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Abstract This chapter proposes a novel smart fuzzy control algorithm for miti-
gation of dynamic responses of seismically excited bridge structures equipped with
control devices. The smart fuzzy controller is developed through the combination of
discrete wavelet transform, backpropagation neural networks, and Takagi-Sugeno
fuzzy model. To demonstrate the effectiveness of the proposed smart fuzzy con-
troller, it is tested on a highway bridge equipped with magneto rheological
(MR) dampers. It controls the smart dampers installed on the abutments of the
highway bridge structure. The 1940 El-Centro and Kobe earthquakes are used as
disturbance signals. It is demonstrated that the smart fuzzy controller is effective in
reducing the structural responses of the highway bridge under a variety of seismic
excitations.

1 Introduction

In recent years, smart control strategies have attracted a great deal of attention from
the structural engineering community [39, 3, 4, 5, 6, 10, 28, 29, 31]. However, a
difficult problem in dealing with smart structures is creating an effective control
model for a nonlinear dynamic structure under a variety of environmental forces
[21, 23–26, 37, 6, 15]. Nonlinear systems occur when highly nonlinear hysteretic
dampers, such as the magnetorheological (MR) dampers, are implemented into a
structure to aid in the structure’s ability to withstand the destructive environmental
forces such as strong winds and earthquake loads [36]. Being able to mathemati-
cally model the structure-nonlinear damping system and its corresponding con-
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troller is a challenging task in smart control. Therefore, the challenge is to create a
mathematical model to develop a relationship between the input and output of a
smart structure that uses a nonlinear damping device. This chapter proposes a new
smart control system for reducing nonlinear behavior of a seismically excited
highway bridge structure with smart dampers.

The development of an effective smart control algorithm is essential in smart
structures to operate the smart dampers within large civil structures. The goals of an
effective smart controller is to reliably control how a system will behave under a
variety of dynamic loading scenarios such as far- and near-field earthquakes,
considering interactions between the structure and the smart dampers. Smart control
algorithms can be separated into two categories: model-based and model-free
algorithms [25]. The model-based control methods use the structural properties of
the system, including stiffness and damping systems that are intrinsically imbedded
in the structure and its materials [7, 8]. The model-free control approaches are
implemented through training data to the input-output map of the structure
employing the smart dampers [37, 38]. This model-free approach is useful to bridge
the gap between the linear and nonlinear parts of the smart system. This has
successfully been done with neural networks as well as fuzzy logic systems. In
particular, the incorporation of the two systems provides a better learning model to
use for training the model-free control models.

