
Chapter 21
Optimal Portfolios
and Pricing of Financial Derivatives
Under Proportional Transaction Costs

Jörn Sass and Manfred Schäl

Abstract A utility optimization problem is studied in discrete time 0 ≤ n ≤ N for
a financial market with two assets, bond and stock. These two assets can be traded
under transaction costs. A portfolio (Yn,Zn) at time n is described by the values
Yn and Zn of the stock account and the bank account, respectively. The choice of
(Yn,Zn) is controlled by a policy. Under concavity and homogeneity assumptions
on the utility function U , the optimal policy has a simple cone structure. The final
portfolio (Y ∗

N ,Z
∗
N) under the optimal policy has an important property. It can be used

for the construction of a consistent price system for the underlying financial market.

Key words: Numeraire portfolio, Utility function, Consistent price system, Propor-
tional transaction costs, Dynamic programming

21.1 Introduction

We will start with discrete-time utility optimization which is now a classical subject
and can be treated as a Markov decision process in discrete time 0 ≤ n ≤ N. Our
main goal will be an application to adequate pricing of financial derivatives, in par-
ticular options, which is an important subject of financial mathematics. A financial
market is studied where two assets, bond and stock, can be traded under transaction
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costs. A mutual fund is a good example for the stock. Under concavity and homo-
geneity assumptions on the utility function U , it is known that the optimal policy
has a cone structure not only for models without but also for models with linear
transaction costs, see below. In the present paper we will focus on such models.

An Explanatory Model

In order to describe the application of the optimal policy from utility maximization
to pricing of financial derivatives, let us first consider a simple model with only one
period [0,N] (starting in 0 and finishing in N = 1) and without transaction costs. Let
BN be the value on the bank account at N if we start with one unit of money B0 = 1.
Then B−1

N is the classical discount factor. For fixed initial wealth x, the policy can
be described by a real number θ , the investment in the stock. Then the wealth at N
is Xθ

N = (x−θ)BN +S−1
0 θ SN = BN(x−θ +S−1

0 θ B−1
N SN), where S0 and SN are the

stock prices at 0 and N and S−1
0 θ is the invested number of stocks.

The classical present value principle for pricing future incomes is based on
the expectation of discounted quantities. According to this principle, an adequate
price for a contingent claim offering SN , i.e. one unit of stock, at N would be
pr(SN) = E[B−1

N SN ]. But this answer may be wrong, because we know in the present
situation of a financial market that S0 is the adequate price. Starting with S0 one is
sure to have SN at N. But in general one has E[B−1

N SN ] �= B−1
0 S0 = S0 and not the

equality one would like to have. Note that the equality means that the discounted
stock price process {B−1

0 S0,B
−1
N SN} is a martingale. It was a great discovery for the

stochastic community when one realized that martingales come into play. This is the
reason for a change of measure where the original real-world probability measure
P is replaced by an artificial martingale measure Q with Radon-Nikodym density q
w.r.t. P. One wants to study adequate prices pr(C) for a contingent claim C depend-
ing on the underlying financial derivative and maturing at N. In the present simple
model, one has C = f (SN) for some function f , since SN is the only random variable.
In multiperiod models, C is contingent upon the whole development of the stock up
to N. After a change of measure, one considers the present value principle under Q:

pr(C) = E[qB−1
N C] = EQ[B

−1
N C] with pr(SN) = EQ[B

−1
N SN ] = S0. (21.1)

Then {B−1
0 S0,B

−1
N SN} is a martingale under Q and pr( ·) is called a consistent price

system because of the relation pr(SN) = S0. In general however, one has several
choices for a martingale measure Q and one has to specify an additional preference
in order to distinguish one measure Q and thus one generally agreed prize. There-
fore, no preference-independent pricing of financial derivatives is possible.
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Construction of a Price System

Now we explain the relations to utility optimization and how to construct a martin-
gale measure Q and thus a consistent price system by the optimal investment θ ∗.
Let us consider the portfolio optimization problem where the wealth at N is Xθ

N =

BN(x−θ +S−1
0 θ B−1

N SN) defined as above and where we study maxθ E[U(B−1
N Xθ

N )].
Then we get for the optimal investment θ ∗ by differentiating:

E
[
U ′

(
B−1

N Xθ∗
N

)(
S−1

0 B−1
N SN −1

)]
= 0 or E

[
cU ′(B−1

N Xθ∗
N )B−1

N SN

]
= S0,

if the constant c is chosen such that E[cU ′(B−1
N X−1

N )] = 1. By a simple calculation
one obtains c = xE[U∗(B−1

N Xθ∗
N )]−1 with U∗(w) := U ′(w)w. Now we can set q =

cU ′(B−1
N Xθ∗

N ) for q as above and we get

pr(C) = xE
[
U∗

(
B−1

N Xθ∗
N

)]−1
E
[
U ′

(
B−1

N Xθ∗
N

)
B−1

N C
]

(21.2)

where typically x = 1. In fact we then have E[qB−1
N SN ] = S0 and q thus defines a

martingale measure. By a ‘marginal rate of substitution’ argument it can be shown
how this price depends in a traditional way on the investor’s preference or relative
risk aversion (see Davis [7], Schäl [26, Introduction]).

The Numeraire Portfolio

In the present paper, a special martingale measure Q is studied which is defined by
the concept of the numeraire portfolio. Then the choice of Q can be justified by
a change of numeraire (discount factor) in place of a change of measure. For this
approach one has to choose for U the log-utility with U ′(w) = w−1 and U∗(w) = 1
(see Becherer [2], Bühlmann and Platen [3], Christensen and Larsen [4], Goll and
Kallsen [9], Karatzas and Kardaras [13], Korn et al. [17], Korn and Schäl [15, 16],
Long [19], Platen [21], Schäl [25]). The optimal investment θ ∗ is called log-optimal.
In fact, then one obtains q = c(B−1

N Xθ∗
N )−1 and pr(C) = E[qB−1

N C] = E[c(Xθ∗
N )−1C]

and c = 1 for x = 1 since U∗(w) = 1. As a result we finally get

pr(C) = E[(Xθ∗
N )−1C]. (21.3)

Comparing (21.1) with the possibly wrong prize pr(C) = E[B−1
N C] (see above) and

with a consistent prize (21.1), we see the following: In (21.3) we stick to the original
probability measure but replace BN with the wealth Xθ∗

N which can be realized on
the market when starting with x = 1 on the bank account and investing according
to θ ∗. When looking for a discount factor, we thus assume that we will use x = 1 in
an optimal way instead of investing exclusively in the bank account. By the way, as
a consequence the (generalized) discount factor (Xθ∗

N )−1 is random.
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We think that it is easier to explain a change of the discount factor to a non-expert
than a change of measure since we here have a financial market where we have more
choices for investing one unit of money and not only the choice to invest in the bank
account.

The General Model with Transaction Costs

The problem of the paper is to carry over this idea to multiperiod financial models
(where N ≥ 1) in the presence of transaction costs. For such models, utility maxi-
mization and in particular log-optimality are also well studied. The wealth at stage n
will be given by portfolios (Yn,Zn) with generic values (y,z) describing the value of
the stock account and the bank account at time n, respectively. It is known that the
log-optimal dynamic portfolio can be described by two Merton lines in the (y,z)-
plane (see Kamin [12], Constantinides [5], Sass [22]) in place of one Merton line as
in the setting without transaction costs. For results in continuous time see Davis and
Norman [8], Magill and Constantinides [20] and Shreve and Soner [27].

