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Abstract True behaviour of an arbitrary structural system is dynamic and non-
linear. To analyze this behaviour in many real cases, e.g. structures in regions under
high seismic risk, a versatile approach is to discretize the mathematical model in
space, and use direct time integration to solve the resulting initial value problem.
Besides versatility in application, simplicity of implementation is an advantage of
direct time integration, while, inexactness of the response and the high computa-
tional cost are the weak points. Considering the sizes of the integration steps as the
main parameters of time integration, and concentrating on transient analysis against
ground acceleration, this chapter presents discussions on:

(1) the role of integration step size in time integration analysis, specifically, from
the points of view of accuracy and computational cost,

(2) conventionally accepted comments, codes/standards’ regulations, and some
modern methods for assigning adequate values to the integration step sizes in
constant or adaptive time integration,

and concludes with some challenges on time integration analysis and integration
step size selection in structural dynamics and earthquake engineering.

1 From Structural Analysis to Time Integration

Our lives and civilization rely on different construction we daily pass by. In order to
have sustainable buildings, bridges, tunnels, railways, infrastructures, etc., the
structures should be designed considering their lifetime behaviour. Even, regardless
of the randomness and stochastic nature of severe conditions and the complexity
existing in prediction of these conditions, the study of structural behaviour at severe
conditions is not simple. Theoretical and experimental approaches can be addressed
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as means to study the structural behaviour. Nevertheless, mainly with attention to
their simplicity, versatility, and inexpensiveness, numerical computations are the
widely accepted and generally the superior tool.

With an initiation point in the seventeenth century (i.e. the Hooke’s law),
analysis of structural systems, as taken into account in the soft ware packages,
started less than a century ago, by relating behaviour and excitation, via the
structural property, i.e.

KX ¼ F ð1Þ

In Eq. (1), X stands for the vector of unknowns, F represents the known external
information (in general the excitation), and the structural geometry, topology, and
material are reflected in K. (In time dependent problems, the initial status affects
both K and F, and the solution implies the behaviour at a specific time instant.) In
computerized structural analysis, the behaviour is being represented by the
unknown general displacement, as the vector X in Eq. (1). For structural behaviour
not representable by finite number of unknowns, in the mid of the past century,
methods (mainly discretization methods) were developed to systematically replace
continuous systems, with systems with finite number of unknowns or DOFs (de-
grees of freedoms). Finite difference, finite volume, finite element, and boundary
element methods, are some of the major discretization methods. Development of
these methods, specifically the finite elements, and the invention of computers, at
1950s, led to significant rise in the size and complexity of structural systems. For
instance, the dependence of K and F in Eq. (1) to X causing nonlinearity could be
simply tackled by incremental consideration of F and when needed implementation
of different definitions for strain and stress. Not much later, attention to time
dependent phenomena, including structural behaviour against earthquakes, aero-
dynamics, etc., increased significantly. In study and analysis of arbitrary structural
dynamic behaviour, the inertial force, and even in cases the damping effects, are of
high importance. The linear dynamic behaviour of semi-discretized structural sys-
tems can be expressed as [1–3]:

M€uþC _uþKu ¼ fðtÞ 0� t\tend
uðt ¼ 0Þ ¼ u0
_uðt ¼ 0Þ ¼ _u0

ð2Þ

where, M, C, and K, respectively denote the mass, damping, and stiffness matrices,
f stands for the dynamic excitation, each top dot implies once differentiation with
respect to time, u is the unknown general displacement, t represents the time, u0 and
_u0 introduce the initial conditions, and tend is the length of the time interval under
consideration. In 1950, the first broadly accepted method to solve Eq. (2), in a
step-by-step manner, also addressed as a time integration method, was proposed by
J.C. Houbolt [4–6] (see Fig. 1, where f int implies the internal force, essential in
presence of material nonlinearity and discussed later in this chapter). The history of
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step-by-step integration of initial value problems returns to the eighteenth century
and the Euler method [7, 8] (see also [9], for the implementation of different Runge
Kutta methods in structural dynamics); Houbolt suggested the first method,
specifically dedicated to the solution of the equation of motion in structural
dynamics [4]. For the Houbolt method, as well as many other time integration
methods, the basic idea is to approximate the solution of Eq. (2), with sufficient
accuracy, while avoiding complex mathematical functions, e.g. exp, sinh, cosh. The
general approach is to carry out the analysis in a step-by-step manner, using simple
relations instead of the exact computationally complex relations [10, 11]. The new
relations are generally linear algebraic equations, set such that to maintain the
adequacy of some mainly accuracy-related features. On this basis, many time
integration methods have been proposed in the past decades [4–6, 12–17]; still,
investigations for better approximate methods are in progress, in different disci-
plines and branches of engineering and science; see [18–26]. The most practically
important and broadly accepted time integration methods are the Newmark family
[1, 9–11, 27–32], central difference [1, 9–11, 14, 28–32], Wilson-Theta [9, 10, 15–
17, 32], Houbolt [4–6], HHT [12, 30–32] and C-H [13] methods. All these methods
convert Eq. (2) to (see also Eq. (1)):

Keffu ¼ feff ð3Þ

or equivalently to the equation below:

�KeffDu ¼ Dfeff ð4Þ

(considering the dynamic effect in Keff , feff , �Keff , and Dfeff ), to be solved for the
status u; _u; €u; . . . and f intð Þ at sequential integration stations, starting from the initial
conditions; see Fig. 1. (Du and Dfeff respectively represent the increment or to say
better the increase of u and feff from the previous integration station to the current
integration station.) Equation (4) can be treated in a way conceptually identical to
Eq. (1). However, because of the approximation existing in the time integration
formulation, the results are inexact depending on the integration formulation. This,
plus the versatility of time integration analysis, has caused broad and continuous
studies on time integration e.g. see [19–26, 33–38]. In the next section, after a brief
review on time integration analysis, the parameters, and specifically the most
important parameter, i.e. the integration step size, are discussed. In Sect. 3, the
influence of the integration step size, on different features of time integration, is
studied. In Sects. 4 and 5, conventional and modern comments and approaches to
assign adequate values to the integration step size are addressed. Later, in Sects. 6
and 7, techniques for more efficient analysis against digitized excitations are
reviewed, and the seemingly most successful technique is introduced in detail.
Finally, the chapter is concluded, in Sect. 8, with a brief look on the key points, and
addressing some of the challenges existing on time integration and step size
selection.

Integration Step Size and Its Adequate Selection in Analysis … 287



2 Time Integration and Its Parameters

As implied in Sect. 1, time integration is the most versatile tool to analyze Eq. (2)
and its nonlinear counterpart, stated below [31]:

M€uþ f int ¼ fðtÞ 0� t\tend
uðt ¼ 0Þ ¼ u0
_uðt ¼ 0Þ ¼ _u0
f intðt ¼ 0Þ ¼ f int0
Q

ð5Þ

In Eqs. (5), the new parameter, Q, implies additional restrictions representing the
nonlinear behaviour (see [39, 40]), and the essentiality of f int, as an initial condition, is
explained in [41, 42]. In the analysis process, the status or indeed the responses, i.e.
u; _u; €u; . . . and f int are being computed, for distinct sequential time instants, starting
from the station just after the initial conditions, using simple algebraic formulation
(see Fig. 1). No eigen-solution is essential in ordinary direct time integration analysis.
The determination of the status proceeds, in a step-by-step manner, and at each time
instant, the status of the structural system is being determined approximately [10, 28,
31, 32]. In nonlinear analyses, after the computation associated with each step,
occurrence of nonlinearity is being checked. When a nonlinearity is detected, some
iterations are generally implemented (see Fig. 1), by methods such as Newton
Raphson, to decrease the error in modelling the nonlinearity (see [1, 2, 43–46]). The
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step-by-step procedure continues, till the end of the integration interval, tend .
Considering these, time integration is a simple step-by-step computational tool. The
simplicity of the step-by-step computation and the algebraic formulation bring about
positive and negative consequences; some are listed below [31, 32]:

1. Approximation in the obtained responses.
2. Versatility of application to different equations of motion, and even to initial

value problems originated in other branches of engineering and science, e.g. see
[13, 19–23, 26, 34–37].

3. Existence of many different time integration methods, e.g. see [1, 11, 12, 14–17,
24–34, 47, 48].

4. Considerably high computational cost [31, 32, 49].

The negative features are the approximation and the high computational cost (re-
spectively the first and forth points above). Especially the first is very important;
without sufficient accuracy, implementation of time integration analysis loses its
explanation. Provided acceptable accuracy, we are interested in: (1) low compu-
tational cost, where computational cost implies the in-core storage of the hardware
involved in the computation [50, 51], and (2) the capability to increase the accuracy
and/or decrease the computational cost. Other features of time integration analysis
are also directly or indirectly associated with the inexactness of the response;
numerical stability, order of accuracy, numerical damping, and overshoot, are the
most important features [31–33, 52]. These features are under the control of some
parameters, to which, the remainder of this section is dedicated.