In this chapter, a new smart control model is developed through the integration
of best features of discrete wavelet transform (WT), and fuzzy logic theory and
neural network (NN). The first model used as a part of the proposed system in this
chapter is a rule-based fuzzy logic. The fuzzy logic model has the main advantage
of being used as a nonparametric method for system identification and control
system design, and has been researched previously [44, 40, 21, 22, 27–33, 35], as
well as general studies into the uncertainties and complexities of the dynamic
system [34, 23]. Using a Takagi-Sugeno (TS) model for fuzzy logic theory allows
for a representation of nonlinear systems using fuzzy rules and local linear models
[40, 19, 41, 12, 20, 9, 11, 23, 42]. A disadvantage of using fuzzy inference systems
as a control model is that it needs a time consuming optimization process of the
parameters. The optimization process can be very complex, leading itself to the
inclusion of NNs. The use of a NN is to develop a learning mechanism that
emulates that of the human brain, such that it creates a network of interlinked nodes.
These nodes, being connected, compute an output from the input to the node, and
create a series of links between all nodes. As mentioned previously, the use of a
fuzzy inference system can be complex and difficult in computations. Using a NN
in combination with a fuzzy inference system can create a model that is more
efficient. The NN adjusts parameters throughout the entirety of computation. The
regulated parameters improve performance and decreases errors of the system. It is
able to learn patterns and make adjustments as needed to further create a more
improved model because it emulates the human brain and its cognitive mechanism.
It has been studied previously to create a full model structure [16].
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However, due to the complexities of training the using NNs, computation time
can become excessive. Therefore, wavelet transform (WT) is used in conjunction
with the combined fuzzy inference system, and NNs to compress input data and
decrease computation time. WTs, combined with the neuro-fuzzy (NF) model, leads
to a wavelet-based NF model (WNF). The WT can be used to filter out high or low
frequency components from a time series. The WT improves upon previous
methods due to its ability to incorporate an adjustable window function. It allows a
user to analyze particular data points in a time series, rather than the entire time
window, which is the case in Fourier transforms. Fast Fourier transforms
(FFT) have been used previously for damage detection, system identification, and
control systems, but require a fixed time-window for the entire data set [14]. This
limitation of the FFT can induce difficulty when analyzing data for long periods of
time, as in the case of real-time structural control, and can lead to missing key
components, such as a particular control frequency. The WT allows for an adjus-
table window, and therefore is able to look into any portion of a time series. WTs
can also be used as a means of filtering, which is critical in the use of the WNF
control model. As previously mentioned, the NF system requires high computation
time due to the stochastic learning mechanism of the NNs. Being able to decrease
the amount of data points while still maintaining the important components allows
for a reduced computational cost. The proposed model uses two levels of discrete
WTs for compressing input data. Note that fuzzy logic controllers [2] and
neuro-fuzzy controllers [13] have been widely researched previously. However,
these controllers need extensive computation time to achieve adequate performance.
Therefore, the creation of the new WNF system provides for decreased computation
times while maintaining the performance. Thus, the creation of the WNF system for
means of smart control algorithm is innovative in its application to smart damping
systems for mitigation of responses of highway bridge structures.

2 Smart Highway Bridge Systems

2.1 Highway Bridge

To facilitate research in structural control, a benchmark bridge was developed based
on an existing structure located at the crossing of the 91 and 5 highways in Orange
County of California, USA [1]. A prestressed concrete box-girder is used with the
span of 58.5 m. The deck has a width of 12.95 and 15 m for the east and west
spans, respectively. The bridge carries four lanes of traffic atop columns of 6.9 m in
height. The location of the bridge is within 20 km of two faults, the
Whittier-Ellsinore and Newport-Inglewood fault zones, showing a great need for
structural control due to its susceptibility to seismic events. Figure 1 shows the
bridge schematic.
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2.2 Magnetorheological (MR) Dampers

In recent years, smart structures have emerged from many engineering fields
because the performance of structural systems can be improved without either
significantly increasing the structure mass or requiring high cost of control power.
They may be called intelligent structures, adaptive structures, active structures, and
the related technologies adaptronics, structronics, etc. The reason to use these ter-
minologies is that a smart structure is an integration of actuators, sensors, control
units, and signal processing units with a structural system. The materials that are
commonly used to implement the smart structure: piezoelectrics, shape memory
alloys, electrostrictive, magnetostrictive materials, polymer gels, magnetorheolog-
ical fluid, etc., researched in detail by Hurlebaus and Gaul [17].

Semiactive control systems have been applied to large structures because the
semiactive control strategies combine favorable features of both active and passive
control systems. Semiactive control devices include variable-orifice dampers,
variable-stiffness devices, variable-friction dampers, controllable-fluid dampers,
shape memory alloy actuators, piezoelectrics, etc., as described by Hurlebaus and
Gaul [17]. In particular, one of the controllable-fluid dampers, magnetorheological
(MR) damper has attracted attention in recent years because it has many attractive
characteristics.

Fig. 1 Highway bridge structure
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In general, a MR damper consists of a hydraulic cylinder, magnetic coils, and
MR fluids that consist of micron-sized magnetically polarizable particles floating
within oil-type fluids as shown in Fig. 2.

The MR damper is operated as a passive damper; however, when a magnetic
field is applied to the MR fluids, the MR fluids are changed into a semi-solid state in
a few milliseconds. This is one of the most unique aspects of the MR damper
compared to active systems: the active control system malfunction might occur if
some control feedback components, e.g., wires and sensors, are broken for some
reasons during a severe earthquake event; while a semiactive system is still oper-
ational as at least a passive damping system even when the control feedback
components are not functioning properly. Its characteristics are summarized by Kim
et al. [23].

