
International Series in
Operations Research & Management Science

Richard J. Boucherie
Nico M. van Dijk Editors

Markov
Decision
Processes
in Practice

International Series in Operations Research
& Management Science

Volume 248

Series Editor

Camille C. Price
Stephen F. Austin State University, TX, USA

Associate Series Editor

Joe Zhu
Worcester Polytechnic Institute, MA, USA

Founding Series Editor

Frederick S. Hillier
Stanford University, CA, USA

More information about this series at http://www.springer.com/series/6161

http://www.springer.com/series/6161

Richard J. Boucherie • Nico M. van Dijk
Editors

Markov Decision Processes
in Practice

123

ISSN 0884-8289 ISSN 2214-7934 (electronic)
International Series in Operations Research & Management Science
ISBN 978-3-319-47764-0 ISBN 978-3-319-47766-4 (eBook)
DOI 10.1007/978-3-319-47766-4

Library of Congress Control Number: 2017932096

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editors
Richard J. Boucherie
Stochastic Operations Research
University of Twente
Enschede, The Netherlands

Nico M. van Dijk
Stochastic Operations Research
University of Twente
Enschede, The Netherlands

To
Carla,
Fabian, Daphne, Deirdre, and Daniël –

Thanks for being there in difficult times,
Richard

P. Dorreboom and his daughter –
for coping with my passions,

Nico

Foreword

I had the pleasure of serving as the series editor of this series over its first 20 years
(from 1993 through October, 2013). One of the special pleasures of this work was
the opportunity to become better acquainted with many of the leading researchers
in our field and to learn more about their research. This was especially true in the
case of Nico M. van Dijk, who became a friend and overnight guest in our home. I
then was delighted when Nico and his colleague, Richard J. Boucherie, agreed to be
the editors of a handbook, Queueing Networks: A Fundamental Approach, that was
published in 2010 as Vol. 154 in this series. This outstanding volume succeeded in
defining the current state of the art in this important area.

Because of both its elegance and its great application potential, Markov deci-
sion processes have been one of my favorite areas of operations research. A full
chapter (Chap. 19 in the current tenth edition) is devoted to this topic in my text-
book (coauthored by the late Gerald J. Lieberman), Introduction to Operations Re-
search. However, I have long been frustrated by the sparsity of publications that
describe applications of Markov decision processes. This was less true about 30
years ago when D.J. White published his seminal papers on such real applications
in Interfaces (see the November–December 1985 and September–October 1988 is-
sues). Unfortunately, relatively few papers or books since then have delved much
into such applications. (One of these few publications is the 2002 book edited by
Eugene Feinberg and Adam Shwartz, Handbook of Markov Decision Processes:
Methods and Applications, which is Vol. 40 in this series.)

Given the sparse literature in this important area, I was particularly delighted
when the outstanding team of Nico M. van Dijk and Richard J. Boucherie accepted
my invitation to be the editors of this exciting new book that focuses on Markov
decision processes in practice. One of my last acts as the series editor was to work
with these coeditors and the publisher in shepherding the book proposal through the
process of providing the contract for its publication. I feel that this book may prove

vii

viii Foreword

to be one of the most important books in the series because it sheds so much light
on the great application potential of Markov decision processes. This hopefully will
lead to a renaissance in applying this powerful technique to numerous real problems.

Stanford University Frederick S. Hillier
July 2016

Preface

It is over 30 years ago since D.J. White started his series of surveys on practical
applications of Markov decision processes (MDP),1,2,3 over 20 years after the phe-
nomenal book by Martin Puterman on the theory of MDP,4 and over 10 years since
Eugene A. Feinberg and Adam Shwartz published their Handbook of Markov De-
cision Processes: Methods and Applications.5 In the past decades, the practical de-
velopment of MDP seemed to have come to a halt with the general perception that
MDP is computationally prohibitive. Accordingly, MDP is deemed unrealistic and
is out of scope for many operations research practitioners. In addition, MDP is ham-
pered by its notational complications and its conceptual complexity. As a result,
MDP is often only briefly covered in introductory operations research textbooks
and courses. Recently developed approximation techniques supported by vastly in-
creased numerical power have tackled part of the computational problems; see, e.g.,
Chaps. 2 and 3 of this handbook and the references therein. This handbook shows
that a revival of MDP for practical purposes is justified for several reasons:

1. First and above all, the present-day numerical capabilities have enabled MDP
to be invoked for real-life applications.

2. MDP allows to develop and formally support approximate and simple practical
decision rules.

3. Last but not least, MDP’s probabilistic modeling of practical problems is a skill
if not art by itself.

1 D.J. White. Real applications of Markov decision processes. Interfaces, 15:73–83, 1985.
2 D.J. White. Further real applications of Markov decision processes. Interfaces, 18:55–61, 1988.
3 D.J. White. A Survey of Applications of Markov Decision Processes. Journal of the Operational
Research Society, 44:1073–1096, 1993.
4 Martin Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, 1994.
5 Eugene A. Feinberg and Adam Shwartz, editors. Handbook of Markov Decision Processes:
Methods and Applications. Kluwer, 2002.

ix

x Preface

This handbook Markov Decision Processes in Practice aims to show the power
of classical MDP for real-life applications and optimization. The handbook is struc-
tured as follows:

Part I: General Theory
Part II: Healthcare
Part III: Transportation
Part IV: Production
Part V: Communications
Part VI: Financial Modeling

The chapters of Part I are devoted to the state-of-the-art theoretical foundation of
MDP, including approximate methods such as policy improvement, successive ap-
proximation and infinite state spaces as well as an instructive chapter on approx-
imate dynamic programming. Parts II–VI contain a collection of state-of-the-art
applications in which MDP was key to the solution approach in a non-exhaustive
selection of application areas. The application-oriented chapters have the following
structure:

• Problem description
• MDP formulation
• MDP solution approach
• Numerical and practical results
• Evaluation of the MDP approach used

Next to the MDP formulation and justification, most chapters contain numerical
results and a real-life validation or implementation of the results. Some of the chap-
ters are based on previously published results, some are expanding on earlier work,
and some contain new research. All chapters are thoroughly reviewed. To facilitate
comparison of the results offered in different chapters, several chapters contain an
appendix with notation or a transformation of their notation to the basic notation
provided in Appendix A. Appendix B contains a compact overview of all chapters
listing discrete or continuous modeling aspects and the optimization criteria used in
different chapters.

The outline of these six parts is provided below.

Part I: General Theory

This part contains the following chapters:

Chapter 1: One-Step Improvement Ideas and Computational Aspects
Chapter 2: Value Function Approximation in Complex Queueing systems
Chapter 3: Approximate Dynamic Programming by Practical Examples
Chapter 4: Server Optimization of Infinite Queueing Systems
Chapter 5: Structures of Optimal Policies in MDP with Unbounded Jumps: The

State of Our Art

Preface xi

The first chapter, by H.C. Tijms, presents a survey of the basic concepts underly-
ing computational approaches for MDP. Focus is on the basic principle of policy im-
provement, the design of a single good improvement step, and one-stage-look-ahead
rules, to, e.g., generate the best control rule for the specific problem of interest, for
decomposition results or parameterization, and to develop a heuristic or tailor-made
rule. Several intriguing queueing examples are included, e.g., with dynamic routing
to parallel queues.

In the second chapter, by S. Bhulai, using one-step policy improvement is
brought down to the essence of understanding and evaluating the relative value func-
tion of simple systems that can be used in the control of more complicated systems.
First, the essence of this relative value function is nicely clarified by standard birth
death M/M/s queueing systems. Next, a number of approximations for the relative
value function are provided and applied to more complex queueing systems such as
for dynamic routing in real-life multiskilled call centers.

Chapter 3, by Martijn Mes and Arturo Pérez Rivera, continues the approximation
approach and presents approximate dynamic programming (ADP) as a powerful
technique to solve large-scale discrete-time multistage stochastic control problems.
Rather than a more fundamental approach as, for example, can be found in the excel-
lent book of Warren B. Powell,6 this chapter illustrates the basic principles of ADP
via three different practical examples: the nomadic trucker, freight consolidation,
and tactical planning in healthcare.

The special but quite natural complication of infinite state spaces within MDP
is given special attention in two consecutive chapters. First, in Chap. 4, by András
Mészáros and Miklós Telek, the regular structure of several Markovian models is
exploited to decompose an infinite transition matrix in a controllable and uncontrol-
lable part, which allows a reduction of the unsolvable infinite MDP into a numer-
ically solvable one. The approach is illustrated via queueing systems with parallel
servers and a computer system with power saving mode and, in a more theoretical
setting, for birth-death and quasi-birth-death models.

Next, in Chap. 5, by Herman Blok and Floske Spieksma, emphasis is on struc-
tural properties of infinite MDPs with unbounded jumps. Illustrated via a running
example, the natural question is addressed, how structural properties of the opti-
mal policy are preserved under truncation or perturbation of the MDP. In particular,
smoothed rate truncation (SRT) is discussed, and a roadmap is provided for preserv-
ing structural properties.

6 Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality.
Wiley Series in Probability and Statistics, 2011.

xii Preface

Part II: Healthcare

Healthcare is the largest industry in the Western world. The number of operations
research practitioners in healthcare is steadily growing to tackle planning, schedul-
ing, and decision problems. In line with this growth, in recent years, MDPs have
found important applications in healthcare in the context of prevention, screening,
and treatment of diseases but also in developing appointment schedules and inven-
tory management. The following chapters contain a selection of topics:

Chapter 6: Markov Decision Processes for Screening and Treatment of Chronic
Diseases

Chapter 7: Stratified Breast Cancer Follow-Up Using a Partially Observable MDP
Chapter 8: Advance Patient Appointment Scheduling
Chapter 9: Optimal Ambulance Dispatching
Chapter 10: Blood Platelet Inventory Management

Chapter 6, by Lauren N. Steimle and Brian T. Denton, provides a review of MDPs
and partially observable MDPs (POMDPs) in medical decision making and a tuto-
rial about how to formulate and solve healthcare problems with particular focus on
chronic diseases. The approach is illustrated via two examples: an MDP model for
optimal control of drug treatment decisions for managing the risk of heart disease
and stroke in patients with type 2 diabetes and a POMDP model for optimal design
of biomarker-based screening policies in the context of prostate cancer.

In Chap. 7, by J.W.M. Otten, A. Witteveen, I.M.H. Vliegen, S. Siesling, J.B.
Timmer, and M.J. IJzerman, the POMDP approach is used to optimally allocate
resources in a follow-up screening policy that maximizes the total expected number
of quality-adjusted life years (QALYs) for women with breast cancer. Using data
from the Netherlands Cancer Registry, for three risk categories based on differenti-
ation of the primary tumor, the POMDP approach suggests a slightly more intensive
follow-up for patients with a high risk for and poorly differentiated tumor and a less
intensive schedule for the other risk groups.

In Chap. 8, by Antoine Sauré and Martin L. Puterman, the linear programming
approach to ADP is used to solve advance patient appointment scheduling problems,
which are problems typically intractable using standard solution techniques. This
chapter provides a systematic way of identifying effective booking guidelines for
advance patient appointment scheduling problems. The results are applied to CT
scan appointment scheduling and radiation therapy treatment scheduling.

Chapter 9, by C.J. Jagtenberg, S. Bhulai, and R.D. van der Mei, considers the
ambulance dispatch problem, in which one must decide which ambulance to send
to an incident in real time. This chapter develops a computationally tractable MDP
that captures not only the number of idle ambulances but also the future incident
location and develops an ambulance dispatching heuristic that is shown to reduce
the fraction of late arrivals by 13% compared to the “closest idle” benchmark policy
for the Dutch region Flevoland.

Chapter 10, by Rene Haijema, Nico M. van Dijk, and Jan van der Wal, considers
the blood platelet inventory problem that is of vital importance for patients’ sur-

Preface xiii

vival, since platelets have a limited lifetime after being donated and lives may be at
risk when no compatible blood platelets are available for transfusion, for example,
during surgery. This chapter develops a combined MDP and simulation approach to
minimize the blood platelet outdating percentage taking into account special pro-
duction interruptions due to, e.g., Christmas and Easter holidays.

Part III: Transportation

Transportation science is known as a vast scientific field by itself for both the public
(e.g., plane, train, or bus) and private modes of transportation. Well-known research
areas include revenue management, pricing, air traffic control, train scheduling, and
crew scheduling. This part contains only a small selection of topics to illustrate the
possible fruitful use of MDP modeling within this field, ranging from macro-level
to micro-level and from public transportation to private transportation. It contains
the following chapters:

Chapter 11: Stochastic Dynamic Programming for Noise Load Management
Chapter 12: Allocation in a Vertical Rotary Car Park
Chapter 13: Dynamic Control of Traffic Lights
Chapter 14: Smart Charging of Electric Vehicles

Chapter 11, by T.R. Meerburg, Richard J. Boucherie, and M.J.A.L. van Kraaij,
considers the runway selection problem that is typical for airports with a complex
layout of runways. This chapter describes a stochastic dynamic programming (SDP)
approach determining an optimal strategy for the monthly preference list selection
problem under safety and efficiency restrictions and yearly noise load restrictions, as
well as future and unpredictable weather conditions. As special MDP complications,
a continuous state (noise volume) has to be discretized, and other states at sufficient
distance are lumped to make the SDP numerically tractable.

In Chap. 12, by Mark Fackrell and Peter Taylor, both public and private goals
are optimized, the latter indirectly. The objective is to balance the distribution of
cars in a vertical car park by allocating arriving cars to levels in the best way. If no
place is available, a car arrival is assumed to be lost. The randomness is inherent
in the arrival process and the parking durations. This daily life problem implicitly
concerns the problem of job allocation in an overflow system, a class of problems
which are known to be unsolvable analytically in the uncontrolled case. An MDP
heuristic rule is developed and extensive experiments show it to be superior.

Chapter 13, by Rene Haijema, Eligius M.T. Hendrix, and Jan van der Wal, studies
another problem of daily life and both public and private concerns: dynamic con-
trol of traffic lights to minimize the mean waiting time of vehicles. The approach
involves an approximate solution for a multidimensional MDP based on policy it-
eration in combination with decomposition of the state space into state spaces for
different traffic streams. Numerical results illustrate that a single policy iteration
step results in a strategy that greatly reduces average waiting time when compared
to static control.

xiv Preface

The final chapter of this transportation category, Chap. 14, by Pia L. Kempker,
Nico M. van Dijk, Werner Scheinhardt, Hans van den Berg, and Johann Hurink,
addresses overnight charging of electric vehicles taking into account the fluctuating
energy demand and prices. A heuristic bidding strategy that is based on an analytical
solution of the SDP for i.i.d. prices shows a substantial performance improvement
compared to currently used standard demand side management strategies.

Part IV: Production

Control of production systems is a well-known application area that is known to
be hampered by its computational complexity. This part contains three cases that
illustrate the structure of approximate policies:

Chapter 15: Analysis of a Stochastic Lot Scheduling Problem with Strict DueDates
Chapter 16: Optimal Fishery Policies
Chapter 17: Near-Optimal Switching Strategies for a Tandem Queue

Chapter 15, by Nicky D. Van Foreest and Jacob Wijngaard, considers admission
control and scheduling rules for a make-to-order stochastic lot scheduling problem
with strict due dates. The CSLSP is a difficult scheduling problem for which MDPs
seem to be one of the few approaches to analyze this problem. The MDP formulation
further allows to set up simulations for large-scale systems.

In Chap. 16, by Eligius, M.T. Hendrix, Rene Haijema, and Diana van Dijk, a bi-
level MDP for optimal fishing quota is studied. At the first level, an authority decides
on the quota to be fished keeping in mind long-term revenues. At the second level,
fishermen react on the quota set as well as on the current states of fish stock and fleet
capacity by deciding on their investment and fishery effort. This chapter illustrates
how an MDP with continuous state and action space can be solved by truncation and
discretization of the state space and applying interpolation in the value iteration.

Chapter 17, by Daphne van Leeuwen and Rudesindo Núñez-Queija, is motivated
by applications in logistics, road traffic, and production management. This chap-
ter considers a tandem network, in which the waiting costs in the second queue
are larger than those in the first queue. MDP is used to determine the near-optimal
switching curve between serving and not serving at the first queue. that balances
waiting costs at the queues. Discrete event simulation is used to show the appropri-
ateness of the near-optimal strategies.

Part V: Communications

Communications has been an important application area for MDP with particu-
lar emphasis on call acceptance rules, channel selection, and transmission rates.
This part illustrates some special cases for which a (near)-optimal strategy can be
obtained:

Preface xv

Chapter 18: Wireless Channel Selection with Restless Bandits
Chapter 19: Flexible Staffing for Call Centers With Non-stationary Arrival Rates
Chapter 20: MDP for Query-Based Wireless Sensor Networks

Chapter 18, by Julia Kuhn and Yoni Nazarathy, considers wireless channel se-
lection to maximize the long-run average throughput. The online control problem
is modeled as restless multi-armed bandit (RMAB) problem in a POMDP frame-
work. The chapter unifies several approaches and presents a nice development of
the Whittle index.

Chapter 19, by Alex Roubos, Sandjai Bhulai, and Ger Koole, develops an MDP to
obtain time-dependent staffing levels in a single-skill call center such that a service-
level constraint is met in the presence of time-varying arrival rates. Through a nu-
merical study based on real-life data, it is shown that the optimal policies provide a
good balance between staffing costs and the penalty probability for not meeting the
service level.

Chapter 20, by Mihaela Mitici, studies queries in a wireless sensor network,
where queries might either be processed within the sensor network with possible
delay or queries might be allocated to a database without delay but possibly con-
taining outdated data. An optimal policy for query assignment is obtained from a
continuous time MDP with drift. By an exponentially uniformized conversion (as
extension of standard uniformization), it is transformed into a standard discrete-time
MDP. By computation this leads to close-to-optimal simple policies.

Part VI: Financial Modeling

It is needless to say that financial modeling and stochastics are intrinsically related.
Financial models represent a major field with time-series analysis for long-term
financial and economic purposes as one well-known direction. Related directions
concern stock, option, and utility theory. Early decision theory papers on portfolio
management and investment modeling date back to the 1970s; see the edited book.7

From a pure MDP perspective, the recently published book on Markov decision
processes with special application in finance,8 and the earlier papers by Jörn Sass
and Manfred Schäl are recommended.

Chapter 21 by Jörn Sass and Manfred Schäl, gives an instructive review and
follow-up on their earlier work to account for financial portfolios and derivatives
under proportional transactional costs. In particular, a computational algorithm is
developed for optimal pricing, and the optimal policy is shown to be a martingale
that is of special interest in financial trading.

7 Michael A. H. Dempster and Stanley R. Pliska, editors. Mathematics of Derivative Securities.
Cambridge University Press, 1997.
8 N. Bäuerle, U. Rieder. Markov Decision Processes with Applications in Finance. Springer, 2011.

xvi Preface

Summarizing

These practical MDP applications have illustrated a variety of both standard and
nonstandard aspects of MDP modeling and its practical use:

• A first and major step is a proper state definition containing sufficient infor-
mation and details, which will frequently lead to multidimensional discrete or
continuous states.

• The transition structure of the underlying process may involve time-dependent
transition probabilities.

• The objective for optimization may be an average, discounted, or finite-time
criterion.

• One-step rewards may be time dependent.
• The action set may be continuous or discrete.
• A simplified but computationally solvable situation can be an important first

step in deriving a suitable policy that may subsequently be expanded to the
solution of a more realistic case.

• Heuristic policies that may be implemented in practice can be developed from
optimal policies.

We are confident that this handbook is appealing for a variety of readers with a
background in, among others, operations research, mathematics, computer science,
and industrial engineering:

1. A practitioner that would like to become acquainted with the possible value of
MDP modeling and ways to use it

2. An academic or institutional researcher to become involved in an MDP model-
ing and development project and possibly expanding its frontiers

3. An instructor or student to be inspired by the instructive examples in this hand-
book to start using MDP for real-life problems

From each of these categories you are invited to step in and enjoy reading this
hand book for further practical MDP applications.

Preface xvii

Acknowledgments

We are most grateful to all authors for their positive reactions right from the initial
invitations to contribute to this handbook: it is the quality of the chapters and the
enthusiasm of the authors that will enable MDP to have its well-deserved impact on
real-life applications.

We like to deeply express our gratitude to the former editor in chief and series
editor: Fred Hillier. Had it not been for his stimulation from the very beginning in
the first place and his assistance in its handling for approval, just before retirement,
we would not have succeeded to complete this handbook.

Enschede, The Netherlands Richard J. Boucherie
July 2016 Nico M. van Dijk

Contents

Part I General Theory

1 One-Step Improvement Ideas and Computational Aspects 3
Henk Tijms
1.1 Introduction . 3
1.2 The Average-Cost Markov Decision Model . 4

1.2.1 The Concept of Relative Values . 6
1.2.2 The Policy-Improvement Step . 8
1.2.3 The Odoni Bounds for Value Iteration 11

1.3 Tailor-Made Policy-Iteration Algorithm . 13
1.3.1 A Queueing Control Problem with a Variable Service

Rate . 15
1.4 One-Step Policy Improvement for Suboptimal Policies 18

1.4.1 Dynamic Routing of Customers to Parallel Queues 19
1.5 One-Stage-Look-Ahead Rule in Optimal Stopping 24

1.5.1 Devil’s Penny Problem . 25
1.5.2 A Game of Dropping Balls into Bins 27
1.5.3 The Chow-Robbins Game . 30

References . 31

2 Value Function Approximation in Complex Queueing Systems 33
Sandjai Bhulai
2.1 Introduction . 33
2.2 Difference Calculus for Markovian Birth-Death Systems 35
2.3 Value Functions for Queueing Systems . 40

2.3.1 The M/Cox(r)/1 Queue . 41
2.3.2 Special Cases of the M/Cox(r)/1 Queue 42
2.3.3 The M/M/s Queue . 44
2.3.4 The Blocking Costs in an M/M/s/s Queue 45
2.3.5 Priority Queues . 45

xix

xx Contents

2.4 Application: Routing to Parallel Queues . 47
2.5 Application: Dynamic Routing in Multiskill Call Centers 52
2.6 Application: A Controlled Polling System . 60
References . 61

3 Approximate Dynamic Programming by Practical Examples 63
Martijn R.K. Mes and Arturo Pérez Rivera
3.1 Introduction . 63
3.2 The Nomadic Trucker Example . 66

3.2.1 Problem Introduction . 67
3.2.2 MDP Model . 67
3.2.3 Approximate Dynamic Programming 69

3.3 A Freight Consolidation Example . 79
3.3.1 Problem Introduction . 79
3.3.2 MDP Model . 80
3.3.3 Approximate Dynamic Programming 83

3.4 A Healthcare Example . 90
3.4.1 Problem Introduction . 90
3.4.2 MDP Model . 91
3.4.3 Approximate Dynamic Programming 93

3.5 What’s More . 95
3.5.1 Policies . 96
3.5.2 Value Function Approximations . 96
3.5.3 Exploration vs Exploitation . 97

Appendix . 97
References . 100

4 Server Optimization of Infinite Queueing Systems 103
András Mészáros and Miklós Telek
4.1 Introduction . 103
4.2 Basic Definition and Notations . 105
4.3 Motivating Examples . 106

4.3.1 Optimization of a Queueing System with Two Different
Servers . 106

4.3.2 Optimization of a Computational System with Power
Saving Mode . 107

4.3.3 Structural Properties of These Motivating Examples 109
4.4 Theoretical Background . 109

4.4.1 Subset Measures in Markov Chains 109
4.4.2 Markov Chain Transformation . 112
4.4.3 Markov Decision Processes with a Set of Uncontrolled

States . 114
4.4.4 Infinite Markov Chains with Regular Structure 115

4.5 Solution and Numerical Analysis of the Motivating Examples 116
4.5.1 Solution to the Queue with Two Different Servers 116
4.5.2 Solution to the Power-Saving Model 117

Contents xxi

4.6 Further Examples . 119
4.6.1 Optimization of a Queuing System with Two Markov

Modulated Servers . 120
4.6.2 Structural Properties of the Example with Markov

Modulated Servers . 120
4.7 Infinite MDPs with Quasi Birth Death Structure 121

4.7.1 Quasi Birth Death Process . 121
4.7.2 Solving MDPs with QBD Structure 122

4.8 Solution and Numerical Analysis of MDPs with QBD Structure . . 127
4.8.1 Solution of the Example with Markov Modulated

Servers . 127
4.8.2 Markov Modulated Server with Three Background

States . 128
4.9 Conclusion . 129
References . 129

5 Structures of Optimal Policies in MDPs with Unbounded Jumps:
The State of Our Art . 131
H. Blok and F.M. Spieksma
5.1 Introduction . 132
5.2 Discrete Time Model . 135

5.2.1 Discounted Cost . 140
5.2.2 Approximations/Perturbations . 146
5.2.3 Average Cost . 151

5.3 Continuous Time Model . 160
5.3.1 Uniformisation . 161
5.3.2 Discounted Cost . 162
5.3.3 Average Cost . 165
5.3.4 Roadmap to Structural Properties . 166
5.3.5 Proofs . 171
5.3.6 Tauberian Theorem . 178

Appendix: Notation . 182
References . 183

Part II Healthcare

6 Markov Decision Processes for Screening and Treatment of Chronic
Diseases . 189
Lauren N. Steimle and Brian T. Denton
6.1 Introduction . 189
6.2 Background on Chronic Disease Modeling . 191
6.3 Modeling Framework for Chronic Diseases 193

6.3.1 MDP and POMDP Model Formulation 193
6.3.2 Solution Methods and Structural Properties 197
6.3.3 Model Validation . 199

xxii Contents

6.4 MDP Model for Cardiovascular Risk Control in Patients with
Type 2 Diabetes . 200
6.4.1 MDP Model Formulation . 201
6.4.2 Results: Comparison of Optimal Policies Versus

Published Guidelines . 205
6.5 POMDP for Prostate Cancer Screening . 208

6.5.1 POMDP Model Formulation . 210
6.5.2 Results: Optimal Belief-Based Screening Policy 214

6.6 Open Challenges in MDPs for Chronic Disease 215
6.7 Conclusions . 217
References . 218

7 Stratified Breast Cancer Follow-Up Using a Partially Observable
MDP . 223
J.W.M. Otten, A. Witteveen, I.M.H. Vliegen, S. Siesling, J.B. Timmer,
and M.J. IJzerman
7.1 Introduction . 224
7.2 Model Formulation . 225

7.2.1 Optimality Equations . 228
7.2.2 Alternative Representation of the Optimality Equations . . 230
7.2.3 Algorithm . 232

7.3 Model Parameters . 235
7.4 Results . 236

7.4.1 Sensitivity Analyses . 240
7.5 Conclusions and Discussion . 241
Appendix: Notation . 243
References . 243

8 Advance Patient Appointment Scheduling . 245
Antoine Sauré and Martin L. Puterman
8.1 Introduction . 245
8.2 Problem Description . 247
8.3 Mathematical Formulation . 248

8.3.1 Decision Epochs . 248
8.3.2 State Space . 249
8.3.3 Action Sets . 249
8.3.4 Transition Probabilities . 250
8.3.5 Immediate Cost . 251
8.3.6 Optimality Equations . 252

8.4 Solution Approach . 252
8.5 Practical Results . 257

8.5.1 Computerized Tomography Scan Appointment
Scheduling . 257

8.5.2 Radiation Therapy Treatment Scheduling 260

Contents xxiii

8.6 Discussion . 262
8.7 Open Challenges . 265
Appendix: Notation . 266
References . 266

9 Optimal Ambulance Dispatching . 269
C.J. Jagtenberg, S. Bhulai and R.D. van der Mei
9.1 Introduction . 270

9.1.1 Previous Work . 270
9.1.2 Our Contribution . 271

9.2 Problem Formulation . 272
9.3 Solution Method: Markov Decision Process 273

9.3.1 State Space . 274
9.3.2 Policy Definition . 275
9.3.3 Rewards . 276
9.3.4 Transition Probabilities . 277
9.3.5 Value Iteration . 278

9.4 Solution Method: Dynamic MEXCLP Heuristic for Dispatching . . 279
9.4.1 Coverage According to the MEXCLP Model 279
9.4.2 Applying MEXCLP to the Dispatch Process 279

9.5 Results: A Motivating Example . 280
9.5.1 Fraction of Late Arrivals . 281
9.5.2 Average Response Time . 282

9.6 Results: Region Flevoland . 282
9.6.1 Analysis of the MDP Solution for Flevoland 285
9.6.2 Results . 287

9.7 Conclusion and Discussion . 289
9.7.1 Further Research . 289

Appendix: Notation . 290
References . 290

10 Blood Platelet Inventory Management . 293
Rene Haijema, Nico M. van Dijk, and Jan van der Wal
10.1 Introduction . 294

10.1.1 Practical Motivation . 294
10.1.2 SDP-Simulation Approach . 295
10.1.3 Outline . 295

10.2 Literature . 296
10.3 SDP-Simulation Approach for the Stationary PPP 296

10.3.1 Steps of SDP-Simulation Approach 296
10.3.2 Step 1: SDP Model for Stationary PPP 297
10.3.3 Case Studies . 299

10.4 Extended SDP-Simulation Approach for the Non-Stationary PPP . 300
10.4.1 Problem: Non-Stationary Production Breaks 300
10.4.2 Extended SDP-Simulation Approach 300
10.4.3 Extension: Including Non-Stationary Periods 301

xxiv Contents

10.5 Case Study: Optimal Policy Around Breaks 303
10.5.1 Data . 303
10.5.2 Step I: Stationary Problem . 304
10.5.3 Steps II to IV: Christmas and New Year’s Day 306
10.5.4 Steps II to IV: 4-Days Easter Weekend 310
10.5.5 Conclusions: Extended SDP-Simulation Approach 314

10.6 Discussion and Conclusions . 314
Appendix: Notation . 315
References . 316

Part III Transportation

11 Stochastic Dynamic Programming for Noise Load Management 321
T.R. Meerburg, Richard J. Boucherie, and M.J.A.L. van Kraaij
11.1 Introduction . 322
11.2 Noise Load Management at Amsterdam Airport Schiphol 323
11.3 SDP for Noise Load Optimisation . 325
11.4 Numerical Approach . 327

11.4.1 Transition Probabilities . 327
11.4.2 Discretisation . 328

11.5 Numerical Results . 328
11.5.1 Probability of Exceeding the Noise Load Limit 329
11.5.2 Comparison with the Heuristic . 330
11.5.3 Increasing the Number of Decision Epochs 331

11.6 Discussion . 332
Appendix . 333
References . 335

12 Allocation in a Vertical Rotary Car Park . 337
M. Fackrell and P. Taylor
12.1 Introduction . 337
12.2 Background . 340

12.2.1 The Car Parking Allocation Problem 340
12.2.2 Markov Decision Processes . 344

12.3 The Markov Decision Process . 345
12.4 Numerical Results . 345
12.5 Simulation Results . 348
12.6 Conclusion . 352
Appendix . 353
References . 369

Contents xxv

13 Dynamic Control of Traffic Lights . 371
Rene Haijema, Eligius M.T. Hendrix, and Jan van der Wal
13.1 Problem . 372
13.2 Markov Decision Process (MDP) . 373

13.2.1 Examples: Terminology and Notations 373
13.2.2 MDP Model . 374

13.3 Approximation by Policy Iteration . 376
13.3.1 Policy Iteration (PI) . 376
13.3.2 Initial Policy: Fixed Cycle (FC) . 377
13.3.3 Policy Evaluation Step of FC . 377
13.3.4 Single Policy Improvement Step: RV1 Policy 379
13.3.5 Computational Complexity of RV1 379
13.3.6 Additional Iterations of PI . 381

13.4 Results . 381
13.4.1 Simulation . 381
13.4.2 Intersection F4C2 . 382
13.4.3 Complex Intersection F12C4 . 382

13.5 Discussion and Conclusions . 384
Appendix: Notation . 385
References . 386

14 Smart Charging of Electric Vehicles . 387
Pia L. Kempker, Nico M. van Dijk, Werner Scheinhardt,
Hans van den Berg, and Johann Hurink
14.1 Introduction . 388
14.2 Background on DSM and PowerMatcher . 389
14.3 Optimal Charging Strategies . 392

14.3.1 MDP/SDP Problem Formulation . 393
14.3.2 Analytic Solution for i.i.d. Prices . 395
14.3.3 DP-Heuristic Strategy . 398

14.4 Numerical Results . 399
14.5 Conclusion/Future Research . 402
Appendix . 402
References . 403

Part IV Production

15 Analysis of a Stochastic Lot Scheduling Problem with Strict
Due-Dates . 407
Nicky D. van Foreest and Jacob Wijngaard
15.1 Introduction . 407
15.2 Theoretical Background of the CSLSP . 409
15.3 Production System, Admissible Policies, and Objective Function . 410

15.3.1 Production System . 410
15.3.2 Admissible Actions and Policies . 411
15.3.3 Objective Function . 412

xxvi Contents

15.4 The Markov Decision Process . 413
15.4.1 Format of a State . 413
15.4.2 Actions and Operators . 415
15.4.3 Transition Matrices . 416
15.4.4 Further Aggregation in the Symmetric Case 417
15.4.5 State Space . 417
15.4.6 A Heuristic Threshold Policy . 417

15.5 Numerical Study . 418
15.5.1 Influence of the Load and the Due-Date Horizon 419
15.5.2 Visualization of the Structure of the Optimal Policy 419

15.6 Conclusion . 421
Appendix: Notation . 421
References . 422

16 Optimal Fishery Policies . 425
Eligius M.T. Hendrix, Rene Haijema, and Diana van Dijk
16.1 Introduction . 426
16.2 Model Description . 427

16.2.1 Biological Dynamics; Growth of Biomass 427
16.2.2 Economic Dynamics; Harvest and Investment

Decisions . 428
16.2.3 Optimization Model . 429

16.3 Model Analysis . 430
16.3.1 Bounds on Decision and State Space 430
16.3.2 Equilibrium State Values in a Deterministic Setting 431

16.4 Discretization in the Value Iteration Approach 432
16.4.1 Deterministic Elaboration . 433
16.4.2 Stochastic Implementation . 434
16.4.3 Analysis of the Stochastic Model . 435

16.5 Conclusions . 436
Appendix: Notation . 438
References . 438

17 Near-Optimal Switching Strategies for a Tandem Queue 439
Daphne van Leeuwen and Rudesindo Núñez-Queija
17.1 Introduction . 440
17.2 Model Description: Single Service Model . 442
17.3 Structural Properties of an Optimal Switching Curve 444
17.4 Matrix Geometric Method for Fixed Threshold Policies 447
17.5 Model Description: Batch Transition Model 450

17.5.1 Structural Properties of the Batch Service Model 451
17.5.2 Matrix Geometric Method with Batch Services 452

17.6 Simulation Experiments . 454
17.7 Conclusion . 456
References . 458

Contents xxvii

Part V Communications

18 Wireless Channel Selection with Restless Bandits 463
Julia Kuhn and Yoni Nazarathy
18.1 Introduction . 464
18.2 Reward-Observing Restless Multi-Armed Bandits 466
18.3 Index Policies and the Whittle Index . 471
18.4 Numerical Illustration and Evaluation . 476
18.5 Literature Survey . 480
References . 483

19 Flexible Staffing for Call Centers with Non-stationary Arrival
Rates . 487
Alex Roubos, Sandjai Bhulai, and Ger Koole
19.1 Introduction . 487
19.2 Problem Formulation . 490
19.3 Solution Approach . 491
19.4 Numerical Experiments . 492

19.4.1 Constant Arrival Rate . 493
19.4.2 Time-Dependent Arrival Rate . 495
19.4.3 Unknown Arrival Rate . 497

19.5 Conclusion and Discussion . 499
Appendix: Exact Solution . 500
References . 502

20 MDP for Query-Based Wireless Sensor Networks 505
Mihaela Mitici
20.1 Problem Description . 506
20.2 Model Formulation . 507
20.3 Continuous Time Markov Decision Process with a Drift 508
20.4 Exponentially Uniformized Markov Decision Process 510
20.5 Discrete Time and Discrete Space Markov Decision Problem 511
20.6 Standard Markov Decision Process . 513
20.7 Fixed Assignment Policies . 514

20.7.1 Always Assign Queries to the DB . 514
20.7.2 Always Assign Queries to the WSN 514

20.8 Numerical Results . 515
20.8.1 Performance of Fixed Policies vs. Optimal Policy 515
20.8.2 Optimal Policy Under Different Values

of the Uniformization Parameter . 515
20.9 Conclusion . 516
Appendices . 516
References . 518

xxviii Contents

Part VI Financial Modeling

21 Optimal Portfolios and Pricing of Financial Derivatives Under
Proportional Transaction Costs . 523
Jörn Sass and Manfred Schäl
21.1 Introduction . 523
21.2 The Financial Model . 527
21.3 The Markov Decision Model . 528
21.4 Martingale Properties of the Optimal Markov Decision Process . . . 531
21.5 Price Systems and the Numeraire Portfolio . 533
21.6 Conclusive Remarks . 535
Appendices . 537
References . 545

Appendix A: Basic Notation for MDP . 547

Appendix B: Dichotomy and Criteria . 549

List of Contributors

S. Bhulai
Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

H. Blok
Eindhoven University of Technology, Eindhoven, The Netherlands

Richard J. Boucherie
Stochastic Operations Research, University of Twente, Enschede, The Netherlands

Brian T. Denton
Department of Industrial and Operations Engineering, University of Michigan, Ann
Arbor, MI, USA

Mark Fackrell
School of Mathematics and Statistics, University of Melbourne, VIC, Australia

Rene Haijema
Operations Research and Logistics group, Wageningen University, Wageningen,
The Netherlands

Eligius M.T. Hendrix
Computer Architecture, Universidad de Málaga, Málaga, Spain

Johann Hurink
Department of Applied Mathematics, University of Twente, Enschede,
The Netherlands

M.J. IJzerman
Department of Health Technology and Services Research, University of Twente,
Enschede, The Netherlands

C.J. Jagtenberg
Stochastics, CWI, Amsterdam, The Netherlands

xxix

xxx List of Contributors

Pia L. Kempker
TNO, Cyber Security & Robustness TNO, The Hague, The Netherlands

Ger Koole
Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Julia Kuhn
The University of Queensland, Brisbane, QLD, Australia

University of Amsterdam, Amsterdam, The Netherlands

T.R. Meerburg
Air Traffic Control The Netherlands, Schiphol, The Netherlands

Martijn Mes
Department of Industrial Engineering and Business Information Systems,
University of Twente, Enschede, The Netherlands

András Mészáros
MTA-BME Information Systems Research Group, Budapest, Hungary

Mihaela Mitici
Faculty of Aerospace Engineering, Air Transport and Operations, Delft University
of Technology, Delft, The Netherlands

Yoni Nazarathy
The University of Queensland, Brisbane, QLD, Australia

Rudesindo Núñez-Queija
CWI, Amsterdam, The Netherlands

J.W.M. Otten
Department of Stochastic Operations Research, University of Twente, Enschede,
The Netherlands

Arturo Pérez Rivera
Department of Industrial Engineering and Business Information Systems,
University of Twente, Enschede, The Netherlands

Martin L. Puterman
Sauder School of Business, University of British Columbia, Vancouver, BC,
Canada V6T 1Z2

Alex Roubos
CCmath, Amsterdam, The Netherlands

Jörn Sass
Fachbereich Mathematik, TU Kaiserslautern, Kaiserslautern, Germany

Antoine Sauré
Telfer School of Management, University of Ottawa, Ottawa, ON, Canada K1N
6N5

List of Contributors xxxi

Manfred Schäl
Institut für Angewandte Mathematik, Universität Bonn, Bonn, Germany

Werner Scheinhardt
Department of Applied Mathematics, University of Twente, Enschede,
The Netherlands

S. Siesling
Department of Health Technology and Services Research, University of Twente,
Enschede, The Netherlands

Department of Research, Comprehensive Cancer Organisation, Utrecht,
The Netherlands

F.M. Spieksma
Leiden University, Leiden, The Netherlands

Lauren N. Steimle
Department of Industrial and Operations Engineering, University of Michigan, Ann
Arbor, MI, USA

Peter Taylor
School of Mathematics and Statistics, University of Melbourne, VIC, Australia

Miklós Telek
Budapest University of Technology and Economics, Budapest, Hungary

Henk Tijms
Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

J.B. Timmer
Department of Stochastic Operations Research, University of Twente, Enschede,
The Netherlands

Nico M. van Dijk

The Netherlands

Diana van Dijk
Department of Environmental Social Sciences, Swiss Federal Institute of Aquatic
Science and Technology (EAWAG), Dübendorf, Switzerland

Nicky D. van Foreest
Faculty of Economics and Business, University of Groningen, Groningen,
The Netherlands

M.J.A.L. van Kraaij
Air Traffic Control, Utrecht, The Netherlands

Daphne van Leeuwen
CWI, Amsterdam, The Netherlands

Hans van den Berg
TNO, Cyber Security & Robustness TNO, The Hague, The Netherlands

Department of Applied Mathematics, University of Twente, Enschede,
The Netherlands

Stochastic Operations Research, University of Twente, Enschede,

xxxii List of Contributors

R.D. van der Mei
Stochastics, CWI, Amsterdam, The Netherlands

Jan van der Wal
Faculty of Economics and Business, University of Amsterdam, Amsterdam,
The Netherlands

Stochastic Operations Research group, University of Twente, Enschede,
The Netherlands

I.M.H. Vliegen
Department of Industrial Engineering and Business Information Systems, Univer-
sity of Twente, Enschede, The Netherlands

A. Witteveen
Department of Health Technology and Services Research, University of Twente,
Enschede, The Netherlands

Jacob Wijngaard
Faculty of Economics and Business, University of Groningen, Groningen,
The Netherlands

Part I
General Theory

Chapter 1
One-Step Improvement Ideas
and Computational Aspects

Henk Tijms

Abstract In this contribution we give a down-to-earth discussion on basic ideas
for solving practical Markov decision problems. The emphasis is on the concept of
the policy-improvement step for average cost optimization. This concept provides a
flexible method of improving a given policy. By appropriately designing the policy-
improvement step in specific applications, tailor-made algorithms may be developed
to generate the best control rule within a class of control rules characterized by a few
parameters. Also, in decision problems with an intractable multi-dimensional state
space, decomposition and a once-only application of the policy-improvement step
may lead to a good heuristic rule. These useful features of the policy-improvement
concept will be illustrated with a queueing control problem with variable service
rate and with the dynamic routing of arrivals to parallel queues. In the final section,
we deal with the concept of the one-stage-look-ahead rule in optimal stopping and
give several applications.

1.1 Introduction

Let’s begin with two stochastic optimization problems of general interest.

• The first problem is how to assign randomly arriving messages or jobs to one
of several groups of servers with different service rates. What assignment rule
minimizes the long-run average waiting time per message or job? This Markov
decision problem occurs in a variety of practical areas such as telecommunica-
tion networks, call centers, flexible manufacturing, and health care.

H. Tijms (�)
Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
e-mail: tijms@quicknet.nl

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 1

3

mailto:tijms@quicknet.nl

4 H. Tijms

• The second problem is the classical Chow-Robbins stopping problem. A fair
coin is repeatedly tossed with no bound on the number of tosses. The tossing
process can be stopped at any moment and the payoff is the proportion of heads
obtained at the moment of stopping. The goal is to find a stopping rule maxi-
mizing the expected value of the payoff.

What do have these two problems in common? The answer is that the optimal deci-
sion rule is difficult to obtain in both problems, whereas in each of the two problems
a suboptimal decision rule is easily found by using the same approach of looking
only one step forward in the decision process to see whether an improvement is
possible.

This paper gives a survey of the basic concepts underlying computational ap-
proaches for Markov decision problems and optimal stopping problems. We first
discuss computational methods for the Markov decision model with the long-run
average cost per unit time as optimality criterion. The basic concept of relative val-
ues is introduced and it is shown how this concept can be used to improve a given
policy. The idea of the policy-improvement step is flexible and powerful. It enables
us to give bounds on the costs of the policies generated in the value-iteration algo-
rithm and to design a tailor-made policy-iteration algorithm in specific applications
of the Markov decision model. In multi-dimensional Markov decision applications
it is usually not practically feasible to compute an optimal policy, but a clever once-
only application of the policy-improvement step usually leads to a good heuristic
rule. An example will be given to illustrate this powerful method. To conclude this
paper, we discuss optimal stopping problems and show the usefulness of the concept
of the one-stage-look-ahead rule.

1.2 The Average-Cost Markov Decision Model

In the classical book of Howard [9] the average cost Markov decision model was
introduced. A dynamic system is reviewed at equidistant points of time t = 0,1,
At each review the system is classified into one of a possible number of states and
subsequently a decision has to be made. The set of possible states is denoted by I.
For each state i ∈ I, a set A(i) of decisions or actions is given. The state space
I and the action sets A(i) are assumed to be finite. The economic consequences
of the decisions taken at the review times (decision epochs) are reflected in costs.
This controlled dynamic system is called a discrete-time Markov model when the
following Markovian property is satisfied. If at a decision epoch the action a is
chosen in state i, then regardless of the past history of the system, the following
happens:

(a) an immediate cost ci(a) is incurred,
(b) at the next decision epoch the system will be in state j with probability pi j(a),

where ∑ j∈I pi j(a) = 1 for i ∈ I.

The one-step costs ci(a) and the one-step transition probabilities pi j(a) are assumed
to be time homogeneous. In specific problems the ‘immediate’ costs ci(a) will often
represent the expected cost incurred until the next decision epoch when action a is

1.2 The Average-Cost Markov Decision Model 5

chosen in state i. The choice of the state space and of the action sets often depends
on the cost structure of the specific problem considered.

A rule or policy for controlling the system is a prescription for taking actions
at each decision epoch. In principle a control rule may be quite complicated in the
sense that the prescribed actions may depend on the whole history of the system. An
important class of policies is the subclass of stationary policies. A stationary policy
R is a policy that assigns to each state i a fixed action a = Ri and always uses this
action whenever the system is in state i. In view of the Markov assumption made
and the fact that the planning horizon is infinitely long, it will be intuitively clear
that it is sufficient to consider only the class of stationary policies. However, other
policies are conceivable: policies whose actions depend on the past states or poli-
cies whose actions are determined by a random mechanism. This issue touches a
fundamental question in Markov decision theory: does there exist an optimal policy
among the class of all conceivable policies and, if an optimal policy exists, is such
a policy a stationary policy? The answer to these questions is in the affirmative for
the finite-state and finite-action Markov decision model with the average cost crite-
rion. However, a mathematical proof requires rather deep arguments. The interested
reader is referred to Derman [4] and Puterman [15].

Let Xn be the state of the system at time n just prior to a decision. Under a
stationary policy R, the process {Xn} is a discrete-time Markov chain with one-step
transition probabilities

P{Xn+1 = j | Xn = i}= pi j(Ri).

This Markov chain incurs a cost ci(Ri) each time the system visits state i. Thus we
can invoke results from Markov chain theory to specify the long-run average cost
per time unit under a given stationary policy. Unless stated otherwise, the following
assumption is made throughout this chapter.

Unichain assumption. For each stationary policy R, the associated Markov chain
{Xn} has a single recurrent class of states.

In most practical applications the Markov chain {Xn} is unichain for each stationary
policy. The unichain assumption allows for transient states. Under this assumption,
the Markov chain {Xn} has a unique equilibrium distribution for each stationary
policy. The equilibrium probabilities under stationary policy R are denoted by π j(R)
for j ∈ I and are the unique solution to the equilibrium equations

π j(R) =∑
k∈I

πk(R)pk j(Rk) for j ∈ I

together with the normalization equation ∑ j∈I π j(R) = 1. By a well-known ergodic
theorem from Markov chain theory, the long-run average cost per unit time under a
stationary policy R is given by

g(R) =∑
j∈I

c j(R j)π j(R),

6 H. Tijms

independently of the starting state of the Markov chain. A stationary policy R∗ is said
to be average cost optimal if g(R∗)≤ g(R) for each stationary policy R. As pointed
out before, policy R∗ is not only optimal among the class of stationary policies but
it is also optimal among the class of all conceivable policies.

1.2.1 The Concept of Relative Values

There is an alternative approach to compute the average cost g(R) of a given sta-
tionary policy R. This approach yields a so-called relative-value function which is
the basis for an improvement of policy R.

Theorem 1. Let R be a given stationary policy and r be a recurrent state of the
Markov chain {Xn} associated with policy R. Define the relative-value function
wi(R) by

wi(R) = Ki(R)−g(R)Ti(R) for i ∈ I,

where Ti(R) is the expected time until the first transition into state r beyond time
0 when the initial state is i and policy R is used, and Ki(R) is the expected costs
incurred during this time with the convention that Ki(R) includes the cost incurred
in the initial state i at time 0 but excludes the cost incurred at the epoch of the first
transition into state r. Then,

wr(R) = 0.

The average cost g(R) and the relative-value function wi(R) satisfy the linear equa-
tions

vi = ci(Ri)−g+∑
j∈I

pi j(Ri)v j for i ∈ I.

The solution to these so-called value-determination is uniquely determined up to an
additive constant for the function vi, i ∈ I.

Proof. A Markov chain is a regenerative stochastic process and any recurrent state
is a regeneration state. Letting a cycle be the time elapsed between two consecutive
visits to the regeneration state r, it follows from the theory of renewal-reward pro-
cesses that the average cost per time unit equals the expected costs incurred in one
cycle divided by the expected length of one cycle and so g(R) = Kr(R)

Tr(R)
, implying that

wr(R) = 0. By a conditioning argument,

Ti(R) = 1+ ∑
j∈I, j �=r

Tj(R)pi j(Ri) for i ∈ I,

Ki(R) = ci(Ri)+ ∑
j∈I, j �=r

Kj(R)pi j(Ri) for i ∈ I.

Multiplying both sides of the first equation with g(R) and subtracting the result-
ing two equations, we get wi(R) = ci(Ri)− g(R)+∑ j∈I, j �=r w j(R)pi j(Ri) for i ∈ I.

1.2 The Average-Cost Markov Decision Model 7

Noting that wr(R) = 0, we have verified that g(R) and wi(R), i ∈ I satisfy the value-
determination equations. Let g and vi, i ∈ I by any solution to these equations. Mul-
tiplying both sides of the equations by πi(R), summing over i and using the equilib-
rium equations for the πi(R), it follows after an interchange of the order of summa-
tion that g=∑i∈I ci(Ri)πi(R), showing that g= g(R). To prove that the relative-value
function is uniquely determined up to an additive constant, let {g,vi} and {g,wi} be
any two solutions to the value-determination equations. It is convenient to use matrix
notation with v= (vi), w= (wi) and P= (pi j(Ri)). Then v−w=P(v−w). Iterating
this equation, we get v−w = Pn(v−w) for all n≥ 1. This gives v−w = Qn(v−w)
for all n ≥ 1, where Qn = (1/n)∑n

k=1 Pk. It is well-known from Markov chain the-
ory that the (i, j)th element of Qn converges to π j(R) as n→ ∞ for all i, j ∈ I. This
shows that vi−wi =∑ j∈I(v j−w j)π j(R) for all i ∈ I, proving that the relative-value
function is uniquely determined up to an additive constant.

Why the name relative-value function? To answer this question, we first state the
following result.

Theorem 2. For a fixed stationary policy R, define Vn(i,R) as the total expected cost
incurred over the first n decision epochs when the starting state is i. Then, under the
assumption that the Markov chain {Xn} associated with policy R is aperiodic, there
exists a finite function vi(R) such that

lim
n→∞

Vn(i,R)−ng(R) = vi(R) for i ∈ I.

Moreover, g(R) and the vi(R) satisfy the value-determination equations from
Theorem 1.

Proof. A sketch of the proof is as follows. Denoting by p(k)i j (R) the k-step transition
probabilities of the Markov chain {Xn} associated with policy R, we have Vn(i,R) =

∑n−1
k=0 ∑ j∈I p(k)i j (R)c j(R j), where p(0)i j is 1 for j = i and is 0 otherwise. Together with

the representation g(R) = ∑ j∈I c j(R j)π j(R), this leads after an interchange of the
order of summation to

Vn(i,R)−ng(R) =∑
j∈I

c j(R j)
n−1

∑
k=0

[
p(k)i j (R)−π j(R)

]
.

We now invoke the assumption that the Markov chain {Xn} associated with policy R

is aperiodic. Then, the k-step transition probability p(k)i j (R) converges exponentially
fast to π j(R) as k → ∞ for all i, j ∈ I, see e.g. Theorem 3.5.12 in Tijms [19]. That

is, there are constants α > 0 and 0 < β < 1 such that |p(k)i j (R)−π j(R)| ≤ αβ k for

all k ≥ 1 and i, j ∈ I. This gives that the series ∑∞
k=0

[
p(k)i j (R)−π j(R)

]
is absolutely

convergent, implying that limn→∞∑n−1
k=0

[
p(k)i j (R)−π j(R)

]
exists and is finite for all

i ∈ I, proving that Vn(i,R)− ng(R) has a finite limit vi(R) as n→ ∞. To verify that
vi(R), i ∈ I is a relative-value function, use the recursive equation

8 H. Tijms

Vn(i,R) = ci(Ri)+∑
j∈I

pi j(Ri)Vn−1(j,R),

subtract ng(R) from its both sides and let n→ ∞ to obtain that the vi(R) satisfy the
value-determination equations for policy R.

We can now explain the term relative-value function. Theorem 2 implies that

lim
n→∞

Vn(i,R)−Vn(j,R) = vi(R)− v j(R) for all i, j ∈ I.

In other words, using the fact that the relative-value function is uniquely determined
up to an additive constant, we have for any relative-value function vi, i∈ I for policy
R that vi− v j represents the difference in the total expected costs over the infinite
planning period t = 1,2, . . . when the starting state is i rather than j provided that
the Markov chain {Xn} associated with policy R is aperiodic.

1.2.2 The Policy-Improvement Step

In this section we come to the most important solution tool in Markovian control.
This tool is the policy-improvement step and provides a flexible method to improve a
given stationary policy R in order to obtain a stationary policy with a lower average
cost per unit time. We first give a heuristic motivation of the policy-improvement
step and next prove that it indeed leads to a better policy. The heuristic idea to im-
prove a given stationary policy R is as follows. Suppose that you ask yourselves the
question “how does change the total expected cost over the first n decision epochs
when deviating from policy R by taking some other decision a in state i at the first
decision epoch and next using policy R over the remaining decision epochs?” The
change in the total expected costs over the first n decision epochs is given by

ci(a)+∑
j∈I

pi j(a)Vn−1(j,R)−Vn(i,R).

For the moment, assume that the Markov chain {Xn} associated with policy R
is aperiodic. Then, by the results in Remark 1 in the previous section, we have
that Vn(i,R) ≈ ng(R)+ vi(R) for n large enough. Inserting this into the above ex-
pression, we get that the change in the expected costs is approximately given by
ci(a) +∑ j∈I pi j(a)v j(R)− g(R)− vi(R). This suggests to look for an action a in
state i so that the so-called policy-improvement inequality

ci(a)−g(R)+∑
j∈I

pi j(a)v j(R)≤ vi(R)

is satisfied. This heuristic discussion motivates our main theorem.

Theorem 3 (Improvement Theorem). Let g and vi, i ∈ I, be given numbers. Sup-
pose that the stationary policy R has the property

1.2 The Average-Cost Markov Decision Model 9

ci(Ri)−g+∑
j∈I

pi j(Ri)v j ≤ vi f or all i ∈ I.

Then the long-run average cost of policy R satisfies

g(R)≤ g

with strict inequality if the strict inequality sign holds in the policy-improvement
inequality for some state i that is recurrent under policy R.

Proof. Since the Markov chain {Xn} associated with policy R is unichain, this
Markov chain has a unique equilibrium distribution {πi(R), i ∈ I}. The equilibrium
probability πi(R) is positive only if state i is recurrent under policy R. Multiply-
ing both sides of the policy-improvement inequality by πi(R), summing over i and
noting that ∑i∈I πi(R) = 1, we get

∑
i∈I

πi(R)ci(Ri)−g+∑
i∈I

πi(R)∑
j∈I

pi j(Ri)v j ≤∑
i∈I

πi(R)vi,

where the strict inequality sign holds if there is strict inequality in the policy-
improvement inequality for some state i with πi(R) > 0. Interchanging the order
of summation in the double sum and using the equilibrium equations π j(R) =
∑i∈I πi(R)pi j(Ri) together with g(R) = ∑i∈I πi(R)ci(Ri), we find

g(R)−g+∑
j∈I

π j(R)v j ≤∑
i∈I

πi(R)vi,

where the strict inequality sign holds if there is strict inequality in the policy-
improvement inequality for some state i which is recurrent for policy R. This com-
pletes the proof.

Remark 1. An examination of the proof shows that Theorem 3 remains valid when
all inequality signs are reversed. As a consequence, a stationary policy R with aver-
age cost g(R) and relative values vi(R), i ∈ I is average cost optimal if

ci(a)−g(R)+∑
j∈I

pi j(a)v j(R)≤ vi(R) for all i ∈ I and a ∈ A(i).

Then g(R) and vi(R), i ∈ I satisfy the so-called average cost optimality equation

vi = min
a∈A(i)

{
ci(a)−g+∑

j∈I
pi j(a)v j

}
for i ∈ I.

An interesting interpretation can be attached to the policy-improvement inequality.
Suppose that a control cost of ci(a)− g is incurred when action a = Ri is chosen
in state i, while a terminal cost of v j is incurred when the control of the system
is stopped and the system is left behind in state j. Then the policy-improvement
inequality states that controlling the system for one step according to rule R and
stopping next is preferable to stopping directly.

10 H. Tijms

The policy-improvement step is an extremely important concept in Markovian
control. This concept allows for a flexible application. It can be used to derive the
so-called Odoni bounds for the value-iteration algorithm. This is a powerful algo-
rithm that can be used to any Markovian control application and this algorithm takes
its practical usefulness from the Odoni bounds. These bounds and the value-iteration
algorithm will be discussed in the next section. In applications, one wants sometimes
to confine to control rules that have a specific structure and are described by a few
parameters. For example, (s,S) ordering policies in controlled inventory systems
or policies with one or two switch-over levels to control the queue size in queueing
systems for which the service rate or arrival rate can be controlled. Designing appro-
priately the policy-improvement step, a tailor-made algorithm can be developed to
generate a sequence of improved policies having the desired structure. An applica-
tion of this approach will be given in Sect. 1.4. The policy-improvement procedure
has the remarkable feature that it achieves the largest cost improvements in the first
few iterations when it is repeatedly applied to generate a sequence of policies. This
finding underlies a heuristic approach for Markov decision problems with a multi-
dimensional state space. In such decision problems it is usually not feasible to solve
the value-determination equations. However, a policy-improvement step offers in
general no computational difficulties. This suggests a heuristic approach that deter-
mines first a good estimate for the relative values of an appropriately chosen policy
and next applies only one policy-improvement step. This heuristic approach often
results in a very good suboptimal rule. An application of this approach will be given
in Sect. 1.5.

Remark 2. The applications that will be discussed in the Sects. 1.4 and 1.5 deal with
the semi-Markov decision model. This model differs from the discrete-time Markov
decision model only in the feature that the decision epochs occur randomly in time:

τi(a) = the expected time until the next decision epoch if action
a is chosen in the current state i.

It is assumed that τi(a)> 0 for all i,a. As before, the random variable Xn is defined as
the state of the system just prior to the nth decision process. The embedded process
{Xn} is a discrete-time Markov chain under each stationary policy R. Assuming that
this Markov chain is unichain, the long-run average cost per unit time under policy
R is now given by

g(R) =∑
j∈I

c j(R j)π j(R)
/
∑
j∈I

τ j(R j)π j(R)

with {π j(R)} again denoting the equilibrium distribution of the embedded Markov
chain {Xn}. An examination of the proof of Theorem 1 reveals that this theorem
remains valid for the semi-Markov decision model provided that the value-
determinations equations are adjusted as

vi = ci(Ri)−gτi(Ri)+∑
j∈I

pi j(Ri)v j for i ∈ I.

1.2 The Average-Cost Markov Decision Model 11

Also, Theorem 3 remains valid provided that the policy-improvement inequality is
adjusted as

ci(Ri)−gτi(Ri)+∑
j∈I

pi j(Ri)v j ≤ vi for all i ∈ I.

1.2.3 The Odoni Bounds for Value Iteration

The value-iteration algorithm computes recursively a sequence of value functions
approximating the minimum average cost per time unit. The value functions can be
used to give lower and upper bounds on the minimum average cost and the average
cost of the generated policies. These bounds are the so-called Odoni bounds named
after Odoni [13], see also Hastings [7]. The bounds converge to the minimum av-
erage cost under an aperiodicity condition. The value-iteration algorithm endowed
with these lower and upper bounds is in general the best computational method for
solving large-scale Markov decision problems. Using Theorem 3 in Sect. 1.2, we
will give a simple derivation of these bounds. Before doing this, let us first for-
mulate the value-iteration algorithm. The value-iteration algorithm computes recur-
sively for n = 1,2, . . . the value function Vn(i) from

Vn(i) = min
a∈A(i)

{
ci(a)+∑

j∈I
pi j(a)Vn−1(j)

}
for i ∈ I,

starting with an arbitrarily chosen function V0(i), i ∈ I. The quantity Vn(i) can be in-
terpreted as the minimum total expected costs with n periods left to the time horizon
when the current state is i and a terminal cost of V0(j) is incurred when the system
ends up at state j; see e.g. [3] for a proof. Intuitively, one might expect that the one-
step difference Vn(i)−Vn−1(i) will come very close to the minimum average cost
per time unit and that the stationary policy whose actions minimize the right side
of the equation for Vn(i) for all i will be very close in cost to the minimum average
cost when n is large enough. The recursion equation for Vn(i) suggests to investigate
the operator T that adds to each function v = (vi, i ∈ I) a function T v whose ith
component (T v)i is defined by

(T v)i = min
a∈A(i)

{
ci(a)+∑

j∈I
pi j(a)v j

}
for i ∈ I.

Note that (T v)i =Vn(i) if vi =Vn−1(i), i∈ I. The following theorem plays a key role
in the value-iteration algorithm.

Theorem 4. Let v = (vi, i ∈ I) be a given function. Define the stationary policy R(v)
as a policy which adds to each state i ∈ I an action a = Ri(v) that minimizes the
right-hand side of the equation for (T v)i. Then,

min
i∈I
{(T v)i− vi} ≤ g∗ ≤ g(R(v))≤max

i∈I
{(T v)i− vi}

12 H. Tijms

where g∗ is the minimum long-run average cost per unit time.

Proof. To verify the bounds on g∗, take any stationary policy R. By the definition
of (T v)i, we have for any state i ∈ I that

(T v)i ≤ ci(a)+∑
j∈I

pi j(a)v j for all a ∈ A(i),

where the equality sign holds for a = Ri(v). Choosing a = Ri gives

(T v)i ≤ ci(Ri)+∑
i∈I

pi j(Ri)v j for i ∈ I.

Let m = mini∈I{(T v)i−vi}. Noting that m≤ (T v)i−vi for all i and using the above
inequality, we get m+ vi ≤ ci(Ri)+∑ j∈I pi j(Ri)v j for all i ∈ I, and so

ci(Ri)−m+∑
j∈I

pi j(Ri)v j ≥ vi for i ∈ I.

An application of Theorem 3 now gives that g(R) ≥ m. This inequality holds for
each policy R and so g∗ = minR g(R) ≥ m. The derivation of the upper bound for
g(R(v)) is very similar. By the definition of policy R(v),

(T v)i = ci(Ri(v))+∑
j∈I

pi j(Ri(v))v j for i ∈ I.

Let M = maxi∈I {(T v)i− vi}. Since M ≥ (T v)i− vi for all i ∈ I, we get

ci(Ri(v))−M+∑
j∈I

pi j(Ri(v))v j ≤ vi for i ∈ I.

Hence, by Theorem 3, g(R(v))≤M for all i ∈ I. This completes the proof.

How do the bounds in Theorem 4 work out for the value-iteration algorithm? Let

R(n) be any stationary policy such that the action a = R(n)
i minimizes the right-hand

side of the recursive equation for Vn(i) for all i ∈ I. Define the Odoni bounds

mn = min
i∈I
{Vn(i)−Vn−1(i)} andMn = max

i∈I
{Vn(i)−Vn−1(i)} .

Then, mn ≤ g∗ ≤ g(R(n)) ≤Mn. It is no restriction to assume that ci(a) > 0 for all
i,a; otherwise, add a same sufficiently large constant c to each ci(a). We then have
mn > 0 so that the bounds imply that

0≤ g(R(n))−g∗

g∗
≤ Mn−mn

mn
.

The value-iteration algorithm is typically stopped as soon as 0 ≤ Mn−mn ≤ εmn,
where ε > 0 is a small prespecified number, e.g. ε = 10−3. The remaining question
is whether the lower and upper bounds mn and Mn converge to the same limit so

1.3 Tailor-Made Policy-Iteration Algorithm 13

that the algorithm will be stopped after finitely many iterations. The answer to this
question is only in the affirmative if a certain aperiodicity condition is satisfied for
the underlying Markov chains. A sufficient condition is that the Markov chain {Xn}
is aperiodic for each average cost optimal stationary policy. Then the monotone
sequences {mn} and {Mn} have the same limit g∗ and the convergence to this limit
is exponentially fast, see Schweitzer and Federgruen [18], Van der Wal [18] and
Tijms [19].

The aperiodicity requirement is no problem for the value-iteration method. The
periodicity issue can be circumvented by a classical perturbation of the one-step
transition probabilities of a Markov chain. If the one-step transition probabilities
pi j of a Markov chain are perturbed as pi j = τ pi j for j �= i and pii = τ pii + 1− τ
for some constant τ with 0 < τ < 1, the perturbed Markov chain with one-step
transition probabilities pi j is aperiodic and has the same equilibrium probabilities
as the original Markov chain. Thus a Markov decision model involving periodicity
may be perturbed as follows. Choose some constant τ with 0< τ < 1 and let the state
space, the action sets, and the one-step costs unchanged. For any i ∈ I and a ∈ A(i),
the one-step transition probabilities of the perturbed Markov decision model are
defined by

pii(a) = τ pi j(a)+1− τ and pi j(a) = τ pi j(a) for j �= i.

For each stationary policy, the associated Markov chain in the perturbed model is
aperiodic, while the average cost per unit time in the perturbed model is the same as
that in the original model. In specific problems involving periodicity the ‘optimal’
value of τ is usually not clear beforehand; empirical investigations indicate that
τ = 1

2 is usually a satisfactory choice. It is noted that this transformation technique
can be generalized to transform any semi-Markov decision model into an equivalent
discrete-time Markov decision model so that the value-iteration method can also be
applied to the semi-Markov decision model, see Tijms [19] for details.

Finally, it is pointed out that the unichain assumption from Sect. 1.1 can be weak-
ened. In practical applications of the average cost Markov decision model, there may
be nonoptimal policies for which the associated Markov chains have multiple recur-
rent classes, but the unichain property typically holds for the average cost optimal
policies. For the value-iteration method, it suffices to require that the Markov chains
associated with the average cost optimal policies are unichain (and aperiodic), see
Tijms [19] for further details.

1.3 Tailor-Made Policy-Iteration Algorithm

Before formulating the queueing control problem, we discuss the general idea
of an embedding technique that will used in this control problem. By exploit-
ing the structure of the specific problem, the computational work in solving the

14 H. Tijms

value-determination equations can be considerably reduced. This embedding tech-
nique will be discussed in the context of the semi-Markov decision model in which
the decision epochs occur randomly in time and it suffices to know τi(a) being the
expected time until the next decision epoch when action a is chosen in state i at the
current decision epoch. For a fixed stationary policy R, let E be an appropriately
chosen subset of the state space I such that under policy R the set E of states can be
reached from each initial state i ∈ I. Define now for each i ∈ I and j ∈ E,

pE
i j(R) = the probability that the first transition to a state in E is to

state j when the initial state is i and policy R is used,

τE
i (R) = the time until the first transition to a state in E when the

initial state is i and policy R is used,

cE
i (R) = the expected cost incurred until the first transition to a state

in E when the initial state is i and policy R is used.

Theorem 5. Let r ∈ E be a state that is recurrent under policy R. Then the system
of linear equations,

vi = cE
i (R)−gτE

i (R)+∑
j∈E

pE
i j(R)v j for i ∈ E

together with the normalization vr = 0 has a unique solution. Denote this solution
by gE and vE

i for i ∈ E and augment this solution by

vE
i = cE

i (R)−gτE
i (R)+∑

j∈E
v j p

E
i j(R) for i /∈ E.

Then gE = g(R). Moreover, gE and the vE
i , i∈ I satisfy the original value-determina-

tion equations vi = ci(Ri)−gτi(Ri)+∑ j∈I pi j(Ri)v j, i ∈ I.

Proof. The first assertion is a consequence of the version of Theorem 1 for the
semi-Markov model, as follows by applying this theorem to the Markov process
embedded on the set E. To prove the other assertions, let the function wi(R) =
Ki(R)− g(R)Ti(R), i ∈ I be defined as in Theorem 1. By the uniqueness of the
solution gE and the vE

i and the fact that g(R) and the wi(R) satisfy the value-
determination equations for policy R (Theorem 1), it suffices to verify that

wi(R) = cE
i (R)−g(R)τE

i (R)+∑
j∈E

w j(R)pE
i j(R) for all i ∈ I.

This is easily shown. Using the definitions of Ti(R) and Ki(R), we have

Ti(R) = τE
i (R)+ ∑

j∈E, j �=r

pE
i j(R)Tj(R) for i ∈ I,

Ki(R) = cE
i (R)+ ∑

j∈E, j �=r

pE
i j(R)Kj(R) for i ∈ I.

Subtracting g(R) times the equation for Ti(R) from the equation for Ki(R) and noting
that wr(R) = 0, we get the equation to be verified for the wi(R).

1.3 Tailor-Made Policy-Iteration Algorithm 15

1.3.1 A Queueing Control Problem with a Variable Service Rate

Messages arrive at one of the outgoing communication lines in a message switching
center according to a Poisson process with rate λ . The message length is exponen-
tially distributed with mean 1/μ . An arriving message finding the communication
line idle, is provided with service immediately; otherwise, the message is stored in
a buffer until access to the line can be given. The communication line is only able to
transmit one message at a time, but has available two possible transmission rates σ1

and σ2 with 0≤ σ1 < σ2. It is assumed that the faster transmission rate σ2 is larger
than the offered traffic λ/μ . At any time the line may switch from one transmission
rate to the other. A fixed cost of K ≥ 0 is incurred when switching from rate σ1 to
the faster rate σ2. An operating cost at rate ri > 0 is incurred when the line is trans-
mitting a message using rate σi, while an operating cost at rate r0 ≥ 0 is incurred
when the line is idle. For each message a holding cost of h > 0 is incurred for each
unit of time the message is in the system until its transmission is completed. An
easily implementable control is the (i1, i2) rule with 0≤ i2 < i1. Under this rule the
communication line switches from transmission rate σ1 to σ2 when the number of
messages in the system increases to the level i1 at an arrival epoch, and switches
from rate σ2 to rate σ1 when the number of messages in the system decreases to the
level i2 at a transmission completion epoch. The goal is to find the best rule within
the class of the (i1, i2) rules, where the criterion is the long-run average cost per unit
time.

The problem of controlling the transmission rate as a function of the number of
messages in the system is a semi-Markov decision problem in which the decision
epochs are given by the arrival epochs and the transmission completion epochs. The
message lengths and the interarrival times of messages are both exponentially dis-
tributed and so, by the memoryless property of the exponential distribution, the state
of the system can be described by s= (i,k), where i denotes the number of messages
in the system and k = 1 or 2 depending on whether the prevailing transmission rate
is σ1 or σ2. The number of possible states is unbounded. However, this will offer no
computational problems when using the embedding technique. To develop a tailor-
made policy-iteration algorithm operating on the class of (i1, i2) rules, we first show
how embedding leads to a very simple calculation of the long-run average cost and
the relative values associated with an (i1, i2) rule. For a given rule R of the (i1, i2)-
type, the embedded system of linear equations in Theorem 5 becomes quite simple
when choosing as embedded set

E = {(i1,1),(i2,2)}.

The embedded Markov chain on E visits alternately the states (i1,1) and (i2,2). The
transition probabilities pE

st(R) are given by

pE
(i,1),(i1,1)

(R) = 1 for 0≤ i < i1, pE
(i,1),(i2,2)

(R) = 1 for i≥ i1,

pE
(i,2),(i1,1)

(R) = 1 for 0≤ i≤ i2, pE
(i,2),(i2,2)

(R) = 1 for i > i2.

16 H. Tijms

Next we specify the quantities τE
s (R) and cE

s (R). Obviously,

τE
(i,1)(R) = τE

(i,2)(R) for i > i1, cE
(i,1)(R) = K + cE

(i,2)(R) for i≥ i1.

Also, τE
(i,2)(R) = τE

(i,1)(R) and cE
(i,2)(R) = cE

(i,1)(R) for 0 ≤ i ≤ i2. The other τE
s (R)

and cE
s (R) are specified in the following two lemmas.

Lemma 6. For i > i2,

τE
(i,2)(R) =

i− i2
σ2μ−λ

, cE
(i,2)(R) =

i− i2
σ2μ−λ

[1
2

h(i− i2 +1)+
hλ

σ2μ−λ
+ r2

]
.

Proof. The formulas can be directly obtained from a basic result in queueing theory.
Take the M/M/1 queue with arrival rate λ and service rate η such that λ/η < 1,
and assume that a holding cost at rate hi is incurred whenever there are i customers
in the system. Then the time until the system becomes empty when starting with
i customers in the system has expected value i

η−λ and the total holding cost in-

curred during this time has expected value hi
η−λ

[
1
2 (i+1)+ λ

η−λ
]
, see e.g. Sect. 2.6

in Tijms [19].

Lemma 7. For 0≤ i < i1,

τE
(i,1)(R) =

1
(λ −σ1μ)2

[
(λ −σ1μ)(i1− i)+σ1μ

(
(σ1μ/λ)i1 − (σ1μ/λ)i)]

provided that λ �= σ1μ ; otherwise, τE
(i,1)(R) =

1
2λ [i1(i1 + 1)− i(i + 1)]. Also, for

0≤ i < i1,

cE
(i,1)(R) =

1
(λ −σ1μ)3

[1
2

h(λ −σ1μ)2 (i21− i2)+(i1− i)[r1(λ −σ1μ)2

−1
2

h(λ +σ1μ)(λ −σ1μ)]+ [−r0(λ −σ1μ)2

+r1λ (λ −σ1μ)−hλσ1μ]
(
(σ1μ/λ)i1 − (σ1μ/λ)i)

]

provided that λ �= σ1μ ; otherwise, cE
(i,1)(R) =

1
λ
[

1
6 h(i31− i3)+ 1

2 r1(i21− i2)+ (r0−
1
2 r1− 1

6 h)(i1− i)
]
.

Proof. Put for abbreviation τi = τE
(i,1)(R) and ci = cE

(i,1)(R) for 0 ≤ i < i1. By a
conditioning argument,

τi =
1

λ +σ1μ
+

σ1μ
λ +σ1μ

τi−1 +
λ

λ +σ1μ
τi+1 for 1≤ i < i1,

ci =
hi+ r1

λ +σ1μ
+

σ1μ
λ +σ1μ

ci−1 +
λ

λ +σ1μ
ci+1 for 1≤ i < i1

with the boundary conditions τ0 = 1/λ+τ1, c0 = r0/λ+c1 and τi1 = ci1 = 0. These
equations are linear recurrence equations of the second order. Using a standard

1.3 Tailor-Made Policy-Iteration Algorithm 17

method from the theory of linear difference equations, we get the desired expres-
sions after tedious algebra.

We now specify how to compute the average cost g(R) and the relative values
vs(R) for the policy R = (i1, i2). The set of embedded linear equations on E consists
of two linear equations. Normalizing v(i2,2)(R)= 0 and using the results in Lemma 6,
we obtain

g(R) =
[
K +(σ2μ−λ)−1(i1− i2)

(
h(i1− i2 +1)/2+hλ (σ2μ−λ)−1

+r2
)
+ cE

(i2,1)
(R)

][
(σ2μ−λ)−1(i1− i2)+ τE

(i2,1)
(R)

]−1
,

v(i1,1)(R) = −cE
(i2,1)

(R)+g(R)τE
(i2,1)

(R),

where τE
(i2,1)

(R) and cE
(i2,1)

(R) are given in Lemma 7. Next any other relative value
can be obtained by a single-pass calculation. We have

v(i,1)(R) = cE
(i,1)(R)−g(R)τE

(i,1)(R)+ v(i1,1)(R) for 0≤ i < i1,

v(i,1)(R) = K + v(i,2)(R) for i≥ i1,

v(i,2)(R) = cE
(i,2)(R)−g(R)τE

(i,2)(R)+ v(i1,1)(R) for i > i2,

v(i,2)(R) = v(i,1)(R) for 0≤ i≤ i2.

Next we describe how to design the policy-improvement step such that the new
policy has the same form as the current policy R= (i1, i2). To do so, we must specify
the policy-improvement quantity

TR(s;a) = cs(a)−g(R)τs(a)+∑
t

pst(a)vt(R),

where the pst(a), cs(a) and τs(a) are the elements of the original semi-Markov
decision model, and action a = 1 if transmission rate σ1 is prescribed and a = 2
if transmission rate σ2 is prescribed. Note that TR(s;a) = vs(R) if a = Rs, since
g(R) and the vs(R) satisfy the original value-determination equations vs(R) =
cs(Rs)− g(R)τs(Rs) +∑t pst(Rs)vt(R), as shown in Theorem 5. It is readily seen
that

TR((i,1);1) = hi+r1
λ+σ1μ

− g(R)
λ+σ1μ

+ σ1μ
λ+σ1μ

v(i−1,1)(R)+
λ

λ+σ1μ
v(i+1,1)(R), i≥ i1,

TR((i,2);1) = TR((i,1);1) for i≥ i1,

TR((i,1);2) = K + v(i,2)(R) and TR((i,2);1) = v(i,1)(R) for i2 < i < i1,

TR((i,2);2) = hi+r2
λ+σ2μ

− g(R)
λ+σ2μ

+ σ2μ
λ+σ2μ

v(i−1,2)(R)+
λ

λ+σ2μ
v(i+1,2)(R), i≤ i2.

In the policy-improvement procedure we first adjust the switching level i1 through
a construction that guarantees that the policy-improvement quantity is strictly less
than the relative value for any state (i,1) with i between the current value of i1 and
the new value of i1. Next we adjust the switching level i2 in a similar way. This
results in the following tailor-made algorithm that generates only policies of the
(i1, i2)-type.

18 H. Tijms

Algorithm

Step 0. Initialize with any (i1, i2) policy with 0≤ i2 < i1.
Step 1. For the current policy R = (i1, i2), calculate the average cost g(R) and the
relative value v(i1,1)(R) by solving the embedded system of linear equations with the
normalization v(i2,2)(R) = 0. Any other relative value vs(R) needed in the following
step is obtained by a single-pass calculation.
Step 2. (a) Search for the largest integer l1 with l1 > i1 so that TR((i,1);1)< v(i,1)(R)
for i1 ≤ i < l1. If such an integer l1 exists, let inew

1 = l1. Otherwise, search for the
smallest integer m1 with i2 < m1 < i1 so that TR((i,1);1)< v(i,1)(R) for m1 ≤ i < i1.
If such an integer exists, let inew

1 = m1. Otherwise, inew
1 = i1.

(b) Search for the smallest integer l2 with 0≤ l2 < i2 so that TR((i,2);2)< v(i,2)(R)
for l2 < i ≤ i2. If such an integer l2 exists, let inew

2 = l2. Otherwise, search for the
largest integer m2 with i2 < m2 < inew

1 so that TR((i,2);1)< v(i,2)(R) for i2 < i≤m2.
If such an integer exists, let inew

2 = m2. Otherwise, inew
2 = i2.

Step 3. If the new policy Rnew = (inew
1 , inew

2) is the same as the previous policy
R = (i1, i2), then the algorithm is stopped; otherwise, go to step 1 with R replaced
by Rnew.

This algorithm generates a sequence of (i1, i2) policies with non-increasing av-
erage costs. It is conjectured that the algorithm converges after finitely many steps
to an (i1, i2) rule that is average cost optimal among the class of all conceivable
control rules. In support of this conjecture are extensive numerical investigations.
In all cases tested, we verified numerically that the average cost optimality equation
was satisfied for the finally obtained (i1, i2) rule. Also, we found that the algorithm
requires only a very few iterations. In general, policy iteration is empirically found
to be a remarkably robust method that converges very fast in specific problems. The
number of iterations is practically independent of the number of states and varies
typically between 3 and 15 (say). Also, it can be roughly stated that the average
costs of the policies generated by policy iteration converge at least exponentially
fast to the minimum average cost, with the greatest improvements in the first few
iterations. This empirical fact will be used in the analysis of the Markov decision
application in the next section.

1.4 One-Step Policy Improvement for Suboptimal Policies

Policy iteration has the remarkable feature that it achieves the largest improve-
ments in cost in the first few iterations. This finding underlies a heuristic approach
for Markov decision problems with a multi-dimensional state space. In such deci-
sion problems it is usually not feasible to solve the value-determination equations.
However, a policy-improvement step offers in general no computational difficul-
ties. This suggests a heuristic approach that determines first a good estimate for
the relative values and next applies only one policy-improvement step. By the na-

1.4 One-Step Policy Improvement for Suboptimal Policies 19

ture of the policy-iteration algorithm one might expect to obtain a good decision
rule by the heuristic approach. How to compute the relative values to be used in the
policy-improvement step typically depends on the specific application. The heuris-
tic approach of attacking a multi-dimensional Markov decision problem through
decomposition and a single-improvement step goes back to Norman [12] and has
been successfully applied in Bhulai and Koole [7], Haijema and Van der Wal [6],
Krishnan and Ott [10, 11], and Wijngaard [23], see also Powell [14]. This section
deals with the dynamic routing model that was discussed in Krishnan and Ott [11].
In Sassen et al. [17] the heuristic approach has been applied to an extension of this
dynamic routing model.

1.4.1 Dynamic Routing of Customers to Parallel Queues

An important queueing model arising in various practical situations is one in which
arriving customers (messages or jobs) have to be assigned to one of several differ-
ent groups of servers. Problems of this type occur in telecommunication networks
and flexible manufacturing. The queueing system consists of n multi-server groups
working in parallel, where each group has its own queue. There are sk servers in
group k, (k = 1, . . . ,n). Customers arrive according to a Poisson process with rate λ .
Upon arrival each customer has to be assigned to one of the n server groups. The
assignment is irrevocable. The customer waits in the assigned queue until a server
becomes available. Each server can handle only one customer at a time.

The problem is to find an assignment rule that (nearly) minimizes the average
sojourn time per customer. This problem will be analyzed under the assumption that
the service times of the customers are independent and exponentially distributed.
The mean service time of a customer assigned to queue k is 1/μk (k = 1, . . . ,n).
It is assumed that λ < ∑n

k=1 skμk. In what follows we consider the minimization
of the overall average number of customers in the system. In view of Little’s for-
mula, the minimization of the average sojourn time per customer is equivalent to the
minimization of the average number of customers in the system.

The problem of assigning the arrivals to one of the server groups is a semi-
Markov decision problem with a multi-dimensional state space. The decision epochs
are the arrival epochs of new customers. The state of the system at a decision epoch
is an n-dimensional vector x= (i1, . . . , in), where i j denotes the number of customers
present in queue j. This description uses the memoryless property of the exponen-
tial service times. The action a = k in state x means that the new arrival is assigned
to queue k. To deal with the optimality criterion of the long-run average number
of customers in the system, we impose the following cost structure on the system.
A cost at rate j is incurred whenever there are j customers in the system. Then the
long-run average cost per time unit gives the long-run overall average number of
customers in the system.

An intuitively appealing control rule is the shortest-queue rule. Under this rule
each arriving customer is assigned to the shortest queue. Except for the special case

20 H. Tijms

of s1 = . . .= sn and μ1 = . . .= μn, this rule is in general not optimal. In particular,
the shortest-queue rule may perform quite unsatisfactorily in the situation of a few
fast servers and many slow servers. It is difficult to estimate the average cost and the
relative values for the shortest-queue rule. Therefore this rule is not suited to base on
the one-step policy improvement step. Another simple rule is the Bernoulli-splitting
rule. Under this rule each arrival is assigned with a given probability pk to queue
k for k = 1, . . . ,n, irrespective of the queue lengths. This assignment rule produces
independent Poisson streams at the various queues, where queue k receives a Pois-
son stream at rate λ pk. The probabilities pk must satisfy ∑k pk = 1 and λ pk < skμk

for k = 1, . . . ,n. This condition guarantees that no infinitely long queues can build
up. For the Bernoulli-splitting rule it is easy to find the average cost and the rela-
tive values. The reason is that under the Bernoulli rule the separate queues act as
independent queues of the M/M/s type and thus a natural decomposition of the
problem is naturally obtained. In the M/M/s queue with arrival rate α and s expo-
nential servers each with service rate μ , the long-run average number of customers
in the system equals

L(s,α,μ) =
ρ(sρ)s

s!(1−ρ)2

{
s−1

∑
k=0

(sρ)k

k!
+

(sρ)s

s!(1−ρ)

}−1

+ sρ ,

where ρ = α/(sμ). Under the Bernoulli-splitting rule the overall average number
of customers in the system equals

n

∑
k=1

L(sk,λ pk,μk).

The best Bernoulli-splitting rule is found by minimizing this expression with respect
to p1, . . . , pn subject to the condition ∑k pk = 1 and 0≤ λ pk < skμk for k = 1, . . . ,n.
This minimization problem must be numerically solved by some search procedure
(for the case of n = 2, bisection can be used to find the minimum of a unimodal
function in a single variable).

One-Step Policy Improvement

Denote by policy R(0) the best Bernoulli-splitting rule and let p(0)k , k = 1, . . . ,n be
the splitting probabilities associated with policy R(0). We already pointed out that
the average cost for rule R(0) is easy to compute. Below it will be shown that the
relative values are also easy to obtain for rule R(0). Let us first explain how to derive
an improved policy from the Bernoulli-splitting rule R(0). This derivation is based
on first principles discussed in Sect. 6.2. The basic idea of the policy-improvement
step is to minimize for each state x the difference Δ(x,a,R(0)) defined by

1.4 One-Step Policy Improvement for Suboptimal Policies 21

Δ(x,a,R(0)) = the difference in total expected costs over an infinitely

long period of time by taking first action a and next using

policy R(0) rather than using policy R(0) from scratch

when the initial state is x.

The difference is well-defined since the Markov chain associated with policy R(0) is
aperiodic. Under the Bernoulli-splitting rule the n queues act as independent M/M/s
queues. Define for each separate queue k

Dk(i) = the difference in total expected costs in queue k over

an infinitely long period of time by starting with i+1

customers in queue k rather than with i customers.

Then, for each state x = (i1, . . . , in) and action a = j

Δ(x,a,R(0)) =
n

∑
k=1
k �= j

p(0)k [−Dk(ik)+D j(i j)]+ p(0)j ×0

= −
n

∑
k=1

p(0)k Dk(ik)+D j(i j).

Since the term ∑k p(0)k Dk(ik) does not depend on the action a = j, the step of mini-
mizing Δ(x, j,R(0)) over j reduces to finding the minimizing index in

min
1≤ j≤n

D j(i j).

Hence the expression to be evaluated in the policy-improvement step applied to the
Bernoulli-splitting rule is remarkably simple. The suboptimal rule resulting from
the single application of the policy-improvement step is called the separable rule.
It remains to specify the function Dk(i) for each queue k. To do so, consider an
M/M/s queue in isolation, where customers arrive according to a Poisson process
with rate α and there are s exponential servers each with service rate μ . Each arrival
is admitted to the queue. The state of the system describes the number of customers
present. A cost at rate j is incurred when there are j customers present. The long-run
average cost per time unit is given by

g = L(s,α,μ).

The M/M/s queueing process can be seen as a semi-Markov decision process with
a single decision in each state. The decision is to leave the system alone. In this
Markov decision formulation it is convenient to consider the state of the system
both at the arrival epochs and the service completion epochs. In the M/M/s queue
the situation of i customers present just after a service completion is probabilistically
the same as the situation of i customers present just after an arrival. We define the
relative cost function wi

22 H. Tijms

w(0) = 0 and w(i) = Ki−gTi for i = 1,2, . . . ,

where Ti is the expected time until the first return to an empty system starting with i
customers present and Ki is the total expected cost incurred until the first return to an
empty system starting with i customers present for i≥ 1. It suffices to have w(0) = 0
and there is no need to define T0 and K0 as the expected time and the expected total
cost between two successive visits to state 0. By the interpretation of the relative
values given in Sect. 1.1 (note that the underlying Markov chain is aperiodic), we
have for any i = 0,1, . . . that

w(i+1)−w(i) = the difference in total expected costs over an infinitely

long period of time by starting in state i+1 rather

than in state i.

Denote by wk(i) the function w(i) for the M/M/s queue with α = λ pk, s = sk, and
μ = μk. The desired function Dk(i) for queue k is given by

Dk(i) = wk(i+1)−wk(i).

The basic functions Ki and Ti are easy to compute. By conditioning,

Ti =
1

α+ iμ
+

iμ
α+ iμ

Ti−1 +
α

α+ iμ
Ti+1 for 1≤ i≤ s,

Ki =
i

α+ iμ
+

iμ
α+ iμ

Ki−1 +
α

α+ iμ
Ki+1 for 1≤ i≤ s,

provided that we put T0 = K0 = 0. For i > s, we have

Ti =
i− s

sμ−α
+Ts,

Ki =
i− s

sμ−α

[
1
2
(i− s)(i− s+1)+

α
sμ−α

]
+

s(i− s)
sμ−α

+Ks.

To see the latter relations, note that the time to reach an empty system from state
i > s is the sum of the time to reach state s and the time to reach an empty system
from state s. By the memoryless property of the exponential distribution, the multi-
server M/M/s queue operates as a single-server M/M/1 queue with service rate
sμ when s or more customers are present. Using the basic result for the M/M/1
queue stated in the proof of Lemma 6, we find the formulas for Ti and Ki when i > s.
Substituting the expressions for Ts+1 and Ks+1 in the equations for Ti and Ki with
i = s, we get two systems of linear equations for Ti, 1≤ i≤ s and Ki, 1≤ i≤ s. Once
these systems of linear equations have been solved, we can next compute Ti and Ki

for any desired i > s.
Summarizing, the heuristic algorithm proceeds as follows.

1.4 One-Step Policy Improvement for Suboptimal Policies 23

Heuristic Algorithm

Step 1. Compute the best values p(0)k , k = 1, . . . ,n, of the Bernoulli-splitting prob-
abilities by minimizing ∑n

k=1 L(sk,λ pk,μk) subject to ∑n
k=1 pk = 1 and 0 ≤ λ pk <

skμk for k = 1, . . . ,n.
Step 2. For each queue k = 1, . . . ,n, solve the two systems of linear equations for

the Ti(= Ti(k)) and the Ki(= Ki(k)) with α = λ p(0)k , s = sk and μ = μk. Next

compute for each queue k the average cost gk = L(sk,λ p(0)k ,μk) and the function
wk(i) = Ki(k)−gkTi(k).
Step 3. For each state x = (i1, . . . , in), determine an index k0 achieving the mini-
mum in

min
1≤k≤n

{wk(ik +1)−wk(ik)}.

The separable rule assigns a new arrival in state x = (i1, . . . , in) to queue k0.

Let us consider the numerical data

s1 = 10, s2 = 1, μ1 = 1 and μ2 = 9.

The traffic load ρ , which is defined by

ρ = λ/(s1μ1 + s2μ2),

is varied as ρ = 0.2, 0.5, 0.7, 0.8 and 0.9. In addition to the theoretically minimum
average sojourn time, Table 1.1 gives the average sojourn time per customer for
the Bernoulli-splitting rule (B-split) and for the heuristic separable rule. The table
also gives the average sojourn time per customer under the shortest-expected-delay
(SED) rule. Under this rule an arriving customer is assigned to the queue in which
its expected individual delay is smallest (in case of a tie, the customer is sent to
queue 1). The results in the table show that this intuitively appealing control pol-
icy performs unsatisfactorily for the case of heterogenous services. However, the
heuristic separable rule shows an excellent performance for all values of ρ .

Table 1.1: Numerical results for one-step policy improvement

ρ SED B-split Separable Optimal
0.2 0.192 0.192 0.191 0.191
0.5 0.647 0.579 0.453 0.436
0.7 0.883 0.737 0.578 0.575
0.8 0.982 0.897 0.674 0.671
0.9 1.235 1.404 0.941 0.931

24 H. Tijms

1.5 One-Stage-Look-Ahead Rule in Optimal Stopping

Consider a process that is observed at time points t = 0,1,2, . . . to be in one of the
states of a finite or countably infinite set I. In each state there are no more than two
possible actions: a = 0 (stop) and a = 1 (continue). When in state i and choosing
the stopping action a = 0, a terminal reward R(i) is received. Suppose that there
is a termination state that is entered upon choosing the stopping action. Once this
state is entered the system stays in that state and no further costs or rewards are
made thereafter. When in state i and choosing action a = 1, a continuation cost c(i)
is incurred and the process moves on to the next state according to the transition
probabilities pi j for i, j ∈ I. The following assumption is made.

Assumption. Either the condition

(i) supi∈I R(i)< ∞ and infi∈I c(i)> 0
holds or the condition

(ii) supi∈I R(i) < ∞, c(i) = 0 for i ∈ I, and there is a nonempty set S0 consisting
of the states in which stopping is mandatory and having the property that the
process will reach the set S0 within a finite expected time when always action
a = 1 is chosen in the states i /∈ S0, whatever the starting state is.

The goal is to find a stopping rule that minimizes the expected total costs over
an unbounded planning horizon, interpreting the terminal reward R(i) as a nega-
tive cost. This stopping model can be transformed into an equivalent model with
nonnegative costs, see Ross [16]. To do so, let R = supi∈I R(i) and consider the
equivalent process in which we pay R at the start, incur a nonnegative cost c(i)
when choosing action a = 0 in state i and incur the nonnegative terminal cost of
R−R(i) when stopping in state i, where the process moves on to state j with prob-
ability pi j when action a = 1 is chosen in state i. In the equivalent model all costs
are nonnegative so that results from the theory of negative dynamic programming
apply. For the transformed process, let V ′(i) be the minimum expected total cost
over an unbounded planning horizon when the process starts in state i and all con-
ceivable policies are considered. The function V ′(i) satisfies the optimality equation
V ′(i) = min{R−R(i),c(i)+∑ j∈I pi jV ′(j)} for i ∈ I and the policy which chooses
the minimizing actions is optimal. The cost function V (i) = V ′(i)−R is the mini-
mum expected total cost in the original process and satisfies the optimality equation

V (i) = min
{
−R(i), c(i)+∑

j∈I
pi jV (j)

}
for i ∈ I.

In the case of Assumption(ii), V (i) = −R(i) for i ∈ S0 and the equation is only
relevant for i /∈ S0. The stationary policy that chooses in each state i the action
minimizing the right side of the optimality equation is optimal over the class of all
conceivable policies. Moreover, the value function V (i) is given by

V (i) = lim
n→∞

Vn(i) for i ∈ I,

1.5 One-Stage-Look-Ahead Rule in Optimal Stopping 25

where Vn(i) is obtained from Vn(i) = min{−R(i), c(i) +∑ j∈I pi jVn−1(j)} starting
with V0(i) =−R(i), see Ross [16]. It is also shown in Ross [16] that under a certain
condition the so-called one-stage-look-ahead rule is optimal, see also the lucid class
notes of Weber [22]. This rule is an intuitively appealing policy that looks only one
step ahead, as the name says. Consider the set of states in which it is at least as good
as to stop now as to continue one more step and then stop:

B = {i ∈ I : R(i)≥−c(i)+∑
j∈I

pi jR(j)}.

Clearly, it cannot be optimal to stop in a state i /∈ B, since in that case it would be
strictly better to continue one more step and then stop. The one-stage-look-ahead
rule is now defined as the rule that stops in state i only if i ∈ B. The following
theorem holds.

Theorem 8. Suppose that the set B is closed so that once the process enters the set B
it remains in B. That is, pi j = 0 for i ∈ B and j /∈ B. Then the one-stage-look-ahead
rule is optimal.

A proof of this theorem was given in Ross [16] under Assumption (i), but an
examination of the proof reveals that the theorem is also valid under Assumption
(ii).

We give three interesting examples of optimal stopping problems. In the first
example the closedness condition of Theorem 8 is satisfied so that the one-stage-
look-ahead rule is optimal. In the other examples the closedness condition is not
satisfied, but nevertheless the one-stage-look-ahead rule is very close in cost to the
optimal policy. More examples of optimal stopping problems can be found in Boyce
[2], Hill [8] and Tijms [20].

1.5.1 Devil’s Penny Problem

Someone puts n+ 1 closed boxes in random order in front of you. One of these
boxes contains a devil’s penny and the other n boxes contain given dollar amounts
a1, . . . ,an. You may open as many boxes as you wish, but they must be opened one
by one. You can keep the money from the boxes you have opened as long as you
have not opened the box with the devil’s penny. Once you open this box, the game
is over and you lose all the money gathered so far. What is an optimal stopping rule
when you want to maximize the expected value of your gain?

This problem can be put in the framework of the optimal stopping model. The
state space is finite and given by

I = {0}∪{(k,b1, . . . ,bk) : 1≤ k ≤ n−1}∪{(1,0)}.

State 0 means that you have opened the box with the devil’s penny. The state
(k,b1, . . . ,bk) means that there are still k + 1 unopened boxes including the box

26 H. Tijms

with the devil’s penny, where dollar amounts b1, . . . ,bk are contained in the k un-
opened boxes not having the devil’s penny (each bi is one of the a1, . . . ,an). State
(1,0) means that the only unopened box is the box with the devil’s penny. In state
(k,b1, . . . ,bk) you have gathered so far A−∑k

i=1 bi dollars, where

A =
n

∑
i=1

ai

is the original total dollar amount in the n boxes. In state 0 the process stops and a
terminal reward R(0) = 0 is received. In the other states there are two possible ac-
tions a = 0 and a = 1. The action a = 1 means that you continue and open one other
box. There is no cost associated with this action. If you take the stopping action
a = 0 in state s = (k,b1, . . . ,bk), you receive a terminal reward of R(s) = A−∑k

i=1 bi

(and R(s) = A for s = (1,0)). Then the process moves on to state 0 with prob-
ability 1

k+1 and to state (k− 1,b1, . . . ,bl−1,bl+1, . . . ,bk) with the same probabil-
ity 1

k+1 for 1 ≤ l ≤ k. To analyze the one-stage-look-ahead rule, let for any state
s = (k,b1, . . . ,bk) the random variable D(s) denote the amount by which your cur-
rent gain G = A−∑k

j=1 b j would change when you would decide to open one other
box when you are in state s. Then,

E
(
D(s)

)
=

1
k+1

k

∑
j=1

b j−
1

k+1
G =

1
k+1

(
A−G

)
− 1

k+1
G.

Obviously,

E
(
D(s)

)
≤ 0 if and only G≥ 1

2
A.

Let
B = {0}∪{s : E

(
D(s)

)
≤ 0}.

It is immediate that action a = 1 in state s∈ B can only lead to states t ∈ B. Thus, we
can conclude from Theorem 8 that the one-stage-look-ahead rule is optimal among
the class of all conceivable control rules. The one-stage-look-ahead rule prescribes
to stop in state s = (k,b1, . . . ,bk) only if the dollar amount G = A−∑k

i=1 bi gathered
so far is at least half of the original total dollar amount A. It is quite remarkable that
the optimal stopping rule depends only on the total dollar amount in the boxes and
not on the distribution of the total dollar amount over the boxes. In the case that
there are two boxes with a devil’s penny, an examination of the analysis shows that
it is optimal to stop as soon as the dollar amount you have gathered is at least one
third of the original total dollar amount in the boxes.

1.5 One-Stage-Look-Ahead Rule in Optimal Stopping 27

1.5.2 A Game of Dropping Balls into Bins

A game machine can be used to drop balls into bins. The balls are dropped one at a
time and any ball will land at random into one of b bins. You can stop dropping balls
whenever you wish. At the end of the game you win $1 for every bin with exactly
one ball and you lose half of a dollar for every bin containing k ≥ 2 balls. Empty
bins do not count. What should you do when you want to maximize the expected
net gain? How does change the solution when you lose 1

2 k dollars rather than half
of a dollar for every bin containing k ≥ 2 balls?

These problems are optimal stopping problems. The first problem has a finite
state space I = {(i0, i1) : i0, i1 ≥ 0, i0 + i1 ≤ b}, where state (i0, i1) means that there
are i0 empty bins and i1 bins with exactly one ball (and b− i0− i1 bins with two or
more balls). For each state s=(i0, i1), the continuation cost c(s)= 0 and the terminal
reward R(s) = i1− 0.5(b− i0− i1). It is no restriction to impose the condition that
stopping is mandatory in the states (0, i1). If you decide in state s = (i0, i1) to drop
one more ball and then stop rather than to stop now, then the expected change in
your terminal reward is

i0
b
×1− i1

b
× (0.5+1)+

b− i0− i1
b

×0.

Hence the set of states in which it is as least as good to stop now in state s as to
continue for one more step and then stop is given by

B = {(i0, i1) : i0−1.5i1 ≤ 0}.

The one-stage-look-ahead rule prescribes to stop in the states of B and to continue
otherwise. However, the one-stage-look-ahead rule is not the overall best control
rule. For example, take b = 3. Then, calculations show that the overall best stopping
rule differs only from the one-stage-look-ahead rule by the decision taken in state
(1,1). The one-stage-look-ahead rule prescribes to stop in state (1,1). However,
by taking the decision “not to stop” in state (1,1), there is a positive probability
of going to state (1,0) outside the set B. In other words, the closedness condition
in Theorem 8 is not satisfied. Nevertheless the performance of the one-stage-look-
ahead rule is very good, as numerical investigations reveal. The expected gain under
the one-stage-look-ahead rule can be calculated by a simple recursion. Let u(i0, i1)
be defined as the expected net gain you can achieve under the one-stage-look-ahead
rule when starting in state (i0, i1). Then u(i0, i1) = i1−0.5(b− i0− i1) for i0 ≤ 1.5i1.
The desired u(b,0) can be obtained by applying the recursion

u(i0, i1) =
i0
b

u(i0−1, i1 +1)+
i1
b

u(i0, i1−1)+
b− i0− i1

b
u(i0, i1),

or, equivalently, u(i0, i1) =
i0

i0+i1
u(i0 − 1, i1 + 1) + i1

i0+i1
u(i0, i1 − 1). The optimal

value function v(i0, i1) being the maximum expected net gain you can achieve start-
ing from state (i0, i1) can be obtained from the optimality equation

28 H. Tijms

v(i0, i1) = max
{

i1−0.5(b− i0− i1),
i0
b

v(i0−1, i1 +1)

+
i1
b

v(i0, i1−1)+
b− i0− i1

b
v(i0, i1)

}
,

or, equivalently, v(i0, i1) = max
{

i1 − 0.5(b− i0 − i1), v(i0, i1)}, where v(i0, i1) is
given by

v(i0, i1) =
i0

i0 + i1
v(i0−1, i1 +1)+

i1
i0 + i1

v(i0, i1−1).