In exact computations, the parameters affecting the results imply real notions.
For instance, in the computation of the integral below:

I ¼
Zb

a

d x
1þ x2

¼ arctan b� arctan a ð6Þ

a and b are parameters with real meaning (see Fig. 2), appearing in the definition of
the problem, as well as, in its exact solution; see the ending part of Eq. (6).
Similarly, when using the analytical relations below [53, 54]:

RA ¼ W
l3 l� að Þ2 lþ 2að Þ; RB ¼ Wa2

l3 3l� 2að Þ
MA ¼ �Wa

l2 l� að Þ2; MB ¼ �Wa2
l2 l� að Þ ð7Þ

for determining the end moments and end shears of the beam in Fig. 3, l, a, and W,
are real parameters, defining the problem and its exact solution. Returning to time
integration and Eqs. (2) and (5), the initial conditions, the mass, the damping,
the stiffness, the excitations, the parameters defining the nonlinear behaviour (im-
plied specifically in Q in Eqs. (5)), and finally the tend , are the real parameters.
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There are many problems, for which, analytical solutions are either not derived
(yet unavailable) or the analytical solutions are mathematically/numerically com-
plicated, e.g. problems with analytical solutions in terms of special infinite series.
To solve these problems, numerical approximate computation is the broadly
accepted tool [7, 8, 55]. In approximate computations, besides real parameters,
there exist parameters, essential (and even crucial) for the computation, that have no
real meaning and no role in the definition of the problem and the exact solution; see
[55, 56]. For instance, when using Simpson or Trapezoidal integration, for deter-
mining the value of I in Eq. (6), as apparent in the relations below [57, 58]:

Simpson: I ¼ h
6

y0 � yN þ 2
XN
i¼1

2y
xi þ xi�1

2

� �
þ yi

� �( )

Trapezoidal: I ¼ h
2

y0 � yN þ 2
XN
i¼1

yi

( )

h ¼ b� a
N

; yi ¼ y xið Þ ¼ 1
1þ xi2

ð8Þ
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the total number of integration steps, N, or equivalently the integration step size, h,
is an additional parameter. Although the division of the integration interval to
integration steps can be displayed in Fig. 2, the number of the divisions, N, and the
integration step size, h, are not real parameters of the problem, and do not affect the
exact solution. These parameters, having main role in the computation and no role
in the definition of the problems and their exact solutions, are generally addressed
as analysis or algorithmic parameters [55, 56]. It is meanwhile worth noting that it
is conventional to define/redefine the algorithmic parameters, such that convergence
[59, 60] of the approximate solutions to the exact solutions can be studied in the
neighbourhood of zero values of the algorithmic parameter [49, 55, 56, 61]. As
implied above, in the numerical integrations addressed in Eq. (8), h (or N) is the
algorithmic parameter. In static analysis of the beam in Fig. 3 by specific finite
elements, the size or number of the elements is a parameter, defining the compu-
tation and its accuracy [1, 30]. Accordingly, considering the basics of finite ele-
ments [1, 2], we can address the element size as the algorithmic parameter.

In time integration analysis, the main analysis (algorithmic) parameters are the
sizes of integration steps throughout the integration interval; considered either
constantly (as one parameter) or adaptively (according to a specific criterion). It is a
broad convention to consider the integration time step D t as a parameter linearly
controlling the sizes of integration steps throughout the integration interval [49]. In
view of Eqs. (2) or (5), and Fig. 1, D t is a parameter, with no effect on the exact
solution, but main role in the time integration analysis. For nonlinear problems,
there exist algorithmic parameters, in addition to D t, affecting the features of the
analysis, again independent from the problem and its exact response. These
parameters are:

1. Nonlinearity continuation method and the special parameters to be set for
implementation of the nonlinearity iterations [1, 2, 44–46, 62–64].

2. Nonlinearity tolerance [1, 44–46, 63, 64], �d, as an indicator for the accuracy of
nonlinearity iterations.

3. Maximum number of iterations (e.g. see [63–65]), as a representative for the
computational facilities available, essential with attention to the always-existing
round-off.

We would rather address the above parameters as nonlinearity analysis or nonlin-
earity algorithmic parameters. (Practically, the second parameter, i.e. �d, is the most
important parameter.) Besides D t and nonlinearity analysis parameters, parameters
precisely defining the integration method are of the algorithmic parameters of time
integration and can be addressed as method algorithmic parameters. These
parameters do not exist for all time integration methods. For instance, equations
governing the one-step Houbolt method [4–6], stated below:
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M€ui þ f inti ¼ f i

ui ¼ q0 þ b0 Dvui�1

_ui ¼ q1 þ b1 Dvui�1

€ui ¼ q2 þ b2 Dvui�1

vui ¼ q3 þ b3 Dvui�1

q0 ¼ ui�1 þ _ui�1Dtþ 1
2
€ui�1Dt

2 þ 1
6
vui�1Dt

3

q1 ¼ _ui�1 þ €ui�1Dtþvui�1
Dt2

2
q2 ¼ €ui�1 þvui�1Dt

q3 ¼ vui�1

b0 ¼ Dt3; b1 ¼ 11
6
Dt2; b2 ¼ 2Dt; b3 ¼ 1; i ¼ 1; 2; 3; . . .

ð9Þ

are not parametric (for vu0, see [6]), while, the relations defining the HHT method
[12, 30–32], stated below:

M€ui þ ð1þ aÞf inti � a f inti�1ð Þ ¼ ð1þ aÞf i � a f i�1ð Þ
_ui ¼ _ui�1 þDt ð1� cÞ€ui�1 þ c€uið Þ

ui ¼ ui�1 þDt _ui�1 þDt2
1
2
� b

� �
€ui�1 þ b €ui

� �
; i ¼ 1; 2; 3; . . .

ð10Þ

depend on a, b, and c, and hence, a, b, and c are the method parameters of the HHT
time integration method, precisely defining the integration method, and highly
affecting the approximate response, with no effect on Eqs. (2) or (5) and the exact
response. (Inequality restrictions on these parameters, for issues such as numerical
stability (e.g. see [30, 31]), do not reduce the number of these parameters.)
Consequently, time integration analysis, according to a specific time integration
method, while implementing a specific nonlinearity continuation method [44],
potentially depends on three groups of analysis parameters:

1. The main analysis parameter: D t (or parameters defining the sizes of integration
steps in adaptive time integration; see [66]).

2. Nonlinearity analysis parameter: �d and some less important parameters, e.g.
maximum number of nonlinearity iterations.

3. Method analysis parameters: parameters completing the definition of the inte-
gration methods.

From the above parameters, the main parameters, controlling different features of
the analyses (specifically the computational cost and accuracy-related features, e.g.
numerical stability), are D t and �d (shortly disregarding the method parameters).
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With regard to accuracy, since implementation of an approximate method
implies that the exact solution is at least not simply available, the accuracy instead
of being studied in view of the definition of error, E [67], i.e.

E ¼ Ua � Uk k ð11Þ

(a as a right superscript implies that the argument is an approximation and kk
denotes an arbitrary norm [68]) needs to be evaluated indirectly, in terms of con-
vergence [1, 7, 30–32, 56, 59–61, 67], i.e.

lim
D t!0

E ¼ 0 � lim
D t!0

Ua ¼ U ð12Þ

For an arbitrary time integration analysis, Eq. (12) is theoretically equivalent to
Figs. 4, as well as Fig. 5. Ei stands for the error of the response Ua

i , obtained from
time integration analysis with step sizes equal to D t i, L and L0 denote the length of
the region in the two plots implying decrease of error with positive integer slopes
(not precisely defined and determinable yet), and Di, is defined below:

Di ¼
Ua

i � Ua
i�1

�� ��
Dti�1
Dti

� �q
�1

ð13Þ

and addressed as pseudo-error [69, 70]. For many problems, the convergence of Di

to zero is equivalent to Eq. (12). Similarly, Figs. 4 and 5 are equivalent in the sense
that either both Ei and Di imply convergence to zero or neither do so. Furthermore,

L

1

q
convergenceImproper  0

econvergencProper  0
≡=
≡>

L
L

+∈ Zq

−∞ ( )tΔlog

( )Elog

( )ii Et ,Δ

Fig. 4 Typical changes of errors for converging approximate solutions

q′
LLqq ≅′=′ ,

L′

1

−∞ log(Δt)

log(D)

( )ii Dt ,Δ

Fig. 5 A substitute for the study of convergence via Fig. 4
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either the convergence trends in both convergence and pseudo convergence plots
(displayed in Figs. 4 and 5, respectively) are as straight lines (with positive integer
slopes towards zero errors/pseudo-errors at zero D t) or neither display such a
convergence trend. Even more, when both of the trends are as lines with positive
integer slopes, the slopes in the two plots are identical and equal to the order of
accuracy (in cases, less than the order of accuracy [32, 49, 71]); see [55, 69, 70]. In
Eq. (13), q is a positive integer, introducing the rate of convergence (see Figs. 4 and
5), and Ua

i�1 and Ua
i are named such that D ti�1 [D ti [ 0; see [70]. In nonlinear

analyses, for maintaining Fig. 4 (with L[ 0) and specifically to ensure the
equivalence between Figs. 4 and 5 and Eqs. (12), or even the validity of

lim
D t!0
�d!0

E ¼ 0 � lim
D t!0
�d!0

Ua ¼ U ð14Þ

we can assign very small values (depending on the problem), or values consistent
with D t, to �d [2, 42, 63, 72].

And regarding computational cost, in analysis of a specific linear problem, by a
specific time integration method, and on a specific computer, the computational cost
depends on the total number of integration steps; and since tend is a constant value
known in advance, the computational cost increases when D t decreases. This
implies a contradiction with the accuracy, for which, it is beneficial to assign
smaller values to D t (while larger values of D t are beneficial for computational
cost). Considering this and the fact that different from �d, D t affects both linear and
nonlinear analyses, the remainder of this chapter is dedicated to D t and the
approaches to select D t (see also [72, 73]).

3 Integration Step Size and Its Influence on Analysis
Quality

As the major algorithmic parameter of time integration, the integration step size or
D t affects almost all features of arbitrary linear or nonlinear time integration
analysis. The features under study in this section are accuracy, convergence, order
of accuracy, stability, artificial damping, overshoot, and computational cost.