Here we will contribute to that theory. We need a natural region for portfolios
(y,z) and therefore allow for negative values of y and z (but with y+ z > 0), i.e. for
short selling and borrowing. For any stage n < N, the region of admissible portfo-
lios will be the solvency region and it is divided by the two Merton lines into three
cones where it is optimal either (i) to buy (ii) to sell or (iii) not to trade, respectively.
These properties simplify numerical studies considerably. When looking for a nat-
ural region, ‘natural’ means that it is as large as possible and that these three cones
are not empty. The latter fact can happen if one restricts to nonnegative values of y
and z. We will provide a moment condition (R3) on the returns for the latter prop-
erty. Furthermore we will deal with open action spaces in order to be sure that the
optimal action lies in the interior. This is needed for the argument that the derivative
vanishes at a maximum point which was also used above in the simple explanatory
model.

Martingale Measures and the Numeraire Portfolio

Martingale measures and price systems are also discussed in the literature for mod-
els with transaction costs, see Jouini and Kallal [10], Koehl et al. [14], Kusuoka [18],
Schachermayer [24]. As explained above, they are basic for the concept of a nu-
meraire portfolio. Now the goal of the paper is the following: Study the log-optimal
dynamic portfolio and show that it defines a numeraire portfolio. The definition of
martingale measures is not so evident in the presence of transaction cost.

When maximizing the expected utility E[U(B−1
N (YN + ZN))], we will use YN +

ZN as total wealth at time N as in Bäuerle and Rieder [1, Sect. 4.5] and Cvitanić
and Karatzas [6]. A more general concept can also be used where one introduces
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liquidation costs L at time N and considers L(YN)+ZN in place of YN +ZN . For this
problem we refer the reader to Sass and Schäl [23]. Since L is not differentiable,
this case would cause a lot of additional problems and additional assumptions are
needed. Indeed, this paper aims at providing the proof in the case without liquidation
costs, since this case allows for much more straightforward arguments and requires
less assumptions.

A contingent claim C, maturing in N, is split into a contingent claim YC for the
stock account and a contingent claim ZC for the bank account. Then a price for
(YC,ZC) turns out to be

pr(YC,ZC) = E
[
(Y ∗

N +Z∗
N)

−1(YC +ZC)
]
. (21.4)

Here Y ∗
N +Z∗

N is the wealth at N under the optimal dynamic portfolio. The role of
(Y ∗

N + Z∗
N)

−1 is that of a generalized discount factor and (Y ∗
N ,Z

∗
N) is then called a

numeraire portfolio at N.

Main Result

As main result, the log-optimal portfolio indeed turns out to define a numeraire
portfolio also for models with transaction costs. As in the classical case without
transactions costs, the message is the following: under very general conditions you
don’t need to change the measure for pricing a contingent claim. You can stick to the
probability measure P describing the real market and thus being open to statistical
procedures. Instead of the bank account you must use the wealth of the log-optimal
policy, starting with one unit of money as usual, as reference unit or benchmark
(in the terminology of Platen [21]). Thus we see a contingent claim C relative to
Y ∗

N +Z∗
N . Working with P is also extremely useful when integrating the modeling of

risk into finance as in combined finance and insurance problems, see Bühlmann and
Platen [3].

21.2 The Financial Model

The bond with prices Bn, n = 0, . . . ,N, will be described by positive deterministic
interest rates rn −1 ≥ 0 and the stock with prices Sn, n = 0, . . . ,N, will be described
by the relative return process consisting of positive independent random variables
{Rn −1,n = 1, . . . ,N}. Let B0 = 1 and S0 > 0 be deterministic. Then

Bn = Bn−1rn, B−1
n Sn = B−1

n−1Sn−1Rn, n = 1, . . . ,N. (21.5)

We write F = {Fn,n = 0, . . . ,N} for the filtration generated by {Rn,n = 1, . . . ,N}
where F0 is trivial and F = FN .
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A trading strategy is given by a real valued F-adapted stochastic process {Δn,0≤
n < N} describing the amount of money (wealth) invested in the stock. For the
transaction Δn, the total cost K(Δn) with transaction costs 0 ≤ μ < 1, λ ≥ 0 has to
be paid, where

K(θ) := (1+λ )θ for θ ≥ 0, K(θ) := (1−μ)θ for θ ≤ 0. (21.6)

A trading strategy will define a dynamic portfolio {(Yn,Zn),0 ≤ n ≤ N} describing
the wealth {Yn} on the stock account and the wealth {Zn} on the bank account. We
get the budget equations

Yn = Y n−1rnRn, Zn = Zn−1rn (21.7)

Y n−1 = Yn−1 +Δn−1, Zn−1 = Zn−1 −K(Δn−1), (21.8)

where Y n−1 and Zn−1 are the wealth on the stock account and the bank account after
trading. We consider self-financing trading strategies where no additional wealth is
added or consumed. Then we have K(y) ≥ y and K(αy) = αK(y) (positive homo-
geneity).

We will only consider admissible trading strategies where the investor stays sol-
vent at any time in the following sense:

(a) YN +ZN > 0 and (b) Zn −K(−Yn)> 0 for n < N. (21.9)

Note that (21.9) implies Yn +Zn > 0 for n ≤ N.

21.3 The Markov Decision Model

To ease notation we shall now assume rn = 1 and thus Bn = 1, 1 ≤ n ≤ N. This a
usual assumption and means that one uses directly discounted quantities as B−1

n Sn

and B−1
n Bn = 1 instead of Sn and Bn.

We will work with a Markov decision process where the state is described by
(y,z) where y denotes the wealth on the stock account and z the wealth on the bank
account.

Definition 21.3.1.

a. The state space at n is SN := {(y,z) : y+ z > 0} for n = N and S := {(y,z) :
z−K(−y)> 0}= {(y,z) : (1−μ)y+ z > 0,(1+λ )y+ z > 0} for n < N.

b. An action θ will denote the transaction describing the amount of money
(wealth) invested in the stock. The set of admissible actions will be defined
below.

c. The law of motion is defined by the budget Eqs. (21.7) and (21.8) where {Rn,n=
1, . . . ,N} are independent (but not necessarily identically distributed) random
variables. Thus, given the state (y,z) and the action θ at n− 1, the distribution
of the state at n is that of

((y+θ)Rn,z−K(θ)) .
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SN is called the solvency region at stage N and S is called the solvency region
at all stages n < N. Obviously SN is defined as S replacing (λ ,μ) by (0,0). Thus,
SN and S are open convex cones and the boundaries are formed by half-lines. The
condition (21.9) can be written as (YN ,ZN)∈ SN and (Yn,Zn)∈ S for n < N. We will
make the following assumptions on Rn.

Assumption 21.3.2. We assume for n = 1, . . . ,N that Rn is bounded by real con-
stants R, R with

(R1) 0 < R ≤ Rn ≤ R,

(R2) R < 1−μ , 1+λ < R,

(R3) E[(Rn −R)−1] = E[(R−Rn)
−1] = ∞.

