximal upper bound U(x)) is the maximal constant k that there exists a con-
straint x > k or x ≥ k in the timed automaton. If such constant k does not
exist, we set L(x) to −∞. Then, given two clock valuations v and v′, we denote
v � v′ if for all clocks x ∈ X, either v′(x) = v(x) or L(x) < v′(x) < v(x) or
U(x) < v(x) < v′(x). It shows the relation RCS = {((l, v), (l, v′))|v � v′} is a
simulation relation based on CS(A) [7]. The following proposition shows that it
is also a simulation relation based on DS(A).

Proposition 1. The relation R = {((l, v), (l, v′)) | v, v′ ∈ N|X| ∧ v � v′} is a
simulation relation of DS(A).

The proof is the same as Lemma 3 in [7]. For simplicity, we denote � the BDD
encoding of the simulation relation R defined in Proposition 1.

Scaling BDD-based Timed Verification with Simulation Reduction 369

Algoritm 1: Reachability Analysis
1: function

IsReach(Init, T ick, Trans, goal)
2: Qp = ∅
3: Q = Init
4: Q = Reach(Q,Trans)
5: while (Qp �= Q) do
6: Qp = Q
7: Q=Q∪Reach(

succ(Q,T ick), T rans)
8: if Q ∩ goal �= ∅ then
9: return true

10: end if
11: end while
12: return false
13: end function
14:

15: function Reach(Q,R)
16: Qp = ∅
17: while (Qp �= Q) do
18: Qp = Q
19: Q = Q ∪ succ(Q,R)
20: end while
21: return Q
22: end function

Algoritm 2: Reachability Analysis with
Simulation

1: function
IsReachsim(Init, T ick, Trans, goal)

2: Qp = ∅
3: Q = Down(Init)
4: Q = Reachsim(Q,Trans)
5: while (Qp �= Q) do
6: Qp = Q
7: Q=Q∪Reachsim

(Down(succ(Q,T ick)), T rans)
8: if Q ∩ goal �= ∅ then
9: return true

10: end if
11: end while
12: return false
13: end function
14:

15: function Reachsim(Q,R)
16: Qp = ∅
17: while (Qp �= Q) do
18: Qp = Q
19: Q = Q ∪ Down(succ(Q,R))
20: end while
21: return Q
22: end function

3 Reachability Analysis Algorithm

In this section, we present the reachability analysis algorithm without the sim-
ulation reduction and the one with the reduction.

3.1 Algorithm Without Simulation Reduction

Given a set of states goal, the reachability analysis is performed by computing
the set of reachable states and checking whether it contains any state in goal.
The problem of efficiently computing the set of reachable states in BDDs for
timed systems has been investigated by Beyer in [9,11]. There are two impor-
tant observations to avoid exploding BDDs. First, separating action and tick
transitions is more efficient than unifying them as monolithic transitions. Sec-
ond, for fix-point computation, applying action transitions before tick transitions
can achieve smaller encodings of intermediate reachable states.

Algorithm 1 shows the reachability analysis algorithm based on Beyer’s obser-
vations, without simulation reduction. The function IsReach takes Init, Tick,
Trans, and goal as input. It checks whether a state in goal is reachable from
an initial state in Init by transitions in Tick or Trans. Moreover, given a set of
states Q and a transition relation R, the function Reach(Q,R) computes the set
of states reachable from Q by transitions in R. We denote the set of successor

370 T.K. Nguyen et al.

l0 l1
[1 ≤ x ≤ 106]

l2e

l0,0 l0,1 l0,2 l0,106 l0,106+1...

l1,1 l1,2 l1,106 l1,106+1...
...

(a)

(b)

e e e

ticktick tick tick tick

tick tick tick tick

tick

tick

Fig. 1. Timed automaton with large clock constant and the transition system based
on discrete semantics

states of Q as succ(Q,R). Intuitively, Q stores the set of states reachable within
i time units after ith iteration (lines 5–11). The algorithm reaches the fixpoint
if no new state is found in the next time unit.

While Algorithm 1 is relatively efficient in computing the reachable states, it
still suffers from large maximal clock constants. Models with large maximal clock
constants require a large number of iterations to obtain the fixpoint. Figure 1a
presents a timed automaton with a large clock constant, i.e., with a maximal
clock constant of 106. We remark that in practice, large clock constants are
not uncommon because different time units are often used in the same time.
Figure 1b is the transition system generated by the discrete semantics. States at
location l2 are ignored in Fig. 1b for simplicity. We denote (li, j) the state where
the location is li and the clock valuation v such that v(x) = j. Assume the
property is whether location l2 is reachable. Then, Algorithm 1 requires 106 + 2
iterations to reach the fixpoint to conclude that l2 is unreachable. Specifically,
106 + 1 iterations to find all the reachable states and the last iteration does not
find any new state and concludes that the fixpoint is reached. However, with
simulation reduction, our approach can verify whether l2 is reachable within 3
iterations.

In the next section, we present our improved algorithm by using the sim-
ulation relation. We prove that the number of iterations can be reduced, and
experimental results given in Sect. 5 confirm that our improved algorithm is
much more efficient.

3.2 Algorithm with Simulation Reduction

In this section, we present our improved reachability analysis algorithm. Given
a transition system L, a simulation relation � over states of L and a set of
states goal, our algorithm determines whether any state in goal is reachable.
The reachability analysis is performed similarly as Algorithm 1 by computing
the reachable states set and checking whether it contains any state in goal.

We assume that the simulation on L is compatible with the set goal, i.e., for
any (s1, s2) ∈�, s1 ∈ goal =⇒ s2 ∈ goal. In our reachability verification for
timed automata, the LU simulation relation satisfies this condition because the

Scaling BDD-based Timed Verification with Simulation Reduction 371

reachability verification is over locations. Effectively, with simulation reduction,
we would explore a reduced transition system defined as Definition 3.

Definition 3. Given the transition system L = (C, initc,→) and the simulation
relation �, we define the transition system L′ = (C ′, init′c, =⇒) such that:

– C ′ = C, init′c = Down(initc).
– Given any state s′

1, s
′
2 ∈ L′, there is a transition s′

1 =⇒ s′
2 in L′ if there

exists a transition s′
1 → s2 in L and s′

2 � s2.

Note that the state space is unchanged. The initial states and transition
functions are changed accordingly the simulation relation over the set of states
C. Intuitively, for any transition s′

1 → s2 in L, we allow other states simulated
by s2 to be successor states of s′

1 in L′. Thus, given a set of states Q ⊆ C,
succ(Q, =⇒) = Down(succ(Q,→)). In the following, we establish that L′

preserves the reachability.

Lemma 1. Given q′
1 � q1, if there exists a path with length n, q′

1 =⇒ q′
2 =⇒

· · · =⇒ q′
n in L′, there exists a path with the same length, q1 → q2 → · · · → qn

in L such that q′
i � qi for all 1 ≤ i ≤ n. ��

Theorem 1. Given the transition systems L, L′, and a set of states goal, goal
is reachable in L if and only if goal is reachable in L′. ��
Based on the relationship between transition systems L and L′ stated by The-
orem 1, we can use L′ as the input for Algorithm 1. However, explicitly com-
puting the transition relation of L′ is computationally expensive. Instead, we
apply Down to the result of any call succ(Q) on the fly in Algorithm 1 because
succ(Q, =⇒) = Down(succ(Q,→)). Algorithm 2 presents our improved reacha-
bility analysis algorithm with simulation reduction. We rename the two functions
as IsReachsim and Reachsim respectively. The difference between Algorithms 2
and 1 is that in the function IsReachsim, we first update Q = Down(Init) at
line 3, and subsequently, we call Reachsim(Q,R) and Down(succ(Q,R)) instead
of Reach(Q,R) and succ(Q,R) respectively. It can be observed that we always
apply Down to the results of the succ function.

Theorem 2. Algorithm 2 is sound and complete. ��
Proof: As we discussed the difference between Algorithms 2 and 1, given a
transition system L, while the function IsReach(Init, T ick, Trans, g) checks
the reachability of g on L, the function IsReachsim(Init, T ick, Trans, g) actu-
ally checks the reachability of g on L′. Thus, the correctness of Algorithm 2 is
obtained based on Theorem 1 and the correctness of Algorithm 1.

Our algorithm is similar to the algorithm of antichain of promising states [22].
Note that in [22], the algorithm uses the Min operator while our approach uses
the Down operator. We uses Down operator because it is efficient to compute
in BDD. This algorithm is also similar to the one in [7], where LU simulation is
used to improve zone-based verification of timed automata. However, the Down
operator here is coarser than extrapolation used in [7] (any extrapolation must
result in convex zones).

372 T.K. Nguyen et al.

Lemma 2. Assume Q′ = Down(Q), Q′ ∪ Reachsim(Down(succ(Q′, T ick)),
T rans) = Down(Q ∪ Reach(succ(Q,T ick), T rans)).

Lemma 3. Assume Q′ = Down(Q), after n iterations, if Reach(Q,R) reaches
the fixpoint, Reachsim(Q′, R) also reaches the fixpoint. Moreover the results of
those functions satisfy Reachsim(Q′, R) = Down(Reach(Q,R)).

Since the reachability analysis requires many fixpoint computations, the ratio-
nale of Algorithm 2 is to converge faster to the fixpoint. In the following, we
prove that Reachsim (Down(Q)) requires the same or smaller number of iter-
ations to reach the fixpoint than Reach(Q). In our proof, to distinguish with
Algorithm 1, given any variable Q appearing in Algorithm 2, we use the prime
version Q′ to denote that variable in Algorithm 2.

Theorem 3. Algorithm 2 requires fewer or the same number of iterations than
Algorithm 1.

Proof: By Lemmas 3 and 2, in Algorithms 1 and 2, Q′ = Down(Q). So if
Algorithm 1 terminates when Q∩goal �= ∅, Algorithm 2 also terminates because
Q′ ∩ goal �= ∅. Otherwise if Q = Qp holds in Algorithm 1, Q′ = Q′

p also holds
in Algorithm 2.

Example. In the following, we demonstrate how Algorithm 2 works using the
example in Fig. 1. The reachability problem is to check whether l2 is reachable
from the initial state l0. According to timed automaton, we have L(x) = 1 and
U(x) = 106. Algorithm 2 only takes 3 iterations to verify l2 is unreachable,
specifically:

– Q′
0 = {(l0, 0)}, Q′

1 = {(l0, 0), (l0, 1), (l1, 1)}
– Q′

2 = {(l0, i) | 0 ≤ i ≤ 106 + 1} ∪ {(l1, i) | 1 ≤ i ≤ 106 + 1}, Q′
3 = Q′

2

In the 2nd iteration, we have (l0, 2), (l1, 2) ∈ Q′
2 at first. Since (l0, i) � (l0, 2) and

(l1, i) � (l1, 2) for all i > 2, we add all states (l0, i), (l1, i) where i > 2 to Q′
2 by

Down function. Thus, finally Q′
2 = {(l0, i) | 0 ≤ i ≤ 106 + 1} ∪ {(l1, i) | 1 ≤ i ≤

106 + 1}.

In this section, we have presented our improved algorithm for reachability
verification by using the LU simulation relation. We prove that our approach
in Algorithm 2 always uses fewer or the same number of iterations compared
with the classic algorithm as in Algorithm 1. In the next section, we continue
with presenting our improved emptiness checking algorithm with the simulation
relation.

Scaling BDD-based Timed Verification with Simulation Reduction 373

Algorithm 3: Algorithm IsEmpty

1: function IsEmpty(Init, T r, J)
2: old = ∅

3:

4: new = Reach(Init, T r)
5: while (new �= old) do
6: old = new
7: for all Ji ∈ J do
8: new=Reach(new∩Ji, T r)
9: end for

10: while (new �=(new∩
11: succ(new))) do
12: new=(new∩succ(new))
13: end while
14: end while
15: return (new = ∅)
16: end function

Algorithm 4: Algorithm IsEmptysim
1: function IsEmptysim(Init, T r, J)
2: old = ∅

3: Init = Down(Init)
4: new = Reachsim(Init, T r)
5: while (new �= old) do
6: old = new
7: for all Ji ∈ J do
8: new=Reachsim(new∩Ji, T r)
9: end for

10: while (new �=(new
11: ∩Down(succ(new)))) do
12: new=(new∩Down(succ(new)))
13: end while
14: end while
15: return (new = ∅)
16: end function

4 Emptiness Checking Algorithm

Under digitization and automata theory, LTL verification can be done by empti-
ness checking. Thus, the emptiness checking algorithm of Kesten et al. [28] can
be used. In this section, we first present the algorithm of Kesten. Then, we
introduce our improved algorithm by using the simulation relation.

4.1 Algorithm Without Simulation Reduction

Given a transition system and a set of Büchi conditions J where Ji ∈ J is a set
of states, an accepting run is an infinite run which visits a Ji-state (a state in
Ji) infinitely often for all Ji ∈ J . The emptiness problem is to check whether
this run exists.

For simplicity, in this section, we merge Trans and Tick and assume that
Tr is the encoding of the whole transition system. Algorithm 3 [28] presents the
symbolic emptiness checking algorithm. Specifically, function IsEmpty takes
the set of the initial states Init, the transition relation Tr, and a set of Büchi
conditions J as input.

In Algorithm 3, function IsEmpty searches for an accepting strongly con-
nected component (SCC) which contains a Ji-state for every Büchi condition
Ji ∈ J . The algorithm computes the set of all reachable accepting SCCs. If this
set is empty, there is no accepting run in the given transition system. At line 4,
new is assigned as the set of all reachable states from the initial states. Then,
the while-loop (from line 5 to line 14) continuously refines the set of states new
until a fixpoint is reached (i.e., new = old at line 5). Inside this while-loop, first,
we backup the current value of new in old (line 6). Then, from line 7 to line 9, we
continue to refine new as the set of states reachable by a Ji-state for all Ji ∈ J .
Next, in the inner while-loop from line 11 to line 13, we again refine new by
successively removing from new states which do not have a predecessor in new

374 T.K. Nguyen et al.

(line 12). This loop is iterated until new is closed under predecessor. Thus, new
is the set of all reachable SCCs. Because of the loop from line 7 to line 9, those
SCCs are accepting by contain a state in Ji for all Ji ∈ J . At the end, new
contains all reachable accepting SCCs in this transition system.

4.2 Algorithm with Simulation Reduction

In this section, we present our improved emptiness checking algorithm of timed
automata Algorithm 4, which improves Algorithm 3 by using the simulation
relation. We rename the function as IsEmptysim. The difference between Algo-
rithm 4 and Algorithm 3 is that in the function IsEmptysim, we update
Init = Down(Init) at line 3 at the beginning, and throughout the algorithm, we
call the functions Reachsim(Q,Tr) and Down(succ(Q)) instead of Reach(Q,Tr)
and succ(Q), respectively. Note that the function Reachsim (Q,Tr) is introduced
in Sect. 3. In other words, we always apply the function Down on the results of
the succ function. We prove that Algorithm 4 is sound and complete as we did
for Algorithm 3. First, we prove that L′ (defined in Definition 3) also preserves
the emptiness.

Lemma 4. Given q′
1 � q1, if there exists a path with length n, q′

1 =⇒ q′
2 =⇒

· · · =⇒ q′
n in L′, there exists a path with the same length n, q1 → q2 → · · · → qn

in L such that q′
i � qi for all 1 ≤ i ≤ n.

Lemma 5. Given q′
1 � q1, if there exists a cycle q′

1 =⇒ · · · =⇒ q′
1 in L′

which contains a Ji-state for all Ji ∈ J , there exists a cycle q1 → · · · → q1 in L
which contains a Ji-state for all Ji ∈ J .

Lemma 6. If there exists an accepting run in L′, there exists an accepting run
in L.

Theorem 4. Given a transition system L, a set of Büchi conditions J , and a
simulation relation � over states of L, L has an accepting run if and only if L′

has an accepting run.

Following Theorem 4, we can use the transition system L′ as the input for
Algorithm 3. However, explicitly computing the transition relation of L′ is not
efficient. Instead, we apply Down for the result of any call succ(Q) on the fly in
Algorithm 3 because of the fact that succ(Q, =⇒) = Down(succ(Q,→)).

Theorem 5. Algorithm 4 is sound and complete.

Proof: As we discussed the difference between Algorithm 4 and Algorithm 3,
given a transition system L with a set of initial states Init, the transition relation
Tr and a set of Büchi conditions J , while IsEmpty(Init, T r, J) is checking the
emptiness of L, IsEmptysim(Init, T r, J) is actually checking the emptiness of
the transition system L′. Thus, the correctness of Algorithm 4 is obtained based
on Theorem 4. ��

Scaling BDD-based Timed Verification with Simulation Reduction 375

Algorithm 4 does not guarantee that it always takes fewer or the same num-
ber of iterations than Algorithm 3. To distinguish between Algorithms 4 and 3,
we use new′ and new to denote the variable new in Algorithm 4 and Algorithm 3
respectively. Then, the reason that Algorithm 4 might take more iterations is
new′ = Down(new) is not an invariant during the algorithm. Assume before exe-
cuting the line 12, it holds that new′ = Down(new), then new′ = Down(new)
may not hold after this line is executed as shown in Lemma 8 in [2]. Thus,
new′ = Down(new) is not an invariant. Nevertheless, in our evaluation in Sect. 5,
Algorithm 4 always outperforms Algorithm 3 and takes less number of succ func-
tion calls. The reason is that during the computation of all reachable states from
initial states at line 4 and the first run of the while-loop in lines 7–9, Algorithm 4
can take much lesser number of succ function calls than Algorithm 3 as the result
of Theorem 3 and Lemma 7 in [7]. Moreover, the computation of all reachable
states (line 4) is the most expensive computation in these algorithms.

Algorithm 4 can be adopted to verify the emptiness of TBA straightfor-
wardly. The requirement that the run must visit an accepting location infinite
times and contain an infinite number of tick transitions and action transitions is
represented as a set of Büchi conditions J = {Acc, J0, J1} where Acc is a set of
accepting locations in DS(A) and J0 (respectively J1) is the set of states which
are the destination states of the action transition (respectively tick transition).
A boolean variable isT ick can be introduced during the encoding. For each tran-
sition, this variable is updated to false if that is an action transition. Otherwise
it is updated to true. Then J0 is the set of states where isT ick is false and J1 is
the set of states where isT ick is true.

We have presented our approach on the verification of reachability and LTL
properties by using the LU simulation relation. We evaluate them in the next
section.

5 Evaluation

We conducted experiments to evaluate our approach. Specifically, we attempted
to answer the following research questions:
RQ1: How is the improvement in the number of iterations and verification time
of our methods, compared to the existing state-of-the-art BDD-based and DBM-
based methods, in checking reachability and LTL properties?
RQ2: How scalable is our method in size of maximal clock constants and
processes?

Our approach has been implemented as a BDD library for the reachability
and LTL verification of timed automata in the PAT framework [42]. Our imple-
mentation is based on the CUDD package [41], which is a package that provides
functions to manipulate BDDs. All of the experiments are performed on a PC
with Intel Core i7-2600 CPU at 3.4 GHz and 4 GB RAM.

To answer the research questions, we have conducted four experiments, and
the results are shown in Tables 1-4. For all experiments, we measure the number
of succ function calls (#Succ), the verification time (in seconds) (Time), and

376 T.K. Nguyen et al.

Table 1. Experimental results in the reachability verification with increasing clock
constants

PAT-Sim PAT-NonSim Rabbit

MCC #Succ Time Memory #Succ Time Memory Time

CSMACD 808 4,369 6 34 17,794 1,563 577 208

CSMACD 1,616 8,721 36 59 - oot - 1,494

CSMACD 3,232 17,425 228 181 - - - oot

Fischer 256 796 14 73 2,838 1,033 1,089 58

Fischer 512 1,564 112 252 - - oom 1,076

Fischer 1,024 3,100 867 931 - - - oom

Lynch 64 481 12 66 1,347 217 498 256

Lynch 128 929 104 287 2,627 2,163 1,562 oot

Lynch 256 1,825 859 1,003 - - oom oom

Table 2. Experimental results in the reachability verification with increasing number
of processes

PAT-Sim PAT-NonSim Rabbit Uppaal

#Proc #Succ Time Memory #Succ Time Memory Time Time

CSMACD 16 7,377 62 85 - oot - 5,638 oom

CSMACD 32 14,289 453 187 - - - oot -

CSMACD 64 26,801 3,912 477 - - - - -

Fischer 8 308 52 482 - oot - 7,258 0.7

Fischer 16 356 366 1,442 - - - oom oom

Fischer 32 452 3,351 1,651 - - - - -

Lynch 8 169 8 72 696 6,203 1,690 2,494 1.1

Lynch 16 217 104 290 - - oom oom oom

Lynch 32 313 2,971 1,201 - - - - -

the memory usage of CUDD library (in MB) (Memory) over three benchmark
systems from [1,15,36]: CSMACD protocol, Fischer’s protocol, and Lynch-Shavit
protocol. We run PAT in two settings, i.e., with and without simulation, which
are referred to as PAT-Sim and PAT-NonSim. The algorithms for PAT-Sim
(PAT-NonSim resp.) on verifying reachability and LTL properties are given in
Algorithms 2 and 4 (Algorithms 1 and 3 resp.).

All experiments are conducted with a time limit of 2 CPU hours. An entry
‘oot’ in the table means that the time limit is reached, and an entry ‘oom’
means that the program runs out of memory. Given a benchmark system, when
a smaller model is running out of time or memory, we omit the evaluation of
larger models. An entry ‘-’ means the information is unavailable.

Scaling BDD-based Timed Verification with Simulation Reduction 377

Table 3. Results in the LTL verification with increasing maximal clock constants

PAT-Sim PAT-NonSim

MCC #Succ Time Memory #Succ Time Memory

CSMACD 404 4,334 5 36 14,169 493 876

CSMACD 808 8,608 18 75 28,257 2,857 1,489

CSMACD 1,616 16,688 35 82 - - oom

Fischer 200 979 2 28 2,812 417 1,101

Fischer 400 1,779 3 29 5,412 3,847 1,600

Fischer 800 3,379 8 34 - oot -

Lynch 200 6,937 25 53 19,682 2,404 1,434

Lynch 400 13,137 45 62 - oot -

Lynch 800 25,537 90 63 - - -

Table 4. Results in the LTL verification with increasing number of processes

PAT-Sim PAT-NonSim CTAV

#Proc #Succ Time Memory #Succ Time Memory Time

CSMACD 12 22,184 283 1,041 - oot - 562

CSMACD 16 28,972 511 756 - - - oom

CSMACD 20 35,760 839 1,063 - - - -

Fischer 8 608 5 39 1,974 10,275 1,689 4

Fischer 12 672 46 208 - - oom oom

Fischer 16 736 310 965 - - - -

Lynch 4 3,591 1 25 10,003 243 329 1

Lynch 8 9,839 42 65 - - oom 5

Lynch 12 19,551 585 326 - - - oom

We compare the results to three state-of-the-art model checkers, i.e., DBM-
based model checker Uppaal [31] and CTAV [32], as well as BDD-based model
checker Rabbit [10]. Although RED [46] and BDD-based version of Kronos [14]
are related to our work as real time verification tools using BDD (BDD-like) data
structure, Rabbit was shown to outperform them [10]. Therefore, only Rabbit is
used in our experiments.

5.1 Evaluation for Reachability Properties

We evaluate our approach with Rabbit and Uppaal in the verification of reach-
ability properties. Since our approach is digitization-based, naturally, the first
question is how well the library scales with the number of clock ticks. In the first
experiment (cf. Table 1), we exponentially increase the maximal clock constants
while keeping the number of processes constant (we set it 4). Since Uppaal is

378 T.K. Nguyen et al.

a DBM-based model checker, its performance does not depend on the maximal
clock constants; therefore, it is not used in the experiment. The column MCC
is the maximal clock constant values in the corresponding models. Compared
to PAT-NonSim, PAT-Sim takes smaller number of succ function calls which
can be reduced from 2 to 4 times by using simulation. Compared to Rabbit,
PAT-Sim achieves a speedup from 2 to 21 times, and there are five cases where
Rabbit runs out of memory or time. As a result, PAT-Sim outperforms both
PAT-NonSim and Rabbit and can handle larger maximal clock constants.

In the second experiment (cf. Table 2), we compare PAT, Rabbit, and Uppaal
using the same benchmark systems. The column #Proc represents the number of
processes. In this experiment, we set the maximal clock constants to 64 in Fischer
protocol, 16 in Lynch-Shavit protocol, and 404 in CSMACD protocol. Then, we
increase the number of processes in each benchmark system to find out which tool
can verify the most number of processes. By using simulation, the number of succ
function calls is reduced. Thus, PAT-Sim is faster and can handle larger number
of processes compared to PAT-NonSim. For example, in the Lynch model with
8 processes, PAT-Sim requires 169 succ function calls and takes 8 s, while PAT-
NonSim requires 696 succ function calls and takes 6,203 s. The verification time
is thus reduced significantly. According to Table 2, PAT-Sim also outperforms
Rabbit and Uppaal. Although Uppaal achieves shorter evaluation time in smaller
number of processes, both Rabbit and Uppaal easily run out of memory or time
when the number of processes increases. On the contrary, PAT-Sim can still
verify models while both other tools are out of memory or time, for example, 64
processes in the CSMACD benchmark.

5.2 Evaluation for LTL Properties

We evaluate our approach with CTAV in the verification of LTL properties under
non-Zeno condition. Note that we do not compare with Uppaal since Uppaal does
not support the verification of LTL properties under non-Zeno condition. In the
third experiment (cf. Table 3), to demonstrate the efficiency of our approach in
the handling of large maximal clock constants, we fix the number of processes
at 4 and increase the maximal clock constants. We do not compare with CTAV
since it is a DBM-based model checker and its performance is not affected by
maximal clock constants. According to the results, by using the LU simulation
relation, the number of succ function calls is reduced significantly. For example,
in the Lynch protocol with MCC = 200, the number of succ calls is reduced
from 19,682 to 6,937. As a result, the verification time is improved significantly,
from 2,404 s to 25 s.

PAT-Sim outperforms PAT-NonSim on all the models. It is faster and uses
less memory. Thus, it can handle models with maximal clock constants up to
thousands.

In the fourth experiment (cf. Table 4), to demonstrate the efficiency of our
approach in the handling of large number of processes, we fix the maximal clock
constant as 808 for CSMACD and 100 for other benchmarks. We increase the
number of processes then. In this experiment, we compare our approach with

Scaling BDD-based Timed Verification with Simulation Reduction 379

CTAV tool. The results indicate PAT-Sim approach outperforms PAT-NonSim
and CTAV on all the models. Specifically, it is faster and can handle more
processes than PAT-NonSim and CTAV. For example, in the CSMACD model
with 16 processes, PAT-Sim can verify within 511 s and 756 MB while PAT-
NonSim runs out of time, and CTAV runs out of memory.

With the results of four experiments, we answer research questions RQ1
and RQ2. Our approach improves the performance significantly by reducing the
number of iterations. Furthermore, it can handle models with clock constants
larger than a thousand.

6 Discussion

Limitation. A limitation of our approach is that when maximal lower and upper
bounds are the same, LU abstraction would not provide better performance. This
is because our method will take the same number of iterations to achieve the
fixpoint, and there are overheads for calling the Down operator.

Complexity of Down operator. [7] For checking of reachability properties,
given the maximal distance from the initial state to a state in the explored
model as N , the complexity is O(N). For checking of LTL properties, the time
complexity is linearly dependent upon the size of the symbolic (BDD) repre-
sentation in terms of the distances between states in the automaton graph, the
number and arrangement of the strongly connected components in the graph,
and the number of fairness conditions asserted [39]. Overall, Down operator can
be computed efficiently. In addition, variable ordering could affect the perfor-
mance of BDD. Overall, the Down operator can be computed efficiently. In our
implementation, we make use of several well-known heuristics [6,9,23,38] that
can produce a fairly good ordering.

7 Conclusion

In this paper, we propose to use the simulation relation to improve the BDD-
based model checking for real-time systems. Our approach is applied to verify
reachability and LTL properties. Experimental results confirm that our approach
achieves a significant speedup and outperforms Rabbit, Uppaal, and CTAV. As
future works, first, we plan to investigate the extensibility of our method to other
variety of timed automata, such as parametric timed automata [4]. Second, we
plan to investigate other reduction techniques, e.g., interpolation [34] or IC3 [18],
on top of our proposed techniques.

References

1. MCMT Benchmarks of Timed Automata. http://crema.di.unimi.it/∼carioni/
mcmt ta.html

2. Technical Report of Scaling BDD-based Timed Verification with Simulation Reduc-
tion. http://tianhuat.github.io/tr bddsr.pdf

http://crema.di.unimi.it/~carioni/mcmt_ta.html
http://crema.di.unimi.it/~carioni/mcmt_ta.html
http://tianhuat.github.io/tr_bddsr.pdf

380 T.K. Nguyen et al.

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

4. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592–601 (1993)

5. Asarin, E., Maler, O., Pnueli, A.: On discretization of delays in timed automata
and digital circuits. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS,
vol. 1466, pp. 470–484. Springer, Heidelberg (1998)

6. Aziz, A., Tasiran, S., Brayton, R.K.: BDD variable ordering for interacting finite
state machines. In: DAC, pp. 283–288 (1994)

7. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds
in zone based abstractions of timed automata. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 312–326. Springer, Heidelberg (2004)

8. Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reach-
ability analysis using clock difference diagrams. In: Halbwachs, N., Peled, D.A.
(eds.) CAV 1999. LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)

9. Beyer, D.: Improvements in BDD-based reachability analysis of timed automata.
In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 318–343.
Springer, Heidelberg (2001)

10. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: a tool for BDD-based verification of
real-time systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol.
2725, pp. 122–125. Springer, Heidelberg (2003)

11. Beyer, D., Noack, A.: Efficient verification of timed automata using BDDs. In:
FMICS, pp. 95–113 (2001)

12. Beyer, D., Noack, A.: Can decision diagrams overcome state space explosion in
real- time verification. In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003.
LNCS, vol. 2767, pp. 193–208. Springer, Heidelberg (2003)

13. Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods Syst.
Des. 24(3), 281–320 (2004)

14. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a
model-checking tool for real-time systems. In: Vardi, Y.M. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 546–550. Springer, Heidelberg (1998)

15. Bozga, M., Maler, O., Pnueli, A., Yovine, S.: Some progress in the symbolic veri-
fication of timed automata. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254,
pp. 179–190. Springer, Heidelberg (1997)

16. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

17. Chen, M., Tan, T.H., Sun, J., Liu, Y., Pang, J., Li, X.: Verification of functional
and non-functional requirements of web service composition. In: Groves, L., Sun,
J. (eds.) ICFEM 2013. LNCS, vol. 8144, pp. 313–328. Springer, Heidelberg (2013)

18. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg
(2012)

19. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998)

20. Sifakis, J.: Timing assumptions and verification of finite-state concurrent systems.
In: Dill, D.L. (ed.) Automatic Verification Methods for Finite State Systems.
LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1989)

21. Dill, D.L., Hu, A.J., Wong-Toi, H.: Checking for language inclusion using simula-
tion preorders. In: Larsen, K.G., Hu, A.J., Wong-Toi, H. (eds.) CAV 1991. LNCS,
vol. 575, pp. 255–265. Springer, Heidelberg (1991)

Scaling BDD-based Timed Verification with Simulation Reduction 381

22. Doyen, L., Raskin, J.-F.: Antichain algorithms for finite automata. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg
(2010)

23. Fujii, H., Ootomo, G., Hori, C.: Interleaving based variable ordering methods for
ordered binary decision diagrams. In: ICCAD, pp. 38–41 (1993)

24. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)

25. Herbreteau, F., Srivathsan, B.: Efficient on-the-fly emptiness check for timed Büchi
automata. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp.
218–232. Springer, Heidelberg (2010)

26. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Efficient emptiness check for timed
Büchi automata. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol.
6174, pp. 148–161. Springer, Heidelberg (2010)

27. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions for timed
automata. In: LICS, pp. 375–384 (2012)

28. Kesten, Y., Pnueli, A., Raviv, L.: Algorithmic verification of linear temporal logic
specifications. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS,
vol. 1443, pp. 1–16. Springer, Heidelberg (1998)

29. Laarman, A., Olesen, M.C., Dalsgaard, A.E., Larsen, K.G., van de Pol, J.: Multi-
core emptiness checking of timed Büchi automata using inclusion abstraction. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 968–983. Springer,
Heidelberg (2013)

30. Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul, W.
(eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005)

31. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. STTT 1(1–2), 134–
152 (1997)

32. Li, G.: Checking timed Büchi automata emptiness using LU-abstractions. In: Ouak-
nine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 228–242.
Springer, Heidelberg (2009)

33. Li, Y., Tan, T.H., Chechik, M.: Management of time requirements in component-
based systems. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol.
8442, pp. 399–415. Springer, Heidelberg (2014)

34. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

35. Møller, J.B., Lichtenberg, J., Andersen, H.R., Hulgaard, H.: Difference decision
diagrams. In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683,
pp. 111–125. Springer, Heidelberg (1999)

36. Morbé, G., Pigorsch, F., Scholl, C.: Fully symbolic model checking for timed
automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 616–632. Springer, Heidelberg (2011)

37. Nguyen, T.K., Sun, J., Liu, Y., Dong, J.S., Liu, Y.: Improved BDD-based dis-
crete analysis of timed systems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012.
LNCS, vol. 7436, pp. 326–340. Springer, Heidelberg (2012)

38. Rice, M., Kulhari, S.: A survey of static variable ordering heuristics for efficient
BDD/MDD construction. Technical report, University of California, Riverside
(2008)

39. Rozier, K.Y.: Linear temporal logic symbolic model checking. Comput. Sci. Rev.
5(2), 163–203 (2011)

382 T.K. Nguyen et al.

40. Seshia, S.A., Bryant, R.E.: Unbounded, fully symbolic model checking of timed
automata using Boolean methods. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV
2003. LNCS, vol. 2725, pp. 154–166. Springer, Heidelberg (2003)

41. Somenzi, F.: CUDD: CU Decision Diagram Package. http://vlsi.colorado.edu/
∼fabio/CUDD/

42. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009)

43. Tan, T.H., Liu, Y., Sun, J., Dong, J.S.: Verification of orchestration systems using
compositional partial order reduction. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 98–114. Springer, Heidelberg (2011)

44. Tripakis, S.: Verifying progress in timed systems. In: Katoen, J.-P. (ed.) AMAST-
ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 299–314.
Springer, Heidelberg (1999)

45. Tripakis, S.: Checking timed Büchi automata emptiness on simulation graphs.
ACM Trans. Comput. Logic 10(3), 1–19 (2009)

46. Wang, F.: Symbolic verification of complex real-time systems with clock-restriction
diagram. In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) FORTE 2001, vol. 69, pp.
235–250. Springer, Heidelberg (2001)

47. Wang, F.: Efficient verification of timed automata with BDD-like data-structures.
In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003.
LNCS, vol. 2575, pp. 189–205. Springer, Heidelberg (2003)

http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/

Model Checking Real-Time Properties
on the Functional Layer of Autonomous Robots

Mohammed Foughali1,2(B), Bernard Berthomieu1,2, Silvano Dal Zilio1,2,
Félix Ingrand1,2, and Anthony Mallet1,2

1 CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France
mfoughal@laas.fr

2 Univ. de Toulouse, LAAS, F-31400 Toulouse, France

Abstract. Software is an essential part of robotic systems. As robots
and autonomous systems are more and more deployed in human environ-
ments, we need to use elaborate validation and verification techniques in
order to gain a higher level of trust in our systems. This motivates our
determination to apply formal verification methods to robotics software.
In this paper, we describe our results obtained using model-checking on
the functional layer of an autonomous robot. We implement an automatic
translation from GenoM, a robotics model-based software engineering
framework, to the formal specification language Fiacre. This translation
takes into account the semantics of the robotics middleware. TINA, our
model-checking toolbox, can be used on the synthesized models to prove
real-time properties of the functional modules implementation on the
robot. We illustrate our approach using a realistic autonomous naviga-
tion example.