You can generally increase the accuracy, by reducing the integration step size.
“Smaller integration steps lead to more accuracy” is a practically general rule (see
Fig. 6 and Tables 1 and 2), with the potential to be obviated in analysis of nonlinear
or complex behaviours (see Figs. 7 and Tables 3; the units are all in S.I. and each
dash-dot-dash centreline, marked with CL, is associated with one mass). The
nonlinear structural model is set such that the exact solution can be simply derived;
see Fig. 8 [63]. Disagreement with the above-mentioned general rule corresponds
to L ¼ 0, in Figs. 4 and 5. Meanwhile, Tables 2 and 3 evidence that the amount of
error depends also on the response under consideration. In analysis of nonlinear
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structural dynamic systems, the details of the iterative nonlinearity analysis can
significantly affect the accuracy as well as the changes of accuracy with respect to
the integration step size; see [63, 72–78]. No general rule seems to exist for the
changes of D t and �d, or other analysis parameters (addressed in Sect. 2), guaran-
teeing more accuracy for arbitrary nonlinear or complex analysis; some comments
exist, for piece-wisely linear systems, e.g. see [42, 63]. (Accordingly, the responses
computed for nonlinear problems or problems with complex behaviour are in
general unreliable [42, 63, 72–80].)

gu

1

2

3

4

5

6

7
Shear frame

-4

-2

0

2

4

0 10 20 30

Excitation step size = 0.02 sec

( )2/ sm

ug

Time (sec)

(a)

(b)

Fig. 6 An example to display the general rule of less error in analysis with smaller integration
step: a structural system, b ground acceleration

Table 1 Characteristics of the undamped structural system introduced in Fig. 6

Floor 1 2 3 4 5 6 7

Mass (ton) 2068 2064 2060 2056 2052 2048 2044

Stiffness (MN/m) 840 820 700 680 660 640 620

Table 2 Changes of error with respect to step size in average acceleration time integration
analysis [27] of the system introduced in Fig. 6 and Table 1

D t (s) 0.02 0.01 0.005 0.0025 0.00125 0.000625

E (%)
Top displacement (L2 norm) 23.5 6.89 1.99 0.508 0.127 0.0319

Maximum mid-height drift 6.16 1.83 0.153 0.095 0.0141 0.0029

Final base shear 107 94.2 43.3 6.93 2.04 0.51
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Regarding convergence and order of accuracy, in view of the Lax-Richtmyer
equivalence theorem [59, 60, 81], for well-posed problems [31, 32, 81] (including
almost all real engineering problems), convergence is equivalent to consistency plus
numerical stability. Consistency implies that the order of accuracy is not less than
one [31, 32], and order of accuracy of a time integration method is the highest rate,
by which, the responses computed by the integration method converge to the exact
response; see also [7, 31, 32, 49, 56], equivalently definable in terms of local
truncation errors [31, 32]. Numerical stability can be defined as the capability of
time integration methods to lead to responses (for physically stable problems [82])
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Initial 2500 t

Fig. 7 An example to display the possibility of more error in time integration analysis with
smaller integration step [63]

Table 3 Changes of error with respect to the step size in average acceleration analysis [27] of the
system introduced in Fig. 7, where, the continuation method is fractional time stepping [62, 65],
�d ¼ 10�2, and 0.1 and 5 are the scaling factor and maximum number of iterations

D t (s) 1
80

1
160

1
320

1
640

1
1280

1
2560

E (%)

Force in the left spring
(L∞ norm)

7.17 4.83 6.15 6.15 3.49 2.85

Maximum velocity of
the centre of mass

0.0539 0.568 0.744 0.744 0.443 0.317

Final spaces between
Mass 1 and Mass 2

121 26.8 2.70 2.70 1.92 1.37
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that do not diverge, even after arbitrary large number of integration steps [1, 30–33,
52, 59, 60, 81, 83]. Therefore, it is reasonable to expect the convergence to be
influenced, from D t, via numerical stability and order of accuracy.
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Taking into account terms like “conditionally stable”, the effect ofD t on numerical
stability might be crucial [1, 10, 11, 28–33, 52]. By concentrating on one-step time
integration methods (recommended in the literature [30–32]), for SDOF
(Single-Degree-Of-Freedom) systems, the free vibration time integration computa-
tion, can be expressed, as stated below (multi-step methods can in many cases be
rewritten as one-stepmethods, e.g. central difference andHoubolt methods [4–6, 32]):

u
_uD t
€uD t2

..

.

uðaÞ D ta

2
66664

3
77775
i

¼ A

u
_uD t
€uD t2

..

.

uðaÞ D ta

2
66664

3
77775
i�1

; i ¼ 1; 2; 3. . . ð15Þ

where, a implies the highest order of time differentiation in the one-step integration,
e.g. a ¼ 3 for the one-step Houbolt method [4–6], and a ¼ 2 for the HHT method
[12, 30–32, 84], the right subscripts represent the same subscript for u, the temporal
derivatives of u, and D t, inside the brackets, i denotes the number of the integration
step under study, and A is the amplification matrix, with members depending on the
natural angular frequency, x, the integration step size D ti, and the coefficient of
viscous damping n [31, 32], i.e.

A ¼ Aj;k x; n;D tið Þ� � ð16Þ

Numerical stability is provided, when the spectral radius [68] of A, is not more than
one throughout the analysis, i.e.

q ¼ Max k1j j; k2j j; . . . kaj jð Þ 6[ 1 ð17Þ

In Eq. (17), q stands for the spectral radius, and ki¼1;2;...a implies the i th
eigen-value of A (a real or complex number [57]). In more detail, for numerical
stability, the absolute values of the eigen-values of A are to be less than one, when
with multiplicity more than one, and less than or equal to one, when not repeated
[29–33, 52]. The discussion is valid for forced vibrations and MDOF
(Multi-Degree-Of-Freedom) systems, when considering all natural modes sepa-
rately [1, 29–32]. In practice, it is conventional to study numerical stability, based
on the changes of spectral radius, with respect to xD t (where, x and D t respec-
tively imply an arbitrary natural frequency of the structural system and the constant
step size in the analysis), preferably for different values of n; see [29–33, 52, 57]
and Fig. 9. In Fig. 9, T stands for arbitrary natural period of the MDOF system,
T ¼ 2px�1 [31–33, 52], and the steps sizes are considered constant throughout the
integration interval. (For non-proportionally damped MDOF systems, Eq. (15) can
be considered directly for the whole MDOF system based on which the remainder
of the discussion remains unchanged; see [84]). Consequently, q\1 or q� 1 is
necessary and sufficient for the stability of linear analyses, and is necessary for the
stability of nonlinear time integration analyses; see [33, 63, 72]. The outcome
restricts x D t, generally leading to:
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D t\D tcrðx; nÞ or D t�D tcrðx; nÞ ð18Þ

where, D tcr stands for the integration step size corresponding to q ¼ 1; see Fig. 9b,
d, h. In view of the Lax-Richtmyer equivalence theorem [32, 59, 60, 81, 86, 87],
Eq. (18) needs to be satisfied, in order to maintain responses stability and
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Fig. 9 Changes of spectral radius with respect to D t
T for several time integration methods:

a Houbolt [4–6], b Central difference [14], c Average acceleration [27], d Linear acceleration [10,
27], e Wilson-h [15–17] ðh ¼ 1:42Þ, f Quasi-Wilson-h [24] ðh ¼ 1:5Þ, g HHT [12] ða ¼ �0:3Þ,
h Fox-Goodwin [85], i C–H [13] ðq1 ¼ 0:8Þ
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convergence. Accordingly, unconditional stability (for linear analyses) is recom-
mended by times [30–33, 52] and many conventional time integration methods are
unconditionally stable, i.e.

8x; 8n : D tcr ! 1 ð19Þ

Consequently, and as displayed in Eq. (18) and Fig. 9, the effect of integration step
size, on numerical stability, can be described as that, the smaller the integration step
size, the more the analysis has the chance to be numerically stable. In view of the
Lax-Richtmyer equivalence theorem [32, 59, 60, 81, 86, 87], and since order of
accuracy is a constant value computable theoretically independent from the inte-
gration step size [32, 60], a similar claim sounds reasonable, for the influence of
integration step size on convergence. Nevertheless, with attention to the inequality
sign in Eq. (18) and the definition of convergence in Eqs. (12) and (14), conver-
gence is independent from D t, unless when D tcr ¼ 0, i.e. the unconditionally
unstable condition. The trend of convergence however depends on D t; see Figs. 4
and 5 and the Taylor series [57] correspondence between convergence and these
figures [30–32, 55]. From the standpoint of Lax-Richtmyer equivalence theorem,
the above-mentioned different effects of D t on convergence and numerical stability,
while order of accuracy is not under the effect of D t may cause questions. To avoid
ambiguities, it is worth noting that in numerical determination of the order of
accuracy [84], we need to carry out the time integration analyses with steps smaller
than D tcr. (Sufficient smallness of D t is also implied in the theoretical computation
of the order of accuracy [32, 60].) Meanwhile, though order of accuracy is con-
ceptually independent from numerical stability, restrictions exist that relate order of
accuracy and numerical stability, depending on the number of steps involved in the
computation for each new station, e.g. Dalquist Barriers [32].