For convenience, we omit the index n for R, R. Assumption (R3) implies that R,
R are in the support of Rn. Then (R2) implies a no-arbitrage condition, i.e., there
is a chance that one can loose money and that one can win money when investing
in the stock. Assumption (R3) is by far not necessary. Indeed, one only needs that
E[(Rn −R)−1] and E[(R−Rn)

−1] are big enough. But it is complicated to quantify
this property for each stage. Assumption (R3) is satisfied if P(Rn = r)> 0 for r = R,
R or if Rn has the uniform distribution on [R,R].

Definition 21.3.3. Γ := {(y,z) : (yr,z) ∈ S for R ≤ r ≤ R} and ΓN are the pre-
solvency regions where ΓN is defined as Γ replacing S with SN and thus (λ ,μ)
by (0,0).

Obviously ΓN contains all states at time N−1 after trading such that the system is
in SN at time N for every possible value r of RN . Assumption (R2) now guarantees
that ΓN ⊂ S and one can move from any state (y,z) ∈ S \ΓN to a state (y+ θ ,z−
K(θ)) ∈ ΓN by buying (θ > 0) or selling (θ < 0).

Lemma 21.3.4. Γ = {(y,z) : (1 − μ)Ry + z > 0, (1 + λ )Ry + z > 0} and ΓN =
{(y,z) : Ry+z> 0, Ry+z> 0}. Γ and ΓN are closed convex cones and their bound-
aries are formed by two rays.

Definition 21.3.5. The set of admissible actions θ at stage n < N − 1 will be
chosen as

A(y,z) := {θ : (y+θ ,z−K(θ)) ∈ Γ }, (y,z) ∈ S,
and at stage N −1 as AN−1(y,z) defined as A(y,z) replacing Γ with ΓN .

Thus Δn−1 ∈ A(Yn−1,Zn−1) implies (Yn,Zn) ∈ S for n < N. Important quantities
will depend on the state (y,z) only through y/(y+ z) and are thus independent of
α on the ray {(αy,αz) : α > 0}. This fact will entail an important cone structure.
Therefore we introduce the risky fraction

Πn := Yn/(Yn +Zn). (21.10)

We will restrict attention to situations where Yn +Zn is strictly positive. Then Πn is
well-defined.
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Convention 21.3.6. If y,z, and π appear in the same context, then we always mean
π = y/(y+ z).

By use of Assumption (R2), it is easy to prove the following lemma.

Lemma 21.3.7. There exist some functions ϑ ,ϑ : (−λ−1,μ−1)→ R such that

A(y,z) = {θ ; ϑ(π)< θ/(y+ z)< ϑ(π)}.

The same result holds for AN−1 replacing (−λ−1,μ−1) by R, i.e. (λ ,μ) by (0,0).

Then the interval (ϑ(·),ϑ(·)) will be a function of Πn for (Yn,Zn) ∈ S . Note that
ϑ(π) may be negative (if π is too large) and ϑ(π) may be positive (if π is too small).

We will use the log-utility and consider the following maximization problem:

G∗
n(y,z) := sup E[log(YN +ZN) |Yn = y, Zn = z], (21.11)

where the supremum is taken over all admissible trading strategies. The expecta-
tion in (21.11) is well-defined. In fact, for given (y,z), the integrand log(YN +ZN)
is bounded from above. For that fact it is sufficient to consider the case without
transaction costs which was treated in Korn and Schäl [15, Theorem 4.12]. From
dynamic programming we know that we can restrict to Markov policies where
Δn = δn(Yn,Zn). There a trading strategy will be described by a Markov policy
{δn, n = 0, . . . ,N − 1} if the decision rule δn is a function on S with δN−1(y,z) ∈
AN−1(y,z) and δn(y,z) ∈ A(y,z) for n < N −1. Set

Gn(y,z) := E[G∗
n+1(yRn+1,z)]. (21.12)

Then the following optimality equation holds:

G∗
n(y,z) = max

θ
Gn(y+θ ,z−K(θ)), (21.13)

where θ runs through AN−1(y,z) for n = N − 1 and through A(y,z) for n < N − 1.
The optimality criterion states (see e.g. [1, Theorem 2.3.8]): If there are maximizers
θ ∗ = δn(y,z) such that

Gn(y+θ ∗,z−K(θ ∗)) = max
θ

Gn(y+θ ,z−K(θ)), (21.14)

then {δn} defines an optimal Markov policy.

Definition 21.3.8. We call a line {(y+ θ ,z− (1− μ)θ) : θ ∈ R} a sell-line and a
line {(y+θ ,z− (1+λ )θ) : θ ∈ R} a buy-line.

We can now state the main theorem on the structure of the optimal Markov policy.

Theorem 21.3.9. For n = N −1, . . . ,1,0 we have

a. There exist numbers −1/λ < an ≤ bn < 1/μ such that the following holds:
There exists an optimal Markov policy {δn} where {δn} is defined by



21.4 Martingale Properties of the Optimal Markov Decision Process 531

(i) δn = 0 on the no-trading cone T notr
n := {(y,z) ∈ S : an ≤ π ≤ bn},

(ii) δn(y,z) = θ < 0 on the sell cone T sell
n := {(y,z) ∈ S ; bn < π < 1/μ} such

that (y+θ ,z−(1−μ)θ) is situated on the ray {(αbn,α(1−bn)) : α ≥ 0},
(iii) δn(y,z)= θ > 0 on the buy cone T buy

n := {(y,z)∈S : −1/λ < π < an} such
that (y+θ ,z−(1+λ )θ) is situated on the ray {(αan,α(1−an)) : α ≥ 0}.

b. G∗
n(αy,αz) = logα +G∗

n(y,z) for α > 0 and G∗
n(y,z) is concave and isotone in

each component.
c. On the sell-line through (y,z), Gn attains its maximum in a point (αbn,α(1−

bn)) for some α ∈ R. On the buy-line through (y,z), Gn attains its maximum in
a point (αan,α(1−an)) for some α ∈ R.

d. The sell cone and the buy cone (and of course the no-trading cone) are not
empty.

Condition (R3) is only used for part (d) in Theorem 21.3.9, but it will play an
important role in Sects. 21.4 and 21.5. Now the theorem has the following inter-
pretation. Selling can be interpreted as walk on a sell-line in the (y,z)-plane. For
(y,z) in the sell-cone, optimal selling then means to walk on a sell-line (starting in
(y,z)) until one reaches the boundary of the no-trading-cone. The situation for the
buy-cone is similar. T notr

n ∪{0} is a closed convex cone and T notr
n degenerates to the

Merton-line if μ = λ = 0. In the present general case the boundaries of T notr
n may

be called the two Merton-lines. The proof of the theorem is given in Appendix 21.6.
A similar result holds for the power utility function Uγ(w) = γ−1wγ , 0 �= γ < 1 (see
Sass and Schäl [23]).

21.4 Martingale Properties of the Optimal Markov Decision
Process

Given the optimal policy {δn} from Theorem 21.3.9, the initial value (y,z), and the
sequence Rn(ω), n ≥ 1, we can construct the state process (Yn(ω),Zn(ω)), n ≥ 0.
In the sequel we will only consider this process {(Yn,Zn),n = 0, . . . ,N} determined
by the optimal policy. In this section we want to prove a martingale property of the
optimal Markov decision process which is important for the financial application. In
the model without transaction costs, {(Yn +Zn)

−1} is a martingale. In the presence
of transaction costs one has to modify Yn by a factor ρn which is close to one if the
transaction costs are small. Our main goal will be to prove that {(ρnYn +Zn)

−1} is
a martingale then.