2.3 Smart Controller

In 1985, Takagi and Sugeno suggested an effective way for modeling complex
nonlinear systems by introducing linear equations in consequent parts of a fuzzy
model. It has led to reduction of computational cost because it does not need any
defuzzification procedure. The fuzzy system used in the WNF model is of the form
[22].

Fig. 2 Schematic of the prototype 20-ton large-scale MR damper
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Rj : If u1FZ isP1;j and u2FZ isP2;j. . .and uiFZ isPi;j

Then z ¼ fj u
1
FZ ; . . .; u

i
FZ

� �
; j ¼ 1; 2; . . .;Nr

ð1Þ

where Rj is the jth fuzzy rule, Nj is the number of fuzzy rules, Pij are fuzzy sets
centered at the jth operating point, and uiFZ are premise variables that can be either
input or output values. The equation of the consequent part z ¼ f ðu1FZ ; . . .; uiFZÞ can
be any linear equation. Using fuzzy interpolation methods, all of the local sub-
systems are integrated

y ¼
XNr

j¼1

Wj uiFZ
� �

fj u1FZ ; . . .; u
i
FZ

� �� �
=
XNr

j¼1

Wj uiFZ
� � ð2Þ

where WjðuiFZÞ ¼
Qn

i¼1 lpi;jðuiFZÞ, n is the number of input variables and lpi;jðuiFZÞ is
the membership grade of uiFZ in Pi;j. However, the main challenge in using a fuzzy
model is the optimization of its parameters. Therefore, incorporating NNs to create
a neuro-fuzzy system allows for these parameters to be optimized during
computation.

The architecture of a NF model is shown in Fig. 3. This figure represents a two
inputs, one output, and three membership functions (MFs). Each layer has particular
tasks to complete before the data moves to the next layer.

In layer 1, the function of the node is represented by

F1;j
FZ ¼ lPi;j

uiFZ
� � ð3Þ

Fig. 3 Neuro-fuzzy model architecture
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For a Gaussian MF used in this simulation,

lPi;j
uiFZ
� � ¼ exp � u� a1ð Þ2=2a22

h i
ð4Þ

where a1 and a2 are adjustable parameters of the Gaussian function. This MF is
applied to each input in layer 1. Layer 2 then outputs the product of all inputs into
layer 2, known as the firing strength

F2;j
FZ ¼ lPi;j

u1FZ
� �� lPi;j

u2FZ
� �� � � � � lPi;j

uiFZ
� � ð5Þ

Layer 3 takes a ratio of these layer 2 firing strengths in order to normalize the
layer 2 outputs, such that

F3;j
FZ ¼ F2;j

FZ=
X
j

Yn
i¼1

lPi;j
uiFZ
� � ð6Þ

Layer 4 then applies a node function to the normalized firing strengths

F4;j
FZ ¼ F3;j

FZ � fj ¼ F3;j
FZ fj u

1
FZ ; . . .; u

i
FZ

� �� � ð7Þ

The last layer summates the layer inputs

F5;j
FZ ¼

X
j

Yn
i¼1

lPi;j
uiFZ
� �

fj u
1
FZ ; . . .; u

i
FZ

� �� �
=
X
j

Yn
i¼1

lPi;j
uiFZ
� � ð8Þ

The output of this NF system is then used in a hybrid learning algorithm to
create a linear combination of the consequent parameters. The key parameters for
this simulation include the number of iterations, or epochs, the number of MFs and
the type of MF, as well as the step size of the function. In this study, the premise
part is determined by backpropagation algorithm while the consequent parameters
are optimized using the least square estimator. Four Gaussian membership func-
tions are adopted, the number of iterations is 300, the iteration step size is 0.9 and
the increase rate of the step size is 1.2. Types of MFs can vary from a generalized
bell function, Gaussian functions, sigmoidal functions, trapezoidal function, as well
as other forms. Each change of variables will yield different output results [18, 43].
The fuzzy inference system sets up rules based on the number of MFs used in
simulation. Fuzzy rules are set up for a five MF system. Each number represents
one of the twenty-five fuzzy regions that are created through the use of five MFs in
the neuro-fuzzy model. The fuzzy region is defined by the premise, and the output
is generated through the consequent.