Models resulted from discretization in space, by methods, such as finite ele-
ments, are different from the original continuous models, specifically in the higher
modes of oscillation [30–32, 88]. To say better, though the piece-wise exact
analyses [10, 11] can lead to exact responses for Eq. (2), the so-called exact
responses are different from the exact responses of the PDE (Partial Differential
Equation) models prior to the semi-discretization. The difference can be consider-
able in the higher modes of oscillations. A way to omit or reduce the errors is to
somehow eliminate the higher modes with trivial contribution in the response, and
time integrate the lower modes with sufficient accuracy. An assumption in this
approach is the existence of higher modes with trivial contribution in the response;
this is a valid assumption at least in many real structural systems [10, 31, 32, 89–
91]. Numerical or artificial damping is the capability of some time integration
methods, in controlling the errors of semi-discretization [1, 11, 28–33, 52].
Artificial damping provides the capability to eliminate the higher modes and ana-
lyze the lower modes with sufficient accuracy (in direct time integration of the total
structural system). Time step size affects artificial damping. If, in view of the modal
description of linear proportionally damped MDOF systems, we concentrate on an
arbitrary SDOF system, the amplitude of the plot of the spectral radius of A, i.e. q,
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with respect to xD t (or equivalently D t
T ), inversely represents the capability to

damp out the higher modes (see Fig. 9) [30–32]. In more detail, when q\1, smaller
values of q imply more elimination of the higher frequency oscillations [29–31]
(q ¼ 0 implies complete elimination). The general trend displayed in Fig. 9, and the
presented explanation, regarding the more elimination at larger values of xD t, are
valid for MDOF and SDOF linear systems, considering the modes under consid-
eration (and the corresponding values of x or T), separately. However, the
numerical details are different for different time integration methods and different
values of viscous damping, and meanwhile, are differently desired for different
behaviours with different contributions of higher modes of oscillation [30–33, 52].
With these considerations, and specifically, from Fig. 9, provided proper artificial
damping, values of D t larger than essential to damp out the higher modes may lead
to the elimination of lower modes (see Fig. 9a, e, g, i; the last when physically
damped slightly). (Proper artificial damping implies guaranteed more numerical
damping for higher values of D t

T , addressed here as proper artificial damping for the
first time.) In other words, with assigning larger/smaller values to the integration
step size, more/less oscillatory modes (starting from the highest modes) will be
affected and eliminated. This can entail undesired inaccuracy. The presented dis-
cussion is valid, only for linear analysis of MDOF systems damped proportionally.
Nevertheless, for many practical applications (e.g. seismic analysis), the nonlinear
behaviour is of piecewise-linear type (e.g. linear-elastic/perfect-plastic and
pounding [10, 28, 78, 91–94]) and meanwhile proportional damping is a broadly
accepted assumption [28, 52]. Accordingly, expressions such as xD t, spectral
radius q, and artificial damping, can be defined/considered in a piece-wise manner.
Therefore, in many practical cases, depending on the selection of the parameters of
nonlinearity analysis and the severity of nonlinear behaviour, we can use the linear
theory of artificial damping to build up an idea about the artificial damping in
analysis of nonlinear structural systems. Still, in nonlinear as well as linear anal-
yses, special attention should be paid to selection of parameters of the integration
method controlling artificial damping. Alternatively, and even preferably, the
results are to be checked for accuracy [7, 28, 55, 95–97], also to prevent elimination
of the important lower modes from the final response.

Overshoot is the tendency of integration methods to cause significant errors in
the few steps after the start of the oscillations or after abrupt changes of the status or
the excitation. Accordingly, smaller integration step sizes would likely cause less
error, originated in overshoot; see [30–33, 52].

Regarding computational cost, assigning smaller values to the integration step
size, without changing the computer (computational facility), increases the number
of integration steps, while the computational cost per integration step remains
unchanged. Accordingly, the runtime, the total usage of the in-core memory, and
hence the computational cost, CC, will increase, i.e. considering / as a sign for
“dependence”,
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CC / D t�1 ð20Þ

In more detail, in linear time integration analysis of an arbitrary system, with
equally sized integration steps,

CC1

CC2

¼ D t2
D t1

ð21Þ

where, CC1 and CC2 denote the computational costs of two arbitrary analyses (on
one computer and when disregarding the pre- and post-processing), respectively,
with steps equal to D t1 and D t2 D t1 6¼ D t2ð Þ. To say better,

CC1Dt1 ¼ CC2Dt2 ¼ � � � ¼ C ¼ Const: ð22Þ

where, C is a positive-definite constant, representing a scale of the computational
cost per integration step C�

C (C can also be defined as the computational cost of the
analysis carried out with integration steps equal to one), i.e.

C�
C ¼ CC

N
¼ D t CC

tend
¼ C

tend
ð23Þ

N stands for the total number of integration steps, CC is the associated computa-
tional cost of the analysis, and tend is defined in Eq. (2). The computational cost
associated with an integration step C�

C, depends on the semi-discretized model, the
computational facility (capabilities), i.e. how powerful is our computer?, and the
integration method. Different from accuracy (including stability) and overshoot, for
the sake of which, we prefer to assign smaller values to the integration step size, for
reducing the computational cost, it is beneficial to time integrate with larger steps;
the case is in between, when talking about artificial damping.

In an arbitrary nonlinear analysis, it is essential to check the occurrence of
nonlinearity after determination of the status at each integration station. When
nonlinearity is detected, appropriate changes should be implemented in the char-
acteristics of the system [see the Q in Eq. (5)]. Furthermore, and before the
changes, it is conventional to localize the nonlinearity by implementing some
nonlinearity iterations [2, 42–46]. Accordingly, Eqs. (21) and (22) are not valid, in
time integration analysis of nonlinear systems. Even, without nonlinearity itera-
tions, because of the essentiality of status check and characteristics change, it is
reasonable to consider

CC1 ffi ~CC1 þ nNL 1CQ

CC2 ffi ~CC2 þ nNL 2CQ

ð24Þ

In Eq. (24), ~CC1 and ~CC2 imply computational costs, not including nonlinearity
iterations and status change, i.e.
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~CCi¼1; 2 ¼ CCi¼1; 2

	 

Linear þCStatus Check ð25Þ

nNL 1 and nNL 2 stand for the number of nonlinearity detections in analysis with steps
sized D t1 and D t2 respectively, CQ is an indicator for the computational cost at a
nonlinearity detection averaged out among all nonlinearities detected in the anal-
ysis, and includes the costs of nonlinearity iterations and change of status. It is
worth noting that the independency of CQ from D t is a reasonable assumption,
implemented in Eqs. (24), and leading to the approximation signs in Eqs. (24).

A special case happens when the nonlinear behaviour is piece-wisely linear (e.g.
linear-elastic/perfect-plastic behaviour, impact, simple friction) [63], and no
non-linearity iteration is implemented. In this case,

nNL1 ffi nNL2 ffi nNL ð26Þ

and in view of Eqs. (24) and (26) and provided analysis with equally sized steps,

CC1

CC2

ffi
~CC1 þ x
~CC2 þ x

; x ¼ nNLCQ [ 0 ð27Þ

Taking into account that ~CCi¼1;2 [ 0, and the fact that in view of Eq. (25), similar to
Eq. (21),

~CC1

~CC2

¼ D t2
D t1

ð28Þ

Eq. (27) implies that, in analysis of piece-wisely linear systems on a specific
computer, when we do not implement nonlinearity iterations and CQ is sufficiently
smaller than ~CCi¼1;2 , the computational cost resists against changes because of D t.
To say better, in the special case addressed above,

CC2�CC1

CC1

����
����\ D t2 � D t1

D t2

����
���� ð29Þ

(the above-mentioned smallness of CQ is generally valid, for implicit analyses [1,
30, 31], recommended for many real nonlinear dynamic analyses; see [1, 43]).
Another special case occurs, when nonlinearities are detected at almost all inte-
gration steps, regardless of the integration step size, and no non-linearity iteration is
being implemented. In this case, provided analysis with equally sized steps,

CC1 ¼ ~CC1 þ
tend
D t1

CQ

CC2 ¼ ~CC2 þ
tend
D t2

CQ

ð30Þ
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and, in view of Eq. (28),

CC1

CC2

¼ D t2
D t1

ð31Þ

comparable with Eq. (21). Equation (31) implies that, in a nonlinear analysis
with equally sized steps and nonlinearities detected at all integration steps, if we
do not implement nonlinearity iterations, the changes of computational cost with
respect to the integration step size would be very similar to linear analyses. The
discussion above seems new, and presented for the first time, in this chapter.
Accordingly, further study is surely essential, not followed here, for the sake of
brevity. Extension of the discussion to general nonlinear behaviour/analysis is being
recommended for further research.

4 Practical Comments for Integration Step Size Selection

The most conventional and broadly accepted comment for selection of integration
step sizes, specifically, when the steps are equally sized, is as stated in Eq. (32) [1,
10, 28, 49, 66, 97–99]:

D t ¼ Min D tcr; fD t;D td ;
Tr
v

� �
ð32Þ

The new parameters are defined below:

fD t: Step size, by which, the excitation is digitized (fD t ¼ 1, when the excitation
is continuous)

D td: Largest step size, according to which, we accept to obtain the history of the
response (generally unimportant)

Tr: Smallest period of oscillations with considerable contribution in the response
v: A factor, changing from 10 (or even 5) in linear simple analyses to 1000 in

analyses involving impact, severe nonlinearity, complex or mathematically

stiff behaviour, etc., such that
Tr
v
turns to be an integration step size sufficient

for accuracy

The definitions of D tcr [see Eq. (18)], fD t, and D td , are clear. However, the
definitions of Tr and v are somehow imprecise and vague, and furthermore, serious
arguments can be made on the typology of Eq. (32) and the computation of D tcr.
This section is dedicated to these ambiguities.