Since you always stop in state (0, i1), the boundary condition v(0, i1) = i1−0.5(b−
i1) applies. The optimality equation can be solved by backwards calculations. First
calculate v(1, i1) for i1 = 0, . . . ,b− 1. Next calculate v(2, i1) for i1 = 0, . . . ,b− 2.
Continuing in this way, the desired value v(b,0) is obtained. Numerical investiga-
tions lead to the conjecture that the optimal stopping rule has the following simple
form:

you stop only in the states (i0, i1) with i1 ≤ r, where r is the smallest integer larger than or
equal to 2i0/3.

In Table 1.2 we give for several values of b the expected net gain under the one-
stage-look-ahead rule (OSLA) and the maximum expected net gain under the opti-
mal rule. Also, we give the expected gain under the one-stage-look-ahead rule that
prescribes stopping in the states (i0, i1) with i0 < 1.5i1 rather than i0 ≤ 1.5i1. It is
remarkable how good the one-stage-look-ahead-rules perform, where OSLA< is
slightly better than OSLA.

Table 1.2: Expected net gain in the first balls-and-bins problem

b OSLA OSLA< Optimal
3 1.5000 1.5000 1.5833
5 1.8500 2.0900 2.1171

10 3.3494 3.4557 3.4938
15 4.7605 4.8188 4.8550
25 7.5091 7.5377 7.5661
40 11.5860 11.6050 11.6246
70 19.7079 19.7220 19.7339
100 27.8226 27.8314 27.8400

The second problem has a countably infinite state space and this state space can
be taken as I = {(i0, i1,k) : i0, i1,k ≥ 0, i0 + i1 ≤ b}, where state (i0, i1,k) means
that there are i0 empty bins and i1 bins with exactly one ball and a total of k balls
in the b− i0− i1 bins each containing two or more balls. Note that k = 0 if i0 +
i1 = b. For each state s = (i0, i1,k), the continuation cost c(s) = 0 and the terminal
reward R(s) = i1− 0.5k. It is no restriction to impose the condition that stopping
is mandatory in the states (0, i1,k). If you decide in state s = (i0, i1,k) to drop one

1.5 One-Stage-Look-Ahead Rule in Optimal Stopping 29

more ball and then stop rather than to stop now, then the expected change in your
terminal reward is

i0
b
×1− i1

b
×2− b− i0− i1

b
×0.5.

Hence the set of states in which it is as least as good to stop now as to continue for
one more step and then stop is given by

B = {(i0, i1,k) : 3i0−3i1−b≤ 0}.

The one-stage-look-ahead rule prescribes to stop in the states of B and to continue
otherwise. The recursion scheme for the calculation of the expected net gain under
the one-stage-look-ahead rule and the recursion scheme for the calculation of the
optimal value function together with the optimal stopping rule are very similar to
the recursion schemes above. However, the difficulty arises that the set of states is
countably infinite because of the component k of the state (i0, i1,k). In numerical
calculations this difficulty can be overcome by truncating the state space. A much
better method to circumvent this difficulty was proposed by Jules Coret, a student
at the University of Amsterdam. His observation was that the action prescribed in
any state (i0, i1,k) with k > 2(b− i0− i1) is the same as the action prescribed in
state (i0, i1,k) with k = 2(b− i0− i1), both for the one-stage-look-ahead rule and
for the optimal rule. Letting u(s) be the expected net gain under the one-stage-look-
ahead rule and v(s) be the maximum expected net gain under the optimal rule when
starting from state s, it holds for k > 2(b− i0− i1) that

u(i0, i1,k) = u
(
i0, i1,2(b− i0− i1)

)
− 1

2

(
k−2(b− i0− i1)

)
,

v(i0, i1,k) = v
(
i0, i1,2(b− i0− i1)

)
− 1

2

(
k−2(b− i0− i1)

)
.

Thus we can formulate recursion schemes on a finite set of states in order to
compute u(b,0,0) and v(b,0,0). For example, putting for abbreviation u(i0, i1) =
u(i0, i1,2(b− i0− i1)), we have

u(i0, i1) =
i0
b

u(i0−1, i1 +1)+
i1
b

u(i0, i1−1)+
b− i0− i1

b
[u(i0, i1)−0.5]

for the states with 3i0−3i1−b > 0. The boundary condition is u(i0, i1) = i1− 1
2 ×

2(b− i0− i1) for 3i0−3i1−b≤ 0.
Numerical results are given in Table 1.3. The one-stage-look-ahead rule OSLA<

prescribes stopping in the states (i0, i1,k) with 3i0− 3i1− b < 0 rather than 3i0−
3i1−b≤ 0 as in OSLA. We find again that the one-stage-look-ahead rules show an
excellent performance, where OSLA< is slightly better than OSLA.

30 H. Tijms

Table 1.3: Expected net gain in the second balls-and-bins problem

b OSLA OSLA< Optimal
3 1.0000 1.2500 1.2500
5 1.6333 1.6333 1.6333

10 2.6716 2.6716 2.6813
15 3.6596 3.7129 3.7129
25 5.7583 5.7583 5.7671
40 8.8467 8.8467 8.8532
70 15.0196 15.0196 15.0236
100 21.1902 21.1902 21.1931

1.5.3 The Chow-Robbins Game

An intriguing stopping problem is the Chow-Robbins game. You toss repeatedly
a fair coin and you can stop whenever you want. Your payoff is the proportion of
heads obtained at the time you stop. There is no limit on the number of tosses.
What is an optimal rule for deciding when to stop and what is the expected value
of your payoff under an optimal rule? This problem is very simple to state but very
difficult to solve. Using the fact that the law of large numbers guarantees 50% heads
in the long run, the lower bound 3

4 for the maximal expected value of the payoff
can be easily seen. This lower bound is achieved by the rule which prescribes to
stop if the first toss results in heads, and otherwise to continue until the proportion
of heads is 1

2 . In some states the decision whether to stop or go is easy to see but
in general it is a challenging problem to find the best decisions. It has been proved
that an optimal stopping rule exists and is characterized by integers β1,β2, . . . such
that you stop after the nth toss when the number of heads minus the number of tails
is larger than or equal to βn. It is very difficult to compute the numerical values
of the βn and the precise value of the maximal expected payoff. The difficulty is
that backward induction will not work for the optimality equation in the Chow-
Robbins game. In Hägström and Wästlund [5], computer analysis was used to find
the βn for smaller values of n and it was shown that the maximum expected payoff is
between the bounds 0.7929530 . . . and 0.7929556 However, the simple idea of
looking only one stage ahead leads to a remarkably simple heuristic whose expected
payoff is very close to the maximum expected payoff. The analysis goes as follows.
Suppose that the current proportion of heads after n tosses is fn. If you decide to
go for one more toss, then the expected value of the proportion of heads after n+1
tosses is

1
2
× n fn +1

n+1
+

1
2
× n fn

n+1
.

References 31

The inequality n fn+1
2(n+1) +

n fn
2(n+1) ≥ fn is equivalent to the inequality fn ≤ 1

2 . This leads
to the simple stopping rule which prescribes to stop as soon the number of heads ex-
ceeds the number of tails. The expected payoff under this rule is π

4 ≈ 0.785398 . . . ,
which is very close the theoretically maximum expected payoff. A remarkable find-
ing! The derivation of the value π

4 for the expected payoff of the heuristic rule is not
difficult. We give an outline of the derivation. Define the random variable X as the
number of tosses until the number of heads exceeds the number of tails for the first
time, and let pn = P(X = n). Then the expected payoff under the simple stopping
rule is

∞

∑
k=1

k
2k−1

p2k−1.

The pn can be obtained by the generating function approach. Using conditioning,

we obtain that P(z) = E(zX) is given by P(z) = 1−
√

1−z2

z for |z| ≤ 1. Using the series
expansion of (1+ x)a with a = 0.5 and x =−z2, we find that P(z) can be evaluated

as P(z) = ∑∞
k=1

(
1
2

)2k−1 (2k−2)!
k!(k−1)! z2k−1. This gives p2k−1 = (1

2)
2k−1 (2k−2)!

k!(k−1)! for k ≥ 1
and so the expected value of the payoff is

∞

∑
k=1

k
2k−1

p2k−1 =
1
2

∞

∑
k=1

1
2k−1

(1
2

)2k−2
(

2k−2
k−1

)
.

Using the Taylor series expansion of arcsin(x), we next find the desired result that
the expected reward is equal to 1

2 arcsin(1) = π
4 .

References

1. S. Bhulai, G. Koole, On the structure of value functions for threshold policies
in queueing models. J. Appl. Probab. 40, 613–622 (2003)

2. W.M. Boyce, On a simple stopping problem. Discret. Math. 5, 297–312 (1973)
3. E.V. Denardo, Dynamic Programming (Prentice-Hall, Englewood Cliffs, NJ,

1980)
4. C. Derman, Finite State Markovian Decision Processes (Academic, New York,

1970)
5. O. Hägström, J. Wästlund, Rigorous computer analysis of the Chow-Robbins

game. Am. Math. Mon. 120, 893–900 (2013)
6. R. Haijema, J. Van der Wal, An MDP decomposition approach for traffic control

at isolated signalized intersections. Probab. Eng. Inf. Sci. 27, 587–602 (2008)
7. N.A.J. Hastings, Bounds on the gain of a Markov decision process. Oper. Res.

19, 240–244 (1971)
8. T.P. Hill, Knowing when to stop. Am. Sci. 97, 126–133 (2007)
9. R.A. Howard, Dynamic Programming and Markov Processes (Wiley,

New York, 1960)

32 H. Tijms

10. K.R. Krishnan, T.J. Ott, State-dependent routing for telephone traffic: theory
and results, in Proceedings of 25th IEEE Conference on Decision and Control,
Athens (IEEE, New York, 1986), pp. 2124–2128

11. K.R. Krishnan, T.J. Ott, Joining the right queue: a Markov decision rule, in
Proceedings of 26th IEEE Conference on Decision and Control, Los Angeles,
CA (IEEE, New York, 1987), pp. 1863–1868

12. J.M. Norman, Heuristic Procedures in Dynamic Programming (Manchester
University Press, Manchester, 1972)

13. A. Odoni, On finding the maximal gain for Markov decision processes. Operat.
Res. 17, 857–860 (1969)

14. W.B. Powell, Approximate Dynamic Programming: Solving the Curses of Di-
mensionality (Wiley, New York, 2007)

15. M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming (Wiley, New York, 1994)

16. S.M. Ross, Introduction to Stochastic Dynamic Programming, (Academic,
New York, 1983)

17. S.A.E. Sassen, H.C. Tijms, R.D. Nobel, A heuristic rule for routing customers
to parallel servers. Statistica Neerlandica 51, 107–121 (1997)

18. P.J. Schweitzer, A. Federgruen, Geometric convergence of value iteration in
multichain Markov decision problems. Adv. Appl. Probab. 11, 188–217 (1979)

19. H.C. Tijms, A First Course in Stochastic Models (Wiley, New York, 2003)
20. H.C. Tijms, Understanding Probability, 3rd edn. (Cambridge University Press,

New York, 2012)
21. J. Van der Wal, The method of value oriented successive approximations for the

average reward Markov decision process. OR Spektrum 1, 233–242 (1980)
22. R. Weber, Optimization and Control. Class Notes (University of Cambridge,

Cambridge, 2014). http://www.statslab.cam.ac.uk/rrw1/oc/oc2014.pdf
23. J. Wijngaard, Decomposition for dynamic programming in production and in-

ventory control. Eng. Process Econ. 4, 385–388 (1979)

http://www.statslab.cam.ac.uk/rrw1/oc/oc2014.pdf

Chapter 2
Value Function Approximation in Complex
Queueing Systems

Sandjai Bhulai

Abstract The application of Markov decision theory to the control of queueing
systems often leads to models with enormous state spaces. Hence, direct computa-
tion of optimal policies with standard techniques and algorithms is almost impos-
sible for most practical models. A convenient technique to overcome this issue is
to use one-step policy improvement. For this technique to work, one needs to have
a good understanding of the queueing system under study, and its (approximate)
value function under policies that decompose the system into less complicated sys-
tems. This warrants the research on the relative value functions of simple queueing
models, that can be used in the control of more complex queueing systems. In this
chapter we provide a survey of value functions of basic queueing models and show
how they can be applied to the control of more complex queueing systems.

Key words: One-step policy improvement, Relative value function, Complex
queueing systems, Approximate dynamic programming

2.1 Introduction

In its simplest form, a queueing system can be described by customers arriving for
service, waiting for service if it cannot be provided immediately, and leaving the
system after being served. The term customer is used in a general sense here, and
does not necessarily refer to human customers. The performance of the system is
usually measured on the basis of throughput rates or the average time customers

S. Bhulai (�)
Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081a,
1081 HV Amsterdam, The Netherlands
e-mail: s.bhulai@vu.nl

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 2

33

mailto:s.bhulai@vu.nl

34 S. Bhulai

remain in the system. Hence, the average cost criterion is usually the preferred cri-
terion in queueing systems (see, e.g., [18, 23]).

It is hardly necessary to emphasize the applicability of theory on queueing sys-
tems in practice, since many actual queueing situations occur in daily life. During
the design and operation of such systems, many decisions have to be made; think
of the availability of resources at any moment in time, or routing decisions. This
effect is amplified by the advances in the field of data and information processing,
and the growth of communication networks (see, e.g., [1]). Hence, there is a need
for optimal control of queueing systems.

In general, the control of queueing systems does not fit into the framework of
discrete time Markov decision problems, in which the time between state transitions
is fixed. When the time spent in a particular state follows an arbitrary probability
distribution, it is natural to allow the decision maker to take actions at any point in
time. This gives rise to decision models in which the system evolution is described
continuously in time, and in which the cost accumulates continuously in time as
well. If the cost function is independent of the time spent in a state, such that it
only depends on the state and action chosen at the last decision epoch, then we
can restrict our attention to models in which the decision epochs coincide with the
transition times. Moreover, if the time spent between decision epochs follows an
exponential distribution, then the queueing system under study can be reformulated
as a discrete-time Markov decision problem. This discretization technique, known
as uniformization, is due to [12], and was later formalized by Serfozo [21].

After uniformization, Markov decision theory can, in principle, be applied to
the control of queueing systems, and usually gives rise to infinite state spaces with
unbounded cost functions. In this setting, value iteration and policy iteration algo-
rithms can be used to derive optimal policies. However, these algorithms require
memory storage of a real-valued vector of at least the size of the state space. For
denumerably infinite state spaces this is not feasible, and one has to rely on appro-
priate techniques to bound the state space (see, e.g., [8]). But even then, memory
may be exhausted by the size of the resulting state space; this holds even more for
multi-dimensional models. This phenomenon, known as the curse of dimensional-
ity (see [4]), gives rise to high-dimensional systems and calls for approximation
methods to the optimal policies.

A first approximation method can be distilled from the policy iteration algorithm.
Suppose that one fixes a policy which, while perhaps not optimal, is not totally un-
reasonable either. This policy is evaluated through analytically solving the Poisson
equations induced by the policy in order to obtain the long-run expected average
cost and the average cost value function under this policy. Next, using these expres-
sions the policy can be improved by doing one policy improvement step. We know
that this policy is better, i.e., has a smaller or equal (if already optimal) average cost.
It must be expected that the improved policy is sufficiently complicated to render
another policy evaluation step impossible.

The idea of applying one-step policy improvement goes back to [15]. It has been
successfully applied by Ott and Krishnan [17] for deriving state-dependent rout-
ing schemes for high-dimensional circuit-switched telephone networks. The initial

2.2 Difference Calculus for Markovian Birth-Death Systems 35

policy in their system was chosen such that the communication lines were indepen-
dent. In that case, the value function of the system is the sum of the value functions
for the independent lines, which are easier to derive. Since then, this idea has been
used in many papers, see, e.g., [10, 19, 20, 25]. The initial policy in these papers
was chosen such that the queues were independent, reducing the analysis to single
queues. For this purpose, [5, 6] presented a unified approach to obtain the value
function of the various queueing systems for various cost structures.

In this chapter, we review the theory and applications of the relative value func-
tions of the most fundamental queueing systems: the M/Cox(r)/1 single-server
queue, the M/M/s multi-server queue, the M/M/s/s blocking system, and a prior-
ity queueing system. Each of these systems has its own distinguishing character-
istics. The M/Cox(r)/1 queue is a very general single-server queue that allows for
approximations to single-server systems with non-exponential service distributions.
Both the M/M/s and the M/M/s/s multi-server queues typically occur in many ser-
vice systems such as telecommunication systems, call centers, cash registers, etc.
The priority queueing system is an intriguing example in which the queues are not
independent, and this is reflected as well in the relative value function.

The different characteristics of the queueing systems that we study will be illus-
trated by three examples of controlled queueing systems. In the first example, we
consider the problem of routing customers to parallel single-server queues, where
each server has its own general service time distribution. We demonstrate how the
M/Cox(r)/1 queue can approximate the single-server queues after which one-step
of policy improvement leads to nearly optimal policies. In the second example, we
study a skill-based routing problem in a call center. This is a highly complex prob-
lem in which agent groups in the system are highly dependent on each others states.
We illustrate how the value function of the multi-server queue can be adjusted to
take these dependencies into account. In the last example, we focus on a controlled
polling system. Here the value function of the priority queueing system can be used
to take actions that directly consider the dependencies between the states of the
different queues.

The remainder of the chapter is structured as follows. In Sect. 2.2 we develop
difference calculus that can be used to obtain the relative value function of most
one-dimensional queueing systems. We proceed with the survey of the relative value
functions of the fundamental queueing systems in Sect. 2.3 and list all relevant spe-
cial cases as well. We then illustrate the use of these value functions through three
examples in Sect. 2.4 on routing to parallel queues, Sect. 2.5 on skill-based routing
in call centers, and Sect. 2.6 on a controlled polling model, respectively.

2.2 Difference Calculus for Markovian Birth-Death Systems

In this section we will study the relative value function for a Markovian birth-death
queueing system. We shall derive a closed-form expression for the long-run ex-
pected average costs and the relative value function by solving the Poisson equa-

36 S. Bhulai

tions. The Poisson equations give rise to linear difference equations. Due to the
nature of the Poisson equations, the difference equations have a lot of structure when
the state description is one-dimensional. Therefore, it is worthwhile to study differ-
ence equations prior to the analysis of the birth-death queueing system. We shall
restrict attention to second-order difference equations, since this is general enough
to model birth-death queueing processes.

Let V (x) be an arbitrary function defined on N0. Define the backward difference
operator Δ as

ΔV (x) =V (x)−V (x−1),

for x ∈N. Note that the value of V (x) can be expressed as

V (x) =V (k−1)+
x

∑
i=k

ΔV (i), (2.1)

for every k ∈N such that k ≤ x. This observation is key to solving first-order dif-
ference equations, and second-order difference equations when one solution to the
homogeneous equation is known. We first state the result for first-order difference
equations. The result can be found in Chap. 2 of Mickens [14], but is stated less
precise there.

Lemma 2.1. Let f (x) be a function defined on N satisfying the relation

f (x+1)− γ(x) f (x) = r(x), (2.2)

with γ and r arbitrary functions defined on N such that γ(x) �= 0 for all x ∈N. With
the convention that an empty product equals one, f (x) is given by

f (x) = f (1)Q(x)+Q(x)
x−1

∑
i=1

r(i)
Q(i+1)

, with Q(x) =
x−1

∏
i=1

γ(i).

Proof. Let the function Q(x) be as stated in the theorem. By assumption we have
that Q(x) �= 0 for all x ∈N. Dividing Eq. (2.2) by Q(x+1) yields

Δ
[

f (x+1)
Q(x+1)

]
=

f (x+1)
Q(x+1)

− f (x)
Q(x)

=
r(x)

Q(x+1)
.

From Expression (2.1) with k = 2 it follows that

f (x) = Q(x)
f (1)
Q(1)

+Q(x)
x

∑
i=2

r(i−1)
Q(i)

= f (1)Q(x)+Q(x)
x−1

∑
i=1

r(i)
Q(i+1)

.

Note that the condition γ(x) �= 0 for all x ∈ N is not very restrictive in practice.
If there is a state y ∈N for which γ(y) = 0, then the analysis can be reduced to two
other first-order difference equations, namely the part for states x < y, and the part
for states x > y for which γ(y) = 0 is the boundary condition.

2.2 Difference Calculus for Markovian Birth-Death Systems 37

The solution to first-order difference equations plays an important part in solving
second-order difference equations when one solution to the homogeneous equation
is known. In that case, the second-order difference equation can be reduced to a
first-order difference equation expressed in the homogeneous solution. Application
of Lemma 2.1 then gives the solution to the second-order difference equation. The
following theorem summarizes this result.

Theorem 2.1. Let V (x) be a function defined on N0 satisfying the relation

V (x+1)+α(x)V (x)+β (x)V (x−1) = q(x), (2.3)

with α , β , and q arbitrary functions defined on N such that β (x) �= 0 for all x ∈N.
Suppose that one homogeneous solution is known, say V h

1 (x), such that V h
1 (x) �= 0

for all x ∈N0. Then, with the convention that an empty product equals one, V (x) is
given by

V (x)

V h
1 (x)

=
V (0)

V h
1 (0)

+

[
Δ
[

V (1)

V h
1 (1)

]] x

∑
i=1

Q(i)+
x

∑
i=1

Q(i)
i−1

∑
j=1

q(j)

V h
1 (j+1)Q(j+1)

,

where Q(x) =∏x−1
i=1 β (i)V h

1 (i−1)/V h
1 (i+1).

Proof. Note that V h
1 always exists, since a second-order difference equation has ex-

actly two linearly independent homogeneous solutions (see Theorem 3.11 of Mick-
ens [14]). The known homogeneous solution V h

1 (x) satisfies

V h
1 (x+1)+α(x)V h

1 (x)+β (x)V h
1 (x−1) = 0. (2.4)

Set V (x) = V h
1 (x)u(x) for an arbitrary function u defined on N0. Substitution into

Eq. (2.3) yields

V h
1 (x+1)u(x+1)+α(x)V h

1 (x)u(x)+β (x)V h
1 (x−1)u(x−1) = q(x).

By subtracting Eq. (2.4) u(x) times from this expression, and rearranging the terms,
we derive

Δu(x+1)− γ(x)Δu(x) = r(x),

with

γ(x) =
V h

1 (x−1)

V h
1 (x+1)

β (x), and r(x) =
q(x)

V h
1 (x+1)

.

From Lemma 2.1 it follows that

Δu(x) = [Δu(1)]Q(x)+Q(x)
x−1

∑
j=1

r(j)
Q(j+1)

, with Q(x) =
x−1

∏
i=1

γ(i).

From Expression (2.1) it finally follows that

38 S. Bhulai

u(x) = u(0)+ [Δu(1)]
x

∑
i=1

Q(i)+
x

∑
i=1

Q(i)
i−1

∑
j=1

r(j)
Q(j+1)

.

Since V (x) =V h
1 (x)u(x) it follows that u(x) =V (x)/V h

1 (x) for x = 1,2.

From Theorem 3.11 of Mickens [14] it follows that a second-order difference equa-
tion has exactly two homogeneous solutions that are also linearly independent. In
Theorem 2.1 it is assumed that one homogeneous solution V h

1 is known. From the
same theorem it follows that the second homogeneous solution is determined by
V h

2 (x) =V h
1 (x)∑

x
i=1 Q(i). This can be easily checked as follows.

V h
2 (x+1)+α(x)V h

2 (x)+β (x)V h
2 (x−1) =

V h
1 (x+1)

x+1

∑
i=1

Q(i)+α(x)V h
1 (x)

x

∑
i=1

Q(i)+β (x)V h
1 (x−1)

x−1

∑
i=1

Q(i) =

x

∑
i=1

Q(i)
[
V h

1 (x+1)+α(x)V h
1 (x)+β (x)V h

1 (x−1)
]
+

V h
1 (x+1)Q(x+1)−β (x)V h

1 (x−1)Q(x) = 0.

The last equality follows from the fact that

Q(x+1) =
V h

1 (x−1)

V h
1 (x+1)

β (x)Q(x) =
V h

1 (0)V h
1 (1)

V h
1 (x)V h

1 (x+1)

x

∏
i=1

β (i), x ∈N.

Note that the homogeneous solutions V h
1 and V h

2 are also linearly independent, since
their Casorati determinant C(x)=V h

1 (x)V h
1 (x+1)Q(x+1) is non-zero for all x∈N0

(see Sects. 3.2 and 3.3 of Mickens [14]).

With the use of Theorem 2.1 as a tool, we are ready to study birth-death queueing
systems. The name birth-death stems from the fact that arrivals (birth) and depar-
tures (death) of customers occur only in sizes of one, i.e., batch arrivals and batch
services are not allowed. Let state x ∈ X =N0 denote the number of customers in
the system. When the system is in state x, customers arrive according to a Poisson
process with rate λ (x). At the same time, customers receive service with an expo-
nentially distributed duration at rate μ(x), such that μ(0) = 0. Moreover, the system
is subject to costs c(x) in state x, where c(x) is a polynomial function of x.

For stability of the system, we assume that

0 < liminf
x→∞

λ (x)
μ(x)

≤ limsup
x→∞

λ (x)
μ(x)

< 1.

Moreover, we assume that the transition rates satisfy

0 < inf
x∈N0

(
λ (x)+μ(x)

)
≤ sup

x∈N0

(
λ (x)+μ(x)

)
< ∞.

2.2 Difference Calculus for Markovian Birth-Death Systems 39

Without loss of generality we can assume that supx∈N0

(
λ (x) + μ(x)

)
< 1. This

can always be obtained after a suitable renormalization without changing the long-
run system behavior. After uniformization, the resulting birth-death process has the
following transition rate matrix.

P0,0 = 1−λ (0), P0,1 = λ (0),
Px,x−1 = μ(x), Px,x = 1−λ (x)−μ(x), Px,x+1 = λ (x), x = 1,2,

Inherent to the model is that the Markov chain has a unichain structure. Hence, we
know that the long-run expected average cost g is constant. Furthermore, the value
function V is unique up to a constant. As a result we can use this degree of freedom
to set V (0) = 0. Then, the Poisson equations for this system are given by

g+
(
λ (x)+μ(x)

)
V (x) = λ (x)V (x+1)+μ(x)V

(
[x−1]+

)
+ c(x), (2.5)

for x ∈N0, where [x]+ = max{0,x}. When the state space X is not finite, as is the
case in our model, it is known that there are many pairs of the average cost g and the
corresponding value function V that satisfy the Poisson equations (see, e.g., [7]).
There is only one pair that is the correct solution, however, which we refer to as
the unique solution. Finding this pair involves constructing a weighted norm such
that the Markov chain is geometrically recurrent with respect to that norm. Next,
this weighted norm poses extra conditions on the solution to the Poisson equations
such that the unique solution to the Poisson equations can be obtained. Solving the
Poisson equations therefore requires two steps; first one has to find an expression
that satisfies the Poisson equations (existence), then one has to show that it is the
unique solution (uniqueness).

In order to show the existence of solutions to the Poisson equations, we use the
relation with the difference calculus by rewriting the Poisson equations in the form
of Eq. (2.3), with

α(x) =−λ (x)+μ(x)
λ (x)

, β (x) =
μ(x)
λ (x)

, and q(x) =
g− c(x)
λ (x)

.

Observe that β (x) �= 0 for x ∈N due to the stability assumption. Furthermore, note
that for any set of Poisson equations, the constant function is always a solution to
the homogeneous equations. This follows directly from the fact that P is a transition
probability matrix. Hence, by applying Theorem 2.1 with V h

1 (x) = 1 for x ∈N0, it
follows that the solution to Eq. (2.5) is given by

V (x) =
g

λ (0)

x

∑
i=1

Q(i)+
x

∑
i=1

Q(i)
i−1

∑
j=1

q(j)
Q(j+1)

, with Q(x) =
x−1

∏
i=1

μ(i)
λ (i)

.

We know that this expression is not the unique solution to the Poisson equations
(see, e.g., [22]). Hence, we need to construct a weighted norm w such that the
Markov chain is w-geometrically recurrent with respect to a finite set M ⊂ N0 to

40 S. Bhulai

show uniqueness (see Chap. 2 of Spieksma [22]), i.e., there should be an ε > 0 such
that ‖MP‖w ≤ 1− ε , where

MPi j =

{
Pi j, j /∈M,

0, j ∈M,

and

‖A‖w = sup
i∈X

1
w(i) ∑j∈X

|Ai j|w(j).

Due to stability of the Markov chain there exists a constant K ∈ N0 such that
λ (x)/μ(x) < 1 for all x > K. Let M = {0, . . . ,K}, and assume that w(x) = zx for
some z > 1. Now consider

∑
y/∈M

Pxy w(y)

w(x)
=

⎧
⎪⎨

⎪⎩

λ (K)z, x = K,

λ (K +1)z+
(
1−λ (K +1)−μ(K +1)

)
, x = K +1,

λ (x)z+
(
1−λ (x)−μ(x)

)
+ μ(x)

z , x > K +1.

We need to choose z such that all expressions are strictly less than 1. The first
expression immediately gives z < 1/λ (K). The second expression gives that z <
1+μ(K+1)/λ (K+1). Solving the third expression shows that 1 < z < μ(x)/λ (x)
for x > K + 1. Define z∗ = min{1/λ (K), infx∈N\M μ(x)/λ (x)}, and note that the
choice of M ensures us that z∗ > 1. Then, the three expressions are strictly less than
1 for all z∈ (1,z∗). Thus, we have shown that for w(x) = zx with 1< z< z∗, there ex-
ists an ε > 0 such that ‖MP‖w ≤ 1−ε . Hence, the Markov chain is w-geometrically
recurrent with respect to M.

Note that c is bounded with respect to the supremum norm weighted by w, since
c(x) is a polynomial in x by assumption. We know that the unique value function V
is bounded with respect to the norm w (Chap. 2 of Spieksma [22]). Therefore, the
value function cannot contain terms θ x with θ > 1, since the weight function can
be chosen such that z ∈ (1,min{θ ,z∗}). Consequently, ‖V‖w = ∞, hence the value
function cannot grow exponentially with a growth factor greater than 1. Thus, we
have the following corollary.

Corollary 2.1. The value function of a stable birth-death queueing process cannot
grow exponentially with a growth factor greater than 1.

2.3 Value Functions for Queueing Systems

In this section, we provide the relative value functions of the most fundamental
queueing systems: the M/Cox(r)/1 single-server queue with its special cases, the
M/M/s multi-server queue, the M/M/s/s blocking system, and a priority queueing
system. The value functions will be used in the examples later to illustrate their
effectiveness in the control of complex queueing systems.

2.3 Value Functions for Queueing Systems 41

2.3.1 The M/Cox(r)/1 Queue

Consider a single server queueing system to which customers arrive according to
a Poisson process with parameter λ . The service times are independent identically
distributed and follow a Coxian distribution of order r. Thus, the service of a cus-
tomer can last up to r exponential phases. The mean duration of phase i is μi for
i = 1, . . . ,r. The service starts at phase 1. After phase i the service ends with prob-
ability 1− pi, or it enters phase i+ 1 with probability pi for i = 1, . . . ,r− 1. The
service is completed with certainty after phase r, if not completed at an earlier
phase. We assume that pi > 0 for i = 1, . . . ,r− 1 to avoid trivial situations. Let
X = {(0,0)}∪N×{0, . . . ,r− 1} denote the state space, where for (x,y) ∈ X the
component x represents the number of customers in the system, and y the number
of completed phases of the service process.

Assume that the system is subject to costs for holding a customer in the system.
Without loss of generality we assume that unit costs are incurred for holding a cus-
tomer per unit of time in the system. Let ut(x) denote the total expected cost up
to time t when the system starts in state x. Let γ(i) = ∏i

k=1 pk for i = 0, . . . ,r− 1
with the convention that γ(0) = 1. Note that the Markov chain satisfies the unichain
condition. Assume that the stability condition

r

∑
k=1

γ(k−1)
λ
μk

=
r

∑
k=1

k−1

∏
l=1

pl
λ
μk

< 1,

holds, such that, consequently, the average cost g= limt→∞ ut(x)/t is independent of
the initial state x due to Proposition 8.2.1 of Puterman [18]. Therefore, the dynamic
programming optimality equations for the M/Cox(r)/1 queue are given by

g+λV (0,0) = λV (1,0),

g+(λ +μi)V (x, i−1) = λV (x+1, i−1)+ piμiV (x, i)+

(1− pi)μiV (x−1,0)+ x, i = 1, . . . ,r−1,

g+(λ +μr)V (x,r−1) = λV (x+1,r−1)+μrV (x−1,0)+ x.

The solution to this set of equations is given in the following theorem.

Theorem 2.2 (Theorem 1 in [5]). Let γ(i) = ∏i
k=1 pk for i = 0, . . . ,r− 1 with the

convention that γ(0) = 1. Define

α =
∑r

k=1
γ(k−1)

μk

1−∑r
k=1

γ(k−1)
μk

λ
, and a0 =

r

∑
k=1

1− γ(k−1)
μk

λα−
r

∑
k=1

k−1

∑
l=1

γ(l−1)
μk μl

λ (1+λα).

The solution to the Poisson equations is then given by the average cost g = λ (α+
a0) and the corresponding value function

42 S. Bhulai

V (x,y) = α
x(x+1)

2
+

[
a0 +

[
1

γ(y)
−1

]
α−

y

∑
k=1

γ(k−1)
γ(y)

1+λα
μk

]
x

−
[

a0 +
r

∑
k=y+1

γ(k−1)
γ(y)

λ
μk

(k−1

∑
l=1

γ(l−1)
γ(k−1)

1+λα
μl

−
[

1
γ(k−1)

−1

]
α
)]

,

for (x,y) ∈ X .

2.3.2 Special Cases of the M/Cox(r)/1 Queue

In this section we consider important special cases of the M/Cox(r)/1 queue. This
includes queues with service-time distributions that are modeled by the hyper-
exponential (Hr), the hypo-exponential (Hypor), the Erlang (Er), and the exponen-
tial (M) distribution.

The M/Hr/1 Queue

The single server queue with hyper-exponentially distributed service times of order
r is obtained by letting the service times consist only of one exponential phase with
parameter μi with probability qi for i = 1, . . . ,r. Note that the hyper-exponential
distribution has the property that the coefficient of variation is greater than or equal
to one. Unfortunately, the hyper-exponential distribution is not directly obtained
from the Coxian distribution through interpretation, but rather from showing that
the Laplace-transforms of the distribution functions are equal for specific parameter
choices. In the case of r = 2 this result follows from, e.g., Appendix B of Tijms [24].
The general case is obtained by the following theorem.

Theorem 2.3 (Theorem 4 in [5]). Under the assumption that μ1 > · · ·> μr, a Cox-
ian distribution with parameters (p1, . . . , pr−1,μ1 . . . ,μr) is equivalent to a hyper-
exponential distribution with parameters (q1, . . . ,qr,μ1, . . . ,μr) when the probabil-
ities pi are defined by

pi =
∑r

j=i+1 q j ∏i
k=1(μk−μ j)

μi∑r
j=i q j ∏i−1

k=1(μk−μ j)
, (2.6)

for i = 1, . . . ,r−1.

The M/Hypor/1 Queue

The single server queue with hypo-exponentially distributed service times of order
r is obtained by letting the service be the sum of r independent random variables
that are exponentially distributed with parameter μi at phase i for i = 1, . . . ,r. Thus,

2.3 Value Functions for Queueing Systems 43

it can be obtained from the M/Cox(r)/1 queue by letting p1 = · · · = pr−1 = 1. The
optimality equations are given by

g+λV (0,0) = λV (1,0),

g+(λ +μi)V (x, i−1) = λV (x+1, i−1)+μiV (x, i)+ x, i = 1, . . . ,r−1,

g+(λ +μr)V (x,r−1) = λV (x+1,r−1)+μrV (x−1,0)+ x.

Define β (i) = ∑i
k=1(1/μk), then the average cost is given by

g =
λβ (r)

1−λβ (r)
− λ 2

1−λβ (r)

r

∑
k=1

β (k−1)
μk

,

and under the assumption λβ (r)< 1 the value function becomes

V (x,y) =
β (r)x(x+1)

2
(
1−λβ (r)

) − x
1−λβ (r)

[
λ

r

∑
k=1

β (k−1)
μk

+β (y)
]

+
λ

1−λβ (r)

y

∑
k=1

β (k−1)
μk

.

The M/Er/1 Queue

The single server queue with Erlang distributed service times of order r is obtained
by letting the service be the sum of r independent random variables having a com-
mon exponential distribution. Thus, it can be obtained from the M/Cox(r)/1 queue
by letting p1 = · · ·= pr−1 = 1 and μ = μ1 = · · ·= μr. Note that the Erlang distribu-
tion can also be seen as a special case of the hypo-exponential distribution, and has
a coefficient of variation equal to 1/r ≤ 1. The optimality equations are given by

g+λV (0,0) = λV (1,0),

g+(λ +μ)V (x, i−1) = λV (x+1, i−1)+μV (x, i)+ x, i = 1, . . . ,r−1,

g+(λ +μ)V (x,r−1) = λV (x+1,r−1)+μV (x−1,0)+ x.

The average cost is given by

g =
λ r

μ−λ r
− λ 2r(r−1)

2μ(μ−λ r)
,

and under the assumption λ r/μ < 1 the value function becomes

V (x,y) =
rx(x+1)
2(μ−λ r)

− x
(μ−λ r)

[
λ r(r−1)

2μ
+ y

]
+

λy(y−1)
2μ(μ−λ r)

.

44 S. Bhulai

The M/M/1 Queue

The standard single server queue with exponentially distributed service times is ob-
tained by having one phase in the M/Cox(r)/1 queue only, i.e., r = 1. Let μ = μ1,
then the optimality equations are equivalent to

g+(λ +μ)V (x) = λV (x+1)+μV ([x−1]+)+ x,

where [x]+ = max{x,0}. The average cost is given by g = λ/(μ−λ), and under the
assumption λ/μ < 1, the value function becomes

V (x) =
x(x+1)
2(μ−λ)

.

2.3.3 The M/M/s Queue

Consider a queueing system with s identical independent servers. The arrivals are
determined by a Poisson process with parameter λ . The service times are exponen-
tially distributed with parameter μ . An arriving customer that finds no idle server
waits in a buffer of infinite size. We focus on the average number of customers in the
system represented by generating a cost of x monetary units when x customers are
present in the system. The Poisson equations for this M/M/s queue are then given by

g+λ V (0) = λ V (1),

g+(λ + xμ)V (x) = x+λ V (x+1)+ xμV (x−1), x = 1, . . . ,s−1,

g+(λ + sμ)V (x) = x+λ V (x+1)+ sμV (x−1), x = s,s+1, . . . ,

From the first equation we can deduce that V (1) = g/λ . The second equation can
be written as Eq. (2.3) with α(x) = −(λ + xμ)/λ , β (x) = xμ/λ , and q(x) = g/λ .
From Theorem 2.1 we have that

V (x) =
g
λ

x

∑
i=1

i−1

∑
k=0

(i−1)!
(i− k−1)!

(
λ
μ

)−k

− 1
λ

x

∑
i=1

(i−1)
i−2

∑
k=0

(i−2)!
(i− k−2)!

(
λ
μ

)−k

.

Let ρ = λ/(sμ). For x = s,s+1, . . . we have

V (x) =V (s)− (x− s)ρ
1−ρ

g
λ
+

[
(x− s)(x− s+1)ρ

2(1−ρ)
+

(x− s)
(
ρ+ s(1−ρ)

)
ρ

(1−ρ)2

]
1
λ
+

(1/ρ)x−s−1
1−ρ

[
ρ

1−ρ
g
λ
+h(s)−h(s−1)−

(
ρ+ s(1−ρ)

)
ρ

λ (1−ρ)2

]
.

2.3 Value Functions for Queueing Systems 45

The long-term expected average costs, which represents the average number of cus-
tomers in the system in this case, is given by

g =
(sρ)sρ

s!(1−ρ)2

[s−1

∑
n=0

(sρ)n

n!
+

(sρ)s

s!(1−ρ)

]−1

+ sρ .

2.3.4 The Blocking Costs in an M/M/s/s Queue

Consider the previous queueing system with s identical independent servers but with
no buffers for customers to wait. An arriving customer that finds no idle server is
blocked and generates a cost of one monetary unit. Let state x denote the number
of customers in the system. The Poisson equations for this M/M/s/s queue are then
given by

g+λ V (0) = λ V (1),

g+(λ + xμ)V (x) = λ V (x+1)+ xμV (x−1), x = 1, . . . ,s−1,

g+ sμV (s) = λ + sμV (s−1).

In order to obtain the relative value function V , we repeat the argument as in the
case of the M/M/s queue. This yields the following value function.

V (x) =
g
λ

x

∑
i=1

i−1

∑
k=0

(i−1)!
(i− k−1)!

(
λ
μ

)−k

=
(λ/μ)s/s!

∑s
i=0(λ/μ)i/i!

x

∑
i=1

i−1

∑
k=0

(i−1)!
(i− k−1)!

(
λ
μ

)−k

.

(2.7)

The average costs is given by

g =
(λ/μ)s/s!

∑s
i=0(λ/μ)i/i!

λ .

2.3.5 Priority Queues

Consider a queueing system with two classes of customers arriving according to
a Poisson process. There is only one server available serving either a class-1 or a
class-2 customer with exponentially distributed service times. A class-i customer
has arrival rate λi, and is served with rate μi for i = 1,2. The system is subject to
holding costs and switching costs. The cost of holding a class-i customer in the sys-
tem for one unit of time is ci for i= 1,2. The cost of switching from serving a class-1
to a class-2 customer (from a class-2 to a class-1 customer) is s1 (s2, respectively).

46 S. Bhulai

The system follows a priority discipline indicating that class-1 customers have
priority over class-2 customers. The priority is also preemptive, i.e., when serving a
class-2 customer, the server switches immediately to serve a class-1 customer upon
arrival of a class-1 customer. Upon emptying the queue of class-1 customers, the
service of class-2 customers, if any present, is resumed from the point where it was
interrupted. Due to the exponential service times, this is equivalent to restarting the
service for this customer.

Let state (x,y,z) for x,y ∈ N0, z ∈ {1,2} denote that there are x class-1 and y
class-2 customers present in the system, with the server serving a class-z customer, if
present. Let ρi = λi/μi for i= 1,2 and assume that the stability condition ρ1+ρ2 < 1
holds. Then the Markov chain is stable and g < ∞ holds. Furthermore, the Markov
chain satisfies the unichain condition, hence the Poisson equations are given by

g+(λ1 +λ2 +μ1)V (x,y,1) = c1x+ c2y+λ1V (x+1,y,1)+λ2V (x,y+1,1)+

μ1V (x−1,y,1), x > 0,y≥ 0,

V (0,y,1) = s1 +V (0,y,2), y > 0,

V (x,y,2) = s2 +V (x,y,1), x > 0,y≥ 0,

g+(λ1 +λ2 +μ2)V (0,y,2) = c2y+λ1V (1,y,2)+λ2V (0,y+1,2)+

μ2V (0,y−1,2), y > 0,

g+(λ1 +λ2)V (0,0,z) = λ1V (1,0,z)+λ2V (0,1,z), z = 1,2.

First observe that, given the values of V (x,y,1), the values of V (x,y,2) are easily
obtained by considering the difference equations: V (x,y,2) = V (x,y,1) + (λ1s2−
λ2s1)/(λ1 +λ2)1(x = 0,y = 0)− s11(x = 0,y > 0)+ s21(x > 0,y≥ 0). Therefore,
we will only show the expression for V (x,y,1), as V (x,y,2) is easily derived from it.
Let V =Vg +Vc1 +Vc2 +Vs1 +Vs2 be the decomposition of the value function. Then
the previous observation directly prescribes that Vg, Vc1 , and Vc2 are independent
of z. Furthermore, the value function Vc1 equals the value function of the single
server queue due to the preemptive priority behavior of the system.

The other value functions can be derived by setting V (x,y) = c1 x2+c2 x+c3 y2+
c4 y+ c5 xy+ c6 with constants ci for i = 1, . . . ,6 to be determined. Substitution of
this equality into the optimality equations yields a new set of equations that is easier
to solve. Let θ be the unique root θ ∈ (0,1) of the equation

λ1x2− (λ1 +λ2 +μ1)x+μ1 = 0.

Then, solving for the constants yields the solution to the optimality equations, which
is given by

Vg(x,y,z) = −
x

μ1 (1−ρ1)
g,

Vc1(x,y,z) =
x(x+1)

2μ1 (1−ρ1)
c1 +

ρ1 x
μ1 (1−ρ1)2 c1,

2.4 Application: Routing to Parallel Queues 47

Vc2(x,y,z) =
λ2 x(x+1)

2μ2
1 (1−ρ1)(1−ρ1−ρ2)

c2 +
ρ2 (μ1−λ1 +μ2ρ1)x

μ2
1 (1−ρ1)2 (1−ρ1−ρ2)

c2 +

y(y+1)
2μ2 (1−ρ1−ρ2)

c2 +
xy

μ1 (1−ρ1−ρ2)
c2,

Vsi(x,y,1) =
λ1 θ

λ1 +λ2

ρ1ρ2 x
1−ρ1

si +
λ1 θ

λ1 +λ2

λ1 y
μ2

si +
λ1

λ1 +λ2
si1(y > 0)+

λ1

λ1 +λ2
(1−θ x)si1(x > 0,y = 0), i = 1,2,

with

g =
ρ1

1−ρ1
c1 +

ρ2 (μ1−μ1ρ1 +μ2ρ1)

μ1 (1−ρ1)(1−ρ1−ρ2)
c2 +(s1 + s2)×

[
λ1

{
ρ1

(
λ1 θ
λ +λ2

−1

)
+

λ1

λ1 +λ2
(1−θ)

}
+λ2

{
λ1 θ

λ1 +λ2

λ1

μ2
+

λ1

λ1 +λ2

}]
.

2.4 Application: Routing to Parallel Queues

In this section we illustrate how the value function can be used to obtain nearly
optimal policies for dynamic routing problems to parallel single server queues. The
general idea is to start with a policy such that each queue behaves as an independent
single server queue. By doing so, the average cost and the value function can be
readily determined from the results of the previous sections. Next, one step of policy
iteration is performed to obtain an improved policy without having to compute the
policy iteratively.

The control problem that we study can be formalized as follows. Consider two
parallel infinite buffer single server queues. The service times of server i are Coxian
distributed with order ri with parameters (pi

1, . . . , pi
ri−1,μ

i
1, . . . ,μ

i
ri
) for i = 1,2. Fur-

thermore, queue i has holding costs hi for i = 1,2. An arriving customer can be sent
to either queue 1 or queue 2. The objective is to minimize the average costs. Note
that the distribution of the service times does not necessarily need to be Coxian.
Since the class of Coxian distributions is dense in the set of non-negative distribu-
tion functions, we can approximate these distributions with a Coxian distribution
by using, e.g., the Expectation-Maximization (EM) algorithm (see [2]). The EM
algorithm is an iterative scheme that minimizes the information divergence given by
the Kullback-Leibler information for a fixed order r. For the cases we have consid-

48 S. Bhulai

ered, a Coxian distribution of order r = 5 was sufficiently adequate to describe the
original distribution.

Let xi be the number of customers in queue i, and yi the number of completed
phases of the customer in service, if there is one, at queue i for i = 1,2. Given that
the service time distribution is adequately described by a Coxian distribution, the
optimality equations for this system are given by

g+
(
λ +1{x1>0} μ1

y1+1 +1{x2>0} μ2
y2+1

)
V (x1,y1,x2,y2) = h1x1 +h2x2+

λ min{V (x1 +1,x2,y1,y2),V (x1,x2 +1,y1,y2)}+

1{x1>0} μ1
y1+1[p

1
y1+1V (x1,x2,y1 +1,y2)+ p1

y1+1V (x1−1,x2,0,y2)]+

1{x2>0} μ2
y2+1[p

2
y2+1V (x1,x2,y1,y2 +1)+ p2

y2+1V (x1,x2−1,y1,0)],

for (xi,yi)∈ {(0,0)}∪N×{0, . . . ,ri−1}with pi
ri
= 0 and pi

y = 1− pi
y when i= 1,2.

Take as initial control policy the Bernoulli policy with parameter η ∈ [0,1],
i.e., the policy that splits the arrivals into two streams such that arrivals occur
with rate ηλ at queue 1, and with rate (1−η)λ at queue 2. Under the Bernoulli
policy, the optimality equation is obtained by replacing the term λ min{V (x1 +
1,x2,y1,y2),V (x1,x2 +1,y1,y2)} with ηλV (x1 +1,x2,y1,y2)+(1−η)λV (x1,x2 +
1,y1,y2). Hence, it follows that the two queues behave as independent single server
queues for which the average cost gi and the value function Vi for i = 1,2 can be
determined from Theorem 2.2. The average cost g′ and the value function V ′ for the
whole system is then given by the sum of the individual average costs g = g1 + g2

and the sum of the individual value functions V ′ = V1 +V2, respectively. Note that
for a specified set of parameters, the optimal Bernoulli policy obtained by minimiz-
ing with respect to η is straightforward. We shall therefore use the optimal Bernoulli
policy in the numerical examples. The policy improvement step now follows from
the minimizing action in min{V ′(x1 +1,x2,y1,y2),V ′(x1,x2 +1,y1,y2)}.

The Coxian distribution allows for many interesting numerical experiments.
Therefore, we restrict ourselves to four representative examples that display the
main ideas. We shall use the notation gB, g′, and g∗ for the average cost obtained
under the optimal Bernoulli policy, the one-step improved policy, and the optimal
policy, respectively. Moreover, we set h1 = h2 = 1, and λ = 3

2 for the first example,
and λ = 1 for the other three examples.

We first start with two queues having a Coxian C(2) distribution. Queue 1 has an
Erlang E2 distribution with parameter μ = 2, such that the mean and the variance
of the service time is 1 and 2, respectively. The parameters at queue 2 are chosen
such that the mean remains 1, but the variance increases to 3, 4, and 5, respectively.
Table 2.1 summarizes the results, and shows that the one-step improved policy has
a close to optimal value. The proportional extra cost (g′ −g∗)/g∗ is practically zero
in all cases.

2.4 Application: Routing to Parallel Queues 49

Parameters for queue 2 gB g′ g∗

p2 = 2
3 ,μ

2 = (2, 4
3) 5.147786 3.208688 3.208588

p2 = 1
2 ,μ

2 = (2,1) 5.405949 3.332179 3.332038
p2 = 2

5 ,μ
2 = (2, 4

5) 5.652162 3.445815 3.445787

Table 2.1: Numerical results for r = 2 with p1 = 1,μ1 = (2,2)

Next, we show a similar experiment with r = 5. The service distribution at queue 1
is fixed at a hypo-exponential Hypo5 distribution with parameter μ = (2,3,2,3,4).
Again the one-step improved policy performs quite well. Table 2.2 shows that the
greatest proportional extra cost is given by 0.03 (the third experiment).

Parameters for queue 2 gB g′ g∗

p2 = (9
10 ,

4
5 ,

7
10 ,

3
5),μ

2 = (2,3,2,3,4) 6.175842 3.787954 3.783727
p2 = (3

5 ,
7
10 ,

4
5 ,

9
10),μ

2 = (2,3,2,3,4) 3.729859 2.493349 2.480818
p2 = (2

5 ,
1
5 ,

4
5 ,

1
2), μ2 = (3,2,4,2,3) 1.399628 1.169286 1.132408

Table 2.2: Numerical results for r = 5 with p1 = (1,1,1,1),μ1 = (2,3,2,3,4)

In the third example we take an Erlang E2 distribution with parameter μ = 2 at queue
1, and a lognormal distribution with parameters μ = 0.5 and σ = 1 at queue 2. Recall
that the probability density function f of the lognormal distribution is given by

f (x) =
1

x
√

2πσ
· e−

1
2

(
ln(x)−μ

σ

)2

,

for x > 0. We approximate the lognormal distribution with a Cox(r) distribution of
order r = 2,5,10, and 20, respectively, using the EM-algorithm. We also compare
this with a two-moment fit of the Coxian distribution. Let X be a random vari-
able having a coefficient of variation cX ≥ 1

2

√
2, then the following is suggested

by Marie [13]: μ1 = 2/EX , p1 = 0.5/c2
X , and μ2 = p1μ1.

The results of the EM-algorithm and the 2-moment fit are displayed in Fig. 2.1.
The fit with the Cox(20) distribution is omitted, since it could not be distinguished
from the lognormal probability density. Therefore, the optimal value when using the
Cox(20) distribution can be considered representative for the optimal value when
using the lognormal distribution. Note that the EM-approximation with the Cox(2)
distribution captures more characteristics of the lognormal distribution than the
2-moment fit. This result is also reflected in Table 2.3, since the value of the optimal
policy g∗ for the Cox(2) distribution is closer to the value of g∗ when the Cox(20)
distribution is used. The greatest proportional extra cost for the EM-approximations
is given by 0.02 (EM fit with r = 2).

50 S. Bhulai

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

 f(
x)

2−moment fit
EM Cox−2 fit
EM Cox−5 fit
EM Cox−10 fit
Lognormal

Fig. 2.1: Lognormal (μ = 0.5, σ = 1) probability density

Approximation for queue 2 gB g′ g∗

2-moment fit 4.617707 3.021571 2.976950
EM algorithm with r = 2 4.554838 2.982955 2.933345
EM algorithm with r = 5 4.526013 2.965625 2.919847
EM algorithm with r = 10 4.527392 2.963318 2.917011
EM algorithm with r = 20 4.527040 2.963311 2.917169

Table 2.3: Lognormal distribution: numerical results with p1 = 1,μ1 = (2,2)

In the final example we take an Erlang E2 distribution with parameter μ = 2 at queue
1, and a Weibull distribution with parameters a = 0.3 and b = 0.107985. Recall that
the probability density function f of the Weibull distribution is given by

f (x) = axa−1 e−(
x
b)

a

ba ,

for x > 0. Note that the parameters a and b are chosen such that the Weibull distribu-
tion has mean 1. We approximate the Weibull distribution by a Cox(r) distribution
of order r = 2,5,10, and 20, respectively, using the EM-algorithm. The results of the
EM-algorithm are depicted in Fig. 2.2. Again we omitted the fit of the Cox(20) dis-
tribution, since it could not be distinguished from the Weibull probability density.
Moreover, since the coefficient of variation is less than 1

2

√
2 we also omitted the

two-moment fit. The results in Table 2.4 again indicate that the one-step improved
policy has a close to optimal value, since the proportional extra cost is practically
zero.

2.4 Application: Routing to Parallel Queues 51

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

 f(
x)

EM Cox−2 fit
EM Cox−5 fit
EM Cox−10 fit
Weibull

Fig. 2.2: Weibull (a = 1.8, b = 1) probability density

Approximation for queue 2 gB g′ g∗

EM algorithm with r = 2 1.563547 1.167233 1.167232
EM algorithm with r = 5 1.524032 1.148638 1.148511
EM algorithm with r = 10 1.522566 1.148570 1.148100
EM algorithm with r = 20 1.522387 1.148826 1.148552

Table 2.4: Weibull distribution: numerical results with p1 = 1,μ1 = (2,2)

The previous examples show that the one-step policy improvement method yields
nearly optimal policies, even when non-Markovian service distributions are approx-
imated by a Coxian distribution. For the lognormal and the Weibull distribution that
we studied, a Coxian distribution of order r = 5 was already sufficient for an ade-
quate approximation. Note that the one-step improved policy can be easily obtained
for more than two queues. In this section we restricted attention to two queues, since
the numerical computation of the value of the optimal policy g∗ becomes rapidly in-
tractable for more than two queues. Observe that the computational complexity is
exponential in the number of queues in contrast to a single step of policy iteration
that has linear complexity in the number of queues.

52 S. Bhulai

2.5 Application: Dynamic Routing in Multiskill Call Centers

Consider a multi-skill call center in which agents handle calls that require different
skills. We represent the skill set S by S = {1, . . . ,N}. We assume that calls that
require skill s ∈ S arrive to the call center according to a Poisson process with rate
λs. Let G = P(S) denote the groups with different skill sets defined by the power
set of all the skills. Let Gs = {G ∈ G |s ∈ G} denote all skill groups that include
skill s ∈ S . The agents are grouped according to their skills and can therefore be
indexed by the elements of G. Each group G ∈ G consists of SG agents, and serves a
call that requires a skill within group G with independent exponentially distributed
times with parameter μG.

Scenario 1: A Call Center with No Waiting Room

Suppose that we are dealing with a loss system, i.e., there are no buffers at all in our
model. Hence, there is no common queue for calls to wait, so every arriving call has
either to be routed to one of the agent groups immediately, or has to be blocked and
is lost. Also, when a call is routed to a group that has no idle servers left, the call is
lost. The objective in this system is to minimize the average number of lost calls.

Let us formulate the problem as a Markov decision problem. Fix an order of the
elements of G, say G = (G1, . . . ,G2N−1), and define the state space of the Markov

decision problem by X =∏2N−1
i=1 {0, . . . ,SGi}. Then the |G|-dimensional vector x ∈

X denotes the state of the system according to the fixed order, i.e., xG is the number
of calls in service at group G∈ G. Also, represent by the |G|-dimensional unit vector
eG the vector with zero at every entry, except for a one at the entry corresponding
to G according to the fixed order. When a call that requires skill s ∈ S arrives, the
decision maker can choose to block the call, or to route the call to any agent group
G ∈ Gs for which xG < SG. Hence, the action set is defined by As = {G ∈ Gs |xG <
SG}∪ {b}, where action b stands for blocking the call. Therefore, for an arriving
call that requires skill s ∈ S the transition rates p(x,a,y) of going from x ∈ X to
y ∈ X after taking decision a ∈ As are given by p(x,b,x) = λs, p(x,a,x+ ea) = λs

when a �= b, and zero otherwise. The transition rates for the service completions are
given by p(x,a,x−eG) = xGμG for x ∈X , G ∈ G and any action a. The objective is
modeled by the cost function c(x,a) = 1 for any x ∈ X and a = b.

The tuple (X ,{As}s∈S , p,c) defines the Markov decision problem. After uni-
formizing the system (see Sect. 11.5 of Puterman [18]) we obtain the dynamic pro-
gramming optimality equation for the system given by

2.5 Application: Dynamic Routing in Multiskill Call Centers 53

g+
[
∑
s∈S

λs + ∑
G∈G

SGμG

]
V (x) = ∑

s∈S
λs min{1+V (x),V (x+ eG) |G ∈ Gs,xG < SG}

+ ∑
G∈G

xGμG V (x− eG)+ ∑
G∈G

(SG− xG)μG V (x), (2.8)

where g is the long-term expected average costs, and V is the relative value function.
Note the unusual place of the minimization in Expression (2.8): the actions in our

case depend on the type of arriving call. It is easy to rewrite the optimality equation
in standard formulation (see, e.g., Chap. 5 of Koole [11]), but this would complicate
the notation considerably.

For the problem of skill-based routing we will base the approximate relative
value function on a static randomized policy for the initial routing policy. Let
G(n) = {G ∈ G

∣
∣ |G| = n} be all agent groups that have exactly n skills for

n = 1, . . . ,N. Define accordingly, G(n)s = {G ∈ G(n) |s ∈ G} to be all agent groups
that have n skills, including skill s ∈ S . For a given skill s, this creates a hier-

archical structure G(1)s , . . . ,G(N)
s from specialized agents having only one skill to

cross-trained generalists having all skills. For a call center with three skills, we
would have three levels in the hierarchy: the specialists (groups {1}, {2}, and {3}),
the agents with two skills (groups {1, 2}, {1, 3}, and {2, 3}), and the generalists
(group {1, 2, 3}). In the following paragraphs we will describe the steps in the
one-step policy improvement algorithm in more detail using this call center with
three skills as illustration.

Initial Policy

The initial policy π̂ , on which we will base the approximate relative value function,

tries to route a call requiring skill s through the hierarchy, i.e., it tries G(1)s first, and

moves to G(2)s if there are no idle agents in G(1)s . In G(2)s there may be more than
one group that one can route to. The initial policy routes the call according to fixed

probabilities to the groups in G(2)s , i.e., it splits the overflow stream from G(1)s into

fixed fractions over the groups in G(2)s . The call progresses through the hierarchy
whenever it is routed to a group with no idle agents until it is served at one of the

groups, or it is blocked at G(N)
s eventually. The rationale behind the policy that sends

calls to the agents with the fewest number of skills first has been rigorously justified
in [9, 16]. To illustrate this for three skills: the overflow of calls from group {1}
are split by fixed fractions α and α = 1−α in order to be routed to groups {1,2}
and {1,3}, respectively. The overflow process from groups {2} and {3} are treated
accordingly by the fractions β and γ , respectively.

We have yet to define how to choose the splitting probabilities in the initial rout-
ing policy. In order to define these, we ignore the fact that the overflow process is
not a Poisson process, and we consider all overflows to be independent. Thus, we do

54 S. Bhulai

as if the overflow process at group G ∈ G(i)s is a Poisson process with rate λG times
the blocking probability. Together with the splitting probabilities, one can compute
the rate of the Poisson arrivals at each station in G(i+1) composed of the assumed
independent Poisson processes. The splitting probabilities are then chosen such that
the load at every group in G(i+1) is balanced. To illustrate this for the call center
with three skills, recall the Erlang loss formula B(λ ,μ ,S) for an M/M/S/S queue
with arrival rate λ and service rate μ ,

B(λ ,μ ,S) =
(λ/μ)S/S!

∑S
i=0(λ/μ)i/i!

. (2.9)

The overflow rate at group {i} for i = 1,2,3 is then given by λi B(λi,μ{i},S{i}).
Hence, the arrival rate at the groups in G(2) are given by

λ{1,2} = λ1 B(λ1,μ{1},S{1})α+λ2 B(λ2,μ{2},S{2})β ,
λ{1,3} = λ1 B(λ1,μ{1},S{1})(1−α)+λ3 B(λ3,μ{3},S{3})γ ,

λ{2,3} = λ2 B(λ2,μ{2},S{2})(1−β)+λ3 B(λ3,μ{3},S{3})(1− γ).

The splitting probabilities can be determined by minimizing the average cost in
the system. Since the average cost under this policy is the sum of the blocking
probabilities of each queue in the system, the optimal splitting probability could
create asymmetry in the system, i.e., one queue has a very low blocking probability
whereas another has a high blocking probability. Numerical experiments show that
a situation with a more balanced blocking probability over all queues leads to better
one-step improved policies. Therefore, we choose the splitting probabilities such
that

λ{1,2}
S{1,2}μ{1,2}

=
λ{1,3}

S{1,3}μ{1,3}
=

λ{2,3}
S{2,3}μ{2,3}

.

In case this equation does not have a feasible solution, we choose the splitting prob-
abilities such that we minimize

∣
∣
∣
∣

λ{1,2}
S{1,2}μ{1,2}

−
λ{1,3}

S{1,3}μ{1,3}

∣
∣
∣
∣+

∣
∣
∣
∣

λ{1,2}
S{1,2}μ{1,2}

−
λ{2,3}

S{2,3}μ{2,3}

∣
∣
∣
∣ +

∣
∣
∣
∣

λ{1,3}
S{1,3}μ{1,3}

−
λ{2,3}

S{2,3}μ{2,3}

∣
∣
∣
∣ .

Finally, the arrival rate at the last group with all skills is given by

λ{1,2,3} = ∑
G∈G(2)

λG B(λG,μG,SG).

2.5 Application: Dynamic Routing in Multiskill Call Centers 55

Policy Evaluation

In the policy evaluation step, one is required to solve the long-run expected average
costs and the relative value function from the Poisson equations for the policy π̂ .
Note that for our purpose of deriving an improved policy, it suffices to have the
relative value function only. Under the initial policy this leads to solving the rela-
tive value function of a series of multi-server queues in tandem. This is a difficult
problem that is yet unsolved even for tandem series of single server queues. There-
fore, we choose to approximate the relative value function based on the assumptions
made in defining the initial policy.

For the approximation we assume that the overflow process is indeed a Poison
process and that they are independent from all other overflow processes. We ap-
proximate the relative value function by the sum of the relative value functions for
each agent group. More formally, let VG(xG,λG,μG,SG) be the relative value func-
tion for an M/M/SG/SG system with arrival rate λG and service rate μG, evaluated
when there are xG calls present. The value function for the whole system is then
approximated by

V̂ (x) = ∑
G∈G

VG(xG,λG,μG,SG). (2.10)

Policy Improvement

By substitution of the relative value function determined in the policy evaluation
step into the optimality equations, one can derive a better policy by evaluating

min{1+V̂ (x),V̂ (x+ eG) |G ∈ Gs,xG < SG} =

min{1,VG(xG +1,λG,μG,SG)−VG(xG,λG,μG,SG) |G ∈ Gs,xG < SG}.

The last term follows from subtracting V (x) from all terms in the minimization and
using the linear structure of V (x).

In Table 2.5 we find the results of the one-step policy improvement algorithm
for scenario 1. The parameters for λX , μX , and SX in the table are organized for
the groups {1}, {2}, and {3}. The parameters for μXY and SXY are ordered for
groups {1,2}, {1,3}, and {2,3}, respectively. The greatest proportional extra cost
Δ = (g′ − g∗)/g∗ over all experiments in Table 2.5 is 12.9% (the last experiment).
Other experiments show that the proportional extra costs lies within the range of
0–13%. Thus, we can see that the improved policy has a good performance already
after one step of policy improvement.

56 S. Bhulai

Scenario 2: A Call Center with Specialists and Generalists Only

Suppose that we are dealing with a call center having agents with one skill (special-
ists) and fully cross-trained agents (generalists) only, i.e., G = (G1, . . . ,G|S|,G|S|+1)
= ({1}, . . . ,{N},{1, . . . ,N}). In this scenario we assume that calls that require skill
s ∈ S are pooled in a common infinite buffer queue after which they are assigned to

λX μX μXY SX SXY g g′ g∗ Δ
6 6 6 1.0 1.0 1.0 1.0 1.0 1.0 2 2 2 2 2 2 0.361 0.349 0.344 1.505
6 5 4 2.0 1.5 1.0 1.5 1.0 1.0 2 2 2 2 2 2 0.170 0.147 0.143 2.781
7 6 5 2.0 1.5 1.0 1.5 1.5 1.0 3 3 3 2 2 2 0.119 0.099 0.096 3.264
7 6 5 1.5 1.0 1.0 1.5 1.0 1.0 3 3 3 3 3 2 0.130 0.107 0.103 3.930
6 5 4 2.0 1.5 1.0 1.5 1.0 1.0 3 3 3 2 2 2 0.072 0.057 0.054 5.672
6 5 4 2.0 1.5 1.0 1.5 1.5 1.0 3 3 3 2 2 2 0.061 0.046 0.042 8.011
10 4 4 1.5 1.0 1.0 1.5 1.5 1.0 2 2 2 2 2 2 0.281 0.274 0.252 8.816
10 6 3 1.5 1.0 1.0 1.5 1.0 1.0 3 3 3 3 3 2 0.160 0.148 0.131 12.851

Table 2.5: Numerical results for scenario 1 with μ{1,2,3} = 1 and S{1,2,3} = 2

a specialist or a generalist in a first-come first-served order. The objective in this
system is to minimize the average number of calls in the system, which in its turn is
related to the average waiting time of a call.

In addition to the state of the agents groups, we also have to include the state
of the queues in the state space. For this purpose, let the |S|-dimensional vector
q denote the state of the queues, i.e., qs is number of calls in queue s that require
skill s ∈ S . Moreover, the system also has to address the agent-selection problem
and the call-selection problem. The first problem occurs when one has to assign an
agent to an arriving call. The second problem occurs when an agent becomes idle
and a potential call in the queue can be assigned. Following the same approach as
in scenario 1, we obtain the dynamic programming optimality equation given by

g+
[
∑
s∈S

λs + ∑
G∈G

SGμG

]
V (q,x) = ∑

s∈S
qs + ∑

G∈G
xG +∑

s∈S
λsṼ (q+ es,x)+

∑
G∈G

xGμG Ṽ (q,x− eG)+ ∑
G∈G

(SG− xG)μG V (q,x),
(2.11)

where Ṽ (q,x) = min{V (q−es,x+eG) |s∈ S,G∈ Gs,qs > 0,xG < SG}∪{V (q,x)}.
The first two terms on the right-hand side represent the cost structure, i.e., the num-
ber of calls in the system. The third and fourth term represent the agent-selection
and the call-selection decisions, respectively.

2.5 Application: Dynamic Routing in Multiskill Call Centers 57

Initial Policy

In principle, we could take as initial policy π̂ a similar policy as used in scenario 1: a
fraction αs of type s calls are assigned to the corresponding specialists, and a fraction
1−αs are assigned to the generalists. Instead of using the relative value function for
the M/M/S/S queue, we could use the relative value function for the M/M/S queue.
However, this approximation would then assume a dedicated queue in front of the
group of generalists. Consequently, a customer that is sent to the group of generalists
that are all busy would still have to wait when a specialist of that call type is idle.
Therefore, this Bernoulli policy does not efficiently use the resources in the system,
and leads to an inefficient one-step improved policy. To overcome the inefficiency
of the Bernoulli policy, we instead use a policy that uses the specialists first, and
assigns a call to a generalist only if a generalist is available while all specialists
that can handle that call type are busy. The effectiveness of this policy has been
rigorously justified in [9, 16].

Policy Evaluation

The relative value function for the policy π̂ , that uses specialists first and then gen-
eralists, is complicated. The policy π̂ creates a dependence between the different
agent groups that prohibit the derivation of a closed-form expression for the relative
value function. Therefore, we approximate the relative value function by V̂ as fol-
lows. Let VW (x,λ ,μ ,S) be the relative value function of an M/M/S queueing system.
The approximation V̂ for the policy π̂ is then given by

V̂ (q,x) = ∑
s∈S

VW (qs + xs, λ̃s,μ{s},S{s})+

VW
(
(q1 + x1−S1)

++ · · ·+(qN + xN−SN)
++ xN+1,λGN+1 ,μGN+1 ,SGN+1

)
,

with λ̃s = λs
(
1−B(λs,μ{s},S{s})

)
the approximate rate to the specialists of call type

s, and λGN+1 =∑s∈S λsB(λs,μ{s},S{s}) the approximate rate to the generalists. Note
that this approximation follows the idea of the motivating initial policy in that it
ensures that all idle specialists of type s, given by Ss−xs, are used for all calls in the
queue of the same type. This results in (qs− [Ss−xs])

+ = max{qs +xs−Ss,0} calls
that cannot be served. These calls are therefore waiting for a generalist to become
idle. The approximation does take into account also the fact that a specialist can
become idle before a generalist, and immediately assigns a call to the specialist.

The idea behind the approximation is that it roughly estimates the different flows
to the different agent groups and then computes the value function as if the calls
are waiting simultaneously at the two queues where they can be served. Note that
strictly hierarchical architectures in which agents groups are structured so that no
overflow of calls has to be split between two possible subsequent agent pools can
be dealt with similarly. Observe that it might be possible that the overflow to the
generalists is larger than their service rate. However, the system will still be stable

58 S. Bhulai

because the actual number of calls that will be served by the specialists will be
higher, unless the system load is quite close to one.

Policy Improvement

In the policy improvement step, the initial policy π̂ is improved by evaluating

min{V̂ (q− es,x+ eG) |s ∈ S,G ∈ Gs,qs > 0,xG < SG}∪{V̂ (q,x)}.

Note that in this case the policy has to be determined for both the agent-assignment
and the call-selection decisions.

The results for scenario 2 with also three skills are given in Table 2.6. The first
line seems to suggest that no significant gains over the static policy can be obtained
when the service rates of the specialists and the generalists are equal to each other. In
Tables 2.7, 2.8, 2.9 we have varied the service rate of the generalists under different
loads. The results show that as the system is offered higher loads, the gains by
usingthe one-step improved policy are also higher as compared to the static routing

λX μX SX μ{1,2,3} S{1,2,3} g g′ g∗ Δ
6 6 6 2.0 2.0 2.0 3 3 3 2.0 3 11.043 10.899 10.746 1.429
6 3 3 1.5 1.0 1.0 3 3 3 1.0 3 20.122 19.259 18.361 4.892
6 5 4 2.5 2.0 1.5 2 2 2 2.0 3 13.186 11.562 11.314 2.187
6 5 4 1.8 1.8 1.2 3 3 3 1.2 3 16.348 14.931 14.602 2.253
7 6 5 2.5 2.0 1.5 3 3 3 2.0 2 15.269 13.310 13.127 1.397
7 6 5 1.8 1.8 1.2 3 3 3 1.8 3 23.260 20.091 19.125 5.054

10 6 3 3.0 2.0 1.0 3 3 3 1.0 2 31.834 26.844 25.184 6.594
6 5 4 3.0 2.0 1.0 3 3 3 1.0 2 20.083 14.403 13.795 4.404

Table 2.6: Numerical results for scenario 2

policy. Next, we scale the system such that the increase in the offered load was
compensated by faster service rates or by an increase in the number of servers.
Table 2.10 shows that when the service rates are scaled, the gains over the static
policy remain roughly unaffected. However, when more servers are added, it slightly
decreases. From the other lines in Table 2.6 we can conclude that the gain over the
static policy is greater in asymmetric systems. In conclusion, we can observe that
the improved policy has good performance and that its performance is close to the
performance of the optimal policy.

Note that our proposed method is scalable, and can easily be used for bigger call
centers. In this section, however, we restricted ourselves to a call center with three
skills, since the computation of optimal policies becomes numerically difficult for
bigger call centers. The optimal policy grows exponentially in the number of skills,
while a single step of policy iteration has linear complexity.

2.5 Application: Dynamic Routing in Multiskill Call Centers 59

μ{1,2,3} g g′ g∗ Δ
1.5 9.012 8.933 8.928 0.051
1.6 8.773 8.707 8.703 0.045
1.7 8.559 8.504 8.500 0.047
1.8 8.366 8.320 8.316 0.045
1.9 8.192 8.154 8.150 0.044
2.0 8.035 8.006 7.999 0.091
2.1 7.892 7.864 7.851 0.166
2.2 7.762 7.713 7.675 0.496
2.3 7.644 7.561 7.489 0.962
2.4 7.535 7.405 7.302 1.418
2.5 7.436 7.238 7.118 1.690

Table 2.7: Scenario 2—λX = 5, μX = 2, SX = 3, and S{1,2,3} = 3

μ{1,2,3} g g′ g∗ Δ
1.5 13.674 13.142 12.877 2.055
1.6 12.995 12.595 12.344 2.035
1.7 12.405 12.106 11.872 1.969
1.8 11.891 11.665 11.453 1.848
1.9 11.440 11.265 11.080 1.671
2.0 11.043 10.899 10.746 1.429
2.1 10.692 10.449 10.445 0.046
2.2 10.379 10.179 10.160 0.189
2.3 10.101 9.934 9.881 0.532
2.4 9.851 9.712 9.610 1.062
2.5 9.626 9.494 9.347 1.568

Table 2.8: Scenario 2—λX = 6, μX = 2, SX = 3, and S{1,2,3} = 3

μ{1,2,3} g g′ g∗ Δ
1.5 27.101 25.142 23.387 7.502
1.6 25.138 22.841 21.638 5.559
1.7 23.306 20.923 20.099 4.097
1.8 21.623 19.326 18.755 3.042
1.9 20.099 17.992 17.586 2.304
2.0 18.737 16.867 16.571 1.784
2.1 17.533 15.910 15.690 1.401
2.2 16.475 15.086 14.920 1.114
2.3 15.551 14.370 14.240 0.915
2.4 14.746 13.741 13.631 0.802
2.5 14.044 13.183 13.082 0.771

Table 2.9: Scenario 2—λX = 7, μX = 2, SX = 3, and S{1,2,3} = 3

60 S. Bhulai

λX μX SX μ{1,2,3} S{1,2,3} g g′ g∗ Δ
6 5 4 2.5 2.0 1.5 2 2 2 2.0 3 13.186 11.562 11.314 2.187
12 10 8 5.0 4.0 3.0 2 2 2 4.0 3 13.187 11.564 11.313 2.215
24 20 16 10.0 8.0 6.0 2 2 2 8.0 3 13.190 11.567 11.310 2.273
12 10 8 2.5 2.0 1.5 4 4 4 2.0 6 18.625 17.789 17.562 1.290
24 20 16 5.0 4.0 3.0 4 4 4 4.0 6 18.628 17.792 17.559 1.326
24 20 16 2.5 2.0 1.5 8 8 8 2.0 12 31.925 31.380 30.991 1.253
30 20 10 2.5 2.0 1.5 15 15 15 2.0 15 28.924 27.996 27.256 2.714
30 20 20 2.5 2.0 1.5 20 20 20 2.0 20 35.290 34.829 32.015 8.788

Table 2.10: Scenario 2—scaling of the system

2.6 Application: A Controlled Polling System

The relative value function of the priority queue in Sect. 2.3.5 can be seen as a server
assignment problem in which a fixed priority discipline is used, namely the preemp-
tive priority resume policy. When the server can change at any instant, more freedom
is introduced leading to lower average costs under the optimal policy. The question
then becomes what the optimal policy is.

Let c1 > 0 and c2 > 0. In the case that the switching costs are identical to zero the
optimal policy is equal to the well-known μc rule (see, e.g., [3]). This means that
priority is given to a class-i customer based on the value of μici; priority is given to
the queue with higher values of μici. When switching costs are greater than zero, the
optimal policy is not known and a numerical method such as policy or value iteration
has to be used. In this section we illustrate how to use one-step policy improvement
for this problem.

In principle, one could apply a Bernoulli policy to the server, i.e., the server works
a fraction α of the time on queue 1 and a fraction 1−α on queue 2. However, in
order to take the dependencies between the two queues into account in the initial
policy, we can also use the priority policy, of which we denote the value function by
Vp, of Sect. 2.3.5. Let λ1 = λ2 = 1, μ1 = 6, μ2 = 3, c1 = 2, c2 = 1, and s1 = s2 =
2. Note that with these parameters, the priority policy coincides with the μc rule.
Define μ = max{μ1,μ2}. Then, define for some fixed x and y

zk,l = sk1{k �=l}+ c1x+ c2y+λ1Vp(x+1,y, l)+λ2Vp(x,y+1, l)+

μlVp
(
((x,y)− el)

+, l
)
+(μ−μl)Vp(x,y, l)

as the expected bias if the server immediately switches from position k to position
l and uses the preemptive priority rule afterwards. The one-step improved policy is
simply the policy that minimizes for each (x,y,k) the expression mina{zk,a}. Hence,
the actions are defined by ax,y,k = argmin{zk,a}.

Table 2.11 shows the results for the one-step policy improvement. The average
cost resulting from using a single step of policy iteration is 3.09895. This is a reduc-
tion of the costs by 14.6% as compared to using the μc rule where the average cost

References 61

is 3.62894. By using policy iteration to find the optimal policy the results hardly
improve; the average cost is at lowest 3.09261. Surprisingly enough, the optimal
policy is found in two steps of policy iteration. The fast convergence of the policy
iteration algorithm is not coincidental; the average cost of the policies generated by
policy iteration converge at least exponentially fast to the minimum cost, with the
greatest improvement in the first few steps.

Iteration Average cost Comment

0 3.62894 μc rule
1 3.09895 One-step policy improvement
2 3.09261 Optimal policy

Table 2.11: Policy iteration results

References

1. E. Altman, Applications of Markov decision processes in communication net-
works: a survey, in Handbook of Markov Decision Processes, edited by E.A.
Feinberg, A. Shwartz (Kluwer, Dordrecht, 2002)

2. S. Asmussen, O. Nerman, M. Olsson, Fitting phase type distributions via the
EM algorithm. Scand. J. Stat. 23, 419–441 (1996)

3. J.S. Baras, D.-J. Ma, A.M. Makowski, k competing queues with geometric ser-
vice requirements and linear costs: the μc rule is always optimal. Syst. Control
Lett. 6, 173–180 (1985)

4. R. Bellman, Adaptive Control Processes: A Guided Tour (Princeton University
Press, Princeton, NJ, 1961)

5. S. Bhulai, On the value function of the M/Cox(r)/1 queue. J. Appl. Probab.
43(2), 363–376 (2006)

6. S. Bhulai, G.M. Koole, On the structure of value functions for threshold policies
in queueing models. J. Appl. Probab. 40, 613–622 (2003)

7. S. Bhulai, F.M. Spieksma, On the uniqueness of solutions to the Poisson equa-
tions for average cost Markov chains with unbounded cost functions. Math.
Meth. Oper. Res. 58(2), 221–236 (2003)

8. S. Bhulai, A.C. Brooms, F.M. Spieksma, On structural properties of the value
function for an unbounded jump Markov process with an application to a
processor-sharing retrial queue. Queueing Syst. 76(4), 425–446 (2014)

9. P. Chevalier, N. Tabordon, R. Shumsky, Routing and staffing in large call cen-
ters with specialized and fully flexible servers. Working paper (2004)

10. E. Hyytiä, J. Virtamo, Dynamic routing and wavelength assignment using first
policy iteration. Technical Report COST 257, Helsinki University of Technol-
ogy (2000)

11. G.M. Koole, Stochastic Scheduling and Dynamic Programming. CWI Tract,
vol. 113 (CWI, Amsterdam, 1995)

62 S. Bhulai

12. S.A. Lippman, Applying a new device in the optimization of exponential queue-
ing systems. Oper. Res. 23, 687–710 (1975)

13. R.A. Marie, Calculating equilibrium probabilities for λ (m)/Ck/1/N queues, in
Proceedings of the International Symposium on Computer Performance Mod-
eling (1980)

14. R.E. Mickens, Difference Equations: Theory and Applications (Chapman &
Hall, London, 1990)

15. J.M. Norman, Heuristic Procedures in Dynamic Programming (Manchester
University Press, Manchester, 1972)

16. E.L. Örmeci, Dynamic admission control in a call center with one shared and
two dedicated service facilities. IEEE Trans. Autom. Control 49, 1157–1161
(2004)

17. T.J. Ott, K.R. Krishnan, Separable routing: a scheme for state-dependent rout-
ing of circuit switched telephone traffic. Ann. Oper. Res. 35, 43–68 (1992)

18. M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming (Wiley, New York, 1994)

19. H. Rummukainen, J. Virtamo, Polynomial cost approximations in markov de-
cision theory based call admission control. IEEE/ACM Trans. Netw. 9(6),
769–779 (2001)

20. S.A.E. Sassen, H.C. Tijms, R.D. Nobel, A heuristic rule for routing customers
to parallel servers. Statistica Neerlandica 51, 107–121 (1997)

21. R.F. Serfozo, An equivalence between continuous and discrete time Markov
decision processes. Oper. Res. 27, 616–620 (1979)

22. F.M. Spieksma, Geometrically ergodic Markov chains and the optimal control
of queues. Ph.D. thesis, Leiden University (1990)

23. S. Stidham Jr., R.R. Weber, A survey of Markov decision models for control of
networks of queues. Queueing Syst. 13, 291–314 (1993)

24. H.C. Tijms, Stochastic Models: An Algorithmic Approach (Wiley, New York,
1994)

25. D. Towsley, R.H. Hwang, J.F. Kurose, MDP routing for multi-rate loss net-
works. Comput. Netw. ISDN 34, 241–261 (2000)

Chapter 3
Approximate Dynamic Programming
by Practical Examples

Martijn R.K. Mes and Arturo Pérez Rivera

Abstract Computing the exact solution of an MDP model is generally difficult and
possibly intractable for realistically sized problem instances. A powerful technique
to solve the large scale discrete time multistage stochastic control processes is Ap-
proximate Dynamic Programming (ADP). Although ADP is used as an umbrella
term for a broad spectrum of methods to approximate the optimal solution of MDPs,
the common denominator is typically to combine optimization with simulation, use
approximations of the optimal values of the Bellman’s equations, and use approx-
imate policies. This chapter aims to present and illustrate the basics of these steps
by a number of practical and instructive examples. We use three examples (1) to
explain the basics of ADP, relying on value iteration with an approximation of the
value functions, (2) to provide insight into implementation issues, and (3) to provide
test cases for the reader to validate its own ADP implementations.

Key words: Dynamic programming, Approximate dynamic programming,
Stochastic optimization, Monte Carlo simulation, Curse of dimensionality

3.1 Introduction

Approximate Dynamic Programming (ADP) is a powerful technique to solve large
scale discrete time multistage stochastic control processes, i.e., complex Markov
Decision Processes (MDPs).

M.R.K. Mes (�) • A. Pérez Rivera
Department of Industrial Engineering and Business Information Systems, University of Twente,
Enschede, The Netherlands
e-mail: m.r.k.mes@utwente.nl

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 3

63

mailto:m.r.k.mes@utwente.nl

64 M.R.K. Mes and A. Pérez Rivera

MDPs consist of a state space S , and at each time step t, the system is in a par-
ticular state St ∈ S from which we can take a decision xt from the feasible set Xt .
This decision results in rewards or costs, typically given by Ct(St ,xt), and brings us
to a new state St+1 with probability P(St+1|St ,xt), i.e., the next state is conditionally
independent of all previous states and actions. Therefore, the decision not only de-
termines the direct costs, but also the environment within which future decisions
take place, and hence influences the future costs. The goal is to find a policy. A pol-
icy π ∈Π can be seen as a decision function Xπ(St) that returns a decision xt ∈ Xt

for all states St ∈ S , with Π being the set of potential decision functions or policies.
The problem of finding the best policy can be written as

min
π∈Π

Eπ

{
T

∑
t=0

γCt(St ,X
π
t (St))

}

, (3.1)

where γ is a discount factor (minimizing the total and average rewards is achieved
by setting γ = 1 and γ = 1/T respectively), and T denotes the planning horizon
(could be infinite).

The problem formulation (3.1) covers a huge variety of decision problems, found
in various applications also covered in this book, such as health care, production and
manufacturing, communications, and transportation. There is also a wide variety of
methods to solve (3.1), such as rolling-horizon procedures, simulation optimization,
linear programming, and dynamic programming. Here, we focus on the latter.

Dynamic programming solves complex MDPs by breaking them into smaller
subproblems. The optimal policy for the MDP is one that provides the optimal so-
lution to all sub-problems of the MDP [1]. This becomes visible in Bellman’s equa-
tion, which states that the optimal policy can be found by solving:

Vt (St) = min
xt∈Xt

(

Ct (St ,xt)+ γ ∑
s′∈S

P(St+1 = s′|St ,xt)Vt+1(s
′)

)

. (3.2)

Computing the exact solution, e.g., by using backward dynamic programming,
is generally difficult and possibly intractable for large problems due to the widely
known “curse of dimensionality”. One can encounter three curses of dimensionality
in dynamic programming [10]:

1. the state space S for the problem may be too large to evaluate the value function
Vt (St) for all states within reasonable time;

2. the decision space Xt may be too large to find the optimal decision for all states
within reasonable time;

3. computing the expectation of ‘future’ costs may be intractable when the out-
come space is large.

The outcome space is the set of possible states in time period t+1, given the state
and decision in time period t. Its size is driven by the random information Wt+1 that
arrives between t and t + 1. By capturing all the randomness with Wt+1, we can
express the next state St+1 as a function of the current state St , the decision xt , and
the new information Wt+1, using a transition function St+1 = SM(St ,xt ,Wt+1). Now,
assume that Wt+1 is independent on all prior information, and let Ωt+1 be the set of

3.1 Introduction 65

possible outcomes of Wt+1 and let P(Wt+1 = ω) denote the probability of outcome
ω ∈Ωt+1. We now rewrite (3.2) as

Vt (St) = min
xt∈Xt

(

Ct (St ,xt)+ γ ∑
ω∈Ωt+1

P(Wt+1 = ω)Vt+1 (St+1|St ,xt ,ω)

)

, (3.3)

with St+1 = SM(St ,xt ,ω). Note that in (3.2) and (3.3) the direct costs Ct (St ,xt) are
assumed to be deterministic; however, the random information ω could also play a
role in this function, see [10].

Based on an MDP model, Approximate Dynamic Programming (ADP) is a mod-
eling framework that offers several strategies for tackling the curses of dimension-
ality in large, multi-period, stochastic optimization problems [10]. Also for ADP,
the output is a policy or decision function Xπ

t (St) that maps each possible state St

to a decision xt , for each stage t in the planning horizon. Although ADP is used as
an umbrella term for a broad spectrum of methods to approximate the optimal solu-
tion of MDPs, the common denominator is typically to combine optimization with
simulation (sampling from Ωt+1), use approximations of the optimal values of the
Bellman’s equations, and use approximate policies. For applications of ADP, a more
natural form of the Bellman’s equations in (3.3) is the expectational form given by:

Vt (St) = min
xt∈Xt

(Ct (St ,xt)+ γEω {Vt+1 (St+1|St ,xt ,ω)}) . (3.4)

To approximate the optimal values of (3.4), a series of constructs and algorith-
mic manipulations of the MDP model are needed. This chapter aims to present and
illustrate the basics of these steps by a number of practical and instructive examples.

ADP can be applied to large-scale instances because it is able to handle two of the
three dimensionality issues. First, the large outcome space can be handled through
the construct of a post-decision state Sx,n

t , which we explain in Sect. 3.2. Second, the
large state space can be handled by (1) generating sample paths through the states,
the so-called “forward dynamic programming” algorithmic strategy, which solves
the Bellman’s equations by stepping forward in time, and repeating this process for
N iterations, and (2) using approximate value functions V

n
t (S

x,n
t) that are “learned”

through the iterations and that might allow generalization across states, i.e., instead
of learning the values of each state individually, visited states might tell us some-
thing about the value of states not visited yet. We also elaborate on this strategy in
the next sections.

There are numerous ADP methods and variations available, each having their
merits. Variations particularly consists in the type of value function approximations
(e.g., lookup, parameterized, statistical) and policies used (e.g., policy approxima-
tions, tree search, roll-out heuristics, rolling horizon policies). In Sect. 3.5 we dis-
cuss some of these variations. But first, we explain the basic concept of ADP by
means of three example problems. We use the examples (1) to explain the basics of
ADP, relying on value iteration with an approximation of the value functions, (2)
to provide insight into implementation issues, and (3) to provide test cases for the
reader to validate its own ADP implementations (for the first two examples, we pro-
vide all experimental settings, ADP results, as well as the exact results). For each

66 M.R.K. Mes and A. Pérez Rivera

of the three examples we use a similar division, consisting of problem introduc-
tion, the MDP model with exact results, and the ADP approach. We introduce the
basics of ADP using a first transportation example in Sect. 3.2. Next, we present
ADP extensions using another transportation example in Sect. 3.3 and using an ex-
ample application of ADP in healthcare in Sect. 3.4. As an aid to the reader, the
notation used throughout these examples is summarized in Table 3.1.

Variable Description
S ∈ S State
x ∈ X Decision
π ∈Π Policy
Xπ(St) Decision function returning a decision in state St under π
Ct(St ,xt) Costs function giving the costs of decision xt in state St

γ Discount factor
T Length planning horizon
P(St+1|St ,xt) Transition probability to St+1 given St and xt

Wt+1 ∈Ωt+1 Random information that arrives between t and t +1
Vt(St) Value function
Sm(St ,xt ,Wt+1) Transition function to St+1 given St , xt , and Wt+1

Sx
t Post-decision state

SM,x(St ,xt) Transition function to Sx
t given St and xt

V
n
t (S

x,n
t) Approximation of the value of post-decision state Sx,n

t
x̃n

t Expected optimal decision within the current state
v̂n

t Approximation of the value of the current state given x̃n
t

UV (V
n−1
t−1 (S

x,n
t−1),S

x,n
t−1, v̂

n
t) Function to update the approximation V

n
t−1(S

x,n
t−1)

α Stepsize used in the updating function UV

n = 1, . . . ,N Iteration counter
M Number of iterations between “side simulations”
O Number of iterations of a “side simulation”
K Number of replications over all iterations N
a ∈ A Features
θ n

a Weight of feature a
φa
(
Sx,n

t

)
Basis function corresponding to feature a

Table 3.1: Frequently used notation throughout this chapter

3.2 The Nomadic Trucker Example

First, we briefly introduce the problem in Sect. 3.2.1 after which we present the
MDP model (Sect. 3.2.2) and the ADP approach (Sect. 3.2.3).

3.2 The Nomadic Trucker Example 67

3.2.1 Problem Introduction

The nomadic trucker problem is a stylized transportation problem in which a single
trucker observes demands that arise randomly in different locations and he moves
between these locations to accept those loads that maximize the long-term reward.
This problem, which is similar to the well known taxicab problem, is described in
[3, 4], and [10]. Here, we slightly modify the problem settings to allow repeatability
of the experiments without having to provide extensive data sets.

Our trucker is characterized by its current location lt ∈ L (set of 256 locations),
the day of the week dt ∈ {1, . . . ,7} (Monday till Sunday), and its trailer type kt ∈
{1, . . . ,3} (small, medium, and large trailer). Every day, the driver observes loads to
move from its current location to another location. The daily decision from a given
location i is which location j to visit next, either through a loaded move (when a
load from i to j is available) or an empty move, or to stay at the current location.
After the decision, loads that are not selected are lost (assumed to be picked up by
others). Further, it is assumed that all moves take less then a day, i.e., the next day a
new decision has to be made.

The probability that, on a given day of the week d, a load from i to j will appear is
given by pd

i j (see the Appendix). The trailer type attribute varies in a cyclic fashion,
irrespective of the remaining attributes. For example, if at time period t the trailer
type attribute is large, then at time t + 1 the trailer type will be small, and at time
t+2 it will be medium. A larger trailer type results in higher rewards when traveling
loaded or costs when traveling empty. We use the rewards/costs c(k) = (1,1.5,2) per
unit distance, for k = 1, . . . ,3. The rewards for loads leaving location i are further
multiplied by the origin probability bi. The distance between i and j is given by
d(i, j).

We denote the described instance where there driver is characterized by a loca-
tion, trailer type, and day of the week as the multi-attribute version. For the single-
attribute version, we omit the trailer type and day of the week and use the settings
for trailer type 1 and day of the week 1, i.e., c(k) = 1 and pd = 1.

3.2.2 MDP Model

We subsequently present the following elements of the MDP model: the state
(Sect. 3.2.2.1), the decision (Sect. 3.2.2.2), the costs (Sect. 3.2.2.3), the new infor-
mation and transition function (Sect. 3.2.2.4), and the solution (Sect. 3.2.2.5).

3.2.2.1 State

The state St consists of resource and demand information: St = {Rt ,Dt}. Rt is a
vector of attributes (lt ,dt ,kt) representing the current location of the trucker, the
current day of the week, and the trailer type, respectively. Dt is a vector indicating

68 M.R.K. Mes and A. Pérez Rivera

for each location i ∈ L whether there is a load available from lt to i (Dt,i = 1) or not
(Dt,i = 0). The state contains all the information necessary to make decisions; in this
case the resource and demand information. The size of the state space is given by the
number of possible settings of the resource vector Rt , which is 5376 (256×7×3),
times the number of possible load realizations, which is 2256.

3.2.2.2 Decision

The decision xt provides the location j where we want to go to. Note that, given the
used cost structure, if we decide to go from lt to j and there is a load available from lt
to j, it does not make sense to travel empty. In other words, from the demand vector
Dt we can infer whether the decision to go to location j will imply an empty or a
loaded move. Hence, it is sufficient to describe the decision xt with the location j,
meaning the decision space Xt equals L, with size 256.

3.2.2.3 Costs

The costs of decision xt are given by

C(St ,xt) =

{
−c(kt)d(lt ,xt), if Dt,xt = 0.

c(kt)d(lt ,xt)bi, if Dt,xt = 1.
(3.5)

3.2.2.4 New Information and Transition Function

After making decision xt and before arrival in state St+1, new information Wt+1

arrives. Here, the new information gives the load availability at time t +1. The tran-
sition from St to St+1 is given by

St+1 = SM(St ,xt ,Wt+1), (3.6)

where lt+1 = xt , dt+1 = dt (mod 7)+ 1, kt+1 = kt (mod 3)+ 1, and Dt+1 = Wt+1.
The size of the outcome space is given by all possible load realizations: 2256.

3.2.2.5 Solution

The objective in this example is to maximize profit. Therefore, we need to replace
the minimization objective in (3.3) by a maximization objective. However, to be
consistent in our presentation, we use the minimization term throughout this chapter.

Even for this toy problem, the state space and the outcome space is already large.
To ease the computation, we solve the problem for all possible “resource states”, i.e.,

3.2 The Nomadic Trucker Example 69

for each resource state Rt at each stage t, we calculate its expected value considering
all possible load availabilities with their probabilities. This can be seen as a “post-
decision” state as we introduce in Sect. 3.2.3.1. Once the values for all “resource
states” are determined, we can easily derive the optimal decision from each “full”
state using (3.4) together with the transition function (3.6), where the transition
only considers the change from the “full” state to the “resource state”, i.e., the new
information Wt+1 does not play a role in this transition.

For the exact computation of the values of the “resource states”, it is not neces-
sary to evaluate all possible permutations of the load combinations Wt+1. Within a
given resource state Rt , we can rank on forehand the 2× |L| = 512 possible deci-
sions (loaded and empty moves). We then start from the best possible decision and
multiply its corresponding probability (if the decision involves a loaded move, we
use the probability of having the corresponding load available, otherwise we use a
probability of one) with its value; with one minus the before mentioned probability,
we consider the second best possible decision and so on. We sum up all probabilities
times the values to compute the expected value under the optimal policy.

We compute the optimal solution for three cases: (1) the infinite horizon single-
attribute case, (2) the infinite horizon multi-attribute case, and (3) the finite horizon
single-attribute case. For the finite horizon case, we can easily compute the value
functions using backwards dynamic programming with (3.3). For the infinite hori-
zon cases, we use value iteration to determine the optimal values. For the multi-
attribute case, we use as initial state S0 = (1,1,1) and for the single-attribute cases
we use S0 = (1). Further, for the finite horizon case, we use a discount γ = 1 and
a horizon length T = 20, and for the infinite cases we use γ = 0.9. The optimal
values are: (1) 8364.31 for the infinite horizon single-attribute case, (2) 11,448.48
for the infinite horizon multi-attribute case, and (3) 17,491.95 for the finite horizon
single-attribute case.

3.2.3 Approximate Dynamic Programming

Even though the introduced version of the nomadic trucker problem is a simpli-
fied problem that can easily be solved exactly, it allows us to introduce the basics
of ADP. We introduce the concept of a post-decision state (Sect. 3.2.3.1), the for-
ward dynamic programming approach (Sect. 3.2.3.2), and the use of value function
approximations (Sect. 3.2.3.3). We give a typical outline of an ADP algorithm and
present experimental results throughout Sects. 3.2.3.2 and 3.2.3.3.

3.2.3.1 Post-decision State

The post-decision state, represented by Sx
t , is the state immediately after action xt ,

but before the arrival of new information Wt+1. The information embedded in the
post-decision state allows us to estimate the downstream costs. We can assign the

70 M.R.K. Mes and A. Pérez Rivera

expected downstream costs Eω{Vt+1(St+1|Sx
t ,ω)} to every post-decision state Sx

t ,
thereby eliminating the need to evaluate all possible outcomes ω for every action.
Consider the following optimality equations:

V x
t−1(S

x
t−1) = Eω{Vt(St |Sx

t−1,ω)} (3.7)

Vt(St) = min
xt∈Xt

(Ct(St ,xt)+ γV x
t (S

x
t)) (3.8)

V x
t (S

x
t) = Eω{Vt+1(St+1|Sx

t ,ω)} (3.9)

If we substitute (3.9) into (3.8), we obtain the standard form of Bellman’s equa-
tion (3.4). However, if we substitute (3.8) into (3.7), we obtain the optimality equa-
tions around the post-decision state variable

V x
t−1

(
Sx

t−1

)
= Eω

{
min
xt∈Xt

(
Ct (St ,xt)+ γV x

t (S
x
t |Sx

t−1,ω)
)
}
. (3.10)

The basic idea now is (1) to use the deterministic optimization problem of (3.8)
to make decisions and (2) to use the resulting observations to update an estimate
V

n−1
t−1 (S

x
t−1) of V x

t−1(S
x
t−1) thereby approximating the expectation in (3.10). We up-

date the estimates V
n−1
t−1 (S

x
t−1) iteratively over a number of iterations n, each consist-

ing of a Monte Carlo simulation of the random information ω , which will be further
explained in Sect. 3.2.3.2.

We express our transition from state St with action xt to the post-decision state
Sx

t by

Sx
t = SM,x(St ,xt). (3.11)

For our example, the post-decision state Sx
t is determined as if we had already

arrived at the destination xt at time t. That is, we change the location, day of the
week, and time components of the state to represent the day when we will be
at the chosen location: lx

t = xt , dx
t = dt (mod 7) + 1, and kx

t = kt (mod 3) + 1.
Note that, although the concept of a post-decision state is generally used in the
context of ADP only, we already used it to calculate the exact solution of the
MDP (see Sect. 3.2.2.5). An illustration of the transition of states can be found in
Fig. 3.1.

3.2.3.2 Forward Dynamic Programming

In the forward dynamic programming algorithmic strategy, the Bellman’s equations
are solved only for one state at each stage, using estimates of the downstream values,
and performing iterations n to learn these downstream values. To make clear we are
dealing with iterations, we add a superscript n to the decisions and state variables.

3.2 The Nomadic Trucker Example 71

Fig. 3.1: Transition of states in the nomadic trucker problem

We introduce the construct of approximated next-stage costs (estimated downstream
values) V

n
t (S

x,n
t), which replaces the standard expectation in Bellman’s equations,

see (3.9), with an approximation

V
n
t (S

x,n
t) = Eω {Vt+1

(
Sn

t+1|S
x,n
t ,ω

)}
. (3.12)

Using the post-decision state and the approximated next-stage cost, the original
Bellman’s equations from (3.4) are converted to the ADP forward optimality equa-
tions, as seen in (3.13).

v̂n
t = min

xn
t ∈Xt

(
C (Sn

t ,x
n
t)+ γV

n−1
t

(
SM,x (Sn

t ,x
n
t)
))

. (3.13)

The decision that minimizes (3.13) is given by

x̃n
t = argmin

xn
t ∈Xt

(
C (Sn

t ,x
n
t)+ γV

n−1
t

(
SM,x (Sn

t ,x
n
t)
))

. (3.14)

Note that x̃n
t is a pure exploitation decision, i.e., the decision for which we cur-

rently expect it gives the best results. Given that the decision x̃n
t relies on the approx-

imation V
n−1
t

(
SM,x (Sn

t ,x
n
t)
)
, the decision might not be optimal with respect to the

MDP solution. Further, as we will show later on, policies other than pure exploita-
tion might be useful.

For each feasible decision xn
t , there is an associated post-decision state Sx,n

t ob-
tained using (3.11). The ADP forward optimality equations are solved first at stage
t = 0 for an initial state S0, and then for subsequent stages and states until the end
of the horizon for the finite horizon case, or a predetermined number of iterations
for the infinite horizon case. In each iteration n, a sample path ωn ∈ Ω is drawn,
with Ω being the set of all sample paths. We use Wt(ωn) to denote the sample re-
alization at time t using the sample path ωn in iteration n. To advance “forward”
in time, from stage t to t + 1, the sample Wt+1(ωn) is used. With this information,
transition in the algorithm is done using the same transition as in the MDP model,
see (3.6).