1 Introduction

Software is an essential part of robotic systems. As robots and autonomous
systems are more and more deployed in human environments (autonomous
cars, coworker robots, surgery robotics, etc.) and/or costly exploration missions
(extraterrestrial rover, deep space mission, etc.), we need to use more elaborated
V&V techniques, in order to gain a higher level of trust in the behavior of such
systems. Indeed, the trust we currently put in robotics software mainly rely on
testing campaigns, best coding practices, and the choice of sound architecture
principles. This does not rise to the level found in many regulated domains, such
as the aeronautic or nuclear industries, where formal methods are routinely used
to check the most vital parts of systems.

On the other hand, robotics software provides new opportunities to apply
formal methods. Indeed, robotics applications are often deployed using model-
based software engineering approaches [14] and described as a set of functional
modules orchestrated by a robotics middleware. These modules, and their inter-
actions, are amenable to an interpretation into formal models.

Autonomous systems are typically organized along layers [13]. The lower one,
the functional layer, interacts directly with sensors and actuators and performs
c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 383–399, 2016.
DOI: 10.1007/978-3-319-47846-3 24

384 M. Foughali et al.

the data processing tasks. The decisional layer deals with more cognitive activ-
ities, such as task planning or monitoring. With respect to V&V, the decisional
layer models are often formal and range from planning models (PDDL, ANML,
NDDL, etc.) to acting models (TDL, SMach, RMPL, OpenPRS, etc.) or moni-
toring models (Livingstone, etc.) [22], a fact reflected by a large body of research
applying formal V&V approaches to the deliberation functions [1,16,21,29]. In
contrast, little has been done to bridge frameworks used to deploy functional
level modules with formal methods and their associated V&V tools.

In this paper, we propose to connect a robotics model-based approach
(Gen

oM3) with a formal V&V framework (Fiacre/TINA). We describe how we
can automatically synthesize a formal model of robotics functional modules and
then use it to prove important behavioral and timed properties of the mod-
ules implementation on the robot. We illustrate our presentation with a realistic
autonomous navigation example, on which we formally prove properties of inter-
est to the robot programmers.

The paper is organized as follows. After a section on related works focusing
on formal verification of the functional level of robotic systems, we introduce
(Sect. 3) the Fiacre formal specification language and the TINA model-checking
toolbox. We then describe the Gen

oM3 framework (Sect. 4), used to specify func-
tional level modules for robotic systems. In Sect. 5, we illustrate our robot nav-
igation example as specified in Gen

oM3. Section 6.1 gives examples on how we
map GenoM modules constituents into Fiacre so as to automatically synthesize
formal models. Before concluding, Sect. 7 discusses some examples of properties
formally checked on our navigation modules.

2 Related Work

An early work on formal verification in robotics is presented in [19]. It pro-
poses the verification of robotics applications specified in Orccad [30]. Behavioral
properties are checked with Mauto after translating Orccad descriptions into the
ESTEREL synchronous language [12], with time-related constraints translated
into logical events. Timed properties are checked with Kronos, a TCTL model-
checker, after translating the specification into Timed-Argos [25], an extension
of the synchronous language Argos with delays.

Brat et al. [13] describe an approach to verify autonomous systems with
planning, execution and functional layers. They propose a modular verification
approach combining compositional techniques (assume-guarantee), static analy-
sis, testing and model checking to assert safety properties. No timing constraints
are taken into account.

In [32], the authors attempt to prevent state explosion while model-checking
large systems through a compositional approach (inferring properties of the sys-
tem from the properties of its constituents). They succeed to assert some prop-
erties of low-level controllers. Not all properties are amenable to compositional
verification, however. They suggest to combine model checking and automated
theorem proving to benefit from their respective strengths.

Model Checking Real-Time Properties on the Functional Layer 385

BIP [4], a modeling framework based on automata, is used in the joint veri-
fication effort presented in [2]. The functional modules, written in Gen

oM, of an
outdoor robot with two navigation modes, are modeled in BIP. The invariant
extractor and SAT-solving tool D-Finder [5] is used to check, offline, the absence
of deadlocks within the BIP model. Additional safety constraints can be added
and automatically translated from logical formulae into BIP. The resulting model
is run within the BIP Engine on DALA, an iRobot ATRV (All-Terrain Robotic
Vehicle), and the constraints are consequently enforced at runtime. Timing con-
straints are not considered.

In [20], the MAUVE framework is used to build functional level components
for a P3DX mobile robot. The schedulability of the different components is
formally verified. Execution scenarios are manually translated into Fiacre [6]
models and behavioral properties are asserted on them.

This list is far from being exhaustive. Indeed, we only mentioned methods
comparable to ours, omitting for instance those relying on hybrid formal models
like [17] or on pure theorem proving as in [31]. Our approach is the closest in spirit
to that of [19] and relies on model-checking. Formal models are automatically
synthesized and all properties are checked in the same verification framework,
including timed properties.

3 Fiacre and TINA

Fiacre [6] is a specification language for describing compositionally both the
behavioral and timing aspects of embedded and distributed systems. It has a
formal semantics and can be used as an input format for formal verification
tools (mainly real-time model-checkers) as well as for simulation purposes.

Fiacre stems from several projects involving industrial and academics part-
ners. Besides the applications described in this paper, Fiacre has been used
in a variety of applicative domains, like telecoms, avionics or robotics sys-
tems [7,11,20,28]. In this work, we use Fiacre specifications with the model-
checking toolbox TINA.

3.1 The Fiacre Language

Fiacre descriptions are made of processes and components, both parameteri-
zable by values, value locations (shared variables) and interaction labels (for
communication or synchronization).

Processes describe sequential behaviors; they specify a set of control states
and a set of transitions, each expressing a state change by a statement built
from deterministic constructs (assignments, conditionals, loops, and sequential
composition), nondeterministic constructs (nondeterministic choice and assign-
ments), interaction statements and jump statements. Several examples of Fiacre
processes are shown in Sect. 6.1.

386 M. Foughali et al.

Components describe in a hierarchical manner the architecture of the system;
a system is a parallel composition of process or component instances. Compo-
nents also specify the interactions between the constituting processes or com-
ponents, and possibly constrain these interactions with timing and/or priority
requirements.

Apart from its ability to model priorities and timing constraints (using a
dense time model), a distinctive feature of Fiacre is to include a rich set of
datatypes: booleans, integers and integer ranges, records, tagged unions, arrays
and queues. The language is statically typed, with depth subtyping to handle
integer ranges. In terms of process interactions, Fiacre supports both the classi-
cal paradigms of shared variables and synchronous message passing à la process
calculi. Shared variables and interaction ports are created local to components.
Finally, Fiacre provides functions, native or imported. Some introductory mate-
rial and examples can be found on the Fiacre site (www.laas.fr/fiacre).

Semantics. Classically for a timed language, the semantics of a Fiacre description
is a timed transition system, that is a transition system with two kinds of tran-
sitions: discrete transitions resulting from discrete state changes and continuous
transitions resulting from time elapsing. The semantics of a component is the
synchronized product of the semantics of its subcomponents, further constrained
by time and priority constraints on their interactions, if any.

Verification. Fiacre descriptions can be complemented by declarations of prop-
erties. Atomic properties include the states of process instances, predicates on
the values of variables and Fiacre events (interactions). The Fiacre observables
are boolean combinations of atomic properties. They can be combined to form
property patterns in the style of [18]. For checking real-time properties, these
patterns are enriched with time constraints [3]. For verification, the real-time
patterns are translated by the Fiacre compiler into LTL properties on the Fiacre
description instrumented with observers.

As an illustration, this is how a “leadsto within” timed property is handled.
The property is written in Fiacre as (source leadsto target within [d1, d2]),
where source and target are some observables and [d1, d2] is a time interval. The
property asserts that along each path some state obeying target occurs within a
delay in interval [d1, d2] after each state obeying source. This property is encoded
using a Fiacre process (an observer) given in the listing below; the process is
connected with the main Fiacre program through two transition guards on the
source and target observables. With this observer, the property is to show that
the state error of the observer is unreachable.

process LeadsToWithin is

states idle, start, watch, error

from idle

on source; to start

from start

wait [d1,d1]; to watch

from watch

www.laas.fr/fiacre

Model Checking Real-Time Properties on the Functional Layer 387

select

on target; wait [0,0]; to idle

unless

wait]Δ,...[; to error /* where Δ = d2 − d1 */

end

3.2 The TINA Toolbox

TINA [9] is a toolbox for the analysis and verification of Time Petri nets (pos-
sibly) enriched with priorities, stopwatches and/or data processing. It is freely
available at www.laas.fr/tina.

Time Petri nets. Together with Timed Automata, Time Petri nets [26] (TPN for
short) are a prominent model for analysis of real-time systems. Time Petri nets
enrich Petri nets with time intervals associated with the transitions of the net
specifying the possible time delays between last enabledness of these transitions
and their activation (or firing in Petri net terminology).

Due to the dense nature of time considered in TPN, their state spaces are
typically infinite, but finite abstractions of these are available since [8], known
as State Classes. State Classes provide a finite time-abstracted representation
of the behavior of bounded TPN preserving their markings and traces. A state
class associates a marking of the TPN with a system of difference constraints
(a DBM) capturing the times in the future at which the transitions enabled at
that marking can fire.

Since it preserves markings and traces, the state classes construction is suit-
able for LTL model-checking. A simple variation of the construction (reducing
classes by inclusion) only preserves markings and is typically coarser; it is the
method of choice for reachability analysis.

In contrast with the well known zone constructions for Timed Automata,
state classes do not capture clock domains for the enabled transitions, but poten-
tial firing times in the future (called firing domains). For these reasons, state class
constructions are typically coarser than zone constructions preserving the same
properties. But zone constructions are also applicable to TPN and are indeed
necessary to handle some TPN extensions like priorities.

A description of available abstraction methods for TPN can be found in [9,
10]. TINA offers all constructions discussed in these papers, as well as several
constructions relying on discrete time and a number of constructions specific to
Petri nets.

Enriching TPN. TPN can be conveniently enriched by a number of features
enhancing their expressiveness like priorities expressing that some transitions
should be favored over others when fireable at the same instant, stopwatches
allowing to encode preemption, or data-processing consisting of synchronizing
the evolution of the TPN with computations on a set of variables in some pro-
gramming notation. TINA provides state class constructions for such enriched
TPN.

www.laas.fr/tina

388 M. Foughali et al.

Verification in TINA. The TINA toolbox provides state space generators and
offline model-checkers for LTL and modal µ-calculus. The generators produce
compressed representations of state spaces into files. Some classes of properties
can also be checked on the fly when building state spaces. When a property
reveals false, a counter example scenario is generated as a timed trace and can
be replayed in a simulator.

Verification of Fiacre Descriptions. For their verification, Fiacre descriptions
are translated into enriched TPN as defined above by an optimizing compiler.
The compiler, frac, performs syntax analysis and type checking, then encodes
the description into an enriched TPN for TINA preserving its semantics. The
compilation process includes a model optimization pass that simplifies redun-
dant transitions, removes dead code and abstracts some variables, retaining only
those contributing to the state (unlike e.g. those only used as temporaries). This
optimization pass helps reduce the size of the state space.

The frac compiler also translates the properties declared in the description
into properties in the format supported by the TINA model checkers. Verifica-
tions of Fiacre properties are then carried out exactly like verification of TINA
models properties; in case of failure, a timed scenario can be computed, corre-
sponding to a Fiacre scenario.

4 Gen
oM3

Functional modules are the building block of LAAS robot architecture functional
level [23]. Each module is in charge of a specific function on the robot, from con-
trolling a low-level driver (e.g. motors), a sensor (e.g. laser, camera, etc.), up to
more complex functionalities (e.g. motion planning, Simultaneous Localization
And Mapping “SLAM”, etc.). These modules are controlled by a supervisor (e.g.
OpenPRS1, eltcsh2, etc.).

Gen
oM3 [24] is a tool that parses a specification language for functional mod-

ules. It provides a template-based generator to synthesize code, libraries, models,
etc., from the specification.

A Gen
oM3 module (Fig. 1) is specified in the language with the following

elements:

– an internal data structure (IDS), shared among the services S.
– execution tasks ETi aperiodic or with a period (pi); each runs the active

activity services associated with it.
– services S, that can be of three different types: attribute (to set or get an

element of the IDS), function (for a quick and simple computation) or more
interestingly activity.

– ports P , in or out, depending on whether the module reads or writes them.
– a list of exceptions for non nominal executions.

1 https://git.openrobots.org/projects/openprs.
2 https://www.openrobots.org/wiki/eltclsh.

https://git.openrobots.org/projects/openprs
https://www.openrobots.org/wiki/eltclsh

Model Checking Real-Time Properties on the Functional Layer 389

PORTS

Execution Tasks

Activitiy Services

IDS

Requests Reports

Control Task Attribute and Function
Services

Fig. 1. A generic Gen
oM3 module.

Services can take parameters and return values. Each Activity executes in an
execution task ET that it specifies. It also defines an automaton that specifies
for each state:

– the codel3 to execute in this state, taking as arguments the elements in and
out from the IDS, and the ports in and out it needs for its execution.

– the list of states it yields to.
– the WCET (Worst Case Execution Time) of the codel.

All activities have a start state-codel, which is the entry point in the automa-
ton, and an ether state which is a sink (terminal) state. At runtime, the codel
associated with a state must return the state to which it will transition, or
throw an exception. An activity thus terminates (transitions to ether) either
with an exception or with a nominal end. In both cases, exception or return
values are reported to the client that requested the activity. A service may have
a validate codel to validate the in arguments before it runs. Any service may
be incompatible with a list of services that need to be interrupted before it exe-
cutes (including itself if e.g. at most one instance of the same service may run
at any time). Interrupted activities execute directly their stop codel, if defined,
otherwise they transit to ether.

3 Codels (code elements) are the programmer implementation of the specified service,
broken down to small chunks of C or C++ code.

390 M. Foughali et al.

Each module has an implicit aperiodic control task CT , in charge of the mod-
ule I/O. The CT handles requests from clients as well as the reports upon exe-
cution of services. CT is also responsible for executing attributes and functions,
and instructing the different ETi of the activity instances to run or interrupt.

Templates Mechanism. The Gen
oM3 parser builds an abstract syntax tree and

converts it into a suitable representation for the scripting language of the tem-
plate interpreter (TCL). Then, every file of the template is read by Gen

oM3 and
interpreted within this representation. Special markers in the file are detected
and their content replaced in a manner similar to how a PHP script is embedded
into an HTML page. The scripted code has access to all the information of the
module description file. A typical template will consist of regular code, mixed
with scripted loops on e.g., services that generate calls to functions of the core
libraries. Since the interpreter relies on a complete scripting language, there are
virtually no restrictions on what a template can express and synthesize.

There are already templates to synthesize: the module itself for various mid-
dleware (e.g., PocoLibs4, ROS-Com [27], Orocos [15]); client libraries to control
the module (e.g., JSON, C, OpenPRS), etc. The template we developed in this
work maps the PocoLibs module implementation of any set of modules speci-
fied in Gen

oM3 into their timed Fiacre model. From now on, when we refer to a
Gen

oM3 module, we implicitly mean the Gen
oM3 PocoLibs implementation of the

module.

5 Illustrative Example

To illustrate our approach, we introduce a realistic example of a robot navigation
implementation (Fig. 2a). This navigation remains generic, in the sense that
it could be instantiated with different sensors, motion planners, etc. Yet, the
modules, the ports they share, the periods of their internal tasks, the services,
their automata and the WCETs associated to their codels are the same as the
ones of the real navigation running on our RMP 4005 robot, Mana.

Figure 2a presents the four modules in charge of the navigation:

robloco is in charge of the robot low-level controller. It has a track task (period
50 ms) associated to the activity TSStart (TrackSpeedStart, interruptible by
the function TSStop) that reads data from the speed port and sends it to the
motor controller. In parallel, one of the odo task (period 50 ms) associated
activities, namely OdoStart (interruptible by the function OdoStop), reads
the encoders on the wheels and produces a current position on the pos port.

roblaser is in charge of the laser. It has a scan task (period 50 ms) associated,
inter alia, to the StartScan activity (interruptible by the function StopScan).
The latter produces, on the port scan, the free space in the laser’s range
tagged with the position where the scan has been made (read on pos).

4 https://git.openrobots.org/projects/pocolibs/gollum/index.
5 http://rmp.segway.com/tag/rmp400/.

https://git.openrobots.org/projects/pocolibs/gollum/index
http://rmp.segway.com/tag/rmp400/

Model Checking Real-Time Properties on the Functional Layer 391

(a) The robot navigation with its four
modules, their tasks and a par-

tial list of their services (activities are in
italic)

(b) The GotoPosition activity automa-
ton.

Fig. 2. Modules and an activity service.

robmap aggregates the successive scan data in the map port. A fuse task
(period 50 ms) and FuseMap, one of its activities, perform the computation.
The function FuseStop interrupts the activity FuseMap.

robmotion has one task plan (period 500 ms) which, given a goal position (via
the activity GotoPosition), computes the appropriate speed to reach it and
writes it on speed, using the current position (from pos), and avoiding obsta-
cles (from map). GotoPosition interrupts itself, so a new request will cancel
the currently running one (if it exists) and force the execution of its stop
state. Similarly, The Stop service (function) interrupts GotoPosition.

Each activity introduced above has its own automaton. Figure 2b presents
the automaton of GotoPosition. For each state, we define a codel, its WCET,
the ports and the elements of the IDS it needs (in and out). Listing 1 presents
the Gen

oM3 specification of this activity.

activity GotoPosition (in robloco::position goto_position)

{ validate controlPosition (in goto_position) wcet 10 ms;

codel <start> gotoposStart(in goto_position, port in pos, port in map,

ids out goal_pos, ids out attempts) yield read_ports, ether wcet 50 ms;

codel <read_ports> gotoposReadPorts(ids out pos, ids out explored_map,

port in pos, port in map) yield compute_speed wcet 50 ms;

codel <compute_speed> gotoposComputeSpeed(ids in goal_pos, ids in pos,

ids in explored_map, ids in verbose, /* This codel takes a long time */

ids out speed, ids inout attempts) /* we make sure no ports are locked */

yield write_port, end, path_blocked wcet 200 ms;

392 M. Foughali et al.

codel <write_port> gotoposWritePort(ids in speed, port out speed)

yield pause::read_ports wcet 50 ms; /* enforces task cycle termination */

codel <end,stop> gotoposWritePortStop(ids out speed, port out speed)

yield ether wcet 50 ms;

codel <path_blocked> gotoposPathBlocked(ids out speed, port out speed)

yield ether wcet 50 ms;

interrupts GotoPosition; /* a new instance interrupts a running one */

task plan; /* the execution task in which the activity will execute */

throw Invalid_Position, Invalid_Map, Invalid_Goal, Path_Blocked; };

Listing 1. The Gen
oM3 specification of the GotoPosition activity.

Activities are executed in their respective execution tasks. For example,
GotoPosition executes in the plan task along its period. It begins with exe-
cuting the state start associated codel (gotoposStart), and transitioning to
the state returned by such an execution (see Sect. 4). It continues until a transi-
tion labeled with pause occurs (e.g., Fig. 2b the transition from write port to
read ports) or the activity terminates. In either case, the control is given back
to the execution task which will then execute the other active instances, if any,
or otherwise wait for the next period signal.

For the sake of simplicity, our description of the mechanisms offered by
Gen

oM3 to specify and deploy functional modules remains partial. Still, one can
see the complexity raised by running these 4 modules, with 9 threads, 27 services
including 10 activities with their respective automata and overall more than 35
codels with their WCET.

The PocoLibs implementation of the module offers a high level of paral-
lelism while preserving shared data access with proper locking. However, it does
not offer any guarantee on crucial properties such as schedulability of tasks,
boundedness in time of ports updates, proper termination of services, absence
of deadlock due to sharing resources, etc.

6 Mapping and Automatic Synthesis

An important step of this work is to automatically synthesize a Fiacre model
of any Gen

oM3 module. All the generic software components (tasks, services,
automata, ports, etc.) potentially present in Gen

oM3 modules are formalized into
Fiacre. In this section, we analyze through a few illustrative examples how we
map some of the Gen

oM3 module software component into Fiacre processes/-
components. We then briefly discuss the integration of such a mapping into the
translator.

6.1 Mapping

Periodic Execution Tasks. Most Gen
oM3 specifications include periodic execution

tasks in charge of executing the activities they manage. We model a periodic exe-
cution task with two Fiacre processes. The first one is a simple one-state timer.
It is in charge of scheduling a manager process that manages the execution of

Model Checking Real-Time Properties on the Functional Layer 393

the activities. The timer (Listing 2–left) assigns, every new time period PERIOD,
the value true to the variable tick that it shares with the manager. The man-
ager starts only when tick is true and switches this flag to false. If there are
active activities in this task, it transitions to the state manage and executes them
accordingly (Sect. 5). It does not transition back to its initial state, start, unless
all eligible executions in this cycle have ended.

process timer (&tick: bool) is

states start

from start

wait [PERIOD,PERIOD];

tick := true;

to start

process Manager (&tick: bool, ...) is

states start, manage

from start

wait [0,0];

on tick;

tick := false;

if (...) /* no active activity */

then to start

else to manage end

from manage

wait [0,0];

... /* execute one active activity

*/

if (...) /* no more activities */

then to start

else to manage end

Listing 2. Fiacre models of an execution task timer and manager (simplified)

State-Codels, WCETs and Concurrency. PocoLibs ensures proper locking of
the resources the state-codels share (in the IDS for each module and among
ports across multiple modules). In this context, state-codels are categorized as
either thread-safe or non-thread-safe. A thread-safe state-codel runs with
no condition on resources availability (e.g., it uses no shared resources or uses
some of them exclusively) while a non-thread-safe one needs to have all the
resources it accesses unlocked so it can execute. A thread-safe state-codel is
mapped into a single Fiacre state with every transition out of it associated with
the firing interval]0,WCET]. The target states correspond to the yield values of
the state-codel (Sect. 4). In contrast, we map a non-thread-safe state-codel into
two Fiacre states (Listing 3), the first for waiting and the second for executing.
The transition from the first to the second fires providing no conflicting state-
codel (i.e. potentially locking at least one of the needed resources) is in its Fiacre
executing state.

from NTS_WAITING

wait [0,0];

on CONFLICT_1 = NOT_RUNNING and CONFLICT_2 = NOT_RUNNING ...;

NTS := RUNNING;

to NTS_EXECUTING

from NTS_EXECUTING

394 M. Foughali et al.

wait]0,WCET];

NTS := NOT_RUNNING;

... /* possible transitions */

Listing 3. Fiacre model of a non-thread safe state-codel (simplified)

Activities. A Gen
oM3 activity is mapped into a Fiacre process. The latter is

constituted of the states corresponding to the activity state-codels and the tran-
sitions corresponding to their yield values. The task manager (Sect. 6.1) com-
municates with the activities to ensure a correct execution of active instances
(Sect. 5). This communication, not shown in our listings for the sake of simplicity,
also includes the proper handling of potential interruptions. Listing 4 is a sim-
plified, symbolic, view of the Fiacre process corresponding to the GotoPosition
activity (Sect. 5, start state-codel only).

process GotoPosition_plan (.../*shared variables*/) is

states start, start_2, read_ports, ...

from start_waiting

wait [0,0];

on (...) /* wait until the manager allows me to run */

if (...) /* interruption signal (by manager) */ then to stop_

/* otherwise, nominal execution: */

else on (GetGoalPosition = NOT_RUNNING and ...);

GotoPosition_plan_start := RUNNING;

to start_executing

end

from start_executing

wait]0,0.05]; /* the WCET of the Start codel */

/* back to not running when leaving: */

GotoPosition_plan_start := NOT_RUNNING;

select

/* non determinism. Either to read_ports: */

to read_ports_waiting

/* or to ether */

[] ... /* back to the manager */; to start_waiting /*

terminate */

end

from read_ports_waiting

...

Listing 4. Extract from the GotoPosition Fiacre process (simplified)

6.2 Automatic Synthesis

For producing Fiacre models from Gen
oM3 descriptions, we rely on the generic

template mechanism provided by the Gen
oM3 environment (Sect. 4). Fiacre mod-

els are generated fully automatically from unrestricted Gen
oM3 descriptions.

Model Checking Real-Time Properties on the Functional Layer 395

The mappings from Gen
oM3 to Fiacre, some of which are discussed in Sect. 6.1,

have been carefully chosen so that the behavior of the generated Fiacre mod-
els faithfully represents that of the Gen

oM3 module. The translation of Gen
oM3

descriptions into Fiacre gives them a formal semantics, which enables verifica-
tion of real-time properties as illustrated in the next section. This constitutes
the very first formalization of Gen

oM3 specifications.

7 Experiments and Discussion

In this section, we rely on the automatically generated Fiacre models (Sect. 6) of
our Gen

oM3 modules (Sect. 5) to express and assert various temporal/timed prop-
erties using, respectively, Fiacre and TINA (Sect. 3) on each individual module
but also on all the four modules together with a realistic navigation scenario.
We assume that the targeted robotics platform is real-time, has enough cores
to run all the tasks in parallel6 and that the affinity is set to one core per task.
All experiments are carried out on a typical mid-range computer; Intel Core i5
2.7 GHz with 8 GB of RAM.

7.1 Single Module Verification

The Fiacre model of a module cannot be analyzed without embedding it in
a “system model”, i.e., we need a “client” to synthesize the possible requests
the module may serve. For this, the template automatically produces a Fiacre
process able to send any type of request at any given time. Clearly, the Fiacre
model of the module and that of its client form a system that will cover all
the reachable states the real module may encounter when evolving alone (no
interactions through ports).

Schedulability. We refer to an execution task as schedulable if it never overruns
its period. We start with the most complex module, robloco (Sect. 5), involving
three tasks running in parallel and a number of services. The modeling choice
made in Sect. 6.1 for periodic tasks permits an easy expression of the property
for both execution tasks. E.g. for task odo:

property sched_odo is always ((robloco/odo_manager/state manage) ⇒
not (robloco/odo_manager/value tick_odo))

The idea is that a period is violated only if a new period tick occurs while
an activity is being executed (see Sect. 6.1). This modeling choice makes it easy
to express schedulability properties not with timed properties (implying a larger
state space to analyze) but with reachability properties (which do not involve
traces). Thus, we can use the coarser TINA construction that does not preserve
firing sequences (smaller state space). We end up with a manageable state space
(built in about 18 mn) with 10 857 940 classes all obeying the property, for both
tasks. We then assert the truth of the same property on the remaining modules
execution tasks in less than 1 mn overall.
6 The template still provides the user with the possibility to specify their hardware

constraints.

396 M. Foughali et al.

Safe End. Let us consider the module robmap (Sect. 5). We assert the following
safety property: when the module terminates following a kill request, all services
have properly terminated. This translates in Fiacre to: for all execution paths, if
the process timer is in state shutdown, then the function running returns false
for all services instances:

property safeshut is always ((robmap/timer/state shutdown) ⇒
not (robmap/manager/value (running (.../*all services

instances*/))))

Indeed, our unique execution task’s timer transits to the state shutdown when
the module is killed, and the function running evaluates to true only if at least
one of the services is running or being interrupted. Again, this property is an
invariant and does not rely on traces. In our experiment, this property can be
checked true by exploring a state class graph with 125 606 classes and 102 512
markings, computed in 4 s.

7.2 Full Perception-Plan-Action Loop Verification

We synthesize the global Fiacre model for the four modules communicating
through ports. We then add a Fiacre client defining a full-navigation scenario.

Schedulability of Tasks and Progress of Activities. One of the properties we
succeeded to verify in Sect. 7.1 is the tasks schedulability. However, this prop-
erty is not necessarily preserved when the modules evolve altogether. Indeed,
ports, properly synthesized in the Fiacre model of the four modules, constitute
another shared resource that codels use concurrently. Since we already saw how
to express the schedulability properties in Fiacre, we will skip directly to the
results. Interestingly, no task respects its period anymore, except for the task
plan of the module robmotion.

These results lead us to further investigation. For the tasks becoming non
schedulable, could it be possible that some activities are infinitely blocked while
waiting for some ports to be free. Once more, our modeling choices, particularly
the ones pertaining to periodic tasks and their associated activities (Sect. 6.1),
allow an easy and quick verification of such a property. Using the Fiacre pattern
leadsto (Sect. 3), we simply check that none of the involved tasks is forever
blocked in its state manage. E.g. for the task track:

property no_block_track is (navigation/robloco/track_manager/state

manage) leadsto (navigation/robloco/track_manager/state start)

The property holds for all the concerned tasks. Since no activity is infinitely
blocked, which would be definitely worrying, the programmer has to decide
whether it is critical for this application to have all the tasks schedulable. If
yes, they may consider tuning the different periods while watching the effects on
the robot performance. Our experiments show that, for instance, doubling the
period of the task track renders it schedulable. All results are obtained in less
than 40 s overall.

Model Checking Real-Time Properties on the Functional Layer 397

Speed/pos Update Bounded in Time. One important aspect in our navigation
would be the time elapsed between a pos update, and the next pos update
following a speed update with all the ports properly updated in-between (scan,
map). We proceed by first checking upper bounds on each part of the whole loop
between the subsequent events, using the Fiacre timed pattern leadsto within
(Sect. 3), then summing these bounds. We consider all scenarios including a
blocked path or a reached goal. The state spaces computation time range from
10 s to 30 s. The result is 1.274 s, which is acceptable considering the maximum
speed of the robot and its laser range.

Safe Stop. We extend the client providing the navigation scenario to generate,
at any given moment, a TSStop (Sect. 5) request. We again rely on the pattern
leadsto within (Sect. 3) to formally prove that the generation of such a request
leads to the termination of the running instance of TSStart in a maximum
duration. We proved that this duration amounts to 72 ms with the model checker
succeeding to find a counterexample for the next smaller value (i.e. 71 ms). Since
the end of TSStart (through an interruption) means necessarily sending a null
speed to the motor controller, the programmer may deduce critical information
from this current setup, e.g., that the robot driving at 2 m/s will advance at
least 0.14 m before a full stop. The reachability graph features 1 484 091 classes
built in about 3 mn.

8 Conclusion

We formally check important real-time properties on the navigation modules
of our RMP 400 robot. Our results compare favorably with previous works. In
contrast to [2,13], we take all time constraints into account. Also, unlike the
related works cited in Sect. 2 ([2] aside), we provide a fully automatic trans-
lation from Gen

oM3 specifications to the equivalent Fiacre model. Finally, and
compared to [19], our experiments tackle examples of a high complexity and
a maximum level of parallelism. We succeed to check nontrivial timed proper-
ties; no property verification lasted more than 18 mn (including the time needed
to generate the reachability graph). These promising results are mainly due to
careful modeling choices (Sects. 6 and 7) and optimized state space generation
techniques implemented in TINA.

Formalizing Gen
oM3 specifications (Sect. 6) remains the hardest part of our

effort. Several PocoLibs/Gen
oM3 aspects were not trivially expressible in Fiacre.

Moreover, avoiding the combinatory explosion of model checking was challeng-
ing. Modeling choices were systematically assessed considering, despite their cor-
rectness, the ability to express and verify important properties on them. Many
of such choices were thus discarded or refined throughout the process. As a
consequence, the resulting models for our experiments remain scalable.

An unexpected result from this work is that transforming a Gen
oM3 specifi-

cation and its PocoLibs implementation in a language like Fiacre, with a clear
formal semantics, forced us to clarify some of the implementation choices and
fix bugs.

398 M. Foughali et al.

A limitation of our approach in its current setting is that we need a fine
knowledge of the Fiacre model produced by the translator from Gen

oM3 in order
to express properties. For the robot programmers, it would be more convenient
to express the properties within Gen

oM3, in a language they are familiar with. As
a next step, the template will include the translation of properties expressed in
Gen

oM3 into Fiacre/TINA properties. As for the verification results, when TINA
evaluates the property to false, it would be equally important to automatically
interpret the counterexample into what the robot programmers would easily
grasp (that is at Gen

oM3 level), so they can act accordingly.
Last, robotic platforms seldom offer enough cores/processors to run all the

tasks/threads of a realistic application in parallel. Thus, we now aim to verify
real-time properties while taking into consideration the actual hardware con-
straints.

Acknowledgement. This work was supported in part by the EU CPSE Labs project
funded by the H2020 program under grant agreement No. 644400.

References

1. Abdeddäım, Y., Asarin, E., Gallien, M., Ingrand, F., Lesire, C., Sighireanu,
M.: Planning robust temporal plans: a comparison between CBTP and TGA
approaches. In: ICAPS (2007)

2. Abdellatif, T., Bensalem, S., Combaz, J., de Silva, L., Ingrand, F.: Rigorous design
of robot software: a formal component-based approach. Robot. Auton. Syst. 60,
1563–1578 (2012)

3. Abid, N., Dal Zilio, S., Le Botlan, D.: A formal framework to specify and verify
real-time properties on critical systems. Int. J. Crit. Comput. Based Syst. 5(1),
4–30 (2014)

4. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: SEFM, pp. 3–12 (2006)

5. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-Finder: a tool for composi-
tional deadlock detection and verification. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009)

6. Berthomieu, B., Bodeveix, J.-P., Farail, P., Filali, M., Garavel, H., Gaufillet, P.,
Lang, F., Vernadat, F.: Fiacre: an intermediate language for model verification in
the topcased environment. In: ERTS, HAL - CCSD, Toulouse (2008)

7. Berthomieu, B., Dal Zilio, S., Fronc, �L.: Model-checking real-time properties of an
aircraft landing gear system using fiacre. In: Boniol, F., Wiels, V., Ait Ameur, Y.,
Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 110–125. Springer, Heidelberg
(2014)

8. Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time Petri
nets. IFIP Congr. Ser. 9, 41–46 (1983)

9. Berthomieu, B., Ribet, P.-O., Vernadat, F.: The tool TINA - construction of
abstract state spaces for Petri nets and Time Petri. Int. J. Prod. Res. 42(14),
2741–2756 (2004)

10. Berthomieu, B., Vernadat, F.: State Space Abstractions for Time Petri Nets. Hand-
book of Real-Time and Embedded Systems. CRC Press, Boca Raton (2007)

Model Checking Real-Time Properties on the Functional Layer 399

11. Bourdil, P.-A., Berthomieu, B., Jenn, E.: Model-checking real-time properties of
an auto flight control system function. In: IEEE ISSREW (2014)

12. Boussinot, F., de Simone, R.: The ESTEREL Language. In: Proceeding of the
IEEE, pp. 1293–1304, September 1991

13. Brat, G., Denney, E., Giannakopoulou, D., Frank, J., Jónsson, A.K.: Verification of
autonomous systems for space applications. In: IEEE Aerospace Conference (2006)

14. Brugali, D.: Model-driven software engineering in robotics. IEEE Robot. Autom.
Mag. 22(3), 155–166 (2015)

15. Bruyninckx, H.: Open robot control software: the OROCOS project. In: IEEE
International Conference on Robotics and Automation (2001)

16. Cimatti, A., Roveri, M., Bertoli, P.: Conformant planning via symbolic model
checking and heuristic search. Artif. Intell. 159, 127–206 (2004)

17. Dolginova, E., Lynch, N.: Safety verification for automated platoon maneuvers: a
case study. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 154–170. Springer,
Heidelberg (1997)

18. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE (1999)

19. Espiau, B., Kapellos, K., Jourdan, M.: Formal verification in robotics: why and
how? In: Giralt, G., Hirzinge, G. (eds.) Robotics Research. Springer, London (1996)

20. Gobillot, N., Lesire, C., Doose, D.: A modeling framework for software architecture
specification and validation. In: Brugali, D., Broenink, J.F., Kroeger, T., MacDon-
ald, B.A. (eds.) SIMPAR 2014. LNCS, vol. 8810, pp. 303–314. Springer, Heidelberg
(2014)

21. Hähnel, D., Burgard, W., Lakemeyer, G.: GOLEX—bridging the gap between logic
(GOLOG) and a real robot. In: Herzog, O. (ed.) KI 1998. LNCS, vol. 1504, pp.
165–176. Springer, Heidelberg (1998)

22. Ingrand, F., Ghallab, M.: Deliberation for autonomous robots: a survey. Artif.
Intell. 1–40 (2014). Elsevier

23. Ingrand, F., Lacroix, S., Lemai-Chenevier, S., Py, F.: Decisional autonomy of plan-
etary rovers. J. Field Robot. 24(7), 559–580 (2007)

24. Mallet, A., Pasteur, C., Herrb, M., Lemaignan, S., Ingrand, F.: GenoM3: building
middleware-independent robotic components. In: IEEE ICRA (2010)

25. Maraninchi, F.: Operational and compositional semantics of synchronous automa-
ton compositions. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp.
550–564. Springer, Heidelberg (1992)

26. Merlin, P.M., Farber, D.J.: Recoverability of communication protocols: implica-
tions of a theoretical study. IEEE Trans. Commun. 24(9), 1036–1043 (1976)

27. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.Y.: ROS: an open-source Robot Operating System. In: IEEE
ICRA (2009)

28. Rangra, S., Gaudin, E.: SDL to Fiacre translation. In: Embedded Real-Time Soft-
ware and Systems, Toulouse (2014)

29. Simmons, R., Pecheur, C.: Automating model checking for autonomous systems.
In: AAAI Spring Symposium on Real-Time Autonomous Systems (2000)

30. Simon, D., Joubert, A.: ORCCAD: towards an open robot controller computer
aided design system. Technical report, Research report 1396, INRIA (1991)

31. Täubig, H.H., Frese, U., Hertzberg, C., Lüth, C., Mohr, S., Vorobev, E.,
Walter, D.: Guaranteeing functional safety: design for provability and comp
uter-aided verification. Auton. Robots 32(3), 303–331 (2011)

32. Wongpiromsarn, T., Murray, R.M.: Formal verification of an autonomous vehicle
system. In: Conference on Decision and Control, May 2008

Decision Problems for Parametric Timed
Automata

Étienne André1,2(B), Didier Lime1, and Olivier H. Roux1

1 École Centrale de Nantes, IRCCyN, CNRS, UMR 6597, Nantes, France
eandre93430@lipn13.fr

2 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030,

Villetaneuse, France

Abstract. Parametric timed automata (PTAs) allow to reason on sys-
tems featuring concurrency and timing constraints making use of para-
meters. Most problems are undecidable for PTAs, including the paramet-
ric reachability emptiness problem, i.e., whether at least one parameter
valuation allows to reach some discrete state. In this paper, we first
exhibit a subclass of PTAs (namely integer-points PTAs) with bounded
rational-valued parameters for which the parametric reachability empti-
ness problem is decidable. Second, we present further results improving
the boundary between decidability and undecidability for PTAs and their
subclasses.