Besides the risky fraction Πn we will consider the risky fraction after trading Π n

defined by

Π n := Y n/(Y n +Zn). (21.15)

Further we introduce

Π̂(π,r) :=
πr

πr+1−π
. (21.16)
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Then we obtain from Theorem 21.3.9:

Π n = 1{Πn≤an}an +1{an<Πn<bn}Πn +1{Πn≥bn}bn (21.17)

Πn+1 = Y nRn+1/(Y nRn+1 +Zn) = Π̂(Π n,Rn+1). (21.18)

By the definition of (Yn,Zn) above, we know that (21.11) becomes

G∗
n(y,z) = E[log(YN +ZN) |Yn = y,Zn = z]. (21.19)

Then we have G∗
N−1(y,z) = GN−1(y,z) for (y,z) in the no-trading cone aN−1 ≤ π ≤

bN−1 where
GN−1(y,z) = E[log(yRN + z)]. (21.20)

Definition 21.4.1. We define HN := YN +ZN = ρNYN +ZN , where ρN := 1, and for
n = N −1, . . . ,0

ρn := E[ρn+1Rn+1H−1
n+1 |Fn]/E[H−1

n+1 |Fn],

Hn := ρnYn +Zn.

Remark 21.4.2. In Definition 21.4.1, ρn is well-defined since Hn+1 is positive and
bounded away from zero given (Y n,Zn) = (y,z) ∈ ΓN (and Γ , respectively).

Lemma 21.4.3. One can write ρn = ρ̂n(Πn) for some function ρ̂n, i.e. ρn depends
on the history only through Πn.

a. For an ≤ π ≤ bn

ρ̂n(π) = E[ρ̂n+1(Π̂(π,Rn+1))Rn+1H−1
n+1]/E[H−1

n+1],

where Hn+1 = ρ̂n+1(Π̂(π,Rn+1))π Rn+1 +1−π .
b. For π ≤ an we have ρ̂n(π) = ρ̂n(an).
c. For π ≥ bn we have ρ̂n(π) = ρ̂n(bn).

Proof. For n = N we set ρ̂N = 1. For the induction step n+ 1 → n let Π n = π and
Y n + Zn = x be fixed. Then ρn = E[ρ̂n+1(Π̂(π,Rn+1)Rn+1H−1

n+1 |Fn]/E[H−1
n+1 |Fn],

where Hn+1 = ρ̂n+1(Πn+1)Yn+1 + Zn+1 = x
(
ρ̂n+1(Π̂(π,Rn+1))π Rn+1 +1−π

)
.

Thus ρn is in fact a function of Π n = π and thus ρ̂n a function of Πn.
Now (b) and (c) follow in view of (21.17). ��

Lemma 21.4.4. ρ̂n is continuous.

Proof. We know that ρN ≡ 1 is continuous. We will prove now that ρ̂n is continuous
if ρ̂n+1 is continuous. By Lemma 21.4.3(b), (c), ρ̂n is continuous for π ≤ an and for
π ≥ bn. For an ≤ π ≤ bn the statement follows from Lemma 21.4.3(a), since Π̂(π,r)
is continuous in π . ��
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Theorem 21.4.5.

a. {H−1
n ,n = 0, . . . ,N} is a martingale,

b. 1−μ ≤ ρn ≤ 1+λ , n = 0, . . . ,N.

The proof is given in Appendix 21.6.

21.5 Price Systems and the Numeraire Portfolio

Price Systems and Martingale Measures Q

In this section discount factors play an important role. Then the theory seems to
become more transparent if we write the discount factor B−1

n explicitly. We are in-
terested in an alternative probability measure Q with density q = dQ/dP w.r.t P,
where Q has the same null sets as P, i.e. Q and P are equivalent. Then we have

q > 0 a.s. and E[q] = 1, Q(A) =
∫

A
qdP for A ∈ F . (21.21)

Now consider a contingent claim (YC,ZC) maturing in N and split into a contingent
claim YC for the stock account and a contingent claim ZC for the bank account. We
want to find a price pr(YC,ZC) for (YC,ZC) and will use the following approach
(ansatz) if (YC,ZC) is bounded or if YC +ZC ≥ 0:

pr(YC,ZC) = EQ
[
B−1

N (YC +ZC)
]
= E

[
qB−1

N (YC +ZC)
]
. (21.22)

Theorem 21.5.1. pr( ·) as given by (21.22) defines a price system, i.e. one has
pr(YC,ZC)> 0 for any (YC,ZC) with the properties

YC +ZC ≥ 0 a.s., P(YC +ZC > 0)> 0. (21.23)

The proof of Theorem 21.5.1 is given by Kusuoka [18] for finite probability
spaces. There it is shown that the form (21.22) is also necessary for a consistent
price system as defined in Theorem 21.5.3 below. See also Sass and Schäl [23]. We
will write

qn := E[q |Fn]. (21.24)

Then {qn} is the density process and is a martingale under P by definition. Now we
define {ρn} given q = qN , ρN = 1. It will turn out that the process will agree with
{ρn} as defined in Sect. 21.4.

Definition 21.5.2. qnρnB−1
n Sn := E[qB−1

N SN |Fn], (i.e. ρn = EQ[Rn+1 · · ·RN |Fn]).

The equation in parentheses follows from Bayes’ rule. Then {qnρnB−1
n Sn} is a

martingale under P by definition which also means, in view of Bayes’ rule, that
{ρnB−1

n Sn} is a martingale under Q. If there are no transaction costs, i.e. λ = μ = 0,
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we have under condition (21.25) below ρn = 1, 1 ≤ n ≤ N. Then the discounted
stock price process {B−1

n Sn} forms a martingale under the probability measure Q
with density q and density process {qn}. That is the reason for calling Q a martin-
gale measure then.

Now we define the notion of a consistent price system and give a condition in
terms of {ρn}.

Theorem 21.5.3. Assume for 1 ≤ n ≤ N

1−μ ≤ ρn ≤ 1+λ . (21.25)

Then the price system pr( ·) is consistent, i.e.

pr(YC,ZC) = 1 for (YC,ZC) = (0,BN); (21.26)

(1−μ)S0 ≤ pr(YC,ZC)≤ (1+λ )S0 for (YC,ZC) = (SN ,0); (21.27)

pr(YC,ZC)≤ 0 for (YC,ZC) = (YN ,ZN), (21.28)

where (YN ,ZN) is the terminal portfolio under an arbitrary admissible policy with
start in (Y0,Z0) = (0,0).

Relation (21.26) is natural. If one starts with 1 unit of bond, then one can be sure
to have BN on the bank account at N. Relation (21.27) is also natural. Let us only
consider the case λ = μ = 0 without transaction costs. If one starts then with 1 unit
of stock, then one can be sure to have SN on the stock account at N. Relation (21.28)
excludes a sort of arbitrage opportunity. Starting with nothing one can never reach
a portfolio with a positive price. The proof of Theorem 21.5.3 is given by Kusuoka
[18] for finite probability spaces. There it is shown that (21.25) is also necessary for
a consistent price system.