72 M.R.K. Mes and A. Pérez Rivera

Immediately after the forward optimality equations are solved, the approximated
next-stage cost V

n−1
t (Sx,n

t) is updated retrospectively. The rationale behind this up-
date is that, at stage t, the algorithm has seen new arrival information (via the simula-
tion of ωn) and has taken a decision in the new state Sn

t that incurs a cost. This means
that the approximated next-stage cost that was calculated at the previous stage t−1,
i.e., V

n−1
t−1 (S

x,n
t−1), has now been observed at stage t. To take advantage of this ob-

servation and improve the approximation, the algorithm updates this approximated
next-stage cost of the previous post-decision state Sx,n

t−1 using the old approximation,

i.e., V
n−1
t−1 (S

x,n
t−1) and the new approximation, i.e., the value v̂n

t given by (3.13). We
introduce UV to denote the process that takes all of the aforementioned parameters
and “tunes” the approximating function as follows:

V
n
t−1(S

x,n
t−1)←UV (V

n−1
t−1 (S

x,n
t−1),S

x,n
t−1, v̂

n
t) (3.15)

Using all ingredients mentioned in this section, the ADP algorithm consists of
looping over iterations n = 1, . . . ,N, and within each iteration, sequentially solving
a subproblem for each t ∈ T , using sample realizations of Wt , and updating our ap-
proximation of ‘future’ costs with (3.15). Consecutively, the subproblems are solved
using the updated value function approximations in the next iteration. The output of
the algorithm is the approximation V

N
t (Sx

t), for all t ∈ T , which can be used to find
the best decision for each time period and each state.

A typical outline of an ADP algorithm is shown in Algorithm 1. The infi-
nite horizon version of this algorithm is basically the same, except (1) all sub-
scripts t are removed, (2) ωn represents a single sample instead of a sample
path, (3) the loop over t is removed, (4) the condition “if t > 0” is removed,
and (5) the previous post-decision state is the one from the previous iteration,
Sx,n−1.

Algorithm 1 Approximate Dynamic Programming algorithm

Step 0. Initialization

Step 0a. Choose an initial approximation V
0
t ∀t ∈ T .

Step 0b. Set the iteration counter n = 1, and set the maximum number of iterations N.
Step 0c. Set the initial state to S1

0.

Step 1. Choose a sample path ωn.

Step 2. Do for t = 0, . . . ,T :

Step 2a. Solve (3.13) to get v̂n
t and (3.14) to get x̃n

t .
Step 2b. If t > 0, then update the approximation V

n
t−1

(
Sx,n

t−1

)
for the previous post-

decision Sx,n
t−1 state using (3.15).

Step 2c. Find the post-decision state Sx,n
t with (3.11) and the new pre-decision state Sn

t+1
with (3.6).

Step 3. Increment n. If n≤ N go to Step 1.

Step 4. Return the value functions V
N
t

(
Sx,n

t

)
∀t ∈ T ,St ∈ S.

3.2 The Nomadic Trucker Example 73

Algorithm 1 relies on classical approximate value iteration with a pure forward
pass. This means that at each step forward in time in the algorithm, the value func-
tion approximations are updated. As the algorithm steps forward in time, it may
take many iterations before the costs incurred in later time periods are correctly
transferred to the earlier time periods. To overcome this, the ADP algorithm can
also be used with a double pass approach [10], consisting of a forward pass and a
backward pass. In the forward pass, we simulate decisions moving forward in time,
remembering the trajectory of states, decisions, and outcomes. Then, in a backward
pass, we update the value functions moving backwards in time using the trajectory
information. For the double pass algorithm, we remove the computation of v̂n

t from
Step 2a, delete Step 2b, and add an extra step just before Step 3 (renaming original
Step 3 and Step 4 by Step 4 and Step 5 respectively) given in Algorithm 2:

Algorithm 2 Backward pass to be used in the ADP algorithm

Step 3. Do for t = T,T −1, . . . ,1:

Step 3a. Compute v̂n
t using the decision x̃n

t from the forward pass:

v̂n
t =Ct(Sn

t , x̃
n
t)+ γ v̂n

t+1, with v̂n
T+1 = 0.

Step 3b. Update the approximation V
n
t−1

(
Sx,n

t−1

)
for the previous post-decision state

Sx,n
t−1 using (3.15).

Computational Results

We now illustrate the working of this basic algorithm using the three variants
of the nomadic trucker problem: infinite horizon single-attribute, infinite horizon
multi-attribute, and finite horizon single-attribute. For the updating function we use
a fixed stepsize α = 0.05 given by UV (V

n−1
t−1 (S

x,n
t−1),S

x,n
t−1, v̂

n
t) = (1−α)V n−1

t−1 (S
x,n
t−1)+

α v̂n
t .
We show two performance measures of the ADP algorithm. First, we show the es-

timate V
n
0

(
Sx,n

0

)
of the initial state Sx,n

0 for different number of iterations n. Next, we
show the discounted rewards of using the estimates for different number of iterations
n. More precisely, for a given number of iterations n, we perform a simulation on the
side. Each of these simulations uses O iterations, fixing the value function estimates
and following the policy that uses these values (basically following Algorithm 1
with the initial approximation V

n
0 resulting from the past n iterations and skipping

Step 2b). We perform the simulation every Mth iteration, i.e., for n = M,2M, . . . ,N.
Finally, to provide representative results, we repeat the whole procedure K times and
report the averages. The used settings for N, M, O, and K are shown in the figure
captions.

74 M.R.K. Mes and A. Pérez Rivera

The results of the basic ADP algorithm is shown in Fig. 3.2 under the policy
“Expl-F”, since we follow the pure exploitation policy (3.13) with a fixed stepsize
(F). In addition, we show the results using two other stepsizes. First, the harmonic

stepsize (H) given by αn = max
{

λ
λ+n−1 ,α

0
}

, with λ = 25 and α0 = 0.05. Sec-

ond, the BAKF stepsize (B), the bias adjusted Kalman Filter also known as OSA
(Optimal Stepsize Algorithm). For a review on stepsizes we refer to [3] and [10,
Chap. 11]. The policy “OPT” refers to the optimal value.

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120 140 160 180 200 220 240

E
st

im
at

ed
 v

al
ue

 o
f

po
st

-d
ec

is
io

n
st

at
e

1

Iteration (n)

OPT Expl-F Expl-H Expl-B

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20 40 60 80 100 120 140 160 180 200 220 240

A
ve

ra
ge

 d
is
co

un
te

d
re

w
ar

ds

Iteration (n)

OPT Expl-F Expl-H Expl-B

Fig. 3.2: Infinite horizon single-attribute case: resulting estimate V
n
0

(
Sx,n

0

)
(left) and

realized rewards (right), using N = 250, M = 10, O = 1000, and K = 100

Clearly, the value function estimate for the initial state is still far off: more then
90% away from the optimal value. Especially, the fixed stepsize gives terrible re-
sults. The explanation is that because we initialized all values at zero, the first ob-
servation only increases the estimate with 5% of the observed value. The other two
stepsizes start with α1 = 1, resulting in a faster increase in estimated value. How-
ever, when we look at the performance, the “better” value function estimates result
in worse performance. The explanation is that after a couple of iterations, some
states have been visited more often than other states. As a result, for some states we
might still use the initialized approximations (in our case values of zero) whereas
for other states we have a reasonable estimate. When making the pure exploitation
decision, we now tend to visit the states we have visited before, even if this would
result in relatively high direct costs. In this case, we perform worse compared to a
myopic policy. The results for following the myopic policy can be found at n = 0 in
the right figure, since we then perform a simulation with the initial approximation
of having zero downstream costs. Although the results are caused by some simpli-
fications within the used ADP algorithm, the resulting phenomenon might also be
present in more advanced ADP implementations, since the decision what state to
measure next might still be biased by the number of measurements of the different
states.

3.2 The Nomadic Trucker Example 75

In general, using the ADP algorithm as shown before would not work. Most of
the time, we need to make some modifications. First, within our ADP algorithm we
need to make a tradeoff between exploitation, i.e., making the best decision based on
the current value function estimates using (3.13), and exploration to learn the value
of states frequented less often. Second, we need a value function approximation that
is able to generalize across states, i.e., an observation not only results in an update
for the value of the corresponding state, but also of other states. In the remainder
of this section, we briefly touch upon the exploration issue. The issue of having a
better value function approximation is discussed in Sect. 3.2.3.3.

To overcome the problem of limited exploration, we might enforce exploration
by stating that a certain fraction of the time, say ε , the policy should perform ex-
ploration using a random decision instead of exploitation using the decision x̃n

t
from (3.14). This decision policy is known as ε-greedy. When making an explo-
ration decision, it is likely that xn

t �= x̃n
t . We now have a choice whether we use v̂n

t
(corresponding to decision x̃n

t) to update V
n
t−1

(
Sx,n

t−1

)
or to use the estimated costs

corresponding with the actual decision xn
t , i.e., C (Sn

t ,x
n
t) + γV

n−1
t

(
SM,x (Sn

t ,x
n
t)
)
.

The policy to determine the decisions on what state to visit next is often referred
to as the behavior or sampling policy. The policy that determines the decision that
seems to be the best, i.e., using (3.14) is denoted by learning policy. When the sam-
pling policy and the learning policy are the same, this is called on-policy learning,
otherwise it is called off-policy learning. In most cases, off-policy learning results
in faster convergence; but there are cases where on-policy learning is preferred, see
[10, Chap. 9] for more information. In the remainder, unless stated differently, we
use off-policy learning.

The results of the ε-greedy policies are shown in Fig. 3.3 under the policy
“Epsε-S”, where ε = 0.25 or ε = 1, and S denotes the stepsize (H for harmonic
and B for BAKF). The policies Hepsε will be introduced later on.

From Fig. 3.3, we see that the ε-greedy policies improve the performance, both
with respect to convergence of value functions (estimated values of the initial post-
decision state) and the average discounted rewards, when compared to the exploita-
tion policies. However, we also see that policies with faster convergence in value
function not necessarily yield better performance. Again, this phenomenon will also
be present at more advanced ADP implementations. First, having a good approxi-
mation for one state does not necessarily mean we have a good approximation for
other states. Particularly when using value function approximations that are able
to generalize across states, we might have states that we consistently underestimate
and others that we consistently overestimate. Second, the (relative) ordering of states
might already result in good performance of the policy (i.e., decision function) itself.
In this example, the absolute values of the downstream costs might be less important
when choosing between decisions with similar direct costs.

Still, we observe that our estimate is far off from the optimal value and we
achieve only about 68% of the rewards under the optimal policy. To further improve
the learning rate, i.e., increase the performance using the same number of iterations,

76 M.R.K. Mes and A. Pérez Rivera

Fig. 3.3: Infinite horizon single-attribute case: resulting estimate V
n
0

(
Sx,n

0

)
(left) and

realized rewards (right), using N = 250, M = 10, O = 1000, and K = 100

we are going to use a Value Function Approximation (VFA) that is able to gener-
alize across states. There are many options for this, in this chapter we present two
specific forms: hierarchical state aggregation and a basis function approach. For the
nomadic trucker problem, we illustrate the state aggregation approach.

3.2.3.3 Value Function Approximation

Although adopting the concept of the post-decision state greatly reduced the com-
putational burden, (3.10) still requires a post-decision state to be visited sufficiently
often in order to learn about its associated downstream costs, which would not be
possible for realistic sized problem instances. The reason for this is that the value
function approximation used in the previous section is updated for one state per
stage per iteration. This approach is known as the lookup-table approach. A good
value function approximation is able to generalize across states, such that an obser-
vation for one state results in an update of the value of many states.

For this problem, we use an hierarchical aggregation approach as presented in [4].
A standard strategy in ADP is to aggregate the state space. Each state belongs to an
aggregated state, and instead of estimating the value of states, we estimate the value
of aggregate states consisting of multiple states. However, aggregation requires re-
solving the classic tradeoff between aggregation error and sampling error. In the
hierarchical aggregation approach, we use multiple aggregation levels and each ob-
servation is used to update aggregate states at different aggregation level. The value
of a state is estimated using a weighted combination of the value of the aggregated
states this state belongs to.

For this example, we use the following hierarchical aggregation structure. With
respect to the state variables trailer type k and day of the week d, we either include
them or leave them out. With respect to the location, we use a structure with on

3.2 The Nomadic Trucker Example 77

the lowest level the 16× 16 locations, one level up we group sets of 4 locations,
resulting in 8× 8 aggregated locations, and so on. We perform aggregation on one
state variable at a time, achieving an almost exponential decline in the size of the
state space. An overview of the aggregation structure is given in Table 3.2, where
a ‘*’ corresponds to a state variable included in the aggregation level and a ‘–’
indicates that it is aggregated out.

Table 3.2: Hierarchical aggregation structure

Level Location Trailer type Day of the week Size of the state space
0 (16×16) * * 256×3×7 = 5376
1 (8×8) * * 64×3×7 = 1344
2 (4×4) * * 16×3×7 = 336
3 (4×4) – * 16×1×7 = 112
4 (2×2) – * 4×1×7 = 28
5 – – * 1×1×7 = 7
6 – – – 1×1×1 = 1

Computational Results

The results of using the hierarchical aggregation approach are shown in Fig. 3.3,
policy Hepsε , with ε = 0.25 and ε = 1. This policy does not require a stepsize, since
this is included in the updating equations of the hierarchical aggregation approach.
Clearly, the Hepsε policies converge faster to the optimal values. The policy Heps1
results in only 8% lower profits compare to the optimal policy.

Finally, to gain insight into the long term performance, we show the results using
25,000 iterations, but with fewer replications (K = 10), in Fig. 3.4. After 25,000
measurements, the policies Eps1-B and Heps1-B are both within 1% of the optimal
performance.

Next, we show the results for the finite horizon case in Fig. 3.5. Here, we both
consider the single pass (SP) and the double pass (DP) version of the ADP algo-
rithm. Here, the pure exploitation policy does not benefit from a double pass, simply
because with the double pass, the decisions will be even more biased towards states
visited before. The same also holds for the ε-greedy policies, since they explore
only 5% of the time. However, the hierarchical ε-greedy policies do benefit from
the double pass. In addition, the hierarchical ε-greedy policies also benefit from
exploration (Heps005). With increasing number of measurements, the hierarchical
ε-greedy policies are eventually outperformed by the single pass ε-greedy policies
(Heps005-Double 2.56% away from optimum and Eps005-Single 1.56% away from
optimum). However, using 25,000 measurements is not representative for a problem

78 M.R.K. Mes and A. Pérez Rivera

Fig. 3.4: Infinite horizon single-attribute case: resulting estimate V
n
0

(
Sx,n

0

)
(left) and

realized rewards (right), using N = 25,000, M = 10, O = 1000 and K = 10. For the
rewards resulting from the simulations, the 2500 observations are smoothed using a
window of 10

having a state space with size 256. In most ADP applications, the number of iter-
ations would be only a fraction of the size of the state space, say a couple of hun-
dred in this example. Clearly, in these cases the hierarchical aggregation approach
performs best. The results after 200 measurements, for various policies, including
on-policy and off-policy variations, can be found in Fig. 3.6.

Fig. 3.5: Finite horizon single-attribute case: resulting estimate V
n
0

(
Sx,n

0

)
(left) and

realized rewards (right), using N = 25,000, M = 100, O = 100 and K = 10. For the
exploitation and ε-greedy policies, the BAKF stepsize is used

3.3 A Freight Consolidation Example 79

Fig. 3.6: Finite horizon single-attribute case: deviation of the estimate V
n
0

(
Sx,n

0

)
and

realized rewards from the optimal values, using N = 200, O = 100 and K = 10

The results for the multi-attribute case can be found in the Appendix. The re-
sults are similar to the those observed for the single-attribute case. One remarkable
behavior is that the ε-greedy policy shows an initial decline in performance after
which it improves. Again, this is caused by the fact that the decisions are biased
towards visiting states that have been measured before, resulting in relatively high
direct costs. Once the value of enough states are known, the performance improves.
Obviously, this behavior is not visible for the Hierarchical ε-greedy policy since it
is able to generalize across states.

3.3 A Freight Consolidation Example

First, we briefly introduce the problem in Sect. 3.3.1 after which we present the
MDP model (Sect. 3.3.2) and the ADP approach (Sect. 3.3.3).

3.3.1 Problem Introduction

We now consider another transportation example, with completely different charac-
teristics. We use this example to (1) illustrate the typical use of ADP for resource
allocation problems and (2) to illustrate a value function approximation relying on
the basis function approach.

We consider the planning problem that arises when a company transports
freights from a single origin to different destinations, periodically, using a high

80 M.R.K. Mes and A. Pérez Rivera

capacity mode. The destinations of these freights are far away and closer among
themselves than to the origin of transportation. For this reason, the long-haul is the
same in every trip, independent of which freights were consolidated at the origin.
However, the last-mile route varies according to the destinations of the freights
that were consolidated at the beginning of the long-haul. In addition, there is an
alternative, low capacity mode that can be used to transport freights directly from
the origin to their destination. Each period, the choice is which freights to allocate
in the current period to the high capacity mode, which ones to transport with the low
capacity mode, and which ones to postpone to a later period. The costs of the long-
haul are fixed, but the last-mile costs depend on the combination of destinations
visited. The costs per freight for the low capacity mode are considerably higher
than the high capacity mode. The objective of the company is to reduce its total
costs over time and to use the long-haul, high capacity mode capacity efficiently.
Properly balancing the consolidation and postponement of freights, such that only
a few close-by destinations are visited each day, is therefore a challenge for the
company but also a necessity for its efficient operation.

We consider a dynamic multi-period long-haul freight consolidation problem
where decisions are made on consecutive periods t over a finite horizon T =
{0,1,2, . . . ,T max−1}. For simplicity, we refer to a period as a day in the remain-
der of this example. Each freight must be delivered to a given destination d from a
group of destinations D within a given time-window. The time-window of a freight
begins at a release-day r ∈R= {0,1,2, . . . ,Rmax} and ends at a due-day r+k, where
k ∈ K = {0,1,2, . . . ,Kmax} defines the length of the time-window. The arrival-day
t of a freight is the moment when all its information is known to the planner. Note
that r influences how long the freights are known before they can be transported,
and thus influences the degree of uncertainty in the decisions.

New freights become available as time progresses. These freights and their char-
acteristics follow a stochastic arrival process. Between two consecutive days, a num-
ber of freights f arrive with probability pF

f , independent of the arrival day. Each
freight has destination d with probability pD

d , release-day r with probability pR
r ,

and time-window length k with probability pK
k , independent of the day and of other

freights.
Each day, there is only one long-haul vehicle which transports at most Q freights.

Its cost is CD′ , where D′ ⊆ D denotes the subset of destinations visited. There is
also an alternative transport mode for each destination d, which can only be used
for freights whose due-day is immediate (i.e., r = k = 0). The cost of the alternative
transport mode is Bd per freight to destination d, and there is no limit on the number
of freights that can be transported using this mode.

3.3.2 MDP Model

We subsequently present the following elements of the MDP model: the state
(Sect. 3.3.2.1), the decision (Sect. 3.3.2.2), the costs (Sect. 3.3.2.3), the new infor-
mation and transition function (Sect. 3.3.2.4), and the solution (Sect. 3.3.2.5).

3.3 A Freight Consolidation Example 81

3.3.2.1 State

At each time period t, there are known freights with different characteristics. We
define Ft,d,r,k as the number of known freights at stage t, whose destination is d,
whose release-day is r stages after t, and whose time-window length is k (i.e., its
due-day is r+ k stages after t). The state of the system at stage t is denoted by St

and is defined as the vector of all freight variables Ft,d,r,k, as seen in (3.16).

St =
[
Ft,d,r,k

]
∀d∈D,r∈R,k∈K (3.16)

3.3.2.2 Decision

The decision at each stage is which released freights (i.e., freights with r = 0) to
consolidate in the long-haul vehicle. We use the integer variable xt,d,k as the num-
ber of freights that are consolidated in the long-haul vehicle at stage t, which have
destination d and are due k stages after t. We denote the vector of decision variables
at stage t as xt . Due to the time-window of freights, the possible values of these
decision variables are state dependent. Thus, the feasible space of decision vector
xt , given a state St , is as follows:

xt =
[
xt,d,k

]
∀d∈D,k∈K (3.17a)

s.t.

∑
d∈D

∑
k∈K

xt,d,k ≤ Q, (3.17b)

0≤ xt,d,k ≤ Ft,d,0,k (3.17c)

3.3.2.3 Costs

The cost of a decision xt at a state St depends on the destinations visited by the long-
haul vehicle and the use of the alternative mode (i.e., CD′ and Bd , respectively). The
costs at stage t are given by C(St ,xt). From the decision xt , we derive the combina-
tion of terminals that will be visited by the high capacity mode (which determines
the high capacity vehicle costs) as well as the number of urgent freights that are
not scheduled to be delivered by the high capacity mode (which determines the low
capacity vehicle costs).

3.3.2.4 New Information and Transition Function

We introduce a single arrival information variable F̃t,d,r,k, which represents the
freights that arrived from outside the system between stages t − 1 and t, with

82 M.R.K. Mes and A. Pérez Rivera

destination d, release-day r, and time-window length k. We denote the vector of
all arrival information variables at stage t as Wt , as seen in (3.18).

Wt =
[
F̃t,d,r,k

]

∀d∈D,r∈R,k∈K
(3.18)

The consolidation decision xt and arrival information Wt have an influence on the
transition of the system between stages t − 1 and t. In addition, the relative time-
windows have an influence on the transition between related freight variables. To
represent all of these relations, we use the following transition function:

St = SM (St−1,xt−1,Wt) |t > 0 (3.19a)

s.t.

Ft,d,0,k = Ft−1,d,0,k+1− xt−1,d,k+1 +Ft−1,d,1,k + F̃t,d,0,k , k < Kmax (3.19b)

Ft,d,0,Kmax = Ft−1,d,1,Kmax + F̃t,d,0,Kmax (3.19c)

Ft,d,r,k = Ft−1,d,r+1,k + F̃t,d,r,k , 1≤ r < Rmax (3.19d)

Ft,d,Rmax,k = F̃t,d,Rmax,k (3.19e)

For the transition of the freight variables Ft,d,r,k in (3.19a), we distinguish be-
tween four cases. First, freights which are already released at stage t (i.e., r = 0) and
have a time-window length of k < Kmax are the result of: (1) freights from the pre-
vious stage t− 1 which were already released, had time-window length k+ 1, and
were not transported (i.e., Ft−1,d,0,k+1− xt−1,d,k+1), (2) freights from the previous
stage t− 1 with next-stage release-day (i.e., r = 1) and time-window length k (i.e.,
Ft−1,d,1,k), and (3) the new (random) arriving freights with the same characteristics
(i.e., F̃t,d,0,k) as seen in (3.19b). Second, freights that are already released at day t
and have a time-window length k = Kmax are the result of freights from the previ-
ous stage t− 1 that had a next day release and the same time-window length (i.e.,
Ft−1,d,1,Kmax), in addition to the freights that arrived between the previous and the
current day with the same characteristics (i.e., F̃t,d,0,Kmax), as seen in (3.19c). Third,
freights which are released at stage t (i.e., r ≥ 1) are the result of: (1) freights from
the previous stage t−1 with a release-day r+1 and that have the same time-window
length k, and (2) the new freights with the same characteristics (i.e., F̃t,d,r,k), as seen
in (3.19d). Fourth, freights which have the maximum release-day (i.e., r = Rmax) are
the result only of the new freights with the same characteristics (i.e., F̃t,d,Rmax,k), as
seen in (3.19e).

3.3.2.5 Solution

Again, the formal objective of the model is to find the policy π ∈ Π that mini-
mizes the expected costs over the planning horizon, given an initial state S0, as
seen in (3.1). Following Bellman’s principle of optimality, the best policy π for the
planning horizon can be found solving a set of stochastic recursive equations that

3.3 A Freight Consolidation Example 83

consider the current-stage and expected next-stage costs, as seen in (3.3). We can
solve (3.3) plugging in the transition function (3.19a) and specifying the probability
P(Wt+1 = ω), which can be found in [9].

Naturally, only very small problem instances can be solved to optimality. The
instance we use in this example has the following characteristics. We consider a
planning horizon of a working week (T max = 5), three destinations, (|D| = 3), one
release-day (Rmax = 0), three time-window lengths (Kmax = 2), and at most two
freights per day (|F| = 2). The capacity of the long-haul, high capacity vehicle is
Q = 2. All probabilities and costs are given in the Appendix.

The given problem settings result in an MDP model with 2884 states. For sim-
plicity, we choose to explain more into detail two of these states. The first state,
refereed to as “State 1” has only one freight for destination 2 with a time-window
length of 2 (i.e. F0,2,0,2 = 1). The second state, referred to as “State 2”, has a total of
six freights: one urgent freight for destination 2 and 3, three freights for destination
2 with time-window length 1, and one freight for destination 2 with time-window
length 2 (i.e., F0,2,0,0 = F0,3,0,0 = 1, F0,2,0,1 = 3, F0,2,0,2 = 1). The optimal costs for
State 1 and State 2 are 968.15 and 2619.54, respectively. We choose these two states
to show, in the following, the different design challenges arising when applying the
ADP algorithm with basis functions to different initial states.

3.3.3 Approximate Dynamic Programming

The ADP approach is presented using a similar setup as with the first example.
We subsequently present the post-decision state (Sect. 3.3.3.1), the forward dynamic
programming approach (Sect. 3.3.3.2), and the use of value function approximations
(Sect. 3.3.3.3).

3.3.3.1 Post-decision State

The post-decision state contains all post-decision freight variables Fx,n
t,d,r,k:

Sx,n
t =

[
Fx,n

t,d,r,k

]

∀d∈D,r∈R,k∈K
(3.20)

We use the following function SM,x for the transition from the state Sn
t to the

post-decision state Sx,n
t :

Sx,n
t = SM,x (Sn

t ,x
n
t) (3.21a)

s.t.

Fx,n
t,d,0,k = Fn

t,d,0,k+1− xn
t,d,k+1 +Fn

t,d,1,k , k < Kmax (3.21b)

Fx,n
t,d,0,Kmax = Ft−1,d,1,Kmax (3.21c)

Fx,n
t,d,r,k = Fn

t,d,r+1,k , 1≤ r < Rmax (3.21d)

84 M.R.K. Mes and A. Pérez Rivera

This function works in the same way as the MDP transition function defined
in (3.19a), with the difference that the new arrival information Wt is not included.
An illustration of the transition of states can be found in Fig. 3.7.

A B

C D

r=0, k=0

r=0, k=1

A B

C D

A B

C D

Sx
t=()r=0, k=0

St=()
r=0, k=0

r=0, k=1St+1 =()
r=0, k=0xt=()

Fig. 3.7: Transition of states in the freight consolidation problem

3.3.3.2 Forward Dynamic Programming

We can directly apply Algorithm 1 using the lookup-table approach. In a minimiza-
tion problem, initializing the values of the lookup-table with zero will automatically
result in an “exploration policy”. In such an initialization, a post-decision state that
has not been visited before is more attractive (zero downstream costs) than one that
has been visited before and has resulted in some costs. In our example, we choose to
initialize the values to zero to take advantage of the exploration behavior. Further-
more, we use the harmonic stepsize (see Sect. 3.2.3.2) with λ = 25 and α0 = 0.05.
The ADP runs for a total of 250 iterations, using the double pass approach. The es-
timated values (i.e., learned costs) for State 1 and State 2 are 1153.85 and 2814.74,
respectively. These values are 19% and 7% higher then the optimal MDP costs, re-
spectively. The average costs for State 1 and State 2 (obtained through a simulation
of the policy resulting from the learned values) are 1550.65 and 2852.75, respec-
tively. These average costs are 19% and 9% higher then the optimal MDP costs,
respectively. In the following, we elaborate on how the performance of the value
function approximation can be improved through the use of basis functions.

3.3.3.3 Value Function Approximation

For this example, we introduce a frequently used approximation strategy using basis
functions. An underlying assumption in using basis functions is that particular fea-
tures, or quantitative characteristics, of a (post-decision) state can be identified, that
explain, to some extent, what the value of that post-decision state is. In our problem,

3.3 A Freight Consolidation Example 85

features such as the number of urgent freights, the number of released freights that
are not urgent, and the number of freights that have not been released for transport,
can explain part of the value of a post-decision state. Basis functions are then cre-
ated for each individual feature to quantify the impact of the feature on the value
function.

We define a set of featuresA for which the value of each feature a ∈A of a post-
decision state Sx,n

t is obtained using a basis function φa(S
x,n
t). We assume the ap-

proximated next-stage value of a post-decision state can be expressed by a weighted
linear combination of the features, using the weights θ n

a for each feature a ∈ A, as
follows:

V
x,n
t

(
Sx,n

t

)
= ∑

a∈A
θ n

a φa
(
Sx,n

t

)
(3.22)

The weight θ n
a is updated recursively in each iteration n. Note that (3.22) is a

linear approximation, as it is linear in its parameters. The basis functions themselves
can be nonlinear [10].

The use of features and weights for the approximating the value function V
n
t (S

x,n
t)

is comparable to the use of regression models for fitting data to a (linear) function. In
that sense, the independent variables of the regression model would be the features
of the post-decision state and the dependent variable would be the value of the post-
decision state. However, in contrast to regression models, the data in our ADP is
generated iteratively inside an algorithm and not all at once. Therefore, the updating
process UV for the approximating function in (3.22) cannot be based only on solving
systems of equations as in traditional regression models.

Several methods are available to “fine-tune” the weights θ n
a for each feature

a ∈ A after each iteration. An effective approach is the recursive least squares
method, which is a technique to compute the solution to a linear least squares
problem [10]. Two types of recursive least squares methods are available. The least
squares method for nonstationary data provides the opportunity to put increased
weight on more recent observations, whereas the least squares method for stationary
data puts equal weight on each observation. For the purpose of learning the weights
within an ADP algorithm, the recursive least squares method for nonstationary data
is more appropriate. The method for updating the value function approximations
with the recursive least squares method for nonstationary data is explained in detail
in [10]. Nevertheless, the equations used in this method are given below.

The weights θ n
a , for all a ∈ A, are updated each iteration (n is the iteration

counter) by

θ n
a = θ n−1

a −Hnφa
(
Sx,n

t

)(
V

n−1
t−1

(
Sx,n

t−1

)
− v̂n

t

)
,

where Hn is a matrix computed using

Hn =
1
γn Bn−1,

and where Bn−1 is an |A| by |A| matrix that is updated recursively using

Bn =
1
αn

(
Bn−1− 1

γn

(
Bn−1φ

(
Sx,n

t

)(
φ
(
Sx,n

t

))T
Bn−1

))
.

86 M.R.K. Mes and A. Pérez Rivera

The expression for γn is given by

γn = αn +φ
(
Sx,n

t

)T
Bn−1φ

(
Sx,n

t

)
.

Bn is initialized by using B0 = εI, where I is the identity matrix and ε is a
small constant. This initialization works well when the number of observations is
large [10]. The parameter αn determines the weight on prior observations of the
value. Setting αn equal to 1 for each n would set equal weight on each observation,
and implies that the least squares method for stationary data is being used. Setting
αn to values between 0 and 1 decreases the weight on prior observations (lower αn

means lower weight). We define the parameter αn by

αn =

{
1 , stationary
1− δ

n , nonstationary
(3.23)

where 1− δ
n , with δ = 0.5, is a function to determine αn that works well in our

experiments.
For this example, there are a number of possible features, such as:

1. Each state variable: number of freights with specific attributes.
2. Per destination, the number of freights that are not yet released for transport

(i.e., future freights).
3. Per destination, the number of freights that are released for transport and whose

due-day is not immediate (i.e., may-go freights).
4. Per destination, a binary indicator to denote the presence of urgent freights (i.e.,

must-visit destination).
5. For each state variable, some power function (e.g., a2) to represent non-linear

components in costs.

We test various combinations of the features mentioned above and name them
Value Function Approximations (VFA) 1, 2 and 3 (see the Appendix for their set-
tings).

Computational Results

Intuitively, the postponed freights and their characteristics influence the future costs
of a decision. However, measuring how these characteristics influence the costs,
and thus determining which VFA is the best one to use, is challenging. For small
instances of the problem, one option to determine the best set of features to use is to
perform a linear regression between the optimal values of all states of the MDP and
the basis functions corresponding to each set of features, and choose the set with
the highest coefficient of determination R2. Another option, applicable to medium
sized instances of the problem is to calculate the average costs of a subset of states,
using each set of features, in three steps: (1) run the ADP algorithm for a subset of
all states, using the different sets of features, (2) simulate the resulting policies for

3.3 A Freight Consolidation Example 87

a number of iterations, and (3) repeat the first and second step a number of replica-
tions. In the case of this small example, we perform the two options and present the
results in Table 3.3 and Fig. 3.8. For the second option, we simulate the resulting
policies of all states and show the average difference between the average costs of
the simulation and the optimum value of each state. Although the differences among
the sets of features in both tests are small, we note that considering them one at a
time would lead to different conclusions. With the coefficient of determination of the
linear regression, VFA 2 would be selected as the best. However, with the average
costs approach, VFA 3 would be selected. In addition to having the lowest average
difference, VFA 3 also has the smallest variance of the three sets of features.

Table 3.3: Performance of the different VFAs

Test indicator Lookup-table VFA 1 VFA 2 VFA 3
R2 – 0.8897 0.8915 0.8897
Average difference (%) 7.50 2.67 2.45 2.36

The two aforementioned tests of the various combinations of features consider
all states of the MDP. A third approach to decide which basis functions to use,
which is applicable to large instances, is to pick some initial state (or multiple initial
states) and compare (1) the values learned by the ADP algorithm using various

Fig. 3.8: Average performance of the ADP algorithm for the different VFAs com-
pared to the optimal values for all states, using N = 250, M = 250, O = 100, and
K = 10

88 M.R.K. Mes and A. Pérez Rivera

sets of features and (2) the resulting performance of the policy resulting from these
values. We perform this approach for the two states introduced before, and show the
results in Fig. 3.9. Since we use a small problem instance, we also show the optimal
value in the figures, as well as the lookup-table approach mentioned earlier in this
section (denoted by “Expl”). For all sets of features (VFAs), the ADP algorithm
runs for 250 iterations using a double pass approach. In addition to the tests of each
VFA, we also test each VFA with an ε-greedy approach (ε = 0.05), and denote
these on the graphs by “VFAeps”, since this approach yielded good results in our
example.

For State 1 in Fig. 3.9, we observe some differences among the VFAs estimated
(learned) value and the average costs (performance) of the resulting policy. These
differences can lead to choosing different sets of features. On the one hand, the dif-
ferences among the learned values of the three sets of features indicate that VFA1eps
is the best. On the other hand, there are no clear differences among the average
costs of all VFAeps, indicating that the three sets perform equally well when using
the ε-greedy approach (and all better than all no-ε VFAs). Furthermore, we ob-
serve that the ε-greedy approach improves the estimated values in VFA1 and VFA2
(i.e., VFAeps ≤ VFA), but not in VFA3. In the case of the average costs, the ε-
greedy approach improves all VFAs in a way that their performance is almost the
same.

The results for State 1 can lead to the conclusion that a proper tuning of the
exploration/exploitation tradeoff (e.g., via the ε-greedy) can have a larger impact
on the performance than the set of features chosen. However, an explanation on
why this is the case for this state has to do with the state and the sets of features
themselves. State 1 is an almost empty state (i.e., only one freight), which means
most basis functions of the three sets we test return zero. Remind that the updating
algorithm can only determine how significant the weight of a basis function is as
long as it observes it. When only one basis function is observed, and this basis
function behaves similarly in all sets of features, the updating algorithm will assign
similar weights and thus the resulting policies will be approximately the same.

For State 2 in Fig. 3.9, we observe significant differences among the estimated
values of the VFAs, but not among the average costs of the resulting policies.
Clearly, VFA2 and VFA3eps have the best estimated value, and VFA3 the worst
(even worse than the lookup-table approach). However, when looking at the aver-
age costs, the policy from all three VFAs (without the ε-greedy approach) seem to
achieve the same costs, between 1 and 2% away from the optimal costs. Moreover,
the second-best learning set of features (VFA3eps) is now performing second-worst
of all seven value function approximation methods tested. This indicates that having
good estimates of the value of states do not necessarily result in a good performance.

When looking at all four figures, we can conclude that deciding on which set of
features to use requires careful design and testing, and that the quality of the chosen
set of features (basis functions) is heavily problem/state dependent. An explana-
tion on this situation has to do with two characteristics of how the basis functions
approximate the future costs. First, all weights of the basis functions, which deter-
mine the output policy of the ADP algorithm, can only be updated (i.e., improved)

3.3 A Freight Consolidation Example 89

Fig. 3.9: Learned values (left) and average cost performance (right) of the ADP
algorithm for the different VFAs for State 1 (top) and State 2 (bottom), using N =
250, M = 1, O = 100, and K = 10

as long as the basis functions are non-zero. In State 2, which contains many basis
functions with a non-zero value, the performance of all VFAs is significantly bet-
ter than in State 1, which contains mostly basis functions with a value of zero. On
average, all six VFAs achieve 2% higher-than-optimal costs in State 2, while they
achieve 6% higher-than-optimal costs in State 1. Second, the magnitude with which
the weight is updated depends on how much the value of the basis function varies
among the different iterations of the ADP algorithm. These might lead to poorly
estimating the value itself. In State 2, the difference between the best and worst
learning VFA is larger than in State 1. In this example problem, 1.2 freights arrive
on average per day (with at most two freights). This means that State 1 is a state one
can expect on average whereas State 2 is an exceptionally busy state. Additionally,
with the short horizon considered in this problem, the initial conditions (state) can
have a large impact on the optimal costs. Thus, problem/state characteristics must
be considered when using the basis functions approach.

Besides the need for an evaluation methodology, the observed performance dif-
ferences between different initial states also gives rise to new VFA designs that use
basis functions. For example, using aggregated designs based on categorization of

90 M.R.K. Mes and A. Pérez Rivera

states can prevent basis function values of zero and can reduce the variation among
basis function values. Designing such a VFA with the right set of features is both
an art and a science. With creativity about potential causes of future costs, as well
as their limits within a problem, efficient and accurate designs can be developed.
With structured evaluation methodologies (e.g., regression analysis, design of ex-
periment techniques, statistical control methods), these designs can be tested and
further improved to tune the ADP algorithm to a specific problem.

For further reading on this problem, we refer to [9]. In addition, we refer to [18]
for a similar ADP approach on a completely different transportation problem.

3.4 A Healthcare Example

In this third and final example, we repeat the same steps as with the previous two
examples, with the difference that we only focus on the modeling part. We omit the
experimental results of the MDP and ADP model, for which we refer to [6].

3.4.1 Problem Introduction

The problem concerns tactical planning in a hospital, which involves the alloca-
tion of resource capacities and the development of patient admission plans. More
concretely, tactical plans distribute a doctor’s time (resource capacity) over various
activities and control the number of patients that should be treated at each care stage
(e.g., surgery). The objective is to achieve equitable access and treatment duration
for patients. Each patient needs a set of consecutive care stages, which we denote as
a care process. Patients are on a waiting list at each care stage in their care process,
and the time spent on this waiting list is called access time. Fluctuations in patient
arrivals and resource availabilities result in varying access times for patients at each
stage in their care process, and for hospitals, this results in varying resource utiliza-
tion and service levels. To mitigate and address these variations, tactical planning of
hospital resources is required.

The planning horizon is discretized in consecutive time periods T = {1,2, . . . ,T}.
We include a set of resource types R = {1,2, . . . ,R} and a set of patient queues
J = {1,2, . . . ,J}. We define J r ⊆ J as the subset of queues that require capacity
of resource r ∈R. Each queue j ∈J requires a given amount of time units from one
or more resources r ∈ R, given by s j,r, and different queues may require the same
resource. The number of patients that can be served by resource r ∈R is limited by
the available resource capacity ηr,t in time period t ∈ T . The resource capacity ηr,t

is given in the same time unit as s j,r.
After being treated at a queue j ∈ J , patients either leave the system or join

another queue. To model these transitions, we introduce q j,i, which denotes the

3.4 A Healthcare Example 91

fraction of patients that will join queue i ∈ J after being treated in queue j ∈ J .
To capture arrivals to and exits from outside the “hospital system”, we introduce
the element 0 (note that the set J carries no 0-th element by definition). The value
q j,0 = 1−∑i∈J q j,i denotes the fraction of patients that leave the system after being
treated at queue j ∈ J .

In addition to demand originating from the treatment of patients at other queues
within the system, demand may also arrive to a queue from outside the system. The
number of patients arriving from outside the system to queue j ∈ J at time t ∈ T is
given by λ j,t , and the total number of arrivals to the system is given by λ0,t .

Patients are transferred between the different queues according to transition prob-
abilities q j,i,∀ j, i∈J independent of their preceding stages, independent of the state
of the network and independent of the other patients. Patients arrive at each queue
from outside the system according to a Poisson process with rate λ j,t , ∀ j ∈J , t ∈ T .
The external arrival process at each queue j ∈ J in time period t ∈ T is indepen-
dent of the external arrival process at other queues and other time periods. Since all
arrival processes are independent, we obtain λ0,t = ∑J

j=1λ j,t , ∀t ∈ T . We introduce
U = {0,1,2, . . . ,U} to represent the set of time periods patients can be waiting, i.e.,
if we decide not to threat a patient that already waited for U time periods, we assume
his/her waiting time remains U time periods.

3.4.2 MDP Model

We subsequently present the following elements of the MDP model: the state
(Sect. 3.4.2.1), the decision (Sect. 3.4.2.2), the costs (Sect. 3.4.2.3), the new infor-
mation and transition function (Sect. 3.4.2.4), and the solution (Sect. 3.4.2.5).

3.4.2.1 State

We introduce St, j,u as the number of patients in queue j ∈ J at time t ∈ T with a
waiting time of u ∈ U . The state of the system at time period t can be written as
St = (St, j,u) j∈J ,u∈U .

3.4.2.2 Decision

The decision xt, j,u is how many patients to treat in queue j ∈ J at time t ∈ T , with
a waiting time of u ∈ U . This decision needs to be made for all queues and waiting
times, represented by xt = (xt, j,u) j∈J ,u∈U . The set Xt of feasible decisions at time t
is given by

92 M.R.K. Mes and A. Pérez Rivera

Xt = { xt |
xt,i,u ≤ St,i,u, ∀i ∈ J , t ∈ T ,u ∈ U
∑ j∈J r s j,r ∑u∈U xt, j,u ≤ ηr,t , ∀r ∈R, t ∈ T
xt, j,u ∈ Z+ ∀i ∈ J , t ∈ T ,u ∈ U}.

(3.24)

As given in (3.24), the set of feasible decisions in time period t is constrained by
the state St and the available resource capacity ηr,t for each resource type r ∈R.

3.4.2.3 Costs

The cost function Ct (St ,xt) related to our current state St and decision xt is set-up
to control the waiting time per stage in the care process, so per individual queue
(j ∈ J). We choose the following cost function, which is based on the number of
patients for which we decide to wait at least one time unit longer

Ct (St ,xt) = ∑
j∈J

∑
u∈U

c j,u (St, j,u− xt, j,u) , ∀t ∈ T . (3.25)

In general, higher u ∈ U will have higher costs as it means a patient has a longer
total waiting time.

3.4.2.4 New Information and Transition Function

The vector Wt containing the new information, consists of new patient arrivals
and outcomes for transitions between queues. We distinguish between exogenous

and endogenous information in Wt =
(

Ŝe
t , Ŝ

o
t (xt−1)

)
, ∀t ∈ T , where the exogenous

Ŝe
t =

(
Ŝe

t, j

)

∀ j∈J
represents the patient arrivals from outside the system, and the en-

dogenous Ŝo
t (xt−1) =

(
Ŝo

t, j,i (xt−1)
)

∀i, j∈J
represents the patient transitions to other

queues as a function of the decision vector xt−1. Ŝo
t, j,i (xt−1) gives the number of

patients transferring from queue j ∈ J to queue i ∈ J at time t ∈ T , depending on
the decision vector xt−1.

We use the following transition function:

St = SM (St−1,xt−1,Wt) , (3.26)

where

St, j,0 = Ŝe
t, j + ∑

i∈J
Ŝo

t,i, j (xt−1,i) , ∀ j ∈ J , t ∈ T , (3.27)

St, j,U =
U

∑
u=U−1

(
St−1, j,u− xt−1, j,u

)
, ∀ j ∈ J , t ∈ T , (3.28)

St, j,u = St−1, j,u−1− xt−1, j,u−1, ∀ j ∈ J , t ∈ T ,u ∈ U\{0,U} , (3.29)

3.4 A Healthcare Example 93

are constraints to ensure that the waiting list variables are consistently calcu-
lated. Constraint (3.27) determines the number of patients entering a queue. Con-
straint (3.28) updates the waiting list for the longest waiting patients per queue. The
state St, j,U , for all t ∈ T and j ∈ J , holds all patients that have been waiting U time
periods and longer. Constraint (3.29) updates the waiting list variables at each time
period for all u ∈ U that are not covered by the first two constraints. All arrivals in
time period t ∈ T to queue j ∈ J from outside the system (Ŝe

t, j) and from internal

transitions (∑i∈J Ŝo
t,i, j (xt−1,i)) are combined in (3.27).

3.4.2.5 Solution

Again, the formal objective of the model is to find the policy π ∈ Π that mini-
mizes the expected costs over the planning horizon, given an initial state S0, as seen
in (3.1). The exact DP-problem is restricted by limiting the number of patients that
can be waiting in each queue to a given maximum. To illustrate the size of the state
space for our problem, suppose that M̂ gives the maximum number of patients per
queue and per number of time periods waiting. The number of states is then given
by M̂(|J |·|U |). We can solve (3.4) plugging in the transition function (3.26) and spec-
ifying the probability P(Wt+1 = ω), which can be found in [6].

3.4.3 Approximate Dynamic Programming

The ADP approach is presented using a similar setup as used in the previous ex-
amples. We subsequently present the post-decision state (Sect. 3.4.3.1), the forward
dynamic programming approach (Sect. 3.4.3.2), and the use of value function ap-
proximations (Sect. 3.4.3.3).

3.4.3.1 Post-decision State

The post-decision state Sx,n
t represents the expected results of the decision xt taken

in state Sn
t . More specifically, we subtract the number xt, j,u of patients we decided to

treat and use the expected patient transitions qi, j to determine the next location for
each of the patients we decided to treat.

The transitions take place as follows. In addition to the transition function (3.26),
which gives the transition from the state Sn

t to the state Sn
t+1, we introduce a transi-

tion function SM,x (Sn
t ,xt), which gives the transition from the state Sn

t to the post-
decision state Sx,n

t . This function is given by:

Sx,n
t = SM,x (Sn

t ,xt) , (3.30)

94 M.R.K. Mes and A. Pérez Rivera

with

Sx,n
t, j,0 = ∑

i∈J
∑

u∈U
qi, jxt,i,u ∀ j ∈ J , t ∈ T (3.31)

Sx,n
t, j,U =

U

∑
u=U−1

(St, j,u− xt, j,u) ∀ j ∈ J , t ∈ T (3.32)

Sx,n
t, j,u = St, j,u−1− xt, j,u−1 ∀ j ∈ J , t ∈ T ,u ∈ U\{0,U} . (3.33)

The transition function (3.30) closely resembles (3.26), except that the external
arrivals to the system and the final realization of the patient transitions qi, j are not
included.

Due to the patient transfer probabilities, the transition function (3.30) may result
in non-integer values for the post-decision state. We do not round these values as
the post-decision state is only used to provide a value estimate from a particular
combination of a state and a decision. Hence, the post-decision state is only used as
an ‘estimate’ of the future state. The post-decision state will not be used to compute
the transition from state St to state St+1. Within the ADP algorithm, we use the
original transition function (3.26) to compute the state in the next time period. As a
result, the post-decision state will not cause any state to become non-integer.

The actual realizations of new patient arrivals and patient transitions in a time
period will be incorporated in the transition to the state in the next time period. An
illustration of the transition of states can be found in Fig. 3.10.

20

21

01

0

A

B

C

St=(SA,0=1,SA,2=2,SB,1=1,
SB,2=1,SC,1=1)

2 A

B

C

1

2 0

0

A

B

C

1

2

00

0

xt=(xA,2=2,xB,1=1,xB,2=1) St=(SA,0=2,SA,1=1,SB,0=2,
SC,0=1,SC,2=1)

Sx
t=(SA,1=1,SB,0=1,
SC,0=1,SC,2=1)

21 1

Fig. 3.10: Transition of states in the healthcare problem

3.4.3.2 Forward Dynamic Programming

We use a the same forward dynamic programming approach as presented in
Sect. 3.3.3.2.

3.5 What’s More 95

3.4.3.3 Value Function Approximation

Again, the challenge is to design a proper approximation for the ‘future’ costs
V

n
t

(
Sx,n

t

)
that is computationally tractable and provides a good approximation of

the actual values. Similar to the previous example, we make use of basis functions.
For our application, we make the assumption that the properties of each queue

are independent from the properties of the other queues, so that we can define basis
functions for each individual queue that describe important properties of that queue.
For the basis functions, we choose to use the features ‘The number of patients in
queue j that are waiting for u periods’. These features result in the following basis
functions that will be used in the ADP algorithm: St, j,u,∀ j ∈ J ,∀u ∈ U , t = 1. The
basis functions explain a large part of the variance in the computed values with the
exact DP approach (R2 = 0.954) and they can be straightforwardly obtained from
the post decision state. The weights θ n in the value function approximations are
initialized to θ 0 = 1 for all time periods, and we use the matrix B0 = εI as explained
before. We use the double pass version of the ADP algorithm and determine the
stepsize α using nonstationary least squares with δ = 0.99. All other settings can
be found in [6].

In case there is no independent constant in the set of predictors F in a linear
regression model, the model is forced to go through the origin (all dependent and
independent variables should be zero at that point). This may cause a bias in the
predictors. To prevent this bias, we add a constant term as one of the elements in F .
The feature weight θ n

f may vary, but the feature value φ f
(
Sx,n

t

)
of this constant is

always 1, independent of the state Sx,n
t .

We have calculated the ADP-algorithm for 5000 random states and found that
the values found with the ADP algorithm and the value from the exact DP solution
converge. For these 5000 random states, there is an average deviation between the
value approximated with the ADP algorithm and the value calculated with the exact
DP approach of 2.51%, with a standard deviation of 2.90%, after 500 iterations. This
means the ADP algorithm finds slightly larger values on average than the exact DP
approach. This may be caused by the truncated state space, as explained before. The
calculation time of the ADP algorithm is significantly lower than the calculation of
the exact DP solution. Obtaining the DP solution requires over 120 h. Calculating
the ADP solution for a given initial state (with N = 500) takes on average only
0.439 s. For a complete analysis of this approach, we refer to [6].

3.5 What’s More

ADP is a versatile framework that is studied and applied to a growing number of
diverse problems. Naturally, diverse problems require a deeper focus on diverse as-
pects of ADP. In some problems, a correct design of a value function is of most
importance for approximating the optimal solution of an MDP, whereas in oth-
ers, the right tuning of exploration vs exploitation parameters has a higher impact.

96 M.R.K. Mes and A. Pérez Rivera

Furthermore, in some practical applications, approximating a restricted policy might
be better than approximating the values. In this section, we briefly touch upon some
of these aspects. We subsequently present various options for policies (Sect. 3.5.1),
value function approximations (Sect. 3.5.2), and handling the exploration vs ex-
ploitation tradeoff (Sect. 3.5.3).

3.5.1 Policies

In this chapter, we used policies based on value function approximations. There are
many other options, like the use of myopic policies, look-ahead policies (rolling
horizon procedures that optimize over multiple time periods into the future), and
policy function approximations (analytic functions that return an action for each
state). And, of course it is possible to use hybrids.

The approach used in this chapter relies on approximate value iteration. Another
option is approximate policy iteration. In this strategy, we simulate a policy a num-
ber of ‘inner’ iterations over some horizon. During these inner iterations, we fix the
policy (typically by fixing the value function approximation) to obtain a better es-
timate of the value of being in a state. We refer to [10, Chaps. 9 and 10] for more
information on this. Finally, besides value iteration and policy iteration, we can also
use the linear programming method. This method—that for MDPs suffers from the
curse of dimensionality since we need a decision variable for each state, and a con-
straint for each state-action pair—receives attention in the ADP community due to
[2], where ADP concepts are applied to this method, incorporating value function
approximations into the linear program and sampling of the constraints.

More information on different types of policies, and ADP modeling in general,
can be found in [11–13] and, using examples from transportation and logistics, [14].
In these works, also the relationship between (approximate) dynamic programming
and other techniques as stochastic programming, simulation, and stochastic search,
is discussed. A comparison of different ADP techniques, using an energy storage
problem, is given in [7].

3.5.2 Value Function Approximations

Value function approximations can be divided into lookup tables (including state
space aggregation, hierarchical aggregation, and representatives), parametric mod-
els (basis functions, piece-wise linear functions, and neural networks), and nonpara-
metric models (kernel regression and support vector machines). In general, approx-
imating value functions involves the application of statistical methods to estimate
the value of being in a state. One specific technique, applicable to the approaches
considered in this chapter, involves the selection of basis functions, see [17]. For an
overview of statistical learning techniques that can be used in this setting, we refer
to [5].

Appendix 97

The estimation of value function approximations, however, involves much more
than the application of statistical methods. A unique setting of ADP is that value
function approximations have to be estimated recursively. Especially during the ini-
tial iterations, our decisions are influenced by the initialized values and might be
strongly biased by the number of measurements taken from the different states. In
addition, testing the performance of a VFA design is a task that requires diverse
methods as well, as we illustrated in this chapter.

3.5.3 Exploration vs Exploitation

The exploration vs exploitation tradeoff involves the decisions whether to explore
states just to learn their value or to visit the states that appear to be the best. For
this purpose, we introduced the ε-greedy policy. The disadvantage of this policy is
that the learning rate remains constant and there is no focus on certain areas of the
state space. A ‘good’ policy supports the balance between the estimated value of
states and the uncertainty about these values. This problem received considerable
attention by the machine learning community (problems related to the Multi-armed
Bandit Problem, Ranking and Selection, Bayesian Global Optimization, etc.). These
techniques can also be used within ADP. An example can be found in [15], where
a new exploration strategy is proposed based on the knowledge gradient concept,
in which the uncertainty about the value function is explicitly expressed using a
Bayesian model with correlated beliefs. The hierarchical aggregation method de-
scribed in this chapter has also been extended with a Bayesian belief model in [8].
We incorporated this Hierarchical Knowledge Gradient method within ADP, us-
ing a similar approach as presented in [15], and tested it on the nomadic trucker
problem from Sect. 3.2. For all iterations 10 ≤ n ≤ 250, this exploration technique
consistently outperforms the other policies show in Fig. 3.3, both with respect to
the learned value functions and the resulting performance. For a more in-depth dis-
cussion of strategies to balance exploration and exploitation, we refer to [16], [10,
Chap. 10], and [13].

Appendix

Nomadic Trucker Settings

Transportation takes place in a square area of 1000× 1000 miles. The locations
lie on a 16× 16 Euclidean grid placed on this area, where each location i ∈ L is
described by an (xi,yi)-coordinate. The first location has coordinate (0,0) and the
last location (location 256) has coordinate (1000,1000). The minimum distance
between two locations is 1000/15.

98 M.R.K. Mes and A. Pérez Rivera

For each location i ∈ L, there is a number 0≤ bi ≤ 1 representing the probability
that a load originating at location i will appear at a given time step. The probability
that, on a given day of the week d, a load from i to j will appear is given by pd

i j =
pdbi(1− b j), where pd gives the probability of loads appearing on a given day of
the week d. The origin probabilities bi are given by

bi = ρ
(

1− f (xi,yi)− f min

f max− f min

)
, (3.34)

where ρ gives the arrival intensity of loads, and f (xi,yi) is the Six-hump camel back
function given by f (xi,yi) = 4x2

i − 2.1x4
i +

1
3 x6

i + xiyi − 4y2
i + 4y4

i on the domain
(xi,yi) ∈ [−1.5,2]× [−1,1]. The highest value is achieved at coordinate (2,1), with
a value of ≈ 5.73, which we reduce to 5 to create a somewhat smoother function
(still the second highest value is ≈ 4.72). Next, the values f (xi,yi) are scaled to the
domain (xi,yi) ∈ [0,0]× [1000,1000]. The values f min = mini∈L f (xi,yi) ≈ −1.03
and f max = maxi∈L f (xi,yi) = 5 are used to scale f (xi,yi) between [0,1]. An impres-
sion of the resulting origin probabilities Bi is given in Fig. 3.11.

Fig. 3.11: Origin probabilities for the 256 locations

We set ρ = 1, which corresponds with an expectation of approximately 93.14
outgoing loads from the most popular origin location on the busiest day of the week.
We use a load probability distribution pd = (1,0.8,0.6,0.7,0.9,0.2,0.1), for d from
Monday till Sunday, which represents the situation in which loads are more likely to
appear during the beginning of the week (Mondays) and towards the end (Fridays).

The results for the infinite horizon multi-attribute version of the nomadic trucker
problem can be found below (Fig. 3.12).

Freight Consolidation Settings

Either one or two freights arrive each period (i.e., F = {1,2}), with probability
pF

f = (0.8,0.2) for f ∈F . Each freight that arrives has destination d ∈D= {1,2,3}

Appendix 99

Fig. 3.12: Infinite horizon multi-attribute case: resulting estimate V
n
0

(
Sx,n

0

)
(left) and

realized rewards (right), using N = 25,000, M = 10, O = 1000 and K = 10. For the
rewards resulting from the simulations, the 2500 observations are smoothed using a
window of 10. For the policies Expl and Eps, the BAKF stepsize is used

with probability pD
d = (0.1,0.8,0.1), is already released for transportation (i.e., r ∈

R= {0} and pR
r = 1), and has time-window length k∈K= {0,1,2}with probability

pK
k = (0.2,0.3,0.5).

The costs are defined as follows. The long-haul, high capacity vehicle costs
(per subset of destinations visited) are CD′ = (250,350,450,900,600,700,1000)
for D′ = ({1},{2},{3}, {1,2},{1,3},{2,3},{1,2,3}), respectively. These costs
are for the entire long-haul vehicle, independent on the number of freight consoli-
dated. Furthermore, we consider there are no costs for the long-haul vehicle if no
freights are consolidated. The alternative, low capacity mode costs (per freight) are
Bd = (500,1000,700) for d ∈ D. There is no discount factor, i.e. γ = 1.

We build three different sets of features based on a common “job” descrip-
tion used in transportation settings: MustGo, MayGo, and Future freights. MustGo
freights are those released freights whose due-day is immediate. MayGo freights are
those released freights whose due-day is not immediate. Future freights are those
that have not yet been released. We use the MustGo, MayGo and Future adjectives
in destinations as well, with an analogous meaning to those of freight. In Table 3.4
we show the three sets of features, which we name Value Function Approximation
(VFA) 1, 2, and 3. All feature types in this table are related to the freights of a
post-decision state. The symbol ‘*’ denotes a VFA set containing a feature type. All
feature types are numerical, and either indicate (i.e., 1 if yes, 0 if no), count (1,2,. . .),
number (add), or multiply (i.e., product between two numbers) the different type of
freights and destinations. Between parentheses we show the number of basis func-
tions (i.e., independent variables) that a feature type has for the test instance. For
example, there is one post-decision state variable per destination, per time-window
length, thus all post-decision state variables are 3∗3= 9. The constant feature equals
one for all post-decision states, and the weights θ n

a are all initialized with one.

100 M.R.K. Mes and A. Pérez Rivera

Table 3.4: Various sets of features (basis functions of a post-decision state)

Feature type VFA 1 VFA 2 VFA 3
All post-decision state variables (9) * * *
All post-decision state variables squared (9) * – –
Count of MustGo destinations (1) * * *
Number of MustGo freights (1) * * *
Product of MustGo destinations and MustGo freights (1) * – –
Count of MayGo destinations (1) * * *
Number of MayGo freights (1) * * *
Product of MayGo destinations and MayGo freights (1) * – –
Count of Future destinations (1) * * *
Number of Future freights (1) * * *
Product of Future destinations and Future freights (1) * – –
Indicator MustGo freights per destination (3) – * –
Indicator MayGo freights per destination (3) – * –
Indicator Future freights per destination (3) – * –
Number of all freights (1) * * *
Constant (1) * * *

References

1. R. Bellman, Dynamic Programming, 1st edn. (Princeton University Press,
Princeton, NJ, 1957)

2. D.P.D. Farias, B.V. Roy, On constraint sampling in the linear programming
approach to approximate dynamic programming. Math. Oper. Res. 29(3),
462–478 (2004)

3. A.P. George, W.B. Powell, Adaptive stepsizes for recursive estimation with
applications in approximate dynamic programming. Mach. Learn. 65(1),
167–198 (2006)

4. A.P. George, W.B. Powell, S.R. Kulkarni, S. Mahadevan, Value function ap-
proximation using multiple aggregation for multiattribute resource manage-
ment. J. Mach. Learn. Res. 9, 2079–2111 (2008)

5. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning.
Springer Series in Statistics (Springer, New York, NY, 2001)

6. P.J.H. Hulshof, M.R.K. Mes, R.J. Boucherie, E.W. Hans, Patient admission
planning using approximate dynamic programming. Flex. Serv. Manuf. J.
28(1), 30–61 (2016)

7. D.R. Jiang, T.V. Pham, W.B. Powell, D.F. Salas, W.R. Scott, A comparison of
approximate dynamic programming techniques on benchmark energy storage
problems: does anything work?, in IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning (ADPRL), 2014, pp. 1–8

8. M.R.K. Mes, W.B. Powell, P.I. Frazier, Hierarchical knowledge gradient for
sequential sampling. J. Mach. Learn. Res. 12, 2931–2974 (2011)

References 101

9. A. Pérez Rivera, M.R.K. Mes, Dynamic multi-period freight consolidation, in
Computational Logistics, ed. by F. Corman, S. Voß, R.R. Negenborn. Lecture
Notes in Computer Science, vol. 9335 (Springer, Cham, 2015), pp. 370–385

10. W.B. Powell, Approximate Dynamic Programming: Solving the Curses of Di-
mensionality. Wiley Series in Probability and Statistics (Wiley, London, 2011)

11. W.B. Powell, Perspectives of approximate dynamic programming. Ann. Oper.
Res. 241(1), 319–356 (2012)

12. W.B. Powell, Clearing the jungle of stochastic optimization, in Informs Tu-
torials in Operations Research, chap. 4 (INFORMS, Hanover, MD, 2014),
pp. 109–137

13. W.B. Powell, I.O. Ryzhov, Optimal Learning and Approximate Dynamic Pro-
gramming (Wiley, London, 2013), pp. 410–431

14. W.B. Powell, H.P. Simao, B. Bouzaiene-Ayari, Approximate dynamic program-
ming in transportation and logistics: a unified framework. EURO J. Transp.
Logist. 1(3), 237–284 (2012)

15. I.O. Ryzhov, W.B. Powell, Approximate dynamic programming with correlated
bayesian beliefs, in Proceedings of the 48th Allerton Conference on Communi-
cation, Control and Computing (2010)

16. R.S. Sutton, A.G. Barto, Introduction to Reinforcement Learning, 1st edn. (MIT
Press, Cambridge, MA, 1998)

17. J.N. Tsitsiklis, B. Roy, Feature-based methods for large scale dynamic program-
ming. Mach. Learn. 22(1), 59–94 (1996)

18. W. van Heeswijk, M.R.K. Mes, M. Schutten, An approximate dynamic pro-
gramming approach to urban freight distribution with batch arrivals, in Com-
putational Logistics, ed. by F. Corman, S. Voß, R.R. Negenborn. Lecture Notes
in Computer Science, vol. 9335 (Springer, Cham, 2015), pp. 61–75

Chapter 4
Server Optimization of Infinite Queueing
Systems

András Mészáros and Miklós Telek

Abstract The problem of optimizing Markovian models with infinitely or finite but
infeasible large state space is considered. In several practically interesting cases
the state space of the model is finite and extremely large or infinite, and the tran-
sition and decision structures have some regular property which can be exploited
for efficient analysis and optimization. Among the Markovian models with regular
structure we discuss the analysis related to the birth death and the quasi birth death
(QBD) structure.

4.1 Introduction

Queueing systems with discrete customers and infinite buffer form stochastic mod-
els with (countable) infinite state space. The problem of optimal control of such
infinite queueing systems often occurs in practical applications. E.g., with the cur-
rently more and more widespread used of cloud computing resources the problem
of optimal assignment of tasks or task fragments to service blocks is a very hot
research topic.

One of the motivating examples of the current work is to find optimal server
selection in a Markovian, work conserving (no server is idle when there is a wait-
ing customer), multi server service unit when the servers might have temporal

A. Mészáros (�)
MTA-BME Information Systems Research Group, Magyar Tudósok Körútja 2,
1117 Budapest, Hungary
e-mail: meszarosa@hit.bme.hu

M. Telek
Budapest University of Technology and Economics, Magyar Tudósok Körútja 2,
1117 Budapest, Hungary
e-mail: telek@hit.bme.hu

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 4

103

mailto:meszarosa@hit.bme.hu
mailto:telek@hit.bme.hu

104 A. Mészáros and M. Telek

differences. In such a system with n servers the work conserving service policy
defines the service process as long as there are at least n customers in the system,
because the n oldest customers (assuming ordered service starts) have to be under
service at the n servers. In contrast, when there are less then n−1 customers in the
system and a new customer arrives the customer has to be directed to one of the idle
servers. This choice of the idle server allows the optimization of the system behav-
ior when the servers are at least temporarily different (for a graphical representation
see Fig. 4.1).

The dominant property of this motivating example is that an infinite state Markov
model needs to be controlled such that decisions are possible only in a finite set
of states. We use Markov Decision Processes (MDPs) for optimal control of such
systems and investigate the special properties of the MDPs with infinite states and
finite set of states with possible decisions.

Markov Decision Processes (MDPs) are prevalent for analysing decision prob-
lems in queueing systems. The MDP methodology can be used to find the exact
optimum in many cases, however, with increasing the size of the examined system
its computation time may become prohibitively large. Furthermore, if the system
contains an infinite buffer, the standard MDP solution algorithms are not applicable
anymore. However, there are cases when these systems can still be analyzed using
the tools developed for finite MDPs. There are some general properties that often
hold for MDP solutions. Perhaps the most fundamental of them is the threshold
form of the optimal policy. A policy is of threshold form, if the optimal decision on
a state can be determined by comparing a certain parameter of the state to a fixed
value (called threshold). For instance accepting requests to a queue may be optimal
until the queue length reaches a certain value. See e.g. [6] or [3] for more examples.

Apart from exact optimal solutions, one can get a quasi-optimal solution by us-
ing certain approximation techniques. One possible approach is the truncation of the
state space. This may happen based on the physical model (e.g. the size of the buffer
is constrained) as in [9] and [5] for example. Alternatively one can use only mathe-
matical considerations as discussed by Altman [1]. Another interesting approach is
shown in [8], where a so-called deterministic simulative model is introduced. The
essence of this model is that the original MDP is transformed in such a way that
transitions of the new model all become deterministic.

Here we discuss another approach, the exact solution of MDP models with in-
finite or finite but large state spaces. We apply general results from Markov chain
theory, e.g. the analysis of Markov chains measures associated with some subsets of
states, which has been studied for a long time [2]. Based on the subset measures we
introduce a Markov chain transformation with the replacement of one subset, which
results in a smaller, thus more easily computable MDP model with the same optimal
policy. For the application of this approach one needs to compute subset measures
for subsets of infinitely many states if the original model is infinite, which is not
possible in general, but there are cases when the regularity in the transition structure
of the MDP can be exploited to compute the required subset measures.

The proposed methodology is used to compute the optimal control of some
queueing systems. We study queueing systems with Poisson as well as with Markov

4.2 Basic Definition and Notations 105

modulated arrivals and a shared infinite queue with multiple (identical or different)
Markovian servers and investigate the following question: If there are multiple idle
servers and there is a request to be served, which server do we choose to serve this
request to obtain optimal system operation?

In the following we present the specifics of the aforementioned transformation
method and its application for some concrete examples. The rest of the chapter is
organized as follows. Section 4.4 summarizes the basics of MDPs and the elements
of the Markov chain transformation method including the computation of subset
measures in general and for some special cases with regular Markov chain structures
like the birth death structure and the quasi birth death structure. A set of examples
and their analysis based on the proposed Markov chain transformation method are
presented in Sect. 4.5. Throughout this chapter we are going to build on some basic
queueing knowledge, like queue, server, buffer, Poisson process, Little law, work
conserving service,

4.2 Basic Definition and Notations

In this section we restrict the scope of the paper, introduce the applied notations for
MDPs and refer to some classical results that will be used later. In the following we
will only consider continuous time homogeneous MDPs without discount. Thus we
will use the following definition for MDPs

Definition 4.1. Let us consider a process X(t) on a continuous time Markov chain
with state space S, a set of decisions A = {ai}, a set of decision dependent generator
matrices Q = {Q(a)|a ∈ A} and a set of decision and state dependent cost rates
C = {ca(s)|a ∈ A,s ∈ S}. We say that the tuple (S,A,Q,C) is a continuous time
Markov decision process.

In the following sometimes the Ca cost rate matrix will be used, which is a diag-
onal matrix constructed from the cost rates for decision a, such that

Ca
i, j =

{
ca(i) if i = j
0 otherwise

In this work we concentrate on optimizing for infinite horizon. Because there is
no discount in the considered MDPs the goal function is the average cost rate of the
process, i.e., the optimal strategy is

π∗ = argmin
π

Eπ

[
lim
k→∞

1
T

∫ T

t=0
cπ(X(t))(X(t))dt

]
, (4.1)

which is known to be the same as

π∗ = argmin
π

∑
s∈S

απ(s)cπ(s)(s), (4.2)

106 A. Mészáros and M. Telek

where cπ(s)(s) is the cost rate in state s if the strategy is π and απ(s) is the steady
state probability of being in state s for policy π .

We mention here that the previous description stands for pure strategies (i.e. we
always make the same decision in a state with 1 probability). As shown in [4],
there always exists a pure strategy that gives the optimum for the average reward
rate problem.

We also note that, even though we only consider continuous time MDP examples,
the same results hold for the discrete time counterparts. The method to related the
continuous and the discrete time processes is referred to as uniformization. The dis-
crete time counterpart of a continuous time MDP can be obtained by P= 1

Δ(Q)
Q+I,

where P is the transition matrix of the discrete time MDP and Δ(Q) is the largest
absolute value in matrix Q, that is Δ(Q) = max

i, j
(|Qi, j|).

4.3 Motivating Examples

4.3.1 Optimization of a Queueing System with Two Different
Servers

Let us consider an M/M/2 queueing system, i.e. a system with Poisson arrival pro-
cess with parameter λ and two servers with exponential service times and param-
eters μ1 and μ2 respectively, see Fig. 4.1. We assume a shared infinite queue and
investigate the following question: If both servers are idle and there is a request to
be served, which server do we choose to serve this request to obtain optimal sys-
tem operation? An intuitive measure of optimality is the average expected sojourn
time (system time) E(T), which is the sum of the average expected waiting time and
service time.

Fig. 4.1: M/M/2 queueing system with two different servers

We will utilize Little’s law, which states that, E(n) = λ̄ E(T), where E(n) is the
expected value of average number of requests in the system and λ̄ is the mean arrival
intensity (in this case λ̄ = λ). Using this we will optimize E(n) as it is equivalent
to the optimization of E(T) in the considered example because the decisions do not
affect λ̄ .

4.3 Motivating Examples 107

We can write

E(n) =
∞

∑
i=0

αin(i), (4.3)

where αi is the steady state probability of state i and n(i) is the number of requests
in state i. By comparing this with the formula for average reward rate in (4.2), we
can see that the problem can be formalized as an average reward rate optimization
using ca(i) = n(i).

In the example we consider work conserving schemes only. This means that the
service of any request has to start as soon as there is an idle server. Consequently
there is only one decision in the system: when a new request arrives to the empty
queue we have to decide whether server 1 or server 2 should serve this request.

The generator matrix of the MDP corresponding to this system is

Qa =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−λ paλ (1− pa)λ 0 · · ·
μ1 −λ −μ1 0 λ 0 · · ·
μ2 0 −λ −μ2 λ 0 · · ·
0 μ2 μ1 −λ −μ1−μ2 λ 0 · · ·
... 0 0 μ1 +μ2 −λ −μ1−μ2 λ

. . .
...

. . .
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.4)

The single decision of choosing between server 1 and 2 happens in the first state.
In Qa this decision is represented by pa, which is the probability of choosing server
1 upon arrival of a new request in the empty state, that is, the two possible decisions
are always choosing the first server (a = 1) and always choosing the second server
(a= 2) with p1 = 1 and p2 = 0. We recall here that there always exists a pure optimal
strategy, therefore one of these decisions is optimal.

The cost of each state is the actual number of requests in the system; conse-
quently,

ca(i) =

⎧
⎨

⎩

0, for i = 1
1, for i = 2
i−2, otherwise

(4.5)

for a = 1,2. Note that the decisions do not affect the costs in this case, only the
transitions.

4.3.2 Optimization of a Computational System with Power Saving
Mode

In the second example we consider a system that executes simple computational
tasks that can be decomposed to two steps, see Fig. 4.2. The steps take an exponen-
tially distributed time with μ1 and μ2 parameter respectively. Tasks arrive according
to a Poisson process of parameter λ . Usage of resources induces a certain cost per

108 A. Mészáros and M. Telek

time unit. Each waiting task requires the same amount of memory, generating cost
with rate cm, while the usage of the CPU generates cost with rate cc. If the computer
becomes idle it can either enter power saving mode, or remain in normal mode,
which will be associated with ci cost rate (power saving mode is assumed to have 0
cost rate). If a new task arrives while the computer is in power saving mode, the first
part of the task takes an exponential time of μ0 (μ0 < μ1) parameter. In other words,
power saving mode costs less when the system is empty, but provides a slower ser-
vice of the first request, which results in higher average CPU and memory usage
costs. The operator has to decide if it is beneficial to use power saving mode.

Fig. 4.2: Computational system with power saving mode

If state 1 corresponds to the empty system and pa represents the decision of
power saving such that pa = 1 if power saving mode is used and pa = 0 if not, then
the generator of this process can be written as

Qa =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−λ paλ (1−pa)λ 0 0 0 0
0 −λ−μ0 0 μ0 λ 0 0
0 0 −λ−μ1 μ1 0 λ 0
μ2 0 0 −λ−μ2 0 0 λ
0 0 0 0 −λ−μ0 0 μ0 λ 0 0
0 0 0 0 0 −λ−μ1 μ1 0 λ 0
0 μ2 0 0 0 0 −λ−μ2 0 0 λ

0 0 0
. . .

0 0 0
. . .

μ2 0 0
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(4.6)

4.4 Theoretical Background 109

4.3.3 Structural Properties of These Motivating Examples

The main characteristics of the above described examples is associated with number
of states of the queueing systems and the number of states where different decisions
are possible. In both examples the overall state space is composed by infinitely many
states, which inhibits the application of several standard MDP solution methods. On
the other hand, the set of states in which decisions can be made (different actions can
be chosen) is finite. These characteristic properties suggests the division of the set
of states of such MDPs into two parts, the subset where decisions can be made and
the complementer subset. Assuming that this structural properties are often present
in MDP problems below we first introduce analysis results of Markov chains asso-
ciated with state space division, and based on them we discuss a solution method of
such MDPs.

4.4 Theoretical Background

In this part we briefly summarize the notations and the basic mathematical structures
used for the decomposition based analysis of the considered MDP models.

4.4.1 Subset Measures in Markov Chains

The analysis of Markov chain properties associated with disjoint subsets of states
has been considered for a very long time [2]. We summarize the related results in
this subsection based on [7]. For a more detailed explanation of the presented results
the reader is referred to that textbook. We borrow the terminology from reliability
theory, where the operational states are commonly denoted as up states and the
failure states as down states, and apply an SU ,SD state partitioning such that SU ∪
SD = S and SU ∩ SD = /0. With appropriate numbering of states (states with low
indexes are in SU) the associated partitioning of the generator matrix is

Q =

(
QU QUD

QDU QD

)
. (4.7)

There are various interesting performance measures associated with the sets SU

and SD. Let γU = min(t|X(t) ∈ SU) be the time to reach a state in SU . Starting from
state i ∈ SD the joint distribution of the time to reach SU and the state first visited in
SU is

Θi j(t) = Pr(X(γU) = j,γU < t|X(0) = i) (4.8)

The associated density function is θi j(t) = d
dtΘi j(t) and the matrix function of

size |SD|× |SU | composed by these elements satisfies

110 A. Mészáros and M. Telek

θ(t) = {θi j(t)}= eQDtQDU .

Several interesting performance measures can be derived from this joint distribution.
For example, the distribution of the state first visited in SU is obtained as

{Pr(X(γU) = j|X(0) = i)}= lim
t→∞

Θ(t) =
∫ ∞

t=0
θ(t)dt = (−QD)

−1QDU , (4.9)

where i ∈ SD and j ∈ SU .
The inverse of matrix QD and QU always exist if the Markov chain is irreducible

and positive recurrent, which we will assume in the following. The elements of
matrix (−QD)

−1 have important stochastic meaning related to the time spent in the
states of QD during a visit to SD, that is for i, j ∈ SD

E(time spent in state j in (0,γU)|X(0) = i)) = E(
∫

t
I{X(t)= j,γU>t|X(0)=i}dt)

=
∫

t
Pr(X(t) = j,γU > t|X(0) = i)dt = [

∫

t
eQDtdt]i j = [(−QD)

−1]i j

where (0,γU) is the time interval of the visit to SD, I{•} is the indicator of event •
and [M]i j refers to the i, j element of matrix M. The time to reach SU starting from
state i ∈ SD is phase type distributed with the following density function

∑
j∈SU

θi, j(t) = eiθ(t)1= eie
QDtQDU1, (4.10)

where ei is the ith unit row vector, i.e. a vector with all its elements being zero except
for the ith element which is one, and 1 is the column vector with all elements equal
to one. To simplify the notations instead of scalar equations we often use appropriate
vector expressions. For example (4.10) can be written as

θ(t)1U = eQDtQDU1U .

The size of vector 1 is determined by the context (the size of the matrix it is multi-
plied with), but occasionally we emphasize the dimension by a subscript. For exam-
ple 1U refers to the vector of size |SU |. One can obtain the SU → SD counterparts of
these measures by interchanging the role of SU and SD in the above expressions.

Based on the joint distribution (4.8), for later use, we also present the conditional
mean time spent in SD supposing that the first state visited in SU is j. For i ∈ SD and
j ∈ SU

E(γU |X(0) = i,X(γU) = j) =
E(γU I{X(γU)= j}|X(0) = i)

Pr(X(γU) = j|X(0) = i)
= (4.11)

=
[
∫ ∞

t=0 tθ(t)dt1]i j

[
∫ ∞

t=0 θ(t)dt1]i j
=

[(−QD)
−2QDU]i j

[(−QD)−1QDU]i j
.

4.4 Theoretical Background 111

Let α be the stationary probability vector of the Markov chain with generator Q.
Then α is the solution of the linear system αQ = 0 with normalizing equation
∑i∈Sαi = α1 = 1. Let αU and αD be the parts of vector α associated with sub-
sets SU and SD respectively. Using (4.7) the partitioned form of the linear system is

αU QU +αDQDU = 0 and αU QUD +αDQD = 0,

from which we obtain a linear system for αU

αU (QU −QUDQD
−1QDU) = 0. (4.12)

The Markov chain with state space SU and generator QU +QUD(−QD)
−1QDU is

referred to as censored Markov chain. It is obtained from the original Markov chain
by switching off the clock when the Markov chain visits SD and switching on the
clock when the Markov chain visits SU .

The censored Markov chain defines the stationary probability of the states in
SU through (4.12) apart from a normalizing constant, because ∑i∈Su αi = αU1U

is not known based on (4.12). Intuitively, (4.12) defines the direction of vector
αU , but does not define its norm. To compute the norm ||αU || = αU1U we cal-
culate the time spent in SU and SD in consecutive visits. Let TU (n) (TU (n)) be the
time of the nth visit to SU (SD) and let us denote its limit by TU = limn→∞ TU (n)
(TD = limn→∞ TD(n)). The portion of time spent in SU defines the norm of αU by the
following relation

αU1U =
E(TU)

E(TU)+E(TD)
=

1

1+ E(TD)
E(TU)

.

E(TU) can be obtained as the inverse of the stationary rate form SU to SD, that is

E(TU) =
1

αU QUD1
,

and E(TD) can be computed from the distribution in (4.10), where the νD initial
distribution in SD is characterized by the stationary distribution in SU and a state
transition from SU to SD, that is

E(TD) = νD

∫ ∞

t=0
tθ(t)dt1=

αU QUD

αU QUD1

∫ ∞

t=0
tθ(t)dt1= (4.13)

=
αU QUD

αU QUD1
(−QD)

−2QDU1=
αU QUD

αU QUD1
(−QD)

−11= (4.14)

= E(TU)αU QUD(−QD)
−11,

where we used (−QD)
−1QDU1= 1, which comes from the fact that the row sum of

matrix Q is zero, that is QDU1+QD1 = 0. Dividing the last expression by E(TU)
gives

112 A. Mészáros and M. Telek

αU1U =
E(TU)

E(TU)+E(TD)
=

1

1−αU QUDQD
−11

. (4.15)

4.4.2 Markov Chain Transformation

There are practically interesting cases when the analysis of some performance mea-
sures is essentially related to only one subset of the states, say subset SU . (As it is
discussed below, in the context of MDPs we are going to consider cases when de-
cisions can be made only in a subset of the states and the considered optimization
problem is such that no decision is made in the rest of the sates.) In these cases it is
possible to modify the Markov chain in the other subset, SD, such that the important
performance measures associated with SU remain unchanged. For example, if we
are interested only in αU , the stationary distribution in SU , it is possible to introduce
a modified Markov chain with generator

Q̂ =

(
QU Q̂UD

Q̂DU Q̂D

)
, (4.16)

such that the stationary distribution α̂ is identical with the original stationary distri-
bution α for the subset SU that is α̂U = αU .

The following example demonstrates this case.

Example 4.1. Let us consider the infinite birth-death Markov chain with birth rate λ ,
death rate μ and SU = {0,1, . . . ,n−1}, SD = {n,n+1, . . .}. We introduce ŜD = {n}
with associated matrix blocks

Q̂UD =

⎛

⎜
⎜
⎜
⎝

0
...
0
λ

⎞

⎟
⎟
⎟
⎠
, Q̂D =

(
−μ+λ

)
, Q̂DU =

(
0 . . . 0 μ−λ

)
.

The stationary distribution in SU is identical for this modified Markov chain and the
original one.

The Markov chain transformation in this example is rather intuitive because it
retains the following essential properties

• The only possible transition from SU to SD (ŜD) is the transition from state n−1
to state n.

• The mean time spent in SD, which is 1
μ−λ , is identical with the mean time spent

ŜD.
• The only possible transition from SD (ŜD) to SU is the transition from state n to

state n−1.

4.4 Theoretical Background 113

However, these simple properties do not have to hold in general. The following
theorem provides a general rule for a Markov chain transformation which maintains
the stationary distribution in a subset of states.

Theorem 4.1. The stationary distribution of the Markov chain with generator Q and
with generator Q̂ are identical for SU if the following conditions hold

QUD(−QD)
−1QDU = Q̂UD(−Q̂D)

−1Q̂DU (4.17)

and
QUD(−QD)

−11= Q̂UD(−Q̂D)
−11 . (4.18)

Proof. The linear system that characterizes the direction of αU according to (4.12) is
identical with the one characterizing the direction of α̂U based on Q̂ due to (4.17). In
order to ensure the identity of the αU and α̂U , we still need the sums of the stationary
probabilities in SU to be identical in the two systems, that is αU1U = α̂U1U , which
comes from (4.18) using (4.15).

In addition to the stationary distribution in a wide range of applications (includ-
ing MDPs) it is important to maintain reward measures as well.

Theorem 4.2. The stationary reward rate of a Markov reward model with generator
Q and reward rate matrix C and with generator Q̂ and reward rate matrix Ĉ are
identical if (4.17), (4.18), CU = ĈU and the following condition holds

QUD(−QD)
−1CD1= Q̂UD(−Q̂D)

−1ĈD1. (4.19)

Proof. The stationary reward rate in the modified Markov reward model is

α̂Ĉ1= α̂UĈU1U + α̂DĈD1̂D = α̂U (ĈU1U + Q̂UD(−Q̂D)
−1ĈD1̂D)

= αU (CU1U +QUD(−QD)
−1CD1D) = αC1

where we used α̂D = α̂U Q̂UD(−Q̂D)
−1 in the second equation and α̂U = αU (which

comes from Theorem 4.1) in the third equation.

According to Theorems 4.1 and 4.2 one can replace a Markov chain with gener-
ator Q with a Markov chain with generator Q̂ if the required performance measures
are associated only with the stationary probabilities in SU , and (4.17) and (4.18)
hold. This replacement remains valid for reward measures as well if (4.19) holds
additionally.

We note that (4.17) is about the identity of two matrices of size |SU |× |SU | and
the rank of those matrixes is

r = rank(QUD(−QD)
−1QDU) = min(rank(QUD), rank(QUD)). (4.20)

Consequently the size of the transformed Markov chain should be at least |SU |+ r.
For example, in Example 4.1 we have r = 1, because rank(Q̂DU) = rank(Q̂UD) = 1
and the transformed Markov chain has n+1 states.

114 A. Mészáros and M. Telek

4.4.3 Markov Decision Processes with a Set of Uncontrolled States

The above discussed state space division based analysis approaches can be effi-
ciently used for the analysis of MDPs where decisions are possible only in a subset
of states. More precisely, when there are states in the Markov chain where the Qa

i j
transition rates and the ca(i) associated cost are independent of the decision, that
is Qa

i j = Qi j and ca(i) = c(i), ∀a ∈ A. Unfortunately the efficient application of the
space division depends on the properties of the considered problem. We consider
some special cases below.

4.4.3.1 Decisions Only in Subset1 Without an Effect on the Transitions to
Subset2

If the MDP is such that decisions are made only in subset1 and it has no effect on
the transitions to subset2, then the generator matrix has the form

Qa =

(
Qa

1 Q12

Q21 Q2

)
.

In this case we can apply the association subset1=SU and subset2=SD and use the
results of Theorems 4.1 and 4.2 in order to obtain a simple MDP problem with
generator matrix

Qa =

(
Qa

1 Q̂12

Q̂21 Q̂2

)
.

4.4.3.2 Decisions Only in Subset1 with an Effect on the Transitions to Subset2

If the MDP is such that decisions are made only in subset1 and it has effect on the
transitions to subset2 then the generator matrix has the form

Qa =

(
Qa

1 Qa
12

Q21 Q2

)
.

In this case we can apply the association subset1=SU but we need to use the follow-
ing decision dependent version of Theorem 4.1.

Theorem 4.3. The stationary reward rate of the MDP with generator and reward
matrix

Qa =

(
Qa

U Qa
UD

QDU QD

)
, Ca =

(
Ca

U 0
0 CD

)
,

and the MDP with generator and reward matrix

Q̂a =

(
Qa

U Q̂a
UD

Q̂DU Q̂U

)
, Ĉa =

(
Ca

U 0
0 ĈD

)
,

4.4 Theoretical Background 115

are identical for any policy if the following conditions hold

Qa
UDQD

−1QDU = Q̂a
UDQ̂D

−1
Q̂DU , (4.21)

Qa
UDQD

−11= Q̂a
UDQ̂D

−1
1, (4.22)

and
Qa

UDQD
−1CD1= Q̂a

UDQ̂D
−1

ĈD1. (4.23)

Proof. The proof of Theorem 4.3 directly follows from the proofs of Theorems 4.1
and 4.2.

4.4.3.3 Decisions Only in Subset1 with Limited Boundary to the Other Set

If the MDP is such that decisions are made only in subset1 but the transitions from
subset1 towards the rest of the states can reach only a part of the complementer
subset without decision, denoted as subset2, and the remaining part of the subset
without decision, denoted as subset3, cannot be reached from subset1, then the gen-
erator matrix has the form

Qa =

⎛

⎝
Qa

1 Qa
12 0

Q21 Q2 Q23

Q31 Q32 Q3

⎞

⎠ .

In this case we can apply the association subset1 ∪ subset1=SU and subset3=SD and
with these set definitions the results of Theorems 4.1 and 4.2 are directly applicable
again.

4.4.4 Infinite Markov Chains with Regular Structure

Thanks to Theorems 4.1–4.3 Markov chain transformations where the original and
the transformed problem have different sizes can be applied in the analysis of MDPs
with a set of uncontrolled states. These transformations can be efficiently used when
the original problem has a finite or even infinite state space. In this work we focus
on the application of Markov chain transformation methods with infinite state space.
In case of general infinite state MDPs with completely irregular structure the appli-
cation of Theorems 4.1–4.3 is rather difficult, but in the majority of the practically
interesting cases infinite state MDPs have some regular structure. We consider two
of the simplest structures below.

116 A. Mészáros and M. Telek

4.4.4.1 Birth Death Process

An MDP has a birth-death structure when (with appropriate numbering of states)
state transitions are possible only to neighboring states. A birth-death structure can
contain level dependent and level independent rates. Example 4.1 discusses the case
of level independent rates. Here we focus on the level dependent case. Let the arrival
and departure rates at state k < n be λk(a) and μk and at state k ≥ n be λk and μk

respectively. Furthermore let SU = {0,1, . . . ,n−1} and SD = {n,n+1, . . .}. Similar
to Example 4.1 we can transform the MDP such that ŜD = {n} with associated
matrix blocks

Q̂a
UD =

⎛

⎜
⎜
⎜
⎝

0
...
0

λn−1(a)

⎞

⎟
⎟
⎟
⎠
, Q̂D =

(
−μ̂

)
, Q̂DU =

(
0 . . . 0 μ̂

)
.

The rate from ŜD to SU , μ̂ , can be computed form the recursive relation on the mean
time spent in the set Sk = {k,k+1, . . .}, denoted by Tk, that is

Tk =
1

λk +μk
+

λk

λk +μk
Tk+1

where μ̂ = 1
Tn

. If λk and μk are independent of k then this relation results in
μ̂ = μ −λ as in Example 4.1. If λk and μk are state dependent then the recursive
relation needs to be solved based on the specific form of state dependence. Finally
the unknown reward rate ĉ can be computed based on (4.19).

4.5 Solution and Numerical Analysis of the Motivating Examples

In this section we provide some specific examples for the usage of the transforma-
tion techniques presented in the previous section.

4.5.1 Solution to the Queue with Two Different Servers

As marked in (4.4) we select the first four states as SU and the rest as SD.
Notice that the upper part of this system is a birth death process, thus we can use

the results from Example 4.1 to get

4.5 Solution and Numerical Analysis of the Motivating Examples 117

Q̂a =

⎛

⎜
⎜
⎜
⎜
⎝

−λ paλ (1− pa)λ 0
μ1 −λ −μ1 0 λ 0
μ2 0 −λ −μ2 λ 0
0 μ2 μ1 −λ −μ1−μ2 λ
0 0 0 μ1 +μ2−λ −μ1−μ2 +λ

⎞

⎟
⎟
⎟
⎟
⎠
. (4.24)

We chose SU = {1,2,3,4} and SD = {5}, as it is indicated in the transition rate ma-
trix. We can apply the previously presented cost transformation in (4.42) by noticing
that this system is a special QBD where G = [1], i.e., it is a 1×1 matrix with its only
element being 1, from which Z and consequently Ci→ j can be calculated. By substi-
tuting into (4.38) and using notation μ = μ1 +μ2 we obtain

[Ĉa]5,5 =
∑∞

i=0
1
μ (

λ
μ)

i(i+3)

∑∞
i=0

1
μ (

λ
μ)

i
.

We can use
∞

∑
i=0

xi =
1

1− x
and

∞

∑
i=0

ixi =
x

(1− x)2 to simplify the expression and

get the modified cost function

[Ĉ]i,i =

⎧
⎪⎪⎨

⎪⎪⎩

0, for i = 1
1, for i = 2,3
2, for i = 4
3+ λ

μ−λ , for i = 5

(4.25)

The MDP described by Q̂a and Ĉ can be solved using standard solution algo-
rithms. Let us consider a specific example with λ = 10, μ1 = 1, μ2 = 100. Using
these values we get E(n) = 0.15 for a = 1 (pa = 0) and E(n) = 0.19 for a = 2
(pa = 1). Unsurprisingly the optimal decision is choosing the faster server when-
ever it is possible. In this example the optimal strategy is trivial. It can be shown
analytically that choosing the faster server is always optimal. For more complex
systems; however, giving an analytical solution may be impossible.

4.5.2 Solution to the Power-Saving Model

Starting from state 5 the generator is a QBD with block independent transition rates.
Thus we will transform the MDP while keeping the first five states unchanged, that
is, we choose SU = {1, . . . ,5}.

While this problem is more complicated than the previous one, we can exploit
an important structural characteristic to transform the system to finite states without
the usage of the matrix analytic methodology. We will create the same additional
states as with the previously proposed transformation method in Sect. 4.7.2, but use
elementary arguments to obtain the ωi, j and [G]i, j parameters in the transition rates.
Let use notation τk, j = E(γU |X(0+) = k,X(γU) = j), k ∈ SD, j ∈ SU . From (4.36)

118 A. Mészáros and M. Telek

it is clear that ωi, j =∑k∈SD

Pr(X(0+)=k|X(0−)=i
Pr(X(0+∈SD)

τk, j. Thus, if we can calculate τk, j, ωi, j

can be calculated as well.
Note that Qa has a QBD structure with group independent blocks starting from

group 2. Let us denote the ith state of group n by (n, i). Because of the block inde-
pendent QBD structure of the generator we can write

τ(n,i)→(n−1, j) = τ(n+1,i)→(n, j),∀n > 1, i, j = 1,2,3, (4.26)

that is, the time to reach state j of group n− 1 from state i of group n does not
depend on the actual value of n. Furthermore note that the states of group n can
only be reached from higher groups through state (n,1) for n ≥ 1. Consequently
τ(n,i)→(1,2) can be expressed as

τ(n,i)→(1,2) = τ(2,1)→(1,2) + τ(3,1)→(2,1) + · · ·+ τ(n,1)→(n−1,1) + τ(n,i)→(n,1) (4.27)

We can write recursive relations similar to the one for birth death processes. For
example

τ(2,1)→(1,2) =
λ

λ +μ0

(
1

λ +μ0
+ τ(3,1)→(1,2)

)
+

μ0

λ +μ0

(
τ(2,3)→(1,2) +

1
λ +μ0

)
.

(4.28)

Here the first term is the expected time it takes to reach state 2 from state 5 if the
first event is the arrival of a new request weighted by the probability λ

λ+μ0
of such an

event. The second term corresponds to the other possibility, i.e., the current request
is served before a new request arrives. The probability of this event is μ0

λ+μ0
. In

this case the expected time to reach state 2 is 1
λ+μ0

+ τ(2,3)→(1,2). We can derive
expressions for τ(2,2)→(1,2) and τ(2,3)→(1,2) using the same approach. Thus we get

τ(2,2)→(1,2) =
λ

λ +μ1

(
1

λ +μ1
+ τ(2,2)→(1,2)

)
+

μ1

λ +μ1

(
1

λ +μ1
+ τ(2,3)→(1,2)

)

(4.29)

τ(2,3)→(1,2) =
λ

λ +μ2

(
1

λ +μ2
+ τ(3,3)→(1,2)

)
+

μ2

λ +μ2

1
λ +μ2

. (4.30)

Furthermore, from (4.27) we have τ(3,1)→(1,2) = τ(3,1)→(2,1)+τ(2,1)→(1,2), τ(3,2)→(1,2)
= τ(3,2)→(2,1) + τ(2,1)→(1,2), τ(3,3)→(1,2) = τ(3,3)→(2,1) + τ(2,1)→(1,2), additionally we
have τ(3,2)→(2,1) = τ(2,2)→(1,2), τ(3,3)→(2,1) = τ(2,3)→(1,2). Using these the attained
linear equation system can be easily solved for τ(2,1)→(1,2),τ(2,2)→(1,2),τ(2,3)→(1,2),
however it results in rather complicated expressions, therefore we do not present
the actual solutions. From SD we always reach SU in state 2, thus we only need to
introduce states ŝ2→2, ŝ3→2, and ŝ4→2 to create a transformed version of the MDP,
and for these we only need the previously given τ parameters. Furthermore, from
the definition of G it is clear that

[G]i, j =

{
1, if j = 2
0, otherwise

(4.31)

4.6 Further Examples 119

Thus we have the necessary τ (and consequently ω) and G values to calculate the
elements of Q̂UD, Q̂D and Q̂DU using formulas (4.35) and (4.37).

The original cost function of this system is

[Ca]i,i =

{
pci, for i = 1
cn + � i+2

3 �cm, for i≥ 2.
(4.32)

To calculate the modified costs we can use the same (4.45) formula as in the case
of the M/M/2 system, utilizing (4.31) to calculate Z.

Let us take an example where the request arrival rate and service rates are λ = 5,
μ0 = 2, μ1 = 10, μ2 = 20, the cost rate of not entering power saving mode is ci = 20
and the cost rate of memory consumption and CPU usage are cm = 2, cn = 10
respectively. In this case we get

Q̂UD =

⎛

⎝
5 0 0
5 0 0
5 0 0

⎞

⎠ , Q̂DU =

⎛

⎝
1.67 0 0
0.45 0 0

5 0 0

⎞

⎠ , ĈD =

⎛

⎝
28.6 0 0
32.5 0 0
28 0 0

⎞

⎠

and the average cost rate is approximately 38.5 if we use power saving mode and
17.5 if we do not, which means that power saving mode should not be used.

The example did not require the usage of numerical methods for calculating G.
The main reason for this is that, when the request was served, the system could
go to only one state. Consequently the structure of the G matrix was very special
and its values could be derived using elementary arguments. For the same reason
the calculation of Q̂UD and Q̂DU could also be done using elementary tools. In the
following examples the structure of the generator becomes even more complex, thus
the usage of the previously presented will be necessary.

4.6 Further Examples

In the remaining examples we will examine queueing systems with a Markov back-
ground process. The point process with Markov background process is referred to
as Markov Arrival Process (MAP). The series of inter event times of a MAP form a
dependent series of the random variables (in general). We use this series as the con-
secutive service times of a server, which is some times referred to as Markov Service
Process, or MAP service times. The states of the Markov background process are
often referred to as phases.

Definition 4.2. Markov Arrival Process (MAP) is a point process modulated by a
background Markov chain. The transition rates which modify the state of the back-
ground Markov chain but are not associated with an event of the point process are
collected into matrix S0 and the transition rates which might or might not modify
the state of the background Markov chain and are associated with an event of the
point process are collected into matrix S1. The diagonal elements of S0 are defined

120 A. Mészáros and M. Telek

such that Q = S0 + S1 is the generator of the background Markov chain (with zero
row sums).

MAPs form a quite general framework for modeling point processes with differ-
ent correlation structure and marginal distributions while making a simple descrip-
tion and analysis of the overall stochastic model possible.

4.6.1 Optimization of a Queuing System with Two Markov
Modulated Servers

First let us consider a two server system very much like in the first example, with
the only difference being that the servers are identical and they perform service
according to a Markov Arrival Process. To avoid confusion we will call the state
of a service MAP “phase”, and retain the term “state” for the states of the MDP.
(We recall again that the events of the MAP are the service events in this case.)
We presume that the internal state of a server (the phase of the MAP) may only
change if that server is not idle. Otherwise our assumptions are the same as before:
we assume a Poisson arrival process with parameter λ and a shared infinite queue
and investigate the following question: If both servers are idle and there is a request
to be served, which server do we choose to serve this request to obtain optimal
system operation? We choose the average expected sojourn time as the measure of
optimality but work with the expected value of the average number of requests in the
system which are proportional according to Little’s law for the same reason as in the
M/M/2 example. Consequently the cost of each state is the number of requests for
that state (C(i) = n(i)) just like in the M/M/2 example. Also in this case we restrict
our inspection to work conserving schemes.

4.6.2 Structural Properties of the Example with Markov Modulated
Servers

The state transition structure of the MDP describing the behavior of the queuing sys-
tem with two Markov modulated servers is different from the birth-death structure
of the previous examples, because apart of the number of customers in the system
the system state has to contain information about the “phase” of the Markov modu-
lated servers. With a proper lexicographical numbering of states the set of states with
identical number of customers are continuously indexed (an are commonly referred
to as “level”). Due to the fact that a transition can change the number of customers in
the system at most by one nonzero transition rates are possible only between neigh-
boring levels. Introducing matrix blocks that contain the state transitions between

4.7 Infinite MDPs with Quasi Birth Death Structure 121

levels we obtain a similar birth death structure as in (4.24) on the level of matrix
blocks. This transition matrix structure is referred to Quasi birth death structure and
is studied in the next section.

4.7 Infinite MDPs with Quasi Birth Death Structure

4.7.1 Quasi Birth Death Process

Another regular structure of infinite MDPs with practical interest is the quasi birth
death (QBD) structure [7] (all results of this subsection are available in [7]). The
QBD structure is a generalization of the birth death structure, where the states are
divided into groups of finite sizes and transitions are possible only inside a group
and between neighboring groups. If the states are numbered according to increasing
group identifiers then the transition matrix has the form

L0 F0

B1 L1 F1

B2 L2 F2

B3 L3 F3

. . .
. . .

,

where Lk contains the transitions inside group k, Fk contains the transitions from
group k to group k+1, Bk contains the transitions from group k to group k−1, and
the idle blocks indicate blocks with zero elements. The size of the groups might be
different, but Lk is an invertible square matrix if the Markov chain is irreducible and
positive recurrent.

We introduce a partitioning based on the groups of the QBD. Let sets S1,S2, . . .
be defined such that Sn contains the states of group n. Then matrix Gn(t) describes
the joint distribution of time to reach Sn−1 and the state visited first in Sn−1 starting
from a state in Sn. A similar joint distribution is described by matrix Θ(t) in (4.8),
but here matrix Gn(t) corresponds to the group based partitioning of the QBD.

[Gn(t)]i, j = Pr(X(γn−1) = j,γn−1 < t|X(0) = i), i ∈ Sn, j ∈ Sn−1, (4.33)

where, like before, γn = min(t|X(t) ∈ Sn).
The transform domain expressions for Gn(t) is

sGn(s) = Bn +LnGn(s)+FnGn+1(s)Gn(s)

from which the distribution of the state visited first in group n−1 is the solution of
the recursive equation

122 A. Mészáros and M. Telek

0 = Bn +LnGn +FnGn+1Gn

and the measure related with the mean time to reach group n − 1, G′n =
lims→0

d
ds Gn(s), can be obtained from

Gn = LnG′n +FnG′n+1Gn +FnGn+1G′n.