The typology of Eq. (32) has five major deficiencies. First, with the exception of
period elongation and amplitude decay [1, 10, 29, 33, 52], no theoretical relevance

seems to exist between
Tr
v
and accuracy, and period elongation and amplitude decay
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cannot well explain the role of
Tr
v

in Eq. (32); see [1, 29–32]. Secondly, the inte-

gration step size should be set, such that, with negligible additional inaccuracy, for
the lower modes, the higher erroneous modes of oscillation can be eliminated
(when Eq. (5) is obtained from discretization in space). Accordingly, in view
of Fig. 9, artificial damping and the origin of Eq. (5) would rather be included in
Eq. (32). Alternatively, since the details of Fig. 9 are different, for different inte-
gration methods, the integration method needs to be taken into account in Eq. (32);
as a third alternative, the obtained responses are to be controlled, also for adequate
selection of the parameters. Neither of these approaches seems to be properly
addressed in Eq. (32) (or its implementation). In addition, the existing ambiguities
on the notion of small and large modes highlight the ambiguities on the role of
artificial damping in Eq. (32). Thirdly, a deficiency in the typology of Eq. (32) is
the fact that, when the excitation is available as a digitized record (i.e. fD t is finite),
and the consequence of Eq. (32) is such that:

D t\fD t ð33Þ

it is not simple to carry out the time integration analysis with values of D t satisfying
Eqs. (32) and (33). A supplementary practical equation, to be satisfied, while taking
into account Eq. (33), is as stated below:

D t ¼ fD t
m

; m 2 Z þ � f1g ð34Þ

An approach, to consider Eqs. (32) and (34) simultaneously, seemingly addressed
for the first time in this chapter, is to replace Eq. (32) with (D t0 is used merely for
the computation of D t):

D t0 ¼ Min D tcr;D td;
Tr
v

� �

D t ¼
fD t when D t0 � fD t

fD t
m

when 9m 2 Z þ � f1g; fD t
m

�D t0\ fD t
m� 1

8<
:

ð35Þ

The forth deficiency in the typology of Eq. (32) originates in v. In fact, besides the
nonlinearity and its type, it is essential to take into account the severity of the
nonlinear behaviour. As a simple example, the impact between two undamped
single degree of freedom systems can be neglected when the velocities are about
zero at all instants of impact. This leads to the negligibility of the nonlinear
behaviour. The case is completely different when the impacts occur at considerable
velocities. The difference between these two cases (and in general the difference
between cases with different severity of a special type of nonlinear behaviour)
seems not taken into account in Eq. (32). Towards a replacement for Eq. (32),
attention can be paid to the discussions reported in the literature on nonlinearity
quantification and measurement, e.g. see [100].
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Finally, the fifth deficiency in the typology of Eq. (32) is that, though the
nonlinear behaviour and its complexity affect Eq. (32) via v, the effect of nonlin-
earity analysis parameters (e.g. the tolerance, �d) on the accuracy is disregarded.
Two approaches to overcome this deficiency is to take into account the value of D t,
while assigning values to the nonlinearity parameters (see [42, 63, 64, 79]), or
alternatively, to control the errors after the time integration analysis [28, 55, 95–97].
The latter might be unexpectedly costly.

In practical implementation of Eqs. (32) or (35), there is no ambiguity about the
values to be assigned to fD t and D td . However, D tcr is under the effect of damping,
and still, we cannot guarantee that, disregarding viscous damping is necessarily on
the safe side of numerical stability, resulting in larger values of D tcr [30–33, 52].
Without a safe side assumption, D tcr needs to be computed considering the amount
of viscous damping in different natural modes. The smallest D tcr, not necessarily
associated with a special mode, would then control the numerical stability. The
computation is not only complicated and computationally expensive (because of
several reasons, including determination of the natural frequencies and the corre-
sponding viscous dampings), but also the eigen-solution is in conceptual contra-
diction with the nature of direct time integration. The deficiency highlights in
presence of nonlinearity, where the natural frequencies change throughout the
integration interval. With the safe side assumption, independent of the amount of
viscous damping, the natural mode causing the smallest D tcr, mostly the last natural
mode, would control the numerical stability in Eqs. (32) and (35) (see Eq. (18) and
the existing conditionally stable methods [1, 10, 11, 15, 24, 28–33, 52]).
Furthermore, if the help of viscous damping to numerical stability is guaranteed, the
definition of unconditional stability in Eq. (19) can be changed to:

8x : D tcr ! 1 ð36Þ

The above discussion and assigning an adequate value to D tcr, in Eqs. (32) and
(35), are more complex in presence of non-proportional damping; in view of the
versatility of time integration in analysis of non-proportionally damped systems
[28–33], this complexity is indeed a practical drawback. Considering these, it is
essential to emphasize once again on the existing comment not to use integration
methods with finite D tcr [30–32] (when possible regardless of the type of damping),
causing the simplification below in Eq. (35):

D t0 ¼ Min D td;
Tr
v

� �

D t ¼
fD t when D t0 � fD t

fD t
m

when 9m 2 Z þ � f1g; fD t
m

�D t0\ fD t
m� 1

8<
:

ð37Þ

A seemingly last and most crucial deficiency in Eqs. (32), (35), and (37), is in
the notion of Tr. Theoretically, Tr implies the smallest period, with considerable
contribution in the response [49, 66, 101]. The expression considerable
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contribution is vague, and besides, while the response is not at hand before the
analysis, how we can determine the periods of oscillations?! Furthermore, even if,
the response could somehow be predicted, no specific comment seems to exist
regarding determination of the value of Tr and besides the computation of the
oscillatory modes is computationally expensive. To overcome these shortcomings
partly, we can compute Tr, by using the comments on the natural modes with
considerable contribution in the response, if existing (e.g. see [90, 91, 99]). This
approach, though leads to determination of Tr independent from the response, lacks
sufficient theoretical explanation.

A practical way (in cases costly), to lessen accuracy-related shortcomings,
including those originated in Tr and v, is to upper estimate Tr (in view of the low
cost of the computation, no especial approach is essential for the upper-estimation),
assign the value obtained from Eqs. (32), (35), or (37), to D t, carry out a first
analysis, repeat the analysis with half steps, compare the two responses, if the
difference is not sufficiently small (the error of the response is in the size of the
difference), once again repeat the analysis with half steps, and eventually, stop the
repetitions, when the difference is negligible. Considering that such repetitions are
recommended in the literatures of numerical solution of differential equations, and
practical engineering applications specifically structural dynamics [7, 28, 55, 99,
102, 103] and considerable theoretical explanations exist for repetition-based
accuracy controls, e.g. see [42, 96, 97], it is reasonable to rely on these repetitions
to compensate the ambiguities and arrive at sufficient accuracy. Meanwhile, it is
worth noting that implementation of the repetitions might be insufficient, because of
the probable improper convergence, in problems with complex oscillatory beha-
viour, specifically those involved in nonlinearity [42, 74–76, 78, 104, 105].
Implementation of more advanced error control methods can cause more reliability,
e.g. see [55].

5 Time Integration and Step Size Selection in Seismic
Codes

The material, presented in the previous sections, was mostly theoretical, discussed
in different branches of science and engineering; see [13, 17, 19–22, 26, 35, 37,
106–108]. In this section, attention is paid to seismic analysis and design, as a very
important and crucial research area, with direct and indirect effects on human lives
and civilization. Accordingly, with attention to seismic activities, locations in the
world map and issues like how developed are codes/standards?, how developed are
countries/regions?, how much populated are countries/regions?, and finally, the
availability of the codes/standards for the author, the following seismic
codes/standards are reviewed for issues on time integration and step size selection:

1. National code/standard of India [109, 110].
2. European code/standard [111].
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3. National code/standard of Turkey [112].
4. National code/standard of Greece [113].
5. National code/standard of China [114].
6. National code/standard of New Zealand [109, 115].
7. National code/standard of Iran [90].
8. National code/standard of United States [116].
9. National code/standard of Japan [117].

10. National code/standard of Mexico [118, 119].
11. National code/standard of Chile [120, 121].
12. National code/standard of Romania [122].
13. National code/standard of Taiwan [123, 124].

The footprints of time integration in seismic codes/standards are investigated by
directly looking for integration, time integration, time domain analysis, and time
history analysis, or indirectly by looking for nonlinear analysis, non-proportional
damping, un-classical damping, and provisions regarding analyses out of the scope
of mode superposition analysis, e.g. analysis of systems equipped with modern
control devices providing non-proportional damping.