The Numeraire Portfolio

Now we can explain the main purpose of the paper in terms of this section. We study
the following problem. Can we replace the discount factor B−1

N by a more general
one, H−1

N , where HN is the terminal total wealth under some traded portfolio, and
then keep to the original (physical) probability measure in place of Q. Thus we want
find an admissible policy with start in (Y0,Z0) and with total wealth HN = YN +ZN

at N such that E[qB−1
N (YC +ZC)] = E[H−1

N (YC +ZC)]. Then we have to define q by

B−1
N q = c(YN +ZN)

−1 = cH−1
N , c = E[H−1

N BN ]
−1, (21.29)

where the case c = 1 is of particular interest.
From now on, we return to the setting where Bn ≡ 1.

Lemma 21.5.4. The definition of {ρn} in Sect. 21.4 agrees with Definition 21.5.2
and we have qn = cH−1

n .

We will require that c = 1 in Corollary 21.1 below.
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Proof. Let (YN ,ZN) be the portfolio at N under the optimal policy as in Sect. 21.4.
Set HN := YN + ZN = ρNYN + ZN , ρn := E[ρn+1Rn+1H−1

n+1 |Fn]/E[H−1
n+1 |Fn] as in

Definition 21.4.1 and define Hn := ρnYn +Zn, n < N. Then we can conclude from
Theorem 21.4.5(a) that

{H−1
n } is a martingale. (21.30)

Upon setting q = qN := cH−1
N as above, we obtain qn = E[cH−1

N |Fn] = cH−1
n and

ρnH−1
n = ρnE[H−1

n+1 |Fn] = E[ρn+1Rn+1H−1
n+1 |Fn]. This yields

qnρnSn = cH−1
n ρnSn = cSn E[ρn+1Rn+1H−1

n+1 |Fn]

= cE[ρn+1Sn+1H−1
n+1 |Fn] = E[qn+1ρn+1Sn+1 |Fn].

Thus {qnρnSn} is a martingale under P and the definition of ρn in Sect. 21.4 agrees
with Definition 21.5.2. ��

Now we are allowed to apply Theorem 21.4.5(b) and we get condition (21.25).
Hence Theorem 21.5.3 applies and we know that pr(YC,ZC) = c [H−1

N (YC +ZC)] is
a consistent price system. For c we have 1 = E[q] = cE[H−1

N ] = cH−1
0 by (21.30).

Thus

c = H0 = ρ0Y0 +Z0. (21.31)

For models without transaction costs, one usually starts with one unit of money to
get the discount factor. If we do the same in the present case, then we start with
(Y0,Z0) = (0,1) and thus with c = H0 = 1. Thus we get the following corollary as
main result.

Corollary 21.1. Let {(Yn,Zn)} be generated by an optimal policy as in Sect. 21.4.
If we start with (Y0,Z0) = (0,1) or more generally with H0 = ρ0Y0 +Z0 = 1, then a
consistent price system is given by

pr(YC,ZC) = E[(YN +ZN)
−1(YC +ZC)].

Definition 21.5.5. In the situation of Corollary 21.1 we call the dynamic portfolio
{(Yn,Zn)} a numeraire portfolio.

21.6 Conclusive Remarks

Extension 21.6.1. A similar result can be derived for power utility Uγ(x) = xγ/γ
with U ′

γ(w) = wγ−1 and U∗
γ (w) =U ′

γ(w)w = wγ for 0 �= γ < 1, where γ = 0 would
correspond to the log-utility. When starting again with (Y0,Z0) = (0,1), one obtains
a consistent price system (see Sass and Schäl [23]) by

prγ(YC,ZC) = E[U∗
γ (YN +ZN)]

−1E[U ′
γ(YN +ZN)(Y

C +ZC)], (21.32)

where {(Yn,Zn)} now is the optimal dynamic portfolio for Uγ . Then (R3) is to be re-
placed by E[(Rn−R)γ−1] = E[(R−Rn)

γ−1] = ∞. Now (21.32) formally corresponds
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to formula (21.2), but YN + ZN still depends on the transaction costs. On the one
hand, the power utility allows to work with a more general relative risk aversion
1− γ of the investor. On the other hand we have to work with a probability measure
Qγ �= P. In fact, we then have

Qγ(A) =
∫

qγ dP, A ∈ F , and qγ = E[U∗
γ (YN +ZN)]

−1U ′
γ(YN +ZN)B̃N

if we decide for B̃−1
N as discount factor. We can choose B̃N = BN or B̃N = YN +ZN

or more generally B̃N = Y 0
N +Z0

N , where {(Y 0
n ,Z

0
n)} is the dynamic portfolio under

any admissible policy {δ 0
n }.

Algorithm 21.6.2. The pricing of financial derivatives under proportional transac-
tion costs can now be done efficiently as follows. First, by backward induction one
can find numerically the boundaries aN−1, . . . ,a0 and bN−1, . . . ,b0 of the no-trade-
region which exist according to Theorem 21.3.9(c). Second, having computed these
constants, the dynamic portfolio (Yn,Zn), n = 0, . . . ,N, under the optimal policy can
then be computed forwardly for any path of the stock prices. These computations
are independent of the specific claims we want to price. For any financial derivative
C = (YC,ZC) we find a price according to Corollary 21.1. Since this price system
is consistent, the resulting price does not lead to arbitrage. This price is preference
based. Since it depends on the log-optimal portfolio it corresponds to an investor
with logarithmic utility which has relative risk aversion 1. Different relative risk
aversions 1− γ > 0 can be covered by using power utility functions as in Exten-
sion 21.6.1. Also for these the computation is efficient in the sense that the optimal
policy can be computed first and then prices for any claim can be found by taking
expectations as in (21.32).

The formulation of a utility optimization problem in discrete time 0 ≤ n ≤ N for
a financial market as a Markov decision model is now classical. This is also true
for models with transaction costs (see Kamin [12], Constantinides [5]). However
we add some new features. In particular, we use the first order condition of the
optimal action as for (21.2). For that argument, it is necessary that the optimal action
lies in the interior of the action space which is guaranteed by working with open
action spaces. In fact, the first order condition leads to the martingale property in
Theorem 21.4.5(a).

In Lemma 21.5.4, {H−1
n } is identified as the density process {qn} and we see that

the martingale property for {H−1
n } must necessarily hold. Moreover this property is

also used in Lemma 21.5.4 to show that {H−1
n ρnSn} is a martingale as well.

The paper treats a financial model with one stock (and one bond). But models
with d stocks (d > 1) and transition costs play an important role and one can ask for
extensions of the present results to models with several stocks. Numerical results
show that for d > 1 the structure of the optimal policy may be complicated. Without
knowing the structure of the optimal policy, one can however prove by use of the
methods of Kallsen and Muhle-Karbe [11] that the main result remains true for
models where the underlying probability space is finite. In fact, for such models the
optimal policy defines a dynamic portfolio which is a numeraire portfolio. It seems
to be unknown whether this extends to infinite probability spaces.
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Appendices

Proof of Theorem 21.3.9

We will use backward induction in the dynamic programming procedure. Thus stage
N −1 will be the stage of the induction start. We set

gN(y,z) := log(y+ z) for (y,z) ∈ SN ,

GN−1(y,z) := E[gN(yRN ,z)] for (y,z) ∈ ΓN .

For the induction, we now consider the following more general optimization prob-
lem: The gain function g(y,z) is any function on SN satisfying the following hy-
potheses:

g is isotone in each component, concave, and g(αy,αz)= log(α)+g(y,z) for α>0.
(21.33)

Moreover we will use the following technical assumption:

For 0 �= (y′,z′) ∈ ∂SN there is a neighborhood N of (y′,z′) (21.34)

such that g(y,z) = log(y+ z)+ const on N .