There are rather few practically interesting cases when the solution of this recursive
equation is available for group dependent transition rates. In practical applications
the case of group independent transition rates is much more common.

If the transition rates are block independent, that is, Bk = B, Lk = L, Fk = F
(∀k ≥ n), then the matrix expressions simplify to

0 = B+LG+FG2 (4.34)

and
G = LG′+FG′G+FGG′.

The first one is a quadratic matrix equation whose minimal non-negative solution
can be computed by efficient numerical procedures. When G is known, the second
equation is a Sylvester equation for G′.

One of the fundamental statements of group independent QBD theory is that the
steady state probability of states has a matrix geometric distribution, i.e.

αn+1 = αnR,

where αn is a vector containing the steady state probabilities of states in Sn. Matrix
R can be calculated from G as

R = F(−L−FG)−1.

In the next section we use G,R and other associated matrices to transform MDPs
whose uncontrolled set has a (group independent) QBD structure.

4.7.2 Solving MDPs with QBD Structure

In this subsection we present a specific method for the transformation of MDPs with
a set of uncontrolled states using the partitioning of Sect. 4.4.3.1.

When the uncontrolled QBD blocks are of size n, the rank of matrix
QUDQD

−1QDU in (4.20) is at most n. In this section we present a Markov chain
transformation method which maintains the steady state reward rate of the MDP
according to Theorems 4.1 and 4.2 The new Markov chain is such that during a
given visit to ŜD only a single state is visited before the transition back to SU . The
key idea of the transformation is to assign a state in the transformed MDP to each
possible transition from SU to SU through a visit in SD. Matrix QUD(−QD)

−1QDU is

4.7 Infinite MDPs with Quasi Birth Death Structure 123

composed of a single (potentially) non-zero block of size n×n associated with the
SU → SD → SU transition from the last block of SU to the same block, since transi-
tions are possible only to the neighboring blocks. This non-zero matrix block is com-
posed of n2 elements. We introduce a modified MDP such that ŜD is composed of n2

elements. The associated Q̂UD, Q̂D, Q̂DU , are defined as follows. Each of Q̂UD, Q̂D

and Q̂DU contain (at most) one non-zero elements per row. It means that transition
i ∈ SU → SD → j ∈ SU is described with a i ∈ SU → ŜD → j ∈ SU transition where
the only state visited in ŜD is associated with the described i ∈ SU → SD → j ∈ SU

transition and is denoted by si→ j. See Fig. 4.3.

Fig. 4.3: Transitions in the transformed Markov chain: i, j ∈ SU , si→ j ∈ ŜD

There are (at most) n2 such state transitions and associated states. If transition
i ∈ SU → SD → j ∈ SU is impossible for a given pair of states in the last block of SU

then impossible state transitions and associated si→ j states can be eliminated from
ŜD, which results in less than n2 states in ŜD.

The transition rate from i to si→ j is the i, j element of the matrix block in
QUD(−QD)

−1QDU associated with the last block of SU , that is

βi j = [QUD(−QD)
−1QDU]i j . (4.35)

The transition rate from si→ j to j is computed based on the conditional mean time
spent in SD supposed that the process moves to SD from state i and the first state
visited in SU is j. When the initial state in SD is known this quantity is provided
in (4.11). In our case we need to consider the distribution of the initial state in SD as
well. For i, j ∈ SU

E(γU |X(0−) = i,X(0+) ∈ SD,X(γU) = j) = (4.36)

=
E(γU I{X(γU)= j}|X(0−) = i,X(0+) ∈ SD)

Pr(X(γU) = j|X(0−) = i,X(0+) ∈ SD)
=

[QUD(−QD)
−2QDU]i j

[QUD(−QD)−1QDU]i j
.

The transition rate from si→ j to j is the inverse of the conditional mean time
in (4.36), that is

ωi j =
[QUD(−QD)

−1QDU]i j

[QUD(−QD)−2QDU]i j
. (4.37)

124 A. Mészáros and M. Telek

With this definition matrix Q̂D is a diagonal matrix (with negative diagonal
elements) and matrix (−Q̂D)

−1Q̂DU is a kind of mapping matrix with only one
nonzero element per row whose value is 1. The identity of QUD(−QD)

−1QDU and
Q̂UD(−Q̂D)

−1Q̂DU , which is required for Theorem 4.1 to hold, comes from the fact
that the only nonzero element of Q̂UD in the row associated with state i is equal with
the appropriate element of QUD(−QD)

−1QDU and the multiplication with matrix
(−Q̂D)

−1Q̂DU maps this element to the appropriate position.
The identity of QUD(−QD)

−11 and Q̂UD(−Q̂D)
−11, can be obtained as follows.

Matrix (−Q̂D)
−1 is a diagonal matrix whose element associated with si→ j is the

expression on the right hand size of (4.36). The only non-zero matrix element of
Q̂UD associated with that state is [QUD(−QD)

−1QDU]i j. The product of the two is
[QUD(−QD)

−2QDU]i j. When we sum up these quantities for all states in ŜD we
obtain QUD(−QD)

−2QDU1= QUD(−QD)
−11.

The reward rate of state si→ j is defined as

Ci→ j =
[QUD(−QD)

−1CD(−QD)
−1QDU]i j

[QUD(−QD)−2QDU]i j
. (4.38)

We still need to show that the reward rates in ŜD are defined such that they fulfill
the conditions of Theorem 4.2. Since matrix (−Q̂D)

−1 is diagonal with diagonal
elements given in (4.36) the product (−Q̂D)

−1ĈD is also diagonal with diagonal

elements
[QUD(−QD)−1CD(−QD)−1QDU]i j

[QUD(−QD)−1QDU]i j
. Multiplying this diagonal element with

the i to si→ j transition of matrix Q̂UD we have [QUD(−QD)
−1CD(−QD)

−1QDU]i j.
Summing up this quantity for the destination state j we have

QUD(−QD)
−1CD(−QD)

−1QDU1= QUD(−QD)
−1CD1 .

We note that there are more than one reward rate definition which fulfills Theo-
rem 4.2. The one in (4.38) is such that the above described (Q,C)→ (Q̂,Ĉ) Markov
reward model transformation does not modify the Markov reward model (apart of
potential renumbering of states) whose original structure (defined by matrix Q) com-
plies with the structure of matrix Q̂ depicted in Fig. 4.3.

4.7.2.1 QBD Measures Associated Infinite Sets

Already Theorems 4.1 and 4.2 indicate that the Markov chain transformation ap-
proach is applicable only if we can compute the measures on the left hand size
of (4.17)–(4.19). If SD is composed by a finite number of states it is a trivial com-
putational task with O(|SD|3) complexity. If SD is composed by an infinite number
of states it is a more difficult problem which has a nice solution only in a limited
number of cases. One those cases is Markov chain with group independent QBD
structure. In that case the QUD QD and QDU matrices have the following structure.

4.7 Infinite MDPs with Quasi Birth Death Structure 125

QUD =

· · ·
· · ·

F · · ·
, QD =

L F
B L F

B L
. . .

. . .
. . .

, QDU =

B

...
...

...

.

Due to the block structure of matrix QD its inverse is a full matrix. When, to compute
QUD(−QD)

−1QDU , we multiply this full matrix with QUD from the left and with
QDU from the right only the upper left block of (−QD)

−1 plays role in the result
and that block is computable based on the process restricted to the first group SD

[7] as (−L−FG)−1. The essential main value of this expression is that a block of
an infinite matrix inverse can be computed by a finite matrix inverse. Consequently
the only non-zero block of matrix QUD(−QD)

−1QDU , its lower left block, equals to
FZB, where matrix Z is defined as Z = (−L−FG)−1. That is

[QUD(−QD)
−1QDU]i j = [FZB]i j , (4.39)

where the left hand side of the equation refers to the i, j element of the non-zero
block. We note that R = FZ and G = ZB, which can be used to simplify the nota-
tions. Unfortunately, the computation of QUD(−QD)

−2QDU requires the evaluation
of further blocks of the infinite matrix inverse (−QD)

−1, because all blocks of the
upper row and the left column of (−QD)

−1 contribute to the upper left block of
(−QD)

−2. The kth block of the upper row of (−QD)
−1 is Z (FZ)k−1 = ZRk−1, and

the kth block of the left column of (−QD)
−1 is (ZB)k−1 Z = Gk−1Z. Using these

relations, we have

[QUD(−QD)
−2QDU]i j = [

∞

∑
k=1

RkGk]i j , (4.40)

where the infinite sum, S = ∑∞
k=1 RkGk, can be computed by the following simple

iterative procedure in Table 4.1. For positive recurrent Markov chains the infinite
summation converges to a finite limit, because the spectral radius of R is less than 1
and the spectral radius of G is 1.

The block structure of the reward rate matrix is

CD =

CD1

CD2
. . .

,

where matrices CDk denote the reward rate matrix associated with the kth group
of SD. Utilizing the knowledge on the upper row of (−QD)

−1 the overall reward
measure associated with a visit to SD can be computed as

126 A. Mészáros and M. Telek

X = I;
S = 0;
Repeat

X = RXG;
S = S+X ;

Until ‖X‖< ε;

Table 4.1: Procedure 1

X = I; Y = I;
S = 0; k = 1;
Repeat

X = RX ; Y = Y G;
S = S+XCDkY ; k++;

Until ‖XCDkY‖< ε;

Table 4.2: Procedure 2

QUD(−QD)
−1CD1=

∞

∑
k=1

RkCDk1 . (4.41)

The evaluation of this infinite sum depends on the properties of the reward rate
matrix. The infinite summation converges to a finite limit if the Markov chain is
positive recurrent and the CDk series increases sub-exponentially. In practice, the
most common case is when CDk is proportional to k which results in a finite limit
for positive recurrent Markov chains.

If the reward rate is group dependent in SD, then numerical iterations are required
to compute the infinite summation. If the reward rate is group independent in SD,
that is CDk = C̄D for ∀k ≥ 1, then

QUD(−QD)
−1CD1=

∞

∑
k=1

(FZ)k C̄D1= FZ(I−FZ)−1C̄D1 ,

which expression, on the right hand side, contains operations with computable finite
matrices only. Assuming group dependent reward rates and utilizing again the upper
row and the left column of (−QD)

−1, we have

[QUD(−QD)
−1CD(−QD)

−1QDU]i j = [
∞

∑
k=1

RkCDkGk]i j , (4.42)

where the infinite sum can be computed by the numerical procedure in Table 4.2. For
positive recurrent Markov chains this infinite summation has the same convergence
behavior as the one in (4.41).

Finally, we summarize the QBD specific measures of the Markov chain transfor-
mation for later use

βi j =[FZB]i j , (4.43)

ωi j =
[FZB]i j

[∑∞
k=1 RkGk]i j

, (4.44)

Ci→ j =
[∑∞

k=1 RkCDkGk]i j

[∑∞
k=1 RkGk]i j

. (4.45)

4.8 Solution and Numerical Analysis of MDPs with QBD Structure 127

4.8 Solution and Numerical Analysis of MDPs with QBD
Structure

4.8.1 Solution of the Example with Markov Modulated Servers

Let us denote by S0,S1 the corresponding matrices of the MAP and use the stan-
dard ⊗ and ⊕ notation for the Kronecker product and Kronecker sum operators
respectively. Furthermore let us denote by Ix the identity matrix of size x. Then the
generator matrix of the describing MDP is

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

L0 F0 0 · · ·
B1 L1 F1 0 · · ·
0 B2 L F 0
... 0 B L F

. . .
...

. . .
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.46)

The blocks of Q are

L0 =−λ I4, F0 = λ
(
P I4−P

)
, B1 =

(
I2⊗S1

S1⊗ I2

)
,

L1 =

(
I2⊗S0−λ I4 0

0 S0⊗ I2−λ I4

)
, F1 = λ

(
I4

I4

)
,

B2 =
(
S1⊗ I2 I2⊗S1

)
, L = S0⊕S0−λ I4, F = λ I4,

B = S1⊗ I2 + I2⊗S1,

where

P =

⎛

⎜
⎜
⎝

z 0 0 0
0 p 0 0
0 0 1− p 0
0 0 0 z

⎞

⎟
⎟
⎠ , (4.47)

where z is an arbitrary value in [0,1] The cost function is

Ca
i,i =

⎧
⎨

⎩

0, for 1≥ i≤ 4
1, for 5≥ i≤ 12
� i

4�cm, otherwise .
(4.48)

In this queueing system there is one simple question to be answered: If both
servers are idle, one of them is in phase 1 and the other one is in phase 2, which
server has to process the next arriving customer to have a minimal average system
time? In the generator this decision is represented by p in matrix P. If p = 1 we
choose the server in phase 1, if p = 0 we choose the server 2.

Let us take a specific example, where λ = 10 and

128 A. Mészáros and M. Telek

S0 =

(
−0.1 0.05

0 −100

)
,

(
0.05 0

5 95

)
. (4.49)

and let U = {1,2,3,4} as indicated by the partitioning in (4.46).
Based on intuition and the results of the M/M/2 system the optimal strategy is to

choose the server which can serve the customer faster. This means that we compare
the mean service time starting from phase 1 and phase 2, i.e., t1 = e1

T (−S0)
−11

and t2 = e2
T (−S0)

−11, and if the first expression is smaller, we choose the server in
phase 1 (p = 1), otherwise the one in phase 2 (p = 0), in this case t1 = x, t2 = x, thus
p = 1 should be optimal. If we solve the MDP, however, we find that E(n) ≈ 0.11
if p = 0 and E ≈ 0.098 if p = 1; i.e., it is better to choose the server which serves
the customer slower. This counter-intuitive result can be interpreted the following
way. If we use the faster server for the first customer, the probability of finishing the
service before a new arrival is high, as the mean service time of the faster state is
smaller than the mean inter-arrival time of a new customer. Upon service there is a
chance that the server moves to the slower state, leaving the system with two servers
in the phase with higher service time. In this state there is a higher chance that more
than two consecutive customers arrive before the first customer can be served, which
leads to a higher average system time. In other words, assigning the customer to
the faster server leads to a more deteriorated state after service completion, while
assigning the customer with the server in the slower phase, there is a chance that
the server will move to the faster state upon service, thus the state of the system
improves. One can think of this effect as the repair of the server at the cost of a
slower service. Extensive numerical investigations suggest that choosing the server
with higher service time is optimal for any M/MAP(2)/2 system regardless of the
other characteristics of the service MAP and the intensity of arrivals.

4.8.2 Markov Modulated Server with Three Background States

In the previous example a simple—although counterintuitive—rule could be made
for the optimal decision. For even slightly more complicated systems this becomes
increasingly difficult. Let us take the same system as before just change the service
MAP from a MAP(2) to a MAP(3):

S0 =

⎛

⎝
−1 0 0
0 −2.3 0
0 0 −100

⎞

⎠ , S1 =

⎛

⎝
0 1 0
0 0 2.3

100 0 0

⎞

⎠ .

Solution of this system is done the same way as before. Let us set λ = 1.2. In this
case the optimal strategy is to always prioritize the server in phase 1 and choose
the server in phase 2 over the one in phase 3. This is in accordance with the results
of the M/MAP(2)/2 case, i.e., we choose the slowest available server. For λ = 1.5,
however, it is better to choose the server in phase 3, if the other server is in phase 2.
This example demonstrates, that, even for very simple cases, the optimal strategy

References 129

cannot be determined based on intuition or simple examination of the system. In
these cases the numerical solution of the problem is required.

4.9 Conclusion

We have considered the problem of numerical analysis of MDPs with very large and
infinite state spaces, where decisions can be made only in a finite subset of states.
To handle such MDP models we introduced a general framework for model trans-
formations of MDP such that the modified model has the same optimal policy as
the original one. The applicability of this framework depends on the computabil-
ity of some performance measures associated with a subset of states of the MDP
model. We presented the computation of those subset measures in case of two spe-
cial Markov chain structures the birth death and the quasi birth death structure. We
applied the proposed methodology for a set of application examples where the opti-
mal control of queueing systems with infinite buffer is of interest.

Acknowledgements This work is partially supported by the OTKA K101150 projects.

References

1. E. Altman, Constrained Markov Decision Processes, vol. 7 (CRC, Boca Raton,
FL, 1999)

2. J.A. Buzacott, Markov approach to finding failure times of repairable systems.
IEEE Trans. Reliab. R-19(4), 128–134 (1970)

3. D. Efrosinin, Controlled queueing systems with heterogeneous servers. Ph.D.
thesis, University of Trier, 2004

4. J. Filar, K. Vrieze, Competitive Markov Decision Processes (Springer, Berlin,
1997)

5. K. Jagannathan, S. Mannor, I. Menache, E. Modiano, A state action frequency
approach to throughput maximization over uncertain wireless channels. Internet
Math. 9(2–3), 136–160 (2013)

6. Y. Kocaga, A. Ward, Admission control for a multi-server queue with abandon-
ment. Queueing Syst. 65(3), 275–323 (2010)

7. G. Latouche, V. Ramaswami, Introduction to Matrix Analytic Methods in
Stochastic Modeling, vol. 5 (SIAM, Philadelphia, 1999)

8. A.Y. Ng, M. Jordan, Pegasus: a policy search method for large mdps and
pomdps, in Proceedings of the Sixteenth Conference on Uncertainty in Arti-
ficial Intelligence (Morgan Kaufmann, Los Altos, CA, 2000), pp. 406–415

9. J. Slegers, I. Mitrani, N. Thomas, Optimal dynamic server allocation in systems
with on/off sources, in Formal Methods and Stochastic Models for Performance
Evaluation (Springer, Berlin, 2007), pp. 186–199

Chapter 5
Structures of Optimal Policies in MDPs with
Unbounded Jumps: The State of Our Art

H. Blok and F.M. Spieksma

Abstract The derivation of structural properties of countable state Markov decision
processes (MDPs) is generally based on sample path methods or value iteration ar-
guments. In the latter case, the method is to inductively prove the structural proper-
ties of interest for the n-horizon value function. A limit argument then should allow
to deduce the structural properties for the infinite-horizon value function.
In the case of discrete time MDPs with the objective to minimise the total expected
α-discounted cost, this procedure is justified under mild conditions. When the ob-
jective is to minimise the long run average expected cost, value iteration does not
necessarily converge. Allowing time to be continuous does not generate any fur-
ther complications when the jump rates are bounded as a function of state, due to
applicability of uniformisation. However, when the jump rates are unbounded as a
function of state, uniformisation is only applicable after a suitable perturbation of
the jump rates that does not destroy the desired structural properties. Thus, also a
second limit argument is required.
The importance of unbounded rate countable state MDPs has increased lately, due to
applications modelling customer or patient impatience and abandonment. The the-
ory validating the required limit arguments however does not seem to be complete,
and results are scattered over the literature.
In this chapter our objective has been to provide a systematic way to tackle this prob-
lem under relatively mild conditions, and to provide the necessary theory validating
the presented approach. The base model is a parametrised Markov process (MP):

H. Blok (�)
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: h.blok@tue.nl

F.M. Spieksma
Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
e-mail: spieksma@math.leidenuniv.nl

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 5

131

mailto:h.blok@tue.nl
mailto:spieksma@math.leidenuniv.nl

132 H. Blok and F.M. Spieksma

both perturbed MPs and MDPs are special cases of a parametrised MP. The advan-
tage is that the parameter can simultaneously model a policy and a perturbation.

5.1 Introduction

The question how to rigorously prove structural results for continuous time Markov
decision problems (MDPs) with a countable state space and unbounded jump rates
(as a function of state) seems to be an assiduous task. As a typical example one may
consider the competing queues model with queue dependent cost rates per customer
and per unit time, where the objective is to determine the server allocation that
minimises the total expected discounted cost or expected average cost per unit time.
Both discounted and average cost are known to be minimised by the cμ-rule, which
prescribes to allocate the server to the queue that yields the largest cost reduction
per unit time. A possible method to tackle this problem is to apply value iteration
(VI) to the uniformised discrete time MDP and show that optimality of the cμ-rule
propagates through the VI step.

If customer abandonment is allowed, the resulting MDP is a continuous time
MDP with unbounded jumps, since customers may renege at a rate that is propor-
tional to the number of customers present in each of the queues. In order to apply
VI, one needs to time-discretise the MDP. One way to associate a discrete time MDP
with this problem is by constructing the decision process embedded on the jumps
of the continuous time MDP. However, it is not clear whether structural properties
propagate through the VI step (cf. Sect. 5.3.4). Another solution is to perturb or trun-
cate the continuous time MDP, so that it becomes uniformisable and then apply VI.
A suitable truncation or perturbation needs to be invariant with respect to structural
properties of interest of the investigated MDP.

The first question is whether there exist generic truncation methods that possess
such an invariance property. Clearly, this can never be systematically proved, since
it depends on the properties that one wishes to prove. However, one might be able to
formulate recommendations as to what kind of perturbation methods perform well,
with regard to such an invariance requirement. The paper [22] studies two competing
queues with abandonments, and a problem-specific truncation is used. Later [8] has
introduced a truncation method, called smoothed rate truncation (SRT) that so far
seems to work well for problems where a simple bounded rate truncation (as in
Sect. 5.3.4) does not work. In addition, it can be used for numerical applications
in bounded rate optimisation problems (cf. Sect. 5.2.2). The SRT method has been
used in a companion paper [9] for identifying conditions under which a simple index
policy is optimal in the competing queues problem with abandonments.

Consecutively, suppose that an application of the truncation method yields trun-
cated MDPs with optimal policies and a value function that have the properties of
interest. For instance, the above mentioned application of SRT to the competing
queues example with abandoning customers yields optimality of an index policy
for each truncated MDP. However, these properties still have to be shown to ap-

5.1 Introduction 133

ply to the original non-truncated problem. Thus, convergence results are required
that yield continuity of the optimal policy and value function in the truncation pa-
rameter, in order to deduce the desired results for the non-truncated MDP from the
truncated ones.

A second question therefore is as to what kind of easily verifiable conditions
on the input parameters of the perturbed MDP guarantees convergence of the value
function and optimal policy to the corresponding ones of the original unperturbed
MDP. In [22], the authors had to prove a separate convergence result apart from de-
vising a suitable truncation and prove that VI propagates the properties of interest.
Apparently, theory based on a set of generic conditions that can incorporate conver-
gence within the optimisation framework was lacking. This lack is precisely what
has hampered the analysis of the server farm model in [1], where the authors have
restricted their analysis to showing threshold optimality of a bounded rate perturbed
variant of the original model. Apparently no appropriate tools for deducing thresh-
old optimality of the original unbounded problem from the results for the perturbed
one were available to them.

A third major problem occurs in the context of the average cost criterion. In
particular, VI is not always guaranteed to converge. This is true under weak as-
sumptions in discounted cost problems, however, in average cost problems there are
only limited convergence results (cf. Sect. 5.2.3). One of these requires strong drift
conditions, that do not allow transience under any stationary deterministic policy.
However, often this is not a convenient requirement. One may get around this dif-
ficulty by a vanishing discount approach, which analyses the expected average cost
as a limit of expected α-discounted costs as the discount factor tends to 0 (or 1,
depending on how the discount factor is modelled).

For a model like the competing queues model with abandonments, a multistep
procedure to obtain structural results for the average cost problem then would be as
follows. First, consider the α-discounted cost truncated problem. Structural results
for the α-discounted cost non-truncated problem follow, by taking the limit for the
truncation parameter to vanish. Finally, taking the limit of the discount factor to 0
hopefully yields the final structural results for the original continuous time average
cost problem.

For some of these steps theoretical validation has been provided for in the liter-
ature, but not for all, and not always under conditions that are easily checked. The
main focus of this chapter is to fill some gaps in the described procedure, whilst
requiring conditions that are formulated in terms of the input parameters. Based
on the obtained results, we aim to provide a systematic and feasible approach for
attacking the validation of structural properties, in the spirit of the multistep proce-
dure sketched above. We hope that this multistep procedure will also be beneficial
to other researchers as a roadmap for tackling the problem of deriving structural
results for problems modelled as MDPs.

We do not address the methods of propagating structures of optimal policies
and value function through the VI step. Such methods belong to the domain of
‘event based dynamic programming’, and they have been discussed thoroughly in
[33], with extensions to SRT and other rate truncations in [11]. Furthermore, we

134 H. Blok and F.M. Spieksma

do not include an elaborate evaluation of closely related results from the literature.
Some detailed comments has been included in this chapter, whenever we thought
this relevant. We also would like to emphasize that the derivations in this chapter
are not new: we mainly adapted earlier original proofs to fill the gaps that hampered
application of the scheme we have presented in this chapter for deriving structural
properties. We have always tried to refer to the appropriate reference containing the
proof ideas that we have adapted.

Another omission in this work is the study of perturbed MDPs with the average
cost criterion. However, the conditions required for achieving the desired continuity
results as a function of a perturbation parameter are quite strong. Therefore a more
recommendable approach would be the one we have developed in this chapter, using
the vanishing discount approach. As a last remark: we generally restrict to the class
of stationary policies, and not history-dependent ones. Especially the results quoted
for discrete time MDPs apply to the larger policy class. In continuous time MDPs
allowing history-dependent policies causes extra technical complications that we do
not want to address in this work.

A short overview of the chapter content is provided next. In Sect. 5.2 we discuss
discrete time, countable state MDPs, with compact action sets. First, the α-discount
optimality criterion is discussed, cf. Sect. 5.2.1. This will be the base case model,
to which the MDP problems might have to be reduced in order to investigate its
structural properties. We therefore describe it quite elaborately. In addition, we have
put it into a framework that incorporates truncations or perturbations. We call this a
parametrised Markov process. Interestingly enough, ‘standard’ but quite weak drift
conditions introduced for α-discounted cost MDPs in discrete time, allowed this
extension to parametrised Markov processes, with no extra effort and restriction. It
incorporates the finite state space case, elaborated on in the seminal book [20].

In Sect. 5.2.2 we provide a discussion of SRT, as a method for numerical investi-
gation of structural properties of a countable state MDP. The conditions that we use
are a weak drift condition on the parametrised process, plus reasonable continuity
conditions. This has been based on the work in [34, 54] for MDPs.

In Sect. 5.2.3 we study the expected average cost criterion, whilst restricting to
non-negative cost, i.e. negative dynamic programming. This restriction allows tran-
sience, and the analysis follows [15], in the form presented by Sennott [44]. Basi-
cally, the conditions imposed require the existence of one ‘well-behaved’ policy, and
a variant of inf-compact costs. The latter ensures that optimal policies have a guar-
anteed drift towards a finite set of low cost states. The contribution of these works
is that they validate the vanishing discount approach, thus allowing to analyse the
discrete time average cost problem via the discrete time α-discounted cost problem.

Then we turn to studying continuous time MDPs in Sect. 5.3. First the α-
discounted cost problem is considered. The drift conditions on parametrised dis-
crete time Markov processes have a natural extension to continuous time. The results
listed are based on [13], but the literature contains quite some work in the same spirit
within the framework of MDPs with more general state spaces, cf. e.g. [27, 38],
and references therein. A closely related perturbation approach has been studied in
[37]. Since perturbations are incorporated in the parametrised framework, the ap-

5.2 Discrete Time Model 135

proach allows to study bounded jump perturbations. Indeed, optimal policies and
value functions are continuous as a function of the perturbation parameter. In this
way, [13] obtains threshold optimality of the original unbounded α-discounted cost
variant of the server farm model studied in [1].

Finally, for the expected average cost criterion, we use the natural generalisation
of the discrete time conditions. Although closely related to analyses in [27, 38]
and references therein, as far as we know this form has not appeared yet in the
literature. The vanishing discount approach is validated in the same way as was
done for the discrete time MDP. This reduces the problem of studying structural
properties for average cost MDPs satisfying the proposed conditions, to analysing a
continuous time α-discounted cost MDP, for which the solution method has already
been described. As a consequence, also average cost threshold optimality for the
afore mentioned server farm model from [1] follows from α-discount optimality of
a threshold policy, cf. [13].

Dispersed through the chapter are roadmaps for the validation of structural prop-
erties. These are summarised in Sect. 5.3.4.

Notice that instead of the usual nomenclature ‘Markov chain’ for a Markov pro-
cess in discrete time, we will consistently use ‘Markov process’, whether it be a
process in discrete or continuous time. We use S as the notation for a countable state
space, and Z+ = {0,1, . . .}. The discount factor α ∈ (0,1) in discrete time models
will mean that cost is discounted at rate 1−α , contrary to the general use. This
allowed a more direct analogy with continuous time models.

5.2 Discrete Time Model

In order to illustrate the formal setup of a parametrised Markov process, we will first
introduce a simple example motivating the use of parametrised processes instead of
restricting to MDPs.

Ps(l) x1 x2

p1

1 - p1 1

exp(m1) exp(m2)

Fig. 5.1: Inspection/reparation centre

Example 1 (Server Allocation) Consider the following server allocation problem,
see Fig. 5.1. Products arrive at an inspection/repair centre according to a Poisson
process with rate λ . Inspection takes an exponentially distributed amount of time

136 H. Blok and F.M. Spieksma

with parameter μ1. After finishing inspection in unit 1, with probability p1 a repair
at unit 2 is required, which takes an exp(μ2) distributed amount of time, p1 ∈ (0,1).
With probability 1− p1 the product does not require any additional repair and it
leaves the center after finishing inspection.

There is only one repair man, the server, who has to be allocated to one of the
two units. We assume that idling is not allowed (no coffee breaks while there is work
to do). Allocation is based on the number of products i1 in the inspection phase
unit 1, and the number of products i2 in the repair phase unit 2. Thus the state space
is S = Z2

+. The goal is to determine an allocation policy that minimises the overall
number of products waiting for inspection and/or repair. The specific optimisation
criteria that we will study, will be discussed below.

This problem can then be modelled as an MDP, for which optimal state-
dependent allocation decisions may be computed through various methods.

However, for numerical computation of the optimal cost and allocation decisions,
the state space needs to be truncated. A minimal requirement for a suitable trunca-
tion is convergence of the optimal cost and allocation decision of the truncated
process to the ones of the original non-truncated process that we wish to analyse.
Convergence properties are not difficult to obtain; mild conditions that ensure the
existence of optimal policies and the convergence of suitable algorithms, also yield
continuity properties of associated truncated MDPs. Thus it makes sense to incor-
porate control (which is essentially a state-dependent parameter) and truncation
within one framework, which we will call a parametrised Markov process.

Note that truncations might affect the structural properties of the optimal allo-
cation as a function of the state, see Fig. 5.2 in the continuation Example 8 of the
analysis of the tandem queue.

We will next set up the framework of parametrised Markov processes in discrete
time. To this end, let Φ be a parameter space. With each parameter φ associate S×S
stochastic matrix Pφ , and a cost vector c(φ) : S→ℜ. We denote the corresponding
elements by pφ (j | i), x,y ∈ S, and cφ (i), i ∈ S. Let f : S→ℜ, and denote the value
at j ∈ S by f (j). Then, Pφ f is the function with value

Pφ f (i) =∑
j

pφ (j | i) f (j)

at point i ∈ S, provided the integral is well-defined. We further denote by Pφ
i· the i-th

row of Pφ φ ∈Φ , i ∈ S.
To transition matrix Pφ one can associate a Markov process on the path space

Ω = S∞. Given a distribution ν on S, the Kolmogorov consistency theorem (see
e.g. [10]) provides the existence of a probability measure Pφ

ν on Ω , such that the
canonical process {Xn}n on Ω , defined by

Xn(ω) = ωn, ω = (ω1, . . . ,ωn, . . .)

5.2 Discrete Time Model 137

is a Markov process with transition matrix Pφ , and probability distribution Pφ
ν . The

corresponding expectation operator is denoted by Eφ
ν . We further denote Pφ ,(n) for

the n-th iterate of Pφ , where Pφ ,(0) = I equals the S×S identity matrix.
We assume the following basic assumption.

Assumption 1 The following conditions hold:

i) φ �→ pφ (j | i) continuous on Φ for each i, j ∈ S;
ii) φ �→ cφ (i) is continuous on Φ for each i ∈ S.

iii) the parameter space Φ is locally compact;

To characterise MDPs in this set up, we use the following concept.

Definition 5.1. We say that {Pφ ,cφ}φ∈Φ has the product property with respect to
Φ , if for any φ 1,φ 2 ∈Φ , i ∈ S, there exists φ ∈Φ with

Pφ
j· =

{
Pφ1

j· , j = i

Pφ2

j· , j �= i
cφ (j) =

{
cφ

1
(j), j = i

cφ
2
(j), j �= i;

(5.1)

For notational convenience we will simply say that Φ has the product property. In
case the dependence on φ is expressed in the probability or expectation operators,
we write c(Xn) instead cφ (Xn).

Thus, under the product property it is possible to ‘exchange’ the i-th rows of tran-
sition matrix Pφ2

and cost vector cφ
2

for the i-th rows of Pφ1
, and cφ

1
respectively,

φ 1,φ 2 ∈Φ , without ‘leaving’ the parameter set Φ .

Remark 5.1. An MDP is usually set up by specifying an action setA(i) in state i, and
the associated transition probabilities from x as well as the immediate cost incurred
in i, per action from A(i). Then the set of deterministic policies can be identified
with A =∏i∈SA(i). Putting Φ :=A yields a parametrised Markov process with a
parameter set Φ with the product property. This is easily verified.

Additionally, let Π(i) be the collection of all probability distributions on A(i)
for each state i ∈ S (details are beyond the scope of this paper). The collection
Π = ∏iΠ(i) of all stationary randomised policies can be viewed as a parameter
set having the product property as well. We will not consider this explicitly, but all
discussed results cover this case.

If Φ has the product property, then the parametrised Markov process is an MDP.
This follows directly by putting A(i) = Φ , i ∈ S. This point of view is not new: in
[29] MDPs have been set up as a collection of stochastic matrices with associated
cost function with the product property.

Example 2 (Continuation of Example 1 Server Allocation) As discussed in the
above, allocation decisions are based on the number of products in units 1 and 2.
Therefore, the process state Xn = i = (i1, i2), at time n, corresponds to i1 products
being present at time n in unit 1 and i2 in unit 2, i = (i1, i2) ∈ S. The action spaces
are

138 H. Blok and F.M. Spieksma

A(i) =

⎧
⎪⎪⎨

⎪⎪⎩

{1,2}, if i1, i2 > 0;
{1}, if i2 = 0;
{2}, if i1 = 0;
{0} if i1 = i2 = 0.

Put A=∏i∈SA(i). Then, δ ∈ A is a state-dependent server allocation rule, where
δ (i) ∈ {1,2} is the allocation of the server to unit δ (i), when the system state is i.

For this model, we consider truncations that consist of ‘deleting’ the transitions
leading from states inside rectangles of the form R(N1,N2) = {(i1, i2) ∈ Z+ | i1 ≤
N1, i2 ≤ N2} out of the same rectangle, N1,N2 = 1,2, Put

Φ = {φ |φ = (N1,N2,δ) |N1,N2 ∈ Z+∪{∞},δ ∈ A}.

The transition probabilities associated with each parameter are obtained by uni-
formisation, where we scale λ+μ1+μ2 = 1. Simultaneous events cannot take place
within a time-slot after this procedure, since the discrete time process described is
an embedded jump process where the jump rates have been uniformised over states
and potential decisions. For φ = (N1,N2,δ) this leads to:

pφ (j | i) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ j = (i1 +1, i2), i1 �= N1

p1μ1 j = (i1−1, i2 +1), i1 > 0, i2 �= N2,δ (i) = 1,
(1− p1)μ1 j = (i1−1, i2), i1 > 0,δ (i) = 1
μ2 j = (i1, i2−1), i2 > 0,δ (i) = 2
1−∑

j′ �=i

pφ (j′ | i) j = i.

In order that the truncated process lives on all of S, we have not interfered with
the transition probabilities outside the rectangle R(N1,N2). Note that R(N1,N2) is
a finite and closed set, which is reached under any allocation rule with probability
1. We would like to point out that the allocation action sets are not affected by the
truncation parameter in this model. In a similar manner, other truncations can be
incorporated in the parametrised setting as well.

The cost vector considered here is

cφ (i) = i1 + i2, φ ∈Φ ,

as the quality of the process is judged by the overall number of products in the two
units.

Fixing the truncation parameter (N1,N2) leads to the parameter set

ΦN1,N2 = {φ ∈Φ |φ = (N1,N2,δ),δ ∈ A}= {(N1,N2)}×∏
i∈S

A(i).

ΦN1,N2 corresponds to the collection of deterministic server allocations for the
(N1,N2)-truncated process, and it has the product property. Thus, it is an MDP.
Parameter set Φ∞,∞ corresponds to the set of stationary, deterministic policies for
the ‘original’ non-truncated MDP.

5.2 Discrete Time Model 139

Clearly, Φ is not a product set, essentially because the truncation parameter
can not be state-dependently chosen. To see this, let φ 1 = (N1,N2,δ) and φ 2 =
(N′1,N

′
2,δ ′), with (N′1,N

′
2) �= (N1,N2). There is no state i for which there exists φ ∈Φ

with property (5.1).
Finally, the verification of Assumption 1 is trivial. Note further that A(i) is com-

pact (in the discrete topology). Also, Z+∪{∞} is compact in the one-point compact-
ification, based on the discrete topology. By Tychonov’s theorem, the infinite product
of compact spaces is compact in the product topology, and so Φ is compact.

Since convergence in the product topology is the topology of pointwise conver-
gence, the desired continuity properties then immediately follow.

Next we define the various performance measures and optimality criteria that we
will study. Later on we will provide conditions under which these are well-defined,
and optimal polices exist.

For 0 < α < 1, define the expected total α-discounted cost value function V φ
α

under parameter φ ∈Φ by

V φ
α (i) = E

φ
i

[∞

∑
n=0

(1−α)nc(Xn)
]
, i ∈ S. (5.2)

Notice that the discount factor is taken to be 1−α to allow for a more direct analogy
to the continuous time case.

Next suppose that Φ has the product property. Define the minimum expected total
α-discounted cost V ∗α in Φ by

V ∗α (i) = inf
φ∈Φ

V φ
α (i), i ∈ S.

If for some φ ∈Φ it holds that V φ
α =V ∗α , then φ is said to be an α-discount optimal

policy (in Φ).
The expected average cost gφ under parameter φ ∈Φ is given by

gφ (i) = limsup
N→∞

1
N +1

E
φ
i

[N

∑
n=0

c(Xn)
]
, i ∈ S.

If Φ has the product property, the minimum expected average cost (w.r.t. Φ) is
defined as

g∗(i) = inf
φ∈Φ

gφ (i), i ∈ S.

If for φ ∈Φ it holds that gφ = g∗, then φ is called an average optimal policy (in Φ).
A stronger notion of optimality, called Blackwell optimality, applies more often

than is generally noted. We define it next (see also [17]).
Let Φ have the product property. The policy φ ∗ ∈ Φ is Blackwell optimal in

Φ , if for any i ∈ S, φ ∈ Φ , there exists α(i,φ) > 0, such that V φ∗
α (i) ≤ V φ

α (i) for
α <α(i,φ). Additionally, φ ∗ is strongly Blackwell optimal, if infi∈S,φ∈Φ α(i,φ)> 0.

140 H. Blok and F.M. Spieksma

The restriction to a product set in the above optimality criteria is due to the fact
that these criteria typically involve per state minimisations. Without the product
property, the existence of a parameter that is a minimiser for all states simultane-
ously would be a mere coincidence.

5.2.1 Discounted Cost

To determine the discounted cost Vα , an important instrument is the (discrete time)
discount optimality equation (DDOE)

u(i) = inf
φ∈Φ

{
cφ (i)+(1−α)∑

j∈S

pφ (j | i)u j

}
, i ∈ S, (5.3)

w.r.t. to a parameter set Φ with the product property. In this subsection we show
that mild conditions guarantee the existence of a unique solution to this equation
in a certain space of functions. Moreover, the inf is a min, and a minimising policy
in (5.3) is optimal in Φ (and even optimal within the larger set of randomised and
non-stationary policies generated by Φ).

The condition used here has been taken from [34, 54].

Definition 5.2. Let γ ∈ℜ. The function M : S→ (0,∞) is called a (γ ,Φ)-drift func-
tion if PφM ≤ γM for all φ ∈Φ . Note that ‘≤’ stands for component-wise ordering.

Definition 5.3. The Banach space of M-bounded functions on S is denoted by
�∞(S,M). This means that f ∈ �∞(S,M) if and only if f : S→ℜ and

|| f ||M = sup
i∈S

| f (i)|
M(i)

< ∞.

Assumption 2 (α)

1. There exist a constant γ < 1/(1−α) and a function M : S→ (0,∞) such that M
is (γ ,Φ)-drift function and that φ �→ PφM is component-wise continuous;

2. bM := supφ ||cφ ||M < ∞.

The above assumption allows to rewrite (5.2) as

V φ
α =

∞

∑
n=0

(1−α)nPφ ,(n)cφ .

The following lemma is quite straightforward to prove. For completeness we give
the details.

Lemma 5.1. Suppose that the Assumptions 1 and 2 (α) hold, then φ �→ V φ
α is

component-wise continuous and V φ
α is the unique solution in �∞(S,M) to

u = cφ +(1−α)Pφu. (5.4)

5.2 Discrete Time Model 141

Proof. First notice that V φ
α ∈ �∞(S,M), since

|V φ
α |= |

∞

∑
n=0

(1−α)nPφ ,(n)cφ | ≤
∞

∑
n=0

(1−α)nPφ ,(n)bM ·M

≤
∞

∑
n=0

(1−α)nγnbM ·M =
bM

1− (1−α)γ
M.

Next, V φ
α is a solution to Eq. (5.4), since

(1−α)PφV φ
α = (1−α)Pφ

∞

∑
n=0

(1−α)nPφ ,(n)cφ

=
∞

∑
n=1

(1−α)nPφ ,(n)cφ =V φ
α − cφ .

Let f = (f (i))i ∈ �∞(S,M) be any solution to Eq. (5.4), then

V φ
α (i)− f (i) = (1−α)∑

j
pφ (j | i)V φ

α (j)− f (j))

= (1−α)n∑
j

pφ ,(n)(j | i)(V φ
α (j)− f (j)).

Hence,

|V φ
α (i)− f (i)| ≤ (1−α)n∑

j
pφ ,(n)(j | i)|V φ

α (j)− f (j)|

≤ (1−α)nPφ ,(n)(φ)M(j) ·
(bM

1− (1−α)γ
+ || f ||M

)

≤ (1−α)nγnM(i) ·
(bM

1− (1−α)γ
+ || f ||M

)
→ 0, n→ ∞.

This implies f =V φ
α , hence V φ

α is the unique solution to Eq. (5.4) in �∞(S,M).
Finally, to show that φ �→ V φ

α (i), i ∈ S, is continuous, notice that by assumption
φ �→ PφM is component-wise continuous. It follows that φ �→ Pφ ,(n)M component-
wise continuous. Since Pφ ,(n)M ≤ γnM, the dominated convergence theorem yields
that φ �→ ∑∞

n=0(1−α)nPφ ,(n)M < ∞ is component-wise continuous. Furthermore,
since φ �→ cφ is component-wise continuous and |cφ | ≤ bM ·M, an application of
the generalised dominated convergence theorem ([41, Proposition 11.18]) implies
component-wise continuity of φ �→ ∑∞

n=0(1−α)nPφ ,(n)cφ =V φ
α .

The following theorem is a well-known result by Wessels [54].

Theorem 5.1 (cf. Wessels [54]). Suppose that Φ is a compact set with the product
property, and suppose that Assumptions 1 and 2(α) hold. Then V ∗α is finite and
the unique solution in �∞(S,M) to the discount optimality equation (DDOE) (5.3)
w.r.t. Φ .

142 H. Blok and F.M. Spieksma

Moreover, the infimum is attained as a minimum. For any φ ∗ ∈ Φ , for which φ ∗

achieves the minimum in Eq. (5.3) for all i ∈ S, it holds that V φ∗
α = V ∗α and φ ∗ is

(α-discount) optimal in Φ .

The versatile applicability of (γ ,Φ)-drift functions is illustrated in [9, 14], and the
examples below. First note for the bounded cost case, that the function M ≡ 1 is an
appropriate function satisfying Assumption 2(α).

We give two examples, one without and the second with truncation.

Example 3 (Quality of Service) Consider a discrete time single server queue,
where the probability of an arrival in the next time slot is p ∈ (0,1). The system
state represents the number of customers in the system, hence, the state space is
S = {0,1, . . .}. The probability of a service completion in the next time slot is subject
to control, and can be chosen from the set [μl ,μh]⊂ [0,1], depending on the system
state.

The system manager incurs a holding cost h per unit time, per customer in the
system. Furthermore, operating the system with service completion probability μ ∈
[μl ,μh] ⊂ [0,1] induces cost c(μ) per unit time, where μ �→ c(μ) is a continuous,
increasing function. The objective is to select the service probability per state so as
to minimise the overall cost: selecting a high service probability induces a larger
decrease of the number of customers in the system and hence of the total holding
cost per unit time. On the other hand, the service quality cost is also higher when
operating at a high service level. Thus, the two types of cost should be balanced in
an optimal service probability assignment rule.

We assume that arrivals and service completions occur independently of each
other. As a consequence, a simultaneous arrival and service completion may occur
within one time-slot.

The per state control is the selection of a service completion probability, provided
the system state does not equal 0. Therefore, put Φ =A, whereA(i)= [μl ,μh], i �= 0,
A(0) = {0}, andA=∏iA(i). To any fixed parameter φ = (μ0 = 0,μ1,μ2, . . .), one
may associate a Markov process, representing the system state at any time t, with
transition probabilities given by

pφ (j | i) =

⎧
⎨

⎩

p(1−μi), j = i+1
(1− p)μi, j = (i−1)1{x �=0}
1− p−μi +2pμi, j = i.

The corresponding cost vector is given by

cφ (i) = c(μi)+hi,

and cφ (0) = 0. Assumption 1 is directly verified.
As an appropriate (γ ,Φ)-drift function, we may choose M(i) = eε i, with ε > 0 to

be determined below:

∑
j

pφ (j | i)eε j = (1− p)μie
ε(i−1) + (1− (1− p)μi− p(1−φi))e

ε i

5.2 Discrete Time Model 143

+p(1−μi)e
ε(i−1)

= eε i
(

1+ p(1−μi)(e
ε −1)+(1− p)μi(1− e−ε)

)

≤ eε i(1+ p(eε −1)
)
.

For ε = 0, the coefficient of eε i in the above equals 1. Since 1/(1−α)> 1, one can
always choose ε small enough so that

γ := 1+ p(eε −1)<
1

1−α
.

As a consequence, Assumption 2(α),(i) is satisfied.
We check Assumption 2(α),(ii):

bM := sup
φ∈Φ

sup
i

|cφ (i)|
M(i)

≤ sup
i

c(μh)+hi
M(i)

< ∞. (5.5)

The example shows, that the existence of a (γ ,Φ)-drift function does not impose any
restrictions on the class structure of the associated Markov processes and transience
is allowed as well. Moreover, it is often a good and simply checked choice to take V
exponential. Since generally cost structures are linear or quadratic as a function of
state, they are dominated by exponential functions. Thus, they fit in the framework
discussed here. We are not aware of a specific interpretation of the function M.

Example 4 (Continuation of Examples 1, and 2 Server Allocation) The formal
description of the model has been provided in Example 2. As in the previous exam-
ple, it is straightforward to check that for each α > 0, one can determine εi1 and
εi2 > 0, such that

M(i) = eεi1 i1+εi2 i2 , i ∈ S, (5.6)

is a (γ ,Φ)-drift function for γ < 1/(1−α). Since cφ is a linear function of the state,
and M is exponential, also (5.5) is satisfied. This implies that Assumption 2 (α) is
satisfied.

The verification of Assumption 1 is direct, since the support of the transition
probabilities is finite, and elementwise continuity has been checked in Example 2.
Hence, the results of Theorem 5.1 apply for ΦN1,N2 , that is for the MDP with the
fixed truncation parameter (N1,N2). Furthermore, the results of Lemma 5.1 hold.

Thus, denoting the α-discount optimal value function w.r.t. ΦN1,N2 by V ∗,(N1,N2)
α , and

the optimal policy by (N1,N2,δ ∗N1,N2
), it holds that V ∗,(N1,N2)

α →V ∗,(∞,∞)α , N1,N2→∞
and any limit point of the sequence (N1,N2,δ ∗N1,N2

) is α-discount optimal in Φ∞,∞.
Hence, it is α-discount optimal for the non-truncated MDP.

144 H. Blok and F.M. Spieksma

5.2.1.1 Value Iteration

A very important algorithm to approximate Vα is the value iteration algorithm (VI),
originally due to Bellman [5]. Here we assume that Φ has the product property.

Algorithm 1 VI for an α-discounted cost ε-optimal policy

1. Select Vα ,0 ∈ �∞(S,M), specify ε > 0, set n = 0.
2. For each i ∈ S, compute Vα ,n+1(i) by

Vα ,n+1(i) = min
φ∈Φ

{
cφ (i)+(1−α)∑

j∈S

pφ (j | i)Vα ,n(j)
}
, (5.7)

and let
φn+1 ∈ argmin

φ∈Φ
{cφ +(1−α)∑

j∈S

PφVα ,n}.

3. If

||Vα ,n+1−Vα ,n||V ≤
1− (1−α)γ

2(1−α)γ
ε ,

then put V ε :=Vα ,n+1, φε := φn+1, stop. Otherwise increment n by 1 and return
to step 2.

Theorem 5.2 (cf. [54], [39, Theorem 6.3.1]). Suppose that Φ is a compact set with
the product property, and suppose that Assumptions 1 and 2(α) hold. Let Vα ,0 ∈
�∞(S,M) and ε > 0. Let {Vα ,n}n∈N satisfy Eq. (5.7) for n ≥ 1. Then the following
hold.

i) limn→∞ ||V ∗α −Vα ,n||M = 0, in particular,

||V ∗α −Vα ,n||M ≤
1

1− (1−α)γ
||Vα ,n+1−Vα ,n||M

≤ (1−α)nγn

1− (1−α)γ
||Vα ,1−Vα ,0||M.

Any limit point of the sequence {φn}n is an α-discount optimal policy (in Φ).
ii) V ε = Vα ,n+1 is an ε/2-approximation of V ∗α , in other words, ||V ∗α −Vα ,n+1||M
≤ ε

2 .

iii) φε = φn+1 is an ε-optimal policy, in other words, ||V ∗α −V φε
α ||M ≤ ε .

Proof. The proof of Theorem 5.2 (i) is straightforward using that

V ∗α −Vα ,n = lim
m→∞

m

∑
k=n

(Vα ,k+1−Vα ,k).

5.2 Discrete Time Model 145

The bounds in (ii, iii) are given somewhat implicit in [54]. Their derivation is com-
pletely analogous to the derivation of the bounds of e.g. [39, Theorem 6.3.1] for the
bounded reward case, with λ replaced by (1−α)γ . ��

Example 5 (Continuation of Examples 1, 2, and 4 Server Allocation) For each
truncation parameter (N1,N2), the corresponding parameter set is compact. Since
the assumptions of Theorem 5.2 are satisfied (cf. Example 4), VI converges for any
fixed truncation parameter (N1,N2).

Remark 5.2. The reader may wish to point out that a solution to the DDOE yield-
ing an α-discount deterministic policy exists without any further conditions in the
case of non-negative cost (negative dynamic programming, cf. [48]) and a finite ac-
tion space per state. Also VI converges provided v0 ≡ 0, although no convergence
bounds can be provided. If the action space is compact, additional continuity and
inf-compactness (cf. [24, Corollary 5.7]) properties are necessary for the existence
of a stationary deterministic policy attaining the minimum in the DDOE. It is not
clear to us how these conditions could be extended in order to include parametrised
Markov processes.

Notice further, that, unfortunately, in general there is no unique solution to the
DDOE (cf. [24], [44, Sect. 4.2]). Using norm conditions as in this chapter, allows
to identify the value function as the unique one in the Banach space of functions
bounded by M (cf. Theorem 5.1). In the non-negative cost case, the value function
is the minimum solution to the DDOE (see [44, Theorem 4.1.4]).

In case of a finite state space, VI can be numerically implemented. In the case
of a countable space, its use is restricted to the derivation of structural properties
of the value function and α-discount optimal policy. Structural properties such as
non-decreasingness, convexity, etc. can be used to show for instance that a threshold
policy or an index policy is optimal. The existence of an optimal policy with desired
properties can be directly derived from the structure of the value function V ∗α in
combination with the DDOE. Alternatively, this can be deduced from the fact that
each φ n having the desired properties implies that any limit point has.

We summarise the procedure via a roadmap.

5.2.1.2 Roadmap to Structural Properties

Below we formulate a scheme for deriving the structure of an optimal policy
and value function, if the optimisation criterion is to minimise the expected α-
discounted cost. Let Φ =A be the (product) set of all stationary, deterministic poli-
cies.

Roadmap for α-discounted cost MDPs in discrete time

1. Check the conditions of Theorem 5.1.
If satisfied then:

146 H. Blok and F.M. Spieksma

• perform VI Algorithm 1, and check iteratively that the structural properties
of interest hold.

2. If not satisfied, or if no structural properties can be iteratively concluded, then:

• the outcome is inconclusive.

A main reference on the propagation of structural properties through the VI in-
duction step Eq. (5.7) is [33]. The technique discussed in this monograph is called
event based dynamic programming, and it presents a systematic framework of prop-
agations of the desired structural properties for operators that represent events. We
have developed new operators in [8, 12, 14], for special perturbations or trunca-
tions that tend to leave the structural properties of optimal policies in the original
model intact. Below we present an example. A further application to MDPs with
unbounded jump rates will be discussed in Sect. 5.3.4.

5.2.2 Approximations/Perturbations

As indicated in the above, we will next focus our attention to parameters capturing
a perturbation of the MDP. This parameter set should parametrise the collection of
deterministic policiesA, as well as a perturbation setN . This perturbation can have
multiple interpretations, depending on the context. It can be a finite state approxima-
tion, or it can represent some uncertainty in the input parameters. Put Φ =N ×A.
As has been illustrated in Example 2, Φ need not have the product property. How-
ever, fixing the perturbation parameter at N ∈ N , the associated set of parameters

{N}×A generally does. Denote by V ∗,(N)
α the optimal α-discount value function

with respect to parameter set N×A, i.o.w. the optimal α-discount value function
for the N-perturbation.

The following continuity result follows directly from Lemma 5.1.

Corollary 5.1 (To Lemma 5.1 and Theorem 5.1)). Suppose that Φ = N ×A,
where {N}×A has the product property for any N ∈ N , and that Assumptions 1,
and 2(α) hold. Then,

1. limN→N0 V ∗,(N)
α =V ∗,(N0)

α , where V ∗,(N)
α is the unique solution of the DDOE (5.3)

in �∞(S,M) with respect to {N}×A, N ∈N ;
2. for φ ∗(N) = {N,δ ∗(N))} α-discount optimal in {N}×A, it holds that any limit

point of the sequence {φ ∗(N)}N→N0 is α-discount optimal in {N0}×A.

Without the existence of a (γ ,Φ)-drift function bounding the one-step cost uni-
formly in the parameter, the above convergence result may fail to hold.

Example 6 (cf. [44, Example 4.6.1]) Let the parameter set Φ = {3, . . .} ∪ {∞},
S = {0,1, . . .}. In this case, there is only a perturbation parameter that we denote
by N ∈Φ (and no control).

5.2 Discrete Time Model 147

The transition probabilities are as follows.

p∞(j | i) = 1
2

j ∈ {0, i+1},

and for N < ∞

pN(j | i) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2 , i �= N−1,N, j = 0
1
2 −

1
N , i �= N−1,N, j = i+1

1
N , x �= N, j = N
1− 1

N , i = N−1, j = 0
1, x = y = N.

Further let α > 1
2 and define cN(i) = i2 for N ≤ ∞. The calculations in [44, Exam-

ple 4.6.1] show that V (∞)
α (0) < limN→∞V (N)

α (0) = ∞. It is simply checked that any
(γ ,Φ)-drift function M can at most be linear. Indeed for 3 ≤ N < ∞, it must hold
that

1
2

M(0)+
(1

2
− 1

N

)
M(2)+

1
N

M(N)≤ γM(1),

leading to the requirement that M(N)≤ NγM(1), hence supN,i
cN(i)
M(i) = ∞.

Literature related to Corollary 5.1 can be found in [39, Sect. 6.10.2], [44, Sect. 4.6]
and [37]. The first two papers consider finite space truncations. The first reference
further assumes the existence of a (γ ,Φ)-drift function without continuity, but with
an additional tail condition and a prescribed truncation method. These conditions
are implied by ours.

The second reference [44, Sect. 4.6] considers minimisation of non-negative
costs, as well as a finite action space per state. The truncation method developed
is called the ‘approximating sequence’ method. If there is a uniform bound on the
costs, no assumptions have to be made, other than that the truncation is a finite
state truncation, that the decision sets are independent of the truncation, and that the
transition probabilities are continuous in the truncation parameter. If the costs are
allowed to be unbounded as a function of state, then conditions on the truncation
method have to be made.

Finally, the paper that is closest related to the setup presented in the present paper
is [37]. The analogous statement to Corollary 5.1 is [37, Theorem 3.1]. The condi-
tions imposed are basically the same as the ones presented here, though (slightly)
more restrictive (cf. [13, Remark 5.2]). Additionally, the approach in [37] is not a
parametrised one, but focusses on perturbations of MDPs.

The issue of error bounds is not addressed in these works. An interesting refer-
ence on perturbations of Markov processes with error bounds is [52].

Example 7 (Continuation of Example 6) The above example is a case where nei-
ther the conditions on convergence of the approximating sequence method from [44]
are met, nor the ones presented in this paper.

However, the conditions in the approximating sequence method of [44] are not
even fulfilled, if we change the cost function to cN(i) = i for all N ≤ ∞, i ∈ S. On

148 H. Blok and F.M. Spieksma

the other hand, the function M defined by M(i) = i, i ∈ S, is a (γ ,Φ)-drift function,
for which the conditions of Corollary 5.1 are trivially met. Hence, the set-up in this
paper can be applied and we find that limN→∞V N

α (0) =V∞
α (0)< ∞.

5.2.2.1 Type of Perturbations

Although any perturbation satisfying the conditions of Corollary 5.1 yields (compo-
nent-wise) continuity of the value function as a function the perturbation parameter,
not any perturbation is desirable in terms of structural properties.

To explain this, we consider again the server allocation Examples 1, 2, 4 and 5.

Example 8 (Continuation of Examples 1, 2, 4, and 5 Server Allocation) Assume
that (1− p1)μ1 > μ2, and fix the truncation parameter at N1 = N2 = ∞, i.o.w., we
consider the unperturbed MDP with parameter space Φ∞,∞ = {(∞,∞)}×∏iA(i).

By using VI, event based dynamic programming yields that allocating the server
to unit 1, when non-empty, is α-discount optimal (cf. [12, Chap. 6]):

δ ∗(i) =

⎧
⎨

⎩

1, i1 �= 0
2, i1 = 0, i2 �= 0
0, i1 = i2 = 0.

(5.8)

Thus, φ ∗ = (∞,∞,δ ∗) is α-discount optimal in Φ∞,∞. Indeed, allocation to unit 1
gives a larger cost reduction per unit time due to customer service completions than
allocating to unit 2. Thus, noticing that the cost rate per unit time and per server
unit are equal to 1, this allocation policy is a generalised cμ-rule. Let us refer to
this policy as AP1 (allocation to unit 1 policy). Since this is true for any 0 < α < 1,
AP1 is strongly Blackwell optimal.

As has been deduced in Example 4, for any truncation parameter (N1,N2), there
exists a (stationary, deterministic) optimal policy (N1,N2,δ ∗N1,N2

) in ΦN1,N2 and any
limit point of the sequence (N1,N2,δ ∗N1,N2

), N1,N2 → ∞ is optimal in Φ∞,∞. Now,
we choose the following parameters λ = 1/9.84, μ1 = 8.56/9.84, μ2 = 0.28/9.84,
p1 = 0.22.

Setting N1 = N2 = 300 leads to the optimal policy in the rectangle shown in the
picture below.

This optimal policy is very far from being the index policy AP1, although the
truncation size seems large enough to exhibit an optimal policy that is ‘closer’ to
AP1. One starts to wonder what the effect of such a straightforward truncation has
been on numerical approximations of other models studied in the literature.

The question is, whether there is a generic truncation method that does not have this
defect.

5.2 Discrete Time Model 149

0
0

50

100

150

200

250

300

350

50 100 150
x1

x2

200 250 300 350

Fig. 5.2: Standard Truncation with N1 = N2 = 300: optimal allocation to unit 2 in
blue states

5.2.2.2 Smoothed Rate Truncation (SRT)

SRT is a perturbation introduced in [8], where ‘outward bound’ probabilities are
linearly decreased as a function of state. This creates a perturbed MDP with a finite
closed class under any policy. The idea is best illustrated by specifying possible
SRTs for the above example. The experience with SRT so far is that it leaves the
structure of an optimal policy intact (cf. [8, 9]). On the other hand, since it perturbs
transition probabilities from all states in the finite closed class, the value function
itself seems better approximated by a straightforward cut-off, such as the one as
described above.

Example 9 (Continuation of Examples 1, 2, 4, 5 and 8 Server Allocation) One
can apply SRT as follows. Let Φ be the parameter set from Example 2. For φ ∈ Φ
with φ = (N1,N2,δ) we now define

pφ (j | i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ (1− i1/N1)
+ j = (i1 +1, i2)

p1μ1
(
1− i2/N2

)+
j = (i1−1, i2 +1), i1 > 0,δ (i) = 1

(1− p1)μ1+
1{i2≤N2}p1μ · i2/N2 j = (i1−1, i2), i1 > 0,δ (i) = 1

μ2 j = (i1, i2−1), i2 > 0,δ (i) = 2
1−∑

w�=i

pφ (j | i) j = i.

Again, the function M from (5.6) is a (γ ,Φ)-drift function for some γ > 0, satisfying
Assumptions 1 and 2(α).

150 H. Blok and F.M. Spieksma

The following picture illustrates the numerical results with N1 = N2 = 35. This
confirms the results in [8, 9], suggesting that SRT allows to obtain information on
the structure of an optimal policy for an infinite state MDP. Notice, that smoothly
truncating at size N1 = N2 = 35 seems far more restrictive than truncating at N1 =
N2 = 300 as in Example 8. However, the optimal policy is AP1, which is optimal for
the non-truncated MDP.

0
0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9
x1

x2

Fig. 5.3: Smoothed Rate Truncation with N1 = N2 = 35: optimal allocation to unit
2 in blue states

Numerical results show that AP1 is optimal in both the truncated and the non-
truncated MDPs. We have not proven this result for the rectangular SRT, but we
did so for another SRT (cf. [12, Chap. 6]) that is not based on a rectangle but on a
triangle. The SRT is as follows. Put

Φ = {φ |φ = (N,δ) |N ∈ Z+∪{∞},δ ∈ D}.

Fix N. Then we put

p(N,δ)(j | i) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ (1− (i1 + i2)/N)+, j = (i1 +1, i2)
p1μ1 i1 > 0, j = (i1−1, i2 +1),δ (i) = 1
(1− p1)μ1 i1 > 0,y = (i1−1, i2),δ (i) = 1
μ2 i2 > 0,y = (i1, i2−1),δ (i) = 2
1−∑

w�=i

p(N,δ)(w | i) j = i.

Using a triangular truncation requires less events to be truncated and so the proofs
are simpler. This illustrates that smooth truncations are not uniquely defined, but
different choices may be possible.

5.2 Discrete Time Model 151

5.2.3 Average Cost

Establishing a framework for the average cost optimality criterion is more difficult
than for the discounted cost case. There are several cautionary examples in the lit-
erature highlighting the complications. In our opinion, the most intricate one is the
Fisher-Ross example [25]. In this example, all action spaces are finite, the Markov
process associated with any stationary deterministic policy is irreducible and has a
stationary distribution. However, there is an optimal non-stationary policy, but no
stationary, deterministic one is optimal.

In this chapter we provide conditions under which there exists a stationary av-
erage optimal policy satisfying the average cost optimality equation. The proof re-
quires the vanishing discount approach. Our focus in this paper are non-negative
cost functions, the analysis of which does not require a heavy drift condition that
imposes positive recurrence of the Markov process associated with any parameter.
However, below, we do touch upon benefits of using the heavier conditions.

The conditions that we will focus on, are based on the work of Borkar [15],
in the form discussed in [44]. They resemble the conditions from the earlier work
in [53]. They imply conditions developed by Sennott in [42], requiring (i) lower-
bounded direct cost; (ii) the existence of a finite α-discounted value function, (iii)
the existence of a constant L and a function h : S → ℜ, such that −L ≤ V ∗α (i)−
V ∗α (z) ≤ h(i), i ∈ S, for some state z, and all α sufficiently small, and (iv) there
exists φ , such that ∑ j pφ (j | i)h(j)<∞. Under these conditions Sennott [42] proves
the statement in Theorem 5.3 below, with equality in (5.9) replaced by inequality,
and without property (3) from Theorem 5.3. It is appropriate to point out that the
approach initiated in [42] was based on a bounded cost average optimality result in
[40].

The following definitions are useful. Define τz := min{n ≥ 1 |Xn = z} to denote
the first entrance time of z ∈ S. Let μφ

z (i) = E
φ
i

[
τz
]

and Cφ
z (i) = E

φ
i

[
∑τz

n=0 c(Xn)
]
.

One may replace a single state z by a set, and the analogous definitions prevail.

Assumption 3 Suppose that Φ has the product property. The following holds.

1. Non-negative cost rates: cφ (i)≥ 0 for all i ∈ S,φ ∈Φ .
2. There exist z ∈ S and φ0 ∈Φ such that μφ0

z (i),Cφ0
z (i)<∞ for all i ∈ S. Note that

this implies that gφ0(i) is independent of i ∈ S and hence we write gφ0 = gφ0(i),
for all i ∈ S.

3. There exists ε > 0 such that D = {i ∈ S |cφ (i) ≤ gφ0 + ε for some φ ∈ Φ} is a
finite set.

4. For all i ∈ D, there exists φ i ∈Φ such that μφ i

i (z),Cφ i

i (z)< ∞.

Notice, that by virtue of Assumption 3, the Markov process operated under parame-
ter φ0 has one positive recurrent class containing z, with finite expected average cost
g(φ0). The expected time and total expected cost incurred until reaching that class
are finite, for any initial state.

Theorem 5.3. Suppose that Φ is a compact set with the product property, and that
Assumptions 1, 2(α), and 3 hold, for all α ∈ (0,1). Then the following holds.

152 H. Blok and F.M. Spieksma

i) There exists a solution tuple (g∗,H∗), g∗ ∈ℜ+, H∗ : S �→ℜ, to the average cost
optimality equation (DAOE)

g+u(i) = min
φ∈Φ

{
cφ (i)+∑

j∈S

pφ (j | i)u(j)
}
, (5.9)

with the properties that

(1) g∗ = g∗ is the minimum expected average cost (in Φ),
(2) any φ ∗ ∈Φ with

φ ∗ ∈ argmin
φ∈Φ

{
cφ + PφH∗

}
,

is (average cost) optimal in Φ and
(3) there exists i∗ ∈ D with H∗(i∗) = infi H∗(i).

ii) Let i0 ∈ S. Any sequence {αn}n with limnαn = 0, has a subsequence, again
denoted {αn}n, along which the following limits exist:

H ′(i) = lim
n→∞

(
V ∗αn

(i)−V ∗αn
(i0)

)
, i ∈ S,

g′ = lim
n→∞

αnV ∗αn
(i), i ∈ S

φ ′ = lim
n→∞

φαn ,

with φαn αn-discount optimal in Φ . Any such tuple (g′,H ′) is a solution to
Eq. (5.9) with the properties (1), (2) and (3), so that g′ = g∗. Moreover, φ ′ takes
minimising actions in Eq. (5.9) for g = g′ and u = H ′.

Theorem 5.3 is a slight extension from [44, Theorem 7.5.6], where the action space
is assumed to be finite. Although the various proof parts are scattered over [44,
Chap. 7], we will merely indicate the necessary adjustments to allow for the compact
parameter case. We would like to note that we use a completely analogous reasoning
in the proof of Theorem 5.7, which contains all further details.

Proof. A close examination of the proof of [44, Theorem 7.5.6] shows that the as-
sumption of a finite action space is not necessary. The proof can be adjusted in such
a way that the statement holds for a compact action space as well. We briefly discuss
the adjustments below. The existence of the limits along a sequence {αn}n, αn ↓ 0,
n→ ∞, in assertion (ii) is a direct result of Sennott [44].

Obtaining the average cost optimality inequality (DAOI) for a limit point of α-
discount optimal policies, as α → 0, can be achieved by virtue of Fatou’s lemma.
This policy is shown to be optimal.

Further, one needs to show explicitly that there exists a policy realising the infi-
mum of Eq. (5.9). Since the limit policy satisfies the DAOI, a similar reasoning as
in the (very ingenious) proof of Sennott [44, Theorem 7.4.3] yields that this policy
satisfies the DAOE as well. In fact, any policy satisfying the DAOI also satisfies
the DAOE. It can then be shown by contradiction that this limit policy must attain

5.2 Discrete Time Model 153

the infimum. As a consequence, the limit tuple (g′,H ′) from (ii) is a solution to
Eq. (5.9). The rest directly follows from the proof of the afore mentioned theorem
in [44].

Remark 5.3. In the literature the formulation of statements similar to Theorem 5.3
on the DAOE may sometimes have a misleading character. This may occur when the
existence of a solution to Eq. (5.9) is stated first, and a subsequent claim is made
that any minimising policy in Eq. (5.9) is average cost optimal. Strictly speaking,
this may not be true. Examples 12 and 13 below, at the end of this section, illus-
trate that other ‘wrong’ solutions may exist. Unfortunately, Assumption 3 does not
admit tools to select the ‘right’ solution among the set of all solutions. Thus, under
Assumption 3 a solution to the DAOE should always be obtained via the vanishing
discount approach, as in Theorem 5.3 (ii).

The next issue to be discussed is how to verify Assumption 3 (ii) and Assump-
tion 3 (iv). This can be inferred from the following Lyapunov function criterion,
which is related to [30, Lemma 3.1].

Lemma 5.2. Let φ ∈Φ . Suppose that the Markov process with transition matrix Pφ

has one closed class of states plus possibly transient states. Assume the existence of
functions f ,k : S→ (0,∞), a constant K and a finite set D⊂ S with

i) f (i)≥max{1,cφ (i)}, i ∈ S\D;
ii) f (i)+∑ j pφ (j | i)k(j)≤ k(i)+1{D}(i) ·K, i ∈ S.

Then the closed class is positive recurrent, and in particular there is a constant κ
such that

a) μφ
D(i),C

φ
D(i)≤ κ · k(i), i ∈ S;

b) μφ
i0
(i),Cφ

i0
(i)< ∞ for i0 ∈ D and i ∈ S.

For f ≡ 1, condition (ii) is simply Foster’s criterion for positive recurrence of an
irreducible Markov process (cf. [26], if D consists of one state only). The above
version is a generalisation designed for MDPs (cf. [30, Lemma 3.1]). Statement (a)
is proved by a simple iteration argument, statement (b) is shown by considering the
embedded semi-Markov chain on the finite set M, analogously to the proof of [16,
Lemma 5.2.3].

Example 10 (Continuation of Examples 1, 2, 4, 5, 8 and 9 Server Allocation)
We consider the non-truncated problem with parameter set Φ∞,∞. In order that
Theorem 5.3 be applicable, we only need check Assumption 3. Assumptions 3 (i, iii)
are clearly satisfied, and we will check (ii, iv) by means of Lemma 5.2.

Notice, that for any parameter φ ∈ Φ∞,∞, the associated Markov process has
at most one closed class, since the empty state (0,0) is reachable from any other
state with positive probability. This means that we have to find a parameter φ0 for
which the closed class is positive recurrent, the average expected cost is finite, and
the closed class is reached in finite expected time and with finite expected total cost.
This then verifies (ii). To verify (iv), it is sufficient that the Markov process associated
with φ0 is irreducible.

154 H. Blok and F.M. Spieksma

Under the condition that μ2 < (1− p1)μ1, Example 8 (cf. [12, Chap. 6]) evi-
dences that AP1 is α-discount optimal for any α ∈ (0,1). The vanishing discount
approach then suggests that AP1 must be average cost optimal as well. It therefore
seems sensible to fix φ0 as the parameter corresponding to the AP1 policy given in
(5.8), and check (ii,iv) for this parameter. We do not assume that μ2 < (1− p1)μ1.
However, we will see below, that we do have to make (other) assumptions on the pa-
rameters in order that the Markov process associated with parameter φ0 is positive
recurrent.

Put k(i) = (1+ψ)i1(1+θ)i2 , where ψ,θ > 0 have to be suitably chosen. Remind,
that cφ0(i) = i1 + i2 and so k has to be increasing in i, whence the requirement
ψ,θ > 0. First we will check that we can choose ψ,θ > 0

Pφ0 k(i)≤ βk(i), i �= (0,0),

for some β < 1. This is stronger than necessary, but will be convenient later on. By
insertion, this implies that we have to verify the existence of β < 1 such that

λ (1+ψ)+ p1μ1
1+θ
1+ψ

+(1− p1)μ1
1

1+ψ
+μ2 ≤ β

λ (1+ψ)+μ1 +μ2
1

1+θ
≤ β .

(5.10)

Since there are only two different inequalities that should hold, it sufficient to choose
ψ,θ > 0 in such a way that the left-hand side of (5.10) is smaller than 1. Using that
λ +μ1 +μ2 = 1, this reduces to the following inequalities

μ1−λ (1+ψ)

p1μ1
>

θ
ψ

>
λ (1+θ)

μ2
. (5.11)

Clearly, for (5.11) to be valid, it is necessary that

μ1 > λ ,
μ1−λ
p1μ1

>
λ
μ2

. (5.12)

That μ1 > λ is necessary for positive recurrence, is clear, since otherwise the
stochastic process associated with number of products in unit 1 cannot be positive
recurrent. Necessity of the second condition for positive recurrence can be verified
by a so called ‘second vectorfield’ analysis (cf. [23]). Under the assumption that
(5.12) holds, it is simply verified that ψ,θ > 0 can be chosen so that (5.11) and
therefore (5.10) applies. Indeed, choose ε1,ε2 > 0, such that

μ1−λ (1+ ε1)

p1μ1
> ε2 >

λ (1+ ε1)

μ2
.

Then there exist ψ,θ > 0, β < 1, with ψ,θ < ε1 and θ = ψε2, such that (5.10)
holds. Now, put f (i) = i1 + i2. Then f (i)+∑ j pφ0(j | i)k(j)≤ k(i), if

5.2 Discrete Time Model 155

f (i)≤ (1−β)k(i) = (1−β)(1+ψ)i1(1+θ)i2 . (5.13)

It is straightforwardly checked that there exists a finite set D ⊂ S, such that (5.13)
holds true for i ∈ S \D. The existence of a constant K for which condition (ii) of
Lemma 5.2 holds, directly follows.

We have arrived at the following conclusion. If (5.12) holds, then Theorem 5.3
applies, and any limit point of α-discounted optimal policies, as α → 0, is average
cost optimal. If, additionally, μ2 < (1− p1)μ1, then AP1 is average cost optimal.

To pave the way for developing a roadmap that allows to obtain structures of average
cost optimal policies, we will shortly discuss the applicability of VI. Let us first state
the algorithm. Again assume that Φ has the product property.

Algorithm 2 VI for an expected average cost optimal policy

1. Select V0 : S→ R, set n = 0.
2. For each x ∈ S, compute Vn+1(i) by

Vn+1 = min
φ∈Φ

{
cφ + PφVn

}
,

and let
φn+1 ∈ argmin

φ∈Φ
{cφ + PφVn}.

3. Increment n by 1 and return to step 2.

To our knowledge there are relatively few non-problem specific papers on the
convergence of average cost VI for countable state space MDPs, cf. [4, 31, 43], and
[2], the latter of which is based on the thesis [46]. The conditions in the first three
papers are not restricted to conditions on the input parameters. In our opinion, the
easiest verifiable ones are contained in the paper [4], involving properties of the set
of policies {φn}n. In case of well-structured problems, say φn are all equal, or have
very specific structures, these conditions are easily be verifiable.1 Here, we will
restrict to the conditions from [46] and [2] that are, as far as we know, the only ones
formulated directly in terms of the input parameters of the process. The notation e
stands for the function on S identically equal to 1.

Theorem 5.4. Let Φ be a compact set with the product property. Suppose that the
following drift condition, called M-uniform geometric recurrence, holds: there exist
a function M : S→ [1,∞), a finite set D⊂ S and a constant β < 1, such that

∑
j �∈D

pφ (j | i)M(j)≤ βM(i), i ∈ S,φ ∈Φ .

1 We have the impression that there is a gap in the proofs in [4].

156 H. Blok and F.M. Spieksma

Suppose further that the following holds as well:

• Assumption 1;
• supφ∈Φ ||cφ ||M < ∞;

• φ �→ PφM is component-wise continuous on Φ;
• the Markov process with transition matrix Pφ is aperiodic and has one closed

class, plus possibly transient states, φ ∈Φ .

Let 0 ∈ S be a selected state. Then, there is a unique solution pair (g∗,H∗) with
H∗ ∈ �∞(S,M), and H∗(0) = 0, to Eq. (5.9) with the properties from Theorem 5.3.

Furthermore, average cost VI converges, that is, limn→∞(Vn−Vn(0)e) = H∗, and
any limit point of the sequence {φn}n is average cost optimal and minimiser of the
DAOE (5.9) with solution tuple (g∗,H∗).

The V -uniform geometric recurrence condition in Theorem 5.4 has been introduced
in [18], and shown in [19] to imply the assertion in Theorem 5.4. The paper [19], see
also [46], has derived an equivalence of this condition (under extra continuity con-
ditions) with M-uniform geometric ergodicity. The thesis [46] additionally shows
a similar implication for bounded jump Markov decision processes in continuous
time, by uniformisation. Both properties have been extensively used both in the case
of a parameter space consisting of one element only (cf. [35] and later works), and
in the case of product parameter spaces in the context of optimal control. Together
with the negative dynamic programming conditions developed by Sennott [42], the
M-uniform geometric recurrence and ergodicity, developed in [17] and [18], have
become ‘standard’ conditions in many papers and books. See for instance [27, 28],
and [38], as well as references therein, for a survey and two books using both types
of conditions. A parametrised version of [19] in both discrete and continuous time
is currently in preparation. The drawback of using M-geometric recurrence is its
implying each associated Markov process to have only positive recurrent closed
classes. This is a major disadvantage for many models and therefore our motivation
for using Assumption 3. Note that customer abandonment has a strong stabilising ef-
fect on the associated Markov processes, and then M-uniform geometric recurrence
typically may apply.

Example 11 (Continuation of Examples 1, 2, 4, 5, 8, 9 and 10 Server Allocation)
As in Example 10, consider the parameter set Φ∞,∞, that is, the non-truncated server
allocation model. It is simply checked that the function k constructed in Example 10
satisfies the uniform geometric recurrence property from Theorem 5.4 for some
finite set D and constant β < 1, provided that (5.10) holds. Thus, VI converges for
the non-truncated server allocation model.

5.2 Discrete Time Model 157

5.2.3.1 Roadmap to Structural Properties

Below we formulate a scheme for deriving the structure of an optimal policy and
value function, if the optimisation criterion is to minimise the expected average
cost. Let Φ =A be the (product) set of all stationary, deterministic policies.

Roadmap for average cost MDPs in discrete time

1. Check the conditions of Theorem 5.4.
2. If satisfied then:

• perform VI Algorithm 2, and check iteratively that the structural properties
of interest hold.

3. If not satisfied, then check Assumptions 1, 2(α), for all α ∈ (0,1), and 3. If
satisfied then:

(a) perform VI Algorithm 1 for the α-discounted cost criterion, and check iter-
atively that the structural properties of interest hold. If there exists α0 > 0
such that the desired structural properties hold for all α ∈ (0,α0) then

(b) apply the vanishing discount approach by taking the limit α → 0. This is
justified by Theorem 5.3. If the limit policy is optimal for all sufficiently
small values of α , then it is both average optimal and strongly Blackwell
optimal.

4. If not satisfied, or if no structural properties can be iteratively concluded, then
the outcome is inconclusive.

Note that the vanishing discount approach has the advantage of allowing a conclu-
sion on Blackwell optimality of the limiting policy.

5.2.3.2 Examples Where the DAOE Has No Unique Solution

Here we address the problem that constructing a solution to the DAOE does not
guarantee that the solution is related to the optimal value function and optimal aver-
age expected cost. This problem does not arise when working in the framework of
normed spaces, in the sense that a solution in the space is the ‘right’ one.

Example 12 Consider a simple random walk on the state space S = Z without any
control. Thus Φ consists of one element φ , say φ = 1. The transition mechanism is
given by

p1(j | i) =
{
λ , j = i+1
μ , j = i−1,

where λ < μ and λ + μ = 1. The cost in state i �= 0 is equal to c1(i) = 1, and
c1(0) = 0. This is a transient Markov process, and hence it does not satisfy Assump-
tion 3. However, it does satisfy the assumptions of [42], implying the assertion of
Theorem 5.3 to hold.

158 H. Blok and F.M. Spieksma

This implies that the vanishing discount approach yields solution tuple (g,H) of
(5.9), with g = 1 and

H(i) =

{
1−(μ/λ)i

μ−λ , i < 0
0, i≥ 0,

if i0 = 0 is chosen. This can be deduced by a ‘clearing analysis’ as in [21].
However, other solutions (g = 1,H ′) to (5.9) exist: for any θ ∈ℜ

H ′(i) =

⎧
⎪⎨

⎪⎩

(1−θ) 1−(μ/λ)i

μ−λ , i < 0
0, i = 0

θ (μ/λ)i−1
μ−λ , i > 0.

There is no a priori tool to determine which solution is the one obtained from the
vanishing discount approach.

Example 13 Next, we restrict the simple random walk to S = Z+, and associate the
corresponding transitions with parameter φ 1 = 1Z+ . In other words,

pφ
1
(j | i) =

{
λ , j = i+1
μ , j = (i−1)+,

where λ < μ and λ + μ = 1. Suppose that holding cost i is incurred per (discrete)
unit time, when the number of customers in the system is i:

cφ
1
(i) = i, i ∈ S.

In [6] it was shown that the equation v+g= cφ
1
+Pφ1

H has the following solutions:
to any g ∈ℜ there is a solution tuple (g,Hg) with Hg : S→ℜ the function given by

Hg(i) =− i−1
μ−λ

g+
(i−1)(i−2)

2(μ−λ)
+μ

i−1
(μ−λ)2 +

g
λ

(5.14)

+μ
(μ/λ)i−1−1

μ−λ

{ g
μ−λ

+
g
λ
− μ

(μ−λ)2

}
,

for i≥ 1 and Hg(0) = 0. The solution obtained from a vanishing discount approach,
is the one for which the expression between curly brackets is 0, i.e. for which

g
μ−λ

+
g
λ
− μ

(μ−λ)2 = 0,

in other words

g =
λ

μ−λ
,

5.2 Discrete Time Model 159

and

Hg(i) =− i−1
μ−λ

g+
(i−1)(x−2)

2(μ−λ)
+μ

i−1
(μ−λ)2 +

g
λ
.

This can also be derived from boundedness conditions analysed in [7]. Thus,
g(φ 1) = λ/(μ−λ).

Define the following parameter space Φ = {φ 1,φ 2}, where φ 2 = {1,2,1,1, . . .}.
Parameter φ 2 differs from φ 1 only in the second coordinate. The corresponding
transition probabilities are

pφ
2
(3 |1) = λ = 1− pφ

2
(0 |1),

and pφ
2
(j | i) = pφ

1
(j | i), for i �= 1. Similarly, cφ

2
(i) = cφ

1
(i) = i, i �= 1. Choose

cφ
2
(1) small enough (possibly negative) so that gφ

2
< gφ

1
.

Then Φ has indeed the product property and the parametrised Markov process is
an MDP. This MDP satisfies Assumption 3. Although the direct cost possibly is not
non-negative, it is bounded below.

We claim that we may choose a constant g so large that

Hg(1)+g = cφ
1
(1)+∑

j
pφ

1
(j |1)Hg(j)

< cφ
2
(1)+∑

j
pφ

2
(j |1)Hg(j) = c2(1)+λHg(3)+μHg(0).

In other words, the minimisation prescribes to choose φ 1 in state 1, when consider-
ing the tuple (g,Hg). Indeed, this choice is possible if

cφ
2
(1)+λHg(3)> 1+λHg(2),

or

1− cφ
2
(1)< λ (Hg(3)−Hg(2)). (5.15)

It can be checked that

Hg(3)−Hg(2)>
μ2

λ 2

(g
λ
− μ

(μ−λ)2

)
.

Therefore, one may choose g > gφ
1

large enough for Eq. (5.15) to be true. Hence,
(g,Hg) is a solution to Eq. (5.9) for the MDP with minimising policy φ 1. However,

by construction g > gφ
1
> gφ

2
. Thus, (g,Hg) is a solution to the DAOE, where g is

not the minimum expected average cost, and the minimising policy is not optimal.

160 H. Blok and F.M. Spieksma

5.3 Continuous Time Model

In this section we will consider continuous time parametrised Markov processes.
The setup is analogous to the discrete time case. Again we consider a parameter
space Φ and a countable state space S. With each φ ∈ Φ we associate an S× S
generator matrix or q-matrix Qφ and a cost rate vector cφ : S → ℜ. Following the
construction in [32], see also [36], one can define a measurable space (Ω ,F), a
stochastic process X :Ω→{ f : [0,∞)→ S | f right-continuous}, a filtration {Ft}t ⊂
F to which X is adapted, and a probability distribution Pφ

ν on (Ω ,F), such that X
is the minimal Markov process with q-matrix Qφ , for each initial distribution ν on
S and φ ∈Φ .

Denote by Pφ
t = {pφt (j | i)}i, j∈S, t ≥ 0, the corresponding minimal transition

function and by Eφ
ν the expectation operator corresponding to Pφ

ν . The elements
of Qφ are denoted by qφ (j | i), i, j ∈ S, and − qφ (i | i) is the parameter of the expo-
nentially distributed sojourn time in state i.

Assumption 4

i) Qφ is a conservative, stable q-matrix, i.e. for i ∈ S and φ ∈Φ

• 0≤ qφ (i) =− qφ (i | i)< ∞;
• ∑ j qφ (j | i) = 0.

ii) {Pφ
t }t≥0 is standard, i.e. limt↓0 Pφ

t = I, with I the identity matrix of appropriate
dimension.

iii) φ �→ qφ (j | i) and φ �→ cφ (i) are continuous, i, j ∈ S;
iv) Φ is locally compact.

The definition of the product property of {Qφ}φ and {cφ)}φ with respect to Φ is
completely analogous to Definition 5.1, and so we omit it. Again, for easy reference,
we say that Φ has the product property if {Qφ}φ and {cφ}φ both have the product
property with respect to Φ . In this case, the parametrised Markov process is an MDP.
Analogously to Remark 5.1, Φ may represent the collection of stationary policies
or the stationary, deterministic ones.

Suppose, furthermore, that a lump cost is charged, in addition to a cost rate in-
curred per unit time. Say at the moment of a jump from i to j lump cost dφ (i, j) is
charged, when the parameter is φ . This can be modelled as a (marginal) cost rate
cφ (i) = ∑ j �=i dφ (i, j) qφ (j | i).

Below we give the definitions of various performance measures and optimality
criteria. Later on we will provide conditions under which these exist.

For α > 0, under parameter φ ∈ Φ the expected total α-discounted cost value
function vα is given by

V φ
α (i) = E

φ
i

[∫ ∞

t=0
e−αt c(Xt)dt

]
, i ∈ S.

Suppose that Φ has the product property. The minimum expected total α-discounted
cost w.r.t Φ is defined as

5.3 Continuous Time Model 161

V ∗α (i) = inf
φ∈Φ

{
V φ
α (i)

}
, i ∈ S.

If V φ
α =V ∗α , then φ is said to be an α-discount optimal policy in Φ .
The expected average cost under parameter φ is given by

gφ (i) = limsup
T→∞

1
T
E
φ
i

[∫ T

t=0
c(Xt)dt

]
, i ∈ S.

Suppose that Φ has the product property. The minimum expected average cost is
defined as

g∗(i) = inf
φ∈Φ

{
gφ (i)

}
, i ∈ S.

If gφ = g∗ for some φ ∈Φ then φ is said to be an average cost optimal policy in Φ .

The notions of Blackwell optimality and strong Blackwell optimality are defined
completely analogously to the discrete time versions.

A well-known procedure to determine the structure of an optimal policy in the
continuous time case, is to reduce the continuous time MDP to a discrete time MDP
in order to be able to apply VI. There are different time-discretisation methods. One
is to consider the embedded jump process. Sometimes this is a viable method, see
[27] where this approach has been taken. In Sect. 5.3.4 we give an example where
the embedded jump approach seems to be less amenable to apply.

Instead, one may use uniformisation. However, applicability hinges on models
with bounded jumps are bounded as a function of parameter and state:

q := sup
i∈S,φ∈Φ

qφ (i)< ∞. (5.16)

This property is violated in models with reneging customers, population models etc,
and we will consider how to handle this next.

Let us first recall the uniformisation procedure.

5.3.1 Uniformisation

A detailed account of the uniformisation procedure and proofs can be found in
[45]. Uniformisation of time-inhomogeneous Markov processes is studied in [51].
If a continuous time parametrised Markov process has bounded transition rates [cf.
Eq. (5.16)], it admits a transformation to an equivalent discrete time parametrised
Markov process. Below we list the transformations for the α-discounted and aver-
age cost cases.

For the discounted cost criterion the equivalent discrete time process is given by

Pφ = I +
1
q

Qφ , cφ ,d =
cφ

α+q
, αd =

α
α+q

, φ ∈Φ . (5.17)

162 H. Blok and F.M. Spieksma

Denote the discrete time αd-discounted cost under φ by as V φ ,d
αd . Both the discrete-

time and continuous time processes have equal expected discounted cost, i.e.

V φ ,d
αd =V φ

α .

If Φ has the product property, then this implies that the optimal α- and αd-
discounted value functions with respect to Φ are equal:

V ∗,dαd =V ∗α .

For the average cost criterion the equivalent discrete time process has transition
matrix and immediate cost

Pφ = I+
1
q

Qφ , cφ ,d =
cφ

q
, φ ∈Φ .

Denote the discrete time average cost under parameter φ as gφ ,d and the value func-
tion as Hφ ,d . Under the same parameter, the discrete-time and continuous time ex-
pected cost, relate to each other as follows

qgφ ,d = gφ .

The corresponding value functions are identical:

Hφ ,d = Hφ .

These relations apply similarly to optimal parameters if Φ has the product property.
The main concern is how to proceed in the case of unbounded jump rates q = ∞,

when the above procedure is not possible.

5.3.2 Discounted Cost

First we treat the discounted cost criterion. This section summarises the results of
[13]. The latter paper only treats optimality within the class of stationary Markov
policies, as we do in the present chapter. We recall some definitions. These def-
initions are closely related to the definitions used in the discrete time analysis in
Sect. 5.2.1.

Definition 5.4.

• The function W : S → (0,∞) is said to be a moment function, if there exists
an increasing sequence {Kn}n ⊂ S of finite sets with limn Kn = S, such that
infi �∈Kn W (i)→ ∞, as n→ ∞.

• Let γ ∈ ℜ. The function M : S → (0,∞) is called a (γ ,Φ)-drift function if
QφW ≤ γW for all φ ∈Φ , where QφM(i) := ∑ j∈S qφ (j | i)M(j).

5.3 Continuous Time Model 163

Assumption 5 (α)

i) There exist a constant γ < α and function M : S → (0,∞) such that M is a
(γ ,Φ)-drift function;

ii) supφ ||cφ ||M =: bM < ∞ for all φ ∈Φ;
iii) There exist a constant θ and a function W : S→ (0,∞) such that W is a (θ ,Φ)-

drift function and W/M is a moment function, where (W/M)(i) = W (i)/M(i),
i ∈ S.

Assumptions 5(α) (i) and 5 (α)(ii) are the continuous time counterpart of As-
sumption 2(α). Assumption 5(α)(iii) is sufficient to guarantee nonexplosiveness
of the parametrised Markov process (cf. [47, Theorem 2.1]), and implies continuity
properties of the map φ �→ (Pφ

t M)(i), i ∈ S.

Theorem 5.5 ([13, Theorem 4.1]). Suppose that Assumptions 4 and 5(α) hold,
then φ �→ V φ

α is component-wise continuous and V φ
α is the unique solution in

�∞(S,M) to
αu = cφ +Qφu.

Theorem 5.6 ([13, Theorem 4.2]). Assume that Φ is a compact set with the product
property. Suppose further that Assumptions 4, and 5(α) hold. Then V ∗α is the unique
solution in �∞(S,M) to the α-discount optimality equation (CDOE)

αu(i) = inf
φ∈Φ

{cφ (i)+∑
j

qφ (j | i)u(j)}, i ∈ S. (5.18)

There exists φ ∗ ∈Φ with φ ∗ ∈ argminφ∈Φ{cφ (i)+∑ j qφ (j | i)u(j)}, i ∈ S. Any pol-

icy φ ∈Φ that minimises Eq. (5.18) is optimal in Φ , and it holds that V φ
α =V ∗α .

As discussed in Sect. 5.2.2, the parameter set may contain a perturbation com-
ponent. Introducing a perturbation yields a parameter set of the following form
Φ = N ×A, where N is a perturbation parameter and A the set of deterministic
stationary (or merely stationary) policies.

Corollary 5.2 ([13, cf. Theorem 5.1]). Let Φ = N ×A. Suppose Assumptions 4
and 5(α) hold. Assume that {N}×A is a compact set (with the product property)
for any N ∈N . Then the following hold.

i) limN→N0 V ∗,(N)
α =V ∗,(N0)

α .
ii) Any limit point of (δ ∗N)N→N0 is optimal in {N0}×A.

iii) Suppose that the MDP with parameter set {N}×A is uniformisable, i.e.

qN := sup
i∈S,δ∈A

|q(N,δ)(i)|< ∞.

Consider the discount discrete-time uniformised MDP, with transition matrices,
cost and discount factor given by [cf. Eq. (5.17)]

164 H. Blok and F.M. Spieksma

P(N,δ) = I+
1

qN Q(N,δ), c(N,δ),d =
c(N,δ)

α+qN , αd =
α

α+qN .

Then the MDP satisfies Assumptions 1 and 2(αd), for the same function M.

Proof. Assertions (i) and (ii) are in fact [13, Theorem 5.1], but they follow easily
from Theorems 5.5 and 5.6. Assertion (iii) is a direct verification.

5.3.2.1 Roadmap to Structural Properties

We finally have collected the tools to provide a scheme for the derivation of struc-
tural properties of an optimal policy and value function for a continuous time MDP
with unbounded jump rates, provided the required conditions hold. Applications of
this scheme are discussed in [9] and [14], cf. also [12].

Let A be the set of stationary, deterministic policies, and Φ =N ×A. Each set
{N}×A is assumed to be compact and to have the product property, N ∈N .

Roadmap for α-discounted MDPs in continuous time

1. Check Assumptions 4 and 5(α) of Theorem 5.6.
2. If satisfied and q < ∞, do

(a) perform a uniformisation;
(b) use VI Algorithm 1 to verify the structural properties of an optimal policy

and value function;
(c) use the equivalence of uniformised and non-uniformised systems to obtain

the structure of an optimal policy and value function of the non-uniformised
continuous time MDP.

3. If satisfied and q = ∞, do

(i) perform a bounded jump perturbation leaving the structural properties in-
tact and satisfying Assumptions 4 and 5(α). For instance, one might apply
SRT (see Sect. 5.2.2) or try a brute force perturbation;

(ii) do steps 2(a, b, c). This potentially yields structural properties of an optimal
policy and the value function for each N-perturbed MDP;

(iii) take the limit for the perturbation parameter to vanish. Corollary 5.2 gives
the structural results for an optimal policy and value function.

4. If the assumptions for Theorem 5.6 do not hold, or if no structural properties
can be derived, then the outcome is inconclusive.

As has been mentioned already, one might apply discounted VI directly to the asso-
ciated discrete time MDP, embedded on the jumps of the continuous time MDP (cf.
e.g. [27, Theorem 4.12]). In the example of Sect. 5.3.4 we discuss some problems
with the application of this procedure.

5.3 Continuous Time Model 165

5.3.3 Average Cost

We finally turn to studying the average cost criterion in continuous time. The as-
sumptions that we make, are Assumption 4 and the analog of Assumption 3 that
we used in Sect. 5.2.3 for analysing the average cost criterion in discrete time. In
fact, Assumption 3 can be used unaltered. However, one has to use the continuous
time definitions of the hitting time of a state, and total expected cost incurred till the
hitting time.

The hitting time τz of a state z ∈ S is defined by:

τz = inf
t>0
{Xt = z,∃s ∈ (0, t) such that Xs �= z}. (5.19)

Then, miz(φ) = E
φ
i τz and Cφ

z (i) = E
φ
i

∫ τz
0 c(Xt)dt, where either expression may be

infinite.
The following theorem is completely analogous to the discrete time equivalent

Theorem 5.3, with the only difference that the CAOE below has a slightly different
form.

Theorem 5.7. Suppose, that Φ is a compact set with the product property. Further-
more, suppose that Assumptions 4, 5(α), α > 0, and 3 hold.

i) There exists a solution tuple (g∗,H∗) to the average cost optimality equation
(CAOE)

g = min
φ∈Φ

{cφ (i)+∑
j∈S

qφ (j | i)u(j)}, (5.20)

with the properties, that

(1) g∗ = g is the minimum expected average cost (in Φ),
(2) φ ∗ ∈Φ with

φ ∗ ∈ argmin
φ∈Φ

{cφ (i)+∑
j∈S

qφ (j | i)u(j)}

is (average cost) optimal in Φ , and
(3) there exists i∗ ∈ D with H∗(i∗) = infi H∗(i).

ii) Let i0 ∈ S. Any sequence {αn}n with limn→∞αn = 0, has a subsequence, again
denoted {αn}n, along which the following limits exist:

H ′(i) = lim
n→∞

{V ∗αn
(i)−V ∗αn

(i0)}, i ∈ S,

g′ = lim
n→∞

αnV ∗αn
(i), i ∈ S,

φ ′ = lim
n→∞

φαn ,

where φαn is αn-discount optimal in Φ . Furthermore, the tuple (g′,H ′) is a
solution to (5.20) with the properties (1), (2) and (3), so that g′ = g. Moreover,
φ ′ takes minimising actions in (5.20) for g = g′ and u = H ′.

166 H. Blok and F.M. Spieksma

We have not encountered the above result in this form. However, the derivations
are analogous to the discrete time variant, cf. [44, Chap. 7], and to the proofs in
[27], where continuous time variants of Sennott’s discrete time conditions have been
assumed. In fact, Assumption 3 implies [27, Assumption 5.4]. Although one could
piece together the proof of Theorem 5.7 from these references, we prefer to give it
explicitly in Sect. 5.3.5.

For the verification of Assumption 3 (ii) and Assumption 3 (iv) one may use the
following lemma, that is analogous to Lemma 5.2. The proof is similar to the proof
of [50, Theorem 1].

Lemma 5.3. Let φ ∈ Φ . Suppose that the Markov process with transition function
Pφ

t , t ≥ 0, has one closed class of states. Assume the existence of functions f ,k : S→
[0,∞), a constant K and a finite set D⊂ S with

i) f (i)≥max{1,cφ (i)}, i ∈ S\{D};
ii) f (i)+∑ j qφ (j | i)k(j)≤ 0+1{D}(i) ·K, i ∈ S.

Then the closed class is positive recurrent and there is a constant κ , such that

a) μφ
D(i),C

φ
D(i)≤ κ · k(i), i ∈ S;

b) μφ
i0
(i),Cφ

i0
(i)< ∞ for i0 ∈ D and i ∈ S.

5.3.4 Roadmap to Structural Properties

First we present a roadmap for determining structural properties of average cost
MDPs in continuous time. We illustrate this with a simple example. More compli-
cated examples can be found in [9, 14] and [12].

Then a figure and table will summarise the schematic approach that we have pre-
sented through the various roadmaps, including references to the required conditions
and results.

Let A be the set of stationary, deterministic policies, and Φ = N ×A. Assume
that {N}×D has the product property for N ∈N .

Roadmap for average cost MDPs in continuous time

1. Check Assumptions 4, 5(α), for all α > 0, and 3.
2. If satisfied then do

• apply the roadmap for α-discounted MDPs in continuous time; if the out-
come is that the α-discounted problem has the desired structural properties
for all 0 < α < α0, for some α0 > 0, then do

• apply the vanishing discount approach of Theorem 5.7 (ii).

3. If the assumptions do not hold, or structural properties can not be shown, the
outcome is inconclusive.

5.3 Continuous Time Model 167

Arrival Control of the M/M/1+M-Queue

As an application of this final roadmap, we consider arrival control of the
M/M/1+M-queue. Customers arrive in a single server unit with infinite buffer size
according to a Poisson (λ) process. Each customer requires an exponentially dis-
tributed service time with parameter μ , but he may also renege after an exponen-
tially distributed amount of time with parameter β (service is not exempted from
reneging). Arrival process, service times and reneging times are all independent.

Due to reneging, the process associated with the number of customers in the
server unit is ergodic at exponential rate. However, having reneging customers is
not desirable from a customer service point of view. Therefore, the following arrival
control is exercised. Per unit time and per customer a holding cost of size 1 is in-
curred. The controller can decide to accept (decision A) or reject (decision R) an
arriving customer, based on the number of customers present in the system. If he
takes decision A, then a lump reward of size K is incurred.

The goal is to select the control policy with minimum expected average cost.
This leads to the following MDP on the state space S = Z+, where state i corre-

sponds to 0 customers being present in the system. The collection of stationary, de-
terministic policies is given byA= {A,R}∞. We first put Φ =A and let δ ∈Φ =A
be a deterministic stationary policy. The transition rates are as follows: for i ∈ S

qδ (j | i) =

⎧
⎨

⎩

λ1{δ (i)=A}, j = i+1
μ+ iβ , j = i−1, i > 0
−(λ1{δ (i)=A}+μ1{i>0}+ iβ), j = i,

The lump reward can be modelled as a cost rate, and we get for i ∈ S

cφ (i) = i−λK1{δ (i)=A}.

This is an unbounded-rate MDP.
We wish to show that a control-limit acceptance policy is optimal. In other words,

that there exists i∗ ∈ S, such that accepting in state i≤ i∗ and rejecting in state i > i∗

is average cost optimal.
Denote the always accepting policy by δ0, then this generates an irreducible

Markov process. Let f (i) = i, i ∈ S, and k(i) = eθ i, i ∈ S, with θ > 0 and d ∈ S
chosen, such that

λe2θ + ie(1−i)θ < μ+ iβ , i≥ d.

Then, f (i)+∑ j qδ0(j | i)k(j) ≤ 0, for i ≥ d. It easily follows that Lemma 5.3(ii) is
satisfied for the finite set {0, . . . ,d} and some constant K. Thus gδ0 < ∞.