1 Introduction

Timed automata (TAs) [1] are a powerful formalism that extend finite-state
automata with clocks (real-valued variables evolving linearly) that can be com-
pared with integer constants in locations (“invariants”) and along transitions
(“guards”); additionally, some clocks can be reset to 0 along transitions. Many
interesting problems for TAs (including the reachability of a location) are decid-
able. However, the classical definition of TAs is not tailored to verify systems
only partially specified, especially when the value of some timing constants is
not yet known.

Parametric timed automata (PTAs) [2] leverage this problem by allowing the
specification and the verification of systems where some of the timing constants
are parametric. PTAs extend TAs by allowing the use of integer- or rational-
valued parameters in place of timing constants in guards and invariants. PTAs
were used to verify a variety of case studies, from hardware circuits to com-
munication protocols (see [3]). This expressive power comes at the price of the
undecidability of most interesting problems. The EF-emptiness problem (“does
there exist a parameter valuation such that a given location is reachable?”) is

This work is partially supported by the ANR national research program “PACS”
(ANR-14-CE28-0002).

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 400–416, 2016.
DOI: 10.1007/978-3-319-47846-3 25

Decision Problems for Parametric Timed Automata 401

undecidable in general [2], even when parameters are bounded [15], even when
only strict inequalities are used [11], and with a single integer-valued parame-
ter [8].

In [13], L/U-PTAs are introduced as a subclass of PTAs where each para-
meter is either always compared to a clock as a lower bound in guards and
invariants, or always as an upper bound. The EF-emptiness problem is decidable
for L/U-PTAs. In [10], further results are proved for L/U-PTAs with integer-
valued parameters: emptiness, finiteness and universality of the set of parameter
valuations for which there exists an infinite accepting run are decidable. The AF-
emptiness problem (“does there exist a parameter valuation for which a given
location is eventually reached for any run?”) is undecidable for L/U-PTAs [14].
It is also shown in [14] that the synthesis of the parameters reaching a given
location in an L/U-PTA is intractable in practice. Two further subclasses have
been defined in [10]: L-PTAs and U-PTAs, where all parameters are always lower
bounds and upper bounds respectively.

In [14], PTAs with bounded integer-valued parameters are considered. The
problem of finding parameter valuations such that a given location is reach-
able or unavoidable becomes decidable, and two algorithms are provided that
compute the exact such sets of integer valuations in a symbolic manner, i.e.,
without performing an exhaustive enumeration. In [6], it is shown that comput-
ing a parametric extrapolation of the integer hull of symbolic states allows one
to synthesize (rational-valued) parameter valuations for bounded PTAs, guaran-
teeing the synthesis of at least all integer-valued valuations, but also sometimes
most or even all rational-valued valuations.

Contribution. L/U-PTAs is the only non-trivial1 subclass of PTAs for which
the EF-emptiness problem is decidable for an arbitrary number of clocks and
parameters. However, other results are disappointing: undecidability of AF-
emptiness, intractability of the synthesis [14]. It is hence important to look for
further subclasses of PTAs for which problems may be decidable. It is shown
in [6,14] that integer points play a key role in decidability. Hence, our first
contribution here is to investigate integer-points PTAs (IP-PTAs), that are
PTAs where each symbolic state contains at least one integer point (i.e., an
integer valuation of the clocks and the parameters). Our intuition is success-
ful: we prove that the EF-emptiness problem is decidable for bounded IP-PTAs
(i.e., with a bounded parameter domain), even when parameters are rational-
valued. Although we show that it cannot be decided whether a bounded PTA is
a (bounded) IP-PTA, we give two sufficient syntactic conditions: we show that
bounded L/U-PTAs with non-strict inequalities are IP-PTAs and, more inter-
estingly, we introduce a new subclass of “reset-PTAs”, that are also IP-PTAs,
and for which, when bounded, the EF-emptiness problem is hence decidable too.
This class is only the second syntactic subclass of PTAs (after L/U-PTAs) for
which this problem is decidable.

1 The bounded integer PTAs of [14] are arguably a trivial such subclass (even though
the associated analysis techniques are not).

402 É. André et al.

Our second main contribution is to study several open problems for PTAs and
several known subclasses (as well as the new class of IP-PTAs): we study here the
emptiness and universality of reachability (EF), as well as unavoidability empti-
ness (AF). Emptiness is of utmost importance as, without decidability of the
emptiness, exact synthesis is practically ruled out. Universality checks whether
all parameter valuations satisfy a property, which is important for applications
where the designer has no power on some valuations; this is the case of net-
works, where some latencies (e.g., the transmission time of some packets) may
be totally arbitrary. Among our results, we prove in particular that AF-emptiness
is undecidable for both bounded IP-PTAs and bounded L/U-PTAs. Overall, we
significantly enhance the knowledge we have of decidability problems for PTAs
and subclasses.

Outline. We first recall the necessary definitions in Sect. 2. Then, we introduce in
Sect. 3 a new proof for the undecidability of the EF-emptiness problem for PTAs
with a single rational-valued parameter; whereas this result is not essentially new
(it has been known since [15]), our original proof will be used in several other
results of this paper. In addition, we extend this result (using a variant of our
proof) to bounded PTAs with only non-strict inequalities which, to the best of
our knowledge, is an original result. Then, we introduce the new class of IP-PTAs
in Sect. 4, and study its properties. Finally, in part by using this new class, we
prove in Sect. 5 several open results for L/U-PTAs and PTAs. We conclude in
Sect. 6.

2 Preliminaries

2.1 Clocks, Parameters and Constraints

Let N, Z, Q+ and R+ denote the sets of non-negative integers, integers, non-
negative rational numbers and non-negative real numbers respectively.

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i.e., real-
valued variables that evolve at the same rate. A clock valuation is a function
w : X → R+. We identify a clock valuation w with the point (w(x1), . . . , w(xH)).
An integer clock valuation is a valuation w : X → N. We write 0 for the valuation
that assigns 0 to each clock. Given d ∈ R+, w + d denotes the valuation such
that (w + d)(x) = w(x) + d, for all x ∈ X.

We assume a set P = {p1, . . . , pM} of parameters, i.e., unknown constants.
A parameter valuation v is a function v : P → Q+. We identify a valuation v
with the point (v(p1), . . . , v(pM)). An integer parameter (resp. clock) valuation
is a valuation that assigns an integer value to each parameter (resp. clock).

In the following, we assume ≺ ∈ {<,≤} and �� ∈ {<,≤,≥, >}. lt denotes
a linear term over X ∪ P of the form

∑
1≤i≤H αixi +

∑
1≤j≤M βjpj + d, with

xi ∈ X, pj ∈ P , and αi, βj , d ∈ Z. plt denotes a parametric linear term over P ,
that is a linear term without clocks (αi = 0 for all i). A constraint C over X ∪P
is a conjunction of inequalities of the form lt �� 0 (i.e., a convex polyhedron).
Given a parameter valuation v, v(C) denotes the constraint over X obtained

Decision Problems for Parametric Timed Automata 403

by replacing each parameter p in C with v(p). Likewise, given a clock valuation
w, w(v(C)) denotes the expression obtained by replacing each clock x in v(C)
with w(x). We say that v satisfies C, denoted by v |= C, if the set of clock
valuations satisfying v(C) is nonempty. Given a parameter valuation v and a
clock valuation w, we denote by w|v the valuation over X ∪ P such that for
all clocks x, w|v(x) = w(x) and for all parameters p, w|v(p) = v(p). We use
the notation w|v |= C to indicate that w(v(C)) evaluates to true. We say that
C is satisfiable if ∃w, v s.t. w|v |= C. An integer point is w|v, where w is an
integer clock valuation, and v is an integer parameter valuation. We define the
time elapsing of C, denoted by C↗, as the constraint over X and P obtained
from C by delaying all clocks by an arbitrary amount of time. Given R ⊆ X,
we define the reset of C, denoted by [C]R, as the constraint obtained from C
by replacing with 0 the value of the clocks in R, and keeping the value of other
clocks unchanged. We denote by C↓P the projection of C onto P , i.e., obtained
by eliminating the clock variables (e. g., using the Fourier-Motzkin algorithm).

A guard g is a constraint over X ∪ P defined by inequalities of the form
x �� z, where z is either a parameter or a constant in Z.

A zone is a polyhedron over a set of variables V (usually clocks) in which
all constraints on variables are of the form x �� k (rectangular constraints) or
xi − xj �� k (diagonal constraints), where xi ∈ V , xj ∈ V and k is an integer.
Operations on zones are well-documented (see e. g., [9]).

A parametric zone is a convex polyhedron over X ∪P in which all constraints
on variables are of the form x �� plt (parametric rectangular constraints) or
xi − xj �� plt (parametric diagonal constraints), where xi ∈ X, xj ∈ X and plt
is a parametric linear term over P .

2.2 Parametric Timed Automata

Definition 1. A PTA A is a tuple A = (Σ,L, l0,X, P, I, E), where: (i) Σ is a
finite set of actions, (ii) L is a finite set of locations, (iii) l0 ∈ L is the initial
location, (iv) X is a finite set of clocks, (v) P is a finite set of parameters, (vi)
I is the invariant, assigning to every l ∈ L a guard I(l), (vii) E is a finite set of
edges e = (l, g, a,R, l′) where l, l′ ∈ L are the source and target locations, a ∈ Σ,
R ⊆ X is a set of clocks to be reset, and g is a guard.

We say that a PTA is closed if all its guards and invariants use only non-strict
constraints. Note that the grammar of constraints does not include negation so
this restriction is meaningful, and that = defines closed constraints.

Given a parameter valuation v, we denote by v(A) the non-parametric timed
automaton where all occurrences of a parameter pi have been replaced by v(pi).

Definition 2 (Concrete Semantics of a TA). Given a PTA A =
(Σ,L, l0,X, P, I, E), and a parameter valuation v, the concrete semantics of v(A)
is given by the timed transition system (S, s0,→), with

– S = {(l, w) ∈ L × R
H
+ | w|v |= I(l)}, s0 = (l0,0)

404 É. André et al.

– → consists of the discrete and (continuous) delay transition relations:
• discrete transitions: (l, w) e→ (l′, w′), if (l, w), (l′, w′) ∈ S, there exists

e = (l, g, a,R, l′) ∈ E, ∀x ∈ X : w′(x) = 0 if x ∈ R and w′(x) = w(x)
otherwise, and w|v |= g.

• delay transitions: (l, w) d→ (l, w + d), with d ∈ R+, if ∀d′ ∈ [0, d], (l, w +
d′) ∈ S.

Moreover we write (l, w) e�→ (l′, w′) for a sequence of delay and discrete
transitions where ((l, w), e, (l′, w′)) ∈ �→ if ∃d,w′′ : (l, w) d→ (l, w′′) e→ (l′, w′).

Given a TA v(A) with concrete semantics (S, s0,→), we refer to the states
of S as the concrete states of v(A). A concrete run of v(A) is an alternating
sequence of concrete states of v(A) and edges starting from the initial concrete
state s0 of the form s0

e0�→ s1
e1�→ · · · em−1�→ sm, such that for all i = 0, . . . ,m − 1,

ei ∈ E, and (si, ei, si+1) ∈ �→. Given a concrete state s = (l, w), we say that s
is reachable (or that v(A) reaches s) if s belongs to a concrete run of v(A). By
extension, we say that l is reachable in v(A).

Symbolic Semantics. Let us now recall the symbolic semantics of PTAs
(see e. g., [4]). A symbolic state is a pair (l, C) where l ∈ L is a loca-
tion, and C its associated parametric zone. The initial symbolic state of A is
s0 = (l0, (

∧
1≤i≤H xi = 0)↗ ∧ I(l0)).

The symbolic semantics relies on the Succ operation. Given a symbolic state
s = (l, C) and an edge e = (l, g, a,R, l′), Succ(s, e) = (l′, C ′), with C ′ =

(
[(C ∧

g)]R ∧ I(l′)
)↗ ∧ I(l′)..

A symbolic run of a PTA is an alternating sequence of symbolic states and
edges starting from the initial symbolic state, of the form s0

e0⇒ s1
e1⇒ · · · em−1⇒ sm,

such that for all i = 0, . . . , m − 1, ei ∈ E, and si+1 belongs to Succ(si, e). Given
a symbolic state s, we say that s is reachable if s belongs to a symbolic run of
A. In the following, we simply refer to symbolic states belonging to a run of A
as symbolic states of A.

2.3 Subclasses of PTAs

In this paper, we will sometimes consider bounded PTAs, i.e., PTAs with a
bounded parameter domain that assigns to each parameter a minimum integer
bound and a maximum integer bound. That is, each parameter pi ranges in
an interval [ai, bi], with ai, bi ∈ N. Hence, a bounded parameter domain is a
hyperrectangle of dimension M .

Let us now recall L/U-PTAs [10,13].

Definition 3 (L/U-PTA [13]). An L/U-PTA is a PTA where the set of para-
meters is partitioned into lower-bound parameters and upper-bound parameters.
A lower- (resp. upper-)bound parameter is a parameter p that is used only in
guards and invariants of the form p ≺ x (resp. x ≺ p), where x is a clock.

Decision Problems for Parametric Timed Automata 405

2.4 Decision Problems

Let P be a given a class of decision problems (reachability, unavoidability, etc.).
P-emptiness problem:
Input: A PTA A and an instance φ of P
Problem: Is the set of parameter valuations v such that v(A) satisfies φ
empty?

P-universality problem:
Input: A PTA A and an instance φ of P
Problem: Are all parameter valuations v such that v(A) satisfies φ?

Emptiness is the most basic parametric question: is there at least one para-
meter valuation such that the property holds? Universality gives a robustness
quality to the property and permits to effectively abstract an infinite number of
verifications with concrete values.

In this paper, we mainly focus on reachability and unavoidability properties,
and call them EF and AF respectively. For example, given a PTA A and a
subset G of its locations, EF-universality asks: “are all parameter valuations v
such that G is reachable in v(A) from the initial state?” And AF-emptiness asks:
“is the set of valuations v such that G is unavoidable in v(A) empty?”

3 Undecidability of EF-Emptiness

Let us first recall the following classical result for PTAs.

Theorem 1 [15]. The EF-emptiness problem is undecidable for bounded PTAs.

We provide an alternative and original proof of this result. This new con-
struction is similar to that of Miller [15], but it might be seen as a bit simpler
and we will provide a complete proof. And above all, it allows us to extend it to
obtain several of the main results of this paper.

Proof. We build a PTA that encodes a 2-counter machine (2CM) [16], such that
the machine halts iff there exists some valuation of the parameters of the PTA
such that it reaches a specific location.

Recall that such a machine has two non-negative counters C1 and C2, a finite
number of states and a finite number of transitions, which can be of the form:

– when in state si, increment Ck and go to sj ;
– when in state si, decrement Ck and go to sj ;
– when in state si, if Ck = 0 then go to sj , otherwise block.

The machine starts in state s0 and halts when it reaches a particular state
lhalt. The halting problem for 2-counter machines is undecidable [16].

Given such a machine M, we now provide an encoding as a PTA A(M):
each state si of the machine is encoded as a location of the automaton, which
we also call si.

406 É. André et al.

l0 s0

x = 1
x := 0

(a) EF-emptiness: initial gadget

si li1

li2

l′i2

li3 sj
x = 0

z = 1,
z := 0

y = a+ 1,
y := 0

y = a+ 1,
y := 0

z = 1,
z := 0

x = 1,
x := 0

(b) EF-emptiness: increment gadget

Fig. 1. EF-emptiness: gadgets

The counters are encoded using clocks x, y and z and one parameter a,
with the following relations with the values c1 and c2 of counters C1 and C2:
in any location si, when x = 0, we have y = 1 − ac1 and z = 1 − ac2. Note
that all three clocks are parametric, i.e., are compared with a in some guard or
invariant. We will see that a is a rational-valued bounded parameter, typically
in [0, 1]. The main idea of our encoding is that, to correctly simulate the machine,
the parameter must be sufficiently small to encode the maximum value of the
counters, i.e., for 1−ac1 and 1−ac2 to stay non-negative all along the execution
of the machine.

We initialize the clocks with the gadget in Fig. 1a. Clearly, when in s0 with
x = 0, we have y = z = 1, which indeed corresponds to counter values 0.

We now present the gadget encoding the increment instruction of C1 in
Fig. 1b. The transition from si to li1 only serves to clearly indicate the entry
in the increment gadget and is done in 0 time unit.

Since we use only equalities, there are really only two paths that go through the
gadget: one going through li2 and one through l′i2. Let us begin with the former.

We start from some encoding configuration: x = 0, y = 1−ac1 and z = 1−ac2
in si (and therefore the same in li1). We can enter li2 (after elapsing enough
time) if 1 − ac2 ≤ 1, i.e., ac2 ≥ 0, which implies that a ≥ 0, and when entering
li2 we have x = ac2, y = 1 − ac1 + ac2 and z = 0. Then we can enter li3 if
1 − ac1 + ac2 ≤ 1 + a, i.e., a(c1 + 1) ≥ ac2. When entering li3, we then have
x = a(c1 + 1), y = 0 and z = a(c1 + 1) − ac2. Finally, we can go to sj if
a(c1 + 1) ≤ 1 and when entering sj we have x = 0, y = 1 − a(c1 + 1) and
z = 1 − ac2, as expected.

We now examine the second path. We can enter l′i2 if 1 − ac1 ≤ a + 1,
i.e., a(c1 + 1) ≥ 0, and when entering l′i2 we have x = a(c1 + 1), y = 0 and
z = 1 − ac2 + a(c1 + 1). Then we can go to li3 if 1 − ac2 + a(c1 + 1) ≤ 1 + a, i.e.,
a(c1 + 1) ≤ ac2. When entering li3, we then have x = ac2, y = ac2 − a(c1 + 1)
and z = 0. Finally, we can go to sj if ac2 ≤ 1 and when entering sj we have
x = 0, y = 1 − a(c1 + 1) and z = 1 − ac2, as expected.

Remark that exactly one path can be taken depending on the respective order
of c1 +1 and c2, except when both are equal or a = 0, in which cases both paths
lead to the same configuration anyway.

Decrement is done similarly by replacing guards y = a + 1 with y = 1, and
guards x = 1 and z = 1 with x = a + 1 and z = a + 1, respectively.

Decision Problems for Parametric Timed Automata 407

From si, to encode zero-testing C1 and going to sj , we only need to add a
transition from si to sj with guard y = 1 ∧ x = 0.

All those gadgets also work for C2 by swapping y and z.
Finally, we add another location l′halt and a transition from lhalt to l′halt

with guard 0 < x < 1 and x = a. This implies the constraint 0 < a < 1 when
reaching l′halt. This is important, in order to remove the a = 0 value, which does
not encode the counters properly. (Note that we could also do this as early as the
initialization gadget; however, it is convenient to leave it here for the subsequent
proofs reusing this proof.) Removing the value a = 1, which would be possible if
both counters are always 0, is not necessary but it will be useful in subsequent
proofs.

Let us now prove that the machine halts iff there exists a parameter valua-
tion p such that p(A) can reach l′halt. Consider two cases:

1. Either the machine halts, then the automaton can go into the l′halt location,
with constraints 0 < a < 1 and, if c is the maximum value of both C1 and
C2 over the (necessarily finite) halting run of the machine, and if c > 0, then
a ≤ 1

c . The set of such valuations for a is certainly non-empty: a = 1
2 belongs

to it if c = 0 and a = 1
c does otherwise;

2. Or the machine does not halt. There are two subcases:
(a) either the counters stay bounded. Let c be their maximal value. As before,

if c = 0 and 0 < a ≤ 1 or c > 0 and ca < 1, then the machine is correctly
encoded and the PTA cannot reach l′halt. Otherwise, at some point during
an incrementation of, say, C1 we will have a(c1 + 1) > 1 when taking the
transition from li2 to li3 and the PTA will be blocked;

(b) or one of the counters is not bounded, say C1. Then whatever the value of
a > 0, we have the same situation as in the previous item: the automaton
blocks during some incrementation.

In both subcases, the automaton cannot reach the l′halt location and the set
of parameters such that it does is obviously empty.

��
Remark 1. We use guards with constraints y = a+1 while our definition of PTAs,
following [2], only allows comparisons of a clock with a single parameter. Note
however, and that will be true for all subsequent constructions, that transitions
with y = a + 1 guards and y := 0 reset can be equivalently replaced by one
transition with an y = 1 guard and a reset of some additional clock w, followed
by a transition with a w = a guard and the y := 0 reset (and similarly for x
and z is the decrement gadget). This allows the proof to work without complex
parametric expressions in guards and uses only one parametric clock and three
normal clocks, with one parameter, matching the best known results with that
respect [15].

Now, by reusing the previous proof, we can show that the EF-emptiness
problem is undecidable for closed bounded PTAs. To the best of our knowledge,
this is an original result, as all existing results with bounded PTAs (e. g., [11,15])
require strict inequalities.

408 É. André et al.

Theorem 2. The EF-emptiness problem is undecidable for closed bounded
PTAs.

4 Integer-Points Parametric Timed Automata

In this section, we introduce integer-points parametric timed automata (IP-PTAs
for short), i.e., a subclass of PTAs in which any symbolic state contains at
least one integer point. Our first result is to prove the decidability of the EF-
emptiness problem for bounded IP-PTAs (Sect. 4.1). Then, we compare IP-PTAs
with L/U-PTAs and show that the class of bounded IP-PTAs is strictly larger
than bounded L/U-PTAs with non-strict inequalities (Sect. 4.2). We then show
that synthesis is intractable in practice, and that the same holds for bounded
L/U-PTAs (Sect. 4.3). Finally, although we prove that the membership problem
is undecidable for IP-PTAs, we exhibit a syntactic sufficient condition, that
provides a new subclass of PTAs for which the EF-emptiness problem is decidable
(Sect. 4.4).

Definition 4. A PTA A is an integer points PTA (in short IP-PTA) if, in any
reachable symbolic state (l, C) of A, C contains at least one integer point.

4.1 A Decidability Result for Bounded IP-PTAs

Our main positive result is that the EF-emptiness problem is decidable for
bounded IP-PTAs.

Theorem 3. The EF-emptiness problem is decidable (and PSPACE-complete)
for bounded IP-PTAs.

Proof. We first need to recall two lemmas relating symbolic and concrete runs
(proved in [4,13]).

Given a concrete (respectively symbolic) run (l0,0) e0�→ (l1, w1)
e1�→ · · · em−1�→

(lm, wm) (respectively (l0, C0)
e0⇒ (l1, C1)

e1⇒ · · · em−1⇒ (lm, Cm)), we define the
corresponding discrete sequence as l0

e0⇒ l1
e1⇒ · · · em−1⇒ lm. Two runs (concrete

or symbolic) are said to be equivalent if their associated discrete sequences are
equal.

Lemma 1. Let A be a PTA, and v be a parameter valuation. Let ρ be a run
of A reaching a symbolic state (l, C). Then, there exists an equivalent run in the
TA v(A) reaching a concrete state (l, w) (for some w) iff v |= C↓P .

Lemma 2. Let A be a PTA, and v be a parameter valuation. Let ρ be a run
of the TA v(A) reaching a concrete state (l, w). Then there exists an equivalent
run in A reaching a symbolic state (l, C), for some C such that v |= C↓P .

Decision Problems for Parametric Timed Automata 409

Let A be a bounded IP-PTA. EF-emptiness is false for A iff there exists a
valuation v such that a run of v(A) reaches a location in some predefined set G.
Assume there exists a valuation v such that a run of v(A) reaches l, with l ∈ G.
From Lemma 2, there exists a symbolic run of A reaching a symbolic state (l, C),
for some C. Since A is an IP-PTA, C contains at least one integer point. Hence
there exists an integer parameter valuation v′ |= C↓P ; hence from Lemma 1,
there exists a concrete run of v′(A) reaching l. This gives that EF-emptiness is
false for A iff there exists an integer valuation v′ such that a run of v′(A) reaches
a location in G.

Hence, deciding whether some valuation permits to reach l reduces to decid-
ing whether some integer valuation permits to do so, which, for bounded PTAs,
is PSPACE-complete [14]. ��
In practice, [14] proposes efficient symbolic algorithms to synthesize all the inte-
ger parameter valuations that permit to reach some given location, and thus to
solve EF-emptiness for IP-PTAs.

4.2 Comparison with L/U-PTAs

Let us now compare IP-PTAs and L/U-PTAs. We first need the following lemma,
stating that any reachable symbolic state of an L/U-PTA contains an integer
parameter valuation.

Lemma 3. Let (l, C) be a reachable symbolic state of an L/U-PTA. Then C↓P
contains at least one integer point.

Proof. Consider a (non-empty) reachable symbolic state (l, C) of an L/U-PTA.
Let v |= C↓P . From the well-known monotonicity property of L/U-PTAs (exhib-
ited in [13]), any parameter valuation such that the lower-bound parameters p−

i

are lower or equal to v(p−
i) and upper-bound parameters p+j are greater than or

equal to v(p+j) also belong to C↓P . In particular, this is the case of the integer
parameter valuation assigning 0 to all lower-bound parameters, and assigning to
upper-bound parameters p+j the smallest integer greater than or equal to v(p+j).

��
The previous lemma that ensures the presence of an integer parameter valua-
tion in any symbolic state does not guarantee that an L/U-PTA is an IP-PTA,
because clocks may have non-integer values.

Proposition 1. The class of IP-PTAs is incomparable with the class of L/U-
PTAs.

Proof

– Consider an L/U-PTA with a transition guarded by x > 0 and resetting no
clock, followed by a second location with invariant x < 1; then, necessarily,
the symbolic state associated with this second location contains no integer
point (as x ∈ (0, 1) in that symbolic state).

410 É. André et al.

– It is easy to exhibit an IP-PTA that is not an L/U-PTA. This is for example the
case of a simple PTA with only one location, one clock x and one parameter p
with a self-loop with guard x = p and resetting x. ��

However, we can prove that any closed L/U-PTA, i.e., with only non-strict
inequalities, is an IP-PTA. In order to show that the class of closed L/U-PTAs
is included in IP-PTAs, we need the following lemma.

Lemma 4. Let A be a PTA with only non-strict inequalities. Let s = (l, C)
be a symbolic state of A. Then if C↓P contains at least one integer parameter
valuation, then C contains an integer point.

Proof. Since there is at least one integer parameter valuation v in C↓P , then
v(C) is not empty. Since v is an integer valuation, v(C) is a zone of a timed
automaton with integer constants, so the vertices of v(C) are integer points.
Finally, there is at least one vertex in v(C) because all clocks are nonnegative
(and hence are bounded from below by 0), and this vertex does belong to v(C)
because it is topologically closed due to the non-strict constraints. So C contains
at least one integer point. ��
Proposition 2. The class of IP-PTAs is strictly larger than the class of closed
L/U-PTAs.

Proof. From Lemmas 3 and 4, and Proposition 1 (⇐). ��
The previous result also holds for bounded PTAs:

Proposition 3. The class of bounded IP-PTAs is strictly larger than the class
of closed bounded L/U-PTAs.

Proof. Lemma 3 extends to bounded L/U-PTAs, since the bounds are integers
(this would not hold otherwise). Then, the proof of Proposition 1 (⇐) holds with
bounded IP-PTAs and closed bounded L/U-PTAs. Applying Lemma4 concludes
the proof. ��
Proposition 4. The class of bounded IP-PTAs is incomparable with the class
of bounded L/U-PTAs. The class of bounded IP-PTAs is incomparable with the
class of L/U-PTAs.

Proof. The proof of Proposition 1 can be applied with bounded PTAs on either
side. ��
Since bounded IP-PTAs are incomparable with L/U-PTAs (for which the EF-
emptiness problem is known to be decidable), and since L/U-PTAs are the only
non-trivial subclass of PTAs for which this problem is known to be decidable,
then Theorem 3 strictly extends the subclass of PTAs for which this problem is
decidable.

Decision Problems for Parametric Timed Automata 411

4.3 Intractability of the Synthesis

Although the EF-emptiness problem is decidable for L/U-PTAs [13], the syn-
thesis seems to pose practical problems: it was shown in [14] that the solution
to the EF-synthesis problem for L/U-automata, if it can be computed, cannot
be represented using any formalism for which emptiness of the intersection with
equality constraints is decidable. In particular, this rules out the possibility of
computing the solution set as a finite union of polyhedra.

We reuse the intuition of this result and extend it to closed bounded L/U-
PTAs.

Theorem 4. If it can be computed, the solution to the EF-synthesis problem
for closed bounded L/U-automata cannot be represented using any formalism for
which emptiness of the intersection with equality constraints is decidable.

Proof. We reuse the idea of [10] used for proving that constrained emptiness for
infinite runs acceptance properties is undecidable, and reused in [14, Theorem
2]. Suppose that the solution to the EF-synthesis problem for closed bounded
L/U-PTAs can be represented using a formalism for which emptiness of the
intersection with equality constraints is decidable. Assume a closed bounded
PTA A; for each parameter pi of A that is used both as an upper bound and a
lower bound, replace its occurrences as upper bounds by a fresh parameter pui
and its occurrences as lower bounds by a fresh parameter pli. We therefore obtain
a closed bounded L/U-PTA. Assume we can derive a solution to the EF-synthesis
problem for this closed bounded L/U-PTA, and let K be that solution. Then,
by hypothesis, we can decide whether K ∧ ∧

i p
l
i = pui is empty or not; hence,

we can solve the EF-emptiness for A, which contradicts the undecidability of
EF-emptiness for closed bounded PTAs (from Theorem2). ��
Corollary 1. If it can be computed, the solution to the EF-synthesis problem
for IP-PTAs cannot be represented using any formalism for which emptiness of
the intersection with equality constraints is decidable.

Proof. From the fact that a closed bounded L/U-PTA is an IP-PTA. ��

4.4 Membership

We first show that it cannot be decided in general whether a PTA is a (bounded)
IP-PTA.

Theorem 5. It is undecidable whether a PTA is an IP-PTA, even when
bounded.

Proof. Let us consider the PTA A(M) encoding the 2-counter machine M pro-
posed in our proof of Theorem1. The PTA A(M) has only one parameter a and
all the symbolic states of A(M) contain the integer value a = 0 except the states
corresponding to the location l′halt. Since all constraints are non-strict, except
that of the transition leading to l′halt, all reachable symbolic states, except those

412 É. André et al.

associated with l′halt, contain an integer point. Then the PTA A(M) reaches
the location l′halt if and only if A(M) is not an IP-PTA. As a consequence, this
PTA is an IP-PTA iff the 2-counter machine does not halt. Finally, note that
this PTA can be bounded by 0 ≤ a ≤ 1, without any change in the reasoning
above. ��

Nevertheless, Proposition 2 provides a sufficient syntactic membership con-
dition, since any closed L/U-PTA is an IP-PTA. In addition, we now define
another new non-trivial set of restrictions leading to IP-PTAs:

Definition 5 (Reset-PTA). A reset-PTA is a PTA where:

– all guards and invariants are conjunctions of constraints of the form x ≤ p+k,
x ≥ p + k, x ≤ k, or x ≥ k, with x a clock, p a parameter, and k an integer;

– and all clocks are reset to 0 on any transition with a guard or a source location
invariant in which a parameter appears.

This kind of restriction is somewhat reminiscent of those enforced by initial-
ized hybrid automata [12] to obtain decidability. We now prove that reset-PTAs
are IP-PTAs, which in turn means that the EF-emptiness problem is decidable
for bounded reset-PTAs. It is worth noting that, to the best our knowledge,
bounded reset-PTAs and L/U-PTAs are the only non-trivial sets of syntactic
restrictions of PTAs making the reachability emptiness problem decidable.

Theorem 6. Any reset-PTA is an IP-PTA.

Recall that the synthesis is intractable for bounded IP-PTAs (from
Corollary 1) and for bounded L/U-PTAs. In contrast, and although studying
reset-PTAs in detail goes beyond the scope of this work, we highly suspect that
exact synthesis can be computed for reset-PTAs (see remarks in Sect. 6).

5 New (Un)decidability Results for PTAs

In this section, we take advantage of the newly introduced class of IP-PTAs to
solve several open problems on the more general class of PTAs; these results
allow us to draw a better cartography of several subclasses of PTAs.

5.1 Undecidability of EF-Universality

We show below that, unlike L/U-PTAs, the EF-universality problem is unde-
cidable for IP-PTAs even bounded. This result differentiates the classes of
(bounded) L/U-PTAs and bounded IP-PTAs, and helps to understand better
the boundary between decidability and undecidability for subclasses of PTAs.

Theorem 7. The EF-universality problem is undecidable for bounded IP-PTAs.

Corollary 2. The EF-universality problem is undecidable for IP-PTAs, for
bounded PTAs, and for PTAs.

Proof. From Theorem 7 and from the fact that a bounded IP-PTA is an IP-PTA,
is a bounded PTA, and is a PTA. ��

Decision Problems for Parametric Timed Automata 413

5.2 Undecidability of AF-Emptiness

It is known that AF-emptiness is undecidable for L/U-PTAs [14]; reusing the
encoding of the 2-counter machine proposed in our proof of Theorem1, we now
show that this result holds even for bounded L/U-PTAs.

Theorem 8. The AF-emptiness problem is undecidable for bounded L/U-PTAs.

Corollary 3. The AF-emptiness problem is undecidable for bounded IP-PTAs,
for IP-PTAs and for bounded PTAs.

Proof. The AF-emptiness problem is undecidable for bounded L/U-PTAs (The-
orem 8), which immediately gives the undecidability for bounded PTAs.