The inclusion of discrete wavelet transforms allows for an effective method to
rid the control system of extraneous data, or noise. This methodology uses
Daubechie wavelets filters in order to de-noise response data that are then used as
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inputs to the smart fuzzy control model. As mentioned earlier, the use of discrete
wavelet transforms allows for a fixed time-frequency resolution. It means that the
window function is chosen, and then the resolution is fixed through processing.
A reduction in the number of data points required for accurate representation of the
system is possible due to representation of the function with several discretization
steps. The proposed algorithm for the smart fuzzy control is shown in Fig. 4.

Fig. 4 Flowchart of the proposed algorithm
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This control model proposes the use of two levels of discrete wavelet transform
as a means of filtering as well as training the optimal control force. The architecture
of this proposed smart fuzzy control system is depicted in Fig. 5. The smart fuzzy
control algorithm is a two-input, one-output system to determine the control force
of an MR damper. For this study, the inputs to the smart fuzzy control system are
displacement and acceleration measurements. These were determined through an
iterative process to maximize the results from training of the smart fuzzy control
system, where velocity and drift responses were also studied to find the combina-
tion with the most favorable results. Next, simulations were performed on a
highway bridge under a variety of earthquake loads to successfully reduce the
seismic responses.

2.4 Simulation

Many simulations were performed to determine the best arrangement of control
forces. It was found that the computation of only two control forces would need to
be calculated for optimal voltage signals: x-direction and y-direction. This bridge is
equipped with sixteen MR dampers in each x- and y-directions; all the MR dampers
in each direction are commanded by a single control signal. To train the
input-output mapping function of the smart fuzzy control model, an artificial
earthquake signal that includes characteristics of the 1940 El-Centro and Kobe
earthquake, as shown in Figs. 6 and 7.

Figures 8, 9, 10, 11, 12 and 13 show the simulation results. Figures 8 and 9 are
the relative displacement responses to the 1940 El-Centro and Kobe earthquakes,
respectively. Figures 10 and 11 are the absolute acceleration responses to the 1940
El-Centro and Kobe earthquakes, respectively. Figures 12 and 13 are the base shear

Fig. 5 Configuration of the proposed smart control
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forces at the column to the 1940 El-Centro and Kobe earthquakes, respectively. The
dotted lines represent the uncontrolled responses; while the solid red lines are the
responses of the smart fuzzy control systems. As shown in figures, the proposed
smart fuzzy control system is effective in mitigating the dynamic responses of
highway bridge structures for most cases.

Fig. 6 1940 El-Centro earthquake

Fig. 7 Kobe earthquake
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As a means of validation and comparison, several evaluation indices are used.
These indices compare structural responses and control outputs of the proposed
smart control system to that of the uncontrolled structure, showing how much each
index is reduced [1].

Fig. 8 Displacement: 1940 El-Centro earthquake

Fig. 9 Displacement: Kobe earthquake
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here F̂biðtÞ is the time history of shear force of the ith degree of freedom of the
control system, F̂0b;max is the maximum shear force of the uncontrolled structure,
MbiðtÞ is the time history of overturning moment, M0b;max is the maximum over-
turning moment of the uncontrolled structure, ŷmiðtÞ is the time history of the

Fig. 10 Acceleration: 1940 El-Centro earthquake

Fig. 11 Acceleration: Kobe earthquake
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midspan displacement, ŷ0m;maxðtÞ is the maximum midspan displacement of the
uncontrolled structure, €̂ymiðtÞ

�� �� is the time history of the midspan acceleration,
€̂y0m;maxðtÞ is the maximum acceleration of the uncontrolled structure, ŷbiðtÞ is the
time history of the abutment displacement, ŷ0b;max is the maximum abutment