Let ε > 0. It then follows that Assumption 3 (i, ii, iii) is satisfied with set
D = {i | i−λK ≤ gδ0 + ε}. The verification of Assumption 3 (iv) follows from irre-
ducibility of the Markov process and the renewal-reward theorem.

It is not difficult to verify that Assumptions 4 and 5(α), α > 0, are satisfied for
Φ =A. Indeed, for given α > 0, there exists κα > 0, such that Mα(i) = eκα i, i ∈ S,
is a (γα ,A)-drift function for some γα > 0.

168 H. Blok and F.M. Spieksma

It follows that there exists a solution tuple (g∗,H∗) of the CAOE (5.20) with the
properties (1), (2), (3). This CAOE takes the form

g∗ = i+1{i>0}(μ+ iβ
)
H∗(i−1)+λ min{−K +H∗(i+1),H∗(i)}

−
(
λ +μ1{i>0}+ iβ

)
H∗(i),

where we have already rearranged the terms in such a way that the equation is
amenable to analysis. It is easily deduced, that it is optimal to accept in state i if

H∗(i+1)−H∗(i)≤ K.

Hence, in order that a control-limit acceptance policy be average cost optimal, it is
sufficient to show that H∗ is convex.

To this end, we will use the roadmap to show that there exists a solution pair
(g∗,H∗) to the CAOE (5.20) with properties (1), (2) and (3), and with H∗ a convex
function. Theorem 5.7 justifies using the vanishing discount approach, and so it is
sufficient to show convexity of the α-discount value function Vα , for all α > 0 suf-
ficiently small. Note that the imposed conditions for the roadmap for α-discount
MDPs are satisfied, since these are imposed as well for the assertions in Theo-
rem 5.7, and these have been checked to hold.

The roadmap for the verification of structural properties of Vα prescribes to
choose suitable perturbations. We consider a simple perturbation, where the reneg-
ing rates are truncated at Nβ in states i ≥ N, N ≥ 1. The value N = ∞ then corre-
sponds to the original MDP.

Thus, we consider the extended parameter set Φ = {N} × A, where N =
{1,2, . . .}. Put

q(N,δ)(j | i) =

⎧
⎨

⎩

λ1{δ (i)=A}, j = i+1
μ+(N∧ i)β , j = i−1, i > 0
−(λ1{δ (i)=A}+1{i>0}(μ+(N∧ i)β), j = i,

for (N,δ) ∈ Φ . Then, Mα is a (γα ,Φ)-drift function, and Assumptions 4 and 5(α)
are satisfied, α > 0, for this extended parameter space Φ .

Fix α > 0 and N ∈ {1,2, . . .}. By virtue of Corollary 5.2 it is sufficient to check

convexity of the α-discount value function V (N)
α , for the N-perturbation. Finally, by

Theorem 5.2 it is sufficient to check convexity of Vα ,n(N), which is the n-horizon

approximation of V (N)
α .

Convexity of V (N)
α ,n follows iteratively by putting V (N)

α ,0 ≡ 0, and checking that
convexity is propagated through the iteration step: for i ∈ S

V (N)
α ,n+1(i) =i−α

(
μ1{i>0}+(i∧N)β

)
V (N)
α ,n (i−1) (5.21)

+αλ min{−K +V (N)
α ,n (i+1),V (N)

α ,n (i)}

+α(1−λ −μ1{i>0}+(i∧N)β)V (N)
α ,n (i).

5.3 Continuous Time Model 169

Event based dynamic programming (cf. [33] and [12, Chap. 7]) applied to Eq. (5.21)
yields precisely the propagation of convexity.

Associated Embedded Jump MDP

Instead of introducing a perturbation, we could have applied discounted VI to the as-
sociated α-discounted embedded jump MDP. The assumptions that we have made,
imply convergence to the α-discounted value function (cf. [27, Theorem 4.14]).
This yields the following VI-scheme:

V̄α ,n+1(i) =
1

α+μ1{i>0}+ iβ
min

{(
i+(μ1{x>0}+ iβ)V̄α ,n(i−1)

)
,

(
i−λK +λV̄α ,n(i+1)+(μ1{i>0}+ iβ)V̄α ,n(i−1)

)}
.

First note that starting the iterations with the simple function V̄α ,0 ≡ 0, yields a
concave function

V̄α ,1(i) =
i−λK

α+λ +μ1{i>0}+ iβ
, i = 0,1, . . . ,

unless β = 0. A clever choice of V̄α ,0 could remedy this. However, there will always
be the problem that the three functions values that have to be compared in order to
propagate convexity, have different denominators.

Note that applying VI on the average cost embedded jump MDP has the same
disadvantages. Additionally, one needs extra conditions (cf. Theorem 5.4) to ensure
that average VI converges at all.

5.3.4.1 Roadmap Summary

The next figure and table summarise the different roadmaps, with the appropriate
references to the results justifying the various steps. In the figure, the limit as the
perturbation parameter vanishes is represented by N → ∞.

170 H. Blok and F.M. Spieksma

H∗,g∗

α ↓ 0 α-discounted cost

V ∗
α

N → ∞ perturbation

V ∗,(N)
α

conv. VI uniformise and VI

V (N)
α,n

unbounded rates average

unbounded rates α-discounted

bounded rates α-discounted

Summarising table

Time Criterion Roadmap
DT disc. VI1

Theorem 5.2
DT average VI2

Vgeo Theorem 5.4
DT average VDA then VI1

no Vgeo Theorem 5.3 Theorem 5.2
CT disc. UNI then VI1
bdd. Sect. 5.3.1 Theorem 5.2
CT disc. PB then UNI then VI1
unb. Corollary 5.2 Sect. 5.3.1 Theorem 5.2
CT average VDA then UNI then VI1
bdd. Theorem 5.7 Sect. 5.3.1 Theorem 5.2
CT average VDA then PB then UNI then VI1
unb. Theorem 5.7 Corollary 5.2 Sect. 5.3.1 Theorem 5.2

5.3 Continuous Time Model 171

Abbreviations in the summarising table
Discrete time DT
Continuous time CT
Bounded or unbounded rates bdd. or unb.
α-discounted disc.
Value iteration algorithm 1 or 2 VI1 or VI2
Vanishing discount approach VDA
Uniformisation UNI
Perturbation PB
Conditions Theorem 5.4 Vgeo

5.3.5 Proofs

For the proof of Theorem 5.7 we will need a number of preparatory lemmas. In this
section we assume that Φ is a compact set with the product property.

Lemma 5.4. Suppose that Assumptions 4, 5(α), α > 0, and 3 hold. The following
hold.

i) Let μφ0 denote the stationary distribution under parameter φ0, where φ0 has
been specified in Assumption 3. Then φ0 has one closed class, R say, that is
positive recurrent. It holds, that

gφ0 = α∑
R
μφ0(i)V φ0

α (i).

ii) Let φ ∈Φ . Let x �∈D, and put τ := τD to be the hitting time of D (cf. Eq. (5.19)).
Then

V φ
α (i)≥ E

φ
i

[
1{τ=∞}

g(φ0)+ ε
α

+1{τ<∞}
(
(1− e−ατ)

gφ0 + ε
α

+ e−ατV φ
α (Xτ)

)]
.

(5.22)
iii) There exists iα ∈ D with V ∗α (iα) = infi V ∗α (i).

Proof. First we prove (i). By virtue of Assumption 3 (ii) the Markov process associ-
ated with φ0 has one closed class, which is positive recurrent. Furthermore, absorp-
tion into this class takes place in finite expected time and with finite expected cost,
for any initial state i �∈ R, since necessarily i0 ∈ R.

Then we get

∑
i∈R

μφ0(i)Eφ0
i

[
c(Xt)

]
=∑

i∈R
μφ0(i)∑

j∈R
pφ0

t (j | i)cφ0(j)

= ∑
j∈R

cφ0(j)∑
i∈R

μφ0(i)pφ0
t (j | i)

= ∑
j∈R

cφ0(j)μφ0(j) = gφ0 ,

172 H. Blok and F.M. Spieksma

where the interchange of summation is allowed by nonnegativity. This is used as
well to justify the next derivation

α ∑
i∈R

μφ0(i)V φ0
α (i) = α ∑

i∈R
μφ0(i)Eφ0

i

[∫ ∞

t=0
e−αt c(Xt)dt

]

= α
∫ ∞

t=0
e−αt ∑

i∈R
μφ0(i)Eφ0

i

[
c(Xt)

]
dt

= α
∫ ∞

t=0
e−αtgφ0 dt = gφ0 .

The proof of (ii) follows by splitting the α-discounted cost into three terms, the first
two of which represent the α-discounted cost till τ , in the respective cases τ = ∞
and τ < ∞, and the third is the cost starting from τ < ∞:

V φ
α (i) =E

φ
i

[∫ ∞

t=0
e−αt c(Xt)dt

]

≥Eφ
i

[
1{τ=∞}

∫ ∞

t=0
e−αtdt(gφ0 + ε)

+1{τ<∞}
(∫ τ

t=0
e−αtdt(gφ0 + ε)+

∫ ∞

t=τ
e−αt c(Xt)dt

)]

=E
φ
i

[
1{τ=∞}

gφ0 + ε
α

+1{τ<∞}
(
(1−e−ατ)

gφ0 + ε
α

+ e−ατV φ
α (Xτ)

)]
.

The inequality is due to the definitions of D and τ .
We finally prove (iii). Part (i) implies the existence of zα ∈ R such that gφ0 ≥

αV φ0
α (zα). Then there also exists a iα ∈ D with gφ0 ≥ αV φ0

α (iα). Indeed, suppose

such iα ∈ D does not exist. Then V φ0
α > gφ0

α for all j ∈ D. This leads to a contradic-
tion, since by virtue of part (ii)

gφ0

α
≥V φ0

α (zα)≥ Eφ
zα

[
(1− e−ατ)

gφ0 + ε
α

+ e−ατV φ0
α (Xτ)

]
>

gφ0

α
.

Let iα = argmin j∈D V ∗α (j), and so V ∗α (iα)≤V φ0
α (iα)≤ gφ0

α . Then iα = argmin j V
∗
α (j),

because by Eq. (5.22) for any i /∈ D and α-discount optimal policy φα

V ∗α (i) =V φα
α (i)

≥ E
φα
i

[
1{τ=∞}

gφ0 + ε
α

+1{τ<∞}
(
(1− e−ατ)

gφ0 + ε
α

+ e−ατV ∗α (Xτ)
)]

≥ E
φ
i

[
1{τ=∞}V

∗
α (iα)+1{τ<∞}

(
(1− e−ατ)V ∗α (iα)+ e−ατV ∗α (iα)

)]

=V ∗α (iα).

Lemma 5.5. Suppose that Assumptions 4, 5(α), α > 0, and 3 hold. Let {αn}n be a
positive sequence converging to 0. The following hold.

5.3 Continuous Time Model 173

i) There exist a subsequence, call it {αn}n again, and i0 ∈D such that αnV ∗αn
(i0)≤

gφ0 , n = 1,2,
ii) There exist a constant L and a function U : S→ (0,∞), such that −L≤V ∗α (i)−

V ∗α (z)≤U(i), α > 0, where z is as in Assumption 3(ii).

Proof. To prove (i), note that Lemma 5.4 (iii) implies for all n the existence of
iαn ∈ D, such that V ∗αn

(iαn) ≤ V ∗α (i), i ∈ S. By Assumption 3 (iii) D is finite, and so
there exists i0 ∈ D and a subsequence of {αn}n, that we may call {αn}n again, such
that iαn = i0. Therefore by Lemma 5.4 (i), for all n

αnV ∗αn
(i0)≤ αn∑

i
μφ0(i)V ∗αn

(i)≤ αn∑
i
μφ0(i)V ∗α (i) = gφ0 .

For the proof of (ii), take

U(i) =Cφ0
z (i), L = max

j∈D
Cφ j

j (z),

with φ j from Assumptions 3 (iv). Let α > 0. Let strategy φ follow φ0 until z is
reached, from then onwards it follows the α-discount optimal policy φα . Then again
by Assumption 3 (ii) we have

V ∗α (i)≤V φ
α (i)≤Cφ0

z (i)+V φα
α (z) =Cφ0

z (i)+V ∗α (z).

Notice that Assumptions 3 (iii) and (iv) yield L < ∞. According to Lemma 5.4 (iv)
there is a minimum cost starting state iα ∈ D. Let φ ′ be the policy that uses policy
φ iα of Assumption 3 (iv) until hitting iα , after which φ ′ follows the α-discount
optimal policy φα . This yields,

V ∗α (z)−V ∗α (i)≤V ∗α (z)−min
i

V ∗α (i)≤V φ
α (z)−V ∗α (iα)≤Cφ iα

z (iα)≤ L.

Lemma 5.6. Suppose that Assumptions 4, 5(α), α > 0, and 3 hold. Then,

limsup
α↓0

αV ∗α (i)≤ gφ (i), i ∈ S,φ ∈Φ .

Proof. Let φ ∈Φ . We wish to apply Theorem 5.8 for s(t) =∑ j pφt (j | i)cφ (j). First,
Assumption 4, Assumption 5(α) and the dominated convergence theorem yield that
t �→ ∑ j pφt (j | i)cφ (j) is continuous and |V φ

α (i)|< ∞ (cf. Theorem 5.5). By Assump-
tion 3 (i),

∑
j

pφt (j | i)cφ (j), V φ
α (i)≥ 0, i ∈ S.

Then, S(α) =V φ
α (i) and gφ (i) = limsupT→∞

1
T ST . Hence Theorem 5.8 (1c) implies

limsup
α↓0

αV φ
α (i)≤ gφ (i).

174 H. Blok and F.M. Spieksma

Lemma 5.7 ([27, Theorem 5.2]). Suppose that Assumptions 4, 5(α), α > 0, and 3
hold. Let (g,H) be a tuple, with g ∈ ℜ and H : S → [−L,∞), i ∈ S, and φ ∈ Φ be
such that

g≥ cφ (i)+∑
j

qφ (j | i)H(j), i ∈ S.

Then gφ (i)≤ g, i ∈ S.

Proof. The proof is identical to the proof of [27, Theorem 5.2].

Now we have all results at hand to finish the proof of Theorem 5.7. The most
important difficulty is to obtain the CAOE from a continuous time average cost
optimality inequality (CAOI). To achieve this we have translated a very interesting
argument used in [44, Chap. 7] for the discrete time case to continuous time.

Proof of Theorem 5.7. Let {αn}n > 0 be a positive sequence converging to 0.
Lemma 5.5(ii) implies that −L ≤ V ∗αn

(i)−V ∗αn
(z) ≤ U(i), for a constant L and a

function U : S→ (0,∞), and for i ∈ S. Note that [−L,U(i)] is compact. By a diag-
onalisation argument, the sequence has a convergent subsequence, denoted {αn}n

again, along which the limit exists for any i ∈ S, say V ∗αn
(i)−V ∗αn

(z)→ H ′(i), i ∈ S.
Lemma 5.5(i) implies that there exists a further subsequence, again denoted

{αn}n, such that 0≤ αnV ∗αn
(i0)≤ g

φ
0 , for some i0 ∈ D. Compactness of [0,gφ0)] im-

plies existence of a limit point, say g′, along a subsequence, that in turn is denoted
by {αn}n.

By the above, limn→∞αn(V ∗αn
(j)−V ∗αn

(i0) = 0, and thus αnV ∗αn
(j)→ g′ for all

j ∈ S.
Since Φ is compact, there is a final subsequence of {αn}n, denoted likewise, such

that {φαn}n, with φαn α-discount optimal, has a limit point φ ′ say. The tuple (g′,H ′)
has property (3) from part (i) of the Theorem by Lemma 5.4.

We will next show that this tuple is a solution to the following inequality:

g′ ≥ cφ
′
(i)+∑

j
qφ

′
(j | i)H ′(j)≥ inf

φ∈Φ
{cφ (i)+∑

j
qφ (j | i)H ′(j)}, i ∈ S. (5.23)

Indeed, the α-DDOE (5.18) yields for all i ∈ S

αV ∗α (i) = cφα (i)+∑
j

qφα (j | i)V ∗α (j).

Then we use Fatou’s lemma and obtain

g′ = liminf
n→∞

{αnV ∗αn
(i)}

= liminf
n→∞

{
cφαn (i)+∑

j �=i

qφαn (j | i)[V ∗αn
(j)−V ∗αn

(z)]−qφαn (i)[V ∗αn
(i)−V ∗αn

(z)]
}

≥cφ
′
(i)+∑

j �=i

liminf
n→∞

{ qφαn (j | i)[V ∗αn
(j)−V ∗αn

(z)]}

− liminf
n→∞

{
qφαn (i)[V ∗αn

(i)−V ∗αn
(z)]}

5.3 Continuous Time Model 175

=cφ
′
(i)+∑

j
qφ

′
(j | i)H ′(j)

≥ inf
φ∈Φ

{cφ (i)+∑
j

qφ (j | i)H ′(j)},

where subtraction of V ∗αn
(z) is allowed, since Q(φ) has row sums equal to zero. In

the third equation we use continuity of φ �→ cφ (i) and φ �→ qφ (j | i).
This allows to show that (g′,H ′) has property (1) from the Theorem and that φ ′

is optimal in Φ ′. Indeed, Lemmas 5.6 and 5.7 yield for all i ∈ S

gφ
′ ≤ g′ = lim

n→∞
αnV ∗αn

(i)≤ g∗(i)≤ gφ
′
(i). (5.24)

Hence gφ
′
(i) = g∗(i) = g′, i ∈ S, and so φ ′ is optimal in Φ , and g′ is the minimum

expected average cost.
The following step is to show that both inequalities in Eq. (5.23) are in fact equal-

ities. To this end, it is sufficient to show that (g′,H ′) is a solution tuple to the CAOE
(5.20). Then Eq. (5.23) immediately implies that φ ′ takes minimising actions in
Eq. (5.20) for the solution (g′,H ′).

Hence, let us assume the contrary. If g′ > infφ∈Φ{cφ (i)+∑ j qφ (j | i)H ′(j)} then

there exists φ̄ ∈ Φ , such that g′ > cφ̄ (i) +∑ j qφ̄ (j | i)H ′(j) for at least one state
i′ ∈ S, say. Put d(i)≥ 0 to be the corresponding discrepancy, i.e.

g′ = cφ̄ +d(i)+∑
j

qφ̄ (j | i)H ′(j), i ∈ S. (5.25)

In other words,

0 = cφ̄ (i)+d(i)−g′+∑
j

qφ̄ (j | i)H ′(j), i ∈ S.

For i �∈ D, cφ̄ (i)+ d(i)− g′ ≥ gφ0 + ε − g′ ≥ ε , and so H ′+ Le is a non-negative
solution to the equation

∑
j

qφ̄ (j | i)(H ′(j)+L)≤−ε , j �∈ D.

This is precisely the condition in [50, Theorem 1] with λ = 0.2 Following the proof
of that theorem and using that qφ̄ (i) > 0 for i �∈ D (otherwise gφ̄ (i) = cφ̄ (i) > g′),
we can conclude that

H ′(i)+L≥ mφ̄
D(i), i �∈ D,

so that mφ̄
D(i)< ∞, for i �∈ D.

2 The factor λ in front of yi in that paper has been mistakenly omitted.

176 H. Blok and F.M. Spieksma

For i ∈ D, either qφ̄ (i) = 0, or qφ̄ (i)> 0 and

mφ̄
D(i) =

1

qφ̄ (i)
+ ∑

j �∈D

qφ̄ (j | i)
qφ̄ (i)

mφ̄
D(j)≤ 1

qφ̄ (i)
+ ∑

j �∈D

qφ̄ (j | i)
qφ̄ (i)

(H ′(j)+L)< ∞,

by virtue of Eq. (5.25). We now will perform an iteration argument along the same
lines as the proof of [50, Theorem 1] to show that d(i) = 0 for all i ∈ S.

For i ∈ D with qφ̄ (i) = 0, necessarily g′ = cφ̄ (i) and then equality in Eq. (5.23)
immediately follows.

Thus, it is sufficient to consider the case that qφ̄ (i) > 0. Dividing Eq. (5.25) for
state i by qφ̄ (i) we get, after reordering,

H ′(i)≥ cφ̄ (i)+d(i)−g′

qφ̄ (i)
+∑

j �=i

qφ̄ (j | i)
qφ̄ (i)

H ′(j).

Introduce the substochastic matrix P on S\D by

p(j | i) =

⎧
⎨

⎩

qφ̄ (j | i)
qφ̄ (i)

j /∈ D∪{i}

0 otherwise.

This is the taboo jump transition matrix associated with φ̄ , with taboo set D. Denote
the n iterate by P(n), where P(0) is the S×S identity matrix. Then, for i /∈ D we get

H ′(i)≥cφ̄ (i)+d(i)−g′

qφ̄ (i)
+∑

j
p(j | i)H ′(j)+ ∑

j∈D

qφ̄ (j | i)
qφ̄ (i)

H ′(j)

≥cφ̄ (i)+d(i)−g′

qφ̄ (i)
+ ∑

j∈D

qφ̄ (j | i)
qφ̄ (i)

H ′(j)

+∑
j

p(j | i)
[cφ̄ (j)+d(j)−g′

qφ̄ (j)
+∑

w
p(w | j)H ′(w)+ ∑

w∈D

qφ̄ (w | j)

qφ̄ (j)
H ′(w)

]

≥
N−1

∑
n=0

∑
j

p(n)(j | i)cφ̄ (j)+d(j)−g′

qφ̄ (j)
+

N−1

∑
n=0

∑
j

p(n)(j | i) ∑
w∈D

qφ̄ (w | j)

qφ̄ (j)
H ′(w)

+∑
j

p(N)(j | i)H ′(j).

Taking the liminf N → ∞, we get

H ′(i)≥
∞

∑
n=0

∑
j

p(n)(j | i)cφ̄ (j)+d(j)−g′

qφ̄ (j)
+

∞

∑
n=0

∑
j

p(n)(j | i) ∑
w∈D

qφ̄ (w | j)

qφ̄ (j)
H ′(w)

+ liminf
N→∞ ∑

j
p(N)(j | i)H ′(j).

5.3 Continuous Time Model 177

Clearly
liminf

N→∞ ∑
j

p(N)(j | i)H ′(j)≥ liminf
N→∞ ∑

j
p(N)(j | i)(−L).

However, since mφ̄
D(i)< ∞, i �∈ D, we get that liminfN→∞∑ j p(N)(j | i) = 0. Hence,

for τ := τD

H ′(i) ≥
∞

∑
n=0

∑
j

p(n)(j | i)cφ̄ (j)+d(j)−g′

qφ̄ (j)
+

∞

∑
n=0

∑
j

p(n)(j | i) ∑
w∈D

qφ̄ (w | j)

qφ̄ (j)
H ′(w)

≥ E
φ̄
i

[∫ τ

t=0
(c(Xt)+d(Xt)−g′)dt

]
+E

φ̄
i

[
H ′(Xτ)

]

= cφ̄D(i)+E
φ̄
i

[∫ τ

t=0
d(Xt)dt

]
−mφ̄

D(i)g
′+E

φ̄
i

[
H ′(Xτ)

]
, (5.26)

for i �∈ D. For i ∈ D with qφ̄ (i)> 0, we can derive the same inequality.
On the other hand, we have that

Vα(i)≤ cφ̄D(i)+E
φ̄
i

[
e−ατV ∗α (Xτ)

]
.

This is equivalent to

V ∗α (i)−V ∗α (z)≤ cφ̄D(i)−V ∗α (z)(1−E
φ̄
i

[
e−ατ

]
)+E

φ̄
i

[
e−ατ(V ∗α (Xτ)−V ∗α (z))

]
.

Hence, for the sequence {αn}n we have

V ∗αn
(i)−V ∗αn

(z)≤ cφ̄D(i)−αnV ∗αn
(z)

1−E
φ̄
i

[
e−αnτ

]

αn
+E

φ̄
i

[
e−αnτ(V ∗αn

(Xτ)−V ∗αn
(z))

]
.

Taking the limit of n to infinity yields

H ′(i)≤ cφ̄D(i)−g′ ·mφ̄
D(i)+ lim

n→∞

{
E
φ̄
i

[
e−αnτ(V ∗αn

(Xτ)−V ∗αn
(z)

]}
(5.27)

= cφ̄D(i)−g′ ·mφ̄
D(i)+E

φ̄
i

[
H ′(Xτ)

]
.

Taking the limit through the expectation is justified by the dominated convergence
theorem, since

|Eφ̄
i

[
e−αnτ(V ∗αn

(Xτ)−V ∗αn
(z))

]
| ≤ E

φ̄
i e−αnτ |V ∗αn

(Xτ)−V ∗αn
(z)| ≤ E

φ̄
i (U(Xτ)∨L)<∞.

Combining Eqs. (5.26) and (5.27) yields d ≡ 0, for i with qφ̄ (i)> 0.
Since there is equality for φ ′, this also implies that the inf is a min, and so we

have obtained that (g′,H ′) is a solution to the CAOE (5.20).
The only thing left to prove, is that the solution tuple (g′,H ′) has property (2), that

is, every minimising policy in Eq. (5.20) is average cost optimal. But this follows in
the same manner as the argument leading to Eq. (5.24) yielding optimality of φ ′.
This finishes the proof.

178 H. Blok and F.M. Spieksma

5.3.6 Tauberian Theorem

This section develops a Tauberian theorem that is used to provide the necessary in-
gredients for proving Theorem 5.7. This theorem is the continuous time counterpart
of Theorem A.4.2 in Sennott [44]. A related assertion can be found in [27, Propo-
sition A.5], however, in a weaker variant (without the Karamata implication, see
Theorem 5.8, implication (i) =⇒ (iii)). The continuous time version seems de-
ducible from Chap. 5 of the standard work on this topic [55]. We give a direct proof
here.

Let s : [0,∞) → ℜ be a function that is bounded below by −L say and
(B([0,∞)),B)-measurable, where B denotes the Borel-σ -algebra on ℜ, and
B([0,∞)) the Borel-σ -algebra on [0,∞). Assume for any α > 0 that

S(α) =
∫ ∞

t=0
s(t)e−αtdt < ∞.

Furthermore, assume for any T > 0 that

ST =
∫ T

t=0
s(t)dt < ∞.

Lemma 5.8. Suppose that L = 0, i.e. s is a nonnegative function. Then for all α > 0
it holds that

1
α

S(α) =
∫ ∞

T=0
e−αT ST dT. (5.28)

Furthermore, for all α > 0, and U ≥ 0 the following inequalities hold true:

αS(α)≥ inf
T≥U

{
ST

T

}(
1−α2

∫ U

T=0
Te−αT dT

)
, (5.29)

and

αS(α)≤ α2
∫ U

T=0
e−αT ST dT + sup

T≥U

{
ST

T

}
. (5.30)

Proof. We first prove Eq. (5.28). To this end, let α > 0. Then,

1
α

S(α) =
∫ ∞

u=0
e−αudu

∫ ∞

t=0
s(t)e−αtdt

=
∫ ∞

t=0

∫ ∞

u=0
s(t)e−α(u+t)dudt

=
∫ ∞

T=0

∫ T

t=0
s(t)e−αT dt dT

=

∫ ∞

T=0
e−αT

∫ T

t=0
s(t)dt dT

=
∫ ∞

T=0
e−αT ST dT.

5.3 Continuous Time Model 179

Interchange of integrals, change of variables are allowed, since the integrands are
non-negative and the integrals are finite.

Next, we prove Eq. (5.29). To this end, we use Eq. (5.28). Then, for all α > 0,
U ≥ 0

αS(α) = α2
∫ ∞

T=0
ST e−αT dT

≥ α2
∫ ∞

T=U

ST

T
Te−αT dT

≥ α2 inf
t≥U

{
ST

T

}∫ ∞

T=U
Te−αT dT

= α2 inf
t≥U

{
ST

T

}(∫ ∞

T=0
Te−αT dT −

∫ U

T=0
Te−αT dT

)

= inf
T≥U

{
ST

T

}(
1−α2

∫ U

T=0
Te−αT dT

)
.

The first inequality uses explicitly that the integrand is non-negative.
Similarly, we expand from Eq. (5.28) to get Inequality (5.30) as follows. Let

α > 0,U ≥ 0. Then,

αS(α) = α2
∫ ∞

T=0
e−αT ST dT

= α2
∫ U

T=0
e−αT ST dT +α2

∫ ∞

T=U
e−αT T

ST

T
dT

≤ α2
∫ U

T=0
e−αT ST dT + sup

T≥U

{
ST

T

}
α2

∫ ∞

T=U
Te−αT dT

≤ α2
∫ U

T=0
e−αT ST dT + sup

T≥U

{
ST

T

}
α2

∫ ∞

T=0
Te−αT dT

= α2
∫ U

T=0
e−αT ST dT + sup

T≥U

{
ST

T

}
.

Let f : [0,1]→ℜ be an integrable function, and define

S f (α) =
∫ ∞

t=0
e−αt f (e−αt)s(t)dt.

Lemma 5.9. Assume that L = 0 and

W := liminf
α↓0

αS(α) = limsup
α↓0

αS(α)< ∞.

Let r : [0,1]→ℜ be given by

r(x) =

{
0 x < 1/e
1/x x≥ 1/e.

180 H. Blok and F.M. Spieksma

Then

lim
α↓0

αSr(α) =
(∫ 1

x=0
r(x)dx

)
lim
α↓0

αS(α). (5.31)

Proof. We first prove Eq. (5.31) for polynomial functions, then for continuous func-
tions and finally for r. To show that Eq. (5.31) holds for polynomials, it is sufficient
to prove it for p(x) = xk. Thus,

αSp(α) = α
∫ ∞

t=0
e−αt(e−αt)ks(t)dt

=
1

k+1

[
α(k+1)

∫ ∞

t=0
e−α(k+1)t s(t)dt

]

=
∫ 1

x=0
p(x)dx [α(k+1)S(α(k+1))] .

Taking the limit of α ↓ 0 proves Eq. (5.31) for polynomials. This is allowed because
W is finite. Next we show Eq. (5.31) for continuous functions. The Weierstrass ap-
proximation theorem (see [3, 49, Sect. 13.33]) yields that a continuous function q on
a closed interval can be arbitrary closely approximated by polynomials. Let p such
that p(x)−ε ≤ q(x)≤ p(x)+ε for 0≤ x≤ 1. Then, writing p−ε for the polynomial
x �→ p(x)− ε ,

∫ 1

x=0
p(x)dx− ε ≤

∫ 1

x=0
q(x)dx≤

∫ 1

x=0
p(x)dx+ ε .

Sp−ε(α) =
∫ ∞

t=0
e−αt(p(e−αt)− ε)s(t)dt

=
∫ ∞

t=0
e−αt p(e−αt)s(t)dt− ε

∫ ∞

t=0
e−αt s(t)dt

= Sp(α)− εS(α).

This implies
0≤ Sp+ε(α)−Sp−ε(α)≤ 2εS(α),

As ε approaches 0, finiteness of W yields the result for continuous functions. In a
similar manner r can be approximated by continuous functions q,q′ with q′ ≤ r ≤ q
as follows

q(x) =

⎧
⎨

⎩

0 x < 1
e −δ

e
δ x+ e− 1

δ
1
e −δ ≤ x < 1

e
1
x x≥ 1

e ,

q′(x) =

⎧
⎨

⎩

0 x < 1
e

e
γ+γ2e

x− 1
γ+γ2e

1
e ≤ x < 1

e + γ
1/x x≤ 1

e + γ .

5.3 Continuous Time Model 181

This proves Eq. (5.31).

Theorem 5.8. The following assertions hold.

1. liminf
T→∞

ST

T

(a)
≤ liminf

α↓0
αS(α)

(b)
≤ limsup

α↓0
αS(α)

(c)
≤ limsup

T→∞

ST

T
;

2. the following are equivalent

i) liminfα↓0αS(α) = limsup
α↓0

αS(α)< ∞;

ii) liminf
T→∞

ST

T
= limsup

T→∞

ST

T
< ∞;

iii) limα↓0αS(α) = lim
T→∞

ST

T
< ∞.

Proof. This proof is based on Sennott [44]. Clearly inequality (b) holds. So this
leaves to prove inequalities (a) and (c).

Proof of inequality (a). First notice, that if we take s ≡ M a constant function,
then

liminf
T→∞

ST

T
= liminf

α↓0
αS(α) = limsup

α↓0
αS(α) = limsup

T→∞

ST

T
.

Therefore adding a constant M to the function s does not influence the result. Hence,
it is sufficient to prove the theorem for nonnegative functions s. This means that the
assumptions of Lemma 5.8 hold and we may use Inequality (5.29). Thus,

inf
T≥U

{
ST

T

}(
1−α2

∫ U

T=0
Te−αT dT

)
≤ αS(α).

Notice that limα↓0α2 ∫U
T=0 Te−αT dT = 0, hence taking the liminf as α ↓ 0 gives

inf
T≥U

ST

T
≤ liminf

α↓0
αS(α).

Now taking the limit U → ∞ on both sides gives

liminf
T→∞

ST

T
≤ liminf

α↓0
αS(α),

which yields the result. Using Inequality (5.30) of Lemma 5.8 and applying the
same reasoning proves inequality (c). Next we prove part 2. Part 1 implies that
(iii)⇐⇒ (ii) =⇒ (iii). So it is sufficient to prove that (i) =⇒ (iii) (Fig. 5.3).

182 H. Blok and F.M. Spieksma

Assume that (i) holds, then we may invoke Lemma 5.9. First notice that
∫ 1

x=0 r(x)dx = 1, hence Eq. (5.31) reduces to

lim
α↓0

αSr(α) = lim
α↓0

αS(α).

Moreover,

αSr(α) = α
∫ ∞

t=0
e−αt s(t)eαt1{e−αt≥e−1}dt = α

∫ 1/α

t=0
s(t)dt = αS1/α

To complete the proof, we have

lim
α↓0

αS(α) = lim
α↓0

αSr(α) = lim
α↓0

αS1/α = lim
T→∞

ST

T
.

Acknowledgements We would like to thank Sandjai Bhulai for introducing us to the illustrative
tandem queue model in Sect. 5.2.2. Moreover, he provided us with numerical results for Figs. 5.2
and 5.3.

Appendix: Notation

S & i, j,w,z State space and states
Φ Parameter space modelling decision rules and perturbations
φ Elements of parameter space
δ Decision rule and stationary, deterministic policy
δ (i) Decision rule in state i
A(i) Action set in state i
A=∏i∈SA(i) Action space, equivalently the collection of all stationary,

deterministic policies; equal to Φ (in this work) if
no perturbations/truncations are modelled

α Discount factor in continuous and discrete time
Pφ One step transition matrix under parameter φ
pφ (j | i) Transition probability to state j, when in state i and

parameter φ chosen
Qφ Generator of Markov process operating under parameter φ ,

assumed conservative and stable
qφ (j | i) Transition rate from state i to state j under parameter φ
qφ (i) The total transition rate parameter of the exponentially distributed

sojourn time in state i under parameter φ
Pφ

t Transition matrix at time t under parameter φ
pφt (j | i) Transition probability to state j at time t, when in state i

and parameter φ is chosen
cφ Expected one step cost under parameter φ in discrete time,

expected cost rate under parameter φ in continuous time

References 183

V φ
α α-Discount value function under parameter φ

V ∗α Optimal α-discount value function
Vα ,n Optimal expected α-discounted total cost up to (and including)

time n

V ∗,(N)
α Optimal α-discount value function for the N-perturbed MDP

V (N)
α ,n Optimal expected α-discounted total cost up to (and including)

time n for the N-perturbed MDP
gφ Average expected cost under parameter φ
g∗ Optimal average expected cost
Vn Optimal expected total cost up to (and including) time n
Hφ Bias under parameter φ
H∗ Bias under an optimal policy
Eφ Expectation operator under parameter φ
Pφ Probability operator under parameter φ
e Vector of appropriate size consisting of ones
I Identity matrix of appropriate dimension
τz Entrance time of state z, in discrete and continuous time
mφ

z Expected entrance time of state z, under parameter φ ,
in discrete and continuous time

Cφ
z (i) Expected total cost before reaching state z, under parameter φ ,

in discrete and continuous time

References

1. I.J.B.F. Adan, V.G. Kulkarni, A.C.C. van Wijk, Optimal control of a server
farm. INFOR 51(4), 241–252 (2013)

2. E. Altman, A. Hordijk, F.M. Spieksma, Contraction conditions for average and
α-discount optimality in countable Markov games with unbounded rewards.
Math. Oper. Res. 22, 588–619 (1997)

3. T.M. Apostol, Mathematical Analysis (Addison Wesley Publishing Company,
1974)

4. Y. Aviv, A. Federgruen, The value iteration method for countable state Markov
decision processes. Oper. Res. Lett. 24, 223–234 (1999)

5. R. Bellman, A Markovian decision process. Technical report, DTIC Document
(1957)

6. S. Bhulai, G.M. Koole, On the structure of value functions for threshold policies
in queueing models. J. Appl. Prob. 40(3), 613–622 (2003)

7. S. Bhulai, F.M. Spieksma, On the uniqueness of solutions to the Poisson equa-
tions for average cost Markov chains with unbounded cost functions. Math.
Meth. Oper. Res. 58(2), 221–236 (2003)

184 H. Blok and F.M. Spieksma

8. S. Bhulai, A.C. Brooms, F.M. Spieksma, On structural properties of the value
function for an unbounded jump Markov process with an application to a pro-
cessor sharing retrial queue. Queueing Syst. 76(4), 425–446 (2014)

9. S. Bhulai, H. Blok, F.M. Spieksma, Competing queues with customer aban-
donment: optimality of a generalised cμ-rule by the smoothed rate truncation
method. Technical report, Mathematisch Instituut Leiden (2016)

10. P. Billingsley, Convergence of Probability Measures. Wiley Series in Probabil-
ity and Statistics, 2nd edn. (Wiley, New York, 1999)

11. H. Blok, Markov decision processes with unbounded transition rates: structural
properties of the relative value function. Master’s thesis, Utrecht University,
2011

12. H. Blok, Unbounded-rate Markov Decision Processes and optimal control.
Structural properties via a parametrisation approach. Universiteit Leiden
(2016). http://pub.math.leidenuniv.nl/∼spieksmafm/theses/blok.pdf

13. H. Blok, F.M. Spieksma, Countable state Markov decision processes with un-
bounded jump rates and discounted cost: optimality and approximations. Adv.
Appl. Probab. 47, 1088–1107 (2015)

14. H. Blok, F.M. Spieksma, Structural properties of the server farm model. Tech-
nical report, Mathematisch Instituut Leiden (2016, in preparation)

15. V.S. Borkar, Topics in Controlled Markov Chains (Longman Scientific & Tech-
nical, Harlow, 1991)

16. R. Dekker, Denumerable Markov decision chains, optimal policies for small
interest rates. PhD thesis, Universiteit Leiden, 1985

17. R. Dekker, A. Hordijk, Average, sensitive and Blackwell optimal policies in
denumerable Markov decision chains with unbounded rewards. Math. Oper.
Res. 13, 395–421 (1988)

18. R. Dekker, A. Hordijk, Recurrence conditions for average and Blackwell opti-
mality in denumerable Markov decision chains. Math. Oper. Res. 17, 271–289
(1992)

19. R. Dekker, A. Hordijk, F.M. Spieksma, On the relation between recurrence and
ergodicity properties in denumerable Markov decision chains. Math. Oper. Res.
19, 539–559 (1994)

20. C. Derman, Finite State Markovian Decision Processes (Academic, New York,
1970)

21. S. Doroudi, B. Fralix, M. Harchol-Balter, Clearing analysis on phases: exact
limiting probabilities for skip-free, unidirectional, Quasi-Birth-Death processes
(2016, submitted for publication)

22. D.G. Down, G. Koole, M.E. Lewis, Dynamic control of a single-server system
with abandonments. Queueing Syst. 67(1), 63–90 (2011)

23. G. Fayolle, V.A. Malyshev, M.V. Menshikov, Constructive Theory of Countable
Markov Chains (Cambridge University Press, Cambridge, 1995)

24. E.A. Feinberg, Total reward criteria, in Handbook of Markov Decision Pro-
cesses, ed. by E.A. Feinberg, A. Shwartz. International Series in Operations
Research and Management Science, vol. 40, chap. 5 (Kluwer Academic Pub-
lishers, Amsterdam, 2002), pp. 155–189

http://pub.math.leidenuniv.nl/~spieksmafm/theses/blok.pdf

References 185

25. L. Fisher, S.M. Ross, An example in denumerable decision processes. Ann.
Math. Stat. 39(2), 674–675 (1968)

26. F.G. Foster, On the stochastic matrices associated with certain queuing pro-
cesses. Ann. Math. Stat. 24(3), 355–360 (1953)

27. X.P. Guo, O. Hernández-Lerma, Continuous-Time Markov Decision Processes.
Stochastic Modelling and Applied Probability, vol. 62 (Springer, Berlin, 2009)

28. X.P. Guo, O. Hernández-Lerma, T. Prieto-Rumeau, A survey of recent results
on continuous-time Markov decision processes. TOP 14, 177–261 (2006)

29. A. Hordijk, Dynamic Programming and Markov Potential Theory. Mathemati-
cal Centre Tracts, vol. 51 (C.W.I., Amsterdam, 1974)

30. A. Hordijk, Regenerative Markov decision models. Math. Program. Study 6,
49–72 (1976)

31. A. Hordijk, P.J. Schweitzer, H.C. Tijms, The asymptotic behaviour of the min-
imal total expected cost for the denumerable state Markov decision model. J.
Appl. Prob. 12, 298–305 (1975)

32. M. Kitaev, Semi-Markov and jump Markov controlled models: average cost
criterion. Theory Prob. Appl. 30, 272–288 (1986)

33. G.M. Koole, Monotonicity in Markov Reward and Decision Chains: Theory
and Applications, vol. 1 (Now Publishers Inc., Hanover, 2007)

34. S.A. Lippman, On dynamic programming with unbounded rewards. Manage.
Sci. 21, 1225–1233 (1975)

35. S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability (Springer,
Berlin, 1993)

36. A. Piunovskiy, Y. Zhang, Discounted continuous-time Markov decision pro-
cesses with unbounded rates and history dependent policies: the dynamic pro-
gramming approach. 4OR-Q J. Oper. Res. 12, 49–75 (2014)

37. T. Prieto-Rumeau, O. Hernández-Lerma, Discounted continuous-time con-
trolled Markov chains: convergence of control models. J. Appl. Probab. 49(4),
1072–1090 (2012)

38. T. Prieto-Rumeau, O. Hernández-Lerma, Selected Topics on Continuous-Time
Controlled Markov Chains and Markov Games. ICP Advanced Texts in Math-
ematics, vol. 5 (Imperial College Press, London, 2012)

39. M.L. Puterman, Markov Decision Processes: Discrete Stochastic Program-
ming, 2nd edn. (Wiley, Hoboken, NJ, 2005)

40. S.M. Ross, Non-discounted denumerable Markovian decision models. Ann.
Math. Stat. 39(2), 412–423 (1968)

41. H.L. Royden, Real Analysis, 2nd edn. (Macmillan Publishing Company, New
York, 1988)

42. L.I. Sennott, Average cost optimal stationary policies in infinite state Markov
decision processes with unbounded costs. Oper. Res. 37(4), 626–633 (1989)

43. L.I. Sennott, Valute iteration in countable state average cost Markov decision
processes with unbounded costs. Ann. Oper. Res. 28, 261–272 (1991)

44. L.I. Sennott, Stochastic Dynamic Programming and the Control of Queueing
Systems. Wiley Series in Probability and Statistics (Wiley, New York, 1999)

186 H. Blok and F.M. Spieksma

45. R.F. Serfozo, An equivalence between continuous and discrete time Markov
decision processes. Oper. Res. 27(3), 616–620 (1979)

46. F.M. Spieksma, Geometrically ergodic Markov Chains and the optimal Control
of Queues. PhD thesis, Leiden University, 1990. Available on request from the
author

47. F.M. Spieksma, Countable state Markov processes: non-explosiveness and mo-
ment function. Prob. Eng. Inf. Sci. 29(4), 623–637 (2015)

48. R.E. Strauch, Negative dynamic programming. Ann. Math. Stat. 37(4),
871–890 (1966)

49. E.C. Titchmarsh. The Theory of Functions, 2nd edn. (Oxford University Press,
Oxford, 1986)

50. R.L. Tweedie, Criteria for ergodicity, exponential ergodicity and strong ergod-
icity of Markov processes. J. Appl. Prob. 18, 122–130 (1981)

51. N.M. van Dijk, On uniformization of time-inhomogeneous continuous-time
Markov chains. Oper. Res. Lett. 12, 283–291 (1992)

52. N.M. van Dijk, Error bounds and comparison results: the Markov reward
approach, in Queueing Networks. A Fundamental Approach, ed. by R.J.
Boucherie, N.M. van Dijk. International Series in Operations Research and
Management Science, chap. 9 (Springer US, 2011), pp. 379–461

53. R.R. Weber, S. Stidham Jr., Optimal control of service rates in networks of
queues. Adv. Appl. Prob. 19(1), 202–218 (1987)

54. J. Wessels, Markov programming by successive approximations with respect to
weighted supremum norms. J. Math. Anal. Appl. 58(2), 326–335 (1977)

55. D.V. Widder, The Laplace Transform (Princeton University Press, Princeton,
1946)

Part II
Healthcare

Chapter 6
Markov Decision Processes for Screening
and Treatment of Chronic Diseases

Lauren N. Steimle and Brian T. Denton

Abstract In recent years, Markov decision processes (MDPs) and partially observ-
able Markov decision processes (POMDPs) have found important applications to
medical decision making in the context of prevention, screening, and treatment of
diseases. In this chapter, we provide a review of state-of-the-art models and meth-
ods that have been applied to chronic diseases. We provide a tutorial about how
to formulate and solve these important problems emphasizing some of the chal-
lenges specific to chronic diseases such as diabetes, heart disease, and cancer. Then,
we illustrate important considerations for model formulation and solution methods
through two examples. The first example is an MDP model for optimal control of
drug treatment decisions for managing the risk of heart disease and stroke in pa-
tients with type 2 diabetes. The second example is a POMDP model for optimal
design of biomarker-based screening policies in the context of prostate cancer. We
end the chapter with a discussion of the challenges of using MDPs and POMDPs
for medical contexts and describe some important future directions for research.

6.1 Introduction

Chronic diseases are the leading cause of death and disablement in many coun-
tries [1]. Although these diseases cannot be cured, they can be controlled by screen-
ing and treatment. Clinicians are tasked with deciding which screening and treat-
ment options are most beneficial for a patient. These decisions are made sequentially

L.N. Steimle (�) • B.T. Denton
Department of Industrial and Operations Engineering, University of Michigan,
1205 Beal Ave, Ann Arbor, MI 48109, USA
e-mail: steimle@umich.edu; btdenton@umich.edu

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 6

189

mailto:steimle@umich.edu
mailto:btdenton@umich.edu

190 L.N. Steimle and B.T. Denton

over long periods of a patient’s life and are made in an uncertain environment. Al-
though clinicians can observe a patient’s current test results, there is uncertainty in
the future progression of the disease, the effect of treatment on the patient, and even
the correctness of test results. Medical decisions have grown even more complicated
due to the aging patient population. Older patients often have multiple chronic con-
ditions, and treatment for one condition may worsen another. Health care providers
have recognized these growing problems and have responded with increased expen-
ditures on data collection and tracking systems. With the growth in medical data
comes the need for analytical methodology to convert these data into information.
Recently, operations research methods have proven to be powerful tools to analyze
these data to guide screening and treatment decisions.

Markov decisions processes (MDPs) are increasingly being used in the analysis
of medical decisions, especially chronic disease screening and treatment decisions.
Both screening and treatment decisions are characterized by large state spaces that
define the severity of the disease, patient-specific clinical risk factors, and med-
ication histories, and these decisions have uncertain outcomes due to differences
among patients such as genetic, environmental, and dietary factors. The framework
of MDPs lends itself well to these decisions since they are made sequentially over
time in a fundamentally stochastic environment. Further, partially observable MDPs
(POMDPs) are useful for studying systems in which the true state of the system is
not known exactly, which is usually the case when screening for a chronic disease.

Modeling screening and treatment decisions using MDPs is not without its chal-
lenges. These clinical decisions take place over long time horizons (sometimes
decades) under constraints due to medication conflicts, clinical practice require-
ments, or budget constraints. Furthermore, the influence of a patient’s treatment
and screening history on future decisions leaves these models subject to the curse of
dimensionality due to the dramatic increase in the size of the state space that can be
caused by this history dependence. As a result, optimization of the stochastic and se-
quential decision making process gives rise to computationally-intensive problems
that are difficult to solve, even with state-of-the-art algorithms and computing re-
sources. Fortunately, many of these problems have promising structural properties
that can be exploited to achieve meaningful theoretical insights and lead to efficient
exact and/or approximation methods.

The remainder of this chapter is organized as follows: in Sect. 6.2, we discuss
some applications of MDPs to chronic diseases. In Sect. 6.3, we discuss how to for-
mulate an MDP/POMDP model in the context of chronic disease and solution meth-
ods that can be used to determine optimal policies for these models. In Sects. 6.4
and 6.5, we give in-depth descriptions of an MDP used for the treatment of type 2
diabetes and a POMDP model used for screening of prostate cancer, respectively.
We end the chapter with discussion of the open challenges that need to be addressed
when using MDP/POMDP models for chronic diseases and some concluding re-
marks.

6.2 Background on Chronic Disease Modeling 191

6.2 Background on Chronic Disease Modeling

Surveys of operations research applications in healthcare can be found in [2–4].
Many of the examples are in the context of healthcare operations management,
which has been an important application area for decades. In contrast to operations
management, the study of disease screening and treatment policies has a shorter
history and is confined to a relatively small, but fast growing, number of topic ar-
eas including liver and kidney transplant decisions [5–11], breast cancer screening
[12, 13], intensity modulated radiation therapy [14–16] and brachy-therapy [17] for
cancer treatment, the treatment of HIV [18], and public policy decisions related to
the transmission of communicable diseases [19, 20].

MDPs can be used to study sequential decisions made in uncertain environments,
which is why they are so powerful for the analysis of chronic disease screening and
treatment. Before describing how these models are formulated, we provide some
motivation for the study of MDPs in the context of chronic diseases by giving the
following examples of clinically-relevant questions that have been answered:

• At what point should a patient with HIV initiate highly active antiretroviral
therapy (HAART)?
Human Immunodeficiency Virus (HIV) is a virus that attacks the CD4 white
blood cells to the point the body can no longer protect itself against infec-
tions and disease. Acquired Immune Deficiency Syndrome (AIDS) is caused
by HIV and eventually leads to death. Once someone acquires HIV, the virus
will remain in the body for the remainder of that person’s life. Highly active
antiretroviral therapy (HAART) prevents the virus from multiplying and is the
standard treatment for HIV patients. However, it was debated whether to “hit
early, hit hard” with HAART, as was the treatment model in the late 1990s, or
to wait until the CD4 count falls between 200 and 350 as suggested by more
recent guidelines. The authors of [18] used an infinite-horizon MDP with the
objective of maximizing a patient’s total expected lifetime or quality-adjusted
lifetime to answer this open question. The states of the MDP were defined by
a patient’s CD4 count, and at each monthly decision epoch, the decision was
to “initiate HAART” or “wait to initiate HAART”. The authors proved that the
optimal policy prescribes initiating therapy if and only if the CD4 count falls
below a certain threshold. The optimal policy suggested that HAART should be
initiated earlier supporting the “hit early, hit hard” approach to HIV treatment.

• When should women receive mammograms to screen for breast cancer?
Breast cancer is the second leading cause of cancer death for women in the
United States [21]. Detecting breast cancer in its early stages allows for treat-
ment and decreases the risk of a breast cancer mortality. A mammogram is
an X-ray image of the breast that can be used to detect breast cancer before
a woman develops symptoms. If a mammogram shows a suspicious area, a
biopsy can be performed to determine if the abnormality is cancer. While these
tests are useful in determining if a patient has cancer, they are not perfect.

192 L.N. Steimle and B.T. Denton

Mammograms can lead to radiation exposure and pain, and biopsies are an
invasive procedure associated with pain and anxiety. Further, mammograms
can give false negative and false positive results. The authors of [22] created a
finite-horizon POMDP model to determine personalized mammography screen-
ing policies that depend on a woman’s personal risk factors and past screening
results. The unobservable states represent which stage of cancer the patient has
such as no cancer, noninvasive cancer, invasive cancer, invasive cancer under
treatment, or death. The actions of this POMDP are “wait” and “mammogra-
phy”. If the action chosen is mammography, the decision maker can observe a
positive or negative mammogram result. If the action is to wait, the patient can
give a self-detection result that is either positive or negative. If a mammogram
is positive, the patient will get a biopsy, and if a self-detection is positive, the
patient will get a mammogram. With these observations in mind, the decision
maker can update her belief state which describes the probability that a patient
is in any given state given the history of mammogram results. The authors find
that a control-limit policy exists that depends on the risk of noninvasive and
invasive cancers and that a patient’s screening history may affect the decision
of whether to perform a mammography or not.

• When should a patient with end-stage liver disease accept a living-donor trans-
plant? For patients with end-stage liver diseases such as primary biliary cirrho-
sis, hepatitis C, and acute failure (fulminants) disease, organ transplantation is
the only treatment option. Provided that a patient with end-stage liver disease
has a willing living donor, it might seem the patient should receive a trans-
plant as soon as possible. However, depending on the quality of the match with
the donor and the current health of the patient, this decision might give a lower
expected total lifetime for the patient compared with the decision to wait. To an-
alyze this situation, the authors of [5] create an infinite-horizon MDP model in
which the state space is represented by a patient’s “Model For End-Stage Liver
Disease”(MELD) score. The MELD score quantifies the severity of end-stage
liver disease based on laboratory results and is used for the purpose of transplant
decisions. Higher MELD scores are associated with more severe liver disease.
At each daily decision epoch, the actions are “transplant” and “wait”. If the
decision is to wait, the patient will receive a reward of one life day and then
progress probabilistically among the health states or die. Once the decision to
transplant is made, the patient transitions into an absorbing state and receives a
reward corresponding to the expected life days associated with the health of the
patient at the time of the transplantation and the quality of the match with the
donor. The authors prove that the optimal policy has a control-limit structure
in which the patient will only accept a liver of a given quality if her MELD
score is worse than the control-limit. For example, a MELD score of 20 is the
control-limit given that the quality of the match has a score of 4. Therefore, a
patient with a MELD score of 25 should accept this liver to transplant while a
patient with a MELD score of 15 should wait to transplant.

6.3 Modeling Framework for Chronic Diseases 193

These examples illustrate some treatment and screening decisions that can be an-
alyzed using MDPs. More examples of MDPs used in medicine can be found in the
reviews by the authors of [23, 24]. This chapter differs from these previous reviews
in that we provide an in-depth discussion of how to formulate MDP models for
chronic disease screening and treatment problems. We also provide detailed exam-
ples that illustrate MDP model formulation, validation, solutions, and interpretation
of results. Finally we compare and contrast perfectly observable and imperfectly ob-
servable contexts. With this motivation, we will proceed to more formally describe
how MDPs can be formulated to generate insights for screening or treating a chronic
disease.

6.3 Modeling Framework for Chronic Diseases

The remainder of this chapter will focus on the modeling framework for MDPs
specifically in the context of screening and treatment applications. This section will
provide a tutorial on how to formulate, solve, and validate these models. In the
following sections, we will provide several examples to illustrate the development
of the formulation and potential challenges faced by researchers.

6.3.1 MDP and POMDP Model Formulation

To build an MDP model of a chronic disease treatment process, one must define the
decision epochs, time horizon, state space, action space, transition probabilities,
and rewards as they relate to the specific disease and screening/treatment options
being considered.

Decision Epochs: Treatment and screening decisions are made at each decision
epoch. The length of time between decision epochs for a chronic disease model
usually corresponds to the time between treatment and/or screening decisions made
by the clinician. For instance, in the case of liver transplantation, decisions about
whether to transplant or not could be made daily, while in the case of type 2 dia-
betes, decisions about which medications to initiate are more likely to be made less
frequently (e.g. every 6 or 12 months based on clinical guidelines). Determining the
ideal time interval requires some understanding of the disease context and clinical
practice.

Time Horizon: Another modeling choice is whether to consider a finite-horizon
formulation, in which there are a finite number of decision epochs, or an infinite-
horizon formulation. While the patient will die in a finite amount of time, some
researchers use an infinite-horizon approach for treatment decisions when the time
between epochs is short relative to the length of the horizon over which decisions

194 L.N. Steimle and B.T. Denton

are made. For example, in organ transplantation, if the decision epochs are daily, it
may be a suitable approximation to use an infinite-horizon. Usually infinite-horizon
problems are associated with an absorbing state that is reached with probability
1, such as a post-treatment absorbing state. Moreover, infinite-horizon models are
often stationary, i.e., model parameters do not vary over time.

State Space: The state space of the model represents the information that would
be useful to a clinician when making decisions regarding a patient. A state vector
typically includes the patient’s health status, demographic information, and relevant
medical history.

A patient’s health status is usually defined by a number of clinical risk factors
or a risk score that can be used by clinicians to predict the severity of a disease
or the likelihood of developing a disease. For example, when determining whether
or not to transplant a liver, clinicians consider a patient’s MELD score which de-
pends on a number of laboratory values that are useful in determining the severity
of liver disease. While MELD scores are integer-valued, other metabolic risk fac-
tors, such as body mass index (BMI), are continuous. Most MDP models used for
medical decisions discretize the true continuous state space to reduce the computa-
tion needed to solve the model. A finer discretization may be more representative of
the true continuous state space, but it also increases the size of the state space and
therefore the computation required to solve the model. Further, a finer discretiza-
tion will decrease the number of observed transitions for some state-action pairs
introducing more sampling error into the estimates of the transition probabilities.
Reference [25] provides a discussion of the trade-off between the model error in-
troduced with a more coarse discretization and the sampling error that is associated
with a finer discretization.

A patient’s demographic information can be important for defining the state space
of a model. The dynamics of some diseases vary depending on the demographics of
the patient such as age and race. For example, [12] considers age because older
women are at higher risk for developing breast cancer, but breast cancer is less
aggressive in these women. These dynamics may be important in determining the
optimal treatment or screening policies, but incorporating this information might
require formulation and validation of unique models for these different populations.

Information about a patient’s medical history, such as medication history or his-
tory of adverse events, may affect treatment decisions. For example, once a patient
has had one heart attack, she is at increased risk to have a second heart attack. Al-
though this history is important, MDP models require that the transitions among
states must maintain the Markov property, i.e, the next state may only depend on the
current state and the action taken. To maintain this property, it is necessary to in-
corporate any necessary history of the patient into the state definition. For example,
the state definition may include which medications a patient has already initiated or
how many adverse events the patient has already had.

In most MDP models of chronic disease, there is an absorbing state representing
major complication and/or death. In some models, there are separate death states
depending on the cause of death (e.g. death from a heart attack, death from other

6.3 Modeling Framework for Chronic Diseases 195

causes). It may be necessary to use more than one absorbing state when absorbing
states that are reachable from a given health state vary or when rewards vary depend-
ing on the absorbing state that is reached. Defining the state space is closely tied to
what sources exist to estimate transition probabilities, such as statistical survival
models or patient data.

POMDPs are a generalization of MDPs in which the decision maker does not
know the state of the system with certainty. This generalization is particularly useful
within the context of chronic disease, because often clinicians cannot be 100% sure
of the health state of their patients. While screening and diagnostic tests provide
valuable information, these tests sometimes give false positive and false negative
test results which leaves the true health state of the patient uncertain. In a POMDP,
the state space is defined by a core process and an observation process (also referred
to as a message process). With respect to chronic diseases, the core process corre-
sponds to the true health of a patient, such as cancer-free, has non-invasive cancer,
has invasive cancer, in treatment, or dead. To a clinician, the first three states are
unobservable, meaning that the clinician cannot know with certainty the true state of
the patient. The observation process corresponds to observable test results, such as a
mammogram. The core process and the observation process are tied together prob-
abilistically through an information matrix with elements that define probabilities
of a particular observation given a particular core state. For example, the decision
maker may know the true and false positive and negative rates of a biopsy based
on clinical studies. Using Bayesian updating, the relationship between the core and
observation processes and the observed test result can be used to continually update
a belief state over the time horizon of the POMDP. The belief state is a probability
distribution describing the believed true state of the system based on the decision
maker’s past observations. For additional details specific to POMDPs, the reader is
referred to [26, 27].

Action Space: To identify the action space of the MDP, one must identify which
screening or treatment options to consider. In the case where there is a clear “best”
treatment option, the action space might be only two actions: treat the patient with
the best therapy or wait. These are typically referred to as optimal stopping-time
problems in the literature, because the decision maker aims to choose the optimal
time to stop the process and enter the absorbing post-treatment state. For instance,
deciding when to transplant an organ is usually a stopping-time problem with the
action space being transplant or wait to transplant.

For some diseases, it is not clear which therapy is the best or how different thera-
pies should be used together to treat the patient. In these cases, the action space can
grow quite large because of the combinatorial nature of the actions. For example, if
M = {m1,m2, . . . ,mn} is a set of different drugs that can be used in any combination
to treat a patient, the size of the action space is 2|M| and thus grows exponentially in
the number of treatments considered.

In a POMDP model, the decision maker can take actions to gain information
about the state of the system. For example, screening decisions can be modeled
using POMDP models where the action space might represent the different types

196 L.N. Steimle and B.T. Denton

of screening tests available. Performing a screening test may not change the natural
progression of the disease, but it can provide the decision maker with valuable
information about the true health state of the patient, which in turn may be used to
decide whether to do more invasive testing such as biopsy or radiologic imaging.

Transition Probabilities: The transition probabilities in an MDP model of a chronic
disease usually describes the progression of the disease with and without treatment,
the probability of an adverse event, and the probability of death. To describe the
progression of a disease, a key step is to build a natural history model. The natural
history model describes how the disease progresses under no treatment. Creating
this model can be challenging because medical records will only contain data about
patients who have been diagnosed and treated for the disease. To build a natural his-
tory model, one can use longitudinal data to estimate the effects of treatment by ob-
serving measurements of risk factors before and after a patient starts the treatment.
In this way, one could estimate how the disease would progress if no treatment was
given to a patient. It is important to note that these measures can be affected by bias
associated with patterns that influence which patients are referred for treatment. For
example, patients who initiate blood pressure lowering medications would typically
have higher than normal blood pressure and may exhibit greater relative reduction
in blood pressure than the general population.

When there is a clear “best” therapy, as is the case in optimal stopping-time
problems, the modeler is not concerned with the effect of treatment on the transition
probabilities. Upon initiating treatment, the patient will transition to an absorbing
state representing post-treatment with probability 1. In other cases, the modeler must
consider how treatment affects the transition probabilities. Presumably, initiating
treatment will lower the probability of having an adverse event or dying from the
disease. A recent proliferation of statistical models for estimating the risk of chronic
disease complications can provide these inputs for MDPs. For instance, statistical
models for type 2 diabetes include: the Framingham model [28–30], the UKPDS
model [31–34], and the ACC/AHA pooled risk calculator [35]. These models predict
the probability of diabetes complications such as cardiovascular events (stroke and
coronary heart disease), kidney failure, and blindness. Inputs include gender, race,
family history, and metabolic factors like cholesterol, blood pressure, and blood
glucose. Treatment can affect some of the inputs to these models and therefore can
affect the transition probability to an adverse event state.

Another key input to an MDP model is the probability associated with transition-
ing to the death state. The probability of death caused by something other than the
disease of interest is called all other cause mortality. All other cause mortality can
have a large impact on treatment decisions. As all other cause mortality increases,
treatment can become less beneficial since the probability of a complication or
dying from the particular disease of focus for the MDP is not as likely. This is
particularly important for chronic diseases that progress slowly. For example, the
American Urology Association recommends not screening men for prostate cancer
after age 75 because men who have not been diagnosed with prostate cancer by this
age are not likely to die from this slowly progressing disease. Estimates for all other

6.3 Modeling Framework for Chronic Diseases 197

cause mortality can typically be found using mortality tables from the Centers for
Disease Control and Prevention (CDC) [36].

Rewards: The rewards and costs in a chronic disease MDP model may be asso-
ciated with the economic and health implications associated with treatment and
screening policies. To determine the relevant rewards and costs, one must identify
the perspective of the decision maker: patient, third-party payer (e.g. Blue Cross
Blue Shield, Medicare), or a societal perspective that combines these different
perspectives. Treating or screening a patient for a chronic disease will offer some
reward to the patient, such as a potentially longer life. However, these benefits come
at some “cost” to the patient, whether it be a reduction in quality of life, such as
side effects due to medication or discomfort due to a screening test, or a financial
cost, such as medication or hospitalization expenses. Health services researchers
typically use quality-adjusted life years (QALYs) to quantify the quality of a year
of life with the discomfort due to medical interventions. A QALY of 1 represents
a patient in perfect health with no disutility due to medical interventions and side
effects of treatment. As the patient’s quality of life decreases, whether from med-
ication side effects or disablement from a disease, the patient’s QALY value will
tend towards zero. (The reader is referred to [37] for a review of QALYs and other
quality of life measures.) Some MDP models are only concerned with maximizing
a patient’s QALYs. Other models take a societal perspective and attempt to balance
the health benefits of treatment with the corresponding monetary costs of medical
interventions. To balance these competing objectives, a common approach is to
use a willingness to pay factor, which assigns a monetary value to a QALY. Values
of $50,000 and $100,000 per QALY have commonly been used in the literature;
however, the exact value to use is often debated [38].

MDPs are rather data-intensive due to the need for transition probabilities and
rewards for each state-action pair. However, after gleaning these inputs from the
literature or longitudinal patient data, solving these MDPs can generate meaningful
insights into how and when to screen for and treat chronic diseases.

6.3.2 Solution Methods and Structural Properties

Various algorithms have been developed for solving MDPs. The appropriate method
for solving an MDP depends on whether the MDP is formulated as an infinite-
horizon or finite-horizon problem and the size of the state and action spaces. Meth-
ods such as policy iteration, value iteration, and linear programming have been used
to solve infinite-horizon problems, while backwards induction is typically used to
solve finite-horizon problems. One problem with MDP formulations is that they are
subject to the curse of dimensionality. This is seen in MDPs for chronic disease
where the size of the state space grows exponentially with the number of health risk
factors defining the state. To circumvent this problem, approximation algorithms

198 L.N. Steimle and B.T. Denton

can be used. There has been a great amount of research on approximate dynamic
programming in general, but these approaches tend to be highly context dependent
and very little work has been done in the context of chronic disease. References
[39, 40] provide a thorough review of approximation methods of MDPs.

Many MDP models for chronic diseases have certain structural properties that
can be exploited for computational gains. One such property is the increasing failure
rate (IFR) property describing the transition probability matrices. In the context of
chronic diseases, the IFR property means that the worse the health status of the
patient is, the more likely that the health status will become even worse. Usually
this ordering naturally follows the severity of the chronic disease, with the ordering
of the states defined by a patient’s health status. For certain optimal stopping-time
problems, it has been shown that the IFR property together with some additional
(and nonrestrictive) conditions guarantees an optimal threshold policy (see Chap. 4
of [41]). These conditions have be used in the context of HIV [18], liver disease [5],
and type 2 diabetes [42] to prove the existence of an optimal control-limit policy. A
control-limit policy is one in which one action is used for all states below a certain
value (e.g. wait to transplant if the MELD score is below 25) and another action for
all states above a certain value (e.g. transplant if the MELD score is at least 25).
Proving the existence of a control-limit policy can decrease the computational effort
required to solve the MDP model, since the value function does not need to be
explicitly calculated for every state-action pair.

POMDPS are generally much more challenging to solve than MDPs. Early
methodological studies focused on exact methods that exploit the fact that the
optimal value function for a POMDP is convex, and in the finite-horizon case it
is piecewise linear and expressible using a finite set of supporting hyperplanes. The
first exact method was provided by Smallwood and Sondik [43]. The authors pro-
posed an iterative approach to generate supporting hyperplanes at each decision
epoch. Due to exponential growth in the number of hyperplanes with respect to
the number of decision epochs and observations and the fact that many of the hy-
perplanes are dominated, the authors further proposed an approach to reduce the
number of hyperplanes to a minimal set using a linear programming formulation
to identify dominated hyperplanes. Many authors have built on this early approach
by developing more efficient ways of pruning unnecessary hyperplanes, including
incremental pruning [44] and the witness method [45]. Exact methods are generally
limited to small POMDPs. A well-known approximation approach for moderate-
sized POMDPs is based on discretizing the continuous belief state to obtain an ap-
proximate finite state MDP. One of the first proposed approaches was the fixed-grid
algorithm proposed by Eckles [46]. Many enhancements, including variable grid
based approaches have built on this early idea. The reader is referred to [47] for
discussion of finite grid based approaches. Grid based methods are limited in their
applicability to large-scale POMDPs. For this reason, it is often necessary to develop
approximation methods tailored to particular applications.

6.3 Modeling Framework for Chronic Diseases 199

6.3.3 Model Validation

Once an MDP has been solved, it is critical to determine whether the results of
the model are valid. Below are some common ways to validate MDP models for
chronic diseases.

Expert Opinion: After the MDP has been solved, one can seek the opinion of an
expert in the field, such as a clinician or a health services researcher, to determine if
the results of the model are realistic. This form of validation is not very strong since
it is subjective. Some experts may have differing opinions of whether the model
results are actually valid. However, this form of validation is probably the easiest to
use and can be a first step in validating the model before turning to more objective
procedures.

Independent Study: To validate an MDP, one could compare the results to a model
developed independently. For instance, an alternative stochastic model could be
compared to the MDP using a reference policy (e.g. an existing screening or treat-
ment guideline.) This approach is particularly useful if there is an existing gold
standard model to compare to.

Retrospective Validation: Retrospective validation compares the results of the
MDP to past observed outcomes of an existing patient cohort. If this method of
validation is used, one should use a different cohort for calibration of the model
and for validation of the model. Using the same cohort to calibrate and validate the
model could lead to optimism bias.

Prospective Validation: Prospective validation, the gold standard of validation,
involves using the model to predict outcomes and comparing the predictions to the
actual outcomes. This form of validation is considered very strong, because there
is no contamination between data used to calibrate the model and the data used
to validate it. However, the outcomes of interest in chronic disease modeling are
long-term, which can lead to long periods of time between the obtainment of the
results and the validation of the model. As a result, this form of validation is almost
never done.

Validating the model is an important step to ensure that the results from the
model are useful to clinicians. If the model cannot be validated, the modeler should
carefully consider whether the assumptions of the model are justified, if the model
parameters are accurate and generalizable to other patient populations, and if the
model was implemented without errors. Sensitivity analysis often plays an impor-
tant role in addressing concerns about inaccuracy of model parameters.

200 L.N. Steimle and B.T. Denton

6.4 MDP Model for Cardiovascular Risk Control in Patients
with Type 2 Diabetes

This section presents model formulation, solutions, and analysis of results for an
MDP in the context of type 2 diabetes. Advances in medical treatments have ex-
tended the average lifespan of individuals and transformed many diseases from life-
threatening in the near term to chronic conditions in need of long-term management.
Diabetes is a good example. With 9.3% of the U.S. population estimated to have
diabetes, it is recognized as a leading cause of mortality and morbidity [48]. The
disease is associated with many serious complications such as coronary heart dis-
ease (CHD), stroke, blindness, kidney disease, limb amputation, and neurological
disorders.

Patients with diabetes are at much higher risk of stroke and CHD events than
those without diabetes. The risk of having one of these adverse events is affected
by a number of risk factors including gender, race, height, weight, glucose, total
cholesterol, high density lipids (HDL—often referred to as “good cholesterol”),
and blood pressure (systolic and diastolic). Several medications now exist that can
control cholesterol and blood pressure for patients with type 2 diabetes. However,
there is considerable disagreement in the health care community about how best to
use these medications [49–51]. Risk models exist to predict an individual patient’s
probability of complications related to diabetes [29–32]; but alone they cannot pro-
vide optimal treatment decisions. Further, these risk models often give conflicting
estimates of patient’s risk, which adds another challenge to the decision-making
process.

Historically, guidelines for the treatment of cholesterol and blood pressure have
been “one size fits all” guidelines that do not account for the different risk pro-
files of the heterogeneous population. The guidelines for cholesterol treatment and
the guidelines for blood pressure treatment in the United States were created by
two independent committees. This artificial separation of guidelines for treating
risk factors that both influence the risk of CHD and stroke could potentially lead
to over-treatment of patients and increases in medical costs. These issues provide
great motivation for an MDP approach to treatment planning that combines deci-
sions for cholesterol and blood pressure control.

Recently, MDPs have been used to study the optimal treatment of patients with
type 2 diabetes. Kurt et al. [42] and Denton et al. [52] analyze the optimal time
to initiate statins, the most common drug for managing cholesterol. Mason et al.
[53] extends this work to study the effect of imperfect adherence on the optimal
policy. Mason et al. [54] uses an MDP to determine the optimal simultaneous man-
agement of blood pressure and cholesterol. For the remainder of this section, we
use the model in [54] as an example of model formulation, the effect of model pa-
rameters, and how the optimal compares to the guidelines. Additionally, we provide
new results based on more recent data including a new risk model for estimating the
probability of cardiovascular events [35].

6.4 MDP Model for Cardiovascular Risk Control in Patients with Type 2 Diabetes 201

6.4.1 MDP Model Formulation

In this MDP model, patients with type 2 diabetes progress between states defined by
blood pressure and cholesterol levels. At every decision epoch, a clinician observes
the patient’s risk factors (i.e., cholesterol and blood pressure levels) and decides
which medications (if any) to prescribe to the patient. This model takes a societal
perspective and uses a bi-criteria objective, which balances the goal of having a low
discounted medication cost with the goal of primary prevention (i.e. delaying the
first occurrence of a CHD event or a stroke). Figure 6.1 gives a schematic represen-
tation of this decision process.

Observe metabolic
factors and

medication status
associated with

state i

Choose which
medications

(if any) to initiate

Epoch t

State evolves
probabilistically

Living State, i’

CHD

Stroke

Death

Observe metabolic
factors and

medication status
associated with

state i’
Epoch t+1

Choose which
medications

(if any) to initiate

Time

Fig. 6.1: The treatment decision process for managing cholesterol and blood pres-
sure for patients with type 2 diabetes

Decision Epochs/Time Horizon: The decision of which medications to initiate
is revisited periodically within a finite horizon with N (yearly) decision epochs,
with non-stationary rewards and transition probabilities. The set of decision epochs
is T = {0,1,2, . . . ,N}. It is possible that some patients may live beyond decision
epoch N and it is necessary to estimate the rewards that they will accrue in these
additional years of life. To do this, an infinite-horizon approximation is used beyond
epoch N in which treatment is held constant. This formulation is consistent with
regular annual primary care visits for most adults. We assume N = 100 because
physicians will not typically prescribe new medications to patients after they have
reached a certain age.

State Space: The state space is made up of living states and absorbing states. The
set of living states is denoted SL and the states in this set are defined by a number
of factors that characterize a patient’s level of cardiovascular risk. Some of these

202 L.N. Steimle and B.T. Denton

factors, such as metabolic levels and medication status, change over time. Because
changes in these values affect the cardiovascular risk, it is important to incorporate
these values into the state space. Other relevant information such as race and gen-
der, is incorporated into the model through the transition probability and reward
parameters.

When considering R metabolic factors and M medications, a living state is rep-
resented by a vector s = {s1, . . . ,sR,sR+1, . . . ,sR+M} ∈ SL. In this model, the first R
components of s correspond to measurements of a patient’s total cholesterol, HDL,
and systolic blood pressure, and each of the next M components are binary indica-
tors specifying whether or not the patient is on the corresponding medication.

In practice, measurements of cholesterol and blood pressure are continuous. To
create a discrete state space, these continuous values are discretized according to
clinically-relevant thresholds and then labeled low (L), medium (M), high (H), and
very high (V). For metabolic risk factor k, we have sk ∈ {L,M,H,V}. The actual
cutpoints for these states were based on a combination of clinical considerations
and availability of data for estimating transition probabilities (please see [54] for a
detailed discussion of this).

As stated in Sect. 6.3, MDPs must maintain the Markov property, and thus any
necessary information from the past must be incorporated into the state space. In
this model, it is necessary to know whether a patient is already on a medication or
not, and therefore this information must be added to the state space. Consider the
jth medication: if sR+ j = 0, the patient is not using medication j and if sR+ j = 1,
the patient is using medication j. Notice that, in this model, the size of the living
state space is |SL| = 4R · 2M and therefore the size of the living state space grows
exponentially in R and M. Also, if a finer discretization of the metabolic risk factors
was used, this growth would be even faster.

The model also has a set of absorbing states SD. These state vectors take on
values that represent having a CHD event (dC), having a stroke (dS), or dying from
a cause other than CHD or stroke (dO). The set of all absorbing states will be
represented as SD = {dC,dS,dO}. Because primary prevention is the goal of the
model, dS and dCHD are treated as absorbing states and no rewards are accrued after
entering these states.

Action Space: Initiating a cholesterol or blood pressure lowering medication is
assumed to be an irreversible decision, which is consistent with the clinical practice
in which the intention is for the patient to remain on the medication permanently.
For each medication j, at each decision epoch, we either initiate this medication (I j)
or wait at least one period to initiate the medication (Wj). Therefore, for a living
state, the action space is represented by

A(s) = A1(s)× . . .×AM(s) ∀s ∈ SL

where M is the total number of medications considered and

A j(s) =
{
{I j,Wj} if sR+ j = 0 and s ∈ SL,
{Wj} if sR+ j = 1 and s ∈ SL

6.4 MDP Model for Cardiovascular Risk Control in Patients with Type 2 Diabetes 203

This simply means that there is a choice of whether to start medication j or not,
provided that the patient is not already on medication j. At every decision epoch t,
that decision maker selects an action at ∈ A(st) when the system is in state st .

Initiating a medication is assumed to have a proportional change on each
metabolic factor. Cholesterol medications are designed to lower total cholesterol
and raise HDL, while blood pressure medications lower systolic blood pressure. It
is assumed that cholesterol medications have negligible effect on blood pressure
and vice versa since there is no evidence to the contrary. The estimates of the effects
of these drugs on the metabolic values were obtained from [54].

Transition Probabilities: There are four types of probabilities in this MDP: the
probability of non-diabetes-related death, probability of a CHD event, probability
of a stroke, and the transition probabilities among living states. The estimates of
these probabilities come from a combination of sources, including the literature and
longitudinal patient data, as described below.

At epoch t ∈ T , a non-diabetes-related death occurs with fixed probability pO
t for

every state s ∈ SL. The probability pO
t depends only on a patient’s age and demo-

graphic information and can be estimated from mortality tables such as [36]. Note
that we assume that pO

t is independent of the risk factors for type 2 diabetes. If the
patient is in state s∈ SL, a CHD or stroke event occurs with probability pC

t (s,at) and
pS

t (s,at), respectively. These probabilities depend on the patient’s age, metabolic
state, current and initiated medications, as well as other attributes that affect risk
such as race and gender. Estimates of these values can be obtained from risk mod-
els such as the Framingham model [28–30], the UKPDS model [33, 34], and the
ACC/AHA Pooled ASCVD risk calculator [35]. These models fit risk equations to
observational data for large cohorts of patients followed over many years to predict
the probability of having an event within a certain time frame. Some models take
the length of the time frame as an input to the equation, which gives an easy way to
calculate the probability that corresponds to the time between epochs of the model.
However, some models only give 10-year probabilities which must be adjusted to a
1-year probability to be used as an input to the MDP model. Reference [55] provides
a discussion of converting the time-interval of transition probabilities to an adverse
event or death state under the assumption that the rate of these events is constant.
This assumption likely leads to some degree of over-estimation of the yearly transi-
tion probability, since the model suggests that as a patient ages, they are more likely
to have an adverse event.

If the patient was in state s ∈ SL and did not enter an absorbing state, she will
transition probabilistically among the living states, entering state s′ ∈ SL with prob-
ability p(s′|s), which is given by

p(s′|s) =
(
ΠR

r=1 p(s′r|sr)
)(
ΠM

m=11(s
′
R+m|sR+m,at)

)
∀s,s′ ∈ SL (6.1)

The first product in (6.1) indicates the probability of having the metabolic levels of
state s′ given the patient had the metabolic levels of state s. This model assumes
that HDL, total cholesterol, and blood pressure progress independently so that the

204 L.N. Steimle and B.T. Denton

transition probability of all metabolic factors is simply the product of the transition
probabilities within each metabolic factor. For a given metabolic factor, one can
estimate the transition probabilities from a longitudinal patient data set (please see
[42] for a detailed description of an estimation procedure). After segmenting the
continuous values of the factor into discrete groups, one can count the total number
of transitions from each group to every other group for the metabolic factor of inter-
est. Dividing through by the total number of transitions out of the given group gives
the transition probability. The model used in [54] estimated transition probabilities
from observational data on 663 diabetes patients from the Mayo Electronic Records
and Diabetes Electronic Management System, which is a medical record containing
detailed results of laboratory results such as blood pressure, cholesterol, and HbA1c
for diabetes patients at the Mayo Clinic. Note that relaxing the independence as-
sumption of the progression of the metabolic factors would decrease the number of
observed samples and therefore the method described above would not be desirable
due to large sampling error. This is what motivates the independences assumption,
which is supported by relatively low correlation between these risk factors.

In (6.1), the product of the indicator functions, 1{s′R+m|sR+m,at} is used to dis-
tinguish between feasible transitions where 1{s′R+m|sR+m,at} = 1 if the transition
from the medications used in state s to the medications used in state s′ is valid given
the actions taken in time t and 0 otherwise. For example, if a patient in state s was
not on statins and the decision maker did not prescribe statins, then a transition to
state s′ in which statins are used is not possible. Since this is not a valid transition,
the transition probability will be 0.

The complete set of transition probabilities are summarized in the following
equation:

pt(j|s,at) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1− pS
t (s,at)− pC

t (s,at)− p0
t] · p(j|s) if s, j ∈ SL

pS
t (s,at) if j = dS and s ∈ SL

pC
t (s,at) if j = dC and s ∈ SL

pO
t if j = dO and s ∈ SL

1 if s = j ∈ SD
0 otherwise

Rewards: As mentioned above, this model has a bi-criteria objective of maximizing
the life years before the first CHD event or stroke while minimizing the discounted
medication costs. To balance these competing objectives, we weight a life year (LY)
by the willingness to pay factor, β . At epoch t, if the patient is in a living state, one
life year is accrued with to give a reward of rat (s) = β . The decision maker also
incurs a cost cat (s) which is the total yearly cost of the current medications of the
patient in state s as well as any medications initiated by the selected action at at
epoch t. In other words, the patient continues to accumulate rewards until she incurs
a cardiovascular event or dies from other causes.

6.4 MDP Model for Cardiovascular Risk Control in Patients with Type 2 Diabetes 205

Solution Method: For a patient in state s in epoch t, let Vt(s) denote the patient’s
maximum total expected dollar reward prior to her first CHD or stroke event or
death. The following optimality equations define the optimal value function V ∗t (s)
and the optimal action in each state based on the optimal value function:

V ∗t (s) = max
at∈A(s)

{
rat

t (s)− cat
t (s)+α∑

j∈S

pt(j|s,at)V
∗

t+1(j)
}

(6.2)

and

a∗t (s) ∈ argmax
at∈A(s)

{
rat

t (s)− cat
t (s)+α∑

j∈S

pt(j|s,at)V
∗

t+1(j)
}

(6.3)

where α ∈ [0,1) is the discount factor corresponding to the length between epochs,
which is commonly set to 0.97 in health economic evaluations involving monetary
costs and QALYs (see Chap. 7 of [56] for justification). V ∗N+1(s) is assumed to be the
expected discounted dollar reward accrued from period N +1 if the patient were to
remain on the same medications given by state s. Using V ∗N+1(s) as a boundary con-
dition, backward induction can be used to solve the MDP for the optimal decisions
for each state and epoch. First, evaluate (6.2) at t = N and proceed backwards until
t = 1. The actions a∗t (s) that define the optimal policy are found by solving (6.3).
Then, one can compare the optimal value function V ∗1 to the value function V π

1 for
any given policy π , which is of special interest when π is a common guideline used
for cholesterol and blood pressure management.

6.4.2 Results: Comparison of Optimal Policies Versus Published
Guidelines

In this section, we compare results for MDP-based policies with published treatment
guidelines. In the United States, the guidelines for treatment of blood pressure and
cholesterol are published by two independent committees. The Joint National Com-
mittee (JNC) is responsible for the American blood pressure guideline, while the
Adult Treatment Panel (ATP) is responsible for the cholesterol guidelines [57, 58].
These guidelines have historically been “one size fits all” for diabetes patients and
have not taken into account the individual risk profile of a patient. The action space
of the model is consistent with the medications that these panels recommend. In this
model, we consider statins and fibrates for cholesterol medications, and we consider
the following blood pressure medications: thiazides, ACE-inhibitors, beta-blockers,
and calcium-channel blockers.

The model in [54] used retrospective validation by comparing the results of
the MDP with the outcomes of the patient cohort in the Framingham Heart Study

206 L.N. Steimle and B.T. Denton

(FHS) [59]. The different outcomes are shown in Table 6.1. Most of the FHS di-
abetes patients were diagnosed after age 40 and so these patients provide a lower
bound for the outcomes of patients diagnosed at age 40. The overall patient popula-
tion of the FHS likely provide an upper bound on the outcomes of diabetic patients.

MDP model/Patient cohort LYs before first event (after age 50)
FHS: diabetes patients 14.2 (12.3–16.1)

FHS: overall 21.2 (20.5–22.0)
Mason et al. [54], MDP: no treatment 18.9

Mason et al. [54], MDP: U.S. guideline 21.2

Table 6.1: Comparison of the expected LYs until the first event after age 50 from the
MDP model presented with the model presented in [54] and the Framingham Heart
Study (FHS). Confidence intervals are shown for the FHS

Differences between the FHS and this model could be due to imperfect adherence
to guidelines, all other cause mortality, and differences in the underlying risk of the
patient population. For example, the risk associated with heart disease and stroke has
decreased significantly since the start of the Framingham study in 1948. Differences
between the results we present below and those in the earlier model [54] differ
because we have updated the model with data, such as all other cause mortality, that
has been released since the publication of [54].

Figure 6.2 shows the optimal trade-off curve between the expected life years
before the first event and the expected discounted medication costs. To obtain each
curve, first we specified a risk model to estimate pS

t and pC
t . Then, we solved the

corresponding MDP with different values of the willingness to pay factor, β . The
labeled points on the vertical axis correspond to a β value of $0/LY and the optimal
policy is to never initiate treatment because there is no weight on the expected life
years in this case. As the value of β increases, more medications tend to be initiated
leading to increases in life years.

The U.S. guidelines are also shown on the graph. At the time of publication of
[54], JNC 7 [60] and ATP III [61] were the guidelines in the United States. We used
policy evaluation to determine how well these guidelines performed. Under each
risk model assumption, the optimal policy can increase the expected time until the
first event for the same medication cost used in the U.S. guidelines. Alternatively,
the same life years until the first event that are achieved using these guidelines could
be achieved at much lower cost with the optimal policy. See [54, 62] for additional
results and comparison to international guidelines.

Figure 6.3 shows the optimal initiation of statins under different assumptions of
the underlying risk model. The different risk models are functions of the patient’s
age, systolic blood pressure, HDL, and total cholesterol. The structure of these func-
tions affects the optimal decisions associated with state.

6.4 MDP Model for Cardiovascular Risk Control in Patients with Type 2 Diabetes 207

65

66

67

68

69

70

71

72

73

$0 $5,000 $10,000 $15,000 $20,000 $25,000 $30,000 $35,000 $40,000

Ex
pe

ct
ed

 A
ge

 o
f F

irs
t E

ve
nt

 (L
Ys

)

Discounted Medica�on Cost ($)

Framingham ACC/AHA UKPDS

No Treatment - UKPDS

U.S. - ACC/AHA

U.S. - UKPDS

No Treatment - Framingham

No Treatment - ACC/AHA

U.S. - Framingham

Fig. 6.2: Comparison of the expected life years until first event and discounted med-
ication costs for optimal treatment policies and U.S. guidelines under different risk
model assumptions

Figure 6.2 shows that coordinating the treatment of blood pressure and choles-
terol could be beneficial for patients with type 2 diabetes under each of the three
risk model assumptions. Because the underlying risk of complications is a func-
tion of both cholesterol and blood pressure, treating each risk factor separately, as
recommended by the U.S. guidelines, could lead to higher cost and lower age of a
first complication. This is supported by the outcomes of the U.S. guidelines which
give high expected LYs and high discounted medication costs. This work shows
that the optimal coordinated treatment of blood pressure and cholesterol depends
on the underlying risk of the patient. However, as mentioned above, the risk models
used to determine the probability of a complication often conflict with each other.
For this reason, it would be beneficial to develop MDP methodology that provides
policies that perform well despite disparities between the assumed risk model and
the true underlying risk. Methods for achieving this goal remain an open research
question.

208 L.N. Steimle and B.T. Denton

L/L/L
L/L/M
L/L/H
L/M/L
L/M/M
L/M/H
L/H/L
L/H/M
L/H/H
Age 40 45 50 55 60 65 70 75 80 85 90 95 99

ACC/AHA

Framingham
L/L/L
L/L/M
L/L/H
L/M/L
L/M/M
L/M/H
L/H/L
L/H/M
L/H/H
Age 40 45 50 55 60 65 70 75 80 85 90 95 99

UKPDS

L/L/L
L/L/M
L/L/H
L/M/L
L/M/M
L/M/H
L/H/L
L/H/M
L/H/H
Age 40 45 50 55 60 65 70 75 80 85 90 95 99

H
ea

lth
 S

ta
te

, S
BP

/ H
D

L
/ T

C
H

ea
lth

 S
ta

te
, S

BP
/ H

D
L

/ T
C

H
ea

lth
 S

ta
te

, S
BP

/ H
D

L
/ T

C

Fig. 6.3: A comparison of the optimal statin initiation actions under different risk
model assumptions for β = $50,000 per life year for selected blood pressure and
cholesterol states. Black boxes indicate that the optimal decision is to initiate statins
for this state and a white box indicates that the optimal decision is to wait to initiate
statins. L/H/L is the healthiest state shown and L/L/H is the least healthy state shown

6.5 POMDP for Prostate Cancer Screening

Diagnosing chronic diseases is a challenge because most medical tests have some
chance of false positive or false negative results. The former occurs when a test in-
dicates a disease is present, when in fact it is not; the latter indicates a disease is not
present, when in fact it is present. Successful diagnosis is critical to starting treat-
ment early, and many chronic diseases, if detected early, have excellent outcomes.
Prostate cancer is a good example. It is the most common cancer (excluding skin
cancer) that affects men in many countries [21]. It is estimated that one in every
seven U.S. men will be diagnosed with prostate cancer during his lifetime. Diag-
nosis is often based in part on a Prostate Specific Antigen (PSA) test that measures
the amount of PSA in the blood. PSA varies from near zero to potentially high val-
ues (e.g. >20 ng/ml). Men with prostate cancer often have elevated levels of PSA,
but this can also be caused by other non-cancerous conditions. A commonly used
threshold for asserting that a biopsy is warranted is 4 ng/ml; however, this is subjec-

6.5 POMDP for Prostate Cancer Screening 209

tive and it is has been observed to be associated with high false positive and false
negative outcomes in the biopsy referral process. Figure 6.4 illustrates the imper-
fect nature of PSA testing using a receiver operating characteristic (ROC) curve. An
ROC curve is generated by computing the true positive rate (also called sensitivity
of the test) and one minus the false positive rate (also called specificity of the test)
for various choices of the test threshold. Thus, the curve in Fig. 6.4 illustrates that,
as the PSA threshold for biopsy increases, the true positive rate of biopsy referral
based on the PSA test increases and the false positive rate decreases (a perfect test
would have a true positive rate of one a false positive rate of zero). Different points
on the curve correspond to different choices of the threshold at which to recommend
biopsy.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate (1-specificity)

T
ru

e
P

os
iti

ve
 R

at
e

(s
en

si
tiv

ity
)

Fig. 6.4: Receiver operating characteristic (ROC) curve illustrating the imperfect
nature of PSA tests for diagnosing prostate cancer

Given the invasive nature of prostate biopsies, the optimal threshold at which
to recommend biopsy is debated. Moreover, the decision for when to biopsy must
consider the fact that screening tests are often done multiple times over an indi-
vidual’s lifetime. An example of a screening process is illustrated in Fig. 6.5 where
the patient receives routine PSA tests at regular intervals (often every year or ev-
ery 2 years). If the PSA test result is over the biopsy threshold then the patient
is typically referred for biopsy, and if the biopsy indicates cancer then the patient
is referred for treatment. In practice, some clinicians consider the history of PSA
test results for a patient, such as the rate of change with respect to time (often re-
ferred to as PSA velocity) because PSA is expected to increase with respect to tumor
volume.

In this section, we present a POMDP model that uses an alternative approach for
making screening decisions based on a patient’s PSA history. In the model formula-
tion that follows, Bayesian updating is used to estimate the probability that a patient
has prostate cancer based on the complete history of PSA results. These probabili-
ties are in turn used to decide when to perform a PSA test, and when to perform a

210 L.N. Steimle and B.T. Denton

Fig. 6.5: Illustration of the typical stages of prostate cancer screening and treatment
including PSA screening, biopsy, and treatment

biopsy. The model and the summary results we present are based on work presented
in [63, 64] which together provide a complete description of the POMDP model,
theoretical analysis of properties of the optimal policies, and a more complete de-
scription of the model parameters, results, and conclusions that can be drawn from
the model.

6.5.1 POMDP Model Formulation

In the POMDP model, patients progress through (unobservable) prostate cancer
states and (observable) PSA states. PSA states are treated as discrete, based on
clinically relevant intervals, and estimated using a large observational data set. We
assume that decision epochs occur annually, and the patient’s PSA is measured at
each epoch and a decision is made about whether to refer the patient for biopsy or
defer the decision until the next epoch. Similar to the MDP model of the previous
section, the POMDP model is also bi-criteria with the objective of maximizing a
measure of life span minus the cost of screening and treatment for prostate cancer.
To balance these competing objectives, we use a willingness to pay factor, β . In
contrast to the application in Sect. 6.4, in this model QALYs are estimated by decre-
menting a normal life year due to the occurrence of biopsy (which is painful and
has some, though low, probability of serious complications due to infection), side
effects of treatment, and long term complications resulting from treatment. Costs
are based on the cost of PSA tests, biopsies, and subsequent treatment. If a patient
receives a positive biopsy result, he is assumed to be treated by prostatectomy
(surgical removal of the prostate) which is a common form of treatment. If a patient

6.5 POMDP for Prostate Cancer Screening 211

receives a negative biopsy result, then screening discontinues, an assumption that is
motivated by the fact that most men have at most one biopsy in their lifetime unless
other symptoms arise warranting additional biopsies. Following is a mathematical
description of the model.

Decision Epochs: PSA screening is performed annually, typically starting at age
40, and thus the set of decision epochs is T ∈ {40,41,42, · · · ,N}, where N corre-
sponds to a liberal upper bound on when screening is discontinued due to the risk
of treatment being greater than the benefits.

Time Horizon: This is a finite horizon model. The rewards accrued for patients
that live beyond the last decision epoch N are estimated based on expected future
survival given that the patient is not screened beyond epoch N (N = 95 in our
numerical results).

State Space: At each decision epoch, a patient is in one of several health states in-
cluding no cancer (NC), prostate cancer present but not detected (C), organ confined
cancer detected (OC), extraprostatic cancer detected (EP), lymph node-positive can-
cer detected (LN), metastasis detected (M), and death from prostate cancer and all
other causes (D). The states NC and C are not directly observable, but the other
health states are assumed to be completely observable. The possible transitions
among states are illustrated in Fig. 6.6. Note that state T in part (c) of Fig. 6.6 is an
aggregate of treatment states OC, EP, and LN. This aggregation is possible since
there are no actions in these states.

Action Space: The action at epoch t, at ∈ {B,DB,DP}, denotes the decision to
perform a biopsy (B), defer biopsy and obtain a new PSA test result in epoch t +1
(DB), or defer the biopsy decision and PSA testing in decision epoch t + 1 (DP).
Combinations of these three actions over the decision horizon determine the PSA
test and biopsy schedule. For instance, a40 = DB, a41 = DP, a42 = DB and a43 = B
imply PSA testing at age 41 and 43, and followed by biopsy at age 43. Note that
decisions are made sequentially and in this model decisions are based on the proba-
bility of prostate cancer at each decision epoch.

Observations: At each decision epoch, the patient is observed to be in one of a
discrete set of observable PSA states based on clinically relevant ranges of PSA,
non-metastatic cancer detected and treated (T), metastasis (M), or death (D). These
observable states are indexed by ot ∈ O = {1,2,3, . . . ,m,T,M,D}, where the first
m states correspond to PSA states for patients either in state C or state NC. Note
that the exact state, C or NC, cannot be known with uncertainty in this POMDP
framework. The observations are a unique aspect of POMDP models that arise in
the context of imperfect observability, as opposed to the completely observable
context of Sect. 6.4.

212 L.N. Steimle and B.T. Denton

(a) (b) (c)

Fig. 6.6: POMDP model simplification: aggregating the three non-metastatic
prostate cancer stages after detection into a single core state T . Solid lines denote
the transitions related to prostate cancer; dotted lines denote the action of biopsy
and subsequent treatment; dashed lines in (c) denote death from other causes (for
simplicity these are omitted from (a) and (b)). (a) Prostate cancer developing flows.
(b) State aggregation. (c) Core state transition

Transition Probabilities: The transition probability pt(st+1|st ,at) denotes the core
state transition probability from health state st to st+1 at epoch t given action at .
These represent the probability of a change in the patient’s health status from one
decision epoch to the next. By the nature of partially observable problems, such
data is often difficult or impossible to estimate exactly. In the context of prostate
cancer these estimates can be obtained using autopsy studies, in which all fatalities
within a given region, regardless of cause of death, are investigated to determine
the presence and extent of prostate cancer [65]. This provides estimates of the true
incidence of disease that are not biased by the fact that diseases like prostate cancer
may be latent for an extended period of time before diagnosis.

Information Matrix: A unique part of POMDP models, compared to MDP models,
is the set of conditional probabilities that relate the underlying core states (e.g. C
or NC) to the observations (e.g. PSA states). We let ut(ot |st) denote the probability
of observing ot ∈ O given health state st ∈ S. Collectively, these transition proba-
bilities define the elements of the information matrix, which we denote by Ut . The
estimation of these probabilities requires data that can link the observations to the
cores states. Often this set of model parameters is the most difficult to estimate,
because problems that are ideally modeled as partially observable are naturally
ones in which limited data is available for the underlying core state of the system.
Estimation of the information matrix is often made possible by a systematic ran-
domized trial that evaluates the presence of disease independent of whether a patient
has symptoms. In the case of prostate cancer, the Prostate Cancer Prevention Trial
(PCPT) [66] had a protocol in which all men were biopsied independent of their
PSA level. Based on data from this trial [67] fit a statistical model that can be used
to estimated the probability a man has a given PSA level conditional on whether or
not they are in state C or NC.

6.5 POMDP for Prostate Cancer Screening 213

Belief States: The belief vector is a vector with elements each corresponding
to one of the core states. In this model, each element corresponds to the prob-
ability the patient is in the corresponding core state. We denote the vector by
bt = (bt(NC),bt(C),bt(T),bt(M),bt(D)), where bt ∈ B≡ {bt ∈ℜ5 | ∑i∈S bt(i) =
1,bt(i)≥ 0, i ∈ S}. The optimal policy maps the belief states to the action space.

Rewards: rat (st) is the reward of living for a year given the patient is in health
state st and decision at . The expected reward of living for a year is the average over
possible health states: rat (bt) = ∑st∈S rat (st)bt(st). In this model, the reward is the
product of QALYs and a willingness to pay factor minus the cost of a PSA test,
biopsy or treatment, depending on the action at . The terminal reward at the end of
the horizon, at period N is denoted rN(bt).

The overall objective of the model is to determine the optimal screening policy
that maximizes the product of willingness to pay and QALYs minus the costs of
screening and treatment over the patient’s lifetime. The optimal value function and
the corresponding optimal action for the model can be written as follows:

V ∗t (bt) = max
at∈{B,DB,DP}

{

rat (bt)+α ∑
ot+1∈O

V ∗t+1(bt+1)pt(ot+1|bt ,at)

}

,∀bt ∈ B,

(6.4)

and the boundary condition at the end of horizon is VN(bt) = rN(bt),∀bt ∈ B. The
optimal decision at epoch t in belief state bt is

a∗t (bt) ∈ argmax
at∈{B,DB,DP}

{

rat (bt)+α ∑
ot+1∈O

V ∗t+1(bt+1)pt(ot+1|bt ,at)

}

,∀bt ∈ B,

where

pt(ot+1|bt ,at) = ∑
st+1∈S

ut+1(ot+1|st+1)∑
st∈S

pt(st+1|st ,at)bt(st),

and α ∈ [0,1) is the previously defined discount factor. Bayesian updating is used to
revise the patient’s belief state over time as PSA observations are obtained. Bayesian
updates are defined by the following transformation of the belief state:

bt+1(st+1) =

ut+1(ot+1|st+1) ∑
st∈S

pt(st+1|st ,at)bt(st)

∑
st+1∈S

ut+1(ot+1|st+1) ∑
st∈S

pt(st+1|st ,at)bt(st)
, (6.5)

where bt+1(st+1), the component of the belief vector, bt+1, is a function of ot+1,
at , and bt (for simplicity, this dependence is omitted). Thus (6.5) updates the belief

214 L.N. Steimle and B.T. Denton

state of a patient based on the prior belief state and his most recent observed PSA
interval. The sequence of probabilities {bt , t = 1, · · · ,∞} has been shown to follow
a Markov process [26], and therefore (6.4) defines a continuous state MDP.