Furthermore, the PTA used in the proof of Theorem8 only uses non-strict
inequalities; furthermore, a− = 0 and a+ = 1 is a parameter valuation solution
of any symbolic state. Hence, from Lemma 4, this PTA is a bounded IP-PTA,
which gives the result for bounded IP-PTAs. As a consequence, the result also
holds for general IP-PTAs. ��

5.3 Summary

Before being able to summarize our results in Table 1, we need to prove two
further missing results.

Theorem 9. The EF-emptiness problem is undecidable for IP-PTAs.

Proof. The proof of the undecidability of the EF-emptiness problem for general
PTAs in [2] can be interpreted over integer parameter valuations. Any symbolic
state contains at least one integer parameter valuation (the one that is large
enough to correctly encode the value of the two counters), as well as all larger
parameter valuations. Furthermore, since the proof only uses non-strict inequal-
ities (in fact only equalities), from Lemma4, all symbolic states contain at least
one integer point. Hence the PTA used in [2] to encode the 2-counter machine
is an IP-PTA. ��
Finally, we show below (without surprise) that the EF-emptiness problem (shown
to be decidable for L/U-PTAs [13]) and the EF-universality problem (shown to
be decidable for integer-valued L/U-PTAs [10]) are also decidable for bounded
L/U-PTAs.

Table 1. Decidability results for PTAs and some subclasses

Class bL/U-PTAs bIP-PTAs L/U-PTAs IP-PTAs bPTAs PTAs

EF-empt. Th. 10 Th. 3 [13] Th. 9 [15] [2]

EF-univ. Th. 10 Th. 7 [10] Cor. 2 Cor. 2 Cor. 2

AF-empt. Th. 8 Cor. 3 [14] Cor. 3 Cor. 3 [14]

414 É. André et al.

Theorem 10. The EF-emptiness and EF-universality problems are decidable
for bounded L/U-PTAs.

Proof. In [10,13], it is shown that decreasing a lower-bound parameter p−
i or

increasing an upper-bound parameter p+j in an L/U-PTA A can only add behav-
iors. Hence, deciding EF-emptiness can be done by testing the reachability of
the location in the TA obtained from A by instantiating all p−

i s with 0 and
all p+j s with ∞. (Recall that testing the reachability of a location in a TA is
decidable [1].) For a bounded L/U-PTA, this can be done in a similar manner,
by testing the reachability of the location in the TA obtained from A by instan-
tiating all p−

i s with their minimal value and all p+j s with their maximal value in
the (closed) bounded parameter domain.

EF-universality can be solved similarly, except that p−
i s are replaced with

their upper bound and p+j s are replaced with their lower bound. ��
We give a summary in Table 1. We give from left to right the (un)decidability for
bounded L/U-PTAs, bounded IP-PTAs, L/U-PTAs, IP-PTAs, bounded PTAs,
and PTAs. Decidability is given in bold green, whereas undecidability is given
in thin red. Our contributions are depicted using a plain background, whereas
existing results are depicted using a light background.

We give another summary in Fig. 2. Note that bounded L/U-PTAs and L/U-
PTAs are in fact incomparable of terms of expressiveness [7]; they are therefore
not included into each other in the figures. Decidability (resp. undecidability) is
depicted in plain green (resp. dashed red); open problems are depicted in dotted
black. Our contributions are depicted in thick.

bounded L/U

L/U

IP-PTA

closed L/U

bounded PTAs

PTAs

(a) EF-emptiness

bounded L/U

L/U

IP-PTA

closed L/U

bounded PTAs

PTAs

(b) EF-universality

bounded L/U

L/U

IP-PTA

closed L/U

bounded PTAs

PTAs

(c) AF-emptiness

Fig. 2. Decidability results for PTAs and subclasses (Color figure online)

6 Conclusion

In this paper, we exhibited a new subclass of PTAs (namely bounded IP-PTAs)
for which the EF-emptiness problem is decidable. By showing that bounded IP-
PTAs are incomparable with L/U-PTAs, we strictly extend the set of PTAs for
which this problem is decidable. Although we showed that it cannot be decided
whether a PTA is an IP-PTA, we introduced a new syntactic subclass of IP-
PTAs, namely reset-PTAs, for which, when bounded, the EF-emptiness problem

Decision Problems for Parametric Timed Automata 415

is decidable. It is worth noting that, to the best our knowledge, there is no
other non-trivial set of syntactic restrictions making the reachability emptiness
problem decidable for PTAs (aside from L/U-PTAs, of course).

In a second part, we considered three decision problems, and contributed in
solving several open problems for PTAs and subclasses: this was achieved thanks
to the results proved for IP-PTAs, and to (variations of) an original proof for
the undecidability of the EF-emptiness problem for general PTAs with a single
bounded rational-valued parameter and only non-strict constraints.

Future Works. Our new class of reset-PTAs seems promising in terms of synthe-
sis, as the symbolic states have a very special form. Using a proper extrapolation,
exact synthesis might be achievable. In addition, we are interested in extending
this class to hybrid systems, and combining its restrictions with the condition
of initialized hybrid automata [12]. The AF-universality problem is not treated
in this paper, as it connects in an interesting manner with the problems of the
existence of deadlocks or livelocks, which warrants a study on its own: in [5], we
show in particular that the AF-universality problem is decidable for bounded
L/U-PTAs with a closed parameter domain, and becomes undecidable if we lift
either the assumption of boundedness or of closedness. Finally, all problems
undecidable for L/U-PTAs remain open for L-PTAs and U-PTAs.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)
2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,

pp. 592–601. ACM (1993)
3. André, É.: What’s decidable about parametric timed automata? In: Ölveczky, P.C.,

Artho, C. (eds.) Formal Techniques for Safety-Critical Systems. CCIS, vol. 596, pp.
1–17. Springer, Heidelberg (2015)

4. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. IJFCS 20(5), 819–836 (2009)

5. André, É., Lime, D.: Liveness in L/U-parametric timed automata (2016, submit-
ted). https://hal.archives-ouvertes.fr/hal-01304232

6. André, É., Lime, D., Roux, O.H.: Integer-complete synthesis for bounded paramet-
ric timed automata. In: Bojanczyk, M., et al. (eds.) RP 2015. LNCS, vol. 9328, pp.
7–19. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24537-9 2

7. André, É., Lime, D., Roux, O.H.: On the expressiveness of parametric timed
automata. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884,
pp. 19–34. Springer, Heidelberg (2016). doi:10.1007/978-3-319-44878-7 2

8. Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of
continuous-time parametric timed automata. In: Halldórsson, M.M., Iwama, K.,
Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 69–
81. Springer, Heidelberg (2015)

9. Bengtsson, J.E., Yi, W.: Timed automata: semantics, algorithms and tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri
Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

10. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Formal Methods Syst. Des. 35(2), 121–151 (2009)

https://hal.archives-ouvertes.fr/hal-01304232
http://dx.doi.org/10.1007/978-3-319-24537-9_2
http://dx.doi.org/10.1007/978-3-319-44878-7_2

416 É. André et al.

11. Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett.
102(5), 208–213 (2007)

12. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? J. Comput. Syst. Sci. 57, 94–124 (1998)

13. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. JLAP 52–53, 183–220 (2002)

14. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. Trans. Softw. Eng. 41(5), 445–461 (2015)

15. Miller, J.S.: Decidability and complexity results for timed automata and semi-
linear hybrid automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS,
vol. 1790, pp. 296–309. Springer, Heidelberg (2000)

16. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc.,
Upper Saddle River (1967)

Verifying Nested Lock Priority Inheritance
in RTEMS with Java Pathfinder

Saurabh Gadia1, Cyrille Artho2,3(B), and Gedare Bloom4

1 University of Southern California, Los Angeles, CA, USA
2 National Institute of Advanced Industrial Science and Technology, Osaka, Japan

3 KTH Royal Institute of Technology, Stockholm, Sweden
artho@kth.se

4 Howard University, Washington DC, USA

Abstract. Scheduling and synchronization algorithms for uniprocessor
real-time systems benefit from the rich theory of schedulability analysis,
and yet translating these algorithms to practical implementations can
be challenging. This paper presents a Java model of the priority inher-
itance protocol for mutual exclusion, as implemented in the RTEMS
open-source real-time operating system. We verified this model using
Java Pathfinder to detect potential data races, deadlocks, and priority
inversions. JPF detected a known bug in the RTEMS implementation,
which we modified along with the Java model. Verification of the modi-
fied model showed the absence of data races, deadlocks, and established
nine protocol-specific correctness properties.

Keywords: Java Pathfinder · RTEMS · Priority inheritance

1 Introduction

Real-time application correctness depends on a bound on the amount of inter-
ference that high-priority tasks can cause to lower-priority tasks. When a high-
priority task preempts the low-priority task and executes, the response time of
the low-priority task is delayed by the preemption. Schedulability analysis con-
siders the interference caused by such preemption: given a set of tasks, their
execution times, job releases and deadlines, and priorities, one may calculate
whether the tasks will be schedulable under a given scheduling algorithm. Two
key assumptions made during schedulability analysis is that tasks are preempt-
able and do not share resources.

In case tasks share resources (e.g., shared memory) that require synchroniza-
tion, the inclusion of critical sections complicates the schedulability analysis. The
usual approach to create a critical section is with a semaphore or mutex lock,
which leads to a priority inversion problem in which a low-priority task holding
a lock interferes with any higher-priority tasks waiting on the lock, until the
low-priority task eventually releases the lock. The usual assumption in real-time
systems is that a lock holder can hold the lock no longer than its worst-case
c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 417–432, 2016.
DOI: 10.1007/978-3-319-47846-3 26

418 S. Gadia et al.

execution time, and therefore the lock is released eventually. However, if middle-
priority tasks preempt and starve the low-priority task, the high-priority task
may be blocked indefinitely since the low-priority task continues to hold the lock
while the middle-priority tasks execute. Priority inversions are solved by using
the priority inheritance protocol (PIP) or priority ceiling protocol (PCP) [15].

PIP works by promoting the priority of a lock holder to that of the highest-
priority task waiting for the lock. Hence, when a task fails to acquire a lock, the
lock holder will inherit the task’s priority until the lock is released. PIP ensures
that a middle-priority task cannot indefinitely block higher-priority tasks by
starving low-priority lock holders. The lock holder’s priority is restored to the
previous value when releasing the lock. Although PIP works well for single lock
acquire and release, some real-time applications require mutual exclusion for
multiple resources at a time. Hence, multiple locks are acquired, one for each
resource. We say these locks are nested. The proper implementation of PIP with
nested resources requires that each time a lock is released, the lock holder’s
priority should be changed to that of the highest priority task still blocked on
any lock held by the releasing task, or to the lock holder’s normal priority, i.e.,
the priority it held when entering the outermost lock.

RTEMS is an open-source real-time operating system with an implementa-
tion of PIP. However, RTEMS implementation of the PIP for nested locks is
incorrect. When a nested lock is obtained and priority is inherited, the task’s
current priority is saved. When the nested lock is released, the current prior-
ity is restored without checking what the highest priority is on the outer lock.
Therefore, a task could be blocked on the outer lock with a higher-priority than
the task that just released the inner lock, thus creating a priority inversion.
Currently, this inversion is avoided by retaining the highest inherited priority
until all locks are released, which has a different problem in that schedulability
analysis needs to account for interference caused by all critical sections of any
lower-priority tasks that may outer-nest a lock shared with a high priority task.

In this paper, we present our experience creating and model-checking a Java
model of the locking and scheduling algorithms from the implementations in
RTEMS relevant to PIP with nested resources. Our model detects priority inver-
sion conditions via exhaustively searching through the lock and scheduler data
structures. We passed the Java model through the Java Pathfinder (JPF) model
checker [16] to detect potential deadlocks, data races, and priority inversions.
After confirming the priority inversion in the existing RTEMS nested resource
locking, we model-checked an alternative algorithm, which we then implemented
in RTEMS. In our model analysis, we use intelligent pre-processing to reduce
the size of the state space by a factor of 158, which made it possible to check
the model repeatedly for different versions of our algorithm.

This paper is organized as follows: Sect. 2 provides the necessary background
and shows related work. Section 3 shows how we modeled the relevant parts of
the RTEMS kernel for verification with JPF. Section 4 shows the flaw we found in
the adaption of PIP in RTEMS, and our fix. The final results of the verification
with JPF are shown in Sects. 5 and 6 concludes.

Verifying Nested Lock Priority Inheritance in RTEMS with Java Pathfinder 419

2 Background

2.1 RTEMS

The Real-Time Executive for Multiprocessor Systems (RTEMS) [1] is an open-
source real-time operating system (RTOS) that provides essential RTOS ser-
vices with support for POSIX interfaces. RTEMS is used in particle accelerators,
satellite instruments, medical devices, military systems, robotics, and other data
acquisition and real-time control applications. RTEMS has been an open-source
project since 1988 and is widely used in academic, government, and private sec-
tors around the world.

2.2 Model Checking

Model checking is a technique to analyze a formal description of a system (the
model) against all possible outcomes, starting from a given initial state. The
system to be analyzed is usually represented by a transition system [4].

A model checker is a tool that verifies the model against given properties [4].
Traditionally, model checking has been used to verify hardware or protocols.
Models are usually described in a domain-specific language, and properties are
often expressed in temporal logics such as linear temporal logics [14]. Model
checkers may explicitly construct the entire state space in memory [7] or use a
symbolic representation of multiple states as a set of states [11].

2.3 Java Pathfinder

In contrast to traditional model checkers, software model checkers analyze an
actual application (as source code or executable) code instead of a model [6,16].

Java Pathfinder (JPF) is such a software model checker. It implements a Java
Virtual Machine (JVM) that is capable of executing the full bytecode instruc-
tion set [16], and is designed to explore the full state space of a Java bytecode
application. Unlike in a traditional model checker, the state space is not known
a priori. Instead, the state space is derived from the execution of the system
under test (SUT). The SUT is executed by JPF until an action occurs in which
the outcome under different thread schedules may vary. At that point, JPF
stores a copy of the full program state comprising memory and thread states,
and explores the next available choice. When a given choice leads to the end of
program execution, it backtracks to an earlier program states by restoring that
state from the saved copy. (JPF uses depth-first search by default; other search
strategies are supported as well.) A state in JPF therefore corresponds to a full
program state—with the heap and the states of each thread—and a transition
corresponds to a sequence of instruction executions by a thread [16].

By default, JPF checks an execution against uncaught exceptions, assertion
failures, and deadlocks. It also has a built-in data race detector, which allows a
user to find problematic data accesses even if no property checking the output
of the program has been written. This is useful because it is difficult to write

420 S. Gadia et al.

properties checking the outcome of each operation that may be affected by shared
memory access.

For our work, we chose Java Pathfinder because the input language (Java)
is much closer to C than the input languages of other model checkers, such
as Promela used by SPIN [7]. Furthermore, many locking features used by the
RTEMS kernel have close equivalents in Java or JPF, which makes it easier to
model RTEMS in JPF than on other platforms (see Sect. 3).

2.4 Related Work

Klein et al. verified a general-purpose operating system microkernel [8] that
includes thread management and many other features. The kernel has been
implemented in 10,000 lines of C code; properties were verified using a theo-
rem prover with about 480,000 lines of Isabelle [13] proofs that were developed
over ten years [8]. In contrast to that, the core of RTEMS is about 34,000 lines
of C code, with the part implementing mutual exclusion weighing in at about
730 lines. Our model is about the size same as that part of the C code (600 lines
of code for the model, 130 lines of code for the helper program that generates
all test settings), and verification is fully automatic after we apply symmetry
reduction to our environment model.

The idea of symmetry-based state space reduction is common [3]. Compared
to previous work, we take a staged approach, where we first pre-process the para-
meters of the model to reduce the state space, and then use these parameters
to generate different settings at run-time. Compared to “classical” model check-
ing [4], where a model is expressed in a domain-specific language, we express
our model in Java, which is richer than other modeling languages. Verification is
performed using Java Pathfinder, which executes the model as program code and
generates the state space by exploring different outcomes of non-determinism at
run-time [16]. This is different from most other tools, where the state space is
generated as a graph structure a priori [4].

Java Pathfinder is typically used to explore different interleavings in con-
current software, to analyze whether functional properties hold for all possible
interleavings [16]. For applications written in Java, Java Pathfinder can deter-
mine the worst-case execution time (WCET) of a program by assigning a cost
to each instruction, and calculating the maximal total cost [10]. This previous
work was not applicable to estimate the worst-case execution time in the RTEMS
kernel, as it would have required a complete model of the kernel in Java, together
with accurate execution cost weights that reflect the true execution cost of the
original RTEMS code on different platforms. Our work checks the correctness,
but not WCET, of the priority inheritance protocol in RTEMS.

Lui Sha et al. discusses that synchronization primitives can lead to uncon-
trolled priority inversion problem [15]. They showed that two priority inheritance
class protocols called basic priority inheritance protocol and priority ceiling pro-
tocol solved this priority inversion problem. This original publication does not
explicitly mention the priority inversion problem caused in basic priority inheri-
tance protocol if a task inheriting priority is owner of more than one mutex that

Verifying Nested Lock Priority Inheritance in RTEMS with Java Pathfinder 421

we found in RTEMS. As a result, we cannot rule out that a direct application
of that algorithm may have the same issue.

Linux makes use of data structure called plist—‘priority sorted linked list’—
for implementation of real time mutex design. Every task in Linux has pi list
data structure that stores all top waiters of the mutexes that are owned by the
task. Whenever a task releases any mutex, it always ensures that its priority
is set to the top priority waiting task in its pi list. This way it rules out the
problem of priority inversion in case of task owning multiple mutexes.

3 Modeling RTEMS Locks and Scheduling in Java

This section describes the Java model of locking in RTEMS [5].

3.1 Mapping RTEMS Kernel Constructs to JPF

The POSIX threads (Pthreads) standard is a widely used standardized interface
that provides concurrency primitives, in particular locking, thread creation and
control, and the use of condition variables and signaling [12]. Java has been
designed to allow a virtual machine to implement the thread constructs in Java
readily using Pthreads; each basic Java concurrency feature can be mapped to
Pthreads [2].

Table 1. RTEMS kernel data structures and constructs in Java and JPF.

RTEMS resource Java/JPF equivalent

Lock usage synchronized block usage

Thread signaling wait and notify

Priority queue java.util.PriorityQueue

Global scheduler lock gov.nasa.jpf.vm.Verify.beginAtomic and endAtomic

The RTEMS kernel also exhibits similarities to the Pthreads interface, and
by extension Java concurrency features: see Table 1 for a high-level mapping. We
employ nested locking and unlocking implemented in a straightforward way using
synchronized blocks in Java; non-nested locking could be supported using extra
libraries [9]. Thread signaling and condition variables use the same semantics as
in POSIX. Furthermore, priority queues in the RTEMS kernel are modeled using
priority queues from the Java base library.

For uniprocessor systems, RTEMS has a mechanism that temporarily disables
the scheduler making a block of code behave atomically. Java has no direct
construct for such scheduler disabling, and while a global lock can be used, it only
guarantees mutual exclusion with respect to other global locks. Fortunately, Java
Pathfinder has a construct that provides atomic sections: Verify.beginAtomic
and endAtomic. These two functions are not available in standard Java.

422 S. Gadia et al.

Another modeling problem is that the Java scheduler does not obey thread
priorities strictly, but thread priorities in RTEMS are strict, and a higher-
priority thread is always scheduled before lower-priority threads. Although Java
Pathfinder allows a user to provide a custom scheduler, which we could have
used to model the RTEMS scheduler in addition to its locking implementation,
we chose not to do so for two reasons. First, writing a custom scheduler in JPF
is more difficult than writing a model in Java. Second, we wanted our lock model
to be correct under any scheduler, not just under the current scheduler used by
RTEMS.

3.2 Design of the Lock Model

We designed and implemented a Java model of the locking and scheduling algo-
rithms of RTEMS so that JPF could be used to model check the current and
alternative solutions for PIP. Our scheduler model uses a task control block
(TCB) that inherits from the Java Thread Class and adds two priority fields, for
the initial and current priority, and a linked list to track the mutex locks held
by the thread.

To model mutex locks in Java we created a Lock class that uses Java’s
synchronized and JPF’s Verify.beginAtomic and Verify.endAtomic to con-
struct critical sections. The Lock class also adds a validator routine that exe-
cutes on every mutex release to check whether there exists any priority inversion
by iterating through all the remaining mutex locks held by the releasing thread
checking that it has a higher priority than all threads waiting on any remaining
mutexes it holds.

In the course of our work, we experimented with several variants of possible
implementations of PIP:

1. A model using a global lock. Using a global lock facilitates a correct imple-
mentation at the expense of performance. We used this model to focus on
correct thread priorities in an initial version of the model.

2. A uniprocessor model using a global scheduler lock (see above), which is
derived from the first model.

3. A model using multiple fine-grained locks, allowing for more parallelism and
thus better performance on a real system.

3.3 Test Harness

Java Pathfinder explores the state space of a program by starting from its main
method, as in a normal execution under the Java VM. To analyze the implemen-
tation of a multi-threaded program, and our lock implementation in particular,
we need a test harness.

Our test harness creates three threads with a given thread priority, each
of which locks and unlocks two locks. Each lock is chosen from three distinct
candidate locks.1 We test reentrant locking by assigning the same candidate
1 This design guarantees a certain degree of overlapping lock usage between threads,

without which there would be no need for mutual exclusion.

Verifying Nested Lock Priority Inheritance in RTEMS with Java Pathfinder 423

Fig. 1. Test thread using a given priority and nested locks.

lock to multiple slots in the same test thread. Each thread is also assigned a
priority chosen from three values, representing high, medium, and low priority.
We currently do not test non-nested locking and unlocking, which could however
be achieved by permuting the order of unlock operations (Fig. 1).

The test harness includes a main method that parses arguments from the
command line, which indicate the lock indices and thread priorities. Because
some types of cyclic deadlocks require three threads, we wanted to simulate at
least as many threads in our model. In doing, so, we ran into the state space
explosion problem: If each thread non-deterministically uses two locks (out of
three candidate locks), and a non-deterministic priority setting taken from three
possible values, we have a total of (32)3(2 locks per thread) ∗ 33(priorities) =
39 = 19683 combinations.

Encoding all these options as non-deterministic choices would be extremely
inefficient for the following reasons:

1. A lot of symmetries exist in the state space, some of which would not be
recognized by JPF and explored redundantly.

2. Exploring the entire state space at once increases memory usage and may
cause JPF to run out of memory or trigger garbage collection excessively
often.

3. Debugging a failed test (from a faulty model) is more difficult because the
error trace by JPF does not show the lock indices or thread priorities as such.
They could be made visible in other ways, through listeners or printing them
on the screen, but the latter option would print a lot of clutter during the
state space exploration.

424 S. Gadia et al.

3.4 State Space Preprocessing

The full state space is too large to be explored by JPF if equivalent configurations
are not taken into account. We present an algorithm to remove redundant lock
set configurations, and show how the number of thread priority configurations
can be minimized.

Lock Sets. We define A to be the alphabet of lock indices; in our case A =
0, 1, 2. A lock set configuration is a list of n elements, each being a sequence of
m lock indices.

To reason about lock indices, we observe the following properties:

1. Locks are symbolic objects. Any configuration l′ where all lock indices in l are
replaced with a permutations of the indexes in A, yields a heap structure that
is isomorphic to l. For example, (00, 00, 01) and (11, 11, 10) are isomorphic.

2. Between threads, permutations of lock index sequences are also isomorphic;
e.g., (00, 00, 01), (00, 01, 00), and (01, 00, 00) are isomorphic.

Algorithm 1 computes the set of all relevant lock permutations, based on these
two observations. It starts by initializing the output sets F and B and generating
all possible isomorphic mappings I. For three indices, six isomorphisms exist:
I = {{0 → 0, 1 → 1, 2 → 2}, {0 → 1, 1 → 2, 2 → 0}, . . .}. The algorithm reduces
the set of all possible permutations C of lock indices, to topologically distinct
ones.

Based on Property 1, the algorithm then proceeds to generate all morphisms
M from C (step 4a). Property 2 allows us to ignore different permutations of
lock index sequences between threads (step 4b); the sequences are filtered by
sorting. For example, the sorted list of subsequences in (12, 01, 00) is (00, 01, 12).
These two steps are sufficient to reduce the set of 729 lock permutations to only
31 truly distinct settings.

1. Let F be the set of final candidates, and B be the set of “bad” lock permutations
that result in a deadlock.

2. Generate the set I of all isomorphic mapping functions (permutations of symbols
identifying locks) pi ∈ I with ik = A �→ A for all lock indices in A.

3. Generate all lock permutations, called the candidates C.
4. For each candidate c ∈ C:

(a) Generate all isomorphic variants M of c, for each permutation in I:
∀iso ∈ I, M = M ∪ iso(c).

(b) For each isomorphic candidate m ∈ M , sort the lock index sequences of all
threads: S = sorted(M).

(c) We add all items in S to F : F = F ∪ S.
5. For each unique permutation f ∈ F , check if the lock indices form a cycle between

all threads; if so, add that permutation to B: ∀f ∈ F, B = B ∪ f if cyclic(f).
6. Output the set of “good” candidates, F \ B, and “bad” candidates B.

Algorithm 1. Algorithm to compute all relevant lock permutations.

Verifying Nested Lock Priority Inheritance in RTEMS with Java Pathfinder 425

However, some lock set configurations contain a cyclic dependency between
locks. For example, if thread t1 owns lock a and tries to obtain lock b, and
thread t2 owns lock b and tries to obtain lock a, a deadlock occurs. The deadlock
is due to the cyclic lock dependency between the threads. A test using such a
configuration may deadlock, and if JPF is used, it will always find and report
such a possibility. We can either ignore such cases or ensure that JPF actually
detects a deadlock. To distinguish between “good” (deadlock-free) and “bad”
(deadlocking) cases, we check the lock configuration for such cyclic dependencies
(step 5 in Algorithm 1). This splits the set of 31 configurations into 25 deadlock-
free and 6 deadlocking configurations (see Table 2).

Thread Priorities. We also consider the impact of different thread priorities
on the outcome. As only the relative priority between all three threads matters,
we consider only these four cases:

1. All threads have the same priority.
2. Two threads have the same priority, one has a lower priority than the others.
3. Two threads have the same priority, one has a higher priority than the others.
4. All threads have a different priority.

We implement this as a non-deterministic choice between four settings that
reflect these cases, as opposed to a non-deterministic priority choice for each
thread in isolation. This reduces the thread priority state space from 33 = 27
settings to just four.

The combined state space reduction from both optimizations is from 19863
to 31 ∗ 4 = 124 configurations, a reduction of almost 160 times. The fact that
configurations for Java Pathfinder can be parameterized on the command line
makes it easy to generate the parameter state space with a preprocessor, and
supply it to Java Pathfinder in a second phase.

3.5 Properties

By default, JPF reports a deadlock where the program cannot proceed with
execution, such as when multiple threads have a cyclic lock dependency. It can
also be configured to report data races. A data race exists if at least two threads
access the same memory location without mutual exclusion, and at least one of
these accesses is a write access. We used deadlock and data race detection along
with model-specific properties in our verification.

Specific properties are encoded as assertions (safety properties) in our
model [5], and cover the following:

Property 1. The priority of a thread waiting for a lock corresponds to its actual
(original) priority.

Property 2. A thread is in the correct state when acquiring a new mutex.

Property 3. A newly acquired mutex is not held by another thread, and its lock
count is zero.

426 S. Gadia et al.

Table 2. Model checking time, number of states, and number of instructions for all
distinct scenarios. Lock usage is shown as a triple of sequences (of length two) of lock
IDs. These IDs correspond to the two locks used by the test harness of each thread.
Each lock configuration was tested for all relevant priority settings.

Deadlock-free configurations

Lock configuration Time Number of states Number of instructions

(00,00,00) 00:05:51 3,597,839 39,134,614

(00,00,01) 00:08:31 5,359,776 53,499,140

(00,00,10) 00:29:50 20,530,383 158,243,065

(00,00,11) 00:22:19 15,321,110 117,084,710

(00,00,12) 00:31:16 21,614,670 159,649,787

(00,01,01) 00:10:26 7,277,751 71,695,034

(00,01,02) 00:10:21 7,277,751 71,695,034

(00,01,11) 00:25:07 17,704,921 137,981,768

(00,01,12) 00:37:20 26,655,214 198,517,948

(00,01,20) 00:46:39 32,883,641 249,273,627

(00,01,21) 00:49:55 35,524,795 262,654,448

(00,01,22) 00:34:44 23,805,000 181,621,827

(00,10,10) 00:27:31 19,231,201 164,864,689

(00,10,12) 00:38:42 27,290,669 221,112,177

(00,10,20) 02:06:17 93,616,077 713,877,172

(00,10,21) 01:41:56 72,693,793 556,663,234

(00,10,22) 01:33:02 66,929,870 529,446,674

(00,11,22) 01:27:25 61,758,697 504,124,972

(00,12,12) 00:45:33 32,800,449 266,311,244

(01,01,01) 00:11:18 9,172,281 90,384,827

(01,01,02) 00:13:13 9,327,571 91,742,294

(01,01,12) 00:41:50 29,339,526 222,928,606

(01,01,20) 00:52:03 45,084,155 339,817,731

(01,01,21) 01:04:19 50,192,733 371,521,061

(01,02,12) 00:40:47 38,795,617 290,831,840

Deadlock-prone configurations

Lock configuration Time Number of states Number of instructions

(00,01,10) 00:00:01 8,486 270,677

(00,12,21) 00:00:01 8,486 270,677

(01,01,10) 00:00:01 8,486 271,022

(01,02,10) 00:01:37 940,738 7,995,738

(01,10,20) 00:02:21 1,402,381 11,219,277

(01,12,20) 00:03:22 2,062,672 16,476,034

Verifying Nested Lock Priority Inheritance in RTEMS with Java Pathfinder 427

Property 4. The lock count of a lock being released is greater than zero. After a
lock is released, there is no holder registered anymore for it.

Property 5. If there is another thread waiting on a just-released lock, that thread
must be in the waiting state.

Property 6. The thread releasing a lock must contain a matching lock entry at
the head of the list maintained in that thread’s TCB.

Property 7. The thread releasing a lock must not contain any higher-priority
threads linked from the list of lock entries in the thread’s TCB.

Property 8. The promotion of a thread’s priority is caused by a different thread.

Property 9. The priority of a thread is correctly reverted to the original priority
after all locks have been released.

4 Fixing PIP in RTEMS

Priority inversion occurs if a higher-priority task is blocked by a lower-priority
task. Ideally, a higher-priority task should be blocked no longer than the time for
the lower-priority task to complete its critical section. Lui Sha et al. demonstrated
that practically this blocking period of higher-priority task can be arbitrarily long
and unpredictable [15]. They showed that two priority inheritance class protocols,
basic PIP and priority ceiling protocol, can rectify uncontrolled priority inversion.
We extend basic PIP for the case when a task inheriting priority is the owner of
more than one mutex, which we found in RTEMS, and we propose an algorithm
to solve uncontrolled priority inversion problem in this case.

4.1 RTEMS Data Structures Involved in PIP

In RTEMS, associated with each mutex is a linked list CORE mutex order list,
which contains priority before, a field to store the priority of the acquiring task.
This field is used to restore the task’s priority to what it was before acquiring
that mutex, in case the priority of the task is temporarily increased due to the
PIP. Each task control block (TCB) stores a last-in first-out (LIFO) linked list
of acquired mutexes, which is the expected order of lock release. This is a doubly
linked list, Chain Control, consisting of nodes of type Chain Node (see Fig. 2).

4.2 Uncontrolled Priority Inversion Problem for PIP in RTEMS

The following example demonstrates the uncontrolled priority inversion problem:

1. Consider three tasks T0, T1, and T2 in descending order of priority with T0

having highest priorities of 0 and T2 having lowest priority of 2.
2. Initially, we only have task T2 executing in our system. T2 acquires mutex

m0 followed by m1 to access some shared data structure. The linked list of
mutexes in T2’s TCB contains m0 and m1 with associated priority 2 (Fig. 3).

428 S. Gadia et al.

Fig. 2. Data structures linking the mutexes with the lock queues.

Fig. 3. Initial system state

3. Task T0 is created and being a higher-priority task it preempts task T2. T0

attempts to acquire m0 and hence the PIP will promote the priority of T2

to be that of T0, i.e., 0. This is the classic example of basic PIP rectifying
priority inversion problem. This system state is free from priority inversion
and deterministic as we are certain that task T0 will be waiting till task T2

releases m0.
4. Another task T1 is created, with medium priority. It will be in waiting state as

task T2 has the highest priority. When T2 releases m1, the priority stored in
the mutex data structure for m1 is written into the TCB of T2, restoring T2’s
priority to 2. Task T1 preempts task T2. We are now uncertain of blocking
period of task T0 (see Fig. 4) and thus the system is in uncontrolled priority
inversion state.

Fig. 4. Uncontrolled priority inversion

4.3 Solution to Uncontrolled Priority Inversion

Avoiding uncontrolled priority inversion calls for more intelligence when restor-
ing the priority of a task. Algorithm2 imparts this intelligence when a task

Verifying Nested Lock Priority Inheritance in RTEMS with Java Pathfinder 429

1: function UpdatePriority(holder, queue, priority)
2: // holder is the TCB for the owner of the mutex being acquired
3: // queue is the CORE mutex order list of the mutex
4: // priority is the priority of the thread trying to acquire the mutex
5:
6: head node ← (&holder→lock mutex)→Head
7: next node ← (&queue→lock queue)→next
8: change priority ← True
9: while next node �= head node do

10: queue ← next node→CORE mutex order list
11: if queue→priority before ≤ priority then
12: change priority ← False
13: Break
14: end if
15: queue→priority before ← priority
16: next node = next node→next
17: end while
18: return change priority � if True, then holder thread priority is checked
19: end function

Algorithm 2. Algorithm for updating priority

attempts to acquire a busy mutex. Whenever a task attempts to acquire a busy
mutex, this task may update the holder task’s priority and the priorities of
mutexes held by that holder. Updating the priority of holder is done as usual
for PIP. The updates of the held mutexes occur by traversing the linked list of
mutexes stored in the holder’s TCB. If the recorded priority of a mutex is lower
than the priority of the acquiring task, then the recorded priority is updated.
The traversal stops at an equal or higher priority, or at the head of the list.

Applied to the above example, Algorithm2 works as follows:

1. When task T0 attempts to acquire mutex m0, it traverses the acquired mutex
list of holder task T2. Traversal moves to the mutex next in the list from
m0, which is m1, towards the head of the list. The recorded priority of m1

is 2, lower than T0’s priority 0, so is changed to 0 before going to the next
mutex in the list. The head of the list is reached, therefore the priority of T2

is compared with that of T0 and is boosted to 0, and the algorithm is finished.
T2 will resume executing at its new, higher priority (see Fig. 5).

2. When T2 releases m1, the priority stored in the mutex data structure for m1

is written into the TCB of T2, restoring T2’s priority to 0. At this point, task
T1 is waiting as T2 still has the highest priority in the system. This way our
algorithm ensures there is no priority inversion in the system (see Fig. 6).

3. Note that if T2 was blocking on another mutex (see Fig. 7), it would be re-
blocked after potentially boosting priority of that mutex’s owner through a
transitive call to Algorithm 2. Hence, we always have a system which is free
from priority inversion and in deterministic state.

430 S. Gadia et al.

Fig. 5. Priority update as per proposed algorithm

Fig. 6. Deterministic system with no priority inversion

Fig. 7. Nested priority inversion

5 Model-Checking Results Using JPF

We used Java PathFinder version 8.0, rev. 28, to analyze the Java models of
RTEMS locking, after eliminating redundant configurations in the parameter
state space by preprocessing it (see Sect. 3). We ran the experiments on a Mac
Pro with two 3.7 GHz quad-core Intel Xeon E5 CPUs. This allowed us to use
multiple cores at once, speeding up the verification of 31 different lock set con-
figurations. Table 2 shows the results of the experiments on the final, correct
version of the model.