Obviously (21.33) and (21.34) generalize the case where g = gN . Define the objec-
tive function by G(y,z) := E[g(yRN ,z)], (y,z) ∈ ΓN ,

G∗(y,z) := sup
θ∈AN−1(y,z)

G(y+θ ,z−K(θ))

= sup
ϑ(π)<ϑ<ϑ(π)

G(y+ϑ(y+ z),z−K(ϑ(y+ z)))

for (y,z) ∈ S . From dynamic programming we know that θ ∗ = δ ∗(y,z) is optimal
in state (y,z) at stage N − 1 if G∗(y,z) = G(y + θ ∗,z − K(θ ∗)) where G∗ is the
optimal gain function at stage N − 1 for the special case “g = gN”. G∗ will inherit
the properties of g.

Lemma 21.7.1.

a. G(y,z) is concave and isotone in each component and

G(αy,αz) = log(α)+G(y,z) for α > 0.

b. (Concavity and Isotony of AN−1)

(i) If θi ∈ AN−1(yi,zi) , γi > 0, i = 1,2, γ1 + γ2 = 1, then ∑γiθi ∈
AN−1(∑γi(yi,zi)).

(ii) AN−1 is increasing in each component, i.e., AN−1(y1,z1) ⊆ AN−1(y2,z2)
for y1 ≤ y2, z1 ≤ z2.
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c. G∗(αy,αz) = log(α)+G∗(y,z) for α > 0.

The simple proof is omitted. It makes use of the convexity of K and the relation

θ ∈ AN−1(αy,αz) if and only if θ ∈ {ϑ α(y+ z) : ϑ(π)< ϑ < ϑ(π)}.

The hypothesis (21.33) for G∗ in place of g will now follow from the following fact.

Proposition 21.7.2. G∗(y,z) is concave and isotone in each component.

The arguments of the proof are standard in dynamic programming (see Bäuerle
and Rieder [1]). The proof of Lemma 21.7.1(c) (also standard) would show that αθ ∗

is a maximizer for

G∗(αy,αz) = sup
θ∈AN−1(αy,αz)

G(αy+θ ,αz−K(θ)),

if θ ∗ is a maximizer for G∗(y,z). Therefore we can restrict attention to the case y+
z = 1 and we will consider (y,z) = (π,1−π) ∈ S . Now fix some π , say π = 1

2 , and
consider the following sell-line �sell and buy-line �buy in the (y,z)-plane parametrized
by ϑ :

�sell =

{(
1
2
+ϑ ,

1
2
− (1−μ)ϑ

)
: ϑ ∈ R

}
,

�buy =

{(
1
2
+ϑ ,

1
2
− (1+λ )ϑ

)
: ϑ ∈ R

}
.

Proposition 21.7.3. The maxima of G on �sell ∩ΓN and on �buy ∩ΓN are attained.

Proof. (i) We will only consider �sell and set R := RN . We know that (yN ,zN) :=
( 1

2 +ϑ , 1
2 − (1−μ)ϑ) ∈ ∂ΓN where ϑ := ϑ( 1

2 ). Now set s := ϑ −ϑ < 0 and define
the concave function

I(ϑ) := G(
1
2
+ϑ ,

1
2
− (1−μ)ϑ) = I(s+ϑ) = E[g((yN + s)R,zN − (1−μ)s)].

We will show below that the one-sided derivative d−
dϑ I(ϑ) = d−

ds I(s+ϑ) is negative
if ϑ is close to ϑ . This fact implies that I(ϑ) is decreasing if ϑ approaches ϑ and
thus I(ϑ) cannot be close to sup I. We only consider the case where yN > 0, zN < 0.
A similar argument will hold for the other boundary point of �sell.
(ii) Now we study d−

ds I(s + ϑ) = E[ d−
ds g((yN + s)R,zN − (1 − μ)s)], where the

equality follows from the monotone convergence theorem and the concavity. If
0 < η < yN ∧ (1 − μ − R) is small, then ((yN + s)r,zN − (1 − μ)s) is close to
(yNR,zN) ∈ ∂SN for −η < s < 0 and R ≤ r ≤ R+η . By hypothesis (21.34) we
then may assume that

g(y,z) = log(y+ z)+ const for (y,z) = ((yN + s)r,zN − (1−μ)s). (21.35)
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In order to use Fatou’s lemma we will show that d−
ds g((yN + s)R,zN − (1− μ)s) is

bounded from above by some c, say. Indeed we know from (21.33) that

g((yN + s)r,zN − (1−μ)s) = log((yN + s)r)+g(1,q(s)/r)

for q(s) := (zN − (1−μ)s)/(yN + s). Note that q(s) is decreasing. Now g(1,q(s)/r)
inherits this property since g is increasing; therefore its one-sided derivative d−

ds is
bounded from above by zero. The derivative log((yN + s)r) is obviously bounded
from above. Now we can conclude

limsup
ϑ→ϑ

d−

dϑ
I(ϑ)≤ E[limsup

s↗0

d−

ds
g((yN + s)R,zN − (1−μ)s)]≤ A+cP(R > R+η),

where A := E
[
1{R≤R+η}(yNR+ zN)

−1(R− (1−μ))
]

in view of (21.35). There we
have R− (1−μ)≤ (R+η)− (1−μ)≤ R− (1−μ)+η < 0. Now (yN ,zN) ∈ ∂ΓN

implies RyN + zN = 0 and thus (yNR+ zN)
−1 = (yN(R−R))−1. From (R3) we then

know that E[1{R≤R+η}(yN R+ zN)
−1] = ∞. This finally implies A =−∞. ��

Definition 21.7.4. Let (y−,z−) and (y+,z+) be maximum points of G on �sell ∩ΓN

and �buy∩ΓN , respectively. If there is more than one, define (y−,z−) (resp. (y+,z+))
such that the y-value y− is maximal (resp. y+ is minimal). Set a := y+/(y+ + z+),
b := y−/(y−+ z−).

Then in view of Lemma 21.7.1 we have for each α > 0

G(αy−,αz−) ≥ G(αy−+θ ,αz−− (1−μ)θ) for all θ and “>” if θ > 0

(21.36)

G(αy+,αz+) ≥ G(αy++θ ,αz+− (1+λ )θ) for all θ and “>” if θ < 0.

Lemma 21.7.5. a ≤ b.

Since the proof is similar to the proofs in the literature (Sass and Schäl [23]
applies literally), it will be omitted. We will now study the following non-empty
cones.

Definition 21.7.6. T sell := {(y,z) ∈ S ; b < π < 1/μ} ,
T buy := {(y,z) ∈ S ; −1/λ < π < a} ,
T notr := {(y,z) ∈ S ; a ≤ π ≤ b}= S \ (T sell ∪T buy) .

By the definition of y±, the interval [a,b] is chosen as large as possible. Thus one
does not need to trade under the optimal policy if it is not absolutely necessary.