6.5.2 Results: Optimal Belief-Based Screening Policy

In this section, we present examples based on the above POMDP model (com-
plete details about model parameter estimates and numerical results can be found
in [64]). The data used for parameter estimation in the model consisted of 11,872
patients from Olmsted County, Minnesota. It includes PSA values, biopsy informa-
tion (if any), diagnosis information (if any), and the corresponding ages for patients
recorded from 1983 through 2005. This regional data set includes all patients in
Olmsted County irrespective of their prostate cancer risk. Prostate cancer probabili-
ties conditional on PSA level were estimated from this data set to obtain the informa-
tion matrix, Ut . In the results we present, we assume patients detected with prostate
cancer were treated by radical prostatectomy. To estimate the annual transition prob-
ability from the treatment state, T , to the metastatic cancer state, M, a weighted aver-
age of the metastasis rate of three non-metastatic prostate cancer stages based on the
Mayo Clinic Radical Prostatectomy Registry (MCRPR) were used. The disease spe-
cific transition probability from C to M was based on the metastasis rates reported by
Catalona et al. [68]. The transition probability from state NC to state C was based on
the prostate cancer incidence rate estimated from an autopsy review study reported
in [69] that provides estimates of prostate cancer prevalence in the general popula-
tion in 10-year age intervals. The transition probability from all non-cancer states
to state D is age specific and was based on the general mortality rate from the Na-
tional Vital Statistics Reports [70] minus the prostate cancer mortality rate from the
[71]. Note that because the National Cancer Institute reports a single prostate can-
cer incidence rate for ages greater than 95 and the National Vital Statistics Reports
[70] reports a single all cause mortality rate for ages greater than 95, we assume
transition probabilities were fixed after the age of 95, i.e., N = 95 in the numerical
experiments. The biopsy detection rate was 0.8 based on a study by Haas et al. [65].
To estimate the reward function we assumed an annual reward of 1 for each epoch
minus disutilities for biopsy and treatment. Since no estimates of disutility exist yet
for prostate biopsy, an estimate based on a bladder cancer study for the occurrence
of surveillance cystoscopy [72] was used. We assumed patients treated by prostate-
ctomy experience disutility due to side effects as reported in [73]. It is well known
that POMDPs can be converted into an equivalent completely observable MDP on
the continuous belief states bt [43]. Even so, as noted earlier, POMDP models are
typically much more computationally challenging to solve than completely observ-
able MDPs, owing to the continuous nature of the belief state space. However,
due to the low dimensionality of the belief state instances of this POMDP, it can
be solved exactly using incremental pruning [44]. Incremental pruning is an exact
solution method for POMDPs that builds upon early work of Monahan [74]. Mono-
han’s approach enumerates the complete set of supporting hyperplanes (referred to

6.6 Open Challenges in MDPs for Chronic Disease 215

as α-vectors) that define the optimal value function for the POMDP. Incremental
pruning attempts to reduce the computational effort required by decomposing the
set of alpha vectors and pruning unnecessary (dominated vectors). See [75] for a
review of POMDP properties and methods including incremental pruning.

The model was validated using a combination of expert opinion, based on feed-
back from practicing urologists, and comparison of the model results to independent
studies. For the latter validation, the POMDP model was used to estimate mean lifes-
pan, proportion of men diagnosed with prostate cancer, and prostate cancer mortal-
ity. These results were compared to published estimates from the CDC mortality
tables and from longitudinal studies of diagnosis and mortality rates. See Chap. 3 of
[76] for complete details of the validation of the model including comparison of the
model results to those of a randomized trial.

Figure 6.7 illustrates the optimal prostate cancer screening policy based on the
validated POMDP. Two examples are presented. In the first, only quality-adjusted
life span is considered, and the costs of screening and treatment are not part of the
reward function; this can be viewed as the patient perspective. In the second ex-
ample, the reward function defines QALYs, weighted using a societal willingness
to pay of β = $50,000/QALY [38] minus the cost of screening and treatment; as
mentioned earlier, this can be viewed as the societal perspective since it weights
the benefits of additional quality-adjusted lifespan against the cost of screening and
treatment. The belief threshold between the three decisions is illustrated by the lines
in the figure. From the figure, it can be observed that the optimal policy is control-
limit type, a property that can be proven to hold under certain conditions for this
POMDP [63]. A stopping time for screening occurs when the threshold for biopsy
in the figures reaches 1.0. It is notable that there is a stopping time for screening at
age 76 for the patient perspective. For the case of the societal perspective the stop-
ping age is 71. The 5 year difference can be attributed to the cost of screening and
treatment in the societal case. Finally, the policies in both examples demonstrates
the optimal belief-based thresholds are age-dependent; as patients age, their proba-
bility of having prostate cancer must be higher in order for a biopsy referral to be
optimal (action B). Moreover, the same is true for the decision to perform a PSA
test (action DB). This is consistent with increasing all other cause mortality and the
general consensus in the medical community that, due to the low mortality rate of
prostate cancer, treatment becomes less beneficial as age increases.

6.6 Open Challenges in MDPs for Chronic Disease

While MDPs serve as a powerful tool for developing screening and treatment poli-
cies for chronic diseases, there exist open challenges in terms of formulating the
MDPs and implementing the results from MDPs into clinical settings. We reflect on
some of the challenges that were faced in the examples of the previous two sections:

216 L.N. Steimle and B.T. Denton

40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age

P
ro

ba
bi

lit
y

of
 h

av
in

g
P

C
a

B

DP
DB

40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age

P
ro

ba
bi

lit
y

of
 h

av
in

g
P

C
a

B

DP
DB

Fig. 6.7: Optimal prostate cancer screening policies from the patient perspective
(left) and the societal perspective (right)

1. Parameter Uncertainty: Many estimates of the parameters used in chronic dis-
ease MDPs are subject to error. Transition probabilities among living states are
usually estimated from observational data and therefore are subject to sam-
pling error. Transitions to death states and adverse event states are estimated
using risk models found in the literature, but usually there is no “gold standard”
model. Further, estimates of disutilities due to medications are based on patient
surveys and will vary patient-to-patient. As seen in Sect. 6.4, MDPs can be sen-
sitive to changes in the model parameters, which is problematic when the model
parameters cannot be known with certainty. For this reason, it will be important
to develop MDP models that are robust in the sense that they perform well un-
der a variety of assumptions of the model parameters, while not being overly
conservative. The reader is referred to [77, 78] for more about robust dynamic
programming.

2. State Space Size and Transition Probability Estimates: As discussed in Sect. 6.3,
the continuously-valued metabolic risk factors are usually discretized to reduce
the size of the state space. While a finer discretization of the state space might
be more representative of the continuous-valued process, this will decrease the
sample size of the transitions available for estimating transition probabilities.
There is a natural trade-off between the fineness of the discretization of the state
space and the error introduced in the transition probabilities due to sampling.
Methods for determining the best discretization of the continuous state-space
would reduce this barrier to formulating MDPs.

3. Adjusting the Time Frame of Event Probabilities: Many risk models provide
the probability of an event or death within a fixed time (e.g. 10 years). While
this information is useful to clinicians, MDP formulation requires converting
these long-term probabilities into transition probabilities between epochs. As
mentioned in Sect. 6.4, these probabilities can be converted under the assump-
tion that the rate of events is constant, but this may not be realistic in all cases.
Determining a method for converting probabilities under different assumptions
about the rate of events would improve the accuracy of MDP models that use
these risk probabilities.

6.7 Conclusions 217

4. Solution Methods for a Large-Scale MDPs: Chronic disease MDPs grow espe-
cially large because of the need to incorporate some history-dependence into the
state space. Additionally, future models may incorporate risk factors for multi-
ple, coexisting conditions which will cause the state space to grow ever larger.
Because MDPs are subject to the curse of dimensionality, these models can be
computationally-intensive to solve exactly. To provide support to clinicians in
real-time, optimal policies should be able to be solved for quickly. This will not
be possible in many chronic disease models, in which case fast approximation
algorithms that provide near-optimal solutions will be necessary.

5. Implementation of Optimal Policies: The goal of these MDPs is to guide screen-
ing and treatment decisions made by the clinician. This requires that optimal
policies can be made easily understood to clinicians. However, if the optimal
policies are complicated, this could hinder the ability of the clinician to use
the MDP results. Therefore, methods for designing structured policies that are
near-optimal could potentially improve the likelihood of the policy being im-
plemented in practice.

Tackling these challenges could make MDPs an even more useful tool for guiding
clinicians and policy-makers in treatment and screening decisions.

6.7 Conclusions

Screening and treatment decisions for chronic disease are complicated by the long
time periods over which these decisions are made and the uncertainty in the progres-
sion of disease, effects of medication, and correctness of test results. Throughout this
chapter, we discussed a number of challenges that arise when modeling these deci-
sions using MDPs, such as parameter uncertainty and the rapid growth in the size
of the state space. Thus, there are still opportunities to study new application areas
and develop new methodology, such as robust and approximate dynamic program-
ming methods, for solving models in this context. These challenges notwithstand-
ing, MDPs have recently found important applications to chronic diseases because
they provide an analytical framework to study the sequential and dynamic decisions
of screening and treating these diseases that develop stochastically over time.

Acknowledgements This material is based in part on work supported by the National Science
Foundation under grant numbers CMMI 1462060 (Brian T. Denton) and DGE 1256260 (Lauren N.
Steimle). Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the National Science Foundation.

218 L.N. Steimle and B.T. Denton

References

1. World Health Organization, The top 10 causes of death (2013), Available at:
who. int/mediacentre/factsheets/fs310/en/. 2014.

2. M.L. Brandeau, F. Sainfort, W.P. Pierskalla, Operations Research and Health
Care (Kluwer Academic Publishers, Boston, 2004)

3. B.T. Denton, Handbook of Healthcare Operations Management: Methods and
Applications (Springer, New York, 2013)

4. G.S. Zaric, Operations Research and Health Care Policy (Springer, New York,
2013)

5. O. Alagoz, L.M. Maillart, A.J. Schaefer, M.S. Roberts, The optimal timing of
living donor liver transplantation. Manag. Sci. 50(10), 1420–1430 (2004)

6. O. Alagoz, C.L. Bryce, S.M. Shechter, A.J. Schaefer, C.-C.H. Chang, D.C. An-
gus, M.S. Roberts, Incorporating biological natural history in simulation mod-
els: empiric estimates of the progression of end-stage liver disease. Med. Decis.
Mak. 25, 620–632 (2005)

7. O. Alagoz, L.M. Maillart, A.J. Schaefer, M.S. Roberts, Which waiting lists
should an end-stage liver disease patient join? Technical Report, University of
Pittsburgh, 2006

8. O. Alagoz, L.M. Maillart, A.J. Schaefer, M.S. Roberts, Choosing among living-
donor and cadaveric livers. Manag. Sci. 53(11), 1702–1715 (2007)

9. D.L. Segev, S.E. Gentry, D.S. Warren, B. Reeb, R.A. Montgomery, Kidney
paired donation and optimizing the use of liver donor organs. J. Am. Med.
Assoc. 295, 1655–1663 (2005)

10. S.A. Zenios, G.M. Chertow, L.M. Wein, Dynamic allocation of kidneys to
candidates on the trasplant waiting list. Oper. Res. 48(4), 549–569 (2000)

11. X. Su, S. Zenios, Patient choice in kidney allocation: the role of the queuing
discipline. Manuf. Serv. Oper. Manag. 6(4), 280–301 (2005)

12. L.M. Maillart, J.S. Ivy, D. Kathleen, S. Ransom, Assessing dynamic breast
cancer screening policies. Oper. Res. 56(6), 1411–1427 (2008)

13. J. Chhatwal, O. Alagoz, E.S. Burnside, Optimal breast biopsy decision-making
based on mammographic features and demographic factors. Oper. Res. 58(6),
1577–1591 (2010)

14. E.K. Lee, T. Fox, I. Crocker, Integer programming applied to intensity-
modulated radiation therapy treatment planning. Ann. Oper. Res. 119, 165–181
(2003)

15. A. Holder, Designing radiotherapy plans with elastic constraints and interior
point methods. Health Care Manag. Sci. 6, 5–16 (2003)

16. F. Preciado-Walters, R. Rardin, M. Langer, V. Thai, A coupled column genera-
tion, mixed integer approach to optimal planning of intensity modulated radia-
tion therapy for cancer. Math. Program. 101, 319–338 (2004)

17. E.K. Lee, R.J. Gallagher, D. Silvern, C. Wu, M. Zaider, Treatment planning for
brachytherapy: an integer programming model, two computational approaches,
and experiments with permanent prostate implant planning. Phys. Med. Biol.
44, 145–165 (1999)

References 219

18. S.M. Shechter, M.D. Bailey, A.J. Schaefer, M.S. Roberts, The optimal time
to initiate HIV therapy under ordered health states. Oper. Res. 56(1), 20–33
(2008)

19. E.H. Kaplan, Probability models of needle exchange. Oper. Res. 43(4),
558–569 (1995)

20. G. Zaric, M.L. Brandeau, Optimal investment in a portfolio of HIV prevention
programs. Med. Decis. Mak. 21, 391–408 (2001)

21. R. Siegel, J. Ma, Z. Zou, A. Jemal, Cancer statistics, 2014. CA Cancer J. Clin.
64(1), 9–29 (2014)

22. T. Ayer, O. Alagoz, N.K. Stout, A POMDP approach to personalize mammog-
raphy screening decisions. Oper. Res. 60(5), 1019–1034 (2012)

23. O. Alagoz, H. Hsu, A.J. Schaefer, M.S. Roberts, Markov decision processes: a
tool for sequential decision making under uncertainty. Med. Decis. Mak. 30(4),
474–483 (2010)

24. A.J. Schaefer, M.D. Bailey, S.M. Shechter, M.S. Roberts, Modeling medical
treatment using Markov decision processes, in Handbook of Operations Re-
search/Management Science Applications in Health Care, ed. by M. Brandeau,
F. Sainfort, W. Pierskalla (Kluwer Academic, Dordrecht, 2004), pp. 597–616

25. E. Regnier, S.M. Shechter, State-space size considerations for disease-
progression models. Stat. Med. 32(22), 3862–3880 (2013)

26. G.E. Monohan, A survey of partially observable Markov decision processes:
theory, models, and algorithms. Manag. Sci. 28(1), 1–16 (1982)

27. W.S. Lovejoy, A survey of algorithmic methods for partially observed Markov
decision processes. Ann. Oper. Res. 28, 47–66 (1991)

28. K.A. Anderson, P.M. Odel, P.W.F. Wilson, W.B. Kannel, Cardiovascular dis-
ease risk profiles. Am. Heart J. 121, 293–298 (1991)

29. P.A. Wolf, R.B. D’Agostino, A.J. Belanger, W.B. Kannel, Probability of stroke:
a risk profile from the Framingham study. Stroke 22(3), 312–318 (1991)

30. P.W.F Wilson, R.B. D?Agostino, D. Levy, A.M. Belanger, H. Silbershatz, W.B.
Kannel, Prediction of coronary heart disease using risk factor categories.
Circulation 97(18), 1837–1847 (1998)

31. R.C. Turner, The uk prospective diabetes study - a review. Diabetes Care 21,
C35–C38 (1998)

32. T.M.E. Davis, H. Millns, I.M. Stratton, R.R. Holman, R.C. Turner, Risk factors
for stroke in type 2 diabetes mellitus - United Kingdom Prospective Diabetes
Study (UKPDS) 29. Arch. Intern. Med. 159(10), 1097–1103 (1999)

33. R.J. Stevens, V. Kothari, A.I. Adler, I.M. Stratton, R.R. Holman, The UKPDS
risk engine: a model for the risk of coronary heart disease in type ii diabetes
(UKPDS 56). Clin. Sci. 101(6), 671–679 (2001)

34. V. Kothari, R.J. Stevens, A.I. Adler, I.M. Stratton, S.E. Manley, H.A. Neil,
R.R. Holman et al., UKPDS 60 risk of stroke in type 2 diabetes estimated
by the UK Prospective Diabetes Study risk engine. Stroke 33(7), 1776–1781
(2002)

220 L.N. Steimle and B.T. Denton

35. D.C. Goff, D.M. Lloyd-Jones, G. Bennett, C.J. O’Donnell, S. Coady, J. Robin-
son, 2013 ACC/AHA guideline on the assessment of cardiovascular risk. J.
Am. Coll. Cardiol. 129, S49–S73 (2014)

36. S.L. Murphy, J. Xu, K.D. Kochanek, Deaths: final data for 2010. National
Vital Statistics Reports: from the Centers for Disease Control and Prevention,
National Center for Health Statistics. Natl. Vital Stat. Rep. 61(4), 1–117 (2013)

37. D. Gold, M.R. Stevenson, D.G. Fryback, HALYS and QALYS and DALYS,
oh my: similarities and differences in summary measures of population health.
Annu. Rev. Public Health 23, 115–134 (2002)

38. K.L. Rascati, The $64,000 question – what is a quality-adjusted life year worth?
Clin. Ther. 28(7), 1042–1043 (2006)

39. D.P. Bertsekas, J.N. Tsitsiklis, Neuro-dynamic programming: an overview, in
Proceedings of the 34th IEEE Conference on Decision and Control, 1995, vol.
1 (IEEE, New York, 1995), pp. 560–564

40. W.B. Powell, Approximate Dynamic Programming (Wiley, Hoboken, 2007)
41. M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. (Wiley, Hoboken, 1994)
42. M. Kurt, B.T. Denton, A.J. Schaefer, N.D. Shah, S.A. Smith, The structure of

optimal statin initiation policies for patients with type 2 diabetes. IIE Trans.
Healthc. Eng. 1, 49–65 (2011)

43. R.D. Smallwood, E.J. Sondik, The optimal control of partially observable
Markov processes over a finite horizon. Oper. Res. 21(5), 1071–1088 (1973)

44. A. Cassandra, M.L. Littman, N.L. Zhang, Incremental pruning: a simple, fast,
exact method for partially observable Markov decision processes, in Proceed-
ings Thirteenth Annual Conference on Uncertainty in Artificial Intelligence,
San Francisco, CA (1997), pp. 54–61

45. A.R. Cassandra, L.P. Kaelbling, M.L. Littman. Acting optimally in partially
observable stochastic domains. AAAI. Vol. 94 (1994). ftp://ftp.cs.brown.edu/
pub/techreports/94/cs94-20.pdf

46. J.E. Eckles, Optimum replacement of stochastically failing systems, Ph.D. Dis-
sertation, Dept. Eng.-Econ. Syst., Stanford University, Stanford (1966)

47. W.S. Lovejoy, Computationally feasible bounds for partially observed Markov
decision processes. Oper. Res. 39(1), 162–175 (1991)

48. Centers for Disease Control and Prevention, National Diabetes Statistics
Report: Estimates of Diabetes and Its Burden in the United States, 2014. US
Department of Health and Human Services, Atlanta, GA, 2014

49. V. Snow, M.D. Aronson, E.R. Hornbake, C. Mottur-Pilson, K.B. Weiss, Lipid
control in the management of type 2 diabetes mellitus: a clinical practice guide-
line from the American College of Physicians. Ann. Intern. Med. 140(8),
644–649 (2004)

50. D.G. Manuel, K. Kwong, P. Tanuseputro, J. Lim, C.A. Mustard, G.M. Ander-
son, S. Ardal, D.A. Alter, A. Laupacis, Effectiveness and efficiency of different
guidelines on statin treatment for preventing deaths from coronary heart dis-
ease: modelling study. Br. Med. J. 332(7555), 1419–1422 (2006)

ftp://ftp.cs.brown.edu/pub/techreports/94/cs94-20.pdf
ftp://ftp.cs.brown.edu/pub/techreports/94/cs94-20.pdf

References 221

51. P.N. Durrington, H. Prais, D. Bhatnagar, M. France, V. Crowley, J. Khan,
J. Morgan, Indications for cholesterol-lowering medication: comparison of risk-
assessment methods. Lancet, 353(9149), 278–281 (1999)

52. B.T. Denton, M. Kurt, N.D. Shah, S.C. Bryant, S.A. Smith, Optimizing the
start time of statin therapy for patients with diabetes. Med. Decis. Mak. 29(3),
351–367 (2009)

53. J.E. Mason, D.A. England, B.T. Denton, S.A. Smith, M. Kurt, N.D. Shah, Op-
timizing statin treatment decisions for diabetes patients in the presence of un-
certain future adherence. Med. Decis. Mak. 32(1), 154–166 (2012)

54. J.E. Mason, B.T. Denton, N.D. Shah, S.A. Smith, Optimizing the simultaneous
management of blood pressure and cholesterol for type 2 diabetes patients. Eur.
J. Oper. Res. 233(3), 727–738 (2014)

55. D.K. Miller, S.M. Homan, Determining transition probabilities confusion and
suggestions. Med. Decis. Mak. 14(1), 52–58 (1994)

56. M.R. Gold, J.E. Siegel, L.B. Russell, M.C. Weinstein, Cost-Effectiveness in
Health and Medicine (Oxford University Press, New York, 1996)

57. P.A. James, S. Oparil, B.L. Carter, W.C. Cushman, C. Dennison-Himmelfarb,
J. Handler, D.T. Lackland, M.L. LeFevre, T.D. MacKenzie, O. Ogedegbe et al.,
2014 evidence-based guideline for the management of high blood pressure in
adults: report from the panel members appointed to the eighth joint national
committee (jnc 8). JAMA, 311(5), 507–520 (2014)

58. N.J. Stone, J.G. Robinson, A.H. Lichtenstein, 2013 acc/aha guideline on the
treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in
adults: a report of the american college of cardiology/american heart association
task force on practice guidelines. J. Am. Coll. Cardiol. 163, 2889–2934 (2014);
correction. J. Am. Coll. Cardiol. 63(25), 3024–3025 (2014)

59. O.H. Franco, E.W. Steyerberg, F.B. Hu, J. Mackenbach, W. Nusselder, Asso-
ciations of diabetes mellitus with total life expectancy and life expectancy with
and without cardiovascular disease. Arch. Intern. Med. 167(11), 1145–1151
(2007)

60. A.V. Chobanian, G.L. Bakris, H.R. Black, W.C. Cushman, L.A. Green, J.L.
Izzo Jr., D.W. Jones, B.J. Materson, S. Oparil, J.T. Wright Jr. et al., The seventh
report of the Joint National Committee on prevention, detection, evaluation, and
treatment of high blood pressure: the JNC 7 report. JAMA 289(19), 2560–2571
(2003)

61. National Cholesterol Education Program NCEP Expert Panel, Third report of
the National Cholesterol Education program (NCEP) expert panel on detection,
evaluation, and treatment of high blood cholesterol in adults (Adult Treatment
Panel III) final report. Circulation 106(25), 3143 (2002)

62. J. Shah, N.D. Mason, M. Kurt, B.T. Denton, A. Schaefer, V. Montori, S. Smith,
Comparative effectiveness of guidelines for the management of hyperlipidemia
and hypertension for type 2 diabetes patients. Plos One 6(1), e16170 (2011)

63. J. Zhang, H. Balasubramanian, B.T. Denton, N. Shah, B. Inman, Op-
timization of prostate cancer screening decisions: a comparison of pa-
tient and societal perspectives. Med. Decis. Mak. 32(2), 337–349 (2011).
doi:10.1177/0272989X11416513

222 L.N. Steimle and B.T. Denton

64. J. Zhang, B.T. Denton, H. Balasubramanian, N.D. Shah, B.A. Inman, Optimiza-
tion of prostate biopsy referral decisions. Manuf. Serv. Oper. Manag. 14(4),
529–547 (2012)

65. G.P. Haas, R.F. Delongchamps, V. Jones, V. Chandan, A.M. Seriod, A.J. Vick-
ers, M. Jumbelic, G. Threatte, R. Korets, H. Lilja, G. De la Roza, Needle
biopsies on autopsy prostates: sensitivity of cancer detection based on true
prevalence. J. Natl. Cancer Inst. 99, 1484–1849 (2007)

66. I.M. Thompson, D.P. Ankerst, C. Chi, P.J. Goodman, C.M. Tangen, M.S. Lucia,
Z. Feng, H.L. Parnes, C.A. Coltman, Assessing prostate cancer risk: results
from the prostate cancer prevention trial. J. Natl. Cancer Inst. 98(8), 529–534
(2006)

67. R. Gulati, L. Inoue, J. Katcher, W. Hazelton, R. Etzioni, Calibrating disease
progression models using population data: a critical precursor to policy devel-
opment in cancer control. Biostatistics 11(4), 707–719 (2010)

68. W.J. Catalona, P.T. Scardino, J.R. Beck, B.J. Miles, G.W. Chodak, R.A. Thisted,
Conservative management of prostate cancer. N. Engl. J. Med. 330(25),
1830–1832 (1994)

69. L. Bubendorf, A. Schöpfer, U. Wagner, G. Sauter, H. Moch, N. Willi, T.C.
Gasser, M.J. Mihatsch, Metastatic patterns of prostate cancer: an autopsy study
of 1,589 patients. Hum. Pathol. 31(5), 578–583 (2000)

70. M. Heron, Deaths: leading causes for 2004. Natl. Vital Stat. Rep. 56(5), 1–96
(2007)

71. National Cancer Institute, Surveillance Epidemiology and End Results (SEER).
SEER Stat Fact Sheets, Cancer: Prostate (2009). http://seer.cancer.gov/statfacts/
html/. Accessed May 2015

72. G.S. Kulkarni, S.M.H. Alibhai, A. Finelli, N.E. Fleshner, M.A.S. Jewett, S.R.
Lopushinsky, A.M. Bayoumi, Cost-effectiveness analysis of immediate radical
cystectomy versus intravesical bacillus Calmette-Guerin therapy for high-risk,
high-grade (t1g3) bladder cancer. Cancer 115(23), 5450–5459 (2009)

73. K.E. Bremner, C.A.K.Y. Chong, G. Tomlinson, S.M.H Alibhai, M.D Krahn, A
review and meta-analysis of prostate cancer utilities. Med. Decis. Making 27,
288–298 (2007)

74. G.E. Monohan, A survey of partially observable Markov decision processes:
theory, mondels, and algorithms. Manag. Sci. 28(1), 1–16 (1982)

75. L.P. Kaelbling, M.L. Littman, A.R. Cassandra, Planning and acting in partially
observable stochastic domains. Artif. Intell. 101(1), 99–134 (1998)

76. D. Underwood, Risk-based simulation optimization of PSA-based prostate can-
cer screening. Ph.D. Thesis, North Carolina State University, 2015

77. G.N. Iyengar, Robust dynamic programming. Math. Oper. Res. 30(2), 257–280
(2005)

78. A. Nilim, L.E. Ghaoui, Robust control of Markov decision processes with un-
certain transition matrices. Oper. Res. 55(5), 780–798 (2005)

http://seer.cancer.gov/statfacts/html/
http://seer.cancer.gov/statfacts/html/

Chapter 7
Stratified Breast Cancer Follow-Up Using
a Partially Observable MDP

J.W.M. Otten, A. Witteveen, I.M.H. Vliegen, S. Siesling, J.B. Timmer,
and M.J. IJzerman

Abstract Frequency and duration of follow-up for patients with breast cancer is still
under discussion. Current follow-up consists of annual mammography for the first
five years after treatment and does not depend on the personal risk of developing
a locoregional recurrence (LRR) or second primary tumor. Aim of this study is to
gain insight in how to allocate resources for optimal and personal follow-up. We
formulate a discrete-time Partially Observable Markov Decision Process (POMDP)
with a finite horizon in which we aim to maximize the total expected number of
quality-adjusted life years (QALYs). Transition probabilities were obtained from
data from the Netherlands Cancer Registry (NCR). Twice a year the decision is
made whether or not a mammography will be performed. Recurrent disease can be
detected by both mammography or women themselves (self-detection). The optimal
policies were determined for three risk categories based on differentiation of the
primary tumor. Our results suggest a slightly more intensive follow-up for patients
with a high risk and poorly differentiated tumor, and a less intensive schedule for
the other risk groups.

J.W.M. Otten • J.B. Timmer
Department of Stochastic Operations Research, University of Twente, Enschede, The Netherlands

A. Witteveen (�) • M.J. IJzerman
Department of Health Technology and Services Research, University of Twente, P.O. Box 217,
7500 AE Enschede, The Netherlands
e-mail: a.witteveen@utwente.nl

I.M.H. Vliegen
Department of Industrial Engineering and Business Information Systems, University of Twente,
Enschede, The Netherlands

S. Siesling
Department of Health Technology and Services Research, University of Twente, P.O. Box 217,
7500 AE Enschede, The Netherlands

Department of Research, Comprehensive Cancer Organisation, Utrecht, The Netherlands

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 7

223

mailto:a.witteveen@utwente.nl

224 J.W.M. Otten et al.

7.1 Introduction

After curative treatment for breast cancer, patients are followed clinically to detect
locoregional recurrences (LRRs) in an early phase [1]. A LRR is defined as the
reappearance of breast cancer on the same site as the primary tumour [2]. Currently,
in the Netherlands, patients have annual follow-up for at least five years [3]. How-
ever, only a minority of the LRRs discovered are detected at a scheduled check-up
[4]. Furthermore, due to an increasing incidence and survival rate, the number of
patients currently in the follow-up phase increases and becomes a higher burden to
health care. Even though risk factors are known, there is no differentiation in the
follow-up policy for different categories of patients [5].

These observations together give rise to the question whether it is possible to
improve the current follow-up policy, both from a patient’s and health care per-
spective. Getting towards more personalized follow-up asks for specific modelling
requirements, because of the sequential decisions and individual risks and effects
[6]. Our aim is to develop a sequential decision process in which a decision maker,
the patient or a physician, chooses at every decision epoch whether or not to have
a check-up. We model this problem using a partially observable Markov decision
process (POMDP), which is a generalization of a Markov decision process and al-
lows us to model a sequential decision making process in which the information
about the true state of the system is incomplete [7]. Because the true health state of
a patient, i.e., whether a patient is disease-free or not, is only partially observable, a
POMDP is ideally suited to this problem [8].

Ayer et al. [9] developed a POMDP model for a similar problem, a mammogra-
phy decision model for screening for primary breast cancer. This model resembles
our problem, although necessary adjustments need to be made. Firstly, because we
apply the model to a different population, namely breast cancer patients in follow-
up instead of a health screening population the need to incorporate self-detection
differs. When applying the model to the whole population, self-detection is a less
important factor to take into account than when applying it to breast cancer patients
in the follow-up phase, since a large part of the LRR detections is via self-detection
[4]. Secondly, because we model the decision process over a short horizon instead
of over the whole lifetime of a patient, adjustments concerning final rewards need to
be made. Ayvaci et al. [10] give an analysis of the same problem as Ayer et al. but
under budgetary constraints, however they model it as a normal Markov decision
process and thus neglecting the partial observability of the true health state. Zhang
et al. [11] made a comparison of the patient and societal perspectives for a similar
case, PSA screening policies for prostate cancer, via a POMDP approach.

Our contributions to this research are twofold. Firstly, we apply the POMDP
approach to a problem for which it is not previously done and develop a model
from which a personal testing schedule can be obtained, based on a patient’s per-
sonal characteristics and test history. Secondly we discover that the outcomes of the
POMDP model are quite sensitive to certain input parameters, mostly to the growth
rate of a LRR and the life expectancy of a patient with breast cancer, so that better
estimates of these parameters are necessary in order to apply this model in practice.

7.2 Model Formulation 225

The remainder of this chapter is organized as follows. In Sect. 7.2 we present
the POMDP model by which the problem is modelled and derive the optimality
equations, from which the solution algorithm is deduced. In Sect. 7.3 we describe
the model parameters. In Sect. 7.4 we present the results of the model and perform
sensitivity analyses for some of the parameters. Finally we summarize the results
and conclude in Sect. 7.5.

7.2 Model Formulation

The problem described is modelled by a discrete-time partially observable Markov
decision process (POMDP) with a finite horizon of five years, in which the objective
is to maximize the total expected number of quality-adjusted life years (QALYs).

Twice a year, a decision is made whether a patient should have a mammogram or
should wait for another six months. The choice for biannual decisions is based on
the wish to develop a personal decision model in which, ideally, the check-ups could
be arranged at any moment in the follow-up phase. Since the problem is modeled
by a discrete POMDP, biannual decisions are a first step in that direction. Because
the true health state of a patient is not known, the decisions are made based on the
present belief about the patient’s health state. This belief may depend on several
personal risk factors and the patient’s test history. When the decision is made that
the patient should have a mammogram and the result is positive or if a self-detection
is made, it is followed by a biopsy. We assume that the biopsy after a positive mam-
mogram or self-detection is perfect. When this perfect test is positive as well (i.e.
the patient has cancer), we assume that treatment is started immediately and that the
patient will leave the decision process by moving to one of the absorbing treatment
states. Otherwise the decision process proceeds to the next decision epoch. When
the mammogram is negative or the decision is to wait for another six months and no
self-detection is made, the decision process also proceeds to the next decision epoch
where the same decision has to be made. For our notation we follow Ayer et al. [9].
The complete model and the notation used is as follows:
• Decision epochs, t = 1 · · ·T , T = 10. Decisions are made twice every year

and the decision process starts six months after treatment of the primary tumour
finished, so t = 5 denotes 2.5 years after primary treatment (see timeline below).
Let τ denote the time between two successive decision epochs, τ = 0.5 year. The
decision horizon is at T = 10 because the annual check-ups are stopped after five
years (depending on the age of the patient the check-ups in the hospital after this are
annual, biennial or stopped) [3].

1 2 3 4 5 6 7 8 9 10

0,E
nd

 o
f t

re
at
m
en

t

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5,E
nd

 fo
llo

w-u
p

226 J.W.M. Otten et al.

• Core state space, S = {1,2,3,4,5,6,7,8}. With 1 for no (detectable) cancer, 2
for a LRR when early detection is still possible, 3 for a LLR when early detection is
not possible any more and 4 for a second primary (SP) tumour (another incidence of
breast cancer independent of the primary tumour). We distinguish different stages
of a LRR due to the difference in expected remaining QALYs: early detection of a
LRR yields a better prognosis [1]. The states 5, 6 and 7 stand for treatment for the
various cancer states and finally 8 stands for death of the patient. Figure 7.1 shows
how these different states are connected. The state st is the true health state of the
patient at time t. This state of the patient is not directly observable when the patient
is in state 1, 2, 3 or 4. The other states of the patient, the ‘Treatment’ states and
the state ‘Death’, can be directly observed. We therefore call the states {1,2,3,4}
partially observable and denote this subset of the core state space as SPO.

4. SP
1. No
cancer

8. Death

2. LRR
(early)

3. LRR
(late)

5. Treat-
ment

6. Treat-
ment

7. Treat-
ment

Partially Observable

Fig. 7.1: State diagram of the underlying Markov process

• Information space, Π(S), the space of all probability distributions over the
core state space S. A vector π ∈Π(S) is called an information state and π(s),s ∈ S,
denotes the probability that the true state is s.
• Belief space, B(SPO), the space of all probability distributions over the partially

observable states, SPO. A vector b ∈ B(SPO) is in fact a truncated version of the
vector π ∈ Π(S), because the probability that the true state s = 5,6,7,8 is either 0
or 1.

7.2 Model Formulation 227

• Actions, A′t , the set of actions at at time t. Here A′t = {W,M}, where W stands
for wait and M for mammography. The action set is only defined for s ∈ SPO since
the process terminates whenever the patient dies or goes to a treatment state.
• Observation space, Θa, the set of possible observations when action a is se-

lected. If at = M, the possible observations are a positive mammogram (M+) or
a negative mammogram (M−). If at = W , the patient can either make a self-
detection (SD+) or no self-detection (SD−). So we have ΘM = {M+,M−} and
ΘW = {SD+,SD−}.
• Observation probabilities. Ka

t (o|s) is the probability of observing o at time t
when decision a was taken while in state s. These probabilities are completely de-
termined by the specificity (true negative rate) and the sensitivity (true positive rate).
For example, KM

t (M−|s = 1) is the probability of having a negative mammogram
when the true health state of the patient is s = 1 (‘No cancer’), this is the specificity
of the mammogram. We denote the specificity of mammography by spect(M) and
of self-detection by spect(SD). Similarly, the sensitivity of mammography is de-
noted by senst(s,M) and of self-detection senst(s,SD). Note that, unlike specificity,
the sensitivity of a test depends on the true health state of the patient because there
are multiple cancer states. From these observations we can obtain the observation
probabilities as follows:

KM
t (M−|s = 1) = spect(M)

KM
t (M+|s = 1) = 1− spect(M)

KW
t (SD−|s = 1) = spect(SD)

KW
t (SD+|s = 1) = 1− spect(SD)

KM
t (M+|s = x) = senst(s,M) x = 2,3,4

KM
t (M−|s = x) = 1− senst(s,M) x = 2,3,4

KW
t (SD+|s = x) = senst(s,SD) x = 2,3,4

KW
t (SD−|s = x) = 1− senst(s,SD) x = 2,3,4

• Core state transition probabilities. P(a,o)
t (s′|s) is the probability that the true

health state of the patient at time t + 1 is s′ given it was s, action a was cho-
sen and o was observed. The transition of the true health state between time
t and t + 1 does not depend on the action taken or the observation made at

time t. Therefore P(M,M−)
t (s′|s) = P(W,SD−)

t (s′|s) = P(W,SD+)
t (s′|s) for all s′,s ∈ S and

P(M,M+)
t (s′|s = 0) = P(M,M−)

t (s′|s = 0).
• Updated belief space. Let τ [b,a,o] denote the belief (i.e. the probability distri-

bution over the partially observable states) at time t + 1 when the belief about the
patient’s true health state at time t was b, action a was taken and observation o was
made. In particular, τ [b,a,o](s) = Pt+1(s|b,a,o) for all states s ∈ SPO.

228 J.W.M. Otten et al.

The updated belief state is computed by:

τ [b,a,o](s′) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑s∈SPO b(s)Ka
t (o|s)P

a,o
t (s′|s)

∑s∈SPO b(s)Ka
t (o|s)

if a =W , o = SD−

or a = M, o = M−,

PW,SD+

t (s′|1) if a =W , o = SD+,

PM,M+

t (s′|1) if a = M, o = M+.

(7.1)

The complete derivation and proof can be found in [7].
• Rewards. The reward rt(s,a,o) is the expected number of QALYs between two

decision epochs when the true health state of the patient is s, action a is taken and
observation o was made. To factor in the probability that a patient dies between two
decisions we use the half-cycle correction method [12]. The idea of this correction
method is that if the patient dies between two decision epochs, it is assumed that
half of the cycle length τ is accrued to the expected number of QALYs. From this,
QALYs are subtracted for the disutility of a mammogram and a biopsy, when a
patient should have one of these. Note that if the patient is in one of the cancer
states (s∈ {2,3,4}) and observes a positive mammogram or makes a self-detection,
she is rewarded a lump-sum reward (LSR) of Rt(s,a). So no QALYs are rewarded
over the next decision epoch when a true positive mammogram or self-detection
is observed, i.e. rt(s,M,M+) = rt(s,W,SD+) = 0, s = 2,3,4. The rewards in the
treatment and death states are zero.

The expected reward between time t and t +1 when the true health state is s and
the action chosen is a is denoted by rt(s,a) = ∑o∈Θa Ka

t (o|s)rt(s,a,o).
Let rT (s) denote the total expected remaining QALYs at time T when the pa-

tient’s true health state is s at time T .
Let pd denote the probability that a patient dies between two decision epochs and

disM , disB the disutility experienced when undergoing a mammogram and a biopsy,
respectively. The rewards for t = 1, · · · ,T −1 are:

rt(s,W,SD−) = pd ·0.5τ+(1− pd) · τ s ∈ SPO

rt(1,W,SD+) = pd ·0.5τ+(1− pd) · τ−disB

rt(s,M,M−) = pd ·0.5τ+(1− pd) · τ−disM s ∈ SPO

rt(1,M,M+) = pd ·0.5τ+(1− pd) · τ−disM−disB

rt(s, ·, ·) = 0 otherwise

7.2.1 Optimality Equations

We want to derive optimality equations for the number of QALYs a patient can
obtain in order to determine the optimal policy for a patient. Let V ∗t (π) denote this
quantity when her information state is π ∈Π(S) at time t. Likewise let V ∗t (b) denote
the same quantity when the patient’s belief state is b ∈ B(SPO). Because the process

7.2 Model Formulation 229

terminates when in one of the treatment states or the death state, V ∗t (π) can be
expressed as:

V ∗t (π) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Rt(2) π = [0 0 0 0 1 0 0 0],
Rt(3) π = [0 0 0 0 0 1 0 0],
Rt(4) π = [0 0 0 0 0 0 1 0],
V ∗t (b) b = [b(1) b(2) b(3)] �= [0 0 0],
0 otherwise .

(7.2)

Let V a
t (b) denote the maximum total expected QALYs a patient can obtain when at

time t in belief state b and action a is chosen. Then V ∗t (b) can be written as:

V ∗t (b) = max{VW
t (b),V M

t (b)} t = 1 · · ·T −1, with

VW
t (b) = ∑

s∈SPO

b(s)[KW
t (SD−|s)[rt(s,W,SD−)

+∑
u∈S

P(W,SD−)
t (u|s)V ∗(τ [b,W,SD−])]]

+b(1)KW
t (SD+|1)[rt(1,W,SD+)

+∑
u∈S

P(W,SD+)
t (u|s)V ∗(τ [b,W,SD+])]

+
4

∑
s=2

b(s)KW
t (SD+|s)Rt(s,W) and

V M
t (b) = ∑

s∈SPO

b(s)[KM
t (M−|s)[rt(s,M,M−)

+∑
u∈S

P(M,M−)
t (u|s)V ∗(τ [b,M,M−])]]

+b(1)KM
t (M+|1)[rt(1,M,M+)

+∑
u∈S

P(M,M+)
t (u|s)V ∗(τ [b,M,M+])]

+
4

∑
s=2

b(s)KM
t (M+|s)Rt(s,M)

V ∗T (b) = ∑
s∈SPO

b(s)rT (s)

The optimality equations can be simplified by moving the parts that do not depend
on u outside the summations over u and by noting that ∑u∈SPO P(a,o)(u|s) = 1.

230 J.W.M. Otten et al.

V ∗t (b) = max

{

∑
s∈SPO

b(s)[KW
t (SD−|s)[rt(s,W,SD−)+V ∗(τ [b,W,SD−])]]

+b(1)KW
t (SD+|1)[rt(1,W,SD+)+V ∗(τ [b,W,SD+])]

+
4

∑
s=2

b(s)KW
t (SD+|s)Rt(s,W),

∑
s∈SPO

b(s)[KM
t (M−|s)[rt(s,M,M−)+V ∗(τ [b,M,M−])]]

+b(1)KM
t (M+|1)[rt(1,M,M+)+V ∗(τ [b,M,M+])]

+
4

∑
s=2

b(s)KM
t (M+|s)Rt(s,M)

}

t = 1 · · ·T −1

V ∗T (b) = ∑
s∈SPO

b(s)rT (s) (7.3)

7.2.2 Alternative Representation of the Optimality Equations

The key idea in solving any type of Markov decision process is relating the op-
timal value function V ∗ at time t to V ∗ at time t + 1. As derived in the previous
section the value function of this particular problem is defined on the continu-
ous space B(SPO) =

{
b ∈ R4|∑s∈SPO b(s) = 1,b(s)≥ 0

}
. So for solving the optimal

value function at time t one would need the optimal value function at time t +1 on
a continuous space and therefore an infinite dimensional vector would be needed to
store these value functions. Fortunately it can be proven that for a POMDP the opti-
mal value function is piecewise linear and convex, and can therefore be represented
as the maximum over a finite number of finite-dimensional vectors. This result is
stated in the following theorem.

Theorem 7.1 (Smallwood and Sondik [7]). The optimal value function V ∗t (b) is
piecewise linear and convex, and can thus be written as

V ∗t (b) = max
k

∑
s∈SPO

b(s)αk
t (s), (7.4)

for some set of vectors αk
t = [αk

t (s)], k = 1,2, · · · . The term α-vector is used to refer
to such a vector.

The optimality equations can now be written in terms of the α-vectors. The
proofs of the two propositions below are similar to results in Ayer et al. [9]

Proposition 7.1. The following representation of the optimality equations is equiv-
alent to the optimality equations given in (7.3).

7.2 Model Formulation 231

V ∗t (b) = max

{

∑
s∈SPO

b(s)KW
t (SD−|s)[rt(s,W,SD−)

+ ∑
u∈SPO

P(W,SD−)
t (u|s)α i(b,W,SD−)

t+1 (u)

+b(1)KW
t (SD−|1)[rt(1,W,SD−)

+max
k

{

∑
u∈SPO

P(W,SD−)
t (u|1)αk

t+1(u)

}

+
4

∑
s=2

b(s)KW
t (SD+|s)Rt(s,W), (W)

∑
s∈SPO

b(s)KM
t (M−|s)[rt(s,M,M−)

+ ∑
u∈SPO

P(M,M−)
t (u|s)α i(b,M,M−)

t+1 (u)

+b(1)KM
t (M−|1)[rt(1,M,M−)

+max
k

{

∑
u∈SPO

P(M,M−)
t (u|1)αk

t+1(u)

}

+
4

∑
s=2

b(s)KM
t (M+|s)Rt(s,M)

}

(M) (7.5)

Where

i(b,a,o) = argmax
k

{

∑
s∈SPO

b(s)Ka
t (o|s) ∑

u∈SPO

P(a,o)
t (u|s)αk

t+1(u)

}

(7.6)

By combining Theorem 7.1 and Proposition 7.1 an explicit expression of the α-
vectors can be derived. The algorithm that will be used utilizes this representation
for solving the POMDP.

Proposition 7.2. Let α l(b,a)
t denote the maximizing α-vector for belief state b and

action a at time t and let α l∗(b)
t denote the optimizing α-vector for belief state b.

Then the α-vectors can be expressed as:

α l(b,W)
t (s) = KW

t (SD−|s)
[

rt(s,W,SD−)+ ∑
u∈SPO

P(W,SD−)
t (u|s)α i(b,W,SD−)

t+1 (u)

]

+KW
t (SD+|s)

[
rt(s,W,SD+)

+ max
k

{

∑
u∈SPO

P(W,SD+)
t (u|s)αk

t+1(u)

}]

if s = 1,

KW
t (SD−|s)

[

rt(s,W,SD−)+ ∑
u∈SPO

P(W,SD−)
t (u|s)α i(b,W,SD−)

t+1 (u)

]

232 J.W.M. Otten et al.

+KW
t (SD+|s)Rt(s,W) if s = 2,3,4. (7.7)

and

α l(b,M)
t (s) = KM

t (M−|s)
[

rt(s,M,M−)+ ∑
u∈SPO

P(M,M−)
t (u|s)α i(b,M,M−)

t+1 (u)

]

+KM
t (M+|s)

[
rt(s,M,M+)

+ max
k

{

∑
u∈SPO

P(M,M+)
t (u|s)αk

t+1(u)

}]

if s = 1,

KM
t (M−|s)

[

rt(s,M,M−)+ ∑
u∈SPO

P(M,M−)
t (u|s)α i(b,M,M−)

t+1 (u)

]

+KM
t (M+|s)Rt(s,M) if s = 2,3,4. (7.8)

Where

l∗(b) = argmax
k

{

∑
s∈SPO

b(s)αk
t (s)

}

= arg max
{l(b,W),l(b,M)}

{

∑
s∈SPO

b(s)α l(b,W)
t (s), ∑

s∈SPO

b(s)α l(b,M)
t (s)

}

(7.9)

7.2.3 Algorithm

The algorithm we use is based on the fact that the optimal value function V ∗

is piecewise linear and convex. The idea was first described by Smallwood and
Sondik [7] and later Monahan [13] and Lovejoy [14] simplified the algorithm. The
basic outline of the algorithm is that first all possible α-vectors are generated using
Eqs. (7.7) and (7.8), then non-optimal α-vectors are deleted and finally the optimal
value function is constructed using the remaining α-vectors and the expression of
V ∗t (b) in Theorem 7.1, as can be seen in the pseudo code below.

7.2 Model Formulation 233

Algorithm. Monahan’s Algorithm with Eagle’s Reduction

1. Initialize. α1
T (s) = rT (s), for all s ∈ SPO, AT = {α1} and t = T −1

2. Generate. Generate At = {α1
t ,α2

t · · ·} and mark all α-vectors.
3. Eagle’s reduction.

a. Select a marked α-vector α i
t . If none exists go to step 4. Otherwise,

b. Unmark the selected α-vector and if there exists an α j
t such that α i

t (s) ≤
α i

t (s) for all s ∈ SPO delete the selected α-vector. Go to step 3(a)

4. Monahan’s elimination phase

a. Mark all the remaining α-vectors in At .
b. Select a marked α-vector α i

t . If none exists go to step 5. otherwise
c. Unmark the α-vector and solve

max σ

s.t. ∑
s∈SPO

b(s)
(
α i

t (s)−α j
t (s)

)
−σ ≥ 0 ∀ j

∑
s∈SPO

b(s) = 1

b(s)≥ 0 ∀s ∈ SPO. (7.10)

if the Linear Program (LP) yields a solution σ ≤ 0, then remove the α-
vector from At . Go to 3(b).

5. Time update. If t > 1, then t = t−1 and go to step 2, otherwise stop.

Generating the α-Vectors

Let At+1 = {α1
t+1,α2

t+1, · · ·} denote the set of α-vectors at time t +1. Now instead
of determining the optimal α-vector α l∗(b)t by Eqs. (7.7)–(7.9) we generate the α-

vector for every combination of an action and a vector α i
t+1; denote this by α(a,i)

t .
So we have

234 J.W.M. Otten et al.

At =
{
α(W,i)

t ,α(M,i)
t

}

i=1···||At+1||
(7.11)

with

α(W,i)
t (s) = ∑

o∈ΘW

KW
t (o|s)

[

rt(s,W,o)+ ∑
u∈SPO

P(W,o)
t (u|s)α i

t+1(u)

]

,

if s = 1,

KW
t (SD−|s)

[

rt(s,W,SD−)+ ∑
u∈SPO

P(W,SD−)
t (u|s)α i

t+1(u)

]

+KW
t (SD+|s)Rt(s,W) if s = 2,3,4.

α(M,i)
t (s) = ∑

o∈ΘM

KM
t (o|s)

[

rt(s,M,o)+ ∑
u∈SPO

P(M,o)
t (u|s)α i

t+1(u)

]

,

if s = 1,

KM
t (M−|s)

[

rt(s,M,M−)+ ∑
u∈SPO

P(M,M−)
t (u|s)α i

t+1(u)

]

+KM
t (M+|s)Rt(s,M) if s = 2,3,4. (7.12)

Monahan’s Elimination and Eagle’s Reduction Phase

A vector α i
t is called completely dominated if there exists another vector α j

t such
that α i

t (s) ≤ α j
t (s) for all s ∈ SPO. Since the optimal value function at a certain

belief state, V ∗t (b), can be written as the maximum over the set of α-vectors At

(Theorem 7.1) it follows immediately that if an α-vector is completely dominated it
is never part of the optimal value function. The procedure where the α-vectors are
checked for complete dominance is known as Eagle’s reduction phase [15].

After this there may be α-vectors which are not completely dominated by the
other vectors but still are dominated in the sense that they are never part of the
optimal value function. Monahan [13] has shown that if, for a certain α-vector the
optimal solution of the LP in (7.10) is non-positive we can remove it from the set
At . Eagle [15] notes in his paper that this reduction of the number of α-vectors,
which is known as the Monahan reduction phase, is not necessary when the number
of actions, observations and decision epochs is not too large.

When all the α-vectors are generated for every decision epoch and the (com-
pletely) dominated ones are deleted the optimal value function follows directly
from (7.4), and because every α-vector has an action associated with it (7.12), the
optimal action is easy to determine.

7.3 Model Parameters 235

Parameter Source
Probability of death CBS [16]
State transitions in SPO NCR [17]
Disutility of a mammogram Mandelblatt et al. [18]
Disutility of a biopsy Velanovich [19]
Specificity and sensitivity of mammography Kolb et al. [20]
Specificity and sensitivity of self-detection ibid.
Survival rates NCR [17]
Life expectancy CBS [16]
Value of life WHO [21]

Table 7.1: Sources of model parameters

7.3 Model Parameters

In this section we present the input parameters and their sources. Table 7.1 provides
a list with the sources of the model parameters. For each set of patient characteris-
tics the parameters will differ. In the next section we present the results for several
groups of patients based on their age and the grade of differentiation of the primary
tumour. However for each set of group characteristics, as long as the parameters are
available, the model can be applied.

The probability that a patient dies between two decision epochs depends only on
the age of the patient and is obtained from Statistics Netherlands (Centraal Bureau
voor de Statistiek) [16]. Whenever the age of patients in a certain group differs we
will use the probability of death for the average age, e.g. when the age in a group is
between 40 and 50 we use the probability of death of a 45 year old woman.

The state transition probabilities between the partially observable states, i.e. the
probability that a patient gets a SP tumour or a LRR between two decision epochs,
are obtained from the Netherlands Cancer Registry (NCR) [17]. The estimations of
the disutility of a mammogram vary between 0.5 and 1.5 days [18], so we use an
estimate of one day. The disutility of a biopsy is estimated between 2–4 weeks [19],
in our model we take the average of three weeks. We assume that these disutilities
are the same for all ages. The specificity and sensitivity of both mammography and
self-detection are obtained from Kolb et al. [20].

The LSR and the end rewards are based on the life expectancy of a healthy pa-
tient. The expected remaining life years of an average patient at the start of the
follow-up and at the end are used to construct a linear function of the life expectancy
of a healthy patient at time t = 1 · · ·T . The expected remaining life years for patients
in the different cancer states, i.e. the LSR and the end rewards, are calculated as a
percentage of the expected remaining life years of a healthy patient. These percent-
ages are based on the ten-year survival rates for the different groups, which are also
obtained from the NCR [17].

236 J.W.M. Otten et al.

For several of the input parameters the precise values are not available. The core
state transitions, for instance, are based on the current policy of annual mammog-
raphy. The probabilities will therefore be slightly shifted in time, e.g. if in reality a
patient is most likely to get a LRR after 14 months it will not be detected for at least
ten months when the next mammogram is taken, so the transition probabilities will
suggest a later time at which the patient is most likely to get a LRR. Also it is very
hard to give a precise estimation of the probability that an early detectable LRR will
turn into a late detectable LRR between two decision epochs. In Sect. 7.5 we will
discus to which extend these inaccuracies will affect the outcome. A complete list
of the parameters used can be found in the appendix.

Average healthy life expectancy (years) 39.44
LSR early LRR 86 %
LSR late LRR 69 %
LSR SP 80 %

Table 7.2: LSRs as a percentage of the healthy life expectancy

7.4 Results

Since the optimal policy will vary for patients with different characteristics, in this
section we present the results for one specific stratification of the patients. This strat-
ification serves as an illustration and the reader should bear in mind that the model
can be applied to much more specified stratifications and subsequently more person-
alized follow-up. We stratify based on two personal risk factors of the patients, the
age of the patient and the grade of differentiation of the primary tumour. For the age
we take the group of patients upto 50 years old because they have the highest risk of
a LRR of the different age categories [5]. The grade of differentiation is chosen as
the second risk factor because Witteveen et al. [5] found it to be one of the main risk
factors for a LRR. With this stratification we thus consider four groups of patients,
the first group are all patients with age upto 50, the second, third and fourth groups
are patients with age upto 50 and grade of differentiation 1, 2 and 3, respectively.

As explained in Sect. 7.3, the parameters that depend on the group characteris-
tics are the LSRs, the life expectancy and the core state transitions. In Table 7.2 the
life expectancies and the LSRs (as a percentage of the life expectancy) are given.
Since the probability of getting cancer per time interval is small (≈ 0.01) and the
specificity of both mammography and self-detection is high (≈ 0.99), the majority
(approximately 85 %) of patients will never have a positive mammogram or a self-
detection. We present the optimal policy given that the patient never has a positive
mammogram or a self-detection. The optimal policies for these patients, for each of

7.4 Results 237

0,009

0,008

0,007

0,006

0,005

0,004

0,003

0,002

0,001

0

0,009

0,008

0,007

0,006

0,005

0,004

0,003

0,002

0,001

0

0,009

0,008

0,007

0,006

0,005

0,004

0,003

0,002

0,001

0

0,009

0,008

0,007

0,006

0,005

0,004

0,003

0,002

0,001

0
1

Sta
rt

W W M M M M M MW W

2 3 4 5 6 7 8 9 10 1

Sta
rt

W W W M M M M WW W

2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8

Age < 50 Age < 50, Grade 1

Age < 50, Grade 2 Age < 50, Grade 3

9 10

1

Sta
rt

W W W M M M M MW W

2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1

W MM M M M M M M W

2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Sta
rt

Fig. 7.2: Probability of a LRR and the optimal policy for each of the categories.
Abbreviations: W = wait, M = mammography

the categories, are given in Fig. 7.2. (Of course, for any other series of observations
the optimal policy can be obtained in a similar manner, but since there are 210 differ-
ent observation series possible we restrict ourselves to this case). Above the optimal
policy the probability of a LRR is given. As one can see it is optimal to intensify the
follow-up when the probability of a LRR peaks around the second year of follow-up
and just after that.

The optimal policy for a patient will depend on the test results of mammograms
previously taken and possible self-detections. For example: A patient, age 46 and
differentiation grade 1, decides to wait 1.5 years (t = 3) after initial treatment ended,
as recommended by the optimal policy (see Fig. 7.2). Now in case she does a false
positive self-detection, the optimal policy will change and it will be optimal to skip
the next mammogram (at t = 3).

238 J.W.M. Otten et al.

If the initial belief about the patient’s health is different, the optimal policy will
be different too. For instance if the belief that the true health state of the patient
is one of the cancer states is 0.03 instead of 0.0039 (which is the belief following
from the actual data) it is optimal to test sooner and more often to neutralize the
initial belief. In Fig. 7.3 the adjusted optimal policy is compared with the previous
one, under the assumption that the patient does not have positive mammograms or
self-detection. This example shows that it is beneficial to adjust the policy when the
belief about the true health state of the patient changes.

0,04

0,035

0,025

0,03

0,02

0,015

0,005

0,01

0
1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Adj.

Not A
dj.

W W W WM M M M M M

WWW W W WM M M M

Adjusted
Not adjusted

Fig. 7.3: Comparison in belief of cancer between the adjusted and unadjusted policy
when the initial belief is high. Abbreviations: W = wait, M = mammography

It is not straightforward to determine the expected number of mammograms an
average patient will have during the follow-up. It is however straightforward to pro-
vide an upper bound on this number. When a patient has a positive mammogram
or a self-detection she will undergo a biopsy. If the biopsy is positive, the patient’s
decision process will stop. Otherwise, the belief state of the patient will be that the
patient is with probability 1 healthy, because a biopsy is assumed to be a perfect
test. With this belief state it is always optimal to select wait as the action at the next
decision epoch. The number of mammograms stated in Fig. 7.2 is therefore an upper
bound on the expected number of mammograms.

In Fig. 7.4 the total belief of cancer, that is the belief that the true health state of
the patient is an early detectable LRR, a late detectable LRR or SP, s ∈ {2,3,4}, is
given for the four groups when the policy is the optimal, the annual follow-up or
the no follow-up policy. Again this is under the assumption that the observation in

7.4 Results 239

case of Mammogram is negative and in case of Wait is no self-detection. Based on
these figures we can conclude that the probability of cancer does not depend on the
distribution of the mammograms but on the number of mammograms.

0,04

0,035

0,025

0,015

0,005

0,03

0,02

0,01

0

0,04

0,035

0,025

0,015

0,005

0,03

0,02

0,01

0

0,04

0,035

0,025

0,015

0,005

0,03

0,02

0,01

0

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0,04

0,035

0,025

0,015

0,005

0,03

0,02

0,01

0

Age < 50

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Age < 50, grade 2 Age < 50, grade 3

Age < 50, grade 1

Optimal Policy Annual Screening No Screening

Fig. 7.4: Belief state at time t = 1 · · ·T for different policies

In Table 7.3 the absolute and relative group sizes are given. Using these numbers
and combining these with the upper bound on the number of mammograms, a lower
bound on the difference in number of mammograms, when the annual policy is
exchanged for the optimal policy can be established. The gain in expected QALYs
is also given in Table 7.3. In the optimal policy a patient will have, on average,
1 mammogram more than in the current policy but the expected gain of QALYs
amounts to 511.3. Also for the grade 3 patients a lot is to gain if the follow-up is
intensified.

240 J.W.M. Otten et al.

Age Patients Gain QALYs Total gain Gain mmg Total Gain
per patient (QALYs) per patient (mammograms)

<50 12,058 (100 %) 0.0424 511.3 −1 −12,058
<50, grade 1 1943 (16.11 %) 0.0229 44.5 1 1943
<50, grade 2 4847 (40.20 %) 0.0312 151.2 0 0
<50, grade 3 5268 (43.69 %) 0.0629 331.4 −3 −15,804

Table 7.3: Gain for the optimal policy in expected QALYs and number of mammo-
grams for the different groups relative to the annual policy

A Societal Perspective

Instead of approaching the problem from the patient’s perspective, we can also ap-
proach it from societal perspective. By ascribing a value to a life year (denoted as
value of a statistical life year, VOSL) and replacing disutilities by the costs of a
mammogram and a biopsy we can solve the problem by the same algorithm. The
objective then is to maximize rewards instead of QALYs.

In our analysis of the adjusted problem we found that there were no differences in
optimal policies between the optimization of the rewards and of the QALYs. This is
due to the fact that for both a mammogram and a biopsy the ratio life year/disutility
is roughly equal to the ratio value of a life year/costs.

7.4.1 Sensitivity Analyses

For some input parameters the only available estimations are rather rough. It is there-
fore insightful to analyse to which extent the optimal policy is sensitive to small
changes in these parameters. From the results displayed in Fig. 7.2 it follows that the
distribution of the mammograms depends heavily on the distribution of the proba-
bility of a LRR. It is therefore helpful to use the number of mammograms in the
optimal policy as a measure to compare different policies instead of the distribution
of the mammograms in the follow-up phase.

We analyse the sensitivity of the optimal number of mammograms to two param-
eters. Firstly we analyse the sensitivity to the LSRs. We find that the optimal policy
is not very sensitive to how much percent of the healthy life expectancy the LSR
is, but rather to the difference in LSRs between an early detectable LRR and a late
detected LRR. We increase the difference by 2, 4 and 6 percent point and decrease
it with the same amount and denote the number of mammograms in the optimal
policy. The results are presented in Table 7.4. It turns out that the optimal number of
mammograms in any group already changes when the difference in LSR is altered
by only 2 percent point.

7.5 Conclusions and Discussion 241

Age, grade <50, − <50, 1 <50, 2 <50, 3

Difference in LSR
between early and
late LRR relative to
Table 7.2 (percent
point)

+6 7 5 8 8
+4 7 5 6 8
+2 7 5 6 8
0 6 4 5 8
−2 6 4 5 7
−4 5 3 5 6
−6 4 3 4 5

Growth rate LRR

×0.5 4 3 3 5
×1 6 4 5 8
×1.5 7 5 8 8
×2 8 6 8 9
×3 9 6 8 9

Table 7.4: Sensitivity of the optimal number of mammograms for different param-
eters

Secondly we analyse the sensitivity to the rate at which an early detectable LRR
grows into a late detectable LRR. In order to do this we determine the number
of mammograms in the optimal policy when the LRR growth rate is 0.5 times,
1.5 times, 2 times and 3 times the normal value. The results are also presented in
Table 7.4. Here also it appears that the optimal result is quite sensitive to changes in
the growth rate of a LRR.

The main conclusion we can draw from these results is that the optimal result is
quite sensitive to changes in the LSR and the growth rate of a LRR. We can also
conclude that this effect is somewhat stronger for patients with grade 1 than for
patients with grade 2 or 3.

7.5 Conclusions and Discussion

Currently breast cancer patients in the Netherlands have annual check-ups after
treatment. Even though it is known that many factors, such as age, characteristics of
the primary tumour and treatment to detect LRRs and SP tumors in an early phase
are of great influence on the risk of a LRR, the follow-up is the same for all patients.
Individual mammography follow-up decisions based on personal risk characteris-
tics are proposed by the national guideline of the Netherlands but without results in
practice. In this chapter we develop an analytic model to personalize the decision
making based on personal risk characteristics.

We formulate this problem as a partially observable Markov decision process.
Our results show that, indeed, the optimal follow-up policy depends heavily on the
personal risk characteristics of a patient. For all patients it is optimal to intensify the
follow-up when the probability of a LRR peaks and just after instead of uniformly
distributing the check-ups over the follow-up phase. Our results furthermore show

242 J.W.M. Otten et al.

that the personal test history of a patient is very important for determining the opti-
mal test policy. Another conclusion that we can draw from our results is that instead
of testing all patients annually it is more efficient to test patients with differentia-
tion grade 3 more often and with differentiation grade 1 less often, for patients with
differentiation grade 2 our model suggest to leave the number of mammograms the
same. Finally, the results show that moving from a patient’s perspective to a societal
perspective does not change the optimal policy. This is an important result because
in the case of actual implementation of the results in practice one does not need to
choose between the benefit of an individual and that of society as a whole.

Implementation of the optimal policy has a few advantages for both the patient
and society. From the patient’s perspective an advantage is that the expected num-
ber of QALYs increases. Another advantage is that the number of mammograms,
although on average it increases, decreases for the group of patients for which it
seems unnecessary to have a mammogram that often. This is a big advantage be-
cause having a mammogram is a rather unpleasant experience [22]. From society’s
perspective the main advantage is that a lot of QALYs can be gained when allocating
the resources to where it is needed most.

The main advantage of this model compared to current follow-up policies is that
when good estimates of the model parameters are available, an optimal follow-up
policy can be determined based on personal risk characteristics which can be up-
dated at each decision epoch based on the observation made. When the parameters
are available it is fairly straightforward to implement the algorithm into a tool which
can than be used by a physician to tailor the follow-up to the patient’s personal char-
acteristics.

The biggest limitation of our study is that the estimates for some of the model
parameters are quite inexact, in particular the survival rates used to estimate the LSR
and the rate at which an early detectable LRR develops into an late detectable LRR.
Sensitivity analyses for these parameters show that the optimal policy is quite sensi-
tive to these parameters. Therefore, without further study to obtain better estimates
for these model parameters, the model cannot be used to give recommendations
about the exact testing policies.

Another limitation of our model is that it is a discrete model. This has two disad-
vantages compared to a continuous model. Firstly, in a continuous model the actual
time that a patient has a LRR could be taken into account instead of the rather ar-
bitrary distinction between an early detectable LRR and a late detectable LRR. The
LSR could then be much more precise. Secondly, in a continuous model a mam-
mogram can be taken at an arbitrary time. Our recommendation for further study is
therefore to develop a decision model in which these two variables can be modelled
continuously instead of discretely.

References 243

Appendix: Notation

General This chapter Description
S S State space
s st State at time t
r rt(s,a,o) Reward at time t in state s with action a and observation o
A A′t Set of actions at time t
a at Action at time t

P P(a,o)
t Transition probability at time t given action a

and observation o
V ∗t (s) V ∗t (π), V ∗t (b) Optimal value function from time t onwards given

information state π or belief state b

References

1. W.L. Lu, L. Jansen, W.J. Post, J. Bonnema, J.C. van de Velde, G.H. De Bock,
Impact on survival of early detection of isolated breast recurrences after the
primary treatment for breast cancer: a meta-analysis. Breast Cancer Res. Treat.
114, 403–412 (2009). http://dx.doi.org/10.1007/s10549-008-0023-4

2. M. Moossdorff, L.M. van Roozendaal, L.J.A. Strobbe, S. Aebi, D.A. Cameron,
J.M. Dixon, A.E. Giuliano, B.G. Haffty, B.E. Hickey, C.A. Hudis, V.S. Klim-
berg, B. Koczwara, T. Kühn, M.E. Lippman, A. Lucci, M. Piccart, B.D.
Smith, V.C.G. Tjan-Heijnen, C.J.H. van de Velde, K.J.V. Zee, J.B. Vermorken,
G. Viale, A.C. Voogd, I.L. Wapnir, J.R. White, M.L. Smidt, Maastricht Delphi
consensus on event definitions for classification of recurrence in breast cancer
research. J. Natl. Cancer Inst. 106(12), 1–7 (2014). http://dx.doi.org//10.1093/
jnci/dju288

3. IKNL, Dutch Breast Cancer Guideline (2016), available: https://www.oncoline.
nl/ [Online]. Accessed 2 March 2016

4. S.M.E. Geurts, F. de Vegt, S. Siesling, K. Flobbe, K.K.H. Aben, M. van
der Heiden-van der Loo, A.L.M. Verbeek, J.A.A.M. van Dijck, V.C.G. Tjan-
Heijnen, Pattern of follow-up care and early relapse detection in breast cancer
patients. Breast Cancer Res. Treat. 136, 859–868 (2012). http://dx.doi.org/10.
1007/s10549-012-2297-9

5. A. Witteveen, I.M.H. Vliegen, G.S. Sonke, J.M. Klaase, M.J. IJzerman, S. Sies-
ling, Personalisation of breast cancer follow-up: a time-dependent prognostic
nomogram for the estimation of annual risk of locoregional recurrence in early
breast cancer patients. Breast Cancer Res. Treat. 152, 627–636 (2015). http://
dx.doi.org/10.1007/s10549-015-3490-4

6. M. IJzerman, A. Manca, J. Keizer, S. Ramsey, Implementing comparative ef-
fectiveness research in personalized medicine applications in oncology: current
and future perspectives. Comp. Eff. Res. 26(5), 65–72 (2015). https://dx.doi.
org/10.2147/CER.S92212

http://dx.doi.org/10.1007/s10549-008-0023-4
http://dx.doi.org//10.1093/jnci/dju288
http://dx.doi.org//10.1093/jnci/dju288
https://www.oncoline.nl/
https://www.oncoline.nl/
http://dx.doi.org/10.1007/s10549-012- 2297-9
http://dx.doi.org/10.1007/s10549-012- 2297-9
http://dx.doi.org/10.1007/s10549-015-3490-4
http://dx.doi.org/10.1007/s10549-015-3490-4
https://dx.doi.org/10.2147/CER.S92212
https://dx.doi.org/10.2147/CER.S92212

244 J.W.M. Otten et al.

7. R.D. Smallwood, E.J. Sondik, The optimal control of partially observable
Markov processes over a finite horizon. Oper. Res. 21(5), 1071–1088 (1973).
http://dx.doi.org/10.1287/opre.21.5.1071

8. L.N. Steimle, B.T. Denton, Markov decision processes for screening and treat-
ment of chronic diseases, in Markov Decision Processes in Practice, ed. by R.
Boucherie, N.M. van Dijk (Springer, New York, 2016)

9. T. Ayer, O. Alagoz, N.K. Stout, A POMDP approach to personalize mammog-
raphy screening decisions. Oper. Res. 60(5), 1019–1034 (2012). http://dx.doi.
org/10.1287/opre.1110.1019

10. M.U.S. Ayvaci, O. Alagoz, E.S. Burnside, The effect of budgetary restrictions
on breast cancer diagnostic decisions. MSOM 14(4), 600–617 (2012). http://dx.
doi.org/10.1287/msom.1110.0371

11. J. Zhang, B.T. Denton, H. Balasubramanian, N.D. Shah, B.A. Inman, Opti-
mization of PSA screening policies: a comparison of the patient and societal
perspectives. Med. Decis. Making 32(1), 337–349 (2012). http://dx.doi.org/10.
1177/0272989X11416513

12. F.A. Sonnenberg, J.R. Back, Markov models in medical decision making, a
practical guide. Med. Decis. Making 13(4), 322–338 (1993). http://dx.doi.org/
10.1177/0272989X9301300409

13. G.E. Monahan, A survey of partially observable Markov decision processes:
theory, models and algorithms. Manag. Sci. 28(1), 1–16 (1982). http://dx.doi.
org/10.1287/mnsc.28.1.1

14. W.S. Lovejoy, A survey of algorithmic methods for partially observed Markov
decision processes. Ann. Oper. Res. 28(1), 47–65 (1991). http://dx.doi.org/10.
1007/BF02055574

15. J.N. Eagle, The optimal search for a moving target when the search path is
constrained. Oper. Res. 32(5), 1107–1115 (1984). http://www.jstor.org/stable/
170656

16. CBS, Statline (2016), available: http://statline.cbs.nl/Statweb/ [Online]. Ac-
cessed 18 May 2016

17. Netherlands Comprehensive Cancer Organisation (IKNL), Netherlands Cancer
Registry (2016), available: https://www.cijfersoverkanker.nl/ [Online]

18. J.S. Mandelblatt, M.E. Wheat, M. Monane, R.D. Moshief, J.P. Hollenberg,
J. Tang, Breast cancer screening for elderly women with and without comor-
bid conditions: a decision analysis model. Ann. Internal Med. 116(9), 722–730
(2002). http://dx.doi.org/10.7326/0003-4819-116-9-722

19. V. Velanovich, Immediate biopsy versus observation for abnormal findings
on mammograms: an analysis of potential outcomes and costs. Am. J. Surg.
170(4), 327–332 (1995). http://dx.doi.org/10.1016/S0002-9610(99)80298-0

20. T.M. Kolb, J. Lichy, J.H. Newhouse, Comparison of the performance of screen-
ing mammography, physical examination, and breast us and evaluation of fac-
tors that influence them: an analysis of 27,825 patient evaluations. Radiology
225, 165–175 (2002). http://dx.doi.org/10.1148/radiol.2251011667

21. WHO, The world health report: 2002: reducing risks, promoting healthy life.
World Health Organization (2002)

22. M. Fine, B. Rimer, P. Watts, Women’s responses to the mammography experi-
ence. J. Am. Board Fam. Pract. 6(6), 546–555 (1993)

http://dx.doi.org/10.1287/opre.21.5.1071
http://dx.doi.org/10.1287/opre.1110.1019
http://dx.doi.org/10.1287/opre.1110.1019
http://dx.doi.org/10.1287/msom.1110.0371
http://dx.doi.org/10.1287/msom.1110.0371
http://dx.doi.org/10.1177/0272989X11416513
http://dx.doi.org/10.1177/0272989X11416513
http://dx.doi.org/10.1177/0272989X9301300409
http://dx.doi.org/10.1177/0272989X9301300409
http://dx.doi.org/10.1287/mnsc.28.1.1
http://dx.doi.org/10.1287/mnsc.28.1.1
http://dx.doi.org/10.1007/BF02055574
http://dx.doi.org/10.1007/BF02055574
http://www.jstor.org/stable/170656
http://www.jstor.org/stable/170656
http://statline.cbs.nl/Statweb/
https://www.cijfersoverkanker.nl/
http://dx.doi.org/10.7326/0003-4819-116-9-722
http://dx.doi.org/10.1016/S0002-9610(99)80298-0
http://dx.doi.org/10.1148/radiol.2251011667

Chapter 8
Advance Patient Appointment Scheduling

Antoine Sauré and Martin L. Puterman

Abstract This chapter describes the use of the linear programming approach to
approximate dynamic programming as a means of solving advance patient appoint-
ment scheduling problems, which are problems typically intractable using standard
solution techniques. Starting from the linear programming approach to discounted
infinite-horizon Markov decision processes, and employing an affine value function
approximation in the state variables, the method described in this chapter provides
a systematic way of identifying effective booking guidelines for advance patient ap-
pointment scheduling problems. Two applications found in the literature allow us
to show how these guidelines could be used in practice to significantly increase ser-
vice levels for medical appointments, measured as the percentage of patients booked
within medically acceptable wait times, and thus to decrease the potential impact of
delays on patients’ health.

8.1 Introduction

Globally, health care systems are facing increasing and lengthy wait times for a wide
range of services. This is partially attributable to the effects of an increasing demand
for care, constrained public and private budgets, and diminishing supply of staff.
Although in some cases unnecessary delays have little medical impact on patients,

A. Sauré (�)
Telfer School of Management, University of Ottawa, 55 Laurier Ave E, Ottawa, ON, Canada
K1N 6N5
e-mail: asaure@uottawa.ca

M.L. Puterman
Sauder School of Business, University of British Columbia, 2053 Main Mall, Vancouver, BC,
Canada V6T 1Z2
e-mail: martin.puterman@sauder.ubc.ca

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 8

245

mailto:asaure@uottawa.ca
mailto:martin.puterman@sauder.ubc.ca

246 A. Sauré and M.L. Puterman

in others, they may deteriorate patients’ health. For this reason, health care providers
and policy makers around the world are under constant political and community
pressure to improve efficiency and reduce wait times for medical services.

In this context, the development and implementation of effective patient appoint-
ment scheduling methodologies has become critical for health care organizations to
improve patient flow and provide timely access to care. Through an improved match
between the availability of limited medical resources and patient needs, and a bet-
ter assessment of the future demand for services, sophisticated patient appointment
scheduling methodologies have proved to be an effective way of reducing patient
wait times for medical appointments and increasing the utilization of critical re-
sources, influencing the overall performance of health care systems.

Patient appointment scheduling methodologies are usually classified as either
allocation scheduling or advance scheduling [19]. Allocation scheduling refers to
methodologies for assigning specific appointment times to patients, but only once
all patients for a given service day have been identified. Allocation scheduling
methods typically assume that a first level of scheduling is required which assigns
patients to specific service days and resources. Advance scheduling, on the other
hand, refers to methodologies for scheduling patient appointments in advance of
the service day, when the future demand for a particular service is still unknown.
Advance scheduling methods usually assume that a second level of scheduling is
needed which assigns patients to specific appointment times. Although the implied
problem decomposition is not necessarily optimal, no dynamic patient appointment
scheduling methodologies have been developed to address the two levels of schedul-
ing simultaneously. Most studies in the patient appointment scheduling literature
address allocation scheduling problems. Magerlein and Martin [19], Cayirli and Ve-
ral [8], Mondschein and Weintraub [20], Gupta and Denton [16], Cardoen et al. [7]
and Begen and Queyranne [3] provide comprehensive reviews on this topic. The
methodology described in this chapter deals with a general advance patient appoint-
ment scheduling problem. This class of problems has received limited attention in
the literature. Patrick et al. [21], Erdelyi and Topaloglu [14], Schütz and Kolisch
[26], Sauré et al. [24], Gocgun and Puterman [15] and Sauré et al. [25] are some of
the few papers published on this topic.

Advance patient appointment scheduling decisions typically rely on the expertise
of one or two bookings agents who often make them without explicitly considering
their impact on the future performance of the system. The presence of a highly vari-
able number of appointment requests, limited service capacity and multiple types of
patients makes it extremely challenging for the agents to adequately assess the real
impact of their actions in order to more efficiently allocate capacity. This unintended
lack of foresight generates several inefficiencies that usually translate into unneces-
sary delays, an unsystematic prioritization of patients and inefficient resource uti-
lization.

By adequately assessing the future impact of advance patient appointment
scheduling decisions, the booking policies derived using the methodology de-
scribed in this chapter, although possibly sub-optimal, perform significantly better
than myopic policies. The latter are policies that only consider the immediate cost
of the appointment scheduling decisions, ignoring the potential cost-to-go val-
ues associated with them. In other words, they only consider what is known at the

8.2 Problem Description 247

present, ignoring the future impact of today’s decisions. Myopic policies are usually
representative of current practices.

The booking policies derived using the methodology described in this chapter
provide clear and effective guidelines as to when to book patients and when to resort
to an alternative source of capacity such as overtime. We will see, through two
applications found in the literature, how these guidelines could be used in practice
to significantly increase service levels for medical appointments, measured as the
percentage of patients booked within medically acceptable wait times, and thus to
decrease the potential impact of delays on patients’ health.

8.2 Problem Description

Consider a single medical resource with a daily regular-hour capacity that has been
divided into Cr fixed-length appointment slots. Each day the booking agent in charge
of the medical resource receives appointment requests from I pre-specified patient
types. Patients are classified into types according to their priorities and capacity
requirements, each priority i having a different medically acceptable wait time (in
days), also called wait time target, denoted by Ti. The capacity requirements asso-
ciated with a patient of type i are represented by a vector ri = {ri j}li

j=1, where li
denotes the number of days over which the patient’s appointments are scheduled
and ri j denotes the duration, in number of appointment slots, of the patient’s ap-
pointment on day j of this time period. For example, r = 1 represents one session of
one appointment slot, r= (1,0,0,0,0,1) represents an initial session of one appoint-
ment slot and a follow-up session also of one appointment slot five working days
after, and r = (2,1,1,1,1) represents a medical treatment consisting of an initial
session of two appointment slots followed by four daily consecutive sessions of one
appointment slot each. We assume that the service times are deterministic, and mea-
sured in number of appointment slots, and that the number of appointment requests
of type i the booking agent receives on any given day follows an independent dis-
crete probability distribution with mean mi. Patient types and demand distributions
do not change over time and demand is assumed uncorrelated over patient types.

Advance patient appointment scheduling decisions are made once a day and the
booking agent can schedule patients’ first appointments at most N days in advance.
To relieve excess demand, the booking agent has the ability to use overtime at a
cost of h per appointment slot. The overtime capacity is Co appointment slots per
day. The penalty associated with booking the first appointment of a patient of type
i on day n (from today) is denoted by cin. We assume that cin is non-decreasing in
n and equal to zero if n ≤ Ti. The values of cin, although arbitrary, are used in our
setting to model different wait time targets. However, they can also be used to model
other types of piecewise linear functions such as, for example, time windows (i.e.,
wait time targets plus and minus a few days) (see [15]). As an alternative action,

248 A. Sauré and M.L. Puterman

the booking agent may also decide to postpone the scheduling decisions for some
patients. The penalty associated with delaying the scheduling decisions for a patient
of type i is denoted by gi. Neither rescheduling nor cancellations are considered.

Figure 8.1 depicts the timeline associated with the booking agent’s task. At the
beginning of each day, the booking agent observes the number of appointment slots
already booked on each of the subsequent M days. Since the agent can schedule
patients’ first appointments at most N days in advance, M ≥ N +maxi{li}− 1 to
allow the booking of all the appointments for patients scheduled starting on day
N. Then the booking agent waits until the end of the day to learn the number of
patients of each type waiting to be booked and decides how to allocate the available
appointment slots among the different patient types.

Start of day k

Determine the number of
available slots on each day

in the future

Start of day k+1

Assign demand to
available capacity

Day k’s demand arrives

Determine priorities of
waiting requests

Fig. 8.1: Timeline associated with the advance patient appointment scheduling de-
cisions

8.3 Mathematical Formulation

The advance patient appointment scheduling problem described above can be for-
mulated as the following discounted infinite-horizon Markov Decision Process
(MDP). The main objective of this model is to identify effective ways of allocat-
ing available regular-hour and overtime capacity to incoming appointment requests
while increasing service levels in a cost-effective manner.

8.3.1 Decision Epochs

Decisions are made at the end of each day over an infinite time horizon.

8.3 Mathematical Formulation 249

8.3.2 State Space

At the end of each day, the booking agent knows the number of regular-hour and
overtime appointment slots already booked on each of the subsequent M days
as well as the number of patients of each type waiting to be booked. Thus, a
state of the system, denoted by s ∈ S, is represented by a vector s = (u,v,w) =
(u1, . . . ,uM,v1, . . . ,vM,w1, . . . ,wI), where um is the number of regular-hour appoint-
ment slots already booked on day m (from today), vm is the number of overtime
appointment slots already booked on day m (from today) and wi is the number of
patients of type i waiting to be booked. As a consequence of considering an M-day
rolling booking horizon, the number of appointment slots booked on day M of any
valid state of the system is equal to zero. That is uM = vM = 0. Figure 8.2 illus-
trates the relationship between the decision epochs and the finite booking horizon.
All states are non-negative and integer.

Fig. 8.2: Relationship between the decision epochs and the finite rolling booking
horizon. At the beginning of each day, the booking agent observes the number of
appointment slots already booked on each of the subsequent M days. Day m of the
booking horizon at the current decision epoch becomes day m− 1 of the booking
horizon at the subsequent decision epoch

8.3.3 Action Sets

At the end of each day, the booking agent must decide on which day to book
the first appointment for each of the patients waiting to be booked. In some
cases, this implies the use of overtime. Alternatively, the booking agent may post-
pone to the next day the scheduling decisions for some patients. Thus, an action

250 A. Sauré and M.L. Puterman

available to the booking agent, denoted by a, is represented by a vector a = (x,y) =
(x11, . . . ,xIN ,y1, . . . ,yM), where xin is the number of patients of type i whose first
appointment is booked on day n (from today) and ym is the number of overtime
appointments slots required on day m (from today). Note that rather than assigning
patients to specific appointment slots, the model allocates available daily capacity
to each patient type. Once daily capacity is allocated, a second level of scheduling
is needed to assign patients to specific appointment slots.

The set of feasible actions compatible with state (u,v,w)∈ S, denoted by A(u,v,w),
must satisfy the following constraints:

N

∑
n=1

xin ≤ wi ∀i (8.1)

um +
I

∑
i=1

min{m,N}

∑
k=max{m−li+1,1}

ri(m−k+1)xik ≤Cr + ym ∀m (8.2)

I

∑
i=1

min{m,N}

∑
k=max{m−li+1,1}

ri(m−k+1)xik ≥ ym ∀m (8.3)

vm + ym ≤Co ∀m (8.4)

Constraint (8.1) restricts the number of booking decisions associated with pa-
tients of type i to be less than or equal to the number of patients of type i waiting
to be booked. Constraint (8.2) limits the total number of appointment slots booked
today on day m (from today) to be less than or equal to the total available capacity
that day. Constraint (8.3) restricts the number of overtime appointment slots booked
today on day m (from today) to be less than or equal to the total number of ap-
pointment slots booked today on that day. Constraint (8.4) ensures that the number
of overtime appointment slots booked today on day m (from today) is less than or
equal to the available overtime capacity that day. All actions are non-negative and
integer.

8.3.4 Transition Probabilities

Once actions are taken, the only source of uncertainty in the transition to the next
state of the system is the number of new appointment requests of each type. As a
result of choosing action a= (x,y) in state s= (u,v,w), a∈As and s∈ S, and having
qi new appointment requests from patients of type i, the state of the system the next
day, denoted by s′ = (u′,v′,w′), is given by the following probability distribution:

8.3 Mathematical Formulation 251

p(s′|s,a) =

⎧
⎨

⎩

I

∏
i=1

Pr(qi), if s′ = (u′,v′,w′) satisfies equations (8.6) to (8.8);

0, otherwise.
(8.5)

u′m =

⎧
⎪⎨

⎪⎩

um+1− ym+1 +
I

∑
i=1

min{(m+1),N}

∑
k=max{(m+1)−li+1,1}

ri[(m+1)−k+1]xik, m < M;

0, m = M.

(8.6)

v′m =

{
vm+1 + ym+1, m < M;
0, m = M.

(8.7)

w′i = wi−
N

∑
n=1

xin +qi ∀i (8.8)

Equations (8.6) and (8.7) define the new number of regular-hour and overtime
appointment slots booked on day m (from today) as a function of the number of
appointment slots previously booked on day m+ 1 (from today) plus all the new
bookings that affected that day. Equation (8.8) specifies the new number of patients
of type i waiting to be booked as the number of appointment requests of type i not
booked previously, that is wi−∑N

n=1 xin, plus the new appointment requests from
patients of type i. The term Pr(qi) in Equation (8.5) represents the probability of
having qi new appointment requests from patients of type i.

8.3.5 Immediate Cost

The immediate cost c(s,a) associated with choosing action a = (x,y) in state
s = (u,v,w), a ∈ As and s ∈ S, comes from three sources: the resulting wait time
penalties, the use of overtime, and the penalties associated with postponing to the
next day the scheduling decisions for some patients.

c(s,a) =
I

∑
i=1

N

∑
n=1

cinxin

︸ ︷︷ ︸
wait time penalties

+
M

∑
m=1

hmym

︸ ︷︷ ︸
overtime cost

+
I

∑
i=1

gi

(

wi−
N

∑
n=1

xin

)

︸ ︷︷ ︸
postponement penalties

(8.9)

In Eq. (8.9), hm is the discounted cost associated with using an overtime slot on day
m (from today). That is hm = αm−1h ∀m, where α is the discount factor.

252 A. Sauré and M.L. Puterman

8.3.6 Optimality Equations

The value function in this formulation, denoted by v : S → R+
0 , corresponds to the

expected α-discounted cost over the infinite horizon. Given a stationary appoint-
ment scheduling policy π , which uses decision rule δ every decision epoch t, v(s),
the expected α-discounted cost associated with state s ∈ S, can be determined as
follows:

v(s)≡ Eπ
s

[
∞

∑
t=1

α t−1c(st ,δ (st))

]

∀s ∈ S (8.10)

Clearly, we are not so much interested in determining the value function for a
specific appointment scheduling policy as in finding an optimal stationary policy.
To identify such a policy we consider the following form of Bellman’s optimality
equations:

v(s) = min
a∈As

{

c(s,a)+α ∑
s′∈S

p(s′|s,a)v(s′)
}

∀s ∈ S (8.11)

The challenge is that even for very small problem settings the size of the
state space and the size of the corresponding action sets make a direct solution
to Eq. (8.11) impossible. The state variable s = (u,v,w) and the action variable
a = (x,y) have (2M + I) and (I × N + M) dimensions, respectively. Assuming
that wi can take up to Q possible values, this means that we might have up to
(Cr + 1)M−1 × (Co + 1)M−1 ×QI different states and QI×N × (Co + 1)M−1 differ-
ent, although not necessarily feasible, actions. Thus, the size of the state space and
the size of the corresponding action sets increase exponentially with the number of
patient types (I) and the number of days in the booking horizon (M).

8.4 Solution Approach

Fortunately, a number of sophisticated methods for dealing with the problem caused
by the exponential increase of the state space and the number of available actions,
called Approximate Dynamic Programming (ADP), have been developed in the last
couple of decades [6, 22, 28]. The literature in this field focuses primarily on two
types of methods: simulation-based algorithms and linear programming algorithms.

Linear programming algorithms for discounted infinite-horizon MDPs are based
on formulating Bellman’s optimality equations as an equivalent linear program [11]
and on choosing an appropriate approximation architecture to represent the variables
(value function) in it. This approach was initially introduced by Schweitzer and
Seidmann [27] and has been recently reconsidered by de Farias and Van Roy [9, 10],
Adelman and Mersereau [2], Patrick et al. [21], Desai et al. [13], Sauré et al. [24],
Adelman and Klabjan [1] and Gocgun and Puterman [15]. An appropriately chosen

8.4 Solution Approach 253

approximation architecture reduces the number of variables in the equivalent linear
program. This is one of the reasons why most approximation architectures found in
the literature are defined as a linear combination of a low-dimensional set of basis
functions.1

Given a pre-selected set of basis functions, the linear programming approach
to high dimensional discounted infinite-horizon MDPs can be summarized in the
following five steps:

Step 1: Write the optimality equations in their linear programming form.

max
v

{

∑
s∈S

γ(s)v(s) : c(s,a)+α ∑
s′∈S

p(s′|s,a)v(s′)≥ v(s) ∀a ∈ As,s ∈ S

}

(8.12)

In this model, γ(s) represents the weight of state s ∈ S in the objective function.
The solution to the equivalent linear program (8.12) is the same as the solution
to the optimality equations when γ is strictly positive [12, 17].

Step 2: Write the value function as a linear combination of basis functions.

v(s) =V0 +
K

∑
k=1

Vkφk(s) ∀s ∈ S V0, . . . ,VK ∈ R (8.13)

In Eq. (8.13), each φk : S → R represents a basis function and the parameters
{Vk}K

k=1 are the basis function weights.

Step 3: Formulate the approximate equivalent linear program.

max
V0,...,VK

{

V0 +
K

∑
k=1

Eγ [φk]Vk

}

(8.14)

subject to

(1−α)V0 +
K

∑
k=1

νk(s,a)Vk ≤ c(s,a) ∀a ∈ As,s ∈ S

1 A basis function is a mapping S to R.

254 A. Sauré and M.L. Puterman

where

Eγ [φk] =∑
s∈S

γ(s)φk(s) ∀k

νk(s,a) = φk(s)−α ∑
s′∈S

p(s′|s,a)φk(s
′) ∀k,a ∈ As,s ∈ S

The approximate equivalent linear program (8.14) results from substituting
Eq. (8.13) into (8.12) and from restricting γ to be an exogenous probabil-
ity distribution over the initial state of the system. That is ∑s∈S γ(s) = 1. Thus,
the task becomes to determine the best values for the approximation parameters.

Step 4: Solve (8.14) via constraint sampling or column generation.

The approximate equivalent linear program (8.14) has a tractable number of
variables, (K + 1), but still an intractable number of constraints. For this rea-
son, it is often necessary to use techniques such as constraint sampling [10]
or column generation [5, 18]. Unfortunately, column generation is limited to
affine value function approximation architectures in the state variables. The
solution to (8.14) determines {V ∗k }K

k=0, the optimal values of the approximation
parameters.

Step 5: Compute approximate optimal actions.

δ ∗(s) ∈ argmin
a∈As

{

c(s,a)+α
K

∑
k=1

V ∗k

[

∑
s′∈S

p(s′|s,a)φk(s
′)

]}

∀s ∈ S (8.15)

In practice, rather than computing and storing the approximate optimal actions
for each state s ∈ S, a resource-intensive task, we only compute them as needed
by solving (8.15). The minimization problem in (8.15) is obtained by inserting
the approximate value function defined by {V ∗k }K

k=0 into the right hand side of
the optimality equations (8.11) and ignoring constant terms.

Although linear programming algorithms for this type of models are mostly lim-
ited to approximation architectures that are defined as a linear combination of a low-
dimensional set of basis functions, their main advantage with respect to simulation-
based algorithms is that they avoid the need for iterative learning and often provide
good results.

To solve the advance patient appointment scheduling model described above, we
chose (8.13), the approximation to v(s) described in Step 2 of the solution approach,
to be the following affine approximation:

8.4 Solution Approach 255

v(u,v,w) =W0 +
M

∑
m=1

Umum +
M

∑
m=1

Vmvm +
I

∑
i=1

Wiwi ∀(u,v,w) ∈ S (8.16)

U,V,W≥ 0,W0 ∈ R

Note that the affine approximation in (8.16) is equivalent to considering 2M + I
basis function, each basis function defined as the value of one of the state variables.

The main advantages of using an affine value function approximation in the state
variables are two. First, the approximate equivalent linear program (8.14) in Step
3 of the solution approach has only 2M + I + 1 variables, the number of approxi-
mation parameters, as opposed to (Cr + 1)M−1× (Co + 1)M−1×QI , the number of
cost-to-go values required to define the value function for each state of the sys-
tem. Although (8.14) still has an intractable number of constraints, this allows us to
solve its dual through column generation. Any other more sophisticated approxima-
tion architecture such as a linear combination of a set of more general basis functions
would make the subproblem in the column generation algorithm a non-linear integer
program. Second, the approximation parameters are directly interpretable. The val-
ues of {Um}M

m=1, {Vm}M
m=1 and {Wi}I

i=1 can be interpreted as the marginal expected
discounted cost of having an additional regular-hour appointment slot occupied on
day m (from today), the marginal expected discounted cost of having an additional
overtime appointment slot booked on day m (from today), and the marginal ex-
pected discounted cost of having one more patient of type i waiting to be booked,
respectively.

For Step 4, we use column generation to find the optimal solution to (8.17), the
dual of the approximate equivalent linear program associated with the MDP model
described above. Column generation finds the optimal solution to (8.17) starting
with a small set of feasible state-action pairs and iteratively adding the state-action
pair associated with the most violated primal constraint. Equations (8.18)–(8.20)
and (8.21)–(8.23) are the constraint and objective function coefficients correspond-
ing to the approximate equivalent linear program (8.14), respectively. They are ob-
tained by substituting the affine approximation (8.16) into the equivalent linear pro-
gram corresponding to (8.12), restricting γ to be an exogenous probability distribu-
tion over the initial state of the system, and rearranging terms.

min
X≥0

{

∑
s∈S

∑
a∈As

c(s,a)X(s,a)

}

(8.17)

subject to

(1−α)∑
s∈S

∑
a∈As

X(s,a) = 1

∑
s∈S

∑
a∈As

μm(s,a)X(s,a)≥ Eγ [um] ∀m

256 A. Sauré and M.L. Puterman

∑
s∈S

∑
a∈As

νm(s,a)X(s,a)≥ Eγ [vm] ∀m

∑
s∈S

∑
a∈As

ωi(s,a)X(s,a)≥ Eγ [wi] ∀i

where

μm(s,a) = um(s)−αu′m(s,a) ∀m,a ∈ As,s ∈ S (8.18)

νm(s,a) = vm(s)−αv′m(s,a) ∀m,a ∈ As,s ∈ S (8.19)

ωi(s,a) = wi(s)−α

(

wi(s)−
N

∑
n=1

xin +mi

)

∀i,a ∈ As,s ∈ S (8.20)

Eγ [um] =∑
s∈S

γ(s)um(s) ∀m (8.21)

Eγ [vm] =∑
s∈S

γ(s)vm(s) ∀m (8.22)

Eγ [wi] =∑
s∈S

γ(s)wi(s) ∀i (8.23)

The model used to identify the state-action pair associated with the most violated
primal constraint, the pricing problem, is itself an optimization model. Given the
dual values associated with the current solution to (8.17), {Um}M

m=1, {Vm}M
m=1 and

{Wi}I
i=0, the next state-action pair to enter the formulation is given by:

argmin
s∈S,a∈As

{

c(s,a)− (1−α)W0−
M

∑
m=1

μm(s,a)Um−
M

∑
m=1

νm(s,a)Vm−
I

∑
i=1

ωi(s,a)Wi

}

Column generation iterates until no primal constraint is violated, giving us
{U∗

m}M
m=1, {V ∗m}M

m=1 and {W ∗
i }I

i=0, the optimal values of the approximation parame-
ters. It can be shown that, under some necessary conditions regarding the expected
demand over the infinite horizon and the expected number of appointment slots ini-
tially filled, the analytical solution to (8.17) is given by the following equations2:

U∗
m =

⎧
⎨

⎩

U∗
m+l1

m = 1, . . . ,(T1−1)
α(m−1)h m = T1, . . . ,(M−1)

0 m = M
(8.24)

V ∗m = 0 ∀m (8.25)

W ∗
i =

Ti+li−1

∑
k=Ti

ri(k+1−Ti)U
∗
k ∀i (8.26)

2 A proof of the form of the optimal affine value function approximation for a simpler version of
the advance patient appointment scheduling problem studied in this chapter can be found in [21].

8.5 Practical Results 257

In Eqs. (8.24) and (8.26), l1 and T1 represent the time span and the wait time
target for patients with the highest priority. The optimal form of W ∗

0 is not provided
since it does not play a role in solving (8.15), the minimization problem used to
identify the approximate optimal actions in Step 5 of the solution approach.

When the necessary conditions are violated, the optimal values of the approxi-
mation parameters are zero and the optimal scheduling policy becomes a myopic
policy. This, for example, happens when capacity is not a significant limitation.

8.5 Practical Results

To illustrate the quality of the appointment scheduling policies obtained through
the solution approach described above, we review two practical applications found
in the literature. We investigate the performance and practical implications of the
resulting appointment scheduling policies using simulation, and compare their per-
formance to that of myopic policies. Myopic policies are usually representative of
current practices. They considers only what is known at the present (the immediate
cost), ignoring the future impact of today’s decisions.

8.5.1 Computerized Tomography Scan Appointment Scheduling

We first consider the dynamic multi-priority patient scheduling problem for a di-
agnostic resource in [21]. Using the methodological approach described above, the
authors formulate and solve an advance patient appointment scheduling problem
in which all patients require only one appointment slot and booking overtime in
advance of the service day is not allowed.3 The authors define cin, the penalty as-
sociated with booking the appointment of a patient of type i on day n (from today),
as a function of gi, the penalty associated with delaying the scheduling decisions
of a patient of type i, and α , the discount factor. In this way, the cost of delaying a
patient’s scheduling decisions k days and then booking his/her appointment within
the wait time target is equal to the cost of booking the patient’s appointment k days
late initially. In their setting, cin is non-increasing in i (i.e., patients with a smaller
index i have a higher priority).

cin =

⎧
⎨

⎩

0, n≤ Ti;
n

∑
k=Ti

αk−Ti−1gi, n > Ti.
∀i,n (8.27)

3 This is equivalent to assuming li = 1 ∀i, ri1 = 1 ∀i and ym = 0 ∀m �= 1.

258 A. Sauré and M.L. Puterman

Using the optimal values of the approximation parameters, the authors derive a
scheduling policy that applied to the problem setting described later in this section
translates into the following booking guidelines:

• Book as much type 1 demand as possible into the day interval [1,T1], starting
with day 1 and working up to day T1;

• For each successive patient type i, book incoming requests into any available
appointment slot in the day interval [1,Ti] starting with day 1, then day Ti, and
working down to day 2;

• Use overtime for any remaining requests.

Figure 8.3 shows the performance of the resulting booking guidelines and that
of a myopic policy for a small clinic with regular-hour capacity of 10 appointment
slots per day. The myopic policy in this case books appointment requests as soon
as possible, in decreasing priority order, according to the immediate cost function
defined in (8.9). It resorts to overtime for patients of type i only when there is no
available regular-hour capacity within the first n̄i days of the booking horizon, where
n̄i =max{n : cin < h}. The clinic divides demand into three priority classes with wait
time targets of 7, 14 and 21 days, and it chooses a 21-day booking horizon. Demand
from each patient type is assumed to be Poisson with means of 5, 3 and 2 appoint-
ment requests per day, respectively.4 The overtime cost is 100 per appointment slot,
the postponement penalties are 20, 10 and 5, respectively, and the discount factor is
0.99. There is no limit on the use of overtime. The information defining the problem
setting is summarized in Table 8.1.

Table 8.1: Problem setting for a small clinic example

System information

Regular-hour capacity (Cr) 10 slots/day
Booking horizon (M) 21 days
Overtime cost (h) $100
Discount factor (α) 0.99

Patient information Type 1 Type 2 Type 3

Wait time targets (Ti) 7 14 21 days
Demand rates (mi) 5 3 2 requests/day
Postponement penalties (gi) $20 $10 $5

4 Poisson distributions are truncated at three times their mean values to maintain a finite state space.

8.5 Practical Results 259

Each policy was simulated for 1600 days using common patient arrivals with
statistics collected for each of 1000 simulation runs after a warm-up period of 200
days. The warm-up period was simulated under the resulting booking guidelines.
The simulation results presented in Fig. 8.3 are summarized in Table 8.2.

Myopic Patrick et al. (2008)

0
10

00
0

30
00

0
50

00
0

Discounted Cost

Booking Policy

D
ol

la
rs

5
10

15
20

Average Wait Time by Patient Type

Booking Policy

D
ay

s

Type 1
Type 2
Type 3

Myopic Patrick et al. (2008) Myopic Patrick et al. (2008)

9.
75

9.
80

9.
85

9.
90

9.
95

Average Daily Capacity Utilization

Booking Policy

A
pp

oi
nt

m
en

t S
lo

ts

0
10

0
20

0
30

0

Overtime Slots by Patient Type

Booking Policy

A
pp

oi
nt

m
en

t S
lo

ts

Type 1
Type 2
Type 3

Myopic Patrick et al. (2008) Myopic Patrick et al. (2008)

2
4

6
8

10

Average Time to First Available Slot

Booking Policy

D
ay

s

0
20

40
60

80
10

0

Late Bookings by Patient Type

Booking Policy

P
er

ce
nt

ag
e

Type 1
Type 2
Type 3

Myopic Patrick et al. (2008)

Fig. 8.3: Performance of the scheduling policies in terms of different metrics for
a small clinic with a regular-hour capacity of 10 appointment slots per day. Each
side-by-side box-plot was constructed with the results of 1000 1600-day simulation
runs using common patient arrivals with statistics collected after a warm-up period
of 200 days

The resulting booking guidelines clearly outperform the myopic policy in terms
of the mean discounted cost. The myopic policy is better than the resulting schedul-
ing policy with respect to the mean average wait time for lower priority patients, the
mean average daily capacity utilization, and the mean overtime utilization. How-
ever, it is much worse in terms of the mean average wait time for the highest pri-
ority patients, the mean average time to the first available appointment slot, and the
mean percentage of late bookings. It books, on average, almost 24 % of the patients
late compared to 0 % for the resulting booking guidelines. The resulting scheduling
policy still uses overtime, on average, for about 2 % of the highest priority patients.