In configurations that do not cause deadlocks, JPF has to explore the entire
state space of the model. Configurations with few locks preclude much possible
parallelism, and lock priority changes, in the behaviors. Their state space is
therefore much smaller than the state space of more complex settings. Because
of this, verification runs for a given lock set configuration ranges between barely
six minutes and over two hours; the number of explored program states, and
executed bytecode instructions, is proportional to the analysis time (see Table 2,
top). Deadlock-prone configurations have at least one possible interleaving that
leads to a deadlock due to a cyclic lock dependency. JPF sometimes finds such
a deadlock immediately and aborts the search after one second; in other cases
the search takes a few minutes, but still finds the bug after only a small fraction
of the state space has been searched (see Table 2, bottom).

Verifying Nested Lock Priority Inheritance in RTEMS with Java Pathfinder 431

The results of our experiments confirm that our revised implementation of
PIP in the RTEMS kernel is free of data races, deadlocks, and incorrect priority
assignments. Deadlock-prone lock usage of application-level tasks is also detected
as expected. In total, verification of the improved PIP implementation took 11 h
and 43 min of CPU time, which translated to about three hours of real time
when running 5–6 instances in parallel on eight cores.

6 Conclusion

Despite the rich, robust theoretical frameworks that have been built around
real-time scheduling, the correctness of scheduler design and implementation—
especially with synchronization—is challenged by system complexity. In this
paper, we have presented a Java model of a real-time operating system’s PIP
implementation that we model-checked in JPF to look for deadlocks, race con-
ditions, and priority inversions, the latter by way of nine correctness properties
that were encoded as assertions in the Java model. Key to the efficient model
checking is the state space preprocessing of Algorithm 1, which reduces JPF’s
search space. JPF found a potential priority inversion, a correctness error, that
was known to exist in the C language implementation. We further proposed a
fix to the PIP implementation and validated it to be free of potential deadlocks,
race conditions, and priority inversions. Future work may consider validating
multi-core scheduling algorithms, which are even more complex and less well-
understood than the established uniprocessor algorithms.

Acknowledgments. This material is based upon work supported by the Google Sum-
mer of Code program, the National Science Foundation under Grant No. CNS 0934725,
and the Office of Naval Research under ONR Award No. N00014-14-1-0386. Any opin-
ions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of Google, NSF, or ONR.

References

1. RTEMS real time operating system (RTOS) (2016). https://www.rtems.org/
2. Artho, C., Hagiya, M., Leungwattanakit, W., Tanabe, Y., Yamamoto, M.: Model

checking of concurrent algorithms: from Java to C. In: Hinchey, M., Kleinjohann,
B., Kleinjohann, L., Lindsay, P.A., Rammig, F.J., Timmis, J., Wolf, M. (eds.)
DIPES 2010. IFIP AICT, vol. 329, pp. 90–101. Springer, Heidelberg (2010)

3. Clarke, E., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic
model checking. Form. Methods Syst. Des. 9(1), 77–104 (1996)

4. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

5. Gadhia, S., Artho, C., Ramirez, D.: Model locks with thread priority from RTEMS
(2015). https://github.com/saurabhgadia4/lock-model

6. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
BLAST. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp.
235–239. Springer, Heidelberg (2003)

https://www.rtems.org/
https://github.com/saurabhgadia4/lock-model

432 S. Gadia et al.

7. Holzmann, G.: The SPIN Model Checker. Addison-Wesley, Reading (2004)
8. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,

Heiser, G.: Comprehensive formal verification of an OS microkernel. ACM Trans.
Comput. Syst. 32(1), 2:1–2:70 (2014)

9. Lea, D.: Concurrent Programming in Java, 2nd edn. Addison-Wesley, Reading
(1999)

10. Lindstrom, G., Mehlitz, P.C., Visser, W.: Model checking real time Java using Java
PathFinder. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp.
444–456. Springer, Heidelberg (2005)

11. McMillan, K.: Symbolic Model Checking. Springer, Heidelberg (1993)
12. Nichols, B., Buttlar, D., Farrell, J.: Pthreads Programming. O’Reilly, Beijing

(1998)
13. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for

Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
14. Pnueli, A.: The temporal logic of programs. In: IEEE Proceedings of 17th Annual

Symposium on Foundations of Computer Science (FOCS), Rhode Island, USA, pp.
46–57. IEEE Computer Society Press (1977)

15. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: an approach
to real-time synchronization. IEEE Trans. Comput. 39(9), 1175–1185 (1990)

16. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. J. 10(2), 203–232 (2003)

An SMT-Based Approach to the Formal
Analysis of MARTE/CCSL

Min Zhang1(B), Frédéric Mallet1,2,3, and Huibiao Zhu1

1 Shanghai Key Laboratory of Trustworthy Computing, ECNU, Shanghai, China
{zhangmin,hbzhu}@sei.ecnu.edu.cn

2 University of Nice Sophia Antipolis, I3S, UMR 7271 CNRS, Nice, France
Frederic.Mallet@unice.fr

3 INRIA Sophia Antipolis Méditerranée, Valbonne, France

Abstract. MARTE (abbreviated for Modeling and Analysis of Real-
Time and Embedded systems) is a UML profile which provides a general
modeling framework to design and analyze real-time embedded systems.
CCSL (abbreviated for Clock Constraint Specification Language) is a
formal language companion to MARTE, used to specify the constraints
between the occurrences of events in real-time embedded systems. Many
approaches have been proposed to the formal analysis of CCSL such as
simulation and model checking. We propose in this paper an SMT-based
approach to the formal analysis of CCSL. It is well-known that the SMT-
based approach can effectively overcome the state-explosion problem for
model checking, and can also be used for theorem proving. The latter
feature allows us to prove the invalidity of ccsl constraints, which most
of the existing approaches lack. We implement the proposed approach
in a prototype tool clyzer on top of K framework and use Z3 as the
underlying SMT solver.

Keywords: MARTE/CCSL · SMT · Z3 · K framework, Model checking

1 Introduction

Logical clock, as defined by Lamport [9], gives a flexible abstraction to compare
and order the occurrences of events, and is useful for the design of distributed
systems and real-time embedded systems. In order to facilitate the design of real-
time embedded systems, a general modeling framework marte [1] is proposed by
extending uml. A time model has been adopted in marte to support different
forms of time such as discrete, dense, chronometric or logical. Clock Constraint
Specification Language (ccsl) is originally proposed as an annex of the marte
specification to express constraints between clocks in marte models, and has
evolved and been developed independently of the uml. Although it is still an

This research work was supported by National Natural Science Foundation of China
(NSFC) projects: No. 61502171, No. 61361136002, and China HGJ Project: No.
2014ZX01038-101-001.

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 433–449, 2016.
DOI: 10.1007/978-3-319-47846-3 27

434 M. Zhang et al.

open problem of checking the existence of schedules for a given set of ccsl
constraints, it is desirable to perform formal analysis of ccsl constraints such
as to simulate a schedule that satisfies all the constraints with certain policy and
to verify if a given set of constraints satisfy some properties. Many efforts have
been made in this direction, relying on the transformation into automata and
other specific formats [11,14]. However, successive intermediate transformation
is prone to introduce accidental complexity. In this paper, we propose an SMT-
based approach to the formal analysis of ccsl constraints. In our approach, ccsl
constraints are naturally transformed into SMT formulas. It is well-known that
SMT-based approaches can effectively overcome the notorious state-explosion
problem in model checking, and can also be used for theorem proving. The former
feature helps improve the efficiency when ccsl constraints are verified by model
checking. The latter one allows to prove the invalidity of ccsl constraints by
means of theorem proving, which most of the existing approaches lack.

Among the properties of ccsl constraints, periodicity is a basic but impor-
tant one with the fact that real-time embedded systems are inherently periodic
and it is a crucial task of designing correct periodic schedules for such systems.
Given a set of ccsl constraints, it is desired to know if there exists periodic
schedules of a given set of ccsl constraints. In our earlier work [16], we pro-
posed a sufficient condition to periodic scheduling of ccsl constraints, and a
state-based approach to search all the schedules to find one that satisfies the
condition. The approach is applicable when the number of schedules of the given
constraints is reasonably small and the condition is satisfied at early step, but
becomes less efficient otherwise due to state explosion. In this paper, we propose
a less constraining sufficient condition and encode it into SMT formulas, with
which we can find periodic schedules of given ccsl constraints by SMT solvers
such as Z3 [12] and verify their properties by bounded model checking.

Execution trace analysis is another important application of ccsl con-
straints. In the scheme of marte/ccsl, execution trace analysis is an effective
way to design and debug real-time embedded systems [5]. Execution traces are
produced by instrumented code. Events in the generated traces are extracted
and then analyzed to check if they satisfy initial constraint specification. One of
the most challenging problems with execution trace analysis is to find an effi-
cient way of checking if a trace satisfies the predefined constraints. We show the
SMT-based approach to be proposed is also suited to execution trace analysis.

We implement a prototype tool using the K framework [13] for the trans-
formation from ccsl constraints into SMT formulas and Z3 as its underlying
SMT solver. K is a rewrite-based executable semantic framework in which pro-
gramming languages, type systems and formal analysis tools can be defined. We
choose Z3 because it also accepts and can work with formulas that use quanti-
fiers. Although it is no longer a decision procedure for formulas with quantifiers
in general, it is often able to handle formulas involving quantifiers. Thus, Z3
could return answers to some formulas with quantifiers that are transformed
from ccsl constraints even if no bound is set.

An SMT-Based Approach to the Formal Analysis of MARTE/CCSL 435

In summary, the contributions of this paper are multifold:

1. An approach is proposed to transform ccsl constraints into SMT formulas for
formal analysis of ccsl constraints. The transformation approach is straight-
forward and hence reduces both effort on the transformation and probability
of introducing accidental complexity.

2. Applications of the SMT-based approach are demonstrated, including peri-
odic scheduling and trace analysis by means of bounded model checking, and
invalidity proving by means of theorem proving.

3. A prototype tool based on the approach is implemented, and experimental
results show the feasibility of the proposed approach and the improvement of
the efficiency for formal analysis of ccsl constraints.

The rest of this paper is organized as follows: Sect. 2 briefly introduces ccsl
language and some existing work on its periodic scheduling; Sect. 3 presents
the transformation approach from ccsl constraints to SMT formulas. Section 4
shows the applications of the SMT-based approach to invalidity proving, peri-
odic scheduling, execution trace analysis, etc. Section 5 describes the prototype
tool and some concrete examples. Section 6 compares our approach with other
existing ones and Sect. 7 finally concludes the paper.

2 CCSL and Its Extension to Periodic Constraint

In ccsl, clocks are used to measure the occurrence time of events in a system.
Each event is associated to a clock. Time is represented in a logical way as
a sequence of discrete steps, instead of physical time. Thus, clocks are called
logical clocks. The constraints between clocks can be interpreted as the relations
between events, e.g., some event must occur earlier than another. Event relations
are usually established at early design stage in the development of a real-time
and embedded system.

Definition 1 (Logical clock). A logic clock c is an infinite sequence of ticks
(ci)i∈N+ , where each ci can be tick or idle, representing that the event associated
to c occurs or not at step i.

In [11], clock relations are divided into two classes, i.e., ccsl constraints and
clock definitions. There are four primitive constraint operators which are binary
relations between clocks, and five kinds of clock definitions. The four constraint
operators are called precedence, causality, subclock and exclusion; and the five
clock definitions are called union, intersection, infimum, supremum, and delay.
Besides, we introduce a new clock definition called periodic filter, which is used
to define the periodicity between two clocks. The meanings of the ten primitive
operators are given by schedule and history. Intuitively, a schedule is used to
record the clocks that tick at each given step, and a history is used to record the
number of ticks of each clock before it reaches a given step.

436 M. Zhang et al.

Definition 2 (Schedule). Given a set C of clocks, a schedule of C is a total
function δ : N+ → 2C such that for any i in N

+, δ(i) = {c|c ∈ C ∧ ci = tick}
and δ(i) �= ∅.
Intuitively, δ(i) is the subset of all the clocks in C which tick at step i. Note
that we have the condition δ(i) �= ∅ in the definition of δ, which says that at
any step there must be at least one clock ticking. The condition excludes from
schedules those steps where no clocks tick. They are called empty steps which
are trivial in that adding them to and removing them from a schedule do not
affect the logical relations among the clocks. Thus, we exclude the empty steps
from schedules.

Definition 3 (History). Given a set C of clocks, and a schedule δ : N+ → 2C ,
a history of δ over C is a function χ : C ×N

+ → N such that for any clock c ∈ C
and i ∈ N:

χ(c, i) =

⎧
⎨

⎩

0 if i = 1
χ(c, i − 1) if i > 1 ∧ c �∈ δ(i − 1)
χ(c, i − 1) + 1 if i > 1 ∧ c ∈ δ(i − 1)

Obviously, χ(c, i) is the number of the ticks that clock c has ticked immediately
before it reaches step i.

We use δ |= φ to denote that schedule δ satisfies constraint φ. Figure 1 shows
the definition of the satisfiability of a constraint φ with regards to a schedule δ.
We take the definition of precedence for example. δ |= c1 ≺ c2 holds if and only
if for any n in N

+, c2 must not tick at step n if the number of the ticks of c1
is equal to the one of c2 immediately before they reach step n. Precedence and
causality are asynchronous constraints and they forbid clocks to tick depending
on what has happened on other clocks in the earlier steps. Subclock and exclusion
are synchronous constraints and they force clocks to tick or not depending on
whether another clock ticks or not.

Fig. 1. Definition of the 10 primitive ccsl operators

An SMT-Based Approach to the Formal Analysis of MARTE/CCSL 437

Clock definitions from 5 to 10 are used to define new clocks such that the
clock c1 at the left-hand side of “�” is uniquely determined by the clock(s) at
the right-hand side. By union it defines a clock c1 which ticks whenever c2 or c3
ticks, and by intersection it defines a clock c1 which ticks whenever both c2 and
c3 tick. Supremum is used to define the slowest clock c1 which however is faster
than both c2 and c3, and infimum is used to define the fastest clock c1 which
however is slower than both c2 and c3. By delay it defines the clock c1 which is
delayed by c2 with d steps, and by periodicity it defines the clock c1 which ticks
once every after c2 ticks p times.

Given a set Φ of ccsl constraints and definitions, we use δ |= Φ to denote
that the schedule δ satisfies all the constraints in Φ, and δ; k |= Φ with k ∈ N

+

to denote that δ satisfies all the constraints in Φ at step k. It is obvious that
δ |= Φ if and only if ∀k ∈ N

+.δ; k |= Φ.

Definition 4 (Satisfiability problem of CCSL). Given a set Φ of ccsl
constraints, does there exist a schedule δ such that δ |= Φ?

The satisfiability problem of ccsl is still open, and there has not been a decision
procedure proposed to it so far. Nevertheless, the satisfiability problem of some
subclass of ccsl constraints has been studied [11]. For instance, the satisfiability
problem of ccsl constraints without operators ≺, ∧, and ∨ is decidable. The
ccsl operators except ≺, ∧, and ∨ can be encoded as finite-state transition
systems [11], and the satisfiability problem of a given subclass of ccsl constraints
is transformed into the reachability problem of the synchronized product of finite-
state transition systems, which is decidable. The three operators ≺, ∧, and ∨
cannot be encoded as finite-state transition systems if no extra information such
as counter is provided. They are called unsafe operators in [11] in that they
may cause non-terminating of composing state transition systems. To solve the
satisfiability problem of ccsl constraints with unsafe operators, we can set an
upper bound to schedules in that we are only concerned with the schedules
within a bounded step. In [16], we call them bounded schedules.

Definition 5 (Bounded schedule). Given a set Φ of clock constraints on
clocks in C, and a function δ : N+

≤n → 2C , δ is called an n-bounded schedule if
for any i ≤ n, δ; i |= Φ.

In most of the cases, bounded schedule is too restrictive in practice for real-
time systems, because real-time systems are assumed to run infinitely until they
are shut down. We consider a special class of infinite schedules by which each
clock ticks periodically from a pragmatic point of view. We call such schedules
periodic schedules. Periodic schedules are useful in practice based on the fact
that periodicity is one of the intrinsic features of real-time embedded systems.

Definition 6 (Periodic schedule). A schedule δ is called periodic if there exist
k, p in N

+ such that for any k′ ≥ k, δ(k′ + p) = δ(k′), and p is called a period
of δ.

438 M. Zhang et al.

Definition 6 means that after step k the schedule δ repeats every p steps. p is
called the smallest period of δ if there does not exist p′ in N

+ such that p′ is
also a period of δ and p′ < p.

It is also an open problem of deciding the existence of a periodic schedule
for a given set of ccsl constraints. In [16] we proposed an approach to extend
a bounded schedule to a periodic one and a sufficient condition under which the
approach can be applied. We omit the extension approach here due to space
limitation. Interested readers are referred to the work [16] for the details of the
approach. In this paper, we propose a less constraining sufficient condition than
the one in the work [16].

Theorem 1. Given a bounded schedule δ : N+
≤n → C of a set Φ of ccsl con-

straints, δ can be extended to a periodic one if there exist two natural numbers
k, k′ ≤ n and k < k′ such that the following five conditions are satisfied:

1. δ(k) = δ(k′);
2. If φ is in form of c1 ≺ c2 or c1 � c2, then χ(c1, k′) − χ(c1, k) ≥ χ(c2, k′) −

χ(c2, k);
3. If φ is in form of c1 � c2 $ d , then χ(c2, k) ≥ d and χ(c1, k′) − χ(c1, k) =

χ(c2, k′) − χ(c2, k);
4. If φ is in form of c3 � c1 ∧ c2 or c3 � c1 ∨ c2, then χ(c1, k′) − χ(c1, k) =

χ(c2, k′) − χ(c2, k) = χ(c3, k′) − χ(c3, k);
5. If φ is in form of c1 � p �� c2, then there exists m ∈ N

+ such that (χ(c2, k′)−
χ(c2, k)) = m × p.

Intuitively, Condition 1 says that the clocks that tick at step k are the same
as those at step k′; Condition 2 means from the step k to k′, c1 must tick faster
than or at the same speed as c2 if c1 and c2 satisfy precedence or causality; and
Condition 3 says that for the constraint that a clock c1 is delayed d steps by
c2 the number of ticks of c2 immediately before step k must be greater than or
equal to d and c1 and c2 must tick the same steps from step k to k′. Condition 4
requires that for the three clocks i.e. c1, c2 and c3 that are constrained by infimum
or supremum, they must tick the same number of ticks from step k to k′. The
last condition says that between k and k′ there must be m times p steps ticking
of c2.

The above conditions are less constrained than the ones in our earlier work
[16] in that by the new conditions all the clocks do not necessarily need to tick
the same number of ticks from step k to k′, which is required by the conditions
in the work [16]. With the new sufficient condition, we may find more periodic
schedules for a given set of ccsl constraints. Theorem 1 can be proved by
case analysis on ccsl constraints. We omit the proof in the paper due to space
limitation.

3 Encoding CCSL Constraints into SMT Formulas

In this section we introduce an approach for encoding ccsl constraints and the
sufficient condition of periodic scheduling proposed in Sect. 2 into SMT formulas.

An SMT-Based Approach to the Formal Analysis of MARTE/CCSL 439

The generated formulas may contain quantifiers, linear integer arithmetic and
uninterpreted functions, and hence belongs to UFLIA (abbreviated for the linear
fragment of theory of integer arithmetic with free sort and function symbols)
logic according to SMT-LIB standard [2].

ccsl constraints can be straightforwardly encoded as SMT formulas. Given
a set Φ of ccsl constraints on a set C of clocks, a schedule δ of Φ can be encoded
by a finite set T = {tc : N+ → Bool|c ∈ C} of functions such that for any c
in C and n in N

+, c ∈ δ(n) ⇐⇒ tc(n). The functions in T are uninterpreted
functions. Given a set Φ of ccsl constraints, finding a schedule of Φ is equal to
giving interpretations to these uninterpreted functions.

We introduce another set H = {hc : N+ → N|c ∈ C} of functions in order to
encode ccsl constraints into SMT formulas. Each function in H takes a natural
number n as its argument, and returns the number of steps that its associated
clock has ticked immediately before the clock reaches step n. That is, for any c in
C and n in N, there is hc(n) = χ(c, n). According to Definition 3, the functions
in H must satisfy the following two formulas:

∧
c∈C

hc(1) = 0 (F1)

∧
c∈C

∀n ∈ N
+.(¬tc(n) ⇒ hc(n+ 1) = hc(n)) ∧ (tc(n) ⇒ hc(n+ 1) = hc(n) + 1) (F2)

With T and H, we replace c ∈ δ(n) by tc(n) and χ(c, n) by hc(n) in the
definition of the ten primitive ccsl constraints in Fig. 1, and consequently obtain
the ten corresponding formulas as shown in Fig. 2. Given a ccsl constraint φ,
we denote its corresponding formula by [[φ]].

According to Definition 2, a schedule must return a non-empty set of clocks
at each step. Correspondingly, for each i in N

+ there must exist at least one
function tc in T such that tc(i) is true. Thus, the functions in T must satisfy
the following formula:

∀n ∈ N
+.

∨

c∈C

tc(n) (F3)

Fig. 2. Encoding ccsl constraints into SMT formulas

440 M. Zhang et al.

A set Φ = {φ1, . . . , φm} of m (m > 0) ccsl constraints can be encoded as a
set {[Φ]} of SMT formulas such that {[Φ]} � {[[φ1]], [[φ2]], . . . , [[φm]],F1,F2,F3}.

4 Applications of SMT-based Formal Analysis

The SMT formulas that are transformed from ccsl specifications contain unin-
terpreted functions and quantifiers. As there can be no decision procedure for
first-order logic, we may not get an answer to the problem that whether there
exists a model satisfying generated SMT formulas. Nevertheless, there are still
multiple applications of the SMT-based approach to the formal analysis of ccsl
specifications such as invalidity proving, periodic scheduling, bounded model
checking and execution trace analysis.

4.1 Invalidity Proving

In the work [11], a set Φ of ccsl constraints is called invalid if there does not
exist any schedule δ such that δ |= Φ. Namely, there does not exist a set T of
functions such that T satisfies all the formulas in {[Φ]}, i.e., {[Φ]} is not satisfiable.
Consequently, we have the following proposition hold:

Proposition 1. A set Φ of ccsl constraints is valid iff {[Φ]} is satisfiable.

By the above proposition, we can conclude that Φ is valid once we find a solu-
tion, i.e., a set T of functions, to the satisfiability problem of {[Φ]}. As mentioned
in Sect. 3, the formulas in {[Φ]} are in UFLIA logic and hence its satisfiability
problem is undecidable. If an upper bound is set to the universally quantified
variable n in each formula in {[Φ]}, the satisfiability problem becomes decidable
because the quantifiers in the formulas can be eliminated. We denote the set of
formulas in {[Φ]} with a common upper bound u for each n in the formulas by
{[Φ]}≤u. If {[Φ]}≤u is unsatisfiable, by Proposition 1 we can immediately conclude
that Φ must be invalid because the unsatisfiability of {[Φ]}≤u implies that {[Φ]}
is also unsatisfiable.

Invalidity proving is also useful to prove automatically the derivation of a
constraint φ from a set Φ of ccsl constraints.

Definition 7. A constraint φ is derived from a set Φ of ccsl constraints if for
any schedule δ, δ |= Φ implies δ |= φ.

Let Tδ be the set of functions that represent δ. δ |= Φ implies that Tδ is a
solution of {[Φ]}. By Definition 7, Tδ must be a solution of [[φ]] if φ can be derived
from Φ. That is, for any solution of {[Φ]}, it must be a solution of [[φ]]. Namely,
{[Φ]} =⇒ [[φ]] is valid. Thus, we have the following proposition hold:

Proposition 2. A constraint φ is derived from a set Φ of ccsl constraints if
and only if [[Φ]] =⇒ [[φ]] is valid.

An SMT-Based Approach to the Formal Analysis of MARTE/CCSL 441

By Proposition 2, to prove the derivation of φ from Φ is equivalent to prove
that the formula ¬({[Φ]} =⇒ [[φ]]) is unsatisfiable, which generally is undecid-
able. However, we can assign a value to n, and check if ¬({[Φ]}≤n =⇒ [[φ]]≤n) is
unsatisfiable. We repeat until some n is found such that ¬({[Φ]}≤n =⇒ [[φ]]≤n)
is unsatisfiable or abort when n exceeds a predefined bound.

The aforementioned approach can be also applied to verification of ccsl
constraints’ properties that are expressed in temporal logic such as LTL and
CTL. Let P be a property, and we use Φ |= P to denote that the constraints in
Φ satisfy P, i.e., for any schedule that satisfies Φ, it must satisfy P. We assume
that a property P is encoded to be an SMT formula [[P]]. Then, to verify Φ |= P
is equivalent to prove that {[Φ]} ∪ {¬[[P]]} is unsatisfiable. If {[Φ]} ∪ {¬[[P]]} is
proved to be satisfiable, a solution of it can be considered as a counterexample,
i.e., a witness to the violation of P by Φ. Due to the undecidability of the
problem, we may not be able to prove that {[Φ]} ∪ {¬[[P]]} is unsatisfiable or
find a solution using existing SMT solvers. If P is an invariant property, that
is, a property stating that something bad should never happen [3], we can do
bounded model checking of P by setting an upper bound to the number of steps.
If a counterexample is found, P must not be satisfied by Φ. However, bounded
model checking cannot be directly applied to liveness properties.

4.2 Verification of Periodic Scheduling

The SMT-based approach can be applied to formal analysis of periodic schedul-
ing of ccsl constraints, such as the existence of periodic schedules and model
checking of temporal properties of periodic schedules.

By Theorem 1, we can conclude there must be a periodic schedule of a given
set Φ of ccsl constraints once we find two natural numbers k and k′ (k, k′ ≤ n
and k < k′) for an n-bounded schedule of Φ such that k, k′ satisfies the five
sufficient conditions. The problem of finding k, k′ is a satisfiability problem by
transforming the five sufficient conditions into corresponding SMT formulas. We
declare two free integer constants k, k′. As argued above, k, k′ should satisfy
the formula k < k′ ∧ k′ ≤ n ∧ k > 0. The five conditions are transformed
straightforwardly into SMT formulas as follow:

1. Condition 1 is equivalent to the following formula:
∧

c∈C

tc(k) ⇐⇒ tc(k′) (C1)

2. For each constraint in form of c1 ≺ c2 or c1 � c2:

hc1(k
′) − hc1(k) ≥ hc2(k

′) − hc2(k) (C2)

3. For each constraint in the form of c1 � c2 $ d :

hc2(k) ≥ d ∧ hc1(k
′) − hc1(k) = hc2(k

′) − hc2(k) (C3)

442 M. Zhang et al.

4. For each constraint in form of c3 � c1 ∧ c2, or c3 � c1 ∨ c2:

hc1(k
′) − hc1(k) = hc2(k

′) − hc2(k) ∧ hc2(k
′) − hc2(k) = hc3(k

′) − hc3(k)(C4)

5. For each constraint in form of c1 � p �� c2:

(hc2(k
′) − hc2(k))%p = 0 (C5)

Let {[Φ]}p = {[Φ]} ∪ {C1, . . . ,C5}. If {[Φ]}p is satisfiable, there exists a periodic
schedule for Φ. By existing SMT solvers we can find solutions to k and k′ and n-
bounded schedule of a given set of ccsl constraints, and then obtain the periodic
schedule by extending the bounded schedule in the aforementioned way.

There can be more than one periodic schedule for a given set of ccsl con-
straints. We may need some specific properties which should be satisfied by the
returned periodic schedule, e.g., a fixed period n. In that case, we only need to
transform these properties into SMT formulas. For instance, the property of fixed
period n can be expressed as k′ − k = n. Another example is that all the clocks
should tick infinitely often, which is a common requirement for real-time and
embedded systems. The requirement can be encoded as the following formula:

∧

c∈C

∃i ∈ N
+.tc(i) ∧ ∀j ∈ N

+.∃j′ ∈ N
+.(j′ > j) ∧ (tc(j) =⇒ tc(j′))

The formula says that for each clock c it much tick at some step i, and for any
step j if c ticks at step j there must be a forthcoming step j′ where c also ticks.
For a periodic schedule, it suffices to define a formula

∧
c∈C ∃i ∈ N

+.(k ≤ i <
k′) ∧ tc(i)), which says that each clock c must tick at least once in a period. By
specifying these specific constraints, we can obtain desired periodic schedules.

We can also verify if all the periodic schedules of a given set of ccsl con-
straints satisfy some desired properties by bounded model checking. For the
periodicity, we can verify even liveness properties of periodic schedules. For some
liveness properties, it suffices to verify if they are satisfied before the step k′ where
all the clocks start a new period. The approach to bounded model checking of a
property with respect to periodic schedules is the same as the one described in
the previous subsection.

4.3 Execution Trace Analysis

The proposed approach can be also used for execution trace analysis. An exe-
cution trace is a sequence of sets of events that occur each step. A trace is
produced during the execution of real-time embedded systems by the code that
is instrumented in the systems. Thus, each trace is finite in that the number of
the steps that clocks tick is finite. A finite trace with length n is essentially an
n-bounded schedule. A bounded schedule can be encoded as quantifier-free for-
mulas. Given an n-bounded schedule δ on a set C of clocks, δ can be transformed
into a quantifier-free formula as follows:

∧

c∈C

∧

i=1,...,n

.tc(i) = x (F4)

An SMT-Based Approach to the Formal Analysis of MARTE/CCSL 443

where x is true if c ∈ δ(i), and false otherwise.
An execution trace is finite. Supposing that the length of a trace is n, it

suffices to check if the corresponding schedule satisfies all the constraints in Φ in
the first n steps. Namely, we only need to check the satisfiability of {[Φ]}≤n∪{F4}.
All the formulas are quantifier-free and built over linear integer arithmetic, i.e.,
in QF LIA logic. The satisfiability problem in QF LIA logic is decidable. Thus,
it is decidable to check if an execution trace satisfies a set Φ of ccsl constraints.

Listing 1.1. K definition of ccsl syn-
tax of constraints

1 syntax ClockRel ::= Clock"<" Clock
2 | Clock"<="Clock
3 | Clock"->"Clock
4 | Clock "#" Clock
5 | Clock "=" Clock "+" Clock
6 | Clock "=" Clock "*" Clock
7 | Clock "=" Clock "/\" Clock
8 | Clock "=" Clock "\/" Clock
9 | Clock "=" Clock"$" Int

10 | Clock "=" Int "~" Clock

Listing 1.2. K rule for translating
causality without bound constraint

1 rule <k> ((C1 <= C2) => .) ... </k>
2 <bound > 0 </bound >
3 <consts >
4 (.List => ListItem(C1 <= C2)) ...
5 </consts >
6 <out > ...
7 (.List =>
8 ListItem(smtsPrettyPrint(assert(

causUnbd(C1,C2)))))
9 </out >

5 A Prototype Tool and Examples

In this section, we introduce a prototype analyzer of ccsl language which is
developed based on the proposed approach and show some experimental results.
All the experiments are conducted on a Linux desktop operating system (Ubuntu
16.04) with an Intel 8-Core CPU (i7-4790 model, 3.60 GHz) and 12 GB memory.

5.1 CCSL Analyzer: clyzer

We implement a prototype tool clyzer (abbreviated for ccsl analyzer) for the
formal analysis of ccsl constraints. The tool consists of a translator for the
transformation from ccsl constraints in SMT problems, and a backend SMT
solver Z3.

The translator is implemented in the K framework. K is a rewrite-based
executable semantic framework which is mainly used to formalize the operational
semantics of programming languages, type systems and define formal analysis
tools. By defining the operational semantics of a programming language such
as C [6], K automatically generates an interpreter which can execute programs
of the language, and also provides exhaustive state exploration and LTL model
checking facilities to verify properties of programs [13]. In our earlier work [16],
we have defined the operational semantics of ccsl using Maude [4], the backend
language of K. K also provides APIs to interact with Z3. These features allow
us to develop in K an integrated environment for both the state-based approach
and the SMT-based approach to the formal analysis of ccsl constraints, which
is one piece of our future work.

At present, we use K only as a pretty-printer (translator) to print out an
SMT script, which can be fed into Z3. In K the syntax of a programming lan-
guage is naturally defined in a standard Backus-Naur Form (BNF), and the

444 M. Zhang et al.

transformation is implemented by K rules. Listing 1.1 shows the K definition
of ccsl syntax. The translation of ccsl constraints are defined in K as a state
transition system. A state is represented as a labeled and potentially nested cell
structure in XML style, which is called a configuration. A K rule specifies the
information change of each cell. For instance, Listing 1.2 shows the K rule which
formalizes the translation of a causality constraint, e.g., C1 <= C2 in the k cell,
into a corresponding formula. Function smtsPrettyPrint prints out the formula
as an SMT assertion that conforms to the syntax of SMT-LIB standard. The
value in bound cell is 0, indicating that the variable in the generated formula is
not bounded but universally quantified in N

+.

Listing 1.3. The command that is
used to prove a ≺ b implies a � b

1 Clock a
2 Clock b
3 a < b

4 //prec.ccsl is a file for the code
5 clyzer -f prec.ccsl -b 10 -c a<=b

Listing 1.4. The command used to
prove alternation implies exclusion

1 Clock a b c
2 a < b
3 c = a $ 1
4 b < c

5 clyzer -f alter.ccsl -b 7 -c a#b

5.2 Examples of Invalidity Proving

Mallet et al. proved that precedence is a stronger form of causality, i.e., for any
two clocks a, b, a ≺ b implies a � b [11]. As an example, we show that it can be
automatically proved in the proposed approach using Z3.

Listing 1.3 shows the code and command used to prove a ≺ b implies a � b
in our tool clyzer. The tool clyzer takes a file where a set Φ of ccsl constraints
are declared, an optional argument for bound, and a target ccsl constraint φ,
which is going to be proved. In this example, it returns unsat with the above
command, which means that ¬([[a ≺ b]]≤10 =⇒ [[a � b]]≤10) is unsatisfiable.
By the argument in Sect. 4, we can conclude that precedence is a stronger form
of causality. We need a bound e.g., 10, because the underlying SMT solver Z3
times out without outputting any result if no bound is given.

Another example is that alternation implies exclusion, i.e., if two clocks tick
alternatively, then they must satisfy the exclusion constraint. Alternation can be
represented by the combination of precedence and delay. For instance, if clock
a alternates with clock b, it is represented as a set Φalt of constraints such that
Φalt � {a ≺ b, c � a $ 1 , b ≺ c}. We prove that Φalt implies a # b with the code
and command shown in Listing 1.4. Z3 returns unsat if the bound is set to an
odd number e.g., 7. If the bound is set an even number, e.g. 6, Z3 returns the
following solution to the formula ¬({[Φalt]}≤6 =⇒ [[a # b]]≤6):

ta(i) =
{
idle if i ∈ {2, 4}
tick if otherwise tb(i) =

{
tick if i ∈ {2, 4, 6}
idle if otherwise tc(i) =

{
tick if i ∈ {3, 5}
idle if otherwise .

By the solution, at step 6 clock a ticks but clock c idles, which violates the
constraint c � a $ 1 at step 7 where χ(a, 7) = 4 but χ(c, 7) = 2. However, by

An SMT-Based Approach to the Formal Analysis of MARTE/CCSL 445

definition of the delay, we have χ(c, 7) = χ(a, 7) − 1, which is obviously violated
by the solution. The reason for the spurious solution is that for some constraints
such as delay, infimum and supremum, a clock depends on its ticking history
to determine whether it should tick next step. Because of the bound, it is not
required that all the constraints should be satisfied after the step exceeds the
bound. Thus, the schedule may not be correct at the step which is equal to the
bound. For instance, clock a should not tick at step 6, although it ticks according
to the returned solution.

There are also cases when Z3 returns result even if no bound is given. For
instance, we can prove that for any two clocks a and b if b is delayed by a with
one step, a must precede b, i.e., b � a $ 1 implies a ≺ b. Z3 returns unsat even
if no bound is given.

We finally show an example on the verification of temporal properties of
ccsl constraints by bounded model checking. We verify that the constraints
defined in Φalt satisfy one-step alternation, i.e., two clocks tick alternatively
by a single step. One-step alternation can be represented as an LTL formula

, where
� and are globally and next operators in LTL, and tick is a parameterized
state predicate which returns true in a state for a clock a if a ticks in that state
and otherwise false. The LTL formula can be equivalently translated into the
following formula in first-order logic:

∀i ∈ N
+.(ta(i) =⇒ tb(i + 1)) ∧ (tb(i) =⇒ ta(i + 1)) ∧ ta(i) ⊕ tb(i) (A1)

Similar to the proof of a # b, Z3 returns unsat when the bound is set an odd
number, and returns a spurious counterexample when the bound is an even
number. The reason for the occurrence of spurious counterexample is the same
as one for the occurrence of spurious solution. If no bound is given, Z3 times out
without outputting any result.