Time integration analysis against several ground motion records and putting the
results together (according to a seismic code/standard), in order to arrive at a time
history record for each response (or to arrive at responses) to be used in seismic
designs, is called time history analysis. All of the seismic codes/standards, with the
exception of the code/standard of Chile [120, 121], consider time history analysis
(and time integration) as an analysis alternative. Some of the important consider-
ations in the seismic codes/standards are briefly addressed in Table 4; the numbers
in the last column stand for the seismic codes/standards, as stated in the start of this
section. (Table 4 does not present all the related regulations; it attempts to present a
brief overview.) Meanwhile, the codes/standards, that in some cases consider time
history analysis as the superior analysis tool, are as listed below:

• National code/standard of India [109, 110]: in stack like industrial structures,
• European code/standard [111]: when an isolation system may not be modelled

with an equivalent linear method,
• National code/standard of China [114]: for buildings taller than specific heights,
• National code/standard of New Zealand [99, 115]: for long period structures and

when the directivity effects (e.g. see [125]) can be significant,

Table 4 A brief look on some regulations regarding time history analysis in seismic codes

Some main considerations in implementation of time history analysis Codes/standards

Selection of records 1–9, 12, 13

Scaling and combining the results of analyses against different records 2, 3, 5, 6, 12, 13

Type and philosophy of analysis (linear/nonlinear, safe side) and material
model

1, 2, 4, 7, 10

Details of analysis 6

Control on final results 6
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• National code/standard of Japan [117]: for high-rise buildings,
• National code/standard of Romania [122]: similar to European code/standard,

where, for each code/standard, cases at which time history analysis is recommended
or is the only seismic analysis tool, are addressed after the code/standard. And
finally, the code/standard having comments on integration step size is the national
code/standard of New Zealand [99, 115], while, the code/standard explicitly
addressing integration as the mean for time history analysis is that of the United
States [116]. The information above and those in Table 4 are clear evidences for the
advancement of the code/standard of New Zealand [109, 115] (the code/standard
introduced with “6” in Table 4), from the point of view of time history analysis and
specifically the integration step size selection.

The comment of the national code/standard of New Zealand on integration step
size (see Sect. 6.4.5 in [99]) is summarized in the equation below:

D t�Min D tcr; fD t;
T1
100

; Tn; 0:01
� �

ð38Þ

In Eq. (38), T1 is the largest translational period of the first mode, judged by the
largest mass contribution, in the direction of principal component of the earthquake,
and Tn denotes the period of the highest mode in the same direction required to
achieve the 90 % mass as described in the modal response spectrum method [99].
The guidance of the commentary [115] regarding implementation of Eq. (38) is as
stated below:

The time step should generally be not greater than T1
100, where T1 is the period associated

with the first mode of vibration. For analyses involving impact (building pounding, rocking
walls, or uplifting foundations), the time step will need to be significantly lower and a
starting value of T1

1000 is recommended. If convergence is not obtained with a particular time
step, reduce it by a factor of 2 and re-run. Once convergence is obtained, make a further
reduction and compare the peak results for the target response parameter. If they are within
5 %, the longer time step (which requires less computing running time) is satisfactory
[115].

The above considerations, and specifically, the selection of integration step sizes, is
a significant initiation in seismic regulations (the author has not met similar details
in seismic codes/standards in the past; also see [126]); and hence, the consideration
in the code/standard of New Zealand [99, 115] is to be deeply appreciated and
acknowledged. Still, some drawbacks and ambiguities seem to exist, to which the
remainder of this section is dedicated.

As the first ambiguity, since each time history analysis is composed of several
time integration analyses, the cost of time history analysis is generally considerable
and the selection of step sizes in the first analysis (before any repetition) is of high
importance. It is unclear why selection of the step size and the way the step size
decrease in the repetitions of the first analysis disregard many features of the ground
motion record (fD t is an exception), as well as, the nonlinearity analysis parameters
(the nonlinear behaviour is briefly taken into account via v). To explain better,
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theoretically, depending on the excitation and the linear or nonlinear behaviour, a
system may oscillate in frequencies different from its first natural frequencies,
leading to different essentialities of integration step sizes. This seems not well taken
into account in Eq. (38); compare Eqs. (32) and (38). Furthermore, depending on
the values assigned to nonlinearity tolerances, proper convergence [105] of the
analyses and reliable estimation of the errors can be considerably affected; e.g. see
[42, 63, 78, 80]. Disregarding these issues in Eq. (38) may lead to additional
repetitions, and accordingly considerable additional computational cost, and even in
cases failure of the repetitions because of round-off.

The second ambiguity is that the theory backing the validity of the recommended
accuracy control is not addressed in the code/standard and the supporting material
[99, 115]. Specifically, it is worth noting that the partly theoretical backing, which is
the proper convergence (see Fig. 4 and [42, 63, 105]) may not be fulfilled, in
nonlinear time integration analysis; this is while the purpose of the control in the
code/standard of New Zealand is nonlinear analysis; see [42, 63, 72, 74, 75, 80, 104].

Finally, after repeating an analysis and comparing the two responses, until being
within 5 % difference at the peak, the seismic code/standard of New Zealand does
not explicitly address the resulting response and merely mentions that the response
obtained using the larger step is satisfactory [115]. As clearly stated in [115], the
reason of referring to the response obtained from analysis with larger integration
step size as satisfactory is that the other analysis is more costly. This implies that the
comment is indeed to consider the response obtained from analysis with larger steps
as final. Since, the two analyses are to be carried out, prior to checking whether the
responses are in 5 % difference, it seems reasonable to pay attention to accuracy
rather than computational cost and consider the response obtained from the analysis
with smaller step size as the final response. (The more accuracy of the response
when using smaller step sizes can be explained by the theory behind the error
controlling approach; see [97].) Practically, ambiguities exist, also regarding the
5 % difference, the notion of 5 %, and the error control on the peaks, not discussed
here, for the sake of brevity.

6 Efficient Step Size Selection

As implied in the previous sections, D t affects the accuracy and computational cost
in reverse manners; also see [30–33, 49, 52]. Therefore, the more we eliminate the
restrictions on D t, the better the computational cost and accuracy can be balanced.

Methods are developed to eliminate the equality of the sizes of integration steps
throughout the integration interval, e.g. see [66, 127]. The resulting time integration
analysis is in general addressed as adaptive time stepping or adaptive time inte-
gration analysis. Adaptive time integration analysis starts with selection of step
sizes for the first or first few steps. Carrying out ordinary time integration for the
starting steps, the analysis continues in a step-by-step manner. After each or each
several steps, a pre-assigned criterion to determine whether the sizes of the next
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steps need to be changed, and if a change is needed, to determine the amount of the
change, is examined; see [66]. This process continues till the end of the integration
interval, i.e. tend (see Eqs. (2) and (5)). Adaptive time integration analysis started in
about 1970s by the studies of Hibbit and Karlson, Oughourlian and Powell, Flippa
and Park, Park and Underwood, and Underwood and Park (see the brief review
reported in [66]), continued in the past decades [66, 127–129], and is in progress,
specifically, for nonlinear analyses, e.g. see [22, 130–132]. Returning to the process
of adaptive time integration, as explained above, implementation of a pre-assigned
criterion is essential in arbitrary adaptive analysis. Some main bases for the criteria
are as noted below [66, 127]:

1. Errors at the integration stations, because of the integration approximation,
associated with the last integration step; or to say better, the amount of error at
the end of the integration step, originated in the approximate integration for-
mulation, assuming zero errors at the start of the integration step and linear
behaviour throughout the step. This error is broadly known as the local trun-
cation error [31, 32].

2. Periods (or equivalently frequencies) of important oscillations in the response, at
the integration steps, or for large MDOF systems, the ‘current characteristic
frequency’, defined based on expressions similar to the Rayleigh ratio [66].

3. Complexity of the transient behaviour, defined, based on a measure named
curvature of the response [66].

The computational costs associated with implementation of the criterion and the
step size change (factorization) negatively affect the efficiency of adaptive time
integration. The significance of these effects depends on the size of the structural
system, the complexity of the dynamic behaviour, the length of the integration
interval 0 tend½ 	, the adaptive time stepping criterion, and the time integration
method. Consequently, from the standpoint of computational cost, analysis con-
sidering adaptive time stepping is not necessarily superior to analysis with constant
time steps.

For implementation of the criteria and adaptive time stepping, sizes of the
starting steps, and some analysis parameters, should be set adequately and in
advance. Parameters to prevent very slight or very frequent changes of the inte-
gration step size are samples [66]. These selections complicate implementation of
adaptive time integration, compared to constant time stepping. It is also worth
noting that, in implementation of adaptive time stepping, we cannot predict the
computational cost of the analyses; in constant time stepping the prediction is
simple in linear analyses. Considering these, constant time stepping and adaptive
time stepping are both broadly accepted in practice, and research in either direction
is in progress [21, 34, 115, 132–134], revealing the likely balanced needs in future.
In seismic analyses, that the excitations are digitized in equal steps and the digi-
tization step size complicates the selection of integration step size even further,
constant time stepping is popular, e.g. see [10, 28, 29, 99, 135]. Accordingly, the
discussion in the remainder of this section is concentrated on efficient step size
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selection in analysis against digitized excitations using constant time steps (i.e.
fD t\1, and in Fig. 1, 8 i : tiþ 1 � ti ¼ Const:).

In view of Eqs. (35) and (37), conventional time integration analysis using
constant time steps is more efficient, when D td , fD t, Tv, and D tcr (in Eq. 35) are closer
to each other and the largest possible. In other words, unless, when D tcr ! 1
(unconditional stability; where D tcr disappears from the relations) or D tcr ¼ 0
(unconditional instability; this is an impractical case), it would be ideal to guarantee

Dt ¼ Dtd ¼ fDt ¼ Dtcr ¼ T
v
;

8 e[ 0 : D t ¼ T
v
þ e ) Practically Unacceptable Accuracy

ð39Þ

once again, implying the advantages of unconditionally stability. Based on this idea
and towards more efficient step size selection, approaches are developed to enlarge
D tcr and fD t and close the gap between the terms in Eqs. (35), e.g. see [49, 135–
138]. Considering this, the title of this chapter, and the existing comments, on using
unconditionally stable methods (see Eqs. (19) and (36)), the discussion is contin-
ued, concentrated on techniques that enlarge fD t, while the integration methods are
unconditionally stable, in analysis of linear systems.