260 A. Sauré and M.L. Puterman

Table 8.2: Comparison of the performance of the scheduling policies for a small
clinic with a regular-hour capacity of 10 appointment slots per day. The correspond-
ing 95 % confidence interval is provided for each statistic

Performance Metric Patient Type Myopic Patrick et al. [21]

Discounted cost – 19,507 ± 813 919 ± 70

Avg. wait time
1 6.95 ± 0.11 2.93 ± 0.03
2 7.49 ± 0.12 12.24 ± 0.05
3 7.74 ± 0.12 19.83 ± 0.03

Avg. daily capacity utilization – 9.97 ± 0.00 9.92 ± 0.00

Overtime
1 73.17 ± 4.26 123.56 ± 4.33
2 0.00 ± 0.00 0.00 ± 0.00
3 0.00 ± 0.00 0.00 ± 0.00

Avg. time to first available slot – 6.86 ± 0.11 2.70 ± 0.03

Percentage late
1 47.55 ± 1.49 0.00 ± 0.00
2 0.00 ± 0.00 0.00 ± 0.00
3 0.00 ± 0.00 0.00 ± 0.00

8.5.2 Radiation Therapy Treatment Scheduling

We now consider the radiation therapy treatment scheduling problem in [24]. Using
the methodological approach described in this chapter, the authors formulate and
solve an advance patient appointment scheduling problem that, in addition to multi-
ple priority levels, considers patients who require appointments across multiple days
and for irregular lengths of time. Radiation therapy treatments are typically classi-
fied into types according to cancer site, intent and urgency level. For most types
of cancer, treatments are delivered in daily consecutive sessions for a time period
that may vary between 1 day and 8 weeks, with breaks on weekends, and in which
each session may last from 12 to 60 min. The authors also allow the possibility of
scheduling overtime on different days of the booking horizon, and not necessarily
for entire service sessions. The only difference with respect to the problem setting
described in Sect. 8.2 is that the authors do not allow the possibility of postponing
to the next day the scheduling decisions for some patients.5

The authors define cin, the penalty (if any) for starting a treatment of type i on day
n (from today), as the sum of discounted penalties fik associated with each additional
day of wait before the start of a treatment. That is cin = ∑n

k=1αk−1 fik ∀i,n. The
values of fik are specified in relation to existing guidelines for acceptable waits and
taking into consideration the importance of radiation therapy for different disease

5 This is equivalent to imposing
N

∑
n=1

xin = wi ∀i in the definition of the action sets.

8.5 Practical Results 261

sites. Using the optimal values of the approximation parameters, the authors derive
a scheduling policy which they evaluate via simulation for a practical example based
on data provided by the British Columbia Cancer Agency (BCCA).

The authors compare the service levels of the resulting scheduling policy with
those of a myopic policy for a cancer centre with regular-hour capacity of 120 ap-
pointment slots per day, which is equivalent to three identical treatment units op-
erating eight hours a day (appointment slots are 12 min long). The centre divides
demand into 18 treatment types and chooses a 100-day booking horizon. Demand
for treatment is assumed Poisson with mean 8.25 requests per day.6 The treatment
types and the arrival process are described in Table 8.3. Treatments of type 1, for
example, represent urgent lung, prostate and breast palliative cases and consist of
an initial session of two appointment slots (i.e., 1×2) plus four additional sessions
of one appointment slot each (i.e., 4×1). In other words, r1 = (2,1,1,1,1). Thus,
treatments of type 1 require 5 sessions and a total of 6 appointment slots. Their ar-
rival rate is 0.19 requests per day. The overtime capacity is 15 appointment slots (1 h
per treatment unit), the overtime cost is 100 per appointment slot, and the discount
factor is 0.99. The daily wait time penalties are defined in Table 8.4.

Each policy was simulated for 1500 days using common patient arrivals with
statistics collected for each of 10 simulation runs after a warm-up period of 750
days. Initial states were generated randomly. The simulation results are summarized
in Table 8.5.

The resulting scheduling policy clearly outperforms the myopic policy with re-
spect to the total number of cases initiated within 1, 5 and 10 workdays. The average
percentage of treatments initiated within 1, 5 and 10 workdays increases from 5 %
to 26 %, 29 % to 53 % and 73 % to 96 %, respectively. This is achieved at the ex-
pense of a negligible but statistically significant increase in the average overtime
utilization of 3 min a day. Similar improvements in these service levels are observed
for most treatment types individually.

The main drawback of the resulting scheduling policy is the increase in the wait
times for treatments of types 1 to 3. The fact that the most time-sensitive treatments
wait slightly longer, however, demonstrates a willingness to trade-off a small in-
crease in wait time for more time-sensitive treatments for a larger gain for less time-
sensitive treatments. The simulation results also show no statistically significant dif-
ference between the two policies in terms of the average daily regular-hour capacity
utilization. Both policies use on average about 99.5 % of the available regular-hour
capacity. Still, the resulting scheduling policy outperforms the myopic policy with
respect to the average discounted cost. The average discounted cost associated with
the resulting scheduling policy is $121,974 while the average discounted cost asso-
ciated with the myopic policy is $185,843.

6 A maximum number of requests, obtained from historical data, is set to maintain a finite state
space.

262 A. Sauré and M.L. Puterman

Table 8.3: Characteristics of the problem setting used to evaluate the performance
of the resulting treatment scheduling policy

System information

Regular-hour capacity (Cr) 120 slots/day
Overtime capacity (Co) 15 slots/day
Booking horizon (M) 136 days
Overtime cost (h) $100
Discount factor (α) 0.99

Treatment information

Treatment Capacity Sessions/ Arrival rate (mi) Most frequent
type i requirements (ri j) slots [reqs./day] case (site and intent)

1 1×2 + 4×1 5/ 6 0.19 Lung/Prostate/Breast
2 1×2 1/ 2 0.11 Palliative
3 1×2 + 3×1 4/ 5 0.11 (Urgent)

4 1×2 + 15×1 16/17 1.43 Breast Adjuvant
5 1×2 + 15×1 + 1×2 + 3×1 20/22 0.59
6 1×3 + 15×2 16/33 0.45

7 1×2 1/ 2 1.42 Lung/Breast/Prostate
8 1×2 + 4×1 5/ 6 1.36 Palliative
9 1×2 + 9×1 10/11 0.57 (Non-urgent)
10 1×2 + 3×1 4/ 5 0.38
11 1×2 + 14×1 15/16 0.18
12 1×1 1/ 1 0.18

13 1×2 + 19×1 20/21 0.29 Head and Neck Radical
14 1×3 + 34×2 35/71 0.21

15 1×2 + 32×1 33/34 0.30 Prostate Radical
16 1×2 + 36×1 37/38 0.29
17 1×2 + 21×1 + 1×2 + 14×1 37/39 0.15

18 1×2 + 32×1 33/34 0.04 Prostate Adjuvant

8.6 Discussion

The results for the two practical applications above suggest that the methodological
approach described in this chapter provides a systematic way of identifying effec-
tive decision policies for advance patient appointment scheduling problems. By ad-
equately assessing the future impact of today’s decisions, appointment scheduling
policies derived using this approach, although possibly sub-optimal, perform sig-
nificantly better than myopic policies which are the most common representation
of current scheduling practices. They provide clear guidelines as to when to book
patients of each type and as to when to resort to overtime or to any other alternative
source of surge capacity. These policies usually book lower priority patients further

8.6 Discussion 263

Table 8.4: Daily wait time penalties associated with each treatment type. The val-
ues of the wait time penalties were determined by expert opinion and investigated
through sensitivity analysis

Types
Daily penalty within workday interval

[0,1] (1,5] (5,10] (10,20] (20,30] (30,40] (40,100]

1–3 0 100 150 150 150 150 150
4–6 0 0 0 50 100 100 150
7–12 0 0 65 100 100 100 150

13–14 0 0 80 150 150 150 150
15–17 0 0 0 40 80 100 150

18 0 0 0 50 90 100 150

Table 8.5: Simulation results. The bold font indicates the policy that provides the
highest service level for each treatment type and wait time target. Only the re-
sults for which a significance test shows the mean service level has improved (at
0.05 significance level) are highlighted. Note that no policy is highlighted for wait
time targets of 15 and 20 days as both policies perform equally well (statistically
speaking)

Type
Myopic Policy Sauré et al. (2012)

% of the cases initiated within % of the cases initiated within
1 day 5 days 10 days 15 days 20 days 1 day 5 days 10 days 15 days 20 days

1 70 ± 10 94 ± 4 100 ± 0 100 ± 0 100 ± 0 66 ± 7 81 ± 8 97 ± 2 100 ± 0 100 ± 0
2 82 ± 8 95 ± 5 100 ± 0 100 ± 0 100 ± 0 75 ± 9 84 ± 8 97 ± 2 100 ± 0 100 ± 0
3 72 ± 12 95 ± 5 100 ± 0 100 ± 0 100 ± 0 66 ± 11 80 ± 10 97 ± 3 100 ± 0 100 ± 0
4 1 ± 2 4 ± 3 57 ± 9 98 ± 2 100 ± 0 17 ± 6 17 ± 6 95 ± 4 100 ± 0 100 ± 0
5 1 ± 1 4 ± 3 55 ± 10 98 ± 2 100 ± 0 11 ± 5 11 ± 5 94 ± 5 100 ± 0 100 ± 0
6 1 ± 1 4 ± 3 53 ± 10 97 ± 3 100 ± 0 12 ± 5 12 ± 5 94 ± 5 100 ± 0 100 ± 0
7 2 ± 2 75 ± 4 100 ± 0 100 ± 0 100 ± 0 43 ± 9 82 ± 8 97 ± 3 100 ± 0 100 ± 0
8 2 ± 2 25 ± 9 76 ± 5 100 ± 1 100 ± 0 31 ± 9 79 ± 9 96 ± 3 100 ± 0 100 ± 0
9 2 ± 2 16 ± 10 62 ± 9 99 ± 2 100 ± 0 27 ± 8 78 ± 9 96 ± 3 100 ± 0 100 ± 0

10 2 ± 2 37 ± 8 89 ± 2 100 ± 0 100 ± 0 38 ± 8 81 ± 8 96 ± 3 100 ± 0 100 ± 0
11 3 ± 2 15 ± 10 61 ± 10 99 ± 1 100 ± 0 25 ± 9 77 ± 9 96 ± 3 100 ± 0 100 ± 0
12 4 ± 2 92 ± 2 100 ± 0 100 ± 0 100 ± 0 36 ± 7 97 ± 2 100 ± 0 100 ± 0 100 ± 0
13 1 ± 1 19 ± 12 90 ± 3 100 ± 0 100 ± 0 23 ± 9 80 ± 8 97 ± 3 100 ± 0 100 ± 0
14 1 ± 1 16 ± 10 61 ± 9 99 ± 2 100 ± 0 11 ± 4 77 ± 9 95 ± 3 100 ± 0 100 ± 0
15 1 ± 1 2 ± 2 54 ± 9 97 ± 3 100 ± 0 0 ± 0 0 ± 0 94 ± 5 100 ± 0 100 ± 0
16 0 ± 0 2 ± 1 52 ± 10 97 ± 3 100 ± 0 0 ± 0 0 ± 0 94 ± 4 100 ± 0 100 ± 0
17 1 ± 1 2 ± 2 52 ± 8 97 ± 3 100 ± 0 0 ± 0 0 ± 0 94 ± 5 100 ± 0 100 ± 0
18 1 ± 1 3 ± 3 55 ± 11 98 ± 2 100 ± 0 0 ± 0 0 ± 0 93 ± 6 100 ± 0 100 ± 0

Total 5 ± 2 29 ± 4 73 ± 6 99 ± 1 100 ± 0 26 ± 7 53 ± 6 96 ± 3 100 ± 0 100 ± 0

264 A. Sauré and M.L. Puterman

into the future allowing the appointments for higher priority patients to be sched-
uled earlier. In this way, they achieve reasonable average wait times at a much lower
discounted cost. Patient scheduling guidelines obtained through this approach could
potentially be used in practice to increase service levels and thus to decrease the
potential impact of waits on patients’ health.

This chapter focuses on the use of linear programming and an affine value func-
tion approximation in the state variables as a means of solving advance patient ap-
pointment scheduling problems, which are problems computationally intractable us-
ing standard solution techniques. However, results obtained by Sauré et al. [25] sug-
gest that the actual value function for the dynamic multi-priority patient scheduling
problem in [21] can be better represented by a generalized logistic function in the
state variables. The authors show that advance patient appointment scheduling poli-
cies obtained through a simulation-based algorithm using this type of non-linear
approximation perform better, in most cases, than other booking policies for this
problem. In particular, they provide lower discounted cost values and shorter aver-
age wait times for higher priority patients than policies derived directly using the
methodological approach described in this chapter. In general, these policies book
lower priority patients earlier, highest priority patients late, and use overtime pre-
emptively, all depending on the level of congestion of the system.

Even though advance patient appointment scheduling policies obtained using a
linear programming approach and an affine value function approximation in the state
variables may not be as good as policies obtained from a simulation-based method
using a parametric non-linear value function approximation, the additional effort
required to solve the latter makes the former a better choice for large scale prob-
lems. The slow speed of simulation and the complexity of the optimization problem
solved at each decision epoch (a non-linear integer program) would make the solu-
tion times quickly intractable for large scale problems. In this sense, although the
linear programming algorithm described in this chapter is limited to affine approx-
imation architectures in the state variables, its main advantage is that it avoids the
need for iterative learning and often provides good results.

We believe that the methodological approach described in this chapter can be
adapted to any dynamic problem that involves allocating a fixed amount of daily
capacity among entities of different types. For example, to order acceptance prob-
lems and to more general capacity allocation problems involving multiple demand
origins and multiple service providers. However, its use requires the immediate cost
and the value function to be represented as a linear combination of individual state
components (e.g., the number of entities at each demand origin, available capac-
ity at each service provider, processing capacity on each calendar day, location of a
given resource, etc.). A simulation-based method, given its problem-size limitations,
could be used to solve small examples in order to gain a better understanding of the
main characteristics of more complex policies for a given problem. Any additional
insights could be later tested through simulation.

8.7 Open Challenges 265

8.7 Open Challenges

There are numerous potential extensions to the methodological approach presented
in this chapter. The main two involve elements of the advance patient appointment
scheduling problem that were excluded from its mathematical formulation. The
model assumes that the portion of the demand that is not booked today (i.e., the num-
ber of patients whose scheduling decisions are postponed to the next day) is handled
the same as the new demand tomorrow. This is done in order to avoid the additional
complexity of keeping track of patient wait times. In addition, the model implicitly
assumes that the regular-hour capacity and the overtime capacity are determined by
aggregating individual capacities from multiple identical resources. This assump-
tion may be unrealistic for some settings in which medical resources differ in terms
of their technical capabilities and, consequently, in which different types of patients
need to be assigned to specific groups of resources. The inclusion of wait lists and
multiple resources, together with patient-resource compatibility constraints, would
clearly make a solution to the model more challenging but, at the same time, it would
increase the range of systems to which the solution approach could be applied.

We have formulated and approximately solved a simple model that explicitly
considers wait lists by keeping track of the number of patients of each type who have
waited a given number of days without receiving an appointment [23]. Preliminary
results, in absence of an immediate postponement cost, indicate that the resulting
scheduling policies would make patients wait as long as possible before booking
them in decreasing priority order into the first available appointment slot. This is
equivalent to defining demand as the number of patients whose booking decisions
cannot be postponed any longer and using a first available appointment slot policy.

In addition, the methodological approach described in this chapter assumes that
service times are deterministic. Consequently, overtime simply involves subtract-
ing the regular-hour capacity from the capacity requirements associated with the
number of appointment booked on a given day, and taking the positive part. Incor-
porating stochastic services times would make the solution approach much more
complicated as the sequence and the spacing of the appointments on the service
day may have a major impact on the realized overtime. The allocation schedule (the
sequence of patients and their respective appointment times) would have a clear im-
pact on the optimal advance schedule (the number and type of patients to book on
each day), and conversely, the optimal allocation schedule would depend on the ad-
vance schedule as one of its inputs is the number of patients of each type booked on
each day. To date, the allocation scheduling and the advance scheduling problems
have been solved separately. However, there are numerous research initiatives that
seek to bridge these two problems by, for example, incorporating appointment se-
quencing decisions into the MDP model in [21] and using the algorithm developed
by Begen and Queyranne [3] to determine the overtime associated with choosing
optimal patient appointment times [4].

Finally, it is important to note that the solution approach presented in this chap-
ter has been developed as a proof of concept. Its application to problems faced by
particular medical facilities would require further research but it would certainly

266 A. Sauré and M.L. Puterman

be plausible. Our work to date has focused on the methodological framework for
how to address advance patient appointment scheduling problems rather than on
the actual implementation of the resulting policies. In any case, we expect the main
implementation challenges to be related to database connectivity, user interface and
software functionalities, in addition to some possible cultural reluctance, rather than
to the actual scheduling program (a simple integer program or application reflecting
the main scheduling guidelines). It is also important to note that a second level of
scheduling is needed to assign patients to specific appointment times.

Appendix: Notation

S State space
s,s′ State vectors
a An action vector
As Set of actions available in state s
c(s,a) One step cost in state s, under action a
α Discount factor
δ Decision rule
st State at time t
δ (st) Action at time t
π = (δ ,δ , . . .) Stationary policy
p(s′|s,a) Transition probability into state s′, when in state s, under action a
v(s) Expected discounted cost over infinite horizon, starting in state s
γ(s) State relevance weight of state s
φk(s) Basis function evaluated in state s
Um, Vm, Wi Value function approximation parameters

References

1. D. Adelman, D. Klabjan, Computing near-optimal policies in generalized joint
replenishment. INFORMS J. Comput. 24(1), 148–164 (2012)

2. D. Adelman, A. Mersereau, Relaxations of weakly coupled stochastic dynamic
programs. Oper. Res. 56(3), 712–727 (2008)

3. M. Begen, M. Queyranne, Appointment scheduling with discrete random dura-
tions. Math. Oper. Res. 36(2), 240–257 (2011)

4. M. Begen, J. Patrick, A. Sauré, Dynamic multi-priority, multi-class patient
scheduling with stochastic service times. Working Paper (2016)

5. W. Ben-Ameur, J. Neto, Acceleration of cutting-plane and column generation
algorithms: applications to network design. Networks 49(1), 3–17 (2007)

6. D. Bertsekas, J. Tsitsiklis, Neuro-Dynamic Programming (Athena Scientific,
Belmont, MA, 1996)

References 267

7. B. Cardoen, E. Demeulemeester, J. Belien, Operating room planning and
scheduling: a literature review. Eur. J. Oper. Res. 201(3), 921–932 (2010)

8. T. Cayirli, E. Veral, Outpatient scheduling in health care: A review of literature.
Prod. Oper. Manag. 12(4), 519–549 (2003)

9. D. de Farias, B. Van Roy, The linear programming approach to approximate
dynamic programming. Oper. Res. 51(6), 850–865 (2003)

10. D. de Farias, B. Van Roy, On constraint sampling in the linear programming
approach to approximate dynamic programming. Math. Oper. Res. 29(3), 462–
478 (2004)

11. F. d’Epenoux, A probabilistic production and inventory problem. Manag. Sci.
10(1), 98–108 (1963)

12. C. Derman, Finite State Markovian Decision Processes (Academic Press, Inc.,
Orlando, FL, 1970)

13. V. Desai, V. Farias, C. Moallemi, A smoothed approximate linear program. Adv.
Neural Inf. Process. Syst. 22, 459–467 (2009)

14. A. Erdelyi, H. Topaloglu, Computing protection level policies for dynamic
capacity allocation problems by using stochastic approximation methods. IIE
Trans. 41, 498–510 (2009)

15. Y. Gocgun, M. Puterman, Dynamic scheduling with due dates and time win-
dows: an application to chemotherapy patient appointment booking. Health
Care Manag. Sci. 17(1) ,60–76 (2014)

16. D. Gupta, B. Denton, Appointment scheduling in health care: challenges and
opportunities. IIE Trans. 40(9), 800–819 (2008)

17. L. Kallenberg, Linear Programming and Finite Markovian Control Problems
(Mathematisch Centrum, Amsterdam, 1983)

18. M. Lübbecke, J. Desrosiers, Selected topics in column generation. Oper. Res.
53(6), 1007–1023 (2005)

19. J. Magerlein, J. Martin, Surgical demand scheduling: a review. Health Serv.
Res. 13(4), 418–433 (1978)

20. S. Mondschein, G. Weintraub, Appointment policies in service operations:
a critical analysis of the economic framework. Prod. Oper. Manag. 12(2),
266–286 (2003)

21. J. Patrick, M. Puterman, M. Queyranne, Dynamic multipriority patient schedul-
ing for a diagnostic resource. Oper. Res. 56(6), 1507–1525 (2008)

22. W. Powell, Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality (Wiley-Interscience, Hoboken, NJ, 2011)

23. A. Sauré, Approximate Dynamic Programming Methods for Advance Patient
Scheduling. PhD thesis, The University of British Columbia, 2012

24. A. Sauré, J. Patrick, S. Tyldesley, M. Puterman, Dynamic multi-appointment
patient scheduling for radiation therapy. Eur. J. Oper. Res. 223(2), 573–584
(2012)

25. A. Sauré, J. Patrick, M.L. Puterman, Simulation-based approximate policy iter-
ation with generalized logistic functions. INFORMS J. Comput. 27(3), 579–595
(2015)

268 A. Sauré and M.L. Puterman

26. H. Schütz, R. Kolisch, Approximate dynamic programming for capacity allo-
cation in the service industry. Eur. J. Oper. Res. 218(1), 239–250 (2012)

27. P. Schweitzer, A. Seidmann, Generalized polynomial approximations in Marko-
vian decision processes. J. Math. Anal. Appl. 110(2), 568–582 (1985)

28. R. Sutton, A. Barto, Reinforcement Learning: An Introduction (MIT Press,
Cambridge, MA, 1998)

Chapter 9
Optimal Ambulance Dispatching

C.J. Jagtenberg, S. Bhulai and R.D. van der Mei

Abstract This chapter considers the ambulance dispatch problem, in which one
must decide which ambulance to send to an incident in real time. In practice as
well as in literature, it is commonly believed that the closest idle ambulance is the
best choice. This chapter describes alternatives to the classical closest idle ambu-
lance rule. Our first method is based on a Markov decision problem (MDP), which
constitutes the first known MDP model for ambulance dispatching. Moreover, in
the broader field of dynamic ambulance management, this is the first MDP that
captures more than just the number of idle vehicles, while remaining computation-
ally tractable for reasonably-sized ambulance fleets. We analyze the policy obtained
from this MDP, and transform it to a heuristic for ambulance dispatching that can
handle the real-time situation more accurately than our MDP states can describe. We
evaluate our policies by simulating a realistic emergency medical services region in
the Netherlands. For this region, we show that our heuristic reduces the fraction of
late arrivals by 13% compared to the “closest idle” benchmark policy. This result
sheds new light on the popular belief that deviating from the closest idle dispatch
policy cannot greatly improve the objective.

C.J. Jagtenberg (�)
Stochastics, CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands
e-mail: jagtenbe@cwi.nl

S. Bhulai
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam,
The Netherlands
e-mail: s.bhulai@vu.nl

R.D. van der Mei
Stochastics, CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands
e-mail: mei@cwi.nl

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 9

269

mailto:jagtenbe@cwi.nl
mailto:s.bhulai@vu.nl
mailto:mei@cwi.nl

270 C.J. Jagtenberg et al.

9.1 Introduction

Emergency Medical Services (EMS) providers serve emergency calls while aiming
to keep response times short. In particular, one issue that plays a central role is
to maximize the fraction of incidents that are reached within a certain target time.
Operations research and mathematical modeling can help to reach this goal.

9.1.1 Previous Work

A large number of models are available for ambulance planning. On one hand, there
are models that deal with planning on a strategic level. Typically, such models de-
termine the best locations for ambulance bases [6], and/or the number of vehicles
that should be positioned at each base [7, 9]. Most of these solutions use mixed in-
teger linear programming models to solve the problem. On the other hand, there is
previous work on operational ambulance planning. This has attracted a wider range
of solution methods, including Markov decision theory [1] and simulation-based
optimization [4].

The variety of solution methods for operational ambulance planning might be
due to the difficulty of the problem. In dynamic ambulance management, the point
of issue is to make decisions based on real-time information on the state of all ve-
hicles and incidents. This makes for a complex issue, and systems quickly become
intractable when the number of vehicles grows. Especially in urban areas, the situa-
tion can be considered extremely difficult because multiple vehicles operate closely
to one another and therefore cannot be treated independently.

Some of the papers on operational ambulance planning use Markov Decision
Problems (MDPs), or a variant thereof, to model the problem. Typically, those mod-
els can be divided into two categories: the first incorporates very little information,
for example, only the number of idle ambulances in [1]. In contrast, the second
category models many aspects of the real-time situation, resulting in an extremely
large state space. Therefore, the MDP’s in the latter case are not solvable with clas-
sical methods, and authors resort to other solutions such as approximate dynamic
programming (e.g., [12, 14]).

The vast majority of the papers on dynamic ambulance management have fo-
cused on how to redeploy idle vehicles, (e.g., [1, 12, 17]). Perhaps in order not
to overcomplicate things, they assume a basic dispatch rule: whenever an incident
occurs, they decide to send the ambulance that is closest to the incident (in time).
Although this is a common dispatch policy, it was already shown to be suboptimal in
1972 [5]. Regardless, most authors make this assumption without much discussion
or justification; for example, the authors of [12] claim that it is an accurate enough
representation of reality; however, they do not address the question of whether it is
an optimal choice with respect to the objective (which is the fraction of incidents
that is reached within the threshold time). The authors of [1] do not address the
assumption at all.

9.1 Introduction 271

Dispatching the closest idle ambulance seems to be so natural that justification
is not needed, but one should not overlook the possibility to change the dispatch
policy in order to improve the objective. In [17], the authors admit this is a possibil-
ity; however, they focus on relocating the vehicles when they become idle (instead
of when they are dispatched). It should be clear that a clever dispatch policy can
improve the performance of an EMS system, but since the topic has been under-
exposed in current literature, it is still unknown how much improvement can be
expected. Furthermore, a dispatch method may be combined with a relocation rule
to realize even greater improvements.

Few papers have discussed dispatch rules other than sending the closest idle am-
bulance. The ones that do propose other dispatch methods, typically do not prescribe
a dynamic solution. For example, [4] proposes to divide the EMS region into sep-
arate sub-regions, each accompanied with its own ranking of bases from which an
ambulance should preferably depart. Another example is [15], which considers a
“regionalized response” dispatch policy. Under regionalized response, each region
is preferably served by its own ambulance, even if it is temporarily outside of the
region. Only if that vehicle is unavailable, the closest idle ambulance is sent. How-
ever, notice that both papers ignore information that we consider to be of crucial
value: the outcome does not depend on whether some regions remain uncovered
after the ambulance is dispatched. Alternatively, a choice could be made such that
the remaining idle vehicles are in a good position with respect to future demand.
This ensures that future incidents get a larger likelihood of being reached in time,
thereby increasing the total expected fraction of incidents that can be reached within
the time threshold.

One paper explicitly claims that alternative dispatch methods perform worse than
the closest idle rule [8]. However, its true issue seems to be a computer-aided dis-
patch system that is not accurate enough to determine the true positions of the vehi-
cles (and hence, also not able to determine the closest ambulance). The paper does
not in fact deny that the “closest idle ambulance rule” might be improved. We em-
phasize that accurate location information is crucial in order to determine the best
ambulance to send to an incident. Throughout this chapter, we will assume that such
information is present. In many regions, such as Flevoland in the Netherlands, a
monitoring tool is available that refreshes the exact GPS coordinates of each vehicle
every 30 s. This seems accurate enough for our purposes.

9.1.2 Our Contribution

The main goal of this chapter is to better understand the ambulance dispatch process.
In particular, we question the often-made assumption that one cannot do much better
than the “closest idle” dispatch method. Thereto, we search for sensible dispatch
rules other than the classical closest idle ambulance policy. We mainly focus on the
often-used objective to minimize the fraction of arrivals later than a certain target
time. However, we show that one of our methods can also be used for other KPI’s.

272 C.J. Jagtenberg et al.

First, we propose an MDP for ambulance dispatching, where the state space is
described by an optional incident location and the availability of each of the ambu-
lances. To the best of our knowledge, this is the first MDP in ambulance literature
that models more than just the number of idle vehicles, without losing tractabil-
ity for reasonably-sized ambulance fleets. In some sense, this model balances the
amount of detail in the system representation—which typically results in a better
outcome—with the computational difficulties. We mainly focus on minimizing the
fraction of arrivals later than a target time, a typical objective in ambulance plan-
ning. However, we show that with a small change, our model can also minimize the
average response time.

Second, we propose a heuristic for ambulance dispatching that behaves similar to
the policy obtained from the MDP. However, it is able to determine more accurately
what the response time would be when dispatching a driving ambulance. Further-
more, the heuristic can be computed in polynomial time, which allows us to apply
it to regions with a large number of vehicles.

We validate our policies by a discrete-event simulation model of a Dutch EMS
region. These simulations indicate that our proposed dispatch heuristic can decrease
the fraction of late arrivals by as much as 13% relatively compared to the closest
idle ambulance dispatch method. Our result sheds new light on the popular belief
that deviating from the closest idle policy cannot greatly improve the objective.
Although we do not advise all EMS managers to immediately discard the closest
idle dispatch method, we do show that the typical argument—that it would not lead
to large improvements in the fraction of late arrivals—should be changed.

The rest of this chapter is structured as follows. In Sect. 9.2, we give a formal
problem definition. In Sect. 9.3, we present our proposed solution using Markov
Decision Processes (MDPs), followed by a solution based on a scalable heuristic
in Sect. 9.4. We show our results for a small, intuitive region in Sect. 9.5 and in a
realistic case study for the Dutch area of Flevoland in Sect. 9.6.

9.2 Problem Formulation

Define the set V as the set of locations at which incidents can occur. Note that these
demand locations are modeled as a set of discrete points. Incidents at locations in
V occur according to a Poisson process with rate λ . Let di be the fraction of the
demand rate λ that occurs at node i, i ∈V . Then, on a smaller scale, incidents occur
at node i with rate λdi.

Let A be the set of ambulances, and Aidle⊆A the set of currently idle ambulances.
When an incident has occurred, we require an idle ambulance to immediately drive
to the scene of the incident. The decision which ambulance to send has to be made at
the moment we learn about the incident, and is the main question of interest in this
chapter. When an incident occurs and there are no idle ambulances, the call goes to
a first-come first-serve queue.

9.3 Solution Method: Markov Decision Process 273

V The set of demand locations.
H The set of hospital locations, H ⊆V .
A The set of ambulances.
Aidle The set of idle ambulances.
Wa The base location for ambulance a, a ∈ A, Wa ∈V .
T The time threshold.
λ Incident rate.

di The fraction of demand in i, i ∈V .
τi, j The driving time between i and j with siren turned on, i, j ∈V .

Table 9.1: Notation

Our objectives are formulated in terms of response times: the time between an
incident and the arrival of an ambulance. In practice, incidents have the requirement
that an ambulance must be present within T time units. Therefore, we want to mini-
mize the fraction of incidents for which the response time is larger than T . Another
observation is that we want response times to be short, regardless of whether they
are smaller or greater than T . We translate this into a separate objective, which is
to minimize the average response time. We assume that the travel time τi, j between
two nodes i, j ∈V is deterministic, and known in advance.

Sending an ambulance to an incident is followed by a chain of events, most of
which are random. When an ambulance arrives at the incident scene, it provides ser-
vice for a certain random time τon scene. Then it is decided whether the patient needs
transport to a hospital. If not, the ambulance immediately becomes idle. Otherwise,
the ambulance drives to the nearest hospital in the set H ⊆V . Upon arrival, the pa-
tient is transferred to the emergency department, taking a random time τhospital , after
which the ambulance becomes idle.

An ambulance that becomes idle may be dispatched to another incident immedi-
ately. Alternatively, it may return to its base location. Throughout this chapter, we
will assume that we are dealing with a static ambulance system, i.e., each ambu-
lance has a fixed, given base and may not drive to a different base. However, it is
possible that multiple ambulances have the same base location. We denote the base
location of ambulance a by Wa, for a ∈ A.

An overview of the notation can be found in Table 9.1.

9.3 Solution Method: Markov Decision Process

We model the ambulance dispatch problem as a discrete-time Markov Decision Pro-
cess (MDP). In each state s (further defined in Sect. 9.3.1), we must choose an ac-
tion from the set of allowed actions: As ⊆A, which we describe in Sect. 9.3.2. The
process evolves in time according to transition probabilities that depend on the cho-
sen actions, as described in Sect. 9.3.4. We are dealing with an infinite planning

274 C.J. Jagtenberg et al.

horizon, and our goal is to maximize the average reward. The rewards are defined in
Sect. 9.3.3. We eventually find our solution by performing value iteration [13].

In our model, we assume that at most one incident occurs within a time step.
Therefore, the smaller the time steps, the more accurate the model will be. However,
there is a tradeoff, as small time steps will increase the computation time. Through-
out this chapter, we take time steps to be 1 min, which balances the accuracy and the
computation time.

9.3.1 State Space

When designing a state space, it is important to store the most crucial information
from the system in the states. However, when dealing with complex problems—
such as real-time ambulance planning—it is tempting to store so much information,
that the state space becomes intractable. This would lead to the so-called curse of
dimensionality [2], which makes it impossible to solve the problem with well-known
Markov Decision Problem (MDP) approaches.

As discussed before, there is little previous work on how to choose a good dis-
patch policy, but to some extent we can draw parallels with work on dynamic ambu-
lance redeployment (which relocates idle vehicles): some researchers overcome the
problem of an intractable state space by turning to Approximate Dynamic Program-
ming, which allows for an elaborate state space to be solved approximately [12].
Alternatively, some researchers choose a rather limited state space, for example, by
describing a state merely by the number of idle vehicles [1].

For our purpose, i.e., to determine which ambulance to send, it is important to
know whether the ambulance we might send will arrive within T time units. There-
fore, it is crucial to know where the incident took place. Furthermore, we require
some knowledge of where the idle ambulances are. Clearly, storing only the num-
ber of idle vehicles would be insufficient. However, storing the location of each idle
ambulance would already lead to an intractable state space for practical purposes.
Instead, we can benefit from the fact that we are trying to improve a static solution.
In a static solution, the home base for any ambulance is known in advance. Note that
an idle ambulance must be either residing at its base location, or traveling towards
the base. Hence, if we allow for an inaccuracy in the location of idle ambulances,
in the sense that we use their destination rather than their actual location, their lo-
cation does not need to be part of the state. Merely keeping track of whether each
ambulance is idle or not, now suffices.

This leads us to a state s, defined as follows.

(Locacc, idle1, idle2, . . . , idle|A|), (9.1)

9.3 Solution Method: Markov Decision Process 275

where Locacc denotes the location of the incident that has just occurred in the last
time step. In case no incident occurred in the last time step, we denote this by a
dummy location, hence

Locacc ∈V ∪{0}.
Furthermore, idlei denotes whether ambulance i is idle:

idlei ∈ {True,False}, ∀i ∈ A.

This leads to a state space of size (|V |+1)2|A|.
For future reference, let Locacc(s) denote the location of the incidents that have

occurred in the previous time step when the system is in state s. Let idlei(s) denote
whether or not ambulance i is idle in state s, ∀i ∈ A,∀s ∈ S.

9.3.2 Policy Definition

In general, a policy Π can be defined as a mapping from the set of states to a set of
actions: S→A. In our specific case, we define A= A∪{0}; that is if Π (s) = a, for
a∈ A, ambulance a should be sent to the incident that has just occurred at Locacc(s).
Action 0 may be interpreted as sending no ambulance at all (this is typically the
choice when no incident occurred in the last time step, or when no ambulance is
available).

In a certain state, not all actions are necessarily allowed. Denote the set of feasible
actions in state s as

As ⊆A, ∀s ∈ S.

For example, it is not possible to send an ambulance that is already busy with another
incident. This implies

!idlea(s)→ a /∈ As, ∀a ∈ A, ∀s ∈ S. (9.2)

Furthermore, let us require that when an incident has taken place, we must always
send an ambulance—if any are idle.

∃a ∈ A : idlea(s) ∧ Locacc(s) �= 0→ 0 /∈ As, ∀s ∈ S. (9.3)

Moreover, if no incident has occurred, we may simplify our MDP by requiring that
we do not send an ambulance:

Locacc(s) = 0→As = {0}, ∀s ∈ S. (9.4)

All other actions from A that are not restricted by (9.2)–(9.4) are feasible. This
completely defines the allowed action space for each state.

276 C.J. Jagtenberg et al.

9.3.3 Rewards

In ambulance planning practice, a typical goal is to minimize the fraction of late
arrivals. Since our decisions have no influence on the number of incidents that occur,
this is equivalent to minimizing the number of late arrivals. An alternative goal
might be to minimize average response times. Our MDP approach may serve either
of these objectives, simply by changing the reward function.

Define R(s,a) as the reward received when choosing action a in state s, ∀s ∈
S,∀a∈As. Note that in this definition, the reward does not depend on the next state.
Keep in mind that our goal is to maximize the average rewards.

9.3.3.1 Fraction of Late Arrivals

To minimize the fraction of late arrivals, i.e., the fraction of incidents for which the
response time is greater than T , we define the following rewards:

R(s,a) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if Locacc(s) = 0;
−N if Locacc(s) �= 0 ∧ a = 0, i.e., no idle ambulances;
0 if Locacc(s) �= 0 ∧ a ∈ A ∧ τWa, Locacc(s) ≤ T ;
−1 otherwise.

Here N is a number that is typically greater than 1. This implies that when all
ambulances are busy, the rewards are smaller than when we send an ambulance that
takes longer than T to arrive. This is in agreement with the general idea that having
no ambulances available is a very bad situation. One might be tempted to make the
reward for the only possible action (a = 0) in these states even smaller than we
did, in order to influence the optimal actions in other states: the purpose would be to
steer the process away from states with no ambulances available. However, note that
this would not be useful, because our actions do not affect how often we end up in a
state where all ambulances are busy. This is merely determined by the outcome of an
external process, i.e., an unfortunate sequence of incidents. Therefore, an extremely
small reward for action a = 0 in states where all ambulances are busy, would only
blur the differences between rewards for actions in other states. (In our numerical
experiments, we use N = 5.)

9.3.3.2 Average Response Time

To minimize the average response time, one may use the same MDP model, except
with a different reward function. Let M be a large enough number, typically such
that M > τi, j,∀i, j ∈V . Then we can define the rewards as follows.

9.3 Solution Method: Markov Decision Process 277

R(s,a) =

⎧
⎨

⎩

0 if Locacc(s) = 0;
−M if Locacc(s) �= 0 ∧ a = 0, i.e., no idle ambulances;
−τWa, Locacc(s) if Locacc(s) �= 0 ∧ a ∈ A.

In our numerical experiments, we use M = 15 for the small region, and M = 30 for
the region Flevoland. In both cases, M > τi, j,∀i, j∈V holds. (In our implementation,
time steps are equal to minutes.)

9.3.4 Transition Probabilities

Denote the probability of moving from state s to s′, given that action a was chosen,
as:

pa(s,s′), ∀a ∈ As, ∀s,s′ ∈ S.

To compute the transition probabilities, note that the location of the next incident
is independent of the set of idle ambulances. Thereto, pa(s,s′) can be defined as
a product of two probabilities. We write pa(s,s′) = P1(s′) ·Pa

2 (s,s
′), which stands

for the probability that an incident happened at a specific location (P1), and the
probability that specific ambulances became available (P2), respectively.

First of all, let us define P1(s′). Since incidents occur according to a Poisson
process, we can use the arrival rate λ (for an incident anywhere in the region) to
obtain

P1(s
′) =

{
λ ·dLocacc(s′) if Locacc(s′) ∈V ;
1−λ else.

Note that the occurrence of incidents does not depend on the previous state (s).
Secondly, we need to model the process of ambulances that become busy or

idle. For tractability, we will define our transition probabilities as if ambulances
become idle according to a geometric distribution. In reality—and in our verification
of the model—this is not the case, but since our objective is the long term average
reward, this modeling choice should not have a negative impact [13]. Let us define a
parameter r ∈ [0,1], which represents the rate at which an ambulance becomes idle.
We should set it in such a way, that the expected duration is equal to the average in
practice. So this includes an average travel time, and an average time spent on scene.
We add an average driving time to a hospital to that, as well as a realistic hospital
drop off time—both multiplied with the probability that a patient needs to go to
the hospital. For Dutch ambulances, this results in an average of roughly 38 min to
become available after departing to an incident. For the geometric distribution, we
know that the maximum likelihood estimate r̂ is given by one divided by the sample
mean. In this case, r̂ = 1

38 ≈ 0.0263, which we use as the value for r in our numerical
experiments.

We include a special definition if an ambulance was just dispatched. In such a
case, the ambulance cannot be idle in the next time step. Furthermore, ambulances
do not become busy, unless they have just been dispatched.

278 C.J. Jagtenberg et al.

We now define

Pa
2 (s,s

′) =Π |A|
i=1Pa

change

(
idlei(s), idlei(s

′)
)
, ∀s,s′ ∈ S,

where

Pa
change

(
idlei(s), idlei(s

′)
)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if a = i ∧ idlei(s′) = f alse;
0 if a = i ∧ idlei(s′) = true;
r if a �= i ∧ idlei(s) = f alse ∧ idlei(s′) = true;
1− r if a �= i ∧ idlei(s) = f alse ∧ idlei(s′) = f alse;
0 if a �= i ∧ idlei(s) = true ∧ idlei(s′) = f alse;
1 otherwise.

(9.5)

9.3.5 Value Iteration

Now that we have defined the states, actions, rewards and transition probabilities,
we can perform value iteration to solve the MDP. Value iteration, also known as
backward induction, calculates a value V (s) for each state s∈ S. The optimal policy,
i.e., the best action to take in each state, is the action that maximizes the expected
value of the resulting state s′.

V (s) is calculated iteratively, starting with an arbitrary value V0(s) ∀s∈ S. (In our
case, we start with V0(s) = 0 ∀s ∈ S.) In each iteration i, one computes the values
Vi(s) given Vi−1(s) ∀s ∈ S as follows.

Vi(s) := max
a∈As

{∑
s′

pa(s,s′)(R(s,a)+Vi−1(s
′))} (9.6)

This is known as the “Bellman equation” [3].
When the span of Vi, i.e., maxVi(s)−minVi(s), converges, the left-hand side

becomes equal to the right-hand side in Eq. (9.6), except for an additive constant.
After this convergence is reached, the value of V (s) is equal to Vi(s) ∀s ∈ S.

We will extensively discuss the results of the MDP solution later in Sect. 9.6, but
we now briefly state two observations. First, if an incident can not be reached in time
anyway, the system is quite likely to choose an ambulance other than the closest idle
one. The explanation is that, if the time threshold cannot be met, one might as well
choose ambulance such that the remaining ambulances are in a favorable position
with respect to possible future incidents. Second, whenever at least one vehicle is
available within the target time, the MDP solution never prescribes to send a vehicle
that is further away than the threshold.1 That is to say, it does not appear to be
beneficial to sacrifice performance now in the hope of achieving better performance
later. We use these observations in the design of a dispatch heuristic that follows
next.

1 This holds for the realistic region that we implemented, but does not necessarily hold in general.

9.4 Solution Method: Dynamic MEXCLP Heuristic for Dispatching 279

9.4 Solution Method: Dynamic MEXCLP Heuristic
for Dispatching

In this section we describe a dispatch heuristic that was inspired by MDP solution
above. The main benefit of the heuristic is that it can be computed in real time,
for any number of vehicles and ambulance bases that is likely to occur in practice.
Furthermore, the method is easy to implement. The heuristic is related to dynamic
MEXCLP, also known as “DMEXCLP” [10], a heuristic that was originally de-
signed to redeploy idle ambulances in real time.

The general idea is that, at any time, we can calculate the coverage provided by
the currently idle ambulances. This results in a number that indicates how well we
can serve the incidents that might occur in the (near) future.

More specifically, coverage is defined as in the MEXCLP model [7], that we will
describe next.

9.4.1 Coverage According to the MEXCLP Model

In this section we briefly describe the objective of the well-known MEXCLP model.
MEXCLP was originally designed to optimize the distribution of a limited number,
say |A|, ambulances over a set of possible base locations W . Each ambulance is
modeled to be unavailable with a pre-determined probability q, called the busy frac-
tion. Consider a node i ∈ V that is within range of k ambulances. The travel times
τi, j (i, j ∈ V) are assumed to be deterministic, which allow us to straightforwardly
determine this number k. If we let di be the demand at node i, the expected covered
demand of this vertex is Ek = di(1−qk). Note that the marginal contribution of the
kth ambulance to this expected value is Ek −Ek−1 = di(1− q)qk−1. Furthermore,
the model uses binary variables yik that are equal to 1 if and only if vertex i ∈ V
is within range of at least k ambulances. The objective of the MEXCLP model can
now be written as:

Maximize ∑
i∈V

|A|

∑
k=1

di(1−q)qk−1yik.

In [7], the author adds several constraints to ensure that the variables yik are set in a
feasible manner. For our purpose, we do not need these constraints, as we shall deter-
mine how many ambulances are within reach of our demand points—the equivalent
of yik—in a different way.

9.4.2 Applying MEXCLP to the Dispatch Process

The dispatch problem requires us to decide which (idle) ambulance to send, at
the moment an incident occurs. Thereto, we compute the marginal coverage that

280 C.J. Jagtenberg et al.

each ambulance provides for the region. The ambulance that provides the smallest
marginal coverage, is the best choice for dispatch, in terms of remaining cover-
age for future incidents. However, this does not incorporate the desire to reach the
current incident within target time T . We propose to combine the two objectives—
reaching the incident in time and remaining a well-covered region—by always send-
ing an ambulance that will reach the incident in time, if possible. This still leaves a
certain amount of freedom in determining which particular ambulance to send.

The computations require information about the location of the (idle) ambu-
lances. Denote this by Loc(a) for all a ∈ Aidle. This model allows us to use the
real positions of ambulances, which in practice may be determined by GPS signals.
For simulation purposes, the current position of the ambulance while driving may
be determined using, e.g., interpolation between the origin and destination, taking
into account the travel speed. In either case, the location should be rounded to the
nearest point in V , because travel times τi, j are only known between any i, j ∈V .

Let A+
idle denote the set of idle ambulances that are able to reach the incident

in time. Similarly, let A−idle denote the set of idle ambulances that cannot reach the
incident in time, which implies that A+

idle∪A−idle =Aidle. Then, if A+
idle �= /0, we decide

to dispatch a vehicle that will arrive within the threshold time, but chosen such that
the coverage provided by the remaining idle vehicles is as large as possible:

argmin
x∈A+

idle

∑
i∈V

di(1−q)qk(i,Aidle)−1 ·1τLoc(x),i≤T . (9.7)

Otherwise, simply dispatch a vehicle such that the coverage provided by the re-
maining idle vehicles is as large as possible (without requiring an arrival within the
threshold time):

argmin
x∈A−idle

∑
i∈V

di(1−q)qk(i,Aidle)−1 ·1τLoc(x),i≤T . (9.8)

Note that in our notation, k is not an iterable, but a function of i and Aidle. k(i,Aidle)
represents the number of idle ambulances that are currently within reach of vertex
i. After choosing the locations of ambulances that one wishes to use—the real loca-
tions or the destinations—k(i,Aidle) can be counted in a straightforward manner.

9.5 Results: A Motivating Example

In this section, we consider a small region for which there is some intuition with
respect to the best dispatch policy. We show that the intuitive dispatch policy that
minimizes the fraction of late arrivals, is in fact obtained by both our solution meth-
ods (based on MDP and MEXCLP). We will address the alternative objective, i.e.,
minimizing the average response times, as well.

Figure 9.1 shows a toy example for demonstrative purposes. We let calls arrive
according to a Poisson process with on average one incident per 45 min. Further-

9.5 Results: A Motivating Example 281

more, incidents occur w.p. 0.1 in Town 1, and w.p. 0.9 in Town 2. Eighty percent of
all incidents require transport to the hospital, which is located in Town 2.

9.5.1 Fraction of Late Arrivals

This section deals with minimizing the fraction of response times greater than
12 min. A quick analysis of the region in Fig. 9.1 leads to the observation that the
“closest idle” dispatch strategy must be suboptimal. In order to serve as many in-
cidents as possible within 12 min, it is evident that the optimal dispatch strategy
should be as follows: when an incident occurs in Town 2, send ambulance 2 (if
available). In all other cases, send ambulance 1 (if available). Both the MDP solu-
tion that attempts to minimize the fraction of late arrivals (with, e.g., M = 15), as
well as the dispatch heuristic based on MEXCLP, lead to this policy (Fig. 9.2).

Note that in our model, it is mandatory to send an ambulance, if at least one is
idle. Furthermore, we do not base our decision on the locations of idle ambulances
(instead, we pretend they are at their destination, which is fixed for each ambu-
lance). Therefore, in this example with 2 ambulances, one can describe a dispatch
policy completely by defining which ambulance to send when both are idle, for each
possible incident location. For an overview of the various policies, see Table 9.2.

Town 1 W1 Town 2 W2
25 6

Fig. 9.1: A graph representation of the region. The numbers on the edges represent
the driving times in minutes with siren turned on. W1 and W2 represent the base
locations of ambulance 1 and 2, respectively. Incidents occur only in Town 1 and
Town 2. The only hospital is located in Town 2

Solution method Locacc = Town1 Locacc = Town2
MEXCLP(destination) heuristic W1 W2

MDP(frac) W1 W2

MDP(avg) W1 W1

Table 9.2: An overview of the behavior of various dispatch policies when both am-
bulances are idle. The value in the table represents the base from which an ambu-
lance should be dispatched

282 C.J. Jagtenberg et al.

9.5.2 Average Response Time

We used the MDP method described in Sect. 9.3.3.2 to obtain a policy that should
minimize the average response time, let us denote this policy by MDP(avg). We
evaluate the performance of the obtained policy, again by simulating the EMS ac-
tivities in the region. These simulations show that the MDP solution indeed reduces
the average response time significantly, compared to the policy that minimizes the
fraction of late arrivals (MDP(frac))—see Fig. 9.3.

9.6 Results: Region Flevoland

In this section, we simulate the redeployment method that we obtained from our
MDP for a realistic problem instance. The Netherlands is divided in 24 regions,
each operated by its own ambulance provider (see Fig. 9.4).

We modeled the region of Flevoland, which in practice is served by the ambu-
lance provider “GGD Flevoland”. For the parameters used in the implementation,
see Table 9.3. This is a region with multiple hospitals, and for simplicity we assume
that the patient is always transported to the nearest hospital, if necessary.

We estimated the arrival intensity for this region from historical data, and deter-
mined a reasonable number of vehicles that can serve this demand. Consequently,

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

dispatch policy

fr
ac

tio
n

la
te

 a
rr

iv
al

s

Fig. 9.2: Fraction of late arrivals as observed in a simulation of the small region.
This figure shows the performance of the MDP solution that attempts to minimize
the fraction of late arrivals (after value iteration converged). The performance is
compared with the “closest idle” dispatch policy. Each policy was evaluated with 20
runs of 5000 simulated hours

9.6 Results: Region Flevoland 283

320

330

340

350

360

370

380

390

dispatch policy

av
er

ag
e

re
sp

on
se

 ti
m

e

Fig. 9.3: The average response times in seconds, as observed in simulations of the
small region. This figure shows the performance of the MDP solution that attempts
to minimize the fraction of late arrivals versus the MDP solution that attempts to
minimize the average response time (after value iteration has converged). Each pol-
icy was evaluated with 20 runs of 5000 simulated hours

we distributed the vehicles according to the solution of the (static) MEXCLP model,
as described in Sect. 9.4.1. This model is generally assumed to give reasonably good
solutions [16]. This static MEXCLP solution can be seen in Fig. 9.5.

Note that we used the fraction of inhabitants as our choice for di. In reality,
the fraction of demand could differ from the fraction of inhabitants. However, the
number of inhabitants is known with great accuracy, and this is a straightforward

Fig. 9.4: The 24 EMS regions in the Netherlands

284 C.J. Jagtenberg et al.

Parameter Magnitude Choice
λ 1/29 min A realistic rate for Flevoland.
A 8 A reasonable amount to serve the demand.

Wa for a ∈ A Postal codes as depicted in Fig. 9.5.
V 91 All 4 digit postal codes in the region.
H 3 The hospitals within the region in 2013.
τi, j Driving times as estimated by the RIVM.
di Fraction of inhabitants as known in 2009.

Table 9.3: Parameter choices for our implementation of the region of Flevoland

way to obtain a realistic setting. Furthermore, the analysis of robust optimization
for uncertain ambulance demand in [11] indicates that we are likely to find good
solutions, even if we make mistakes in our estimates for di.

In the Netherlands, the time target for the highest priority emergency calls is
15 min. Usually, 3 min are reserved for answering the call, therefore we choose to
run our simulations with T = 12 min. The driving times for EMS vehicles between
any two nodes in V were estimated by the Dutch National Institute for Public Health
and the Environment (RIVM) in 2009. These are driving times with the siren turned
on. For ambulance movements without siren, e.g., when repositioning, we used 0.9
times the speed with siren. The number of vehicles used in our implementation is
such that value iteration is still tractable.

We simulate the problem as described in Sect. 9.2. In these simulations, ambu-
lances that become idle are immediately dispatched to a waiting incident (if any),

Fig. 9.5: Optimal distribution of 8 ambulances over the region Flevoland, according
to the MEXCLP solution. Two vehicles are stationed at each of the dark colored
bases, while 1 vehicle is present at the lighter colored locations

9.6 Results: Region Flevoland 285

or head back to their home base. The locations we used as home bases are depicted
in Fig. 9.5, and correspond to actual base locations in the EMS region. Ambulances
that were dispatched while on the road, did not return to their base first.

In our simulation, τonscene is exponentially distributed with an expectation of
12 min. τhospital is drawn from a Weibull distribution with an expectation of approx-
imately 15 min. More specifically, it has shape parameter 1.5 and scale parameter 18
(in minutes). We state these distributions for completeness, however, our numerical
experiments indicate that the performance does not depend much on the chosen dis-
tribution for τonscene or τhospital . In our simulations, patients need hospital treatment
with probability 0.8. This value was estimated from Dutch data.

Note that τonscene or τhospital and the probability that a patient needs hospital
treatment are not explicitly part of our solution methods. Instead, they subtly affect
the busy fraction q (for the heuristic) or the transition probabilities with rate r (for
the MDP).

9.6.1 Analysis of the MDP Solution for Flevoland

In this section, we highlight and explain some features of the MDP solution for
the region Flevoland. In particular, we will focus on the states for which the MDP
solution differs from the closest idle policy.

The output of the MDP is a table with the incident location, the status of the
different ambulances (idle or not), and the optimal action. This output is a rather
large table (with, in the case of Flevoland, 23,552 entries) that does not easily reveal
insight into the optimal policy. To this end, we first reduced the size of the table:
we filtered out all states for which no real decision has to be made (i.e., states in
which no incident occurs, and states in which less than 2 ambulances are idle). This
reduces the table size to 22,477. In 5583 of these states, the MDP solution is to send
a vehicle other than the closest idle one (i.e., roughly 25%).

To understand in which states the MDP solution prescribes to send a vehicle other
than the closest idle one, we used classification and regression trees (CART trees)
on the table to find structure in the form of a decision tree. We used random forests
to create the decision tree, since it is known that a basic CART has poor predictive
performance. While bagging trees reduces the variance in the prediction, random
forests also cancel any correlation structure in the generation of the trees that may
be presenting while bagging.

The outcome that describes the MDP solution is a decision tree that divides the
state space into three regions, see Fig. 9.6. For the red and the green region, whether
or not the closest idle ambulance is sent, depends heavily on the availability of
ambulances at base 1: if an incident occurred in the red region, one should always
send an ambulance from base 1 if possible. For the red and green region combined,
this same advice holds in 95% of the states.

286 C.J. Jagtenberg et al.

If no ambulance at base 1 is idle, the MDP solution prescribes to deviate from the
“closest idle” choice quite often, and especially so for the red and green regions: if
there are more than two ambulances idle (but none at base 1), the dispatcher should
deviate from the closest idle policy in 81% of the states. If exactly two ambulances
are idle, this is still true for almost 50% of the states. This may be intuitively un-
derstood as follows. Since incidents on the red nodes can not be reached in time
anyway, choosing an ambulance that is further away than the closest idle one re-
sults in a enlarged response time. However, using our objective of the fraction late
arrivals, this is not a downside, since the incident could not be reached in time any-
way. Therefore, an ambulance can be chosen such that the remaining ambulances
are in a favorable position with respect to possible future incidents. Note that this is
also the general idea that forms the basis of our MEXCLP dispatch heuristic.

For incidents on the blue nodes, the best decision according to the MDP is in
roughly 70% of the states equal to the closest idle vehicle, and hardly depends on
whether or not the ambulances at base 1 are idle.

1

2

3

4
5

6

Fig. 9.6: Each node represents a postal code in Flevoland. Nodes with the same
color have similar MDP solutions. The numbers indicate the bases. (Two vehicles
are stationed at base numbers 1 and 4)

9.6 Results: Region Flevoland 287

Out of all states for which at least one vehicle is available within the target time,
the MDP solution never prescribes to send a vehicle that is further away than the
threshold. That is to say, it does not appear to be beneficial to sacrifice performance
now in the hope of achieving better performance later. This—again—is similar to
the MEXCLP dispatch heuristic, because the heuristic also only sends a vehicle that
will arrive late if there is no other option.

For this realistic region, value iteration took a long time to converge. Instead of
waiting for convergence, one might also be interested in using the policy we get
after a fixed number of value iterations. Figure 9.7 indicates that the performance
after 3 iterations is already quite similar to the converged alternative.

9.6.2 Results

In this section, we show the results from our simulations of the EMS region of
Flevoland.

We ran simulations using three different dispatch policies: the closest idle
method, the MEXCLP-based heuristic and the MDP solution after convergence of
the value iteration. Figure 9.8 compares their performance in terms of the observed
fraction of response times larger than the threshold time.

The results show that the MDP solution that was designed to minimize the frac-
tion of late arrivals has approximately the same performance2 as the closest idle
policy. Although this performance is perhaps somewhat worse than one may have
hoped for, it is important to remember that the MDP has to decide which ambulance

value iterations
1 4 7 10 converged

fr
ac

tio
n

la
te

 a
rr

iv
al

s

0.065

0.07

0.075

0.08

0.085

0.09

Fig. 9.7: The performance of the MDP solution for region Flevoland after 1, 4, 7
and 10 value iterations. Each policy was evaluated with 15 runs of 5000 simulated
hours

2 The fraction of late arrivals.

288 C.J. Jagtenberg et al.

to send, based on which base location it belongs to. This, however, is not necessarily
accurate since the ambulance may still be on the road (returning to base) at the mo-
ment of dispatch. In the simulations, this effect is accurately captured, but the MDP
cannot (since keeping track of the true location of ambulances would lead to a state
space explosion). Note that the “closest idle” method does have access to the real
locations of vehicles at the time of dispatch, and thereby has a certain advantage.

As the MEXCLP-based dispatch heuristic has access to the real vehicle loca-
tions, it is not surprising that this method is able to perform better than the MDP
solution. Consequently, the heuristic performs significantly better than the “closest
idle” policy: it reduces the fraction of late arrivals from 7.22% to 6.26% on average:
a relative improvement of 13%.

As mentioned earlier, the fraction of late arrivals is an important performance in-
dicator for ambulance providers; however, one should also look at other aspects of
the response time to make a well-informed decision on whether or not to implement
a certain policy. We measure the average response time, as observed in our simu-
lations: for the MDP solution, this is 483.9 s. The heuristic is slightly better with
478.9 s on average. The closest idle method outperforms both, resulting in an aver-
age response time of 409.3 s. Note that, with respect to this objective, the closest idle
method is almost 15% better than our heuristic. In some sense, this is not surpris-
ing, but it does illustrate that our heuristic has such a strong focus on the fraction of
late arrivals, that it becomes completely ignorant to the effect it has on the average
response time (and the same holds for the MDP). This is an important observation
that ambulance providers should keep in mind when they consider deviating from
the closest idle policy.

dispatch policy
closest idle MDP heuristic

fr
ac

tio
n

la
te

 a
rr

iv
al

s

0.06

0.065

0.07

0.075

Fig. 9.8: Comparing the performance of the “closest idle” policy with the MDP so-
lution and the Dynamic MEXCLP dispatch heuristic (where q = 0.25). Each policy
was evaluated with 15 runs of 5000 simulated hours

9.7 Conclusion and Discussion 289

9.7 Conclusion and Discussion

This chapter introduced two methods to obtain ambulance dispatch policies. Firstly,
we modeled the ambulance dispatch problem as a Markov Decision Problem
(MDP). This model is unique, in the sense that it is the first MDP in ambulance
literature that keeps track of more than just the number of idle vehicles, without
losing tractability for reasonably-sized ambulance fleets. Secondly, we introduced a
heuristic that can easily be computed for any realistic size ambulance fleet.

Our result sheds new light on the popular belief that deviating from the closest
idle dispatch policy cannot greatly improve the objective (the expected fraction of
late arrivals). The above shown improvement of 13% was unexpectedly large. We
consider this the main contribution of our work. Our methods yield in a great im-
provement in this KPI, however: one should be careful if one is also interested in
other aspects of the response time. It is important to remember that our policies were
designed with emphasis on the fraction of late arrivals only. Therefore, we do not
claim that our dispatch policies are practically preferable over the closest idle pol-
icy, but we have shown that the argumentation for not using alternatives should be
different. One should argue that we do not deviate from the closest idle policy, be-
cause we do not know how to do this while improving response times overall—and
not because the alternatives fail to improve the fraction of late arrivals.

9.7.1 Further Research

One might consider making small changes to the MDP that could benefit the per-
formance. For example, one idea is to artificially increase the rate with which busy
ambulances become idle. This extra time would allow for ambulances to drive back
to their home base, before the MDP considers them to be idle again. That way, we
avoid the error where the MDP decides that an ambulance will reach an incident
within the time threshold, but in fact the ambulance is still returning to base and
happens to be further away from the incident. We suspect that this approach might
give a small improvement; however, it should be noted that there is also a downside
to making this change: ambulances are considered to be busy even though they are
free, and hence suboptimal decisions will be made from time to time. In fact, some-
times an ambulance is closer than the MDP knows, because its previous patient was
in the same area as the next patient.

Other changes could be, to add more information in the state about the ambu-
lance’s actual location while driving back to the home base. This, however, would
lead to a state space explosion and the resulting model will—for realistically sized
regions—most certainly not be solvable by value iteration.

290 C.J. Jagtenberg et al.

Acknowledgements The authors of this chapter would like to thank the Dutch Public Ministry of
Health (RIVM) for giving access to their estimated travel times for EMS vehicles in the Nether-
lands. This research was financed in part by Technology Foundation STW under contract 11,986,
which we gratefully acknowledge.

Appendix: Notation

Notation in this chapter Common notation
As A(s)
R(s,a) ra(s)
pa(s,s′) p(s|s′,a)
Vi(s) Vt(s)

References

1. R. Alanis, A. Ingolfsson, B. Kolfal, A Markov chain model for an EMS system
with repositioning. Prod. Oper. Manag. 22(1), 216–231 (2013)

2. R. Bellman, Dynamic Programming (Princeton University Press, Princeton,
1957)

3. R. Bellman, A Markovian decision process. J. Math. Mech. 6(4), 679–684
(1957)

4. R. Bjarnason, P. Tadepalli, A. Fern, Simulation-based optimization of resource
placement and emergency response, in Proceedings of the Twenty-First Innova-
tive Applications of Artificial Intelligence Conference, 2009

5. G. Carter, J. Chaiken, E. Ignall, Response areas for two emergency units. Oper.
Res. 20(3), 571–594 (1972)

6. R.L. Church, C.S. Revelle, The maximal covering location problem. Pap. Reg.
Sci. Assoc. 32, 101–118 (1974)

7. M.S. Daskin, A maximum expected location model: formulation, properties and
heuristic solution. Transp. Sci. 7, 48–70 (1983)

8. S.F. Dean, Why the closest ambulance cannot be dispatched in an urban emer-
gency medical services system. Prehosp. Disaster Med. 23(02), 161–165 (2008)

9. J. Goldberg, R. Dietrich, J.M. Chen, M.G. Mitwasi, Validating and applying a
model for locating emergency medical services in Tucson, AZ. Euro 34, 308–
324 (1990)

10. C.J. Jagtenberg, S. Bhulai, R.D. van der Mei, An efficient heuristic for real-time
ambulance redeployment. Oper. Res. Health Care 4, 27–35 (2015)

11. R.B.O. Kerkkamp, Optimising the deployment of emergency medical services.
Master’s thesis, Delft University of Technology, 2014

12. M.S. Maxwell, M. Restrepo, S.G. Henderson, H. Topaloglu, Approximate dy-
namic programming for ambulance redeployment. INFORMS J. Comput. 22,
226–281 (2010)

References 291

13. M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming (Wiley, New York, 1994)

14. V. Schmid, Solving the dynamic ambulance relocation and dispatching problem
using approximate dynamic programming. Eur. J. Oper. Res. 219(3), 611–621
(2012)

15. C. Swoveland, D. Uyeno, I. Vertinsky, R. Vickson, Ambulance location: a prob-
abilistic enumeration approach. Manag. Sci. 20(4), 686–698 (1973)

16. P.L. van den Berg, J.T. van Essen, E.J. Harderwijk, Comparison of static ambu-
lance location models. Under review, 2014

17. Y. Yue, L. Marla, R. Krishnan, An efficient simulation-based approach to am-
bulance fleet allocation and dynamic redeployment, in AAAI Conference on Ar-
tificial Intelligence (AAAI), July 2012

Chapter 10
Blood Platelet Inventory Management

Rene Haijema, Nico M. van Dijk, and Jan van der Wal

Abstract This paper illustrates how MDP or Stochastic Dynamic Programming
(SDP) can be used in practice for blood management at blood banks; both to set
regular production quantities for perishable blood products (platelets) and how to
do so in irregular periods (as holidays). The state space is too large to solve most
practical problems using SDP. Nevertheless an SDP approach is still argued and
shown to be most useful in combination with simulation. First the recipe for the sta-
tionary case is briefly reviewed as referred to earlier research. Here the regular pro-
duction problem is periodic: demand and supply are weekday dependent but across
weeks the problem is usually regarded as stationary. However, during a number of
periods per year (roughly monthly) the problem is complicated by holiday periods
and other events that imply non-stationary demand and production processes. This
chapter particularly focuses on how to deal with the Blood Platelet (PPP) problem
in non-stationary periods caused by holidays. How should production quantities an-
ticipate holidays and how should production resume after holidays. The problem
will therefore also be modelled as a finite horizon problem. To value products left
in stock at the end of the horizon we propose to use the relative state values of the

R. Haijema (�)
Operations Research and Logistics, Wageningen University, Wageningen, The Netherlands
e-mail: Rene.Haijema@wur.nl

N.M. van Dijk

e-mail: n.m.vandijk@utwente.nl

J. van der Wal
Faculty of Economics and Business, University of Amsterdam, Amsterdam, The Netherlands

Stochastic Operations Research group, University of Twente, Enschede, The Netherlands

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 10

293

Stochastic Operations Research, University of Twente, Enschede, The Netherlands

mailto:Rene.Haijema@wur.nl
mailto:n.m.vandijk@utwente.nl

294 R. Haijema et al.

original periodic SDP. An optimal policy is derived by SDP. The structure of optimal
policies is investigated by simulation. Next to its stationary results, as reported be-
fore, the combination of SDP and simulation so becomes of even more practical
value to blood bank managers. Results show how outdating or product waste of
blood platelets can be reduced from over 15% to 1% or even less, while maintaining
shortage at a very low level.

Key words: Blood platelets, Perishable products, Blood inventory management,
Non-stationary, Finite horizon

10.1 Introduction

10.1.1 Practical Motivation

An intriguing problem in blood inventory management is the production of platelet
pools from voluntary whole blood donations. At the first production stage, most
of the plasma and red blood cells (RBC) are extracted from a 500 ml whole blood
donation. A mixture, called the buffy coat, of blood platelets and white cells is left.
At a second stage the platelets of five different donors are extracted from the buffy
coats and are pooled into a blood platelet pool (BPP), see Fig. 10.1.

In the Netherlands only 36% of buffy coats obtained after producing RBCs is
used for the production of pools. So normally supply of buffy coats is not a problem.
The demand for pools set by patients in hospitals remains to be highly uncertain,
despite planned surgeries and transfusions. And clearly, as lives may be at risk, any
risk for shortages should be avoided. However, there are three complications:

• As a first and major complication the quality of platelets pools (thrombocytes)
deteriorate through time and have a limited shelf life of only 5 days (in some
countries 7 days). Other blood products, such as RBC and plasma in contrast can
be stored for months. As a consequence, blood platelets age and are discarded
after passing the maximum shelf life. Spill may thus take place.

Fig. 10.1: One blood platelet pool (BPP) is made of platelets of 5 donors

10.1 Introduction 295

• As a second complication also demand for blood platelets should be met ac-
cording to compatibility rules for blood types (O, A, B, AB and the Rhesus-D
factor).

• Finally, in practice there are short periods (breaks) such as around Christmas
and Easter holidays during which there is no production.

Clearly, as the supply of blood takes place at voluntary basis, while high “costs”
are involved in case of a shortage, blood platelets are to be considered as precious.
Nevertheless, in practice (in both the US and Western Europe) a general figure for
outdating is still about 15–20%. In what follows we refer to the problem of deter-
mining optimal production volumes as the platelet production problem (PPP).

10.1.2 SDP-Simulation Approach

In [6] and SDP-Simulation approaches is presented for the stationary PPP, which
we will summarize in Sect. 10.3. In this chapter we show, in line with [7], how the
non-stationary PPP can be solved using relative state values of stationary PPP.

The PPP is virtually stationary across weeks (with weekday dependent mean
demand and production capacities), except for a number of periods within a year
during which additional production breaks occur because of holidays, e.g. Easter,
Christmas and New Year’s Day. This kind of short production breaks, that occur
roughly monthly, are known well in advance and should be anticipated adequately
as they have substantial effect on inventory levels, and increase the risk of shortages.

• Setting the right production volumes to anticipate near-future production
breaks is in general difficult. More formal support through an extended SDP-
Simulation approach would thus be welcome to support blood bank managers.

In this paper, therefore, we focus on how to deal with the non-stationary periods.
As argued in [7], we assume all demand to be met by issuing the oldest items in
stock first, and the order quantity is not split into quantities per blood types. The
maximal shelf life of BPPs is 5 days only. The method and results in this chapter
are of interest to inventory managers at both blood banks and hospitals as well as to
Operations Researchers.

10.1.3 Outline

In the next section we discuss some literature on the problem. In Sect. 10.3, we
briefly summarize the steps involved in the SDP-Simulation approach that solves
the stationary PPP. In Sect. 10.4 we present an extended SDP-Simulation approach
to solve the PPP with periods where production and demand is non-stationary. In
Sect. 10.5 we present case study results for a Dutch blood bank that faces short pro-
duction breaks during Christmas, New Year’s Day and Easter. Section 10.6 closes
the chapter with conclusions and discussion. In the Appendix of this chapter follows
a summary of notations

296 R. Haijema et al.

10.2 Literature

The production and inventory control of blood products have received considerable
attention in both the traditional inventory operations research (OR) literature (e.g.
[2, 3, 12–14]) and in the area of blood management (e.g. [8–11, 16]). In the OR
literature, early dynamic programming (DP) formulations for blood inventory man-
agement already date back to the seventies (e.g. [3, 13]). Unfortunately, the platelet
production problem is seriously hampered by its computational complexity as stated
in [2]. All of these early studies assume a stationary demand distribution. Only in
the last decade the problem is studied for periodic weekday dependent demand dis-
tributions, see [6]. The non-stationary problem is studied only in [7]. This chapter
is largely based on that study and on Chap. 4 of [4].

For a general discussion of techniques for solving Markov decision processes
for both stationary and non-stationary problems the reader is referred to textbooks
like [15].

10.3 SDP-Simulation Approach for the Stationary PPP

10.3.1 Steps of SDP-Simulation Approach

In [6] a combined approach for the blood platelet inventory problem has therefore
been followed, which combines OR and simulation by the following steps:

Step 1. Optimization model: First, a stochastic dynamic programming (SDP) for-
mulation is provided, which neglects the existence of blood types. This
latter assumptions will be validated in Step 5.

Step 2. Optimal solution: The dimension of the (SDP) formulation is then re-
duced (downsized) by aggregating the state space and demands so that
the downsized (SDP) problem can be solved numerically (using succes-
sive approximation). That is, the optimal value and an optimal strategy is
determined for the downsized SDP.

Step 3. Simulation for investigation: Then, as essential tying step, this optimal
policy is (re)evaluated and run by simulation in order to investigate the
structure of the optimal strategy. In this simulation one registers the fre-
quency of (state, action)-pairs for the down-sized problem.

Step 4. Simulation for re-optimization: The results of step 3 are used to derive
practical order rules, like improved base stock policies and to obtain
nearly optimal parameter values. By a heuristic search procedure param-
eter values of these rules are fine tuned for the full-size problem.

10.3 SDP-Simulation Approach for the Stationary PPP 297

Step 5. Simulation for validation: The quality (near-to-optimality) of this practi-
cal simple order-up-to strategy is evaluated by detailed simulation. In this
step it is also justified, for Dutch blood banks, that blood types are ignored
in the previous steps.

As the technical details of these steps are worked out in detail in [6], our focus in
this chapter is on the SDP model (step 1) and on the extension of the SDP-simulation
approach to solve the non-stationary problem.

10.3.2 Step 1: SDP Model for Stationary PPP

State

The state of the inventory model is the day of the week (d) and the number of
products in stock of each age: x = (x1, . . . ,xm−1), where m is the maximal shelf life
of BPPs in days (which is usually 5 days).

Action

The sequential decision to set is the number of BPPs to produce (a). The action space
A(d,x) is state dependent, as production capacity is not available during weekends.

State transition

The stock transition from weekday d to the next day, given that demand is met by a
FIFO-issuing policy, follows from the stock transition function y(x,k,a) and depend
on the initial stock x, the demand k, and the production volume a. At the end of the
day BPPs that have become outdated are disposed of. The transition probability
relate to the demand distribution for weekday d is denoted by pd(k).

One-period costs

The direct cost to incur on a day depends on the state (d,x) and the demand k.
therefore we define C(d,x,k) is the costs to incur in on weekday d, when the demand
on that day is k and the initial stock is x. With the total stock level denoted by

x =
m

∑
r=1

xr, the direct cost C(d,x,k) are:

298 R. Haijema et al.

C(d,x,k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cO · (xm− k)+ outdating costs,

+cS · (k−∑m
r=1 xr)

+ shortage costs,

+cH · x holding costs.

(10.1)

The expected direct costs to incur in state (d,x) are simply:

EC(d,x) =∑
k

pd(k) ·C(d,x,k). (10.2)

Stochastic dynamic programming

Equation (10.3), presents the recursive form of the Bellman equation, which can be
solved by a Successive Approximation algorithm, similar to SDP, unless the state
space X is too large.

Vn(d,x) = min
a∈A(d,x)

(

EC(d,x) + ∑
k

pd(k) · Vn−1 (d +1,y(x,k,a))

)

. (10.3)

We start the SA algorithm by setting V0(1,x) = 0 for all states x ∈X . The choice
to start with d = 1 (i.e. a Monday) is arbitrary, we could as well choose any other
weekday to start with. Next the state values V1(7,x), V2(6,x),. . . ,V7(1,x),etc. are
computed for all states x.

The span(Vn−Vn−7) is checked every 7 iterations, hence at iteration n = 7, 14,
21, etc. Suppose span(Vn−Vn−7) is for the first time smaller than a pre-specified
small value ε at iteration N−7, with N a multiple of 7 days. Optimal actions for each
state x on Monday to Sunday are derived from Eq. (10.4) from the last 7 iterations
(n = N−6, N−5, . . . ,N). Hence after N iterations an optimal stationary strategy is
approximated by:

π(d,x) = arg min
a∈A(d,x)

∑
k

pd(k)VN−d(d +1,y(x,k,a)). (10.4)

In the last 7 iterations the optimal production strategy π is stored.
As N is a multiple of 7, the value vector VN relates to a Monday. VN is a relative

value vector that can be used as terminal costs in solving the finite horizon problem
of the non-stationary period.

10.3 SDP-Simulation Approach for the Stationary PPP 299

Fig. 10.2: The Dutch blood banks divide The Netherlands in four regions

10.3.3 Case Studies

The approach has been validated and adopted by two of the four regional blood
centers in The Netherlands, see Fig. 10.2.

Applying this combined SDP- simulation approach to data for two of four re-
gional Dutch Blood Bank, the following conclusions are drawn, see [17]:

• A simple order-up-to rule could reduce the spill from roughly 15–20
• The combined SDP-Simulation approach led to an accuracy compared to the

exact optimal value for the downsized problem within 1

In addition, a number of what-if analyses are performed such as with respect to:

• shelf life (4–7 days),
• issuing rules (FIFO/LIFO/FIFOR-r), and
• blood group compatibility/priorities.

In Sect. 10.4, we report detailed simulation results over a year that includes pro-
duction breaks. In the next section we explain how the approach is extended.

300 R. Haijema et al.

10.4 Extended SDP-Simulation Approach
for the Non-Stationary PPP

10.4.1 Problem: Non-Stationary Production Breaks

A practical question for production-inventory managers, and for blood bank man-
agers in particular, that remained unanswered is: “How should one anticipate irregu-
lar production breaks like at Easter and Christmas?” When regular production stops
for a few days, while demand continues (as usual) one should anticipate breaks by
producing somewhat more some days before the break. Consequently the age dis-
tribution of the BPPs in stock is affected and thus the optimal production volumes
immediately after a break might be different as well.

In the PPP most weeks are stochastically the same: the supply of whole blood
(by voluntary donors) and the demand for BPPs are stationary processes. However,
during a short holiday break production might be impossible, since donors do not
show up.

As an example we consider, in Sect. 10.5, two cases of particular interest to blood
bank managers:

1. A Christmas period (December 25 and 26) falling on Tuesday and Wednesday,
followed by the New Year’s Day (NYD) on the next Tuesday.

2. The 4-days Easter period from Good Friday to Easter Monday. In The Nether-
lands the (regular) production is stopped for four consecutive days, while the
maximal shelf life of BPPs is only 5 days.

In practice it is difficult to find nearly optimal production volumes on days around
holidays. Due to the occasional nature of these events, it is not possible getting
experienced. Formal support is thus needed. In the next section we extend the SDP-
Simulation approach to include non-stationary production breaks and apply it to the
BPP production-inventory management.

10.4.2 Extended SDP-Simulation Approach

We illustrate the approach by including breaks at a Christmas period and an Easter
weekend. As the time between these breaks is very long compared the maximal shelf
life of the products (of 5 days only), one may analyze these periods independently
of each other.

In Fig. 10.3 we illustrate our approach for the 4-days Easter weekend. The gray
squared blocks on the time bar indicate production stops.

We model the problem as an infinite horizon problem, that consists of two parts.
The first part is the irregular finite horizon period containing the non-stationary pro-
duction break(s). The second part relates to the stationary infinite horizon problem.

10.4 Extended SDP-Simulation Approach for the Non-Stationary PPP 301

4-days Easter

Stationary periodNon-stationary period

V0(1,x) = 0V7(1,x)

W0(x) = R(1,x) =

W7(x)W14(x) lim
n→∞[Vn(1,x) − Vn(1,0)]

Fig. 10.3: The SDP-Simulation approach splits the horizon in two parts, since the
system behaves stationary a few days after a break

In the example in Fig. 10.3, the age distribution of the BPPs in stock on the Tuesday
immediately after the break differs from an ordinary Tuesday, the optimal ordering
policy may be different than on ordinary Tuesdays. But we may assume that the
system returns to the stationary problem a few days after the irregular period has
elapsed. We assume that from the next Monday onwards the system behaves indeed
stationary.

By stochastic dynamic programming (SDP) the optimal ordering strategy can be
computed for both the stationary and the non-stationary problems. We first apply
successive approximation to solve the stationary problem and thus obtain the op-
timal ordering strategy for regular weekdays, Monday to Friday. As a by-product,
relative values of each stock state are available that can act as terminal costs to
solve in a backward fashion the non-stationary problem. In the next two sections we
formalize the approach.

10.4.3 Extension: Including Non-Stationary Periods

In a very similar way the ordering decisions for each day of the non-stationary finite
horizon problem are computed. For example, in Fig. 10.3, the special period lasts 2
weeks (14 days) with the 4-days Easter weekend in the middle of the time interval.
Note that we have chosen more or less arbitrarily that the finite horizon problem
ends a few days after the break on a Monday morning.

For each of the 14 days of the special period the optimal production strategy is
determined by Stochastic Dynamic Programming in a backward fashion, using the
so-called relative values R(1, ·) as terminal costs. The relative values R(1,x) are used
to compare stock states x within the same periodic class, namely the class related to
Mondays, the value vector VN(1,x) can be used for this purpose. Instead of storing
the optimal policy for each working day, we now store the policy for all 14 days of
the non-stationary period.

The extended SDP-Simulation approach consists of the following five steps:

302 R. Haijema et al.

Step I. Compute relative values of the states for the stationary problem:

• First, the stationary problem is solved (maybe after scaling the prob-
lem), using Eqs. (10.3) and (10.4).

• Next, we choose an arbitrary reference state on Monday, say (1,0),
and compute for every possible stock state x on Monday the differ-
ence in expected future costs relative to this reference state:

R(1,x) = lim
n→∞

[Vn(1,x)−Vn(1,0)] ≈ VN(1,x)−VN(1,0) (10.5)

These differences, R(1, ·), are feasible relative values, when N is suf-
ficiently large. VN(1,x) is finite when N is finite. Therefore setting
R(1,x) =VN(1,x) is also feasible.

Step II. Solving the non-stationary problem by SDP:
Let the irregular period last T days, with the last day being a Sunday. The
days of this period are numbered backwards and denoted by t. t = 1 thus
refers to the last day of the period (a Sunday) and day T is the first day
of the finite horizon. Index t thus denotes the number of days to go until
the end of the irregular period. In addition to the notation in Eqs. (10.3)
and (10.4) we define:

• pirr
t (k) = the probability of a (composite) demand k on day t.

If the demand remains stationary even during a break, then pirr
t (k)

equals pd(k) for d = 7− (t−1) mod 7.
• A′t(x) = action space at day t as bounded by the (artificial) production

and storage capacity. Clearly the action space depends on the stock
state x. If production is not possible on day t, A′t(x) = {0}.

• Wt(x) = the total expected costs under an optimal strategy from day
t onwards when starting in inventory state x and at the end of the
irregular period terminal cost are accounted.

• W0(x) ≡ R(1,x).
• πt(x) = the optimal decision at day t given the inventory state is x.

By stochastic dynamic programming one recursively computes and stores
successively for t = 1,2, . . . ,T , for all states x in the state space X ′(t) :

Wt(x) = min
a∈A′t (x)

(

ECt(x) + ∑
k

pd(k) · Wt−1(y(x,k,a))

)

. (10.6)

with ECt(x) =∑k pirr
t (k) ·C(d,x,k), in which d is the weekday related to t.

The optimal ordering quantity on day t follows from

πt(x) = arg min
a∈A′t (x)

∑
k

pirr
t (k)Wt−1(y(x,k,a)). (10.7)

10.5 Case Study: Optimal Policy Around Breaks 303

Step III. Read simple rule from simulation-based frequency table
Again the optimal strategy may be fairly complex. Hence simulation is
used to investigate the structure of the optimal strategy for each day of
the special period. That is: frequency tables for each day t of the irregular
period are generated and, if applicable, an order-up-to S rule is read for
each day of the week or any other appropriate ordering rule.

Step IV. Finally, by a detailed simulation program the rule is put to the test and its
performance, in terms of outdating and shortage figures, is compared to
the figures for the optimal stock-age-dependent strategy.

Step V. In case the initial problem is scaled the simple rule is simulated for the
full-size problem after re-scaling the parameters of the simple rule.

10.5 Case Study: Optimal Policy Around Breaks

In this section we apply the extended SDP-Simulation approach using realistic data,
as summarized in Sect. 10.5.1. The results for the problem around Christmas and
New Year’s Day are presented in Sect. 10.5.3. In Sect. 10.5.4 we discuss the 4-days
Easter weekend. The results are integrated in Sect. 10.5.5. We will show that a sim-
ple rule applies even around breaks, although we do not provide a detailed sensitivity
study as we have done in the previous chapter. We limit the illustration to the first
four steps of the SDP-simulation approach.

10.5.1 Data

The case study is executed by using the data for one of the four Dutch Blood banks
(Sanquin). The demand is met by issuing the oldest BPPs in stock (FIFO issuing).
The mean demand for 144 BPPs a week is spread over Monday to Sunday as in
Table 10.1. To make the SDP tractable we scale the problem by a factor 4, resulting
in the mean demand figures in the last row of Table 10.1.

Table 10.1: Demand distributions: means and coefficients of variation (cv)

Mon Tue Wed Thu Fri Sat Sun

Original mean 26 21 32 21 26 8 10

cv 0.28 0.31 0.25 0.31 0.28 0.50 0.45

Scaled mean 6.5 5.25 8 5.25 6.5 2 2.5

304 R. Haijema et al.

For each day of the week d we fit a discrete probability distribution pd(·) on
the mean demand and the reported coefficient of variation of the demand (cv). cv
is set to 1.4 times the coefficient of variation when demand would have been Pois-
son distributed. Conform [1] the unscaled demand distributions are mixtures of two
negative binomial distributions. For the scaled problem, the demand distributions
are fitted using a mixture of two binomial distributions.

The other problem data for the unscaled case remain unchanged:

Annual demand 7488 BPPs or 1872 batches
Costs outdating 150 per outdated BPP,

shortage costs 750 per BPP short,
all other costs are zero,

Production Monday–Friday, but no during breaks
Maximal shelf life m = 5 days.

For a high accuracy performances statistics will be obtained from 100 detailed
simulation runs of 1000,000 weeks each.

10.5.2 Step I: Stationary Problem

After scaling the SDP and solving the scaled problem, we simulate the resulting op-
timal strategy. Table 10.2 presents the simulation-based frequency tables for Mon-
day to Friday. In the first column we read the order-up-to levels related to the optimal
actions. From the last column we read which level is most frequent. On Mondays the
most-frequent order-up-to level is 21 and it fits to 59% of the one million states vis-
ited. Similarly, we find most-frequent order-up-to levels (21,21,21,19,24) batches
(of 4 BPPs) for Monday to Friday.

In Table 10.3 we compare the order-up-to rule with order-up-to levels fixed to
(21,21,21,19,24) against the optimal (age-dependent) strategy. The upper half of
the table shows the characteristics of the optimal SDP strategy, the lower half shows
the performance of a fixed replenishment rule. As expected from the results and the
discussion in the previous chapter, the order-up-to S rule appears to perform nearly
optimal. The absolute outdating and shortage figures per week should be related to
a weekly demand of 36 batches of 4 pools. The annual results relate to an average
annual demand for 1872 batches.

From the scaled SDP results we conclude that

• Compared to the current practice, it seems that the annual outdating can be
reduced from about 15% to 0.2%, even when demand is more stochastic than
Poisson.

• Shortages occur virtually never: only 0.04% of the total annual demand cannot
be met immediately from stock.

10.5 Case Study: Optimal Policy Around Breaks 305

Table 10.2: Simulation frequency tables of scaled SDP strategy with FIFO demand
only

(a) (State, action)-frequency tables for 1,000,000 simulated Mondays
Stock x 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Freq(S1)

Up-to S1
24 4 6 12 153 101 250 27 553
23 4 46 2906 17596 5508 1262 27322
22 5 1156 121403 79791 39802 242157
21 116497 152240 167708 154513 590958
20 39450 74336 113786
19 17209 17209
18 5976 5976
17 1657 1657
16 332 332
15 50 50
14 0
: :
0 0

Freq(x) 50 332 1657 5976 17209 39450 74336 116497 152240 167713 155669 121407 79841 42714 17608 5661 1363 250 27 1000000

(b) (State, action)-frequency tables for 1,000,000 simulated Tuesdays
Stock x 0 . . .7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Freq(S2)

Up-to S2
26 1 1
25 1 1 3 5
24 2 6 42 33 22 1 106
23 5 277 622 898 247 16 2065
22 40 653 5055 15270 10982 2259 215 34474
21 786 9588 44321 83285 143525 191312 198489 159515 95150 32597 4316 427 963311
20 38 38
19 0
: :
0 0

Freq(x) 0 38 786 9588 44321 83285 143525 191312 198529 160168 100210 48146 15926 3628 496 41 1 1000000

(c) (State, action)-frequency tables for 1,000,000 simulated Wednesdays
Stock x 0 . . .9 10 11 12 13 14 15 16 17 18 19 20 21 22 Freq(S3)

Up-to S3
25 3 3
24 2 72 103 87 2 266
23 9 173 1314 4637 1865 592 8590
22 9 988 6708 49510 99883 31271 5334 193703
21 16565 59327 136626 214317 231213 136611 794659
20 167 2612 2779
19 0
: :
0 0

Freq(x) 0 167 2612 16565 59327 136635 215305 237930 186296 101197 35980 7302 682 2 1000000

(d) (State, action)-frequency tables for 1,000,000 simulated Thursdays
Stock x 0 . . .4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Freq(S4)

Up-to S4
22 3 6 9
21 106 753 204 1063
20 1156 7482 44639 30494 8368 931 93070
19 7114 24181 58816 110748 164500 196650 184235 129167 28890 904301
18 145 1401 1546
17 7 7
16 0
: :
1 0
0 4 4

Freq(x) 0 7 145 1401 7114 24181 58816 110748 164500 196650 185391 136649 73529 30494 8474 1684 207 10 1000000

(e) (State, action)-frequency tables for 1,000,000 simulated Fridays
Stock x 0 . . .7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Freq(S5)

Up-to S5
28 1 2 3
27 2 2
26 30 262 223 70 585
25 1 378 2670 17755 20380 9471 1110 51765
24 141 2406 15686 57196 132318 210586 235857 185682 87884 19889 947645
23 0
: :
0 0

Freq(x) 0 141 2406 15686 57196 132318 210587 236235 188352 105639 40299 9733 1333 73 2 1000000

306 R. Haijema et al.

Table 10.3: Order-up-to S rule vs SDP policy for a regular (stationary) week (statis-
tics in batches of 4 pools obtained by simulation for 100 million weeks)

Weekday Mon Tue Wed Thu Fri Sat Sun Weekly Annual

SDP policy

batches outdated 0 0.01 0.06 −a −a 0 0.01 0.08 4.30 (0.23%)

batches short 0.01 0 0 0 0 0 0 0.01 0.71 (0.04%)

Annual costs 4,698 euro

Order-up-to S rule

Levels Sd 21 21 21 19 24 – –

Goodness-of-fit 59% 96% 79% 90% 95% – –

batches outdated 0 0.01 0.06 −a −a 0 0.01 0.08 4.18 (0.22%)

batches short 0.01 0 0 0 0 0 0 0.01 0.74 (0.04%)

Annual costs 4,724 euro

a Outdating must be zero on Thursday and Friday, as m = 5 and production stops in the weekends

• The order-up-to S policy as read from the frequency tables closely approximates
the structure of the optimal strategy and is only 0.6% off from the optimal cost
level.

For the unscaled case, the replenishment levels are re-scaled by multiplication
with a factor 4.In the previous chapter we have already shown that the resulting
order-up-to levels are nearly optimal. More results are found in [4–7, 17].

10.5.3 Steps II to IV: Christmas and New Year’s Day

For example, we consider a year in which Christmas falls on Tuesday and Wednes-
day, and New Year’s Day (NYD) on the next Tuesday. On these days (regular)
production is stopped because of a lack of donors. As depicted on the timeline in
Fig. 10.4 there is only a single day between the weekend and the two Christmas
holidays. On this Monday one has to produce additional BPPs to anticipate the pro-
duction stop for the next 2 days. In this section we consider a worst case where
demand for platelet pools continues as usual.

10.5 Case Study: Optimal Policy Around Breaks 307

4-days Easter

Stationary periodNon-stationary period

V0(1,x) = 0V7(1,x)

W0(x) = R(1,x) =

W7(x)W14(x) lim
n→∞[Vn(1,x) − Vn(1,0)]

Fig. 10.4: The SDP-Simulation approach splits the horizon into two parts, as if the
system behaves stationary a few days after a break

What to Expect?

When the production capacity on Monday is not restrictive, as in our case, then the
production on Monday has to be set high enough to anticipate the production stop on
the next 2 days. When the production capacity on Monday is normally high enough
but too restrictive to anticipate the 2-day production stop, then the production vol-
ume on Friday is raised as well. When no holding costs and quality mismatch costs
apply, the capacity restrictions will hardly affect the cost-level. Compared to the
stationary case the optimal cost level does increase, since outdating and shortages
are likely more prevalent. Shortages mostly occur on the Thursday after Christmas.
Excessive production on the Monday before Christmas outdates the next Saturday.

We assume that the production and storage capacity are not restrictive. (Artificial
bounds, which are set to make the state space finite, are set high enough to ensure
that the optimal policy is not affected.) The length of the non-stationary period can
then be reduced from 3 weeks (as in Fig. 10.4) to 2 weeks, as the problem in the first
week maybe still stationary. When the production capacity on Wednesdays, January
2nd, is not restrictive then the production strategy on Thursday January 3rd, may
differ only slightly from that on an ordinary Thursday. Moreover, given m = 5, no
BPPs will expire on Thursday, as no BPPs in stock on Thursdays are older than
3 days.

Results for Optimal Strategy

Table 10.4 shows the impact of the irregular production breaks on the optimal strat-
egy over a 10-days period from Monday (December, 24th) to Wednesday (January,
2nd). The results are presented in batches of 4 pools, since the SDP is scaled to
reduce the state space. The average demand over the 10-days period is almost 56
batches (223 pools).

Table 10.4a shows that outdating for this 10-days period has increased from 0.15
batches (0.6 pools) to 0.77 batches (3.1 pools). Expected relative outdating thus is
about 1.4%. Since the results relate to the optimal strategy one has to accept this
increase, which is primarily due to the outdating of pools produced on the Monday
before Christmas. Although not reported in the table, we have observed that only

308 R. Haijema et al.

0.55% of the BPPs (0.08 batch) produced on the Monday before News Year’s Day
becomes outdated on the next Saturday.

Table 10.4: Impact of production breaks around Christmas and New Year’s Day

(a) Impact of breaks on outdating and shortages (in batches) under SDP policy

10-days period Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Total

Stationary case

batches outdated 0 0.01 0.06 −a −a 0 0.01 0 0.01 0.06 0.15

batches short 0.01 0 0 0 0 0 0 0.01 0 0 0.03

Irregular breaks Dec-25 Dec-26 Jan-1

batches outdated 0 0.01 0.11 −a −a 0.59 0 −a −a 0.05 0.77

batches short 0 0 0 0.06 0 0 0 0.01 0 0.01 0.08

a No outdating m = 5 days after weekends and holidays, since production is zero

(b) Impact of breaks on order-up-to levels St as read from the optimal SDP policy

10-days period Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed
Stationary case
Order-up-to St 21 21 21 19 24 – – 21 21 21
Goodness-of-fit 59% 96% 79% 90% 95% – – 59% 96% 79%
Irregular breaks Dec-25 Dec-26 Jan-1
Order-up-to St 31 – – 20 24 – – 27 – 21
Goodness-of-fit 98% – – 49% 44% – – 93% – 48%

Order-up-to Rule vs Optimal Strategy

Since in practice one prefers a simple rule, we hope that an order-up-to S rule
resembles the structure of the optimal policy. By simulation we generate (state,
action)-frequency tables for each day of the special period in a similar way as for
the stationary case. In Table 10.4b we report the most-frequent order-up-to levels
for the 10-days period and compare them against the stationary ones. As expected
the order-up-to levels on the Mondays before the two breaks are considerably higher
than in the stationary case: e.g. 31 vs 21 before Christmas. Remarkably, an order-up-
to S rule fits even better on Mondays just before a break, than on a regular Monday:
98% before Christmas versus 59% on the regular Mondays. On the days after a
break the order-up-to S rule fits to almost 50% of the states visited, whereas in the
stationary case this figure falls in 79–95%.

We evaluate the order-up-to S rule with the most-frequent order-up-to levels from
the frequency tables by a long simulation (100 million replications) and compare
its performance against the optimal strategy. (The results could be computed in an

10.5 Case Study: Optimal Policy Around Breaks 309

exact way by solving the underlying Markov chains under modified cost structures.)
Although the order-up-to S rule does not fit for 100% at each day, its performance
is very close to optimal as reported in Table 10.5. Over the given 10-days period on
average only 0.1 batch (out of the 56 batches demanded) cannot be met from stock:
the shortage rate is thus less than 0.2%. Outdating is in the order of 1.3%.

Table 10.5: Order-up-to S vs SDP policy around Christmas and New Year’s
Day

10-days period Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Total

Irregular breaks Dec-25 Dec-26 Jan-1

SDP policy

batches outdated 0 0.01 0.11 −a −a 0.59 −a −a 0 0.05 0.77

batches short 0 0 0 0.06 0 0 0 0.01 0 0.01 0.08

Order-up-to S rule

Levels St 31 – – 20 24 – – 27 – 21

batches outdated 0 0.01 0.11 −a −a 0.59 −a −a 0.01 0.04 0.75

batches short 0 0 0 0.06 0 0 0 0.02 0 0.01 0.10

a No outdating m = 5 days after weekends and holidays, since production is zero.

After re-scaling the order-up-to levels, one obtains a nearly optimal order-up-to
S rule for the real-sized case. Given the robustness of the rule with respect to minor
changes in the order-up-to levels as shown in the previous chapter we skip step V of
our extended SDP-Simulation approach.

Conclusions: Results Breaks During Christmas and New Year’s Day

It appears that:

• an order-up-to S policy with increased order-up-to levels for the Monday before
Christmas and the Monday before New Year’s Day is nearly optimal,

• age plays an more important role after Christmas and New Year’s Day, but the
absolute impact on outdating and shortages is relatively small, and

• outdating over a 10-days period, including the breaks, is as low as 1.4%, while
shortages are less than 0.2%.

310 R. Haijema et al.

10.5.4 Steps II to IV: 4-Days Easter Weekend

The second example of a non-stationary problem with irregular production breaks
is the 4-days Easter weekend, as depicted before in Fig. 10.3. The long weekend
from Good Friday to Easter Monday is considerably more difficult, since the pro-
duction is stopped for four consecutive days, while the shelf life is only 5 days and
demand remains stationary. We assume that the production and storage capacity are
not restrictive.

What to Expect?

Again, we expect that primarily the production volumes 1 day before the break, in
this case on the Thursday before Good Friday, are increased dramatically to antici-
pate the production stops for the next 4 days. The available stock plus the production
on Thursday should be enough to survive until the next Wednesday morning when
new stock is released. The order-up-to level on Thursday before the break can be
derived by the Newsboy model, since no BPPs will survive until Wednesday.

The marginal return of ordering z batches instead of z−1 batches is the savings
on shortages. The marginal costs are an increase in the expected outdating costs. Let
the stochastic variable Z denote the demand in batches over the 6-days period from
Thursday to Tuesday, and P(·) is the cumulative distribution of Z. P(·) is obtained
from the convolution of the six demand distributions. The optimal order-up-to level
on Thursday is the greatest value of z for which the expected marginal savings on
shortage costs is still larger than the expected marginal outdating costs, as reflected
in Eq. (10.8).

cS ·P(Z ≥ z) ≥ cO ·P(Z ≤ z−1) (10.8)

Hence the best order-up-to level is the greatest z for which holds:

P(Z ≤ z−1) ≤ cS

cS + cO . (10.9)

For the given demand distributions and the cost figures, the order-up-to level on
the Thursday before the break is according to the Newsboy equation 31 batches. The
production volume just before the break is thus likely much higher than on a regular
Thursday. Consequently, outdating mostly happens 5 days later on Tuesday, just
after the break. Since production stops from Friday to Monday, shortages primarily
happen on Tuesday given that the production lead time is 1 day. We expect shortages
and outdating to be far more prevalent than over the Christmas period.

On Tuesday morning after Easter Monday all products in stock, if any, are of
the same age. The optimal production strategy is thus not stock-age-dependent.
No BPPs produced before the break will survive until Wednesday morning, hence
one may expect that the production volume on Tuesday is fixed to a target inven-
tory level on Wednesday morning. Consequently, the optimal production volume
on Wednesday is also fixed, as Tuesdays production becomes available only at the

10.5 Case Study: Optimal Policy Around Breaks 311

start of Wednesday morning and all products in stock are of the same age. From
Thursday onwards the optimal production strategy is again stock-age-dependent.

Results of Optimal Strategy

After scaling and solving the SDP, we can check our expectations. Through simula-
tion we generate frequency tables from which we read the structure of the optimal
strategy. A selection of them is found in Table 10.6. As expected and argued before,
according to the upward diagonal in Table 10.6a, a fixed production volume applies
on the Tuesday just after Easter Monday. All batches produced before the break will
not survive until the Wednesday morning after Easter.

Since all stock present on Tuesday morning after Easter Monday will perish the
same day, the initial stock on Wednesday morning consists only of the 15 batches
produced on Tuesday. From Table 10.6a we observe that a fixed order-up-to level
of 21 batches applies on Wednesday, which implies a fixed production volume of 6
batches. Note that an order-up-to level of 21 batches corresponds to the stationary
order-up-to level reported in Table 10.4b.

The order-up-to level on Thursday after the break equals 19, which corresponds
to the stationary order-up-to level. This illustrates that the stationary order-up-to
levels apply from Wednesday onwards. Although not reported the outdating and
shortages figures from the Thursday after the break onwards do not differ signifi-
cantly from those on regular days. One positive exception, not visible in the table,
is that outdating on the Sunday after the break is significantly lower than usual.

The optimal production policy on Thursday prior to Good Friday resembles for
virtually 100% an order-up-to S rule with fixed order-up-to level 32. This is in-
line with our expectations: the newsboy model suggest an order-up-to level of 31
batches. As the initial stock may not survive till the next ordering moment, the best
order-up-to level is 1 higher. The order-up-to level 32 is 13 batches higher than on a
regular Thursday (see Sect. 10.5.2).

Just as for the Christmas and New Year’s Day period, on the day before a pro-
duction break an order-up-to S rule (with increased levels) fits even better than in
the stationary case. Apparently the age-distribution of the stock is less relevant on a
day prior to a production break.