5.3 Examples of Periodic Scheduling Analysis

We show in this section some applications of the proposed approach to the
analysis of periodic scheduling. The first application is to check if there exists
a periodic schedule for a given set of ccsl constraints. Let us consider the
constraints in Φalt. We use the command clyzer -f alter.ccsl -p to find a
periodic schedule for Φalt. However, Z3 cannot return any result and times out.
We need to set a bound to make the problem decidable.

Table 1 shows the experimental results with different bounds. When the
bound is less than or equal to 4, Z3 returns unsat which means that no periodic
schedule is found. When the bound is set 5, a periodic schedule is returned with
i = 2 and j = 4, that is, the period is 2. Table 1(b) shows the returned schedule,
by which each clock starts to repeat step 2 and step 3 from step 4. By increasing
the bound, the values of i and j are different, but the returned periodic sched-
ule has the same period, as shown in Table 1(a). Actually, Z3 returns the same
periodic schedule when the bound is set 5, 10 and 100 respectively.

446 M. Zhang et al.

Next, we show that the returned periodic schedule satisfies the one-step alter-
nation property. As mentioned in Sect. 4, it suffices to verify the property is sat-
isfied by a single period, e.g. from step 2 to 3. That is, the formula to be verified
is that ¬({[Φalt]}≤5 =⇒ A12≤i≤3), where A12≤i≤3 represents the formula A1
with the quantified variable i range from 2 to 3, instead of N+. Z3 returns unsat,
which means the property is verified.

We finally consider a more complex set of ccsl constraints which are
abstracted from an application for Flow Latency Analysis (FLA) on AADL
(abbreviated for Architecture Analysis & Design Language) specifications [7].
Figure 4 shows the clocks and the constraints denoted by Φfla among them in
the application. There are eight clocks, each of which is associated to an event.
Clocks in1 and in2 stand for two inputs, based on which some calculations are
performed at step1 and step2 respectively. At step3 the calculation results are
synthesized and the final result is output at out. Clocks tmp1 and tmp2 are
two intermediate clocks which are used to represent the alternation constraint
between in1 ∨ in2 and out.

We try to find periodic schedules that satisfy the constraints in Φfla. Table 2
shows the returned results with different bounds. No periodic schedule is found
in the first 4 steps. With the increase of the bound, different periodic schedules
are found. Note that when the bound is set to 5 and 8, the same schedule is
returned. It is obvious that for the periodicity a periodic schedule that satisfies
the constraints within 5 steps must also satisfy within 8 steps. We can also give
a specific period p so that the returned schedule must have the period p. A
different schedule whose period is 3 is returned when the bound is set to 10.
In particular, a schedule whose period is 31 is found when the bound is 100.

Table 1. Experimental results for periodic scheduling checking of Φalt

(a) The results with different bounds

Bound Time (sec)

4 unsat 0.011

5 2 4 0.018

10 5 7 0.028

100 97 99 2.042

(b) The periodic schedule found
with bound 5

Clock/Step 1 2 3 4 5

t i t i -

i t i t -

i i t i -

Fig. 3. Clocks and the constraints Φfla

among them in the FLA example

Table 2. Experimental results for
periodic scheduling checking of Φfla

Bound i j Time (sec)

≤ 4 unsat ≤ 0.033

5 2 4 0.071

8 4 6 0.206

10 5 8 0.274

100 52 83 102.994

110 4 6 183.122

An SMT-Based Approach to the Formal Analysis of MARTE/CCSL 447

Fig. 4. The periodic schedule with period 31 found by clyzer

Figure 3 depicts the periodic schedule. The period is much longer than what we
expected and is not founded by any other existing approaches.

6 Related Work

Many efforts have been made to the formal analysis of ccsl constraints and sev-
eral approaches have been proposed. André defined the operational semantics of
ccsl as a set of rewrite rules and built a simulation engine that can perform
the clock calculus dynamically on the fly [10]. Gascon et al. proposed to encode
ccsl specifications as Büchi automata and compare its expressiveness with tem-
poral logic [8]. Yin et al. proposed to transform ccsl specifications into Promela
and perform model checking using Spin [15]. In all of their approaches, only a
safe subset of ccsl operators were taken into consideration, i.e., the underly-
ing state space is finite. Mallet et al. proposed a state-based semantics of ccsl
and encoded each constraint as a transition system [11]. However, some ccsl
constraints such as precedence, supremum and infimum cannot be represented
as a finite-state transition system, which may lead to non-termination of the
synchronization of transition systems. Suryadevara et al. proposed to encode
ccsl as timed automata and showed that clocks of ccsl were complementary
to real-valued clocks of timed automata [14]. In our earlier work [16], we defined
an executable semantics of ccsl in Maude and showed its applications to both
simulation and model checking. The above-mentioned approaches can be used
to boundedly model check those unsafe specifications by setting a bound to the
steps that the clocks can proceed, which is similar to our SMT-based approach
to bounded model checking.

Compared with the above existing approaches, the main advantage of the
SMT-based approach proposed in this paper is that it is more suited to verify-
ing the invalidity of ccsl constraints and finding bounded and periodic sched-
ules even for unsafe ccsl constraints. Moreover, the direct interpretation of
ccsl constraints as SMT formulas makes the transformation easier to imple-
ment than other state-based approaches. From the efficiency perspective SMT-

448 M. Zhang et al.

based approaches are generally more efficient than state-based approaches. These
features make the proposed SMT-based approach complementary to existing
approaches to the formal analysis of ccsl constraints.

7 Conclusion and Future Work

We have proposed an SMT-based approach and a prototype tool clyzer to the
formal analysis of ccsl constraints. We showed the applications of the proposed
approach to invalidity proving, periodic scheduling, bounded model checking and
trace analysis. Some examples were presented to demonstrate the feasibility and
experimental results showed the efficiency of the proposed approach.

Based on the proposed approach, more work is required to do, e.g., how to
guide the choice of bounds for a given example, how to translate CTL or LTL
properties of ccsl constraints into SMT formulas for model checking, and how
to detect whether a returned model is spurious. Besides, more complex case
studies will be conducted to check the scalability of proposed approach.

References

1. André, C., Cuccuru, A., Dekeyser, J.L., et al.: MARTE: a new OMG profile RFP
for the modeling and analysis of real-time embedded systems. In: Proceedings of
the 2nd UML-SoC Workshop (2005)

2. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard (version 2.5) (2015)
3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge

(2001)
4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Tal-

cott, C. (eds.): All About Maude - A High-Performance Logical Framework: How
to Specify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350.
Springer, Heidelberg (2007)

5. Ebeid, E., Fummi, F., Quaglia, D.: HDL code generation from UML/MARTE
sequence diagrams for verification and synthesis. Des. Autom. Embed. Syst. 19(3),
277–299 (2015)

6. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In:
Proceedings of the 39th POPL, pp. 533–544. ACM (2012)

7. Feiler, P., Hansson, J.: Flow latency analysis with the architecture analysis and
design language (AADL) (2007)

8. Gascon, R., Mallet, F., DeAntoni, J.: Logical time and temporal logics: comparing
UML MARTE/CCSL and PSL. In: Proceedings of the 18th TIME, pp. 141–148.
IEEE CS (2011)

9. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

10. Mallet, F., André, C.: On the semantics of UML/MARTE clock constraints. In:
Proceedings of ISORC, pp. 305–312. IEEE CS (2009)

11. Mallet, F., de Simone, R.: Correctness issues on MARTE/CCSL constraints. Sci.
Comput. Program. 106, 78–92 (2015)

12. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

An SMT-Based Approach to the Formal Analysis of MARTE/CCSL 449

13. Roşu, G., Şerbănută, T.F.: An overview of the K semantic framework. J. Logic
Algebraic Program. 79(6), 397–434 (2010)

14. Suryadevara, J., Seceleanu, C., Mallet, F., Pettersson, P.: Verifying MARTE/CCSL
mode behaviors using UPPAAL. In: Hierons, R.M., Merayo, M.G., Bravetti, M.
(eds.) SEFM 2013. LNCS, vol. 8137, pp. 1–15. Springer, Heidelberg (2013)

15. Yin, L., Mallet, F., Liu, J.: Verification of MARTE/CCSL time requirements in
Promela/SPIN. In: Proceedings of the 16th ICECCS, pp. 65–74. IEEE CS (2011)

16. Zhang, M., Mallet, F.: An executable semantics of clock constraint specification
language and its applications. In: Artho, C., et al. (eds.) FTSCS 2015. CCIS, vol.
596, pp. 37–51. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29510-7 2

http://dx.doi.org/10.1007/978-3-319-29510-7_2

Checking SysML Models for Co-simulation

Nuno Amálio1(B), Richard Payne2, Ana Cavalcanti3, and Jim Woodcock3

1 Birmingham City University, Birmingham, UK
nuno.amalio@gmail.com

2 Newcastle University, Newcastle upon Tyne, UK
richard.payne@newcastle.ac.uk
3 University of York, York, UK

{ana.cavalcanti,jim.woodcock}@york.ac.uk

Abstract. Cyber-physical systems (CPSs) are often treated modularly
to tackle both complexity and heterogeneity; and their validation may
be done modularly by co-simulation: the coupling of the individual sub-
system simulations. This modular approach underlies the FMI stan-
dard. This paper presents an approach to verify both healthiness and
well-formedness of an architectural design, expressed using a profile of
SysML, as a prelude to FMI co-simulation. This checks the conformity
of component connectors and the absence of algebraic loops, necessary
for co-simulation convergence. Verification of these properties involves
theorem proving and model-checking using: Fragmenta, a formal the-
ory for representing typed visual models, with its mechanisation in the
Isabelle/HOL proof assistant, and the CSP process algebra and its FDR3
model-checker. The paper’s contributions lie in: a SysML profile for archi-
tectural modelling supporting multi-modelling and co-simulation; our
approach to check the adequacy of a SysML model for co-simulation
using theorem proving and model-checking; our verification and trans-
formation workbench for typed visual models based on Fragmenta and
Isabelle; an approach to detect algebraic loops using CSP and FDR3;
and a comparison of approaches to the detection of algebraic loops.

Keywords: Co-simulation · FMI · CSP · SysML · Algebraic loops

1 Introduction

Cyber-physical systems (CPSs) are designed to actively engage with the physical
world in which they reside. They tend to be heterogenous: their subsystems
tackle a wide variety of domains (such as, mechanical, hydraulic, analogue and
a plethora of software domains) that mix phenomena of both continuous and
discrete nature, typical of physical and software systems, respectively.

CPSs are often handled modularly to tackle both heterogeneity and complex-
ity. To effectively separate concerns, the global model of the system is decom-
posed into subsystems, each typically focussed on a particular phenomenon or
domain and tackled by the most appropriate modelling technique. Simulation,

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 450–465, 2016.
DOI: 10.1007/978-3-319-47846-3 28

Checking SysML Models for Co-simulation 451

the standard validation technique of CPSs, is often carried out modularly also,
using co-simulation [18] – the coupling of subsystem simulations. This constitutes
the backdrop of the industrial Functional Mockup Interface (FMI) standard [4,5]
for co-simulation of components built using distinct modelling tools.

This paper presents an approach to formally verify the well-formedness and
healthiness of SysML CPS architectural designs as a prelude to co-simulation.
The designs are described using INTO-SysML [3], a profile for multi-modelling
and FMI co-simulation. The well-formedness checks verify that designs comply
with all the required constraints of the INTO-SysML meta-model; this includes
connector conformity, which checks the adequacy of the connections between
SysML blocks (denoting components) with respect to the types of the ports
being wired. The healthiness checks concern detection of algebraic loops, a feed-
back loop resulting in instantaneous cyclic dependencies; this is relevant because
a desirable property of co-simulation, which often reduces to coupling of simu-
lators, is convergence – whether numerical simulations approximates the solu-
tion –, which is dependent on the structure of the subsystems and cannot be
guaranteed if this structure contains algebraic loops [6,18]. The work presented
here demonstrates the capabilities of our verification workbench for modelling
languages and engineering theories, which rests on Fragmenta [2], a theory
to formally represent designs of visual modelling languages, and its accompa-
nying mechanisation in the Isabelle proof assistant [22], and the CSP process
algebra [13] with its accompanying FDR3 refinement-checker [12].

Contributions. The paper’s contributions are as follows:

– A novel SysML profile for architectural modelling of CPSs that tackles hetero-
geneity by providing support for multi-modelling and co-simulation in com-
pliance with the FMI standard.

– An approach to statically check the adequacy of a SysML architectural model
for co-simulation, supporting connector conformity and algebraic loops detec-
tion, by using a theorem prover and a model-checker.

– A prototyping environment for Fragmenta [3], a mathematical theory to
represent typed visual models, based on the proof assistant Isabelle/HOL that
enables model verification and transformation.

– A CSP-based solution to the detection of algebraic loops, which is based on a
novel approach to represent graphs in CSP.

– An evaluation of approaches to the detection of algebraic loops.

Outline. The remainder of the paper gives some background on Fragmenta
and CSP (Sect. 2). It presents our approach to represent architectural designs
in INTO-SysML, highlighting verification of well-formedness (Sect. 3), and our
approach for representing directed graphs in CSP and detecting algebraic loops
through a FDR3 refinement check (Sect. 4). It evaluates our CSP-based approach
(Sect. 5). Finally, the paper discusses its results (Sect. 6), compares them against
related work (Sect. 7) and draws the conclusions (Sect. 8).

452 N. Amálio et al.

2 Background

We give some background on two main ingredients of the work presented here:
Fragmenta and CSP.

2.1 Fragmenta and Its Isabelle Mechanisation

Fragmenta [2] is a graph-based theory to represent modularised (or frag-
mented) typed class models. It is based on the algebraic theory of graphs and
their morphisms [8]. Fragmenta represents designs of visual modelling lan-
guages whose structure is defined by class metamodels – domain-specific lan-
guages (DSLs) – and their resulting instance models. Its overall models are a
collection of sub-models called fragments. Type and instance models are related
through morphisms. A major novelty lies in Fragmenta’s proxies – represen-
tatives of other nodes. A fragment is as a graph that supports proxies.

Figure 1 portrays five fragments and one global fragment graph (GFG) from
INTO-SysML’s metamodel. It highlights how fragments build up on other frag-
ments either in a bottom-up (through imports) or top-down (through contin-
ues) fashion and the use of proxies for inter-fragment referencing. Importing
is bottom-up because the bigger fragments are built from smaller ones. Con-
tinuation is top-down because it starts by specifying a summary model (or a
skeleton) with points of continuation, represented as proxies, to be continued

F_Common

name : String
NamedElement Type

©F_ASD

blocks

ValueTypeComposition

compositions * types*

Block

ArchitectureDiagram

NamedElement

*

©F_AD

F_Common
Imports

F_PTypesF_PTypes

PType

Real

Int

lb : Int
ub : Int

Interval

Bool

String

Nat

Type

F_Common
Imports

F_Props

init : String
Property

direction : Direction
FlowPort

kind: VarKind
Variable

varInit
varNoInit
parameter

<<Enum>>
VarKind

in
out

<<Enum>>
DirectionNamedElement

Type
type

F_Props
F_PTypes
Imports

depends
*

F_VTypesF_VTypes

ValueType

Enumeration

*literals

unit : String
UnitType

NamedElement
Property

StrtType

*props

PType
*

super
DType

Literal

F_Props, F_PTypes

Imports
F_AD

Continues

MM_GFG F_AD

F_Common

F_Comps

F_VTypes

F_Props

F_PTypes
F_Blocks

F_CD

F

Fragment

C

Class

P

Proxy

Legend

AC

Abstract
Class

inheritance composition association

F1, F2
Imports

Fragment
Imports

FN

Fragment
Node

Import Continuation

GFG

Global Fragment
Graph

© F

Continuing
Fragment

Fig. 1. Some fragments of metamodel of INTO-SysML.

Checking SysML Models for Co-simulation 453

by other fragments. Fragment F PTypes is an increment to F Common; node
Type from F Common is referenced through the proxy with same name; like-
wise in F Props with proxy NamedElement. Fragment F AD, which summarises
metamodel of INTO-SysML architecture diagrams (ADs), is a continuing frag-
ment; F VTypes continues F AD. The GFG (MM GFG) describes the continues and
imports relations between fragments.

Fragmenta proposes two composition operators: (a) union composition
(∪F) merges fragments without resolving the proxies, and (b) colimit compo-
sition (based on category theory) joins fragments by resolving the proxies.

The theory introduces the following sets (see [2] for details):

– Fr , of well-formed fragments, requires that: (a) the underlying graph is well-
formed, (b) the inheritance hierarchy is acyclic, (c) the source of composition
relations has multiplicity 1 or 0 .. 1 and (d) proxies do not inherit1. All frag-
ments in Fig. 1 are members of Fr .

– GFGr , of acyclic GFGs – MM GFG (Fig. 1) ∈ GFGr .
– Mdl , of all well-formed models, requires that the model’s fragments are dis-

joint. A model M is a tuple (GFG , fd), made up of a GFG ∈ GFGr and a total
function fd : NsGFG → Fr mapping GFG nodes to fragments. INTO-SysML’s
metamodel, partially described in Fig. 1, is a member of Mdl .

– F1 →F F2, of all well-formed fragment morphisms, which impose the required
graph commuting constraints in the setting of fragments.

– FrTy , of well-formed typed fragments FT = (F ,TF , ty); F and TF are
instance and type fragments, respectively: F ,TF ∈ Fr , and ty ∈ F →F TF .

– FrTyConf , of conformant fragments, a subset of FrTy , imposes the following
constraints on instances: abstract nodes may not have direct instances, con-
tainments are not shared, instance relations satisfy metamodel multiplicities,
and instances of containments form a forest.

– MdlTy , of all well-formed typed models MT = (M ,TM , ty), where M and
TM are instance and type models – M ,TM ∈ Mdl –, and the type morphism
is conformant – (UFs M ,UFs TM , ty) ∈ FrTyConf , where UFs makes a single
fragment out of the union of model fragments.

Fragmenta’s Isabelle mechanisation2 provides a verification and transfor-
mation environment for metamodel designs. One can check that:

– The individual fragments of both model and metamodel are locally consistent
and well-formed. For fragment F Common of Fig. 1, for instance, we need to
prove �F Common ∈ Fr3; likewise for the remaining fragments.

– GFGs are well-formed also. For GFG of Fig. 1: �MM GFG ∈ GFGr .
– Overall models and metamodels are also consistent and well-formed. For the

metamodel INTO SysML of Fig. 1: � INTO SysML ∈ Mdl .
– Instance models conform to the constraints imposed by the type model.

Section 3 gives further details on INTO-SysML inside Fragmenta/Isabelle.
1 A local check that ensures the compositionality of Fragmenta’s union operator.
2 Available at https://github.com/namalio/Fragmenta.
3 Such membership predicates are represented in Isabelle as functions to booleans and

they capture the well-formedness constraints associated with a Fragmenta set.

https://github.com/namalio/Fragmenta

454 N. Amálio et al.

2.2 CSP and FDR3

The CSP process algebra [13] describes communicating processes and
interaction-driven computations. CSP’s major structuring concept, the process,
represents a self-contained component made up of interfaces to enable interaction
with a multitude of environments.

Processes communicate by transmitting information along channels. A CSP
channel carries messages and has, therefore, a set of associated events, corre-
sponding to all messages that may be transmitted. Process expressions are built
using a number of operators, which include:

– Event prefixing, expressed as e → P , describes a process that expects event e
and then behaves as process P .

– External choice, P1 � P2, gives the environment the choice of events offered by
P1 and P2. Replicated external choice � i : N • P(i) composes the resulting
processes using external choice.

– Internal choice, P1 � P2, non-deterministically chooses to act like P1 or P2.
– Parallel composition, P1 ‖

A

P2, executes the two processes in parallel synchro-

nising on the set of events A.

FDR3 [12] is CSP’s refinement checker. It checks refinement according to CSP’s
denotational models (including traces, failures and failures-divergences), and
other properties, including deadlock- and livelock-freedom, and determinism.

3 Architectural Modelling in INTO-SysML

The Systems Modelling Language (SysML) [25] is a general-purpose notation for
systems engineering that builds up on the Unified Modelling Language (UML).
The INTO-SysML profile [3] customises SysML for architectural modelling in a
setting of multi-modelling and FMI co-simulation. It embraces the many themes
of the INTO-CPS project4, namely, tool interoperability, heterogeneity, holistic
modelling and co-simulation, and constitutes the gateway into modelling in the
INTO-CPS approach.

The profile introduces specialisations of SysML blocks (known as stereotypes)
to represent different types of CPS components, constituting the building blocks
that enable a hierarchical description of the CPS architectures that we need. A
component is a logical or conceptual unit of the system, corresponding to a soft-
ware or a physical entity. The profile’s component constructs comprise: System,
EComponent (encapsulating component) and POComponent (part-of component).
A system is decomposed into subsystems (represented as EComponents), which
are further decomposed into POComponents. EComponents and POComponents
may be further classified as Subsystem (a collection of inner components), Cyber
(an atomic unit that inhabits the digital or logical world) or Physical (an atom

4 The INTO-CPS project aims to create an integrated “tool chain” for comprehensive
model-based design of CPSs. For further information, see http://into-cps.au.dk/.

http://into-cps.au.dk/

Checking SysML Models for Co-simulation 455

(a) INTO-SysML AD (b) INTO-SysML CD

Fig. 2. The INTO-SysML model of the water tanks system

unit pertaining to the physical world). Furthermore, their characterising phe-
nomena may be classified as discrete or continuous.

Currently, INTO-SysML comprises two diagram types: architecture diagrams
(ADs) and connections diagrams (CDs), specialising SysML block definition and
internal block definition diagrams, respectively. They are as follows (see Fig. 2):

– ADs (see Fig. 2a) describe a decomposition in terms of the types of sys-
tem components and their relations. They emphasise multi-modelling: certain
components encapsulate a model built using some modelling tool (such as
VDM/RT [20], 20-sim [17] or Open Modelica [11]).

– CDs (see Fig. 2b) are AD instances. They convey the configuration of the
system’s components, highlighting flow and connectedness.

drain

source

Tank

Valve

Fig. 3. Water tanks system.

The water tanks system, sketched in Fig. 3, is
this paper’s running example. A source of water
fills a tank whose water outflow is controlled by
a valve; when the valve is open the water flows
into the drain. The valve, managed by a software
controller, is opened or closed depending on the
tank’s water level. We also consider a variant of
this system with the drain connected to the tank.

Figure 2 portrays the architectural model of
water tanks, built using INTO-SysML’s Modelio
implementation5. The AD of Fig. 2a is as follows:

5 Available from http://forge.modelio.org/projects/intocps-modelio34.

http://forge.modelio.org/projects/intocps-modelio34

456 N. Amálio et al.

– The overall system (WaterTankSys) comprises two major subsystems,
WaterTank and Controller, which are EComponents – they encapsulate sepa-
rate models. WaterTank deals with continuous phenomena modelled in Open
Modelica. Controller is discrete and modelled in VDM/RT.

– WaterTank has three physical sub-components: Source, Tank and Drain –
they are POComponents (part-of of a subsystem).

– Enumeration ValveState captures the valve’s state. Unit types FlowRate and
Height, built from reals, deal with flow rates and water levels.

– Each component provides flow ports to enable communication and the flow of
material; the outputs indicate the inputs ports on which they depend.

CD of Fig. 2b describes the system instance (WTSys) composed of one WaterTank
(WT) with its sub-components. The Controller instance (C) receives the water
height from WT and, in return, directs WT to open or close the valve.

3.1 Well-Formedness Checking Using Fragmenta/Isabelle

Many things are checked in order to deem a INTO-SysML model, such as one of
Fig. 2, consistent, well-formed and type conformant. Such checks are performed
on the Fragmenta typed representation illustrated in Fig. 4. Figure 4b gives
the Fragmenta representation of CD in Figs. 2b and 4a is the metamodel of
INTO-SysML CDs; the correspondence from CD to metamodel, entailed by the
type morphism, is represented as labels with numbers. In Fig. 4b, the proxies
reference elements from the AD of Fig. 2a, nodes labelled 4 correspond to the
connectors of the CD, and those labelled 5 correspond to ports.

From the Fragmenta base sets of Sect. 2.1, we build a set of well-formed
INTO-SysML models INTO Mdls, catering for all profile-specific invariants. The
AD invariants are: (i) there is one system block, (ii) EComponents are not nested,
and (iii) POComponents are contained by EComponents. The CD invariants are: (iv)
instance ports are correctly typed with respect to AD flow ports, (v) connection’s
flow types correspond to types consistent with the ports being connected (confor-
mity of connectors), and (vi) the CD satisfies multiplicities imposed by AD.

The model of Fig. 2, referred as M WTs, is subject to the following checks:

– Fragments of AD and CD are well-formed: �F AD ∈ Fr , �F CD ∈ Fr .
– The model’s GFG is well-formed: �GFG WTs ∈ GFGr .
– Overall model is well formed: �M WTs ∈ Mdl .
– M WTs must be a valid INTO-SysML model. Given a type morphism ty

(illustrated in Fig. 4b), we prove: �(M WTs, ty) ∈ INTO Mdls, which entails
�(M WTs, INTO SysML, ty) ∈ MdlTy .

These are the checks required for any INTO-SysML model.

3.2 Fragmenta/Isabelle as a Transformation Engine

To enable usage of model-checkers, Fragmenta/Isabelle is used as a transfor-
mation engine in the algebraic loops check, which finds cycles in a topology of
dependencies in instantaneous component communication (Fig. 5).

Checking SysML Models for Co-simulation 457

F_CD

*

src
blocks*

insideBlocks

connectors*

*

ports
Block

type

NamedElement

BlockInstance

ValueType

ConnectionsDiagram

FlowPortPort

Connector

type

tgt

F_CD

F_Blocks, F_V_Types

Imports

3

1

2

4 6

75

(a) Metamodel of INTO-SysML CDs

F_WTSys_CD

F_WT_Sys_AD

Imports

WTSys

WT

T

WaterTankSys WaterTank

Tank

Drain

D

S

Source

C

Controller

vi

wlo

VI

WLO

wli

WLI

vo

VO

C_WT_V

C_WT_WL

Height

ValveState

v V

C_WT_T_V

C_S_T

win

WIN

ValveState2

sw SW

FlowRate

C_T_D_F

dw DW

FlowRate2

C_T_WT_WL

wlWL

Height2

blocks = [WTSys, WT, C, T, D, S]
connectors = [C_WT_V, T_WT_WL, C_WT_WL, WT_T_V, S_T_F, T_D_F]

WaterTankSysCD

3

3

1

3

3

3

3

2

2 2

2

2

2

4

4
4

4

46

6

6

6

6
6

5

5

5

4

5

5

5

55
5

7

7

77

77

7

7
7

(b) INTO-SysML CD of water tanks system (Fig. 2b) in Fragmenta

Fig. 4. Metamodel, models and typing morphism (numbered labels) in Fragmenta
illustrated with INTO-SysML CDs

Figure 5a portrays a self-cycle component that is algebraic loop free. Output
y1 of A is connected to A’s input u2, but this does not entail an algebraic loop.
The topology in Fig. 5b, on the other hand, contains an algebraic loop.

Finding algebraic loops equates to detecting cycles in a directed graph
describing port dependancy relations. An edge between two ports indicates that
the target node is instantaneously dependent on the source. This constitutes
a port dependancy graph (PDG), illustrated in Fig. 5c, which portrays a PDG
with an algebraic loop corresponding to the variant of the INTO-SysML model
of Fig. 2 that connects the Drain to the Tank (dwo to win).

458 N. Amálio et al.

u1

u2

y1

y2 u3

A

B

(a) A topology without
algebraic loops

u1 y1

u2

A B y2

(b) A topology with an
algebraic loop

sw win wout dwi

wl wlo wli vo wtvi tvi

dwo

(c) PDG of a variant of Fig. 2
with algebraic loop

Fig. 5. The algebraic loops check is about finding cycles in a system topology empha-
sising component communication

INTO_MDLs PDG CSPm

Into_SysML_ToPDG

toCSP

Fig. 6. From INTO-SysML
models to CSPm

The Isabelle mechanisation introduces a func-
tion that produces a PDG from a INTO-SysML
model. The resulting PDG, obtained from the ports
and connections of CD and the internal dependan-
cies between output and input port types of AD, is
derived from both metamodel and model. Another

function takes the PDG and produces the CSPm specification to be checked in
FDR3. This is summarised in the diagram of functions of Fig. 6.

4 Algebraic Loop Verification Using CSP

sw win wout

dwi
wl

wlo

wlivo

wtvi

tvi

sw_win win_wout

wout_dwivi1_wout

vi2_vi1

vo_vi2

wli_vo

wlo_wli

wl_wlo

1 2 3

4
5

6 7

8 9

win_wl

Fig. 7. A PDG with labelled
nodes and edges

We represent graphs in CSP and detect cycles on
them via a traces-refinement check executed in the
FDR3 refinement checker6. This is illustrated with
the PDG of Fig. 7 (derived from model of Fig. 2),
containing labelled edges and numbers assigned to
nodes with outgoing edges. We represent edges as
CSP channels and nodes as CSP processes. The
edges result in the following channel declaration:

channel sw win,win wout ,wout dwi , tvi wout ,
wtvi tvi , vo wtvi ,wli vo, . . .

The overall graph is a CSP process constructed from sub-processes representing
each node. The node processes are an external choice of CSP prefixed expressions
for each edge that starts at the node. They offer the events on the corresponding
channel and then behave as the process at the end of the edge. An edge to a sink
node (no outgoing edges) results in a transition to SKIP . The main process is
the external choice of all sub-processes. The process for PDG of Fig. 7 is:

PortDependancyGraph =
letP(1) = sw win → P(2)

6 https://www.cs.ox.ac.uk/projects/fdr/.

https://www.cs.ox.ac.uk/projects/fdr/

Checking SysML Models for Co-simulation 459

P(2) = win wout → P(3)
P(3) = wout dwi → SKIP

...
within� i : 1..9 • P(i)

Cycles are detected through traces refinement. The abstract CSP process to be
refined defines all finite paths whose size is at most the number of edges in the
graph (those that can be built by combining the graph’s edges):

edges = {sw win,win wout ,wout dwi , tvi wout ,wtvi tvi , vo wtvi , . . .}
Limited =

letLimited0(E ,n) =

ifn > 0 → � e : E • e → Limited0(E ,n − 1) � SKIP else STOP

withinLimited0(edges, 9)

The traces refinement check to be executed in FDR3 is then:

assertLimited �T PortDependancyGraph

All counter-examples are cycles. The function toCSP of Fragmenta/Isabelle
(Sect. 3.2) yields CSP specifications as outlined above. For the PDG of Fig. 7,
FDR3 gives no counter-examples; for Fig. 5c FDR3 yields one counter-example.

5 Evaluation

FDR3 is a tool based on model-checking, a verification technique whose drawback
is scalability. We compare our CSP approach to detect algebraic loops (Sect. 4)
against one approach based on Alloy [14] and one graph algorithm [15], to gauge
scalability.

5.1 Experimental Setup

Scalability is evaluated against growing PDGs based on the water tanks running
example (Fig. 3). We keep adding tanks to a base water tanks systems to produce
systems of cascading water tanks having two versions: one with algebraic loops
(drain is connected to first tank) and one without (as per Fig. 3).

The generation of files to execute in either FDR3, Alloy 47 or the implemen-
tation of Johnson’s algorithm in JGraphT8, involves Isabelle functions that yield
PDGs given the number of tanks. We then define functions from PDGs to the
abstract syntax of CSP (as per Sect. 4), Alloy (see below) and Graph ML9 as
per diagram of Fig. 810.
7 http://alloy.mit.edu/alloy/download.html.
8 A Java library of graph algorithms – https://github.com/jgrapht/jgrapht.
9 A standard for graphs exchange that enables a direct representation of PDGs –

http://graphml.graphdrawing.org/.
10 The Isabelle file that performs the generation, the actual generated files, and the

Java code that runs the three approaches, can be found at http://bit.ly/1WKTIC7.

http://alloy.mit.edu/alloy/download.html
https://github.com/jgrapht/jgrapht
http://graphml.graphdrawing.org/
http://bit.ly/1WKTIC7

460 N. Amálio et al.

PDG

Alloy

CSPm

toAlloy

toCSP

GraphML

WaterTanksn

WaterTanks_loopn
toGraphML

Fig. 8. The experiment’s genera-
tion functions

The graph checks and data collection were
performed by a Java program that reads the
files and calls either Alloy 4 (using the min-
isat SAT solver), FDR3 or JGraphT, executed
on a MacBook Pro with a 2.5 GHz Intel core i7
processor and 16 GB RAM memory. The result-
ing data was subject to a statistical analysis
carried out in the R statistical package [24].

5.2 The Alloy Model

Alloy [14] is a declarative modeling language based on first-order logic with tran-
sitive closure. It is used for data modelling and provides an automatic bounded
analysis of a model. Our Alloy model of PDGs is based on the signature Port :

abstract sig Port {tgt : set Port}{tgt �= this}

Above, we declare a set of Port instances – abstract says that Port has no
instances of its own and that all its instances belong to its extensions (subsets) –
with the relation tgt between Ports declared to be non-reflexive: the tgt of some
Port cannot be itself (this).

The actual nodes of the PDG of Fig. 7 extend Port:

one sig sw , win , wout , dwi , wl , wlo , wli , vo , wlvi , tvi

extends Port {}

Above, the nodes are singletons (constraint one) that subset Port(extends).
The following Alloy fact defines the edges of the graph:

fact {sw.tgt = win

win.tgt = wout

wout.tgt = dwi

no dwi.tgt . . . }
assert AcyclicTgt {no ^tgt & iden}

check AcyclicTgt for 10

Above, each edge is declared through relation tgt: sw.tgt =win says that there
is an edge from sw to win – operator . is the relational image –, win.tgt =wout

says that there is an edge from win to wout, and no dwi.tgt says that dwi has no
outgoing edges (set is empty).

Finally, we assert the acyclicity of the relation tgt representing the PDG and
declare the command to check the assertion:

assert AcyclicTgt {no ^tgt & iden}

check AcyclicTgt for 10

Above, the assertion says that there can be no elements (operator no) in the set
resulting from the intersection (operator &) of the relation’s transitive closure
(^tgt) with the identity relation (iden). The check command includes a scope
declaration: the analysis should consider at most 10 PDG nodes.

Checking SysML Models for Co-simulation 461

5.3 Comparisons

The plots of Fig. 9 depict the data obtained from running the experiments. They
display the number of nodes of the analysed graph in the abscissa and the dura-
tion of the check (in seconds) in the ordinate.

0 20 40 60 80 100 120 140 160 180

100
50

15
0

25
0

35
0

45
0

55
0

65
0

Alloy
CSP

8.58

652.59

(a) Alloy vs CSP

0 50 100 150 200 250 300 350 400

0
10

25
40

55
70

85
10

0
11

5
13

0
14

5
16

0 CSP
Johnson

164.98

0.02

(b) CSP vs Johnson algorithm

Fig. 9. The performances of the Alloy and CSP solutions (seconds on the ordinate and
number of nodes of a graph on the abscissa)

Figure 9a shows that there is an overwhelming difference in favour of CSP
against Alloy. CSP’s maximum duration is 8.58 s, Alloy’s is 652.59 s. The two
approaches start to diverge with small to medium size graphs (number of nodes
>17). The p-value, obtained from the paired data plotted in Fig. 9a using the
Wilcoxon statistical test11, of <2.2−16 (<0.001) indicates a very large difference.
We derived estimates of functions that fit the data of both Alloy and CSP to
yield estimates of time complexity: Alloy has complexity O(Exp), whereas CSP
has complexity O(n3) – n is number of nodes of graph.