Since the discussion is narrowed to transient analysis against digitized excita-
tions (cases with finite fD t), as a practical application, it is reasonable to simplify
Eq. (5), to seismic analysis against ground accelerations, by considering

fðtÞ ¼ �O ð40Þ

and

u ¼ ug þ ur ð41Þ

In Eq. (41), ug stands for the static displacements of the un-supported degrees of
freedom, because of the ground (support) displacement, and ur denotes the dis-
placements of the un-supported degrees of freedom, additional to the static dis-
placements. In view of Eqs. (40) and (41), Eqs. (5) can be rewritten as stated below
[10, 28, 91–93, 139]:

M €ur þ f int ¼ �MC €ugðtÞ 0� t\tend
urðt ¼ 0Þ ¼ �O

_urðt ¼ 0Þ ¼ �O

f intðt ¼ 0Þ ¼ f int0
Q

ð42Þ
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In Eq. (42), €ug tð Þ represents the ground acceleration, digitized at steps sized fD t,
and C is a vector implying the static effect of the ground (support) displacement on
the displacements of un-supported degrees of freedom [10].

Four techniques, to materialize time integration analysis with steps larger than
the excitation steps without disregarding the excitations, are as briefly reviewed
below:

1. Time integration of integrated problems.
This technique, is proposed by S-Y. Chang in 2002 [137], not as a technique to
enlarge the integration steps. Ordinary time integration is implemented in
analysis of the original problem, modified slightly. The modified problem
consists of the integral of the equation of motion and the corresponding initial
conditions. Accordingly, the original digitized fðtÞ is integrated, and fD t loses
its meaning and can be eliminated from Eqs. (32), (35), and (37). This is a
considerable achievement, obtained in the price of the additional computational
cost essential mainly for numerical integration of fðtÞ. Few examples are
studied; in all, the loss of accuracy is small and the save of computational cost is
considerable.

2. Convergence-based replacement of excitations.
This technique is proposed, by the author in 2008 [49], specifically in order to
replace digitized excitations with excitations digitized at larger steps, i.e.

fD t new ¼ nfD t; n 2 2; 3; 4; . . .f g ð43Þ

and later extended to non-integer enlargements [138], i.e.

fD t new ¼ r fD t; r ¼ n1
n2

; n1 [ n2; n1 2 2; 3; 4; . . .f g; n2 2 1; 2; 3; . . .f g
ð44Þ

Both versions of the technique are successfully implemented in analysis of
many real problems, including frames, short mid-rise and tall buildings, different
bridges, space structures, silos, water tanks, a cooling tower, etc. [49, 135, 139–
154], and undergone theoretical studies [138, 155–163]; see more details in
Sect. 7.

3. Impact-based replacement of excitations.
This technique, proposed by M. Hosseini and I. Mirzaei in 2012 [164], replaces
each section of the excitation record located totally above or totally below the
€ug ¼ 0 axis, with a single data €ug

	 

equal to the area of the section, above or

below the €ug ¼ 0 axis, applied at the centroid of the section (see Fig. 10).
Implementation of the technique in analysis of several problems has been
successful.

4. Integration after combining several sequential integration steps analytically.
This technique, first suggested by the author in 2009 [165], combines ordinary
time integration computations in p0 p0 2 Z þ � f1gð Þ sequential steps
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analytically, in order to arrive at up; _up; €up
	 


directly from up�p0 ; _up�p0 ; €up�p0
	 


,
and hence, provides the capability of time integration with integration steps p0

times larger than the excitation steps, with no sacrifice of accuracy
p 2 Z þ � f1g; p� p0ð Þ. However, the additional computational cost is not
necessarily negligible [160, 166]. The technique, first proposed for SDOF linear
systems [165], later enhanced towards further reduction of computational cost
[166], afterwards, in one attempt, extended to implementation in analysis of
MDOF systems [160], and in another attempt, to implementation in nonlinear
analyses [167]. Though the loss of accuracy is zero, because of the additional
computational cost and for the sake of efficiency, the enlargement is limited to
specific values of n in Eq. (43) (four seems an appropriate upper-bound for n;
Eqs. (43) and (44) are common between the second and forth techniques).

Table 5 A comparison between four techniques to enlarge the digitized excitations step sizes

Technique 1 2 3 4

Accuracy (compared to
conventional analysis)

Better than
Technique
3

Better than Techniques
1 and 3

Good Excellent
(perfect)

Computational cost Negligible Negligible Negligible Small (for
small values
of n)

Simplicity Good Better than Techniques
1, 3, and 4

Good Not as good as
Techniques 1–
3

Numerical tests Few ffi 150 successful tests Few Few

Consistency with
D t ¼ fD t

No Yes (practically) No Yes

Control on
enlargement

Excellent
(perfect)

To all positive rational
numbers (practically
perfect)

No To all positive
integers

(a) (b)

All negative
(2)

All positive
(1)

Area= A1 , Centroid at t1

Area= A2 , Centroid at t2

gu

t

( )11, At

( )22 , At −

gu

t

Fig. 10 Impact-based replacement [164] of two typical sequential sections of a typical digitized
record respectively above and below the horizontal axis: a before the replacement, b after the
replacement
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A brief comparison between these four techniques is presented in Table 5, where
the numbers in the first row are in accordance with the numbers introducing the
techniques, introduced above. In view of Table 5 and the fact that there exists a
rational number in any arbitrary neighbourhood of a real number [57] (see the last
row in Table 5), the second technique can be considered as the superior technique.
The next section is dedicated to a review on the second technique and its most
recent advancements.

7 Recent Advancements of a Step Size Enlargement
Technique

As stated in the previous section, towards more efficient seismic analysis by con-
stant time step integration, a technique is proposed in 2008 [49], and later extended
in 2013 [138]. The efficiency is provided by enlarging fD t, such that to prevent it
from dominating Eqs. (35) and (37), while also bounding the induced inaccuracy.
Special attention is paid to: (1) convergence, as the main essentiality of approximate
computations [55, 59, 60], (2) the recommended second order of accuracy [30–32],
and (3) the effect of approximations in the initial conditions, excitations, etc., on the
rate of convergence [32, 49, 71]. These considerations lead to the replacement of
the excitation f, with a new excitation, ~f , defined below:

ti ¼ 0 : ~f i ¼ ~f tið Þ ¼ g tið Þ;

0\ti\t0end :
~f i ¼ ~f tið Þ ¼ 1

2
g tið Þþ 1

4n0
Xn0
k¼1

g tiþ k=n1

	 
þ g ti�k=n1

	 
� �
ti ¼ i

n1
n2

fDt i ¼ 0; 1; 2; . . .

ti ¼ t0end ~f i ¼ ~f tið Þ ¼ g tið Þ;

; ð45Þ

and digitized at steps sized fD tnew, introduced in Eq. (44). Regarding the new
symbols in Eqs. (44) and (45), when the excitation step size, fD t, governs Eqs. (35)
or (37), the replacement addressed in Eq. (45) changes the case by assigning the
smallest positive integers to n1 and n2 satisfying

n1

n2
fD t�Min D tcr;

Tr
v
;D td

� �
\

n1 þ 1
n2

fD t ð46Þ

The value of n0 in Eq. (45) can be obtained from
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n0 ¼ n1 � 1 when t ¼ D t
n2

n0 ¼
n1
2 n1 ¼ 2j; j 2 Z þ
n1�1
2 n1 ¼ 2jþ 1; j 2 Z þ

�
when D t

n2
\t\t0end � D t

n2

n0 ¼ n1 � 1 when t ¼ t0end � D t
n2

ð47Þ

t0end is the only number satisfying

tend � t0end\tend þ n1
n2

fD t;
t0end

n 1
n2 fD t

2 Z þ ð48Þ

and gðtÞ is available from

g tið Þ ¼ �g tið Þ when 0� t� tend
�O when tend\t\t0end

�
ð49Þ

where, �O is the zero vector and �g is a linear enrichment of f, defined below:

8 i ¼ 0; 1; 2; . . . n2 t
0
end

fD t : ti ¼ i fD t
n2

;

�g tið Þ ¼ f tið Þ; when i
n2
2 Z þ þf0g

�g tið Þ ¼ f k1 fD t
	 
þ i� k1

n2

� �
f k2 fD t
	 
� f k1 fD t

	 
	 

;

k1 ¼ kn2; k2 ¼ k1 þ n2; k � i
n2

\kþ 1; k 2 Z þ þf0g
when i

n2
62 Z þ þf0g

8>>>><
>>>>:

ð50Þ

Although, the technique is proposed in 2008 [49] and then extended in 2013
[138], it is now the first time that the formulation is presented in the detail stated
above, considering rational number enlargements. The technique is implemented in
many time integration analyses resulting in considerable reduction of computational
cost in the price of negligible loss of accuracy (see Table 6). Even more, it is worth
noting that, in two cases, the computational cost is reduced, while the accuracy is
increased [152, 154].

A seemingly weak point in implementation of the technique is the vagueness in
the notion and determination of Tr in Eq. (46), potentially entailing ambiguities in
selection of n (or to say better n 1

n 2
). Nevertheless, as implied in Sects. 4 and 5, these

ambiguities exist, also in ordinary time integration analyses, using constant inte-
gration steps, as well as, some adaptive time stepping methods. Therefore, the
ambiguities in defining and computing Tr are not deficiencies of the technique
proposed in [49], but deficiencies of ordinary time integration, affecting the per-
formance of the technique proposed in 2008. The ambiguities can be lessened by
comparing the computed response with the response obtained from analysis with
smaller steps [7, 28, 55, 95–97, 102], discussed in the ending parts of Sect. 4.
However, questions persist. How should we set the integration step size and the
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excitation for the analysis with smaller steps? Should the technique also contribute
in the decrease of the step size (by assigning smaller values to n or n1

n2
), or it suffices

to reduce the size of the excitation step and determine the excitation by linear
interpolation? What is the role of the errors originated in the technique in the total
accuracy? As a brief response, or to say better comment, the repetition of the first
analysis can be considered as means to control the additional errors, also because of
the technique. The repetitions can be first considered with respect to the technique,
and then after ensuring that the additional errors associated with the technique are
sufficiently small, repetitions need to be carried out with respect to D t; the details
explained in [135, 159], imply no considerable additional cost compared to ordi-
nary repetition-based accuracy controls.