Proposition 21.7.7. For (y,z) ∈ T notr, it is optimal not to buy and not to sell.
For (y,z) ∈ T sell it is optimal to sell |θ−| where θ− = δ ∗(y,z) is defined by (21.37)
below.
For (y,z) ∈ T buy it is optimal to buy θ+ where θ+ = δ ∗(y,z) is defined by (21.38)
below.
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Proof. If (y,z) ∈ T sell, then

(y+θ−,z− (1−μ)θ−) = α ′(b,1−b) = α(y−,z−) ∈ α �sell (21.37)

for some α , α ′ > 0, θ− < 0. As a consequence

G(y+θ−,z− (1−μ)θ−) = G(αy−,αz−)

= max
θ

G(αy−+θ ,αz−− (1−μ)θ)

= max
θ ′

G(y+θ ′,z− (1−μ)θ ′)

≥ max
θ ′≥0

G(y+θ ′,z− (1+λ )θ ′)

in view of Lemma 21.7.1(c) and (21.36). Since

G∗(y,z) = max{sup
θ≥0

G(y+θ ,z− (1+λ )θ), sup
θ≤0

G(y+θ ,z− (1−μ)θ)},

we conclude that G(y+ θ−,z− (1− μ)θ−) = G∗(y,z). Hence it is optimal to sell
|θ−| (i.e. buy θ− < 0) in state (y,z).

Now let (y,z) /∈ T sell Then (y,z) = (αy−+θ−,αz−−(1−μ)θ−) for some α > 0,
θ− ≤ 0. Now G(αy−+θ ,αz−−(1−μ)θ) is concave in θ . Then for ε > 0 we know
that G(αy−,αz−) ≥ G(y,z) ≥ G(y− ε ,z− (1− μ)(−ε)) Therefore “no selling” is
as least as good as “selling any amount ε” in state (y,z).

Analogous results hold for T buy where we define θ+ for (y,z) ∈ T buy by

(y+θ+,z− (1+λ )θ+) = α ′(a,1−a) = α(y−,z−) (21.38)

for some α , α ′ > 0, θ+ > 0. ��

Corollary 21.2.

a. Let (y,z) be in the closure of T sell. Then

G∗(y,z) = log((1−μ)y+ z)+G(b,1−b)− log(1−μb).

b. Let (y,z) be in the closure of T buy. Then

G∗(y,z) = log((1+λ )y+ z)+G(a,1−a)− log(1+λa)

c. For (y,z) ∈ T notr we have G∗(y,z) = G(y,z).

Proof. We only consider (a). By continuity it is sufficient to consider (y,z) ∈ T sell.
Then it is optimal to sell |θ−| yielding according to (21.37)

G∗(y,z) = G(y+θ−,z− (1−μ)θ−) = G(αb,α(1−b)) = log(α)+G(b,1−b).

From (y+θ−,z−(1−μ)θ−) = (αb,α(1−b)) we get α = ((1−μ)y+z)/(1−μb).
��
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From the corollary we conclude that G∗ and S satisfy hypothesis (21.34) in place
of g and SN .

Now we can start the induction step of dynamic programming in order to find an
optimal trading strategy {δn, 0 ≤ n < N} which is known to be Markovian, i.e. δn

is a function of the state (y,z) ∈ S in stage n. Upon choosing g = gN , G = GN−1

(defined as above), we obtain δN−1 := δ ∗ where δ ∗ is also defined as above. As G∗

satisfies the hypothesis imposed on g, we can now repeat the optimization step, if
we replace SN by S and AN−1 by A(y,z) := {θ : (y+θ ,z−K(θ)) ∈ Γ }.

Proof of Theorem 21.4.5

From now on we use the notion martingale for a martingale under P (and not under
Q) and we write En[ · ] := E[ · |Fn] for the conditional expectations given R1, . . . ,Rn.

Induction Start

Set R = RN , a = aN−1 , b = bN−1, Ĝ(y,z) = GN−1(y,z) = E[log(yR+ z)].

Lemma 21.7.8. ∂
∂θ Ĝ(y+θ ,z− kθ)|θ=0 = E[(R− k)(yR+ z)−1] for k > 0.

Proof. We will prove

∂±

∂θ
Ĝ(y+θ ,z− kθ)|θ=0 = E[(R− k)(yR+ z)−1] for k > 0. (21.39)

We know that log((y+θ)R+ z−kθ) and thus Ĝ(y+θ ,z−kθ) are concave in θ . In
limθ→0±

1
θ
(
Ĝ(y+θ ,z− kθ)− Ĝ(y,z)

)
we only need to interchange lim and expec-

tation which can be justified by monotone convergence. ��

Lemma 21.7.9. Let (YN−1,ZN−1) = (y,z), a ≤ π ≤ b. Then

a. E[R(yR+ z)−1]≤ (1+λ )E[(yR+ z)−1];
b. E[R(yR+ z)−1]≥ (1−μ)E[(yR+ z)−1].

Proof. (a) In (y,z) “not to order” is at least as good as “to buy”, hence

0 ≥ 1
θ
(
Ĝ(y+θ ,z− (1+λ )θ)− Ĝ(y,z)

)
for θ > 0

by the optimality criterion (21.14). Part (b) is similar. ��

Lemma 21.7.10 (First Order Condition).

a. E[R(bR+1−b)−1] = (1−μ)E[(bR+1−b)−1];
b. E[R(aR+1−a)−1] = (1+λ )E[(aR+1−a)−1].



542 J. Sass and M. Schäl

Proof. (a) By Theorem 21.3.9, (b,1−b) is a maximum point on the sell-line through
(b,1−b) and (a,1−a) is a maximum point on the buy-line through (a,1−a). Now
Lemma 21.7.8 applies. ��

Lemma 21.7.11.

a. 1−μ ≤ ρN−1 ≤ 1+λ ;
b. ρ̂N−1(a) = 1 + λ = ρ̂N−1(π) for π ≤ a; ρ̂N−1(b) = 1 − μ = ρ̂N−1(π) for

π ≥ b.

Proof. In view of Lemma 21.4.3(b), (c), we only consider the case (YN−1,ZN−1) =
(y,z), a ≤ π ≤ b. Then we have HN = yR+ z

We get ρ̂N−1(π) = E[RH−1
N ]/E[H−1

N ] from Lemma 21.4.3 and thus statement (a)
from Lemma 21.7.9. In the same way we obtain (b) from Lemma 21.7.10. ��

Theorem 21.7.12.

a. EN−1[H
−1
N ] = H−1

N−1 (martingale property of H−1);
b. EN−1[ρNRNH−1

N ] = ρN−1H−1
N−1.

Proof. (a) We have

1 = EN−1[HNH−1
N ] = EN−1[(ρNYN +ZN)H

−1
N ]

= Y N−1EN−1[ρNRNH−1
N ]+ZN−1EN−1[H

−1
N ]

=
(
ρN−1Y N−1 +ZN−1

)
EN−1[H

−1
N ]

= (ρN−1(YN−1 +ΔN−1)+ZN−1 −K(ΔN−1))EN−1[H
−1
N ]

= (HN−1 +ρN−1ΔN−1 −K(ΔN−1))EN−1[H
−1
N ].

From Lemma 21.7.11(b) we get ρN−1ΔN−1 = K(ΔN−1) which yields (a).
Part (b) follows now from the definition of ρN−1. ��

Corollary 21.3 (Induction Start). For k > 0

∂
∂θ

EN−1[G
∗
N((y+θ)RN ,z− kθ)]|θ=0 = (ρN−1 − k)H−1

N−1

where G∗
N(y,z) = log(y+ z).