Figure 9b, on the other hand, shows that Johnson’s algorithm performs sub-
stantially better than CSP. The former’s maximum duration is 0.02 s, CSP’s is
164.98 s. The p-value of <2.2−16 (<0.001) signals a very large difference. The
estimated function that fits the data endorses the algorithm’s linearity claim.

6 Discussion

The following discusses the results presented in the paper.

11 It is a non-parametric test that compares the two sampled distributions without
assuming that they follow the normal distribution.

462 N. Amálio et al.

A Prelude to Co-simulation. The work presented here statically checks an
architectural design of a CPS in preparation for co-simulation. This is done at
the high-level architectural design to provide early warnings of any issues so
that the appropriate remedial action can be taken. It is a preliminary check –
done before delving into the details of global co-simulation and local modelling
and analysis of each component – to ensure that the models to be co-simulated
are, among other things, free of connector inconformities and algebraic loops.
These checks are performed using the Isabelle proof assistant and the FDR3
model-checker; both constitute an intimate part of our verification toolset.

Into-SysML Profile. The paper presents a profile of SysML (defined in [3]),
designed as a DSL, for architectural modelling of CPSs supporting multi-
modelling and FMI co-simulation. The profile embodies an implicit systems
decomposition paradigm driven by multi-modelling: the overall system architec-
ture is a decomposition of subsystems (E-components), encapsulating their own
models, which are further decomposed into POComponents to give an account of
the inner structure of each subsystem. The profile enables a holistic algebraic
loop analysis that considers the inner details of each subsystem. Guidance on the
definition of SysML models for multi-modelling is provided in [10], aiding CPS
engineers in modelling a CPS architecture both holistically and in a decomposed
form suitable for co-simulation.

The profile’s design caters for FMI co-simulation. The E-component subsys-
tems of the architecture result in FMI’s Functional Mock-up Units (FMUs) to be
co-simulated; FMUs are generated by the corresponding modelling framework.

FRAGMENTA/Isabelle as Prototyping Environment. The profile’s DSL
design was brought to life by Fragmenta and its accompanying Isabelle mech-
anisation. Fragmenta/Isabelle, built as part of the work presented here, con-
stitutes a prototyping environment built on top of Fragmenta’s mathematical
theory that provides reasoning and transformation capabilities for metamodels
and their instances. As this paper demonstrates, it can be used in real-world set-
tings; ideally, however, Fragmenta designs should be specialised and optimised
as part of fully fledged visual modelling environments.

Algebraic Loops. The algebraic loops healthiness check is performed on a
graph describing the instantaneous dependencies between ports extracted from
INTO-CPS architectural models; external port connections are derived from the
CD and internal ones from the AD. Internal and external port dependencies of
the INTO-SysML model must be consistent with the underlying model equa-
tions.

It is interesting to contrast the two model-based approaches to check alge-
braic loops. Alloy represents a graph directly (Sect. 5.2) as a relation between
nodes; the property to check is stated as an ordinary relational calculus formula.
The CSP approach (Sect. 4), on the other hand, is edge-oriented to suit CSP’s
communication model based on channels; a graph is the communications estab-
lished between nodes (CSP processes) chosen from the environment (external

Checking SysML Models for Co-simulation 463

choice); the property is expressed in an ingenious, but less evident way: through
an abstract process and a traces refinement check.

FDR3 and Alloy 4 are both based on model-checking; however, the CSP
solution outperforms Alloy overwhelmingly. Alloy’s exponential time complex-
ity is attributed to the complexity of SAT whose worst-case time complexity is
exponential [19,21] – the Alloy solution resorts to the transitive closure, a com-
putationally demanding operation (specialised algorithms do it in O(n3)). An
important factor in CSP’s lower O(n3) time complexity lies in the use of traces
refinement, founded on the simplest denotational model of CSP and with the
least expensive time complexity – polynomial according to [16].

Our CSP solution is beaten by Johnson’s algorithm, but it is used in our ver-
ification approach, which employs FDR3 for more sophisticated checks of FMI
co-simulations [1]. It is difficult for general-purpose model-checking to outper-
form specialised algorithms taking advantage of problem specificities.

The experimental setup varies size but not structure, which remains essen-
tially the same throughout the different water tanks systems. However, as the
results show, this is enough to expose differences; furthermore, as discussed
above, the obtained results are consistent with theoretical results.

7 Related Work

Feldman et al. [9] generate FMI model descriptions from Rhapsody SysML mod-
els and FMUs from statecharts to enable integration with continuous models.
Unlike our work, this does not define a profile embodying a paradigm designed
for multi-modelling and FMI-co-simulation; furthermore, formal static checks
covering connector conformity and absence of algebraic loops are not covered.
Pohlmann et al. [23] propose a UML-based DSL for real-time systems; FMI
FMUs are generated from model components described as real-time statecharts;
our work specialises the SysML block diagrams, a standard notation for archi-
tectural modelling, and supports multi-modelling.

This paper applies the Fragmenta theory presented in [2] to a real-world
problem. This required an extension to the Isabelle/HOL theory of [2], devel-
oped to prove that paper’s main theorem. This extension builds an infrastructure
to support automated verification and transformation for visual modelling lan-
guages. Fragmenta/Isabelle constitutes a prototyping environment supporting
all the novel aspects of Fragmenta, namely: a formal theory of proxies and
its verified theory of decomposition and the support for fragmentation strate-
gies. This is the first time that the novel theory of modularity with its Isabelle
mechanisation is applied to a real-world application. To our knowledge, this is
also the first prototyping environment based on a proof assistant that provides
formal reasoning and transformation capabilities for visual models.

The approach to connector conformity used here is based on typing. It
supports sub-typing according to the inheritance relations specified in the
metamodel; for instance, in INTO-SysML, natural numbers may be used when
integers are expected because the metamodel says that the former is a subtype

464 N. Amálio et al.

of the latter. This is checked as part of Fragmenta’s typing morphisms. This
is different from the connector compatibility of [7], which performs validations
based on interface contracts, a relation between allowed inputs and outputs [26].

Broman et al. [6] require that FMI component networks are algebraic-loop
free as a pre-condition to the deterministic composition results of their FMI mas-
ter algorithms, proposing port-dependency graphs as a means to perform such
checks. Unlike the work presented here, [6] does not study different approaches
to detect algebraic loops; it suggests algorithms that topologically sort a graph,
which yield an error if the graph has a cycle. Our algebraic loop analysis provides
actual cycles as feedback to designers.

8 Conclusions

This paper has presented our approach to check a SysML model in preparation
for co-simulation. This involves checking the consistency and well-formedness
of the INTO-SysML model, which involves checking the conformance of the
model with respect to its metamodel based on Fragmenta’s representation.
The actual checks are carried out using Fragmenta’s Isabelle mechanisation,
ensuring, among other things, connector conformity. The paper then showed how
the INTO-SysML models could be transformed into other modelling languages to
perform a check for the absence of algebraic loops using Fragmenta’s Isabelle
mechanisation as a transformation engine. The paper presented a novel CSP
approach to detect algebraic loops by checking a traces refinement in FDR3.
The paper’s evaluation highlighted how our CSP approach based on refinement-
checking performs well when compared with an Alloy SAT-based model-checking
approach, but that it does not perform better than a special-purpose graph
algorithm. The work presented in this paper is done in tandem with the effort
on the formal semantics of FMI in CSP [1].

Acknowledgements. This work was supported by the EU project INTO-CPS (Hori-
zon 2020, # 644047, http://into-cps.au.dk/). Thanks are due to Etienne Brosse, who
implemented the INTO-SysML profile in the Modelio tool, and Bernhard Thiele, who
provided useful feeedback on the work presented here.

References

1. Amalio, N., Cavalcanti, A., König, C., Woodcock, J.: Foundations for FMI co-
modelling. Technical report, INTO-CPS Deliverable, D2.1d, December 2015

2. Amálio, N., de Lara, J., Guerra, E.: FRAGMENTA: a theory of fragmentation for
MDE. In: MODELS 2015. IEEE (2015)

3. Amalio, N., Payne, R., Cavalcanti, A., Brosse, E.: Foundations of the SysML profile
for CPS modelling. Technical report, INTO-CPS Deliverable, D2.1a, December
2015

4. Blochwitz, T., Otter, M., Akesson, J., Arnold, M., Clauss, C., Elmqvist, H.,
Friedrich, M., Junghanns, A., Mauss, J., Neumerkel, D., Olsson, H., Viel, A.: The
functional mockup interface 2.0: the Standard for tool independent exchange of
simulation models. In: Modelica Conference, Munich, Germany (2012)

http://into-cps.au.dk/

Checking SysML Models for Co-simulation 465

5. Blochwitz, T.: Functional mock-up interface for model exchange and co-simulation,
July 2014. https://www.fmi-standard.org/downloads (Blochwitz, T. (ed.))

6. Broman, D., Brooks, C., Greenberg, L., Lee, E., Masin, M., Tripakis, S., Wetter, M.:
Determinate composition of FMUs for co-simulation. In: EMSOFT (2013)

7. Dragomir, I., Preoteasa, V., Tripakis, S.: Compositional semantics and analysis of
hierarchical block diagrams. In: Bošnacki, D., Wijs, A. (eds.) SPIN 2016. LNCS,
vol. 9641, pp. 38–56. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32582-8 3

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

9. Feldman, Y., Greenberg, L., Palachi, E.: Simulating rhapsody SysML blocks in
hybrid models with FMI. In: Modelica Conference, pp. 43–52 (2014)

10. Fitzgerald, J., Gamble, C., Payne, R., Pierce, K.: Method guidelines 1. Technical
report, INTO-CPS Deliverable, D3.1a, December 2015

11. Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica
2.1. Wiley-IEEE Press, Hoboken (2004)

12. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014 (ETAPS). LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014)

13. Hoare, T.: Communication Sequential Processes. Prentice-Hall International,
Englewood Cliffs (1985)

14. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2012)

15. Johnson, D.B.: Finding all the elementary circuits in a directed graph. SIAM J.
Comput. 4(1), 77–84 (1975)

16. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three
problems of equivalence. Inf. Comput. 86(1), 43–68 (1990)

17. Kleijn, C.: Modelling and simulation of fluid power systems with 20-sim. Int. J.
Fluid Power 7(3), November 2006

18. Kübler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Comput.
Model. Dyn. Syst. 6(2), 93–113 (2000)

19. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theor.
Comput. Sci. 223(1–2), 1–72 (1999)

20. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.:
The overture initiative - integrating tools for VDM. SIGSOFT Softw. Eng. Notes
35(1), 1–6 (2010)

21. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discret.
Appl. Math. 10(3), 287–295 (1985)

22. Nipkow, T., Klein, G.: Concrete Semantics: with Isabelle/HOL. Springer,
Switzerland (2014)

23. Pohlmann, U., Schäfer, W., Reddehase, H., Röckemann, J., Wagner, R.: Generat-
ing functional mockup units from software specifications. In: Modelica Conference
(2012)

24. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2015). https://www.R-project.
org/

25. OMG Systems Modeling Language (OMG SysMLTM). Technical report version
1.3, SysML Modelling Team, June 2012. http://www.omg.org/spec/SysML/1.3/

26. Tripakis, S., Lickly, B., Henzinger, T.A., Lee, E.A.: A theory of synchronous rela-
tional interfaces. ACM TOPLAS 33(4), 14 (2011)

https://www.fmi-standard.org/downloads
http://dx.doi.org/10.1007/978-3-319-32582-8_3
https://www.R-project.org/
https://www.R-project.org/
http://www.omg.org/spec/SysML/1.3/

A CEGAR Scheme for Information Flow
Analysis

Manuel Töws(B) and Heike Wehrheim

Paderborn University, Paderborn, Germany
manuel.toews@uni-paderborn.de

Abstract. Information flow analysis studies the flow of data between
program entities (e.g. variables), where the allowed flow is specified via
security policies. Typical information flow analyses compute a conserv-
ative (over-)approximation of the flows in a program. Such an analysis
may thus signal non-existing violations of the security policy.

In this paper, we propose a new technique for inspecting the reported
violations (counterexamples) for spuriousity. Similar to counterexample-
guided-abstraction-refinement (CEGAR) in software verification, we use
the result of this inspection to improve the next round of the analysis.
We prove soundness of this scheme.

1 Introduction

Information flow analysis aims at finding data leaks in programs. More precisely,
it analyses whether information flows from a private, confidential source to a
public sink. Information flow control should thus provide confidentiality of data:
access to confidential information is only given in ways allowed by specified
security policies (or security lattices). A typical policy is the explicit division of
variables into low (L) and high (H) ones, disallowing flow of data from high to
low.

A large number of information flow analyses exist today. These are e.g. based
on type systems [12,18], logic [1,7,13], theorem proving [7], dependency analysis
that operates either on the control flow [1] or on program dependence graphs
[11]. A good survey of the known approaches is given by Sabelfeld and Myers
[15]. Most of these approaches are computing overapproximations of the actual
information flow in program executions, thereby potentially raising false alarms.
As a large number of false alarms makes such an analysis practically useless, a
lot of approaches try to get rid of false alarms by making the analysis itself more
precise, e.g. by augmenting it with costly points-to analysis. A different approach
is taken by the path conditions of [16]: path conditions encode the potential flow
of information from a source to a sink as a logical formula and use SMT solvers

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901).

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 466–483, 2016.
DOI: 10.1007/978-3-319-47846-3 29

A CEGAR Scheme for Information Flow Analysis 467

Fig. 1. Running example of a secure program and its control flow automaton

to derive feasibility of the flow. As these path conditions are abstractions of
the actual paths as well, a further specialisation of this technique provides for a
refinement of path conditions [17]. The refinement is based on actual program
executions monitoring the raised, potential information flow. Thus this technique
provides for a CEGAR scheme (counterexample guided abstraction refinement)
in information flow analysis.

This approach can, however, only tackle one source of imprecision, namely
that of infeasibility of a flow. The ultimate objective of showing non-interference,
i.e., the property that a program started with the same public (low) input – but
potentially different secret (high) input – should not terminate with different
public output, cannot always be achieved with path condition refinement. To
see this, consider the small code snippet in Fig. 1, which is intentionally kept
simple for illustration purpose. Variables indexed with h are considered secret
(high), those indexed with l are public (low) and variable v i is neither secret nor
public (internal). The security policy states that flow from high to low variables
is disallowed. A standard flow analysis, even when enhanced with path condition
refinement, will compute a dependency of v i on v h and thus of v l on v h and
v i. Still, this program possesses our key objective of non-interference: the values
of the two low variables do not depend on variable v h since the branches of the
if-statement do not differ. Our technique aims at detecting and eliminating such
false alarms.

The basis of our approach is a standard static analysis computing dependen-
cies between variables for every location in the control flow graph of a program.
Upon detection of a potential leak (a flow of data to a variable v at location l from
some non-allowed variable set V), it first computes a candidate subset of these
dependencies V ′ ⊆ V for the variable v at l, only containing allowed accesses.
It then builds a logical formula encoding not the flow (like path conditions
do) but the wanted non-interference property for this candidate: the formula
describes two program runs up to l with identical initial values for variables in
V ′, arbitrary initial (possibly different) values for the other variables and differ-
ent final values for v at l. If this formula is unsatisfiable, non-interference holds for
v at �.

We memorize for this combination of variable and location the modified
dependencies (as the candidate has been shown to be sound), and use this infor-
mation when computing dependencies for other variables and locations. This
technique is repeated until no more violations are detected or until we find a

468 M. Töws and H. Wehrheim

violation which turns out to be real, i.e., for which none of the candidates are
correct. We prove soundness of both this refinement step and for the initial
analysis.

We integrated our approach into the configurable software verification frame-
work CPAChecker. Its implementation within CPAChecker allows for com-
binations with several other software analyses, e.g. predicate analysis which pro-
vides path sensitivity.

2 Background

We start with defining the programs which we consider in this paper. For the
formal treatment, we restrict ourselves to simple imperative programs; the imple-
mentation treats a larger class. In the following, x is a variable (of type integer
or boolean) and a ∈ AExpr , b ∈ BExpr are arithmetic and boolean expressions,
respectively.

Stmt ::= skip; | x := a; | Stmt ; Stmt | if (b) thenStmt else Stmt fi |
while (b) doStmt od

Programs are either given in the syntax of above or directly as control-flow
automata (CFAs). A control-flow automaton CFA = (L,G , l0) consists of a set
of locations L, a set of control flow edges G ⊆ L×Ops ×L and a program entry
location l0 ∈ L where

Ops ::= skip | assume(b) | x := a

describe assignments, assume (i.e., conditions of if and while) and skip state-
ments. We let V denote the set of all program entities (variables1) that occur in
any operation op ∈ Ops of any edge (·, op, ·) ∈ G . We say that a location l ∈ L
occurs inside a loop if l is on a cycle of the control flow graph. Every program can
be transformed into a control flow automaton by assigning names to its program
locations. We therefore often directly give programs with their location names.
Figure 1 describes our running program and its control flow automaton.

The semantics of a control-flow automaton (and thus of a program) (L,G , l0)
is defined by a transition system T = (C ,→, c0). In this, the concrete data state
C : V → Z ∪ {true, false} of a program is a total (type-correct) function that
maps every variable from the set V to a concrete integer or boolean value, c0 ∈ C
is the initial state and → ⊆ C ×G ×C is a transition between states. Note that
initial states may vary and thus a number of transition systems can be assigned
to a program.

A tuple (c, (l, op, l′), c′) ∈ → describes that at location l with state c the
operation op can be applied and thereby location l′ with state c′ is reached.

1 We consider V in general as variables, however, objects, function identifiers etc. are
also possible as entities used in security policies.

A CEGAR Scheme for Information Flow Analysis 469

Therein, the semantics of the transition is given by the following constraints:

(c, (li, skip, lj), c′) ∈→ then c′ = c

(c, (li, x := a, lj), c′) ∈→ then c′(y) =

{
c(y) if x �= y

c(a) if x = y

(c, (li, assume(b), lj), c′) ∈→ then c(b) = true ∧ c′ = c

Note that we use in the semantics two evaluation functions c : AExpr → Z and
c : BExpr → {true, false} to evaluate expressions. A feasible path to a location
lk ∈ L in T = (C ,→, c0), is a sequence of concrete states and transitions a
program can pass through, starting in location l0 with concrete state c0 and
ending in location lk with concrete state ck:

Paths(T) = {(c0, (l0, op0, l1), c1), (c1, (l1, op1, l2), c2), .., (ck−1, (lk−1, opk−1, lk), ck) |
∀0 ≤ i < k : ∃li ∈ L, ∃ci ∈ C , ∃opi ∈ Ops s.t. (li, op, li+1) ∈ G

∧ (ci, (li, op, li+1), ci+1) ∈ →}

2.1 Security Policies

The allowed flow of information in programs is specified by so called security
policies based on the generalization used by Foley [9]. For this, let S denote a
set of security classes. We assume every program variable to have an assigned
security class given by a mapping SC : V → S (security class mapping). This
mapping classifies the confidentiality level of the entity. For our example in Fig. 1
the mapping is SC (vh) = h,SC (vi) = i and SC (v�) = �.

A security policy P is a collection of pairs of the form S × 2S . We call an
element (a,A) ∈ P in general a security state. An element (a,A) describes that a
program entity with security level a is allowed to depend on information equal to
the security classes A. For technical reasons we furthermore demand that a ∈ A
holds (which is similar to reflexivity) and that for each b ∈ A there exists at
least one state (b,B) ∈ P .

Definition 1. Let S be a set of security classes. The set of feasible policies over
S, Pol(S), is defined as

Pol(S) := {P : S × 2
S | ∀a ∈ S , ∀A ∈ 2

S
:
(
(a, A) ∈ P ⇒ (

a ∈ A ∧ ∀b ∈ A ∃B ∈ 2
S
: (b, B) ∈ P

))} .

In this paper, we use a standard policy for illustration of our technique. To
simplify policy specification on a set of security classes S, we use some auxiliary
operations according to [9]:

470 M. Töws and H. Wehrheim

⊥ describes a policy that allows anything, while d D describes a policy
where only an entity of security class d is allowed to depend on entities with
security classes equal to any subset of D unified with {d}. Given a security
policy P ∈ Pol(S), three sets are important for our analysis:

⊥ (Set of all possible states)
P (Set of secure states)

N (P) = ⊥ \ P (Set of non-secure states)

As recurring example, we use a policy that consists of three security classes: l
(low), h (high) and i (internal). We aim at a security policy where the security
class h is used for entities that contain secret information that should not be
observed directly, while l declares entities that contain public information and
that can be observed at several program states. The last security class i is used
for internal entities and entities that do not directly contain secret information
and that should not be observed directly. Nevertheless, we do not want that
information of security class h can flow via these entities into entities of security
class l. This policy is defined in Definition 2 as LHI .

Definition 2. Let S = {�, h, i} be a set of security classes. The LHI -policy is
defined as

The security states can be ordered in a partial order 	: (S ×2S)× (S ×2S) with
((a,A), (b,B)) ∈ 	 iff (a = b) ∧ A ⊆ B. All secure states for entities in the
LHI-Policy can be found in Fig. 2 ordered by 	.

The two states (�, {�, h})), (�, {�, h, i}) ∈ N (LHI) are non-secure states for
the security class � and signal a policy violation.

The LHI-Policy belongs to a special family of security policies, the aggrega-
tion policies [8]. These are policies with the following aggregation property: if
a security class a is allowed to access combined elements (where a is included),
it is also allowed to access the information of any subsets of the security classes
that include at least a itself. Formally,

(a,B) ∈ P ⇒ (a,A) ∈ P (1)

holds for a ∈ A ⊆ B ⊆ S. Our CEGAR technique depends on this property of
policies.

Fig. 2. The secure states of the LHI-policy ordered according to �.

A CEGAR Scheme for Information Flow Analysis 471

2.2 Security

Having stated our security policies, we can next define non-interference. The non-
interference property [10] is a well-known standard security concern. Informally,
it says that a program executed twice with the same public input should not
behave observably distinguishable on the public output channels even when the
secret information differs. Many authors consider policies that consist of only
one public (low) and one secret entity (high). We will define something similar
but consider security policies in general. First of all we define non-interference
of entities:

Definition 3. Non-interference to an entity at a location
Let (L,G , l0) be a program and T = (C ,→, c0) and T ′ = (C ,→, c′

0) be two
transition systems (differing in the initial state) for this program. Furthermore,
let V be the set of entities that occur in the CFA. An entity w ∈ V does not
interfere with an entity v ∈ V at location l ∈ L, l being a location not inside a
loop, iff the following holds

Ξl(v, w) ::=∀π = ((c0, g0, c1), .., (cj−1, (lj−1, opj−1, l), cj)) ∈ Path(T),

∀π′ = ((c′
0, g

′
0, c

′
1), .., (c

′
k−1, (l

′
k−1, op

′
k−1, l), c

′
k)) ∈ Paths(T ′),

∀z ∈ V \ {w} : c0(z) = c′
0(z) ⇒ cj(v) = c′

k(v) .

For each v ∈ V and l ∈ L we can separate the set of all entities into the
following two disjoint sets:

Noninterferences l(v) = {w ∈ V | Ξl(v, w)}
Interferences l(v) = {w ∈ V | ¬Ξl(v, w)}

We demand for the final location l ∈ L of the two paths π and π′ not to be
inside a loop. For the while-language this means it is not inside the loop body of
a while-statement. Omitting this restriction would in general cause a violation
for this location even if two program runs are identical the same with the same
initial values c0 = c′

0. To see this, consider the example in Fig. 3: Each loop
iteration will decrease at location 3 the concrete state of the variable v� ∈ V
by one and therefore, differ to the previous loop iteration. However, even for
two paths with c0(v�) = c′

0(v�) > 1 the concrete states for location 3 will differ
after the first (c4) and the second iteration (c′

6) and therefore Ξ3(v�, vh) does
not hold and signals an interference to vh although there is no influence for any
computation in the loop.

Nevertheless, all other locations occurring before l in the paths π and π′ are
without restriction allowed to be part of loops and to occur in a loop more than
once. With these definitions at hand we can fix our non-interference security
property:

Definition 4. Security at a location
Let P ∈ Pol(S) be a security policy, let CFA = (L,G , l0) be a program

and let V be the set of entities that occur in the CFA. The program is secure

472 M. Töws and H. Wehrheim

Fig. 3. Small example that explains why locations like 3 are excluded from the non-
interference definition. If not, location 3 would signal for v� an interference of vh and
conclude a violation.

at location l ∈ L wrt. P, l being a location not inside a loop, iff ∀v ∈ V :
(SC (v),SC (v) ∪ ⋃

w∈Interferencesl(v)
SC (w)) ∈ P holds.

Stated the other way round: The occurrence of an entity v ∈ V such that
(SC (v),SC (v) ∪ ⋃

w∈Interferencesl(v)
SC (w)) �∈ P constitutes a violation of the

security policy. The program in Fig. 1 is secure at all locations like illustrated in
Table 1.

Next, we present an analysis which aims at detecting security violations.

Table 1. The program in Fig. 1 is secure at all locations according to the definition.

Location l Concrete states cl Interferences l(∗) Security

1, 2, 4 v�
→ c0(v�) v�
→ {v�} (�, {�}) ∈ LHI
vh
→ c0(vh) vh
→ {vh} (h, {h}) ∈ LHI
vi
→ c0(vi) vi
→ {vi} (i , {i}) ∈ LHI

3, 5, 6 v�
→ c0(v�) v�
→ {v�} (�, {�}) ∈ LHI
vh
→ c0(vh) vh
→ {vh} (h, {h}) ∈ LHI
vi
→ c0(vi) + 2 vi
→ {vi} (i , {i}) ∈ LHI

7 v�
→ c0(vi) + 2 v�
→ {vi} (�, {�, i}) ∈ LHI
vh
→ c0(vh) vh
→ {vh} (h, {h}) ∈ LHI
vi
→ c0(vi) + 2 vi
→ {vi} (i , {i}) ∈ LHI

3 Dependency Analysis

We base our technique for analysing programs with respect to security (as given
in Definition 4) on a forward dataflow analysis. It computes the set of interfer-
ences over program entities based on the ideas of Amtoft and Banerjee [1]), i.e.,

A CEGAR Scheme for Information Flow Analysis 473

it computes for every location l and pair of variables v and w, whether v might
depend on w’s value at program start. A small difference to [1] is that we aim
at computing the set of interferences while they aim at computing the set of
non-interferences.

We intend to compute an abstract state space of dependencies. Dependencies
are specific to the program part which has already been executed. After the
execution of a statement, these dependencies can differ. Let V again describe the
set of all program entities of a program CFA. The total mapping Dep : Stmt ×
V → 2V is the sole attribute of an abstract state where the idea is that for
each entity a set of those entities is described it depends on. E.g., an expression
Dep(st , v) = {w, z} stands for the case that an entity v – after having executed
the statements st ∈ Stmt – depends on the initial values of the entities w and z.

We define Dep(st , v) by induction on the structure of programs where we
assume the initial dependencies of an empty program, Dep(skip, v) = {v}, to
be the identity function. The remaining cases are given in Fig. 4 where st0, st1,
st2, lst ∈ Stmt . Furthermore, fv(e) ⊆ V defines the set of all free variables
occuring in an expression e ∈ AExpr ∪BExpr . For while statements, an iterative
computation of dependencies until a fixpoint is reached is needed. Since there
are only finitely many variables, a fixpoint always exists.

Fig. 4. Dependencies between program variables

The mapping Dep gives us the dependencies between variables. For the running
example from Fig. 1 (called Ex) we list in Table 2 all the dependencies that will be
computed during the analysis. Our interest is, however, in the security classes of
these dependencies. The mapping CSC : Stmt × V → 2S (security classes of the

474 M. Töws and H. Wehrheim

Table 2. Computed dependencies Dep during the analysis

Dep(∗, ∗) Computed security

Ex1 = [skip] Dep(∗, v�) = {v�} (�, {�}) ∈ LHI
Dep(∗, vh) = {vh} (h, {h}) ∈ LHI
Dep(∗, vi) = {vi} (i , {i}) ∈ LHI

Ex2 = [vi = vi + 2] Dep(∗, v�) = {v�} (�, {�}) ∈ LHI
Dep(∗, vh) = {vh} (h, {h}) ∈ LHI
Dep(∗, vi) = {vi} (i , {i}) ∈ LHI

Ex3 = [if (vh == 1) then { vi = vi + 2 }
else { vi = vi + 2 } fi]

Dep(∗, v�) = {v�} (�, {�}) ∈ LHI

Dep(∗, vh) = {vh} (h, {h}) ∈ LHI
Dep(∗, vi) = {vi , vh} (i , {i , h}) ∈ LHI

Ex = [if (vh == 1) then { vi = vi + 2 }
else { vi = vi + 2 } fi; v� = vi]

Dep(∗, v�) = {vi , vh} (�, {�, h, i}) �∈ LHI

Dep(∗, vh) = {vh} (h, {h}) ∈ LHI
Dep(∗, vi) = {vi , vh} (i , {i , h}) ∈ LHI

content in the entity) is a function that associates to each program entity a set
of security classes that classifies the current content stored in the entity. We base
the semantics of CSC for a program entity on the dependencies (see Sect. 3) to
other entities and the security level of the union of these dependencies. Therefore
this mapping can and will vary between different abstract program states:

CSC (st , v) =
⋃

w∈Dep(st,v)
SC (w) ∪ SC (v)

We will check security of a program st by checking that SC (v),CSC (st , v)) ∈ P
holds for all v ∈ V . This procedure is similar to Definition 4 with the only
difference that the computed set Dep takes the place of Interferences . This is a
sound procedure, which we show in Theorem 1. To get a correspondence between
a location and statements we use the notation [l : st ; l′ :] where l ∈ L stands for
the location right before and l′ ∈ L labels the location right after the statement.

Theorem 1. Soundness of Analysis
For all aggregation policies P ∈ Pol(S), all programs [st ; l :] ∈ Stmt with l

being the location label after st, the following holds:

If [st ; l :] is not secure at l wrt. P, then (SC (v),CSC ([st ; l :], v)) �∈ P holds.

Proof. We only give a proof sketch here. We prove this property by induction,
and show that for each location l ∈ L following a statement st ∈ Stmt

Interferences l(v) ⊆ Dep([st ; l :], v)

holds. As induction hypothesis we use that for statements [st ′; l0 :] – which
consist of a sequence of at most k statements – for any variable v ∈ V

A CEGAR Scheme for Information Flow Analysis 475

Interferences l0(v) ⊆ Dep([st ′; l0 :], v) holds. The base clause for the induction is
given by the empty program [skip; l :] where Interferences l(v) = {v} ⊆ {v} =
Dep([skip; l :], v) holds.

As induction step, we show that this relation still holds if we extend the
sequence [st ′; l0 :] of k to k + 1 statements by adding a st after st ′: [st ′; l0 :
st ; l :]. Then the relation can be straightforward shown by considering all possi-
ble cases that can occur for Interferences and Dep by using the definition from
Definition 3 and Fig. 4 per each case of statements (namely skip, assignment, if
and while). Comparing these two sets will lead to a proof of the ⊆ relation. �

This theorem states that we are computing a conservative overapproxima-
tion of the actual dependencies: whenever a program is not secure, we will
detect this. However, our technique can raise false alarms: for the program
of Fig. 1, the dependencies Dep(Ex , v�) = {vi , vh} will cause a violation since
(SC (v�),CSC (Ex , v�)) = (�, {�, h, i}) �∈ LHI (see Table 2). This is a spurious
counterexample. We next see how we can detect such false alarms and can use
the detection to further improve our analysis.

4 Checking Spurious Counter Examples

The main reason we are using the dependency analysis is that we consider the
evaluation of the formula representing the definition of Security from Definition 3
as too costly to be applied for every entity and every security state at every
location. The analysis stated in the previous Sect. 3 though is conservative and
not precise with respect to the security definition. In this section, we explain
how we can refine the analysis results for the usage in a CEGAR scheme. In
principle we will do this by applying the mentioned costly evaluation of the
formula representing security when we detect a possible violation. So we evaluate
this formula not on all locations, but only when needed.

Given this counter example from the previous Sect. 3, our next step is to
show that there are no violations by refining the dependencies. We do this by
first determining a set of possible candidates for a refinement of the security class
mapping. Let P ∈ Pol(S) be an aggregation policy. We define the set of next
feasible security states for a given non-secure state (a,A) �∈ P by

XP ((a,A)) := {(a,B) | B ⊆ A ∧ (a,B) ∈ P ∧ (∃x ∈ A \ B : (a,B ∪ {x}) �∈ P)}

This set determines possible candidates for a refinement of the security states
of the counter example. For our detected possible violation (�, {�, h, i}) �∈ LHI ,
this set consists of two elements:

XLHI ((�, {�, h, i})) = {(�, {�}), (�, {�, i}))}

This is also illustrated in Fig. 6. Now let l′ ∈ L be the (potentially insecure) loca-
tion after execution of program st , and w ∈ V be the variable which causes the
violation, i.e., (SC (w),CSC ([l : st ; l ′],w)) /∈ P . Next we take a logical encoding

476 M. Töws and H. Wehrheim

Fig. 5. Running example of the secure
program in SSA-form

Fig. 6. Possible downgrading candi-
dates of (l, {l, h, i}) are the next states
below which are secure

of the program Ψ([l : st ; l′ :]) leading to l′. The encoding of the program as
formula assumes an SSA-form (static single assignment) [6] of variables which
we below mimic by using a renaming into unique SSA names for variables in the
form 〈v, l〉 (variable plus location), where l ∈ L is the location the variable was
last assigned to. For example, a variable x ∈ V in a statement [l : x = a; l′ :]
with location l ∈ L before and l′ ∈ L afterwards will be renamed to a pair 〈x, l〉.
For joining variables in SSA-form, we use the standard technique of inserting
φ-functions which join variables after two branches have merged. Notationally,
the φ-functions in if statements appear after the if and those for while in a square
bracket before the loop condition.

st0; if (b) then st1 else st2 fi; 〈x1, l
′〉=φ(〈x1, l

1
1〉, 〈x1, l

2
1〉); . . . ; 〈xk, l′〉=φ(〈xk, l1k〉, 〈xk, l2k〉)

st0; while[〈x1, l〉 = φ(〈x1, l
0
1〉, 〈x1, l

l
1〉); . . . ; 〈xk, l〉 = φ(〈xk, l0k〉, 〈xk, llk〉);] (b) do lst od

In this, l1i , l2i , l0i and lli denotes the location where xi was written the last time
in [st0; st1], [st0; st2], [st0;] and [lst ;], respectively. The SSA-form of the running
example program is illustrated in Fig. 5. SSA-forms are automatically generated.

Based on the SSA-form, we define the program encoding Ψ as depicted in
Fig. 7. Each statement for Ψ is encoded according to its semantics, except for
the while-loop. For while-loops there exist in general several possibilities for han-
dling the unknown number of loop iterations. Common variants are the bounded
unrolling of the loop of at most k rounds or the use of invariants. At the moment
we encode a loop as two cases. One is that the loop condition is not fulfilled at
the beginning and the loop body will not be iterated. In the second case, we
completely ignore the current state of the variables appearing in the loop and
iterate the loop body only once. The idea is here to make an encoding which
models a run through the loop in an arbitrary start state, and thus to overap-
proximate all finite loop iterations. We do so by substituting every loop variable
〈xi, l〉 with a new fresh variable 〈ai, l〉 in both the formula encoding of the loop
body as well as of the loop condition (see Fig. 7, while statement).

As we now aim at checking non-interference, we evaluate another formula
Φ : (Stmt ×V ×(S ×2S)) → {true, false} for unsatisfiability. For this, we use the
above mentioned program encoding twice as Ψ(l : st : l ′]),Ψ ′(l : st ; l ′]), where in
Ψ ′ all variable names are renamed disjoint to Ψ (i.e., variable v occurs as v′).