Furthermore, the computational cost associated with Eqs. (45)–(50) is negligible
compared to the cost of time integration (unless for systems with one or two degrees
of freedom [49, 147, 157]). Accordingly, the amount of the computational cost
reduction in linear analyses [135] can be stated as

AC ¼ 100
n1 � n2

n2
ð%Þ ð51Þ

and the changes of the cost reduction with respect to the enlargement, can be
expressed as:

Table 6 Experiences on implementation of the technique proposed in [49] in time integration
analysis against digitized ground motions

System analyzed Cost reduced in the price
of negligible errors (%)

Source

SDOF system 75 [49]

2-DOF nonlinear system 49.27 [49]

Eight storey shear frame 80 [140]

Thirty-storey building 50 [141]

3-component earthquakes 66.7 [142]

Silo 77.65 [143, 144]

Water tank 66.7 [145, 156]

Building in pounding 12.7 [146]

Bridge with linear and nonlinear behaviors 45–80 [139, 147]

Power stations >50 [148]

Regular residential buildings 50–87 [149, 150]

Bridges with pre-stressed elements, subjected to
multi-support excitation, and nonlinearities

30–70 [139]

Residential building with irregularities in height 50–80 [152]

Space Structures >50 [151]

A cooling tower >50 [153]

Milad telecommunication tower >50 [154]
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@AC

@ n 1
n2

� � ¼ n22
n21

ð52Þ

With attention to Eqs. (51) and (52), recently,

n1

n2
� 5 ð53Þ

is suggested as a reasonable practical restriction on the selection of n (and n 1
n 2
) [139,

159], changing Eqs. (46) to

9n01 2 2; 3; 4; . . .f g; 9n02 2 1; 2; 3; . . .f g :
n01
n02

fD t�Min D tcr;
Tr
v
;D td

� �
\

n01 þ 1
n02

fD t

n2 ¼ n02; n1 ¼
n01 when n01

n02
� 5

5n02 when n01
n02

[ 5

8<
:

ð54Þ

Equation (54) should be considered together with Eqs. (44), (45), (47)–(50), when
the original excitation step size is the governing term in Eqs. (35) or (37) (to say
better, when the technique can be implemented). The consequence is
upper-bounding the computational cost reduction of linear analyses, by

AC � 80 ð%Þ ð55Þ

Another important challenge for the technique [49] is its performance, when
implemented in a nonlinear time integration analysis. According to the carried out
numerical studies (see Table 6), the performance of the technique is better, in
implementation in analysis of linear behaviour (both from the standpoint of accu-
racy and also from the point of view of computational cost reduction) [135, 146,
150, 152]. Two main reasons are: (1) While convergence and second order of
accuracy are the main concepts of the technique, accuracy, numerical stability,
consistency, and convergence are still unresolved issues in nonlinear analyses [2,
42, 63, 72–80, 168]. (2) With larger integration steps, the number of iterations in the
nonlinearity solutions may increase; the computational cost associated with these
iterations can compensate the reductions of computational costs originated in the
technique, and accordingly, diminish the efficiency of the technique.

Considering issues like those stated above, further study to clarify the persisting
ambiguities is essential. Some main directions towards more efficient step size
enlargement by the technique proposed in [49] are listed below:

1. Further clarifications regarding the values to be assigned to Tr in Eqs. (35) and
(37) and more reliable selection of the enlargement scaling factor (n or n 1

n 2
) to be

implemented in Eq. (44),
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2. Better performance, in implementation of the technique in analysis of complex
(including nonlinear) structural systems.

3. Better control of accuracy.
4. Implementation in adaptive time integration analysis.

Meanwhile, the first point above can be considered of high importance in
improvement of integration step size enlargement techniques other than that pro-
posed in [49].

8 Closure

Time integration is a versatile tool to analyze semi-discretized equations of motion,
and many other initial value problems from different origins. Integration step size,
or to say better, D t, is the main analysis parameter of time integration analysis
which together with nonlinearity and methods’ parameters, affect the analysis
features, as stated below:

(a) Smaller values of D t generally lead to more accurate responses. This is not
necessarily true in analysis of nonlinear systems or systems with complex
behaviour (e.g. highly oscillatory behaviour). For linear analysis, with suffi-
ciently small integration steps not under the effect of round-off, we can
guarantee more accuracy, when repeating the analysis, with smaller steps (the
smallness depends on the problem, the integration method, and the compu-
tational facilities).

(b) Unless for unconditionally stable and unconditionally unstable analyses,
smaller D t can be beneficial for numerical stability.

(c) D t has no effect on the order of accuracy.
(d) D t has no effect on convergence, though can affect the convergence trend.
(e) Smaller values of D t imply more computational cost for linear analyses. The

case might be different for nonlinear analyses, depending on the type of
nonlinear behaviour, severity of the nonlinear behaviour, the nonlinearity
parameters, and the time integration method. Some special cases are discussed.

(f) Smaller values of D t in general imply less artificial damping. This would
rather be valid for both undamped and damped analyses. Values to be assigned
to the parameters of artificial damping should be set carefully.

In selection of the integration step size, especially, for analysis of MDOF
structural systems with constantly sized steps, emphasis is on using unconditionally
stable time integration methods (the case is different for wave propagation prob-
lems; addressed in the literature by times). The requirements of numerical stability
of linear analyses, obtained from spectral analysis of the amplification matrix, i.e.
spectral stability, are necessary and sufficient for linear analyses, but merely nec-
essary, for nonlinear analyses. Even in time integration analyses with uncondi-
tionally stable time integration methods, ambiguities exist in conventional step size
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selection, as well as, in the comment of the national seismic code/standard of
New Zealand (a code/standard with comments on integration step size selection).
The ambiguities are more in nonlinear analyses. Some comments are discussed.
Specifically, with attention to the ambiguities existing in the integration step size
selections, control of the accuracies, for instance, by repetition of the analyses with
smaller steps is necessary. Some additional details are to be satisfied in presence of
nonlinearity.

From the thirteen seismic codes/standards reviewed in this chapter, many
codes/standards (all with the exception of the code/standard of Chile) have con-
sidered time history analysis and time integration as tools for seismic analysis.
Nevertheless, only in few codes/standards, time history analysis is recommended as
the only or superior tool to analyze the semi-discretized equations of motion. There
are also few codes/standards, with specific regulations on the details of time history
analysis, and specifically, there is one code/standard, i.e. code/standard of
New Zealand, with comments on the details of time integration analysis and the
selection of integration step sizes. Although, the initiative of the seismic
code/standard of New Zealand is worthy of sincere and deep appreciation and
acknowledgement, ambiguities and flaws exist; some discussed in this chapter.

In time integration analysis against digitized excitations, the excitation step size
should be taken into account in the selection of integration step size. In order to
increase the efficiency, digitized excitations can be replaced with excitations digi-
tized in larger steps. The existing techniques are briefly reviewed, and for the one
seemingly superior, detailed explanations are presented, and the challenges are
addressed.

Besides time integration analysis using constant integration steps, time inte-
gration can be carried out using steps sized adaptively, still not seriously imple-
mented in seismic analysis. Adaptive time integration, although, directed towards
more efficiency, is not necessarily more efficient compared to analysis with con-
stantly sized steps. The efficiency depends on several parameters, including the
complexity of the behaviour, the probable nonlinearity, the method of adaptive time
integration and adequate selection of the details, and even the time integration
method.

Some areas for further research on time integration and the step size selection are
stated below:

1. Effects of viscous damping on the numerical stability of time integration
methods are to be studied further.

2. The theory of numerical stability and its practical consideration are yet not well
established, when the damping is not proportional.

3. The existing comments on integration step size selection need to be improved
for more reliability, more rigorous supporting theory, and consideration of more
issues, while preserving the simplicity.

4. Further investigation on step size selection, for implementation in nonlinear
analyses, is essential.
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5. More reliable still simple practical error controlling methods are to be devel-
oped and considered in seismic codes/standards. In this regard, the initiative of
the code/standard of New Zealand is sincerely acknowledged.

6. Even for integration methods with numerical (artificial) damping, practical
methods for selecting the parameters of the integration methods need to be
developed.

7. The existing approaches for adaptive time stepping is involved in selection of
parameters that are partly problem dependent. Further research for simplifica-
tions sounds essential.

8. A priori estimations do not exist for the computational cost of adaptive, as well
as, nonlinear time integration analyses; accordingly, different from linear
constant time-stepping analysis, the efficiencies are unclear, in the start of
nonlinear or/and adaptive analyses. Further research is essential.

9. More adequate methods techniques and approaches are to be developed for
time integration analysis of nonlinear systems, specifically to guarantee the
simplicity, continuation, and sufficiency of accuracy, without high computa-
tional cost.

10. In view of the stochastic nature of earthquakes, the necessity to study structural
systems seismic behaviour in many codes/standards, and the everyday more
complexity and larger sizes of structural systems, efforts towards more efficient
time history analysis and more reasonable selection of D t are essential.
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