Proof. Lemma 21.7.8 applies directly, where HN = yRN + z. ��

We thus know that the following induction hypothesis holds for n = N −1:

Induction Hypothesis 21.7.13.

i. For Yn = y, Zn = z, Πn = π

∂
∂θ

E[G∗
n+1((y+θ)Rn+1,z− kθ)]|θ=0 = (ρ̂n(π)− k)H−1

n for an ≤ π < bn;

ii. ρ̂n(an) = 1+λ = ρ̂n(π) for π ≤ an; ρ̂n(bn) = 1−μ = ρ̂n(π) for π ≤ bn.
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Induction Step “N > n → n−1”

We assume throughout this section that the induction hypothesis holds for n < N.
Suppose that Yn−1 = y, Zn−1 = z are given. We know that Πn = Π̂(π,Rn) where Π̂ is
defined by (21.16) and set G(y,z) := E[G∗

n(yRn,z)], hence G∗
n−1(y,z) = supθ G(y+

θ ,z−K(θ)), ρn := ρ̂n(πn). Then we have Hn = ρnyRn + z for an−1 ≤ π ≤ bn−1.

Proposition 21.7.14. Suppose an−1 ≤ π ≤ bn−1 and k > 0. Then

d
dθ

G(y+θ ,z− kθ)|θ=0 = En−1[(ρnRn − k)H−1
n ] = (ρ̂n−1(π)− k)En−1[H

−1
n ]

Proof. Let y,z be arbitrary. We consider one-sided derivatives. Since θ �→ G∗
n((y+

θ)Rn,z− kθ) is concave by Theorem 21.3.9, we can interchange lim (i.e. d±
dθ ) and

E[ · ] by the monotone convergence theorem. Consider first limθ→0+.
Then we have to study for fixed Rn = s and hence for fixed Πn = ys/(ys+ z)

lim
θ→0+

1
θ
(G∗

n((y+θ)s,z− kθ)−G∗
n(ys,z)) . (21.40)

Case (i, ii): πn ≥ bn or πn < an, respectively. We know (by Theorem 21.3.9) that
G∗

n(ys,z) = log(�ys+ z)+const with �= 1−μ or �= 1+λ , respectively. By conti-
nuity this is also true for πn = bn and πn = an. We can write for the limit in (21.40)

d+

dθ
log(�(y+θ)s+ z− k θ)|θ=0 = (�s− k)(�ys+ z)−1

= (ρ̂n(Πn)s− k)(ρ̂n(Πn)ys+ z)−1 = (ρ̂n(Πn)s− k)H−1
n .

Case (iii) an ≤ πn < bn. Then G∗
n(ys,z) = En[G∗

n+1(ysRn+1,z)] by the optimality
properties (21.13), (21.14) and Theorem 21.3.9. Hence for small θ

1
θ
(G∗

n((y+θ)Rn,z− kθ)−G∗
n(yRn,z))

= E

[
1
θ
(
G∗

n+1((y+θ)sRn+1,z− kθ)−G∗
n+1(ysRn+1,z)

)]

= sE

[
1

sθ

(
G∗

n+1((ys+θs)Rn+1,z−
k
s

sθ)−G∗
n+1(ysRn+1,z)

)]
.

The latter term converges for θ→0+ by Induction Hypothesis 21.7.13 (i) to
s(ρ̂n(πn)− k/s)H−1

n = (sρ̂n(πn)− k)H−1
n .

Altogether for all cases:

lim
θ→0+

1
θ
(G∗

n(ys+ sθ ,z− kθ)−G∗
n(ys,z)) = (ρ̂n(Πn)s− k)H−1

n .

Thus we finally obtain

lim
θ→0+

1
θ
(G(y+θ ,z− kθ)−G(y,z)) = En−1[(ρ̂n(πn) ·Rn − k)H−1

n ].

The case limθ→0− is similar. ��
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Lemma 21.7.15. an−1 < bn−1 for (λ ,μ) �= (0,0).

Proof. We will write a = an−1, b = bn−1. We must prove that a �= b since we know
a ≤ b. Assume that a = b. Then a and b are maximum points on the buy-line and
the sell-line through (a,1− a) = (b,1− b), respectively. From Proposition 21.7.14
we then obtain for y = a = b, k ∈ {1+λ ,1−μ}

d
dθ

G(y+θ ,z− kθ)|θ=0 = En−1[(ρnRn − k)H−1
n ] = 0,

hence En−1[ρnRnH−1
n ] = kEn−1[H−1

n ]. This equation cannot hold for two different
values of k ∈ {1+λ ,1−μ}. Thus a < b. ��
Proposition 21.7.16.

a. 1−μ ≤ ρn−1 ≤ 1+λ ;
b. ρ̂n−1(an−1) = 1+λ = ρ̂n−1(π) for π ≤ an, ρ̂n−1(bn−1) = 1− μ = ρ̂n−1(π)

for π ≥ bn.

Proof. By use of Proposition 21.7.14, the proof is similar to that of Lem-
mata 21.7.11. ��
Proposition 21.7.17. The martingale property of {H−1

n−1,H
−1
n } holds: En−1[H−1

n ] =

H−1
n−1.

Proof. By use of Propositions 21.7.14 and 21.7.16, the proof is the same as the
proof of Theorem 21.7.12(a). ��

In view of Propositions 21.7.16 and 21.7.17 we thus proved Theorem 21.4.5 for
n−1 and the proof by induction is finished.

Notation

Since we have a non-stationary model and since we need some concepts (and their
notation) from finance, our notation is not always standard and we shall in this
appendix relate some of our notation to the concepts of classical MDP.

S and SN state space at time n < N and at time N, respectively,
(y,z) ∈ R2 state vector,
log(y+ z) final reward at time N depending on the final state

(YN ,ZN) = (y,z); the reward at time n < N is 0,
θ action,
E[log(y+θ)RN + z−K(θ))] expected one-step reward at time N −1 in state (y,z)

under action θ ,
A(y,z),AN−1(y,z) set of actions available in state (y,z) at time n < N

and at time N, respectively,
δn decision rule at time n,
δn(x,y) action at time n under decision rule δn if in

state (y,z),
{δ0, . . . ,δN−1}= {δn} policy with decision rule δn at time

n = 0,1, . . . ,N −1.
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Further,

P(B′ ×B′′ |n,yn−1,zn−1,θn−1) =

∫

B′×B′′
P(dyn,dzn |n,yn−1,zn−1,θn−1)

= Prob
(
((yn−1 +θn−1)Rn,zn−1 −K(θn−1)) ∈ B′ ×B′′)

for measurable B′ ×B′′ ⊆ R2 is the (non-stationary) transition probability, and

E[log(YN +ZN |Yn = y,Zn = z]

is the value function at time n in state (y,z) over N −n future steps under a Markov
policy with decision rules {δ0, . . . ,δN−1}, where (Ym,Zm) for n<m≤N is described
by the random variables Rn+1, . . . ,RN according to

Ym+1 = (Ym +δm(Ym,Zm))Rm and Zm+1 = Zm −K(δm(Ym,Zm)).

Finally, the optimal value function at time n in state (y,z) over N −n future steps is

G∗
n(y,z) = sup E[log(YN +ZN) |Yn = y,Zn = z],

where the supremum is taken over all admissible Markov policies.
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1. N. Bäuerle, U. Rieder, Markov Decision Processes with Applications in Finance
(Springer, Berlin, 2011)

2. D. Becherer, The numeraire portfolio for unbounded semimartingales. Finance
Stochast. 5, 327–341 (2001)
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