A CEGAR Scheme for Information Flow Analysis 477

Fig. 7. Encoding of candidate check

Let w ∈ V be the entity for which we detected the spurious counter example
(a,A) ∈ P as violation. Let VB = {v ∈ V | SC (v) ∈ B} ⊆ V . For all (a,B) ∈
XP ((a,A)), we then do an evaluation according to the security Definition 4 and
check whether

Φ(l : st; l
′
:, w, (a, B)) =

∧

v∈VB

〈v, 0〉 = 〈v′
, 0〉 ∧ Ψ(l : st; l

′
) ∧ Ψ

′
(l : st; l

′
:) ∧ ¬(〈w, l

w
st 〉 = 〈w′

, l
w
st 〉)

is unsatisfiable. In this, we use lwst as the location in st where w is last written to,
which is unique since we operate on SSA-forms. Intuitively, the formula states
that upon two executions to the location l started in initial states which agree on
the values of variables which w is allowed to depend on, the value of w at the end
is not the same. If this evaluation leads to a proof of unsatisfiability, we detect
that we were too conservative (w at l does not depend on secret information) and
can downgrade to this secure state B. If there are more B1, B2, .. ∈ XP ((a,A))
candidates where φl(Bi) is unsatisfiable, we can downgrade to the intersection⋂

φl(Bi) unsat Bi. This is a sound joining, since the property of aggregation poli-
cies is that intersection of secure states can only result in secure states.

Theorem 2. Soundness of Encoding
Let v ∈ V be a variable, l ∈ L a location, P an aggregation policy, (a,B) ∈

XP ((a,A)) a candidate with VB = {v ∈ V | SC (v) ∈ B} ⊆ V . Then:

Φ(st ; l :, w, (a,B)) unsatisfiable ⇒ V \ VB ⊆ Noninterferences l(w)

478 M. Töws and H. Wehrheim

Proof. We only give a proof sketch here. We will show this theorem by
an indirect proof. Assume Φ(st ; l :, w, (a,B))is unsatisfiable and V \ VB �⊆
Noninterferences l(w). This means, there is a z ∈ V \ VB such that Ξl(w, z)
is satisfiable. We argue that in this case for the search space – Φ explores to
proof unsatisfiablity – contains always the search space that Ξ(w, z) explores.

Because of the satisfiability of Ξl(w, z), there exist two paths π, π′ (corre-
sponding to those in the formula Ξl(w, z)) where the initial concrete states of
the paths are restricted by ∀v ∈ V \ {z} : c0(v) = c′

0(v) and the end states
differ for w: ¬(cj(w) = c′

k(w)). First we argue that the domain of initial con-
crete states of Ξ is contained in Φ, since V \ VB ⊆ V \ {z} implies that by the
subformula

∧
v∈VB

〈v, 0〉 = 〈v′, 0〉 in Φ at least all these concrete initial states of
Ξ are modelled.

Let us consider the path π (π′ is analogous) defined in Ξ. We argue that in
the program encoding of the subformula Ψ of Φ each path π of Ξ is modelled.
That means if the path π exists, the formula Ψ will evaluate to true. That is
because skip, assignment and if-statements are represented one to one to its
correlating semantics. The encoding of while-statements in Ψ covers more since
we ignore restriction to the concrete states of those entities rewritten in the loop
body before entering the while-statements. However, π is also contained in the
encoding of Ψ . On the one hand a path that does not enter the loop body is
directly represented in Ψ . On the other hand each path that iterates several
times the loop body before leaving it is covered by the other branch of Ψ which
represents the last iteration by simultaneously ignoring the past of in the loop
rewritten variables (further restriction to concrete states of these variables).

We can conclude, that Φ explores all possible paths of Ξl(w, z) and considers
also all domains of initial concrete states that are considered by Ξl(w, z). So
if π, π′ would result for Ξl(w, z) to be evaluated to satisfiable, Φ would have
recognized these two paths too and would also be evaluated to satisfiable. This
contradicts the assumption. �

For our example Ex , the unprimed formula is

Ψ(Ex ; 7 :) =[[(〈vh, 0〉 = 1 ∧ 〈vi, 2〉 = 〈vi, 0〉 + 2 ∧ 〈vi, 5〉 = 〈vi, 2〉)]
∨[(¬(〈vh, 0〉 = 1) ∧ 〈vi, 4〉 = 〈vi, 0〉 + 2 ∧ 〈vi, 5〉 = 〈vi, 4〉)]]
∧〈v�, 6〉 = 〈vi, 5〉.

The primed formula Ψ ′(Ex ; 7 :) looks similar. Like previously mentioned, for
Ex our dependency analysis determined a spurious counterexample as a pair
(v�,Dep(v�) = {vi , vh}) with the conclusion (�, {�, h, i}) /∈ LHI . The two can-
didates for downgrading of the violation (�, {�, h, i}) are (�, {�}), (�, {�, i}) ∈
XLHI ((�, {�, h, i})). We will then check the following two formulas for unsatisfi-
ability:

A CEGAR Scheme for Information Flow Analysis 479

Φ([Ex ; 7 :], v�, (�, {�, i})) =(〈v�, 0〉 = 〈v′
�, 0〉) ∧ (〈vi , 0〉 = 〈v′

i , 0〉)
∧Ψ(Ex ; 7 :) ∧ Ψ ′(Ex ; 7 :) ∧ ¬(〈v�, 6〉 = 〈v′

�, 6〉)
Φ([Ex ; 7 :], v�, (�, {�})) =(〈v�, 0〉 = 〈v′

�, 0〉)
∧Ψ(Ex ; 7 :) ∧ Ψ ′(Ex ; 7 :) ∧ ¬(〈v�, 6〉 = 〈v′

�, 6〉)
The formula Φ([Ex ; 7 :], v�, (�, {�, i})) is unsatisfiable, but Φ([Ex ; 7 :], v�, (�, {�}))
is satisfiable. So v� depends only on variables with security classes of � and i but
not on h like the result of the dependency analysis claimed. We will therefore
try to modify our dependencies to accomplish this first element as the result. We
achieve this now by modifying the dependencies by removing the dependencies to
entities that are too restrictive. The set Δ defines for a spurious counterexample
(a,A) ∈ P at location l ∈ L for variable w the difference of security classes of
the aimed refinement to the spurious counterexample:

Δl(w, (a,A)) := A \
⋂

(a,B)∈XP ((a,A))
Φl(w,(a,B)) unsat

B

Furthermore based on this set Δl, the set RΔl
describes the set of entities that

has to be removed for making the result more precise:

RΔl
(w, (a,A)) := {v ∈ V | SC (v) ∈ Δl(w, (a,A))}

The refinement will then be achieved by taking

Dep′([l : st ; l′ :], w) := Dep([l : st ; l′ :], w) \ RΔl′ (w, (a,A))

as new analysis result for w. We can memorize this information as triple
(l, w,Dep′([l : st ; l′ :], w)) to avoid this spurious counter example to be found
again and again. If we run the dependency analysis at [l : st ; l′] with memo-
rizing this information (l, w,Dep′([l : st ; l′ :], (w))), we directly use it without
re-computation. The result will then also be applied for the computation of
dependencies of succeeding locations.

Back to our example with the policy LHI:

Δ7((�, {�, h, i})) = {h}
RΔ7((�, {�, h, i})) = {vh}
Dep′([Ex : 7], v�) = Dep([Ex : 7], v�) \ RΔ7(v�, (�, {�, h, i})) = {vi, vh} \ {vh} = {vi}

Since we memorize (7, v�, {vi}) for further iterations, the same counter examples
will not appear again. In this case, no other violation is detected and hence
the program is proven secure. In general, several iterations of the checking and
refinement procedure might be necessary to finally state security or report a real
violation.2

2 As additional remark we want to clarify that the refinement technique is able to
handle more complex examples than the illustrated implicit flow example. E.g. in
examples like [v� = vh ; v� = v� − vh]the firstly computed dependency to vh will be
recognized as nonexistent as well.

480 M. Töws and H. Wehrheim

5 Implementation

We implemented our approach within the CPAChecker framework [3–5]3. This
is a framework for specifying a configurable program analysis – a unification
which allows both model checking approaches as well as data flow analysis.

The implementation of our approach is divided into three interleaved separate
configurable program analysis which are

1. Dependency Analysis,
2. ControlContext Analysis, and
3. PolicyChecker.

The task of the Dependency Analysis is to determine the dependencies corre-
sponding to Sect. 3. This is done with the help of an auxiliary analysis called
ControlContext Analysis which is used for making the dependencies more pre-
cise using the control context. The class of programs covered by our analysis is
larger than given here. E.g. we also consider function calls, and we are using for
instance dominators for the control context analysis to determine further con-
trol dependencies instead of only considering the control dependence of if and
while-statements.

The PolicyChecker is the actual security analysis. Its task is to validate
whether the dependencies of the abstract state space computed by Dependency
Analysis lead to a security violation wrt. a beforehand specified policy P and
security mapping SC . Unlike described so far, we do not check each entity on
each location, but we divide the entities V = I∪̇E further into two sets: In those
that can potentially violate security on every location (e.g. by writing on a public
output console) which is the set I, and those that can only be observed after
the program execution which is the set E . The security of I will be checked on
every location whereas the security of E is only checked on end locations. The
PolicyChecker thus needs user defined input which is

– the security mapping SC
– security policy P ,
– immediate violation set I.

The set SC can be partial defined instead of a total function. The analysis will
expand the function to a total mapping by setting all not specified entities to a
security class s ∈ S that can be given as additional input. The set E = V \ I is
implicit.

The usage of the CPAChecker framework allows for an easy combination
of our approach with different already integrated program analysis, in particular
the possibility of using information of other analyses for improving precision
of our own analysis. We can for instance use a standard Points-to-Analysis [2]
to improve precision of the Dependency Analysis or a Predicate Analysis [5] to
eliminate dead paths.

3 https://cpachecker.sosy-lab.org/.

https://cpachecker.sosy-lab.org/

A CEGAR Scheme for Information Flow Analysis 481

6 Conclusion

We presented a CEGAR Scheme for information flow analysis that is based
on a conservative dependency analysis. In this, we inspect counter examples
for their spuriousity by an evaluation of a program encoding that overapproxi-
mates the underlying security concern – non-interference. Soundness of both the
dependency analysis and refinement triggered by the evaluation of the program
encoding is shown by Theorems 1 and 2.

As an advantage we can process arbitrary security policies, with the only
restriction that the joining of several secure states (for the dataflow analysis) has
to result in a secure state. Resting the security upon the dependency analysis
result allows an exchange of the security policy without the need of recomputing
the dependencies (but in some circumstances to use the CEGAR scheme to make
the dependencies more precise).

Related Work. The approach most similar to ours is that of Taghdiri et al.
[17]. Both their and our analysis perform a security analysis on the basis of a
dependency analysis with CEGAR aspects. While they generate and use a con-
servative program dependence graph to signal dependencies, we compute conser-
vative dependencies with a dataflow analysis to use it in the CPAChecker frame-
work together with other software analysis that can refine the dependencies. The
aggregation policies we consider in this paper are equal in expressiveness to the
lattices they consider as policies. However, the CEGAR schemes differ. Their
analysis marks the nodes on a path in the PDG with ascending security classes
according to their lattice. Such a path can be a spurious counter example they
plan to eliminate, where they use a path encoding to validate whether this path
is possible. In our CEGAR scheme, the computed security classes that an entity
contains can violate the security at a location. We then use an encoding of the
paths to this location for the purpose of evaluating the non-interference property
for a smaller subset that would imply a secure state. If that is the case we refine
the dependencies.

For our dependency analysis we use a forward dataflow analysis on aggre-
gation policies, which has similarities to the forward analysis of Amtoft and
Banarjee [1]. While they consider independences of variables, we consider depen-
dencies.

Darvas et al. [7] use a theorem proving approach where they evaluate two
variants of program encodings of non-interference in dynamic logic. One of the
evaluation examples is similar to ours. However, they only validate the program
as a whole and not per location of interest, and they consider only the standard
policy (bipartition in high and low entities).

The policy specification is based on the framework used by Foley [8,9]. Mantel
[14] gives a good overview of formalizing security concerns – including non-
interference – based on the specification of a general policy. However, they con-
sider more security concerns like e.g. separability, perfect security etc. which
are ordered in a hierarchy and are expressed as formulas. At the moment, we

482 M. Töws and H. Wehrheim

consider as security concern non-interference only. We could also think about
varying the security concerns and use one of these other concerns.

Future Work. We use general security policies which are only restricted by sound
joining of secure states, because of the underlying forward data flow analysis.
By using a model checking approach instead, we could allow arbitrary feasible
policies with no further restriction since joining of states would not be needed.
For this case, we have to extend the definition of refinement candidates XP from
Sect. 4 to each maximal state of context change between secure and non-secure
states with respect to the ⊆ relation. For the downgrading of security states, a
spurious counter example refinement would then have to consider not only false
negatives but false positives as well, and has to choose the maximal candidate
that holds.

Another aspect is the program encoding we use for while-loops to overap-
proximate the non-interference definition. At the moment we consider only the
last iteration with arbitrary concrete states for the rewritten variables. A next
step would be to allow further subformulas at the beginning of the loop iteration
encoding to make the allowed concrete states more precise while retaining the
conservativeness of the approach, which will be similar to loop invariants.

References

1. Amtoft, T., Banerjee, A.: Information flow analysis in logical form. In:
Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 100–115. Springer, Heidelberg
(2004)

2. Andersen, L.O.: Program analysis and specialization for the C programming lan-
guage. Ph.D. thesis, University of Cophenhagen (1994)

3. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007)

4. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic preci-
sion adjustment. In: ASE 2008, pp. 29–38. IEEE Computer Society (2008)

5. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Bloem, R., Sharygina, N. (eds.) FMCAD 2010, pp. 189–197.
IEEE (2010)

6. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

7. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol.
3450, pp. 193–209. Springer, Heidelberg (2005)

8. Foley, S.N.: Unifying information flow policies. Technical report, DTIC Document
(1990)

9. Foley, S.N.: Aggregation and separation as noninterference properties. J. Comput.
Secur. 1(2), 159–188 (1992)

10. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, pp. 11–20. IEEE Computer Society (1982)

A CEGAR Scheme for Information Flow Analysis 483

11. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. Int. J. Inf. Sec.
8(6), 399–422 (2009)

12. Hunt, S., Sands, D.: On flow-sensitive security types. In: Morrisett, J.G., Jones,
S.L.P. (eds.) POPL 2006, pp. 79–90. ACM (2006)

13. Joshi, R., Leino, K.R.M.: A semantic approach to secure information flow. Sci.
Comput. Program. 37(1–3), 113–138 (2000)

14. Mantel, H.: On the composition of secure systems. In: 2002 IEEE Symposium on
Security and Privacy, pp. 88–101. IEEE Computer Society (2002)

15. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

16. Snelting, G., Robschink, T., Krinke, J.: Efficient path conditions in dependence
graphs for software safety analysis. ACM Trans. Softw. Eng. Methodol. 15(4),
410–457 (2006)

17. Taghdiri, M., Snelting, G., Sinz, C.: Information flow analysis via path condition
refinement. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol.
6561, pp. 65–79. Springer, Heidelberg (2011)

18. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow analy-
sis. J. Comput. Secur. 4(2/3), 167–188 (1996)

Erratum to: Formal Availability Analysis
Using Theorem Proving

Waqar Ahmad(&) and Osman Hasan

School of Electrical Engineering and Computer Science,
National University of Sciences and Technology (NUST), Islamabad, Pakistan

{waqar.ahmad,osman.hasan}@seecs.nust.edu.pk

Erratum to:
Chapter “Formal Availability Analysis Using
Theorem Proving” in: K. Ogata et al. (Eds.):
Formal Methods and Software Engineering, LNCS,
DOI: 10.1007/978-3-319-47846-3_15

The original version of this chapter contained an error. The name of the author
Waqar Ahmad was spelled incorrectly as Waqar Ahmed in the original publication.
The original chapter was corrected.

The updated original online version for this chapter can be found at
DOI: 10.1007/978-3-319-47846-3_15

© Springer International Publishing AG 2017
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, p. E1, 2016.
DOI: 10.1007/978-3-319-47846-3_30

http://dx.doi.org/10.1007/978-3-319-47846-3_15
http://dx.doi.org/10.1007/978-3-319-47846-3_15

Author Index

Affeldt, Reynald 243
Ahmad, Waqar 226
Aït-Ameur, Yamine 106
Amálio, Nuno 450
André, Étienne 400
Anh, Le Duc 159
Araki, Keijiro 18
Artho, Cyrille 417

Babin, Guillaume 106
Banach, Richard 90
Bao, Danzhu 26
Bersani, Marcello M. 193
Berthomieu, Bernard 383
Bhiri, Mohamed Tahar 313
Bloom, Gedare 417
Bodeveix, Jean-Paul 313
Bubel, Richard 57
Butler, Michael 90

Cassano, Valentín 1
Cavalcanti, Ana 279, 450
Chen, Manman 122, 363
Chen, Shuohao 26
Chen, Tzu-Chun 296
Chen, Zhe 329
Conserva Filho, Madiel S. 279

Dal Zilio, Silvano 383
Din, Crystal Chang 296
Dong, Jin Song 122, 363
Dongol, Brijesh 261

Erascu, Madalina 193

Filali, Mamoun 313
Foughali, Mohammed 383

Gadia, Saurabh 417
Garrigue, Jacques 243
Grigorova, Silviya 1
Groves, Lindsay 261

Hähnle, Reiner 57
Hai, Nguyen Minh 159

Hasan, Osman 226
Holtmanns, Silke 141
Honiden, Shinichi 41
Huang, Zhiqiu 329

Iliasov, Alexei 210
Ingrand, Félix 383
Ishikawa, Fuyuki 41

Kamburjan, Eduard 296
Kan, Shuanglong 329
Kurita, Taro 18

Laibinis, Linas 141
Li, Jiaying 363
Lime, Didier 400
Liu, Peizun 346
Liu, Yang 26, 122, 363

Maibaum, Thomas S.E. 1
Mallet, Anthony 383
Mallet, Frédéric 433
Marconi, Francesco 193
Miao, Weikai 26

Nguyen, Truong Khanh 363

Oliveira, Marcel Vinicius Medeiros 279
Oliver, Ian 141

Pantel, Marc 106
Payne, Richard 450
Pereverzeva, Inna 141
Pu, Geguang 26

Rocchetto, Marco 175
Romanovsky, Alexander 210
Rossi, Matteo 193
Roux, Olivier H. 400

Saeki, Takaya 41
Sakai, Makoto 74
Sakai, Tatsunori 74
Sampaio, Augusto 279

Scheurer, Dominic 57
Siala, Badr 313
Singh, Neeraj Kumar 106
Stankaitis, Paulius 210
Su, Ting 26
Sun, Jing 122
Sun, Jun 122, 363

Tan, Tian Huat 122, 363
Tanaka, Akira 243
Tho, Quan Thanh 159
Tippenhauer, Nils Ole 175
Töws, Manuel 466
Troubitsyna, Elena 141

Wahl, Thomas 346
Wang, Jingyi 122
Wehrheim, Heike 466
Woodcock, Jim 450

Xiong, Kunpeng 26

Yamane, Satoshi 74
Yanase, Ryo 74
Yao, Yinbo 26

Zhang, Min 433
Zhu, Huibiao 433

486 Author Index

	Preface
	Organization
	Abstracts of Keynotes
	Combinatorial Testing and Its Applications
	A (Proto) Logical Basis for the Notion of a Structured Argument in a Safety Case
	Promotion of Formal Approaches in Japanese Software Industry and a Best Practice of FeliCa’s Case (Extended Abstract)
	Contents
	A (Proto) Logical Basis for the Notion of a Structured Argument in a Safety Case
	1 Introduction
	2 Preliminary Observations
	3 Safety Cases, Structured Arguments, and Evidence
	3.1 Gentzen's Calculus of Natural Deduction
	3.2 Structured Arguments in Safety Cases
	3.3 Some Comments on the Logical Basis of Safety Arguments

	4 Illustrating Some of Our Points
	5 Discussion
	6 Conclusions
	References

	Promotion of Formal Approaches in Japanese Software Industry and a Best Practice of FeliCa's Case (Extended Abstract)
	1 Introduction
	2 Promotion of Formal Methods in Japan
	2.1 Seminars and Publications
	2.2 Reactions from Japanese Companies

	3 A Best Practice of Formal Approach in Japan
	4 Formal Methods for Working Engineers
	4.1 VDMPad
	4.2 ViennaTalk
	4.3 JOD Tool

	5 Concluding Remarks
	References

	Automated Requirements Validation for ATP Software via Specification Review and Testing
	Abstract
	1 Introduction
	2 Related Work
	3 The Approach
	3.1 Main Framework of the Approach
	3.2 The Specification and the Prototype Construction
	3.3 Diagram-Based Specification Review
	3.4 Scenario-Based Specification Testing

	4 Experiments
	4.1 Specification Processing
	4.2 Diagram-Guided Specification Review
	4.3 Specification Testing
	4.4 Experiment Results and Analysis

	5 Conclusion
	Acknowledgments
	References

	Automatic Generation of Potentially Pathological Instances for Validating Alloy Models
	1 Introduction
	2 Background and Motivation
	2.1 Scenario Exploration in Alloy Analyzer
	2.2 Scenario Minimality Through Aluminum
	2.3 Other Related Work

	3 Method
	3.1 Scenario Generation Heuristics Overview
	3.2 Pairwise Scenario Generation
	3.3 Scenario Presentation Order
	3.4 Inconsistent Scenario

	4 Implementation
	4.1 Alloy Engine
	4.2 Scenario Generation and Presentation
	4.3 Pairwise Combination Generation

	5 Experimental Setting
	5.1 Overview of the Experiment
	5.2 Mutation Operators
	5.3 Experiment Environment

	6 Experimental Results
	6.1 Evaluation of Mutation Results
	6.2 Evaluation of Running Time
	6.3 Notable Finding

	7 Conclusion
	References

	A General Lattice Model for Merging Symbolic Execution Branches
	1 Introduction
	2 Background
	2.1 Program Logic and Calculus
	2.2 Symbolic Execution
	2.3 Running Example

	3 The General Lattice Model
	4 State Merging Techniques
	4.1 A State Merging Pattern
	4.2 The If-Then-Else Technique
	4.3 Abstract Weakening and Predicate Abstraction

	5 Evaluation
	5.1 Micro Benchmarks
	5.2 TimSort

	6 Lessons Learned and Future Work
	7 Related Work and Conclusion
	References

	A Case Study of Formal Approach to Dynamically Reconfigurable Systems by Using Dynamic Linear Hybrid Automata
	1 Introduction
	1.1 Background
	1.2 Features of Dynamically Reconfigurable Systems Consisting of CPU and DRP
	1.3 Related Work

	2 Dynamic Linear Hybrid Automaton
	2.1 Syntax
	2.2 Operational Semantics

	3 Dynamically Reconfigurable Systems
	4 Reachability Analysis
	4.1 Reachability Problem
	4.2 Algorithm of Reachability Analysis

	5 Practical Experiment
	5.1 Model Checker
	5.2 Specification of Dynamically Reconfigurable Embedded System
	5.3 Verification Experiment

	6 Conclusion and Future Work
	References

	Modelling Hybrid Systems in Event-B and Hybrid Event-B: A Comparison of Water Tanks
	1 Introduction
	2 An Outline of Hybrid Event-B, and of Event-B
	3 The Water Tank Problem
	4 The Event-B Water Tank Development
	5 The Hybrid Event-B Water Tank Development
	6 Event-B Versus Hybrid Event-B
	7 Conclusions
	References

	A System Substitution Mechanism for Hybrid Systems in Event-B
	1 Introduction
	2 Preliminaries
	2.1 System Substitution Mechanism
	2.2 The Modeling Framework

	3 Studied Systems
	3.1 Problem Statement
	3.2 Informal System Requirements

	4 Formal Development
	4.1 The Required Contexts
	4.2 Abstract Model: Definition of a Mode Controller
	4.3 First Refinement: Introduction of the Safety Envelope
	4.4 Second Refinement: Continuous Behavior and Dense Time
	4.5 Third Refinement: Discretization of the Continuous Behavior
	4.6 Model Analysis

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Service Adaptation with Probabilistic Partial Models
	1 Introduction
	2 Motivating Example
	2.1 Running Example -- Travel Booking Service
	2.2 Service Composition Notations

	3 Preliminaries
	3.1 QoS Attributes
	3.2 QoS for Composite Services
	3.3 Probabilistic Partial Models

	4 ADFlow Framework
	4.1 Architecture of ADFlow
	4.2 Controllability of Activity
	4.3 Local Estimation
	4.4 Runtime Adaptation
	4.5 Asynchronous Monitoring

	5 Evaluation
	5.1 Setup of Controlled Experiments
	5.2 Evaluation

	6 Related Work
	7 Conclusion
	References

	A Formal Approach to Identifying Security Vulnerabilities in Telecommunication Networks
	1 Introduction
	2 Identifying and Rectifying Network Vulnerabilities
	2.1 Motivation: Security in Telecommunication Protocols
	2.2 A Formal Outlook on Security Hardening

	3 Background: Event-B and ProB
	4 Identifying and Preventing Security Attacks by Formal Verification and Model Checking
	4.1 Overview of the Approach
	4.2 Phase 1
	4.3 Phase 2
	4.4 Phase 3
	4.5 Phase 4

	5 Related Work and Conclusions
	References

	Multi-threaded On-the-Fly Model Generation of Malware with Hash Compaction
	1 Introduction
	2 Background
	2.1 On-the-Fly Pushdown Model Generation of BE-PUM
	2.2 Hash Compaction

	3 Algorithm of Multi-threaded On-the-Fly Model Generation
	3.1 Running Example
	3.2 Algorithm Overview
	3.3 Algorithm Details

	4 Implementation Issues
	4.1 Implementation Details
	4.2 Empirical Study on Deciding the Size of Local List
	4.3 On-Demand Hashing Generation

	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Works
	7 Conclusion
	References

	CPDY: Extending the Dolev-Yao Attacker with Physical-Layer Interactions
	1 Introduction
	2 Background
	2.1 Modeling Systems and Communications
	2.2 Cyber-Physical Systems
	2.3 The Dolev-Yao Model

	3 The Dolev-Yao Model Is Not Enough
	3.1 Application of Dolev-Yao for CPS
	3.2 Limitations of Dolev-Yao for CPS
	3.3 Proposed Approach

	4 Physical-Layer Interactions for the Dolev-Yao Attacker
	4.1 New Rules for the DY Attacker and System
	4.2 Implementation of New Rules for DY
	4.3 DY Rule Extension Using Horn Clauses

	5 Case Studies
	5.1 Network-Based Communication Use Case
	5.2 Physics-Based Interaction Use Case
	5.3 Physics-Based Interaction Use Case -- A Stronger Attacker

	6 Related Work
	7 Conclusions and Future Work
	References

	Towards the Formal Verification of Data-Intensive Applications Through Metric Temporal Logic
	1 Introduction
	2 Related Works
	3 Overview of Apache Storm
	4 Constraint LTL over Clocks with Counters
	5 Formal Model of Storm Topologies
	6 Experimental Results
	7 Conclusions and Future Work
	References

	Proving Event-B Models with Reusable Generic Lemmas
	1 Introduction
	2 Background
	2.1 Event-B
	2.2 Why3 Plug-In

	3 Schematic Lemmas
	3.1 Automatically Including Relevant Lemmas
	3.2 Schematic Lemma Plug-In

	4 Case Study
	4.1 Automatic Proving
	4.2 Nesting Lemmas
	4.3 Lemma Reuse

	5 Discussion
	References

	Formal Availability Analysis Using Theorem Proving
	1 Introduction
	2 Probability and Reliability in HOL
	3 Instantaneous and Steady-State Availabilities
	4 Availability Block Diagrams
	5 Unavailability Fault Trees
	6 Application: Satellite Solar Arrays
	7 Conclusion
	References

	Formal Verification of the rank Algorithm for Succinct Data Structures
	1 Towards Formal Verification for Succinct Data Structures
	2 A Formal Account of the rank Algorithm
	2.1 Specification of the Functional Correctness of the rank Algorithm
	2.2 Jacobson's rank Algorithm and Its Space Complexity

	3 Our Approach: Extraction from a Generic rank Function
	3.1 A Generic Rank Algorithm Formalized in Coq
	3.2 Our Approach w.r.t Extraction

	4 An OCaml Bitstring Library for Coq Lists of Booleans
	4.1 Bitstrings Formalized in Coq
	4.2 Bitstrings Implemented in OCaml
	4.3 From Natural Numbers to Fixed-Size Integers

	5 Formal Verification of an Instance of the Generic rank Algorithm
	5.1 Instantiation of the rank Algorithm
	5.2 Functional Correctness of Jacobson's Algorithm in Coq
	5.3 Space Complexity of Auxiliary Data Structures

	6 Final Extraction and Benchmark
	6.1 Extraction of the Verified rank Function
	6.2 Benchmarking of the Verified rank Function

	7 Discussion and Perspectives
	8 Conclusion
	References

	Contextual Trace Refinement for Concurrent Objects: Safety and Progress
	1 Introduction
	2 Concurrent Objects and Their Clients
	2.1 Client-Object Systems
	2.2 Observability and Contextual Trace Refinement
	2.3 Correctness Conditions on Concurrent Objects

	3 Modelling Client-Object Systems
	4 Semantics and Contextual Trace Refinement
	5 Events and Histories
	6 Contextual Trace Refinement: Progress
	7 Safety and Contextual Trace Refinement
	7.1 Linearizability
	7.2 Sequential and Quiescent Consistency

	8 Conclusions
	References

	Local Livelock Analysis of Component-Based Models
	1 Introduction
	2 CSP
	3 BRIC
	4 Livelock Analysis for BRIC
	4.1 Basic Definitions
	4.2 Conditions for Livelock Freedom in BRIC*
	4.3 Conditions for Livelock Freedom in BRIC
	4.4 Dealing with Metadata

	5 Evaluation
	6 Conclusion
	References

	Session-Based Compositional Analysis for Actor-Based Languages Using Futures
	1 Introduction
	2 Motivating Example: A Grading System
	3 The Session-Based ABS Language (SABS)
	3.1 Syntax and the Concurrency Model of Core ABS
	3.2 New Language Extension

	4 Compositional Analysis Based on Session Types
	4.1 Global Types
	4.2 Local Types
	4.3 Projection
	4.4 Projecting a Global Type to Local Types
	4.5 Projecting Object Types to Method Types

	5 Type System
	6 Session Automata
	7 Related and Future Work
	8 Conclusion
	References

	An Event-B Development Process for the Distributed BIP Framework
	1 Introduction
	2 Event-B
	2.1 Shared Event Composition
	2.2 Shared Event Decomposition
	2.3 Shared Event Composition/Decomposition Tool

	3 The BIP Component-Based Model
	3.1 Atomic Components
	3.2 Coordination Between BIP Components
	3.3 BIP Execution and Operational Semantics
	3.4 The BIP Tool-Chain

	4 Towards a Distribution Process
	4.1 The Event Splitting Step
	4.2 The Mapping Step
	4.3 The Code Generation Step

	5 Related Work
	6 Conclusion
	References

	Partial Order Reduction for State/Event Systems
	1 Introduction
	2 Preliminaries
	3 More Insight into SE-BAs
	3.1 Translation from SE-LTL into GBA
	3.2 Translation from GBA to SE-BA

	4 Partial Order Reduction for SE-LTL Formulas
	4.1 Synchronous Products of SE-BAs and LKSs with POR
	4.2 Computation of Ample Sets

	5 Comparison and Combination with POR for wSE-LTL
	6 Implementation and Experimental Results
	7 Conclusion and Future Work
	References

	Concolic Unbounded-Thread Reachability via Loop Summaries
	1 Introduction
	2 Thread-Transition Diagrams and Backward Search
	3 Pathwise Unbounded-Thread Reachability: Overview
	4 Presburger Summaries for Loop-Free Path Segments
	5 Presburger Summaries for Simple Loops
	6 Pathwise Unbounded-Thread Reachability
	7 Empirical Evaluation
	8 Related Work
	9 Conclusion
	References

	Scaling BDD-based Timed Verification with Simulation Reduction
	1 Introduction
	2 Preliminaries
	2.1 Timed Automata
	2.2 Discrete Semantics
	2.3 Simulation Relation

	3 Reachability Analysis Algorithm
	3.1 Algorithm Without Simulation Reduction
	3.2 Algorithm with Simulation Reduction

	4 Emptiness Checking Algorithm
	4.1 Algorithm Without Simulation Reduction
	4.2 Algorithm with Simulation Reduction

	5 Evaluation
	5.1 Evaluation for Reachability Properties
	5.2 Evaluation for LTL Properties

	6 Discussion
	7 Conclusion
	References

	Model Checking Real-Time Properties on the Functional Layer of Autonomous Robots
	1 Introduction
	2 Related Work
	3 Fiacre and TINA
	3.1 The Fiacre Language
	3.2 The TINA Toolbox

	4
	5 Illustrative Example
	6 Mapping and Automatic Synthesis
	6.1 Mapping
	6.2 Automatic Synthesis

	7 Experiments and Discussion
	7.1 Single Module Verification
	7.2 Full Perception-Plan-Action Loop Verification

	8 Conclusion
	References

	Decision Problems for Parametric Timed Automata
	1 Introduction
	2 Preliminaries
	2.1 Clocks, Parameters and Constraints
	2.2 Parametric Timed Automata
	2.3 Subclasses of PTAs
	2.4 Decision Problems

	3 Undecidability of EF-Emptiness
	4 Integer-Points Parametric Timed Automata
	4.1 A Decidability Result for Bounded IP-PTAs
	4.2 Comparison with L/U-PTAs
	4.3 Intractability of the Synthesis
	4.4 Membership

	5 New (Un)decidability Results for PTAs
	5.1 Undecidability of EF-Universality
	5.2 Undecidability of AF-Emptiness
	5.3 Summary

	6 Conclusion
	References

	Verifying Nested Lock Priority Inheritance in RTEMS with Java Pathfinder
	1 Introduction
	2 Background
	2.1 RTEMS
	2.2 Model Checking
	2.3 Java Pathfinder
	2.4 Related Work

	3 Modeling RTEMS Locks and Scheduling in Java
	3.1 Mapping RTEMS Kernel Constructs to JPF
	3.2 Design of the Lock Model
	3.3 Test Harness
	3.4 State Space Preprocessing
	3.5 Properties

	4 Fixing PIP in RTEMS
	4.1 RTEMS Data Structures Involved in PIP
	4.2 Uncontrolled Priority Inversion Problem for PIP in RTEMS
	4.3 Solution to Uncontrolled Priority Inversion

	5 Model-Checking Results Using JPF
	6 Conclusion
	References

	An SMT-Based Approach to the Formal Analysis of MARTE/CCSL
	1 Introduction
	2 CCSL and Its Extension to Periodic Constraint
	3 Encoding CCSL Constraints into SMT Formulas
	4 Applications of SMT-based Formal Analysis
	4.1 Invalidity Proving
	4.2 Verification of Periodic Scheduling
	4.3 Execution Trace Analysis

	5 A Prototype Tool and Examples
	5.1 CCSL Analyzer: clyzer
	5.2 Examples of Invalidity Proving
	5.3 Examples of Periodic Scheduling Analysis

	6 Related Work
	7 Conclusion and Future Work
	References

	Checking SysML Models for Co-simulation
	1 Introduction
	2 Background
	2.1 Fragmenta and Its Isabelle Mechanisation
	2.2 CSP and FDR3

	3 Architectural Modelling in INTO-SysML
	3.1 Well-Formedness Checking Using Fragmenta/Isabelle
	3.2 Fragmenta/Isabelle as a Transformation Engine

	4 Algebraic Loop Verification Using CSP
	5 Evaluation
	5.1 Experimental Setup
	5.2 The Alloy Model
	5.3 Comparisons

	6 Discussion
	7 Related Work
	8 Conclusions
	References

	A CEGAR Scheme for Information Flow Analysis
	1 Introduction
	2 Background
	2.1 Security Policies
	2.2 Security

	3 Dependency Analysis
	4 Checking Spurious Counter Examples
	5 Implementation
	6 Conclusion
	References

	Erratum to: Formal Availability Analysis Using Theorem Proving
	Erratum to: Chapter “Formal Availability Analysis Using Theorem Proving” in: K. Ogata et al. (Eds.): Formal Methods and Software Engineering, LNCS, DOI: 10.1007/978-3-319-47846-3_15

	Author Index