Fig. 12 Base shear: 1940 El-Centro earthquake

Fig. 13 Base shear: Kobe earthquake
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displacement of the uncontrolled structure, ÛiðtÞ is the time history of the ductility,
Ûmax is the maximum ductility of the uncontrolled structure, dÊi is the dissipated
energy of curvature at the column, Êmax is the maximum dissipated energy of the
curvature at the column of the uncontrolled structure, N̂c;d is the number of plastic
connections of the control system, N̂d is the number of plastic connections of the
uncontrolled system, :j j denotes the absolute value, :k k denotes the normalized
value, f̂lðtÞ is the time history of the control force from the control device, Ŵ is the

Table 1 Control
performance evaluation

ElCentro Kobe

J1 ¼ max
max F̂bi tð Þj j

F̂0b;max

� �
0.6967 0.8696

J2 ¼ max
max M̂bi tð Þj j

M̂0b;max

� �
0.5268 0.5901

J3 ¼ max max ŷmi tð Þj j
ŷ0m;max

n o
0.5627 0.6856

J4 ¼ max
max €̂ymi tð Þj j

€̂y0m;max

� �
0.9211 1.2205

J5 ¼ max max ŷbi tð Þj j
ŷ0b;max

n o
0.2942 0.5292

J6 ¼ max
max Ûi tð Þj j

Ûmax

� �
0.5268 0.5901

J7 ¼ max
max

R
dÊi

Êmax

� �
0 0

J8 ¼ max N̂c;d

N̂d

n o
0 0

J9 ¼ max
max F̂bi tð Þk k

F̂0b;maxk k
� �

0.5679 0.7387

J10 ¼ max
max M̂bi tð Þk k

M̂bi;maxk k
� �

0.2954 0.5178

J11 ¼ max max ŷmi tð Þk k
ŷ0m;maxk k

� �
0.3052 0.5396

J12 ¼ max
max €̂ymi tð Þk k

€̂y0m;maxk k
� �

0.8069 1.0767

J13 ¼ max max ŷbi tð Þk k
ŷ0b;maxk k

� �
0.2330 0.4155

J14 ¼ max
max Ûi tð Þk k

Ûmaxk k
� �

0.2954 0.5178

J15 ¼ max max f̂l tð Þ
Ŵ

	 
n o
0.0244 0.0248

J16 ¼ max max d̂l tð Þ
x̂0m;max

	 
n o
0.2705 0.5218

J17 ¼ # of control devices 16 16

J18 ¼ # of required sensors 12 12

J19 ¼ dim x̂c;k
� �

28 28
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seismic weight of the system, d̂lðtÞ is the stroke of the control device, x0m;max is the
maximum bearing deformation of the uncontrolled system, P̂lðtÞ is the time history
of the instantaneous power required for the control device, _̂x0m;max is the maximum
velocity of bearing of the uncontrolled system, and x̂c;k is the discrete state vector
for the control algorithm. Table 1 shows the evaluation results of the proposed
smart control systems. It is observed from Table 1 that the “Max” peak response
quantities using the smart controller are quite effective in reducing structural
vibration to both the El-Centro and Kobe earthquakes. In particular, peak evaluation
criteria J2, J3, J5 * J11, and J13, J14, J16 and J18 are significantly reduced during
both ground motions. It should be noted that structural displacement responses are
directly related to safety of the bridge structures.

3 Conclusion

In this chapter, a novel smart control system is proposed for seismic response
controls of seismically-excited bridge structures employing magnetorheological
(MR) dampers. The smart control system is an integrated model of Takagi-Sugeno
fuzzy model, wavelet transforms, and artificial neural networks. Using the smart
fuzzy control system combines the positive attributes of the three described
methodologies to create a system that is believed to yield more efficient results for
system control of smart structures and shorter training times. To train the input–
output mapping function of the smart fuzzy control model, an artificial earthquake
signal and an MR damper force signal are used as a disturbance input signal and a
control input, respectively, while acceleration response is used as output data. It is
demonstrated from the simulation that the proposed smart fuzzy control model is
effective in reducing the behavior of the seismically excited bridge-MR damper
system.
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