Order-up-to Rule vs Optimal Strategy

The structure of the optimal policy seems thus, again, to be very well presented by
an order-up-to S rule. In Table 10.7 we report over a 10-days period, including the
Easter weekend, the outdating and shortage volumes around Easter under both the

312 R. Haijema et al.

Table 10.6: Frequency tables from 1 million simulations of SDP policy around
Easter

(a
)

(S
ta

te
,a

ct
io

n)
-f

re
qu

en
cy

ta
bl

e
fo

r
a

T
ue

sd
ay

af
te

r
E

as
te

r
M

on
da

y
St

oc
k

x
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
Fr

eq
(S

)
U

p-
to

S
36

1
1

35
20

20
34

17
6

17
6

33
93

3
93

3
32

35
78

35
78

31
10

37
5

10
37

5
30

23
74

9
23

74
9

29
43

77
5

43
77

5
28

68
30

1
68

30
1

27
91

54
4

91
54

4
26

11
03

20
11

03
20

25
11

62
01

11
62

01
24

11
82

17
11

82
17

23
11

02
87

11
02

87
22

94
93

8
94

93
8

21
74

66
9

74
66

9
20

53
77

5
53

77
5

19
35

59
6

35
59

6
18

21
46

6
21

46
6

17
11

89
3

11
89

3
16

57
58

57
58

15
44

28
44

28
14

0
:

:
0

0
Fr

eq
(x

)
44

28
57

58
11

89
3

21
46

6
35

59
6

53
77

5
74

66
9

94
93

8
11

02
87

11
82

17
11

62
01

11
03

20
91

54
4

68
30

1
43

77
5

23
74

9
10

37
5

35
78

93
3

17
6

20
1

10
00

00
0

(b
)

(S
ta

te
,a

ct
io

n)
-f

re
qu

en
cy

ta
bl

e
fo

r
a

W
ed

ne
sd

ay
af

te
r

E
as

te
r

M
on

da
y

St
oc

k
x

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

Fr
eq

(S
)

U
p-

to
S

21
10

00
00

0
10

00
00

0
20

0
:

:
0

0
Fr

eq
(x

)
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
10

00
00

0

(c
)

(S
ta

te
,a

ct
io

n)
-f

re
qu

en
cy

ta
bl

e
fo

r
a

T
hu

rs
da

y
af

te
r

E
as

te
r

M
on

da
y

St
oc

k
x

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

Fr
eq

(S
)

U
p-

to
S

21
24

5
24

5
20

27
77

1
85

45
18

30
38

14
6

19
85

47
27

77
0

66
65

1
12

21
91

17
45

59
19

63
84

17
45

61
12

21
89

66
65

2
95

95
04

18
26

0
18

30
20

90
17

0
:

:
1

0
0

15
15

Fr
eq

(x
)

0
0

0
0

0
0

26
0

18
30

85
47

27
77

0
66

65
1

12
21

91
17

45
59

19
63

84
17

45
61

12
21

89
66

65
2

27
77

1
85

45
18

30
24

5
15

10
00

00
0

10.5 Case Study: Optimal Policy Around Breaks 313

optimal production policies and the order-up-to S rule. In the table Good Friday and
Easter Monday are abbreviated by GF respectively EM.

In the last column of Table 10.7 we observe that the order-up-to S rule performs
almost equally well as the optimal SDP policy. As expected, outdating and shortages
happen mostly on the Tuesday after Easter Monday. Under both strategies on aver-
age approximately 4.3 batches will outdate and stock falls on average 0.28 batches
short. The average demand over the 10-days period is on average almost 56 batches
and the average production to cover the demand over this period is roughly 60
batches. Relative outdating over the 10-days period is thus 4.3

60 = 7.2%. The shortage
rate over the 10-days period is 0.28

56 = 0.5%.

Conclusions: Results 4-Day Easter Weekend

The major conclusions over a 10-days period that includes the 4-days Easter week-
end are:

• A simple replenishment rule performs nearly optimal and results in:

– an outdating figure of only 7.2%,
– shortages to be less than 1%.

• Outdating and shortages happen mostly on the Tuesday after Easter Monday,
indicating the difficulty in anticipating a 4-days production stop when the max-
imal shelf life is only 5 days.

Table 10.7: Order-up-to S rule vs SDP policy around Good Friday and
Easter Monday

10-days period Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Total

Irregular breaks GF EM

SDP policy

batches outdated 0 0.01 0.06 −a −a 0 0.03 0.07 4.16 −a 4.34

batches short 0.01 0 0 0 0 0 0 0 0.26 0 0.28

Order-up-to S rule

Levels St 23 22 24 32 – – – – 15b 21

Goodness-of-fit 44% 75% 64% 100% – – – – 100%b 100%

batches outdated 0 0.01 0.06 −a −a 0 0.03 0.04 4.19 −a 4.33

batches short 0.01 0 0 0 0 0 0 0 0.26 0 0.28

a No outdating 5(= m) days after weekends and holidays, since production is zero
b A fixed production volume applies since all batches in stock are outdated at the end of the day

314 R. Haijema et al.

• The production levels on the Thursday before and the Tuesday after the week-
end are considerably higher than in the stationary case.

– On the Tuesday after Easter Monday a fixed production quantity applies,
since pools produced before Good Friday will not survive until Wednesday.

– Shortly after the break (from Wednesday onwards) the stationary order-up-
to S rule resumes as a very good approximation of the optimal SDP policy.

10.5.5 Conclusions: Extended SDP-Simulation Approach

Extended SDP-Simulation Approach

The SDP-Simulation approach can be applied to solve the order problem of perish-
ables with a (short) fixed shelf life. We have extended the approach such that it can
deal with (non-stationary) production breaks. It appears to be a powerful approach
for deriving an optimal stock-age-dependent (scaled) policy and for investigating
the structure such that a practical rule can be derived from it.

Results Over a Year Including Easter and Christmas

We have tested the approach on a PPP using realistic data for a single category of
demand. For the PPP under consideration even around breaks simple order-up-to
S rules apply and optimal order-up-to levels are easily read from simulation-based
frequency tables.

By combining the results from the previous sections, the following conclusions
can be drawn concerning the performance of the SDP-Simulation approach over a
year which includes the breaks during Christmas, New Year’s Day and the 4-day
Easter weekend:

• Average annual shortage = 1.1 batch = 4.2 pools <0.1%
• Average annual outdating = 9.0 batches = 36 pools <1%

Compared to the current practice the potential savings are substantial: it seems
that the current outdating figure of 15–20% can be reduced to less than 1%, while
shortages arise only a few times per year.

10.6 Discussion and Conclusions

In this chapter, an SDP-Simulation approach is extended such that it can also deal
with non-stationary periods (e.g. additional production breaks during holidays), in
a further stationary horizon. In particular, we have investigated the impact on the

Appendix: Notation 315

ordering strategy of some production breaks that occur during a year: i.e. on Good
Friday, Easter Monday, the two Christmas days and New Years Day.

The combination of Simulation with SDP allow to solve real size problems. Other
issuance policy than FIFO can be included. The complexity would increase when
including blood types, however, as argued in [5], for the Dutch case with ample
supply of whole blood, the distinction of blood types can usually be neglected.

Based on data from the Dutch blood banks (Sanguin), we draw the following
conclusions:

• Additional outdating and shortages on the day(s) after a production break are to
be accepted even under the truly-optimal SDP policy.

• An order-up-to S rule resembles the optimal policy even better on the day prior
to an additional production break than on ordinary weekdays.

• When the production break last m−1 days, the order problem on the day before
the break is a single period problems. The best order-up-to level S just before
the break is then a bit higher than the one suggested by a Newsboy equation, as
the initial stock will not survive until the next order moment.

• Simulation results over a year, including the production breaks during Christ-
mas, New Year’s Day and the 4-days Easter weekend, indicate that compared to
the current practice overall outdating and shortage figures can still be reduced
significantly:

– outdating from 15–20% to less than 1%,
– shortages from about 1% to less than 0.1%).

Acknowledgements The authors thank Cees Smit-Sibinga and Wim de Kort for supporting this
research and its implementation at the Dutch blood banks of Sanquin.

Appendix: Notation

This section describes the relation of the terminology in this chapter related to the
general notation in the book.

s = (d,x) = is the state on weekday d and stock state x with elements
xr = number of products in stock with remaining shelf life of r days
π(s) optimal policy = number of products to order on week day d

if stock state is x
c(s) EC(d,x) single period (expected) cost in state s
Vn(s) value function storing (relative) expected costs of an optimal policy

over n days

316 R. Haijema et al.

References

1. I. Adan, M. van Eenige, J. Resing, Fitting discrete distributions on the first two
moments. Prob. Eng. Info. Sci. 9(04), 623–632 (1995)

2. J.T. Blake, S. Thompson, S. Smith, D. Anderson, R. Arellano, D. Bernard, Us-
ing dynamic programming to optimize the platelet supply chain in nova scotia,
in ed. By M. Dlouhý, Proceedings of the 29th Meeting of the European Work-
ing Group on Operational Research Applied to Health Services, Prague, Czech
Republic (2003), pp. 47–65

3. M.A. Cohen, W.P. Pierskalla, Perishable inventory theory and its application
to blood bank management. Technical report, Department of Industrial Engi-
neering and Management Sciences, Northwestern University, Evanston, Illi-
nois, 1974

4. R. Haijema, Solving Large Structured markov decision problems for perishable
inventory management and traffic control. Ph.D. thesis, University of Amster-
dam - Tinbergen Institute - Amsterdam School of Economics, 2008

5. R. Haijema, J. van der Wal, N.M. van Dijk, Blood platelet production: a high-
dimensional perishable inventory problem, in Operations Research Proceed-
ings 2004, ed. By H. Fleuren, D. den Hertog, P. Kort (Springer, Berlin, 2005),
pp. 84–92

6. R. Haijema, J. van der Wal, N.M. van Dijk, Blood platelet production: opti-
mization by dynamic programming and simulation. Comput. Oper. Res. 34(3),
760–779 (2007). doi:10.1016/j.cor.2005.03.023

7. R. Haijema, N.M. van Dijk, J. van der Wal, C. Smit Sibinga, Blood platelet
production with breaks: optimization by SDP and simulation. Int. J. Prod. Econ.
121, 467–473 (2009). doi:10.1016/j.ijpe.2006.11026

8. S.M. Hesse, C. Coullard, M.S. Daskin, A.P. Hurter, A case study in platelet in-
ventory management, in Proceedings of the Sixth Annual Industrial Engineer-
ing Research Conference, Miami Beach, Florida, 1997

9. A.J. Katz, C.W. Carter, P. Saxton, J. Blutt, R.M. Kakaya, Simulation analysis of
platelets production and inventory management. Vox Sang. 44, 31–36 (1983)

10. R.E. Ledman, N. Groh, Platelet production planning to ensure availability while
minimizing outdating. Transfusion 24(6), 532–533 (1984)

11. J. McCullough, J. Undis, J.W. Allen Jr., Platelet production and inventory man-
agement, Platelet Physiology and Transfusion, in ed. By D.M. Mallory (Amer-
ican Association of Blood Banks, Washington, DC, 1978), pp. 17–38

12. S. Nahmias, Perishable inventory theory: a review. Oper. Res. 30, 680–708
(1982)

13. W.P. Pierskalla, C.D. Roach, Optimal issuing policies for perishable inventory.
Manag. Sci. 18, 603–614 (1972)

14. G.P. Prastacos, Blood inventory management: an overview of theory and prac-
tice. Manag. Sci. 30(7), 777–800 (1984)

15. M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming (Wiley, New York, 2014)

References 317

16. V. Sirelson, E. Brodheim, A computer planning model for blood platelet pro-
duction and distribution. Comput. Methods Prog. Biomed. 35, 279–291 (1991)

17. N.M. van Dijk, R. Haijema, J. van der Wal, C. Smit Sibinga, Blood platelet
production: a formal approach for practical optimization. Transfusion 49(3),
411–420 (2009). doi: 10.1111/j.1537-2995.2008.01996.x

http://dx.doi.org/10.1111/j.1537-2995.2008.01996.x

Part III
Transportation

Chapter 11
Stochastic Dynamic Programming
for Noise Load Management

T.R. Meerburg, Richard J. Boucherie, and M.J.A.L. van Kraaij

Abstract Noise load reduction is among the primary performance targets for some
airports. For airports with a complex lay-out of runways, runway selection may then
be carried out via a preference list, an ordered set of runway combinations such that
the higher on the list a runway combination, the better this combination is for re-
ducing noise load. The highest safe runway combination in the list will actually be
used. The optimal preference list selection minimises the probability of exceeding
the noise load limit at the end of the aviation year. This paper formulates the prefer-
ence list selection problem in the framework of Stochastic Dynamic Programming
that enables determining an optimal strategy for the monthly preference list selec-
tion problem taking into account future and unpredictable weather conditions, as
well as safety and efficiency restrictions. The resulting SDP has a finite horizon (avi-
ation year), continuous state space (accumulated noise load), time-inhomogeneous
transition densities (monthly weather conditions) and one-step rewards zero. For
numerical evaluation of the optimal strategy, we have discretised the state space. In
addition, to reduce the size of the state space we have lumped into a single state
those states that lie outside a cone of states that may achieve the noise load restric-
tions. Our results indicate that the SDP approach allows for optimal preference list
selection taking into account uncertain weather conditions.

Key words: Noise load management, Stochastic dynamic programming, Airport,
Runway preference list selection

T.R. Meerburg • M.J.A.L. van Kraaij
Air Traffic Control the Netherlands, Schiphol, the Netherlands
e-mail: t.r.meerburg@lvnl.nl; m.vankraaij@lvnl.nl

R.J. Boucherie (�)
Stochastic Operations Research, University of Twente, Enschede, The Netherlands
e-mail: r.j.boucherie@utwente.nl

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 11

321

mailto:t.r.meerburg@lvnl.nl
mailto:m.vankraaij@lvnl.nl
mailto:r.j.boucherie@utwente.nl

322 T.R. Meerburg et al.

11.1 Introduction

Safety and efficiency are two main aspects that determine capacity and charac-
terise the service provided by air traffic control centers worldwide. Protection
of the environment—including pollution, smell, third party risk and especially
noise—increasingly influences airport operations. Airports where noise load is taken
into account include Amsterdam Airport Schiphol, Logan International Airport in
Boston and John F. Kennedy International Airport in New York. In the Netherlands,
the Dutch Aviation Act restricts runway and route usage, limits the total noise load
produced by aircraft during one aviation year, and enforces a certain distribution of
noise load over enforcement points in the direct surroundings of Amsterdam Airport
Schiphol [8]. If the cumulative noise load in an aviation year exceeds its maximum,
the civil aviation authority may impose severe sanctions, such as fines, temporary
closure of a runway or a reduction in the number of aircraft movements. Hence,
noise load needs to be managed.

For airports with a complex lay-out of runways not all runway combinations are
feasible due to safety and efficiency restrictions, e.g., due to weather criteria. When
more than one runway combination is available, at Schiphol the one is utilised that
is most preferred with respect to noise load management [1]. This paper proposes
an efficient noise load management scheme that is based on preference lists: an
ordered list of runway combinations that can be used under different weather condi-
tions. Each preference list has its main contribution to the noise load in a particular
part of the vicinity of the airport due to the ordering of runway combinations. Upon
selection of a preference list, in daily operation the safe runway combination that
is highest on the list is used. Each month, based on the realised noise load, flight
schedules, and available runway combinations, an optimal preference list is gener-
ated that is expected to produce the most balanced accumulation of noise load with
the aim to avoid exceeding noise load limits while taking into account uncertain
future weather conditions.

This paper formulates the preference list selection problem in the framework
of Stochastic Dynamic Programming [10]. The resulting SDP has a finite horizon
(the aviation year), continuous state space (the accumulated noise load) and time-
inhomogeneous transition densities (the monthly weather conditions). The optimal
strategy minimises the probability of exceeding the noise load limit at the end of the
aviation year. To cast the preference list selection problem into the SDP framework,
for each month and each preference list we have evaluated the distribution of the
accumulated noise load given the weather conditions. As we are interested in the
probabilities of exceeding the noise load limit, the one step rewards are zero. To
enforce the Markov structure, we have assumed that the accumulated noise loads
in subsequent months are independent random variables. For numerical evaluation
of the optimal strategy for preference list selection, we have discretised the state
space. In addition, to reduce the size of the state space we have lumped into a single
state those states that lie outside a cone of states that may achieve the noise load
restrictions. In our case study for Schiphol, we compare the optimal preference list
obtained via our SDP approach with current heuristic approaches and we investigate
the influence of the number of decision epochs.

11.2 Noise Load Management at Amsterdam Airport Schiphol 323

The paper is organised as follows. Section 11.2 presents the noise load man-
agement problem. Our SDP framework is described in Sect. 11.3. Implementation
issues due to e.g. the size of the problem are discussed in Sect. 11.4. Section 11.5
presents a feasibility study. Finally, Sect. 11.6 provides conclusions and recommen-
dations.

11.2 Noise Load Management at Amsterdam Airport Schiphol

Noise load is a main steering parameter for the selection of preferred runway combi-
nations at Amsterdam Airport Schiphol. To monitor the realised noise load a number
of enforcement points is placed in the vicinity of Schiphol with locations chosen to
represent an appropriate noise contour surrounding the airport relevant for the pop-
ulation in its vicinity, see Fig. 11.1. For each aircraft, the noise load contribution
to these enforcement points—expressed in A-weighted decibels dB(A), which is an
expression for the relative loudness of sounds in air as perceived by the human ear—
is calculated based on its flight path, and added to the already realised noise load
[13]. In principle, excess in a single enforcement point in an aviation year (Novem-
ber 1st–October 31st) results in government measures irrespective of the amount of
dB(A) by which the noise limit is exceeded. We have considered eight preference
lists that are available for implementation at Schiphol consisting of lists of runway
combinations per period of the day. Different preference lists distribute noise load
differently, so that selection of preference lists is used as a steering measure to bal-
ance the noise load over the enforcement points, or since weather conditions are
uncertain, to minimise the risk of exceeding the noise load limit in one or more
enforcement points.

Schiphol has five major runways, that allow for different runway combinations.
The supply of inbound and outbound traffic varies over time, resulting in several
inbound peaks, outbound peaks, intermediate-periods and a night-period. For these
different periods, different runway combinations are utilised. During peak periods
three runways are in use. During an inbound peak, arriving traffic is handled on two
runways and departing traffic on one. During an outbound peak, arriving traffic is
handled on one runway and departing traffic on two. During off-peak and night peri-
ods one runway is in use for arriving traffic and one for departing traffic. A complete
description of the preference lists is omitted. For details, see [9]. The primary run-
ways for the highest preference position on the lists and the enforcement points that
are expected to be affected most by the implemented preference list are shown in
Table 11.1. For a general idea, preference lists 1–4 contribute relatively more in the
northern enforcement points, preference lists 5–8 more in the southern points, since
the inbound runway combination with the highest preference contribute in those
designated directions. Details of preference list 1 are provided in the Appendix.

324 T.R. Meerburg et al.

Fig. 11.1: 35 enforcement points and runway layout of Schiphol

Pref. Inbound peak Outbound peak Largest exp. contrib.
list Dep. Arrival Departure Arr. enforcement points

1 36L 06 36R 36L 36C 06 18 19 8 9 21
2 36L 06 36R 36L 09 06 21 20 19 22 9
3 36L 06 36R 24 36L 27 22 21 9 8 7
4 36L 06 36R 36L 09 06 21 20 19 22 23
5 24 18R 18C 24 18L 18R 5 4 19 25 31
6 24 18R 18C 24 18L 18R 5 4 19 31 22
7 24 18R 18C 24 18L 18R 21 20 19 22 25
8 24 18R 18C 24 18L 18R 21 20 19 5 4

Table 11.1: Available preference lists (primary runways)

11.3 SDP for Noise Load Optimisation 325

The control strategy used until 2006 uses the average monthly weather con-
ditions, obtained from data collected since 1971. Taking into account the cur-
rent noise load realisation, a preference list is determined. This heuristic and its
decision-making process of a stylised problem is discussed in [4]. It takes into ac-
count the expected noise load, but does not take into account (i) a possible change
in future weather conditions, i.e., the probability distribution of the weather devel-
opment, and (ii) the possible adaptation of the preference list due to these weather
developments. In short, the heuristic obtains a single optimal preference list for
each subsequent month in the remaining decision period based on constant (aver-
age) weather conditions, and the current noise load realisation. In this paper, we re-
cast the preference list selection problem into the framework of Stochastic Dynamic
Programming that each month generates an optimal preference list that takes into
account (i) the probabilistic nature of the weather conditions, and (ii) the resulting
possibly different preference lists used at subsequent decision epochs.

11.3 SDP for Noise Load Optimisation

Preference lists are selected each month based on the realised noise load at the en-
forcement points, the available runway combinations, and the weather conditions in
the remaining part of the aviation year. In an SDP setting, the realised noise load at
the beginning of month n (the decision epoch) is the state of the system at time n.
A decision at time n is the selection of a preference list from all possible prefer-
ence lists, i.e., from all available ordered sets of available runway combinations.
For each decision, the evolution of the noise load in month n is determined by the
weather conditions. As these are uncertain, this evolution is characterised by transi-
tion probabilities. The goal is to select—in accordance with the monthly regulation
decisions—each month, in each state, a preference list such that the probability of
exceeding the noise load limit at one or more enforcement points at the end of month
12 (the end of the aviation year) is minimised.

In a slightly more general setting we have the following mathematical charac-
terisation of our decision process, that also allows for investigation of additional
decision epochs and an arbitrary set of enforcement points. Let R+ = [0,∞), the
non-negative real numbers, K the number of enforcement points, and N the number
of decision epochs. Further, let Xn denote the random variable recording the noise
load realisations at the enforcement points in period or stage n (between decision
epoch n and n+1), and let

326 T.R. Meerburg et al.

i = (i1, . . . , iK) ∈ RK
+ : the state with a noise load realisation ik in enforcement

point k, k = 1, . . . ,K,
S⊆ RK

+, Sn ⊆ RK
+ : the set of noise load realisations, and those at decision

epoch n
Dn : the set of preference lists available at decision epoch n,

n = 1, . . . ,N, that may vary over the months due to
e.g. planned maintenance,

Pn,d(x) = P(Xn ≤ x|d) : the probability distribution of the noise load contribution
in stage n when preference list d is selected at stage n,

pn,d(x) : its density,
fn(i) : the minimal probability of exceeding the noise load limit

at the end of period N when the noise load realisation
at stage n is i.

Note that Pn,d(·) does not depend on the noise load realisation, but only on the
month and selected preference list. This is due to the weather conditions that vary
over the months of the year. The function fn(i) satisfies the following recursion

fn(i) = min
d∈Dn

[∫
fn+1(x+ i)pn,d(x)dx

]
, i ∈ Sn, (11.1)

where x+ i is component wise addition of x and i. To see this, note that fn+1(x+ i) is
the minimal probability of exceeding the noise load limit at the end of period N when
the noise load realisation at stage n+ 1 is x+ i (that is when the optimal decision
is selected starting at stage n+1), and that, for given d ∈ Dn, pn,d(x) is the density
of the noise load contribution in period n, and therefore the integral

∫
fn+1(x+ i)

pn,d(x)dx is the probability of exceeding the noise load limit at the end of period N
following decision d taken at stage n. As a consequence, the minimal probability of
exceeding the noise load limit starting at stage n is obtained by selecting the optimal
decision d ∈ Dn. The optimal control strategy π = (π1, . . . ,πN) is a set of decision
rules πn : Sn → Dn that assigns an optimal decision d ∈ Dn to each state i ∈ Sn in
stage n, n = 1, . . . ,N.

The recursion (11.1) is clearly a backward recursion: given fn+1(i) is known, the
optimal decision that minimises the integral can be determined. Thus, the recursion
requires the starting values for fN+1(i):

fN+1(i) =
{

0 if i≤ Lmax

1 if i �≤ Lmax
i ∈ SN+1, (11.2)

where the inequalities are component wise, that is i≤ Lmax if and only if ik ≤ Lmax,k

for all enforcement points k, and i �≤ Lmax when there is some k for which the noise
load restriction is violated. The minimum probability of exceeding the noise load
limit in a year is f1(0), and once f1(0) is determined, also the optimal control strat-
egy is determined.

Our SDP has the following characteristics:

• it has finite horizon as it models a single aviation year,

11.4 Numerical Approach 327

• the state space is continuous since the states represent the accumulated noise
load measured in dB(A),

• the transition densities are time-inhomogeneous since the weather conditions
depend on the specific months,

• the one-step rewards are zero since our optimal strategy minimises the proba-
bility of exceeding the noise load limit at the end of the aviation year.

Determining the optimal strategy requires the transition probabilities Pn,d(x). The
formulation of our optimisation problem involves the assumption that the contribu-
tions of the noise load in subsequent months are independent random variables. This
is clearly an assumption, since the weather conditions today are perhaps the best in-
gredients for a forecast for the weather tomorrow. However, on a monthly scale
these effects of dependence are marginal. Thus, we have identified all ingredients
for determining the optimal control strategy π = (π1, . . . ,πN).

Some numerical issues remain. For example, determining the empirical distribu-
tion Pn,d(x) or its density pn,d(x) is far from obvious. Below, we will introduce a
discretised approach. This discretised approach also induces a discretised version of
the optimisation problem (11.1).

11.4 Numerical Approach

Multi-dimensional continuous-state dynamic programming problems are a huge
challenge, in spite of the growth in computing power. The number of enforcement
points and decision epochs prohibits an exact solution within a reasonable amount
of computing time. Therefore, we propose a discrete approximation. This approxi-
mation involves discretisation of the state space, that in turn also calls for a discreti-
sation of the transition probabilities.

11.4.1 Transition Probabilities

The monthly noise load contribution consists of a large number of small contribu-
tions by different aircraft. These noise load contributions depend on the weather
conditions, which are highly unpredictable. The distribution further depends on the
preference list d and on the month (since supply of traffic and weather conditions
differ between seasons) represented by stage n. This brings us clearly in a setting
that allows us to invoke the Central Limit Theorem, implying that under preference
list d the monthly noise load contribution Xn has a multivariate normal distribution
with K variates (enforcement points), N (μn,d ,Σn,d), with μn,d ∈ RK the expected
values of the K variates (the expected noise load contribution at the enforcement
points), and Σn,d ∈ RK×K their covariance matrix.

328 T.R. Meerburg et al.

11.4.2 Discretisation

To facilitate numerical evaluation of the risks of exceeding the noise load limits,
we have discretised the state space S by forming a grid with distance ε among grid
points in each dimension, i.e., we have divided the noise load in intervals of width
ε . Selecting ε we have to balance between sufficient accuracy (small ε) and com-
putational efficiency (large ε). To this end, in our numerical experiments below we
have selected a discretisation step of 2% (noise load relative to its limit), that is, for
enforcement point k the noise load interval (0,Lmax,k) is divided into 50 intervals
of equal width. The appeal of this discretisation is that it reduces the continuous
problem to a problem with a finite number of states that can be solved numerically
and approximates the solution of the SDP [6].

We will take the grid points to be the center of the interval. A grid point î =
(î1, . . . , îK) ∈ NK

+ corresponds to a noise load realisation in the hypercube (îkε −
ε/2, îkε+ε/2), k = 1, . . . ,K. The state space Ŝ = {î ·ε : î∈NK

+} is the discretised set
of noise load realisations. All states with noise load realisation exceeding the limit
at some enforcement point may be lumped into a single state, since the probability
of exceeding is 1 in such states irrespective of the number of enforcement points
exceeding the limit, and the amount of overshoot.

Discrete transition probabilities are obtained by integrating the transition density
pn,d(x) over the discretisation increment:

P̂n,d(î) =
∫ î+ ε

2

î− ε
2

pn,d(x)dx. (11.3)

Notice that this is a K-dimensional integral, that can numerically readily be evalu-
ated via Monte-Carlo summation, see e.g. [5].

Let f̂n(î) be the minimal probability of exceeding the noise load limit at the end
of period N when the noise load realisation at stage n is î in the discretised setting.
Clearly, f̂n(î) satisfies the discretised equivalent of (11.1):

f̂n(î) = min
d∈Dn

⎡

⎣ ∑
{x|x+î∈Ŝ}

f̂n+1(x+ î) · P̂n,d(x)

⎤

⎦ , î ∈ Ŝ. (11.4)

The recursion requires starting values f̂N+1(î) by analogy with those of the contin-
uous state problem.

11.5 Numerical Results

This section presents a feasibility study of our optimization approach with actual
traffic and weather data that includes a comparison to the original heuristic, and an
investigation into the possible benefit of an increased number of decision epochs.

11.5 Numerical Results 329

The examples used in this section are for illustration purposes only. Consequently,
results presented in this section cannot be used for other purposes like commercial-
ization and decision-making.

We present a series of experiments that closely resemble the actual behaviour of
the system for Schiphol. The input parameters are estimated from data generated in
DAISY [3], an airport environment toolkit developed by Frontier Information Tech-
nologies BV that produces values for noise load in enforcement points given a vol-
ume of traffic, a preference list, a period, and weather conditions. Simulations for all
combinations of N stages with |D| preference lists were performed using the since
1971 recorded meteorological data. From these simulations we have obtained an es-
timate for the mean μn,d and covariance matrix Σn,d for all combinations of stage n
and preference list d for a year of uninterrupted operation (hence, no runway closure
due to maintenance or other restrictions), with runway and route configurations and
traffic supply scenario equivalent to that of 2006 (436,731 flight movements).

Research leading to this paper has been intended as a feasibility study for an
improved preference list selection process. As a consequence, an extensive and op-
timised numerical program has not been developed. We have implemented our algo-
rithm in the numerical computing environment Matlab [12]. The running time of our
algorithm is exponential in the number of enforcement points. Therefore, we have
restricted our analysis to sub-models containing three or four enforcement points.
Our program is implemented on a 1.7 GHz PC, resulting in running times of a couple
of days for four enforcement points with a discretisation interval of 2%. Given these
limitations, our results indicate that our approach is indeed able to obtain preference
lists with low probabilities of exceeding noise load limits.

11.5.1 Probability of Exceeding the Noise Load Limit

This section studies the optimal control strategy based on a representative set of
three enforcement points. Selecting subsets of enforcement points may introduce
undesired behaviour in the other enforcement points, e.g., the optimal preference
list may completely avoid these three points distributing noise load over the re-
maining points. Therefore, we have selected eight different representative sets of
enforcement points consisting of enforcement points that turn out to be most sen-
sitive for noise load excess and covering different directions relative to Schiphol.
Furthermore, we have restricted the available preference lists to the eight lists of
Table 11.1 capturing the main contribution to the modeled enforcement points.

Table 11.2 provides for each set of enforcement points the probability of exceed-
ing the noise load restriction, as well as the preference list in month 1 (November).
Note that a complete description of the optimal strategy π is rather involved, since
it requires for each realised noise load and each month a specification of the prefer-
ence list.

330 T.R. Meerburg et al.

Noise load management with N = 12

Enforcement Probability Preference list
points of exceeding month 1

5 19 21 0.1010 1
5 21 25 0.0368 5
9 19 25 0.0151 3
9 22 31 0.0847 5
18 19 21 0.1626 1
18 19 25 0.0267 3
18 19 31 0.0234 3
19 21 31 0.1519 1

Table 11.2: Results for optimal strategy

As a sanity check, for each optimal strategy (that is the strategy corresponding to
the set of enforcement points), we have also considered the noise load contribution
at the remaining 32 enforcement points when implementing the optimal strategy
obtained for three enforcement points. This has shown only a slight excess in some
non-modeled enforcement points, which leads us to believe that our subsets were
well-chosen in accordance with the actual behavior of our system. Moreover, our
algorithm seems to capture the behavior of the noise load problem and yields a
good policy.

11.5.2 Comparison with the Heuristic

This section provides a comparison between our algorithm and the current heuristic
in a typical situation occurring towards the end of an aviation year when a small
number of enforcement points is at risk of exceeding the noise load limits, while the
other points are far from reaching that limit. We will first provide some insight in
the difference between the strategies, then compare our strategy with the heuristic
described in [4], and finally investigate some possible trade-offs in sub-optimal pref-
erence list selection to allow for a selection of preference lists that better matches
the requests from e.g. air lines.

The optimal decision π ′ of the heuristic that takes into account the expected noise
load only can also be obtained from our algorithm when we reduce the state spaces S
to only contain the mean noise load realisation. Our algorithm takes into account all
possible future noise load realisations. Now consider a scenario with N = 4 decision
epochs, and a set of noise load limits in three modeled enforcement points 9, 22 and
31 that all have consumed 68% of their noise load limits at the time of month 8,
leaving 32% to be allocated in the remaining 4 months, and the ‘certainty’ that
all other enforcement points will not exceed. Table 11.3 below gives the optimal
control strategy π (note that π1 = 5), and its probability of exceeding the noise load

11.5 Numerical Results 331

limit. The control strategy for the current heuristic is π ′ = π(1) = (5,1,5,1). Other
heuristic strategies π(2)–π(6) using the preference lists 1 and 5 from π(1) are also
evaluated to test for optimal selection of the ordering of preference lists from the
heuristic π ′. Clearly, π substantially outperforms all these heuristics.

Noise load management with N = 4

Control Probability
strategy of exceeding

π 5 π2 π3 π4 0.1113
π(1) 5 1 5 1 0.2705
π(2) 5 5 1 1 0.2747
π(3) 5 1 1 5 0.2412
π(4) 1 1 5 5 0.2433
π(5) 1 5 1 5 0.2428
π(6) 1 5 5 1 0.2773

Table 11.3: Results for optimal strategy and current heuristic

In addition to obtaining an optimal control strategy and corresponding probabil-
ity of exceeding the noise load restriction, our algorithm also allows for fast evalu-
ation of proposed changes to the optimal strategy. Deliberate sub-optimal decisions
can be made to satisfy interests and demands of other aviation parties. Table 11.4
provides results when preference list 2 is forced for a number of months and the op-
timal strategy is used for the remaining months. As can be observed from the table,
using preference list 2 for 1 month results in a doubling the probability of exceeding
the noise load limits. Our algorithm allows for a trade-off of the results of deviating
from the optimal strategy.

11.5.3 Increasing the Number of Decision Epochs

It may be beneficial to increase the frequency of preference list updates when this
considerably affects the probability of exceeding the noise load limits. A trade-off
has to be made between the overhead of preference list modification, and the reduc-
tion in the probability of exceeding the noise load limits. This trade-off is beyond
the scope of this paper. As we see from Table 11.5, the probability of exceeding
the noise load limits is significantly lowered by doubling the number of decision
epochs, recall Table 11.2.

332 T.R. Meerburg et al.

Noise load management with N = 4

Control Probability
strategy of exceeding

π π1 π2 π3 π4 0.1113

π(7) 2 π(7)
2 π(7)

3 π(7)
4 0.2037

π(8) 2 2 π(8)
3 π(8)

4 0.4518

π(9) 2 2 2 π(9)
4 0.7340

π(10) 2 2 2 2 0.9744

π(11) π(11)
1 2 2 2 0.8391

π(12) π(12)
1 π(12)

2 2 2 0.4856

π(13) π(13)
1 π(13)

2 π(13)
3 2 0.2567

Table 11.4: Effect of forcing a decision for a number of months

Noise load management with N = 24

enforcement Probability Improvement
points of exceeding w.r.t. N = 12 (%)

5 19 21 0.0397 61
5 21 25 0.0249 32
9 19 25 0.0042 72
9 22 31 0.0293 65
18 19 21 0.0141 13
18 19 25 0.0221 17
18 19 31 0.0198 15
19 21 31 0.1298 15

Table 11.5: Effect of doubling the number of decision epochs

11.6 Discussion

The optimal selection of preference lists is of utmost importance for efficient al-
location of Schiphol’s capacity considering noise load restrictions. To facilitate a
decision between dynamic preference list selection and a fixed preference list, the
benefit of optimal preference list selection must be quantified. To this end, this paper
has described a monthly preference list selection process, that takes into account the
probabilistic nature of the weather and resulting possibly different preference lists
used at subsequent decision epochs. Results from our feasibility study indicate that
our algorithm yields an adequate preference list selection strategy and allows for
discrimination among different control strategies. As such, the effect of decisions
deviating from the optimal strategy has been investigated. The operational feasibil-
ity of a monthly change to the preference list was not part of this study.

Appendix 333

Stochastic Dynamic Programming adequately captures the structure of the deci-
sion problem as it allows for decisions under uncertainty for a finite horizon (yearly)
problem. Although SDP seems to be the adequate approach, it also has a major
drawback in that it is highly sensitive to the state space explosion problem mak-
ing SDP too large to handle numerically. To alleviate this problem, concepts from
the theory of huge Markov chains may be invoked to improve efficiency. Alter-
natively, other approximation methods and heuristics, such as neuro-dynamic pro-
gramming [2], reinforcement learning [11] or discrete event simulation [7] may be
used. A detailed study of the applicability of such methods is beyond the scope
of this feasibility study that has shown that our Stochastic Dynamic Programming
based algorithm allows for optimal preference list selection taking into account un-
certain weather conditions.

Preference lists are used at several airports with a more complex lay-out of run-
ways. Airports with layout of similar complexity as Schiphol’s layout, such as Lo-
gan International Airport in Boston and John F. Kennedy International Airport in
New York, also make use of a preference list to control noise load in its surround-
ings. Since noise abatement is becoming increasingly important in the aviation sec-
tor, more airports may develop similar noise load management procedures to control
noise load in their environments. Due to the versatility of the proposed model, it can
easily be implemented for any airport.

Appendix

Description of Preference Lists

During peak periods three runways are in use. During an inbound peak, arriving
traffic is handled on two runways and departing traffic on one. During an outbound
peak, arriving traffic is handled on one runway and departing traffic on two. During
off-peak and night periods one runway is in use for arriving traffic and one for
departing traffic.

For a general idea, preference lists 1 to 4 contribute relatively more in the north-
ern enforcement points, preference lists 5 to 8 more in the southern points, since
the inbound runway combination with the highest preference contribute in those
designated directions. Noise load contributions of these variations are similar, but
may avoid excessive contribution in a critical enforcement point. As an illustration,
preference list 1 is provided below. Note that the first row of this list is included in
Table 11.1. For details, see [9].

334 T.R. Meerburg et al.

Preference list 1 contributes relatively more in the northern enforcement points.

Preference list 1

Inbound peak Outbound peak Off peak Night period
Nr. Dep. Arr. Dep. Arr. Dep. Arr. Dep. Arr.

1 36L 06 36R 36L 36C 06 36L 06 36L 06
2 24 18R 18C 24 18L 18R 24 18R 24 18R
3 18L 18R 18C 18L 18C 18R 18C 18R 18C 18R
4 36L 36R 36C 36L 36C 36R 36L 36C 36L 36C
5 24 27 18R 36L 09 06 09 18R 06 06
6 24 18R 22 24 36L 27 09 06 24 18C
7 18L 18R 22 24 18L 27 24 27 24 27
8 09 06 09 24 27 27 36L 27 36L 27
9 36L 06 36L 06 24 24 24 24

10 24 18R 24 18R 27 27 09 09
11 18L 18R 18L 18R 09 09 06 06
12 36L 36R 36L 36R 24 22 09 18R
13 09 18R 09 18R 06 06
14 09 06 09 06
15 24 27 24 27
16 36L 27 36L 27
17 24 22 24 22
18 27 27 27 27
19 09 09 09 09
20 24 24 24 24
21 06 06 06 06

Notation

i = (i1, . . . , iK) ∈ RK
+ The state with a noise load realisation ik in enforcement

point k, k = 1, . . . ,K,
S⊆ RK

+, Sn ⊆ RK
+ The set of noise load realisations, and those at decision

epoch n
Dn The set of preference lists available at decision epoch n,

n = 1, . . . ,N, that may vary over the months due to
E.g. planned maintenance,

Pn,d(x) = P(Xn ≤ x|d) The probability distribution of the noise load contribution
in stage n when preference list d is selected at stage n,

pn,d(x) Its density,
fn(i) The minimal probability of exceeding the noise load limit

at the end of period N when the noise load realisation
at stage n is i

References 335

References

1. Aeronautical Information Publication, the Netherlands, http://www.
ais-netherlands.nl

2. D.P. Bertsekas, J.N. Tsitsiklis, Neuro-Dynamic Programming (Athena Scien-
tific, Belmont, 1996)

3. Frontier Information Technologies B.V., http://www.frontier.nl
4. S.P. Galis, M.A. Brouwer, T. Joustra, Optimization of yearly airport

capacity within noise limits at Schiphol Airport, in The 33rd Interna-
tional Congress and Exposition on Noise Control Engineering, 2004,
http://www.schiphol.nl/media/portal/$ $scholieren$ $studenten/pdf/pdf$
$files/noise$ $management$ $v1$ $m56577569830678617.pdf

5. A. Genz, Numerical computation of the multivariate normal probabilities.
J. Comput. Graph. Stat. 1, 141–150 (1992)

6. H.J. Kushner, P. Dupuis, Numerical Methods for Stochastic Control Problems
in Continuous Time (Springer, New York, 2001)

7. A.M. Law, W.D. Kelton, Simulation Modeling and Analysis, 2nd edn.
(McGraw-Hill, New York, 1991)

8. Luchthavenverkeerbesluit Schiphol – Besluit van 26 November 2002, tot
vaststelling van een luchthavenverkeerbesluit voor de luchthaven Schiphol,
http://www.verkeerenwaterstaat.nl/Images/Luchthavenverkeerbesluit2002$
$tcm163-90970$ $tcm195-162956.pdf

9. T.R. Meerburg, Noise load management at Schiphol – a stochastic dynamic ap-
proach. MSc Thesis, Applied Mathematics, University of Twente (2006), http://
wwwhome.math.utwente.nl/∼boucherierj/MeerburgMScthesis.pdf

10. M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming (Wiley, New York, 1994)

11. R.S. Sutton, A.G. Barto, Reinforcement Learning (MIT Press, Cambridge,
1998)

12. The MathWorks, Inc., http://www.mathworks.com
13. H.M.M. van der Wal, P. Vogel, F.J.M. Wubben, Voorschrift voor de berekening

van de Lden en Lnight geluidbelasting in dB(A) ten gevolge van vliegverkeer
van en naar de luchthaven Schiphol. NLR-CR-2001-372, National Aerospace
Laboratory NLR (2001)

http://www.ais-netherlands.nl
http://www.ais-netherlands.nl
http://www.frontier.nl
http://www.schiphol.nl/media/portal/$_$scholieren$_$studenten/pdf/pdf$_$files/noise$_$
http://www.schiphol.nl/media/portal/$_$scholieren$_$studenten/pdf/pdf$_$files/noise$_$
management$_$v1$_$m56577569830678617.pdf
http://www.verkeerenwaterstaat.nl/Images/Luchthavenverkeerbesluit2002$_$tcm
http://www.verkeerenwaterstaat.nl/Images/Luchthavenverkeerbesluit2002$_$tcm
163-90970$_$tcm195-162956.pdf
http://wwwhome.math.utwente.nl/~boucherierj/MeerburgMScthesis.pdf
http://wwwhome.math.utwente.nl/~boucherierj/MeerburgMScthesis.pdf
http://www.mathworks.com

Chapter 12
Allocation in a Vertical Rotary Car Park

M. Fackrell and P. Taylor

Abstract We consider a vertical rotary car park consisting of l levels with c park-
ing spaces per level. Cars arrive at the car park according to a Poisson process, and
if there are parking spaces available, they are parked according to some allocation
rule. If the car park is full, arrivals are lost. Cars remain in the car park for an expo-
nentially distributed length of time, after which they leave. We develop an allocation
algorithm that specifies where to allocate a newly-arrived car that minimises the ex-
pected cumulative imbalance of the car park. We do this by modelling the working
of the car park as a Markov decision process, and deriving an optimal allocation
policy. We simulate the operation of some car parks when the policy decision mak-
ing protocol is used, and compare the results with those observed when a heuristic
allocation algorithm is used.

Key words: Rotary car park, Markov decision process

12.1 Introduction

In large modern cities throughout the world, because of the high cost of land and
the increasing use of motor vehicles, the problem of where to park cars presents
a significant challenge for urban planners. One solution has been to build multi-
storey car parks, thereby greatly increasing the number of cars parked per square
metre of footprint. However, despite this, valuable space is taken up with access
ramps, head space, and lifts and stairs. Also, since drivers park their cars themselves,
minor accidents occur and driver safety is an issue. Multi-storey car parks must be

M. Fackrell (�) • P. Taylor
School of Mathematics and Statistics, University of Melbourne, VIC 3010, Australia
e-mail: fackrell@unimelb.edu.au; taylorpg@unimelb.edu.au

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 12

337

mailto:fackrell@unimelb.edu.au
mailto:taylorpg@unimelb.edu.au

338 M. Fackrell and P. Taylor

adequately ventilated to cater for exhaust fumes, and their construction costs are
very high since such structures need to be made with reinforced concrete and steel.

Another solution that enables cars to be parked more tightly is an automated (car)
parking system (APS), see Wikipedia [13], [14]. Here, cars are moved into position
by the driver or attendant at the entrance to the car park, and are then mechanically
moved or stacked into a vacant space. In an APS damage to cars and injuries to
drivers are virtually eliminated, and ventilation is no longer a problem since cars are
not driven into position. Also, construction costs per car are reduced as cars can be
packed much more tightly. A case study by Monahan [6] concluded that building
a freestanding above grade (ground) multi-storey car park with 203 car spaces and
overall surface area 8387 m3 costs $29,600 per space, whereas an APS with 217 car
spaces and overall surface area 5409 m3 costs $28,170 per space. Wikipedia [13]
suggested that the saving per space is even greater for APSs when they are built
below building and below grade (ground).

The first known APS was built in Paris in 1905 at the Garage Rue de Ponthieu,
where a lift moved cars to a level where they were parked by an attendant. From
the 1920s onwards the paternoster (see Wikipedia [15]) system was used. The pa-
ternoster APS was much like a vertical ferris wheel where cars were parked in a
carriage and then moved upwards so the next carriage was ready to receive another
car. A Google search for “vertical rotary car park” brings up links to videos on
YouTube (see, for example, [17–21]) and numerous images of such car parks and
their variants.

YouTube [18] shows a video of a small vertical rotary car park in operation. Park-
matic, the manufacturer, make car parks that cater for seven, eight, ten, or twelve
vehicles. In the video we see a man driving onto a turntable in front of the car
park’s entrance. He then exits his car and a control console enables him to rotate
the turntable so that the car is now aligned with the entrance. Next he reenters his
vehicle and drives onto the carriage where the car will be parked. He then exits the
car, returns to the console and keys in a code, and the carriage moves upwards to
allow an empty carriage to be positioned at the entrance ready for the next car. In
order to retrieve his car, he enters the same code, and the carriage returns the car to
the entrance/exit position taking the shortest distance by rotating either clockwise or
anticlockwise. The man then enters his car and backs out onto the turntable and re-
turns to the console to rotate the turntable so the car can be positioned to drive away.
There are safety features built into the system including sensors which prohibit the
driver entering the car park when the carriages are moving, and an emergency stop
button. The system can also be reset from the console. In the video YouTube [19]
an animation of a much larger vertical rotary car park in operation is shown. The
manufacturer is SimPark Infrastructure.

Although the car park by Revo-park depicted in the animated video YouTube
[17] is not strictly a vertical rotary car park as described above, it is a multi-story
mechanised car park that stacks cars. The car park is a cylindrical structure of ten
levels where each level can park 50 cars. The levels may be above or below ground.
Each level of the car park consists of three concentric sections. The outer circular
section, being the largest, is where most of the cars are parked. In the middle section
a rotating ring allows cars to be moved horizontally around the car park at the same
level. Cars may also be parked in this section. The inner section houses a vertical

12.1 Introduction 339

conveyer which allows cars to be moved to other levels. Revo-park also manufac-
tures rectangular car parks which, at each level, consist of a row of parking spaces,
a linear mechanism which moves cars horizontally, and a row of vertical conveyers.
Apartment or office blocks can be built around such rectangular car parks. PTV Vis-
sim (see FATA Automation, Inc., YouTube [20]) provide animated videos of similar
APSs.

There are a number of patents describing various APSs. Buch [3] proposed a
system that consisted of a number levels arranged around a central shaft which con-
tained a helical mechanism that would lift the cars to the appropriate level to be
parked. In Beretta [2] the car park had at least one vertical elevator to take the cars
to levels, and at least two “trolley” mechanisms to maneuver the car horizontally into
a parking space. In Schween [9] the APS could park and retrieve multiple vehicles
simultaneously. Each level consisted of rails which could move cars in a longitudi-
nal and transverse manner, and a vertical elevator that moves cars between levels.
Added features included the videotaping of arriving cars to protect against fraudu-
lent insurance claims, and a control mechanism that measures the entering vehicle’s
size and rejects those that are over-sized. Trevisani [11] and Vita [12] both proposed
APSs that had a central shaft with car spaces located radially around it at a number
of levels. Vita [12] had an inner ring which could move cars horizontally around a
level until a space was found in an outer ring where the car was parked, similar to
the Revo-park system (YouTube [17]) described above. On the other hand, in Tre-
visani [11], the car park only had one ring where cars could be parked, the central
shaft mechanism rotating to align cars with empty spaces.

In the academic literature there is little concerning the operation of vertical rotary
car parks. Gomes [4] developed a model that optimised the utilisation of a parking
system (not necessarily a vertical rotary car park) by taking into consideration the
stochastic demand for spaces. Hwang and Lee [5] analysed a vertical rotary car park
and calculated the expected parking time by treating the car park as an M/M/n/n
queue where n was the number of parking levels, each accommodating at most one
car.

We note here that for all of these car parking systems, there is no mention of any
algorithm or process with which to park cars so that the movement of the vertical
conveyers and horizontal platforms is minimised in order to reduce wear and tear
on the mechanisms. It appears that cars are merely parked in an available space.

Consideration of how to allocate cars to parking spaces in order to minimise the
distance the mechanisms move (or, as in our case below, to minimise the imbalance
of the car park) is the main focus of this paper.

We model a vertical rotary car park of the paternoster type with l levels and c
cars-per-level with an infinite-horizon Markov decision process (MDP). The objec-
tive function to be minimised is a measure which combines the imbalance of the
car park with the distance it turns in order to accommodate arriving cars. From the
MDP we calculate a policy which indicates where an arriving car should be parked,
given the current configuration of cars, that minimises the objective measure over
the (infinite) course of the operation of the car park. After the policies have been
calculated for some examples, we simulate the running of the car park and compare
the MDP allocation algorithm with a heuristic allocation algorithm.

340 M. Fackrell and P. Taylor

In the next section we describe the vertical rotary car park under consideration
and briefly introduce Markov decision processes (MDPs). Section 12.3 contains
a detailed description of the MDP used to model the vertical rotary car park. In
Sect. 12.4 we run the MDP algorithm and calculate policies for an 8-level car park
with 1, 2, and 3-cars-per-level, for various loads on the system and turning penalties.
The details of the convergence of the algorithm for these examples are presented in
section “MDP Convergence Results” in Appendix. Section 12.4 contains an in-depth
analysis of the policy for the 8-level, 1-car-per-level car park. Part of the policy is
presented in section “Policy When l = 8 and c = 1” in Appendix. In Sect. 12.4 we
simulate the running of an 8-level, 3-cars-per-level car park under various loads with
different turning penalties, and two different parking time distributions - one expo-
nential, the other Erlang. We also compare the MDP allocation algorithm with a
heuristic algorithm. The results and some histograms are presented in section “Sim-
ulation Results for l = 8 and c = 3” in Appendix. We also ran some simulations for
a 20 level, 1-car-per-level car park, the results of which are given in section “Sim-
ulation Results for l = 20 and c = 1” in Appendix. The paper concludes in the last
section with some ideas for future research.

12.2 Background

12.2.1 The Car Parking Allocation Problem

Consider a vertical rotary car park of l levels where each level can accommodate a
maximum of c cars, see Fig. 12.1. Cars arrive randomly according to some arrival
process, and park for a random time. If the car park is full, arriving cars are lost to
the system, that is, there is no queueing. When a car arrives, if the car park is not
full, a space within a level is chosen in which to park the car, the car park is rotated
(in a direction that minimises the distance turned) until the chosen level is at the
bottom, and the car is driven on. When a car needs to depart, the car park is rotated
so that the level where the departing car is situated is at the bottom, and the car is
driven off. After each arrival or departure the car park remains static until the next
arrival or departure.

During the operation of the car park, when a car leaves, no decision needs to be
made as the car park must be turned to allow the car to depart. However, when a car
arrives, a decision must be made as to where to park it. Various objectives could be
taken into consideration. In this paper we focus on minimising how unbalanced, in
some sense, the car park becomes. If the car park is close to being half full but most
of the cars are on one side, then this would be considered as “highly unbalanced”.
However, if cars are placed such that there are approximately the same number
on either side, then this would be considered as “almost balanced”. If during its
operation the car park becomes highly unbalanced quite frequently, then the car
park would need to be engineered for this. However, if it rarely becomes highly

12.2 Background 341

Fig. 12.1: A vertical rotary car park with 14 levels and 3 cars per level. Cars enter
from the left and exit from the right

unbalanced, then the cost of constructing the car park would be conceivably a lot
less. It would also seem reasonable to consider minimising how much the car park
turns in deciding where an arriving car is to be parked. The more the car park turns,
the greater the contribution to its general wear-and-tear and repair costs. Deciding
on a measure of imbalance for the car park is somewhat arbitrary. The measure we
describe here takes into consideration the turning of the car park by adding a turning
penalty proportional to the distance turned, but it is small compared to the effect of
imbalance.

For any given configuration φ of the car park, the imbalance is simply the abso-
lute value of the difference between the number of cars on each side of the car park.
We do not include the bottom or top levels in the calculation. Thus the imbalance of
the configuration φ is |#φ(L)−#φ(R)|, where #φ(L) and #φ(R) denote the number
of cars on the left and right hand sides of the car park, respectively.

If an l-level, c-cars-per-level car park moves from an initial configuration φi to a
final configuration φ f via the sequence φi → φ1 → φ2 → . . .→ φν → φ f (taking ν
turns), and τ is the turning penalty, the imbalance Θ (of the move) is given by

Θ(φi,φ f) = max
j∈{1,2,...,ν}

∣
∣#φ j(L)−#φ j(R)

∣
∣+ντ . (12.1)

342 M. Fackrell and P. Taylor

We illustrate the calculation of the imbalance Θ with a simple example. Consider
an 8-level, 1-car-per-level car park. Refer to Fig. 12.2. The leftmost diagram is the
initial configuration of the car park where the filled in circles represent occupied
levels, and the empty circles represent unoccupied levels. In this example, the red
car (circle) needs to depart. The dotted vertical line separates the left and right hand
sides of the car park, the bottom and top levels being ignored. Initially the imbalance
I = 1 as there are two cars on the left hand side and one on the right hand side. In
the second diagram the car park has been rotated anticlockwise (to minimise the
distance the departing car travels to reach the bottom) by one level. The imbalance
is calculated as the maximum of any previous imbalances and the absolute value
of the current difference in the number of cars on the left and right hand sides,
plus a turning penalty, in this case τ = 0.001. Thus, the imbalance is calculated as
I = max{1,2}+ 0.001 = 2.001. In the third diagram the car park has been rotated
anticlockwise one level and the imbalance is now calculated as I = max{2,2}+
0.002 = 2.002. In the fourth diagram the red car has reached the bottom and the
imbalance is calculated as I = max{2,0}+0.003 = 2.003. In the final diagram the
red car departs. No more calculations of the imbalance are required as it would be
the same as in the fourth diagram. Thus Θ(φi,φ f) = 2.003. We note here that the
initial configuration (first diagram) would be the final configuration of the previous
move. In practice we do not include the initial configuration in the calculation of the
imbalance because it has already been used in the calculation of the imbalance of
the previous move and we do not want to count it twice.

I = 1 I = 2.001 I = 2.002 I = 2.003 I = 2.003

Fig. 12.2: The sequence of configurations of an 8-level, 1-car-per-level car park
when the red car (circle) needs to depart

In an l-level, c-cars-per-level car park, there are (c+1)l different configurations
the car park can be in. We will call the configurations “states” from now on. We can
represent each state as a l-digit number in base c+1 as follows. The first digit is the
number of cars parked in the bottom level, the second digit is the number of cars
parked in the second level moving around the car park in a clockwise direction, and
so on until the lth digit, which is the number of cars parked in the level immediately
to the right of the bottom level. For example, the state of the system in the first
diagram in Fig. 12.2 is represented by the 8-digit binary number 00111101, or by
the decimal number 61. The state of the car park in Fig. 12.1 is represented by
the 14-digit base 4 number 03120212112031, or by the decimal number 56780173.

12.2 Background 343

We note here that the position of each car in a level is not taken into consideration
when calculating the state’s label. If in the example depicted in Fig. 12.1, we wished
to take into consideration the position of cars in each level, then we would effectively
need to consider a 42-level, 1-car-per-level car park.

The main focus of this paper is to develop a policy that tells us where to park
an arriving car so that the overall expected rate of increase of imbalance measure
(which may include a turning penalty) is minimised over the course of the operation
of the car park. We need to take into account that cars are arriving according to some
random arrival process, and that cars will leave once they have completed a random
time in the car park.

For example, if an 8-level, 1-car-per-level car park is in the state depicted in the
first diagram of Fig. 12.3, that is, state 73, where do we place an arriving car? Three
possibilities are to states 83, 147, and 165 (the arriving car is in red), incurring
imbalance measures (with τ = 0.001) of 1.002, 0.001, and 1.001, respectively. At
first glance it would appear that state 147 is the preferred option since the imbalance
is the least. However, given that cars are arriving and leaving randomly we need to
consider what will happen next. That is, we need to place an arriving car so that the
imbalance is minimised over the course of the whole operation of the car park, not
just where the imbalance would be minimised for the next step only.

It turns out, as we shall see later, that each of the three options can be optimal,
depending on the load (the ratio of the arrival rate to the service rate) on the system.
When the load on the system is small, state 147 is optimal. When the load is around
1/2, state 165 is optimal. And when the load is 1 or more, state 83 is optimal. Indeed,
for example, when in state 147, an arrival placed in one of the four available spaces
incurs an imbalance of 2.002 or 2.003, but a departure incurs an imbalance of 0,
1.001, or 2.004. So, when the next event is more likely to be a departure than an
arrival, the expected imbalance over two steps is minimised when an arriving car
finding the car park in state 73, should be parked to change the state to 147. When
the load is around 1/2 arrivals are more likely to occur (but still less likely than a
departure), and state 83 should be chosen. In heavier traffic (load≥ 1) when arrivals
are even more likely than departures, state 165 should be chosen.

73 83 147 165

Fig. 12.3

344 M. Fackrell and P. Taylor

12.2.2 Markov Decision Processes

In a Markov decision process (MDP), for each state of the system, a decision needs
to be made as to which of several actions is taken. When the state changes, the
state transition probabilities and the reward received (or cost incurred) in taking the
action, depend on both the state and the action. The objective is to determine a policy
(by finding which action should be taken for each state of the system) to maximise
(minimise) the expected reward (cost) over a time period which could be finite or
infinite.

We now formally define an MDP. The operation of a system is described by a
homogeneous, finite-state, discrete-time stochastic process X(t), t = 1,2, Let the
state space be S = {1,2, . . . ,m}. For each i ∈ S, there is a set of actions A(i), one
of which will need to be decided on at each time step. The transition probabilities
between states depend on the action, that is, for i, j ∈ S,

p(j|i,a) = P(X(t) = j|X(t−1) = i,a ∈ A(i)) . (12.2)

Associated with each state transition i→ j and action a ∈ A(i), is a reward r(j|i,a).
Then, the expected reward in a single transition from state i when action a ∈ A(i) is
taken, is

r(i,a) =
m

∑
j=1

p(j|i,a)r(j|i,a). (12.3)

The objective is to determine, for each state, an action (decision) that will maximise
the expected long-term reward accumulated from the start of the process until the
end. The whole set of actions for each state and time point is called a policy. We
assume for the time being that the time horizon is finite, that is the process finishes
at some time T in the future.

For i ∈ S, t = 1,2, . . ., let Vt(i) be the maximum expected reward that can be
accrued from time t until time T , given that the state of the system at time t is i.
Then the Vt(i) satisfy Bellman’s equation

Vt(i) = max
a∈A(i)

{

r(i,a)+
m

∑
j=1

p(j|i,a)Vt−1(j)

}

, (12.4)

see Taha [10] or Winston [16]. We note here that our formulation of Bellman’s
equation is slightly different. We index the time by the number of periods t left until
time T , which means we write Vt(i) in terms of the Vt−1(j). For i ∈ S, Eq. (12.4) can
be solved recursively by letting, V0(i) be a fixed value function. We note that in the
above explanation we can replace “reward” with “cost” and consequently, replace
“maximise” with “minimise”.

12.4 Numerical Results 345

12.3 The Markov Decision Process

For the l-level, c-cars-per-level vertical rotary car park we wish to determine a policy
so that the expected cumulative imbalance (incorporating the turning penalty) is
minimised over the course of the car park’s operation. Cars arrive according to a
Poisson process with parameter λ , and spend an exponentially distributed length of
time with parameter μ in the car park before departing.

The state space is S = {1,2, . . . ,(c+1)l}. Let φt be the state of the system (that
is, the configuration of the parked cars) after event (arrival or departure) T − t has
occurred. Let Θ (φt ,φt−1) be the imbalance incurred when moving from state φt to
state φt−1. Denote by A(φt) the set of all states accessible from state φt if an arrival
occurs. Let ds(φt) denote the state that is moved to if a car departs from space s
when the car park is in state φt . The load on the car park is ρ = λ/μ lc. Any car
arriving to find the car park full is lost to the system, that is, there is no queueing.

We assume that the car park operates over a finite time horizon, 0,1, . . . ,T . Let
Vt(φt) be the minimum expected cumulative imbalance from event T − t to T if the
car park is in state φt . If the car park is in state φt , the probability that the next event
is an arrival is λ/(λ +μ |φt |), where |φt | is the number of cars when the car park is
in state φt . If an arrival occurs we need to decide which state in A(φt) to move to.
The probability that the next event is a departure from space s is μ/(λ +μ |φt |).

Now, for t = 1,2, . . .,

Vt(φt) =
λ

λ +μ |φt |
min

φt−1∈A(φt)
{Vt−1(φt−1)+Θ(φt ,φt−1)}

+ ∑
s

μ
λ +μ |φt |

(Vt−1(ds(φt))+Θ(φt ,ds(φt))) . (12.5)

To find the optimal policy we set, for all φ0 ∈ S, V0(φ0) = 0, and recursively
calculate Vt(φt) until the policy no longer changes. Essentially, we determine the
policy for an infinite horizon MDP as the number of recursions is not specified, see
Altman [1], Sect. 15.2.

In practice, since for each φ ∈ S, Vt(φ) increases as t increases, we use as our
stopping criterion

max
φ∈S

∣
∣
∣
∣
Vt(φ)

t
− Vt−1(φ)

t−1

∣
∣
∣
∣ < ε , (12.6)

where ε > 0 is some predetermined tolerance. The algorithm converges, see Odoni
[7] or Altman [1], Sect. 15.2.

12.4 Numerical Results

We ran the MDP algorithm with l = 8 and c = 1,2,3, for ρ = 0.1,0.5,1,2 and
τ = 0.001,0.01,0.1 (Table 12.1). In practice, we observed that if the policy did not
change from one iteration to the next, then the algorithm had not necessarily con-
verged. Since the stopping criterion (12.6) depends only on the values of Vt(·) and

346 M. Fackrell and P. Taylor

the policy is discrete, it is possible that it can remain unchanged for a few itera-
tions before changing. However, as the number of iterations increased, the runs of
no change in the policy increased in length, and if there were any changes, they
occurred in a decreasing number of places. In Table 12.2 in section “MDP Conver-
gence Results” in Appendix we have tabulated the number of iterations the algo-
rithm took to converge in each case (using ε = 0.01 for l = 1 and ε = 0.005 for
l = 2,3), and also reported the last iteration when a change in policy occurred. The
run times were also recorded.

As expected the number of iterations needed for convergence (and corresponding
run-times) increased as c increased. For c = 1, the number of iterations for conver-
gence was least when ρ = 2 and greatest when ρ = 0.5. The number of iterations
required for convergence when ρ = 1 was greater than that when ρ = 0.1. A similar
trend was observed for c = 2,3 except that the number of iterations required for
convergence when ρ = 0.1 was greater than that when ρ = 1. These trends were
all independent of τ . However, for c = 1,2,3, when τ = 0.1, there was a marked
increase in the number of iterations required for convergence. The highest run-time
was nearly 10 h for 156 iterations (when c = 3, ρ = 0.5, and τ = 0.1).

We now discuss some of our findings. It is impossible to present all of the policies
calculated for each example as the state spaces are too large. Instead we shall focus
on some observations made when c = 1, the simplest case. In Tables 12.3 and 12.4
in section “Policy When l = 8 and c = 1” in Appendix we have given the portion of
the policy calculated for φ = 65,66, . . . ,109. For given values of ρ and τ , the entry
in the row corresponding to state φ gives the optimal next state when an arrival
occurs and the car park is in state φ .

We first note that the policy is independent of ρ and τ for 37 (out of 45) states.
For two of the remaining eight states the policy is independent of τ . Next we will
comment on the policy for some specific states.

Consider, for example, state 108, which is depicted in Fig. 12.4. The policy stip-
ulates that the car should be parked in the bottom space so the car park moves to
state 109 incurring no imbalance, no matter what the values of ρ and τ are. To see
why this may be the case, observe that when the car park is in state 108, when a car
arrives, it can move to any of states 55, 109, 199, or 217, incurring imbalances of
1+ τ , 0, 2+4τ , or 1+ τ , respectively. The policy chooses the state that minimises
the imbalance over one time-step. This would seem to be sensible as the minimum
imbalance is zero and all the others are greater than one.

State 109 is depicted in Fig. 12.5. Here the policy stipulates that an arriving car
be parked so that the car park moves to either state 183 or 219, independent of ρ
and τ . When a car arrives, the car park can move to any of states 183, 215, and 219
incurring imbalances of τ , 1+4τ , and τ , respectively. The policy chooses states 183
and 219 over state 215 as the one time-step imbalance is a lot less. From the diagram
we can see that because of symmetry neither of the states 183 and 219 are favored
over each other. In practice, such a tie can be broken by randomly selecting one of
the two states.

12.4 Numerical Results 347

108

55 109 199 217

Fig. 12.4: State 108 can move to any of states 55, 109, 199, and 217 when an arrival
occurs

109

183 215 219

Fig. 12.5: State 109 can move to any of states 183, 215, and 219 when an arrival
occurs

For state 67, the policy stipulates that an arriving car should be parked so that the
car park moves to state 53, independent of ρ and τ , see Fig. 12.6. From state 67 the
car park can move to any of states 27, 53, 105, 135, and 209, incurring imbalances
of 2+ 3τ , 2+ 4τ , 2+ 3τ , 1+ τ , and 2+ 2τ , respectively. Unlike the previous two
examples, the policy chooses the state with the maximum imbalance over one time-
step. This seems counterintuitive until we see what possible imbalances occur in
moving from state 53 compared with the other four states.

348 M. Fackrell and P. Taylor

67

27 53 105

135 209

Fig. 12.6: State 67 can move to any of states 23, 53, 105, 135, and 209 when an
arrival occurs

In Table 12.1 all the states that can be reached from states 27, 53, 105, 135,
and 209, and their corresponding one time-step imbalances, are listed. Even states
indicate that a departure has occurred, and odd states indicate that an arrival has
occurred. The two time-step imbalances from state 67 are also given. We can see that
the imbalances from 67 to 53 to φ are collectively less than for any other state. The
sum of all imbalances is 22+48τ which is smaller than that of the other states (26+
40τ , 24+40τ , 28+24τ , and 30+28τ for states 27, 105, 135, and 209, respectively).
So from state 67, the policy chooses state 53 because its two time-step imbalance is
least in total.

12.5 Simulation Results

We simulated the working of the car park when l = 8 and c = 3 using the MDP pol-
icy to allocate arriving cars. We considered all cases, that is, when ρ = 0.1,0.5,1,2
and τ = 0.001,0.01,0.1. We first considered a Poisson arrival stream and an ex-
ponential service time distribution, and then considered a 4-phase Erlang service
time distribution. For each simulation we started with the car park empty and started

12.5 Simulation Results 349

27→ φ 26 55 98 109 140 178 199 217
Θ(27,φ) 2 1+ τ 1+3τ 1+2τ 1+ τ 2+4τ 1+2τ 1+3τ

Θ(67,27)+Θ(27,φ) 4+3τ 3+4τ 3+6τ 3+5τ 3+4τ 4+7τ 3+5τ 3+6τ
53→ φ 52 76 82 107 155 167 168 213
Θ(53,φ) 0 1+2τ 1+4τ τ 1+ τ 1+3τ 1+3τ 1+2τ

Θ(67,53)+Θ(53,φ) 2+4τ 3+6τ 3+8τ 2+5τ 3+5τ 3+7τ 3+7τ 3+6τ
105→ φ 44 74 91 104 151 164 181 211
Θ(105,φ) 1+3τ 1+3τ 1+2τ 1 1+4τ 1+2τ 1+ τ 1+ τ

Θ(67,105)+Θ(53,φ) 3+6τ 3+6τ 3+5τ 3+3τ 3+7τ 3+5τ 3+4τ 3+4τ
135→ φ 14 31 61 121 134 194 224 241
Θ(135,φ) 3+ τ 3+2τ 3+3τ 3+4τ 1 1+ τ 3+2τ 3+3τ

Θ(67,135)+Θ(53,φ) 4+2τ 4+3τ 4+4τ 4+5τ 2+ τ 2+2τ 4+3τ 4+4τ
209→ φ 28 59 70 117 143 162 208 233
Θ(209,φ) 2+4τ 2+3τ 1+2τ 2+2τ 2+3τ 1+ τ 2 2+ τ

Θ(67,135)+Θ(53,φ) 4+6τ 4+5τ 3+4τ 4+4τ 4+5τ 3+3τ 4+2τ 4+3τ

Table 12.1: For turning penalty τ , the one time-step imbalances in moving from
states 27, 53, 105, 135, and 209 when either an arrival or a departure occurs, and the
respective two time-step imbalances in moving from state 67

recording the imbalance and distance moved after 500,000 events (arrivals and de-
partures) for a further 500,000 events. The time taken for the simulations was around
5 min.

In order to assess further the MDP policy allocation algorithm we repeated the
simulations using a heuristic method as follows. If an arriving car found a space in
the bottom level vacant it was placed there. If, however, an arriving car found the
bottom level full, it was allocated a vacant space elsewhere in the car park randomly.
This last vacated space/random allocation algorithm is abbreviated to LVS.

For each simulation the car park was never full when ρ = 0.1, almost never full
when ρ = 0.5, full about 15% of the time when ρ = 1, and full about 52% of the
time when ρ = 2.

In Tables 12.5 and 12.6 in section “Simulation Results for l = 8 and c = 3” in Ap-
pendix, with the occupancy distribution taken to be exponential and Erlang, respec-
tively, we recorded the average and maximum imbalance (for a complete move, see
Eq. (12.1)), and the average distance the car park moved, over the 500,000 recorded
events, for the MDP and LVS allocation algorithms. In every case, the maximum
distance the car park moved was 4. Furthermore, for τ = 0.001 histograms for the
distribution of imbalance and distance moved are presented in Figs. 12.7, 12.8, 12.9,
12.10.

When the optimal policy was used, and the service time distribution was expo-
nential the average imbalance and average distance moved were always lower than
when the service time distribution was Erlang, although both measures were close.
This seems plausible because an exponential service time was assumed when cal-
culating the MDP policy. The same trend was observed, most of the time, with the
maximum imbalance.

350 M. Fackrell and P. Taylor

The average imbalance was considerably lower for the MDP policy algorithm
compared to the LVS algorithm, with the differences becoming less pronounced as
ρ increased. This trend was observed for both the exponential and Erlang service
time distributions. A similar trend was observed when considering the maximum
imbalance. Again, this seems plausible as the MDP policy is optimal when the im-
balance measure was minimised.

For each value of ρ , for both the exponential and Erlang cases, the average imbal-
ance increased as τ increased, except when ρ = 0.1 and τ = 0.1. This general trend
was expected since with increasing τ the imbalance increased [as the imbalance
measure incorporated the turning penalty, see Eq. (12.1)]. It was not clear, how-
ever, why the trend was reversed when ρ = 0.1 and τ = 0.1. The trend was not as
pronounced for the maximum imbalance, particularly when the exponential service
time was used.

For each value of τ , for both the exponential and Erlang cases, the average im-
balance was least when ρ = 2. We expected this because when the car park was full,
or nearly full, most of the time, the imbalance would be zero, or close to zero. The
next smallest average imbalance was for ρ = 0.1. Again, we expected this because
when the car park was not very full at lot of the time, the imbalance would be low.
The average imbalance for ρ = 0.5 was always higher than when ρ = 1, but not by
much. When ρ = 0.5,1 the car park was more likely to become “lop-sided”, hence
the higher average imbalances.

For both exponential and Erlang service time distributions, the average distance
moved when the MDP algorithm was used was greater than when the LVS algorithm
was used, except when ρ = 2 and τ = 0.001,0.01,0.1, and ρ = 1 and τ = 0.1. When
the load on the system was ρ = 0.1,0.5,1 the car park was empty most of the time
so when using the LVS algorithm, an arriving car was usually placed at the bottom of
the car park with no turning. But when ρ = 2 the car park was full about half of the
time, so arriving cars needed to be placed elsewhere. Since the MDP algorithm has
an turning penalty built into the imbalance measure that is minimised, the average
distance moved was less than that when the LVS algorithm was used, albeit only
marginally.

For each value of ρ , for both the exponential and Erlang cases, the average
distance decreased with increasing ρ except for the Erlang case when ρ = 2 and
τ = 0.01, but the increase here was very small. This general trend was to be ex-
pected as turning the car park was penalised more as τ increased.

When the MDP algorithm was used, in the Erlang case, for each value of τ , the
average distance increased with decreasing ρ . This would appear to make sense
because the less busy the car park is, the higher the likelihood of parking a car
“on the opposite side” to minimise imbalance, at least in one time-step, resulting in
higher distances. However, for the exponential case, apart from the lowest average
distance achieved when ρ = 2 the trend is not the same as with the Erlang case. It is
not clear why this was the case.

For τ = 0.001 and each value of ρ , the histograms of the imbalance and distance
are displayed in Figs. 12.7, 12.8, 12.9, 12.10. Histograms are given for the MDP and
LVS allocation algorithms and for when the service time distribution is exponential
and Erlang.

12.5 Simulation Results 351

The first thing to notice is that, when the exponential and Erlang service time
distributions were used, the histograms are similar for both imbalance and distance.
Thus, we will only comment on the distributions for the exponential case.

For imbalance, for all values of ρ , all histograms were skewed to the right with
those for the LVS algorithm skewed further to the right. This indicates that smaller
imbalances are more likely than large imbalances, and imbalances are generally
lower when the MDP algorithm was used. For the MDP case, the modal imbalance
was 0 when ρ = 0.1,2 and 1 when ρ = 0.5,1. However, for the LVS case, the modal
imbalance was 0 when ρ = 2 and 1 when ρ = 0.1,0.5,1. It is clear then, that the
MDP allocation algorithm is better than the LVS one when minimising the imbal-
ance measure. This conclusion was also drawn when we discussed the average and
maximum imbalances previously.

For distance, all histograms, except for MDP when ρ = 0.1, are skewed to the
right. The modal distance was 0 in all cases. Except for MDP when ρ = 0.1,0.5,
distances of 1,2, and 3 were recorded roughly half as many times as a distance of
0, and distances of 4 were roughly half again. For the MDP case when ρ = 0.1 the
distribution was U-shaped with a distance of 0 more likely than 4. Here, it would
appear that when the traffic is light, parking “on the other side” of the car park helps
minimise the imbalance measure.

The MDP algorithm was run when l = 20 and c = 1 for τ = 0.001 and
ρ = 0.1,0.5,1,2. The motivation for this exercise was to see how far the MDP
policy deciding algorithm could be taken. In each case the algorithm took some
30 days and more than 100 iterations to converge! This highlights the difficulty in
using the MDP approach for larger car parks. As with the smaller car parks (l = 8,
c = 1,2,3), for τ = 0.001, and ρ = 0.1,0.5,1,2, 500,000 events were simulated
for both exponential and Erlang service time distributions. The times to run these
simulations ranged from 5 to 10 min, so there is no difficulty in applying the MDP
allocation algorithm once it has been calculated. The results were compared with
the LVS algorithm. In section “Simulation Results for l = 20 and c = 1” in Ap-
pendix, Tables 12.7 and 12.8 list the average and maximum imbalance and average
distance (the maximum distance was 10 in all cases) for each case. In Figs. 12.11,
12.12, 12.13, 12.14 histograms for the imbalance and distance are shown for both
MDP and LVS, for both the exponential and Erlang cases.

The same trends in the average and maximum imbalance were observed when
l = 8 and c = 3 were seen when l = 20 and c = 1. The values for the average and
maximum imbalance are slightly higher when l = 20 and c = 1 for both MDP and
LVS, and for exponential and Erlang (the maximum imbalance with LVS, Erlang
when ρ = 2 is the only exception). For the average distance the trends were the
same but the values were all higher for l = 20 and c = 1 with a maximum distance
of 10 in all cases. This of course is expected as we have the potential turn through
more levels.

352 M. Fackrell and P. Taylor

12.6 Conclusion

From our examples it is apparent that using the MDP allocation algorithm to deter-
mine where arriving cars are parked is considerably superior to the heuristic LVS
algorithm, at least when imbalance is minimised. The LVS algorithm outperforms
the MDP in most cases in minimising the distance turned, but not by much. This
could be remedied by increasing the turning penalty τ . Indeed, when τ = 0.1 and
ρ = 2, MDP outperformed LVS in minimising distance in all cases. Choosing this
option depends on how much distance is valued compared to imbalance.

The main problem with MDP is the size of the state space. For l = 8 and c = 3
the size of the state space is 65,336, and for l = 20 and c = 1 it is 1,048,576. Com-
puting the optimal policy where the state space has more than one million states
would be prohibitive. One possible remedy would be to consider “clumping” levels
into “super-levels”. For example, if we needed to determine a policy for a 40-level,
3-cars-per-level car park (1.2089× 1024 states) we could consider it as an 8-level,
15-cars-per-level car park (4,294,967,296 states). This is still much too large and a
lot of detail has been lost in clumping 5 3-car levels into one 15-car level. The prob-
lem here is which level within the super-level is the car to be parked to minimise the
imbalance measure. For the 40-level, 3-cars-per-level car park, the only computa-
tionally realistic car park would be a 4-level, 30-cars-per-level one (923,521 states)
but the level of detail is low. We will be deciding which quarter of the car park to
park arriving cars in.

Another approach to circumvent the large state spaces is to use a heuristic allo-
cation algorithm (for example LVS) to determine, via simulation, which states occur
most frequently. Then the MDP policy could only be calculated for these most fre-
quent states. Then, if when simulating the running of the car park a non-frequent
state occurs, the heuristic (LVS) algorithm could be used. One problem here though,
is the size of the simulation required to determine the most frequent states given that
there are a huge number of states that can be realised in larger car parks.

Another approach to cope with the large state space is to use approximate dy-
namic programming, see Powell [8], but this is left for future research.

Throughout this paper we have assumed that any car finding the car park full
does not queue and is lost to the system. Allowing a queue to form and having cars
enter the car park once a space becomes available on a first-come-first-served basis
would make the situation more realistic, especially if cars were arriving and leaving
frequently. The analysis would not be too much more complicated because if a car
leaves, and if there is a queue, the car first in line will simply replace the one that
has just left, and so on until the queue is empty. Performance measures such as
the mean queue length and mean waiting time in the queue could be calculated by
considering the car park (with queueing) as an M/M/lc queue, or an M/M/lc/k
queue (with k > lc) if there was a limit to the number of cars that could be queued.

Lastly, it is conceivable that the car park could be modelled from say, being empty
at time zero to some finite time in the future. Here we would need a finite horizon
MDP to model the car park and calculate a time dependent policy. Such a model
would be appropriate if the car park was used, for example, by people attending

Appendix 353

some event (such as a film or sporting event) where the car park is empty before
the event, fills up as people arrive, and then empties after the event. This is left for
future research.

Acknowledgements Peter G. Taylor’s research is supported by the Australian Research Council
(ARC) Laureate Fellowship FL130100039 and the ARC Centre of Excellence for the Mathematical
and Statistical Frontiers (ACEMS) CE140100049.

Appendix

Notation

l Number of levels in the car park

c Number of cars per level

φ A configuration of the car park

#φ(L) Numbers of cars on the left hand side of the car park

when in configuration φ
#φ(R) Numbers of cars on the right hand side of the car park

when in configuration φ
ν Number of turns

Θ Imbalance measure

τ Turning penalty

I Imbalance

X(t) A homogeneous, finite-state, discrete-time stochastic process

S A state space

m Number of states in the state space

i, j States in the state space

A(i) Set of actions that can be taken in state i

a An action

p(j|i,a) Probability of moving from state i to state j if action a is taken

r(j|i,a) Reward received in moving from state i to state j if action a is taken

r(i,a) Expected reward received in moving from state i if action a is taken

Vt(i) Maximum expected reward that can be accrued from time t until

time step T , given that the state of the system at time step t is i

354 M. Fackrell and P. Taylor

λ Cars’ Poisson arrival rate

μ Parameter for the exponentially distributed car parking time

t The number of events (arrivals and departures)

T The event number at which the process ceases

φt State of the car park after t events

|φt | Number of cars in the car park after t events

ρ Load on the car park

A(φt) Set of all states accessible from state φt if an arrival occurs

ds(φt) State that is moved to if a car departs from space s when the car park

is in state φt

Vt(φt) Minimum expected cumulative imbalance from event T − t to T if the

car park is in state φt

ε Predetermined tolerance level

Appendix 355

MDP Convergence Results

See Table 12.2.

τ ρ Iterations Run-time
0.001 0.1 5/57 39

0.5 14/73 50
1 9/65 45
2 9/48 34

0.01 0.1 13/58 41
0.5 13/74 51
1 12/66 45
2 12/49 34

0.1 0.1 6/69 48
0.5 10/88 61
1 6/80 56
2 14/60 42

τ ρ Iterations Run-time
0.001 0.01 55/108 2326

0.5 84/147 3143
1 35/104 2221
2 29/62 1240

0.01 0.1 35/111 2334
0.5 106/150 3038
1 33/106 2197
2 31/63 1326

0.1 0.1 35/137 2789
0.5 73/178 3617
1 41/128 2598
2 30/77 1584

τ ρ Iterations Run-time
0.001 0.1 83/120 26,881

0.5 102/129 29,574
1 56/78 17,791
2 41/44 10,115

0.01 0.1 78/123 28,082
0.5 115/131 29,418
1 51/80 18,285
2 39/45 10,115

0.1 0.1 110/152 34,021
0.5 111/156 35,676
1 65/97 21,992
2 40/55 13,232

Table 12.2: The number of iterations and run-time (in seconds) the MDP algorithm
took for τ = 0.001,0.01,0.1 and ρ = 0.1,0.5,1,2 when l = 8 and c = 1,2,3 (tables
ordered left to right, top to bottom). The first entry in the iterations column is the
number of iterations after which the policy ceased to change, and the second entry is
the number of iterations for convergence using a tolerance of ε = 0.01 when c = 1,
and ε = 0.005 when c = 2,3. The run-time is for a single run but is deemed to be
typical

356 M. Fackrell and P. Taylor

Policy When l = 8 and c = 1

See Tables 12.3 and 12.4.

τ
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

01
0.

01
0.

01
0.

01
0.

1
0.

1
0.

1
0.

1
ρ

0.
1

0.
5

1
2

0.
1

0.
5

1
2

0.
1

0.
5

1
2

65
13

1
41

41
41

13
1

41
41

41
13

1
41

41
81

66
14

5
14

5
14

5
14

5
14

5
14

5
14

5
14

5
14

5
14

5
14

5
14

5
67

53
53

53
53

53
53

53
53

53
53

53
53

68
35

,1
37

35
,1

37
35

,1
37

69
35

,1
37

35
,1

37
35

,1
37

69
35

,1
37

35
,1

37
69

69
69

85
85

85
85

85
85

85
85

85
85

85
85

70
51

51
51

51
51

51
51

51
51

51
51

51
71

11
7

11
7

11
7

11
7

59
11

7
11

7
59

59
59

59
59

72
73

73
73

73
73

73
73

73
73

73
73

73
73

14
7

16
5

83
83

14
7

16
5

83
83

14
7

16
5

16
5

14
7

74
14

9
14

9
14

9
14

9
14

9
14

9
14

9
14

9
14

9
14

9
14

9
14

9
75

91
91

91
91

91
91

91
91

91
91

91
91

76
15

3
15

3
15

3
15

3
15

3
15

3
15

3
15

3
15

3
15

3
15

3
15

3
77

10
7

21
3

21
3

21
3

10
7

21
3

15
5

15
5

10
7

15
5

15
5

15
5

78
15

7
15

7
15

7
15

7
15

7
15

7
15

7
15

7
15

7
15

7
15

7
15

7
79

12
3

12
3

12
3

12
3

12
3

12
3

12
3

12
3

12
3

12
3

12
3

12
3

80
41

41
41

41
41

41
41

41
41

41
41

41
81

85
85

85
85

85
85

85
85

85
85

85
85

82
83

83
83

83
83

83
83

83
83

83
83

83
83

10
7

21
3

21
3

21
3

10
7

21
3

21
3

21
3

10
7

21
3

21
3

21
3

84
85

85
85

85
85

85
85

85
85

85
85

85
85

17
1

17
1

17
1

17
1

17
1

17
1

17
1

17
1

17
1

17
1

17
1

17
1

86
17

3
17

3
17

3
17

3
17

3
17

3
17

3
17

3
17

3
17

3
17

3
17

3
87

18
7

18
7

18
7

18
7

18
7

18
7

18
7

18
7

18
7

18
7

18
7

18
7

88
89

89
89

89
89

89
89

89
89

89
89

89
89

17
3

17
3

17
3

17
3

17
3

17
3

17
3

17
3

17
3

17
3

17
3

17
3

Ta
bl

e
12

.3
:

A
po

rt
io

n
of

th
e

po
lic

y
(φ

=
65
,.
..
,8

9)
w

he
n

l
=

8,
c
=

1,
τ
=

0.
00

1,
0.

01
,0
.1

,
an

d
ρ
=

0.
1,

0.
5,

1,
2

Appendix 357

τ
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

01
0.

01
0.

01
0.

01
0.

1
0.

1
0.

1
0.

1
ρ

0.
1

0.
5

1
2

0.
1

0.
5

1
2

0.
1

0.
5

1
2

90
91

91
91

91
91

91
91

91
91

91
91

91
91

18
3

18
3

18
3

18
3

18
3

18
3

18
3

18
3

18
3

18
3

18
3

18
3

92
93

93
93

93
93

93
93

93
93

93
93

93
93

18
7

18
7

18
7

18
7

18
7

18
7

18
7

18
7

18
7

18
7

18
7

18
7

94
18

9
18

9
18

9
18

9
18

9
18

9
18

9
18

9
18

9
18

9
18

9
18

9
95

19
1

19
1

19
1

19
1

19
1

19
1

19
1

19
1

19
1

19
1

19
1

19
1

96
49

49
49

49
49

49
49

49
49

49
49

49
97

89
89

89
89

89
89

89
89

89
89

89
89

98
15

3
15

3
15

3
15

3
15

3
15

3
15

3
15

3
15

3
15

3
15

3
15

3
99

10
9

10
9

10
9

21
7

10
9

10
9

10
9

21
7

10
9

10
9

10
9

21
7

10
0

51
51

51
51

51
51

51
51

51
51

51
51

10
1

17
3

87
87

87
17

3
87

17
9

17
9

17
3

17
9

17
9

17
9

10
2

10
3

10
3

10
3

10
3

10
3

10
3

10
3

10
3

10
3

10
3

10
3

10
3

10
3

11
9

11
9

11
9

11
9

11
9

11
9

11
9

11
9

11
9

11
9

11
9

11
9

10
4

53
53

53
53

53
53

53
53

53
53

53
53

10
5

18
1

18
1

18
1

18
1

18
1

18
1

18
1

18
1

18
1

18
1

18
1

18
1

10
6

10
7

10
7

10
7

10
7

10
7

10
7

10
7

10
7

10
7

10
7

10
7

10
7

10
7

21
9

21
9

21
9

21
9

21
9

21
9

21
9

21
9

21
9

21
9

21
9

21
9

10
8

10
9

10
9

10
9

10
9

10
9

10
9

10
9

10
9

10
9

10
9

10
9

10
9

10
9

18
3,

21
9

18
3,

21
9

18
3,

21
9

18
3,

21
9

18
3,

21
9

18
3,

21
9

18
3,

21
9

18
3,

21
9

18
3,

21
9

18
3,

21
9

18
3,

21
9

18
3,

21
9

Ta
bl

e
12

.4
:

A
po

rt
io

n
of

th
e

po
lic

y
(φ

=
90
,.
..
,1

09
)

w
he

n
l
=

8,
c
=

1,
τ
=

0.
00

1,
0.

01
,0
.1

,
an

d
ρ
=

0.
1,

0.
5,

1,
2

358 M. Fackrell and P. Taylor

Simulation Results for l = 8 and c = 3

See Tables 12.5 and 12.6.

MDP MDP LVS LVS
ρ Ave/max imbalance Ave distance Ave/max imbalance Ave distance

0.1 0.5578/4.004 1.5210 1.1808/6.004 1.3166
0.5 0.9635/8.004 1.5308 1.9888/9.004 1.5120
1 0.8250/7.004 1.4665 1.1282/8.004 1.4870
2 0.3328/6.002 1.3213 0.3583/7.004 1.3440

MDP MDP LVS LVS
ρ Ave/max imbalance Ave distance Ave/max imbalance Ave distance

0.1 0.5693/4.04 1.5208 1.1923/6.04 1.3166
0.5 0.9741/7.04 1.5133 2.0023/9.04 1.5120
1 0.8355/7.04 1.4589 1.1389/8.04 1.4870
2 0.3377/6.03 1.3174 0.3629/7.04 1.3440

MDP MDP LVS LVS
ρ ave/max imbalance ave distance ave/max imbalance ave distance

0.1 0.5084/5.4 1.3530 1.3074/6.4 1.3166
0.5 1.0942/7.4 1.4760 2.1375/9.4 1.5120
1 0.9397/7.4 1.4407 1.2460/8.4 1.4870
2 0.3830/6.3 1.3158 0.4091/7.4 1.3440

Table 12.5: The average and maximum imbalance, and maximum distance, recorded
for a simulation run of 500,000 events (arrivals and departures) when l = 8, c = 3,
and τ = 0.001,0.01,0.1 (tables presented in order). The MDP policy and the last
vacated/random space (LVS) allocation algorithms were used. The service time dis-
tribution was exponential

Appendix 359

MDP MDP LVS LVS
ρ Ave/max imbalance Ave distance Ave/max imbalance Ave distance

0.1 0.6149/5.004 1.7609 1.2116/7.002 1.5049
0.5 0.9924/7.004 1.5816 1.9970/9.004 1.5663
1 0.8387/7.004 1.4976 1.1275/8.004 1.5195
2 0.3369/6.004 1.3529 0.3611/6.004 1.3770

MDP MDP LVS LVS
ρ Ave/max imbalance Ave distance Ave/max imbalance Ave distance

0.1 0.6280/5.04 1.7608 1.2248/7.02 1.5049
0.5 1.0067/7.04 1.5681 2.0110/9.04 1.5663
1 0.8475/8.04 1.4891 1.1384/8.04 1.5195
2 0.3418/6.04 1.3540 0.3658/6.04 1.3770

MDP MDP LVS LVS
ρ Ave/max imbalance Ave distance Ave/max imbalance Ave distance

0.1 0.5836/5.4 1.5649 1.3560/7.2 1.5049
0.5 1.1460/8.4 1.5286 2.1510/9.4 1.5663
1 0.9572/8.4 1.4714 1.2475/8.4 1.5195
2 0.3878/6.4 1.3497 0.4126/6.4 1.3770

Table 12.6: The average and maximum imbalance, and maximum distance, recorded
for a simulation run of 500,000 events (arrivals and departures) when l = 8, c = 3,
and τ = 0.001,0.01,0.1 (tables presented in order). The MDP policy and the last
vacated/random space (LVS) allocation algorithms were used. The service time dis-
tribution was Erlang.

360 M. Fackrell and P. Taylor

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − MDP Policy, ρ = 0.1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − MDP Policy, ρ = 0.5

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − MDP Policy, ρ = 1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − MDP Policy, ρ = 2

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − Last Vacated/Random, ρ = 0.1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − Last Vacated/Random, ρ = 0.5

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − Last Vacated/Random, ρ = 1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − Last Vacated/Random, ρ = 2

Fig. 12.7: Histograms of the imbalance measure when l = 8, c = 3, τ = 0.001 and
ρ = 0.1,0.5,1,2. The service time distribution was exponential. The top four his-
tograms are for the MDP Policy algorithm, and the bottom four are for the LVS
heuristic algorithm

Appendix 361

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − MDP Policy, ρ = 0.1

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − MDP Policy, ρ = 0.5

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − MDP Policy, ρ = 1

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − MDP Policy, ρ = 2

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − Last Vacated/Random, ρ = 0.1

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − Last Vacated/Random, ρ = 0.5

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − Last Vacated/Random, ρ = 1

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − Last Vacated/Random, ρ = 2

Fig. 12.8: Histograms of the distanced travelled when l = 8, c = 3, τ = 0.001 and
ρ = 0.1,0.5,1,2. The service time distribution was exponential. The top four his-
tograms are for the MDP policy algorithm, and the bottom four are for the LVS
heuristic algorithm

362 M. Fackrell and P. Taylor

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − MDP Policy, ρ = 0.1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − MDP Policy, ρ = 0.5

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − MDP Policy, ρ = 1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − MDP Policy, ρ = 2

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − Last Vacated/Random, ρ = 0.1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − Last Vacated/Random, ρ = 0.5

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − Last Vacated/Random, ρ = 1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − Last Vacated/Random, ρ = 2

Fig. 12.9: Histograms of the imbalance measure when l = 8, c = 3, τ = 0.001 and
ρ = 0.1,0.5,1,2. The service time distribution was Erlang. The top four histograms
are for the MDP policy algorithm, and the bottom four are for the LVS heuristic
algorithm

Appendix 363

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − MDP Policy, ρ = 0.1

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − MDP Policy, ρ = 0.5

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − MDP Policy, ρ = 1

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − MDP Policy, ρ = 2

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − Last Vacated Random, ρ = 0.1

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − Last Vacated Random, ρ = 0.5

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − Last Vacated Random, ρ = 1

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − Last Vacated Random, ρ = 2

Fig. 12.10: Histograms of the distanced travelled when l = 8, c = 3, τ = 0.001 and
ρ = 0.1,0.5,1,2. The service time distribution was Erlang. The top four histograms
are for the MDP policy algorithm, and the bottom four are for the LVS heuristic
algorithm

364 M. Fackrell and P. Taylor

Simulation Results for l = 20 and c = 1

See Tables 12.7 and 12.8.

MDP MDP LVS LVS
ρ Ave/max imbalance Ave distance Ave/max imbalance Ave distance

0.1 0.6445/4.010 3.8097 1.3039/8.006 3.2123
0.5 1.1810/8.010 3.9467 2.2425/9.009 3.7836
1 0.9801/8.008 3.7175 1.2918/8.010 3.7197
2 0.3995/6.009 3.3250 0.4226/7.003 3.3612

Table 12.7: The average and maximum imbalance, and maximum distance, recorded
for a simulation run of 500,000 events (arrivals and departures) when l = 20, c = 1,
and τ = 0.001. The MDP policy and the last vacated/random space (LVS) allocation
algorithms were used. The service time distribution was exponential.

MDP MDP LVS LVS
ρ Ave/max imbalance Ave distance Ave/max imbalance Ave distance

0.1 0.6997/5.010 4.4734 1.3438/8.010 3.7009
0.5 1.2186/8.008 4.1198 2.2859/9.010 3.9410
1 1.0028/8.008 3.8305 1.2865/8.010 3.8184
2 0.3968/6.010 3.4077 0.4247/6.009 3.4611

Table 12.8: The average and maximum imbalance, and maximum distance, recorded
for a simulation run of 500,000 events (arrivals and departures) when l = 20, c = 1,
and τ = 0.001. The MDP policy and the last vacated/random space (LVS) allocation
algorithms were used. The service time distribution was Erlang.

Appendix 365

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − MDP Policy, ρ = 0.1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − MDP Policy, ρ = 0.5

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − MDP Policy, ρ = 1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − MDP Policy, ρ = 2

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − Last Vacated/Random, ρ = 0.1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − Last Vacated/Random, ρ = 0.5

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − Last Vacated/Random, ρ = 1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − Last Vacated/Random, ρ = 2

Fig. 12.11: Histograms of the imbalance measure when l = 20, c = 1, τ = 0.001
and ρ = 0.1,0.5,1,2. The service time distribution was exponential. The top four
histograms are for the MDP Policy algorithm, and the bottom four are for the LVS
heuristic algorithm

366 M. Fackrell and P. Taylor

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − MDP Policy, ρ = 0.1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − MDP Policy, ρ = 0.5

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − MDP Policy, ρ = 1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − MDP Policy, ρ = 2

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − Last Vacated/Random, ρ = 0.1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − Last Vacated/Random, ρ = 0.5

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − Last Vacated/Random, ρ = 1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − Last Vacated/Random, ρ = 2

Fig. 12.12: Histograms of the distanced travelled when l = 20, c = 1, τ = 0.001
and ρ = 0.1,0.5,1,2. The service time distribution was exponential. The top four
histograms are for the MDP policy algorithm, and the bottom four are for the LVS
heuristic algorithm

Appendix 367

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − MDP Policy, ρ = 0.1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − MDP Policy, ρ = 0.5

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − MDP Policy, ρ = 1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − MDP Policy, ρ = 2

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − Last Vacated/Random, ρ = 0.1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − Last Vacated/Random, ρ = 0.5

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − Last Vacated/Random, ρ = 1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

imbalance

re
la

tiv
e

fr
eq

ue
nc

y

Imbalance − Last Vacated/Random, ρ = 2

Fig. 12.13: Histograms of the imbalance measure when l = 20, c = 1, τ = 0.001 and
ρ = 0.1,0.5,1,2. The service time distribution was Erlang. The top four histograms
are for the MDP Policy algorithm, and the bottom four are for the LVS heuristic
algorithm

368 M. Fackrell and P. Taylor

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − MDP Policy, ρ = 0.1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − MDP Policy, ρ = 0.5

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − MDP Policy, ρ = 1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − MDP Policy, ρ = 2

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − Last Vacated/Random, ρ = 0.1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − Last Vacated/Random, ρ = 0.5

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − Last Vacated/Random, ρ = 1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

distance

re
la

tiv
e

fr
eq

ue
nc

y

Distance − Last Vacated/Random, ρ = 2

Fig. 12.14: Histograms of the distanced travelled when l = 20, c = 1, τ = 0.001 and
ρ = 0.1,0.5,1,2. The service time distribution was Erlang. The top four histograms
are for the MDP policy algorithm, and the bottom four are for the LVS heuristic
algorithm

References 369

References

1. E. Altman, Constrained Markov Decision Processes (Chapman and Hall/CRC,
Boca Raton, FL, 1999)

2. F. Beretta, Motor vehicle automatic parking system, and related improved silos
structure Patent - US 5338145 A (1994). http://www.google.com.au/patents/
US5338145. Accessed on 30 April 2015

3. H.S. Buch, Storage structure in particular a multi-story car park. Patent - US
5864995 A (1999). https://www.google.com/patents/US5864995. Accessed on
30 April 2015

4. L.F.A.M. Gomes, An operations research approach to the optimal control of
parking systems. Found. Control Eng. 11, 33–42 (1986)

5. H. Hwang, S. Lee, Expected service time model for a rotary parking system.
Comput. Ind. Eng. 35, 559–562 (1998)

6. D. Monahan, De-mystifying automated parking structures (2011). Reference
11 of Wikipedia, Automated parking system. http://en.wikipedia.org/wiki/
Automated parking system. Accessed on 11 March 2015

7. A.R. Odoni, On finding the maximal gain for Markov decision processes. Oper.
Res. 17, 857–860 (1969)

8. W.B. Powell, Approximate Dynamic Programming: Solving the Curses of Di-
mensionality (Wiley, Hoboken, NJ, 2011)

9. H. Schween, In a parking garage having more than one floor. Patent - US
5669753 A (1994). http://www.google.com/patents/US5669753. Accessed on
30 April 2015

10. H.A. Taha, Operations Research: An Introduction (MacMillan, New York,
1987)

11. D. Trevisani, Automated parking system and subassemblies therefor. Patent -
US 5173027 A (1992). http://www.google.com/patents/US5173027. Accessed
on 30 April 2015

12. L. Vita, Vehicle parking structure. Patent - US 5980185 A (1999). http://www.
google.com.au/patents/US5980185. Accessed on 30 April 2015

13. Wikipedia, Automated Parking System. http://en.wikipedia.org/wiki/
Automated parking system. Accessed on 10 March 2015

14. Wikipedia, Car Parking System. http://en.wikipedia.org/wiki/Car Parking
System. Accessed on 10 March 2015

15. Wikipedia, Paternoster. http://en.wikipedia.org/wiki/Paternoster. Accessed on
10 March 2015

16. W.L. Winston, Operations Research, 4th edn. (Brooks/Cole: Belmont, CA,
2004)

17. YouTube, Revopark. Uploaded on 3 May 2007. url:https://www.youtube.com/
watch?v=ApaiJ0xbmMA. Accessed on 10 March 2015

18. YouTube, Automated Rotary Parking System. Uploaded on 12 May 2009.
url:https://www.youtube.com/watch?v=JXqzhmTi8Eo. Accessed on 10 March
2015

http://www.google.com.au/patents/US5338145
http://www.google.com.au/patents/US5338145
https://www.google.com/patents/US5864995
http://en.wikipedia.org/wiki/Automated_parking_system
http://en.wikipedia.org/wiki/Automated_parking_system
http://www.google.com/patents/US5669753
http://www.google.com/patents/US5173027
http://www.google.com.au/patents/US5980185
http://www.google.com.au/patents/US5980185
http://en.wikipedia.org/wiki/Automated_parking_system
http://en.wikipedia.org/wiki/Automated_parking_system
http://en.wikipedia.org/wiki/Car_Parking_System
http://en.wikipedia.org/wiki/Car_Parking_System
http://en.wikipedia.org/wiki/Paternoster
url:https://www.youtube.com/watch?v=ApaiJ0xbmMA
url:https://www.youtube.com/watch?v=ApaiJ0xbmMA
url:https://www.youtube.com/watch?v=JXqzhmTi8Eo

370 M. Fackrell and P. Taylor

19. YouTube, Rotary Parking. Uploaded on 30 November 2010. url:https://www.
youtube.com/watch?v=MsIHFyWuk4k. Accessed on 10 March 2015

20. YouTube, PTV Vissim: Automated Parking Simulation. Uploaded on 3 Febru-
ary 2011. https://www.youtube.com/watch?v=I1QSSWe8pV8. Accessed on 10
March 2015

21. YouTube, FATA Automated Parking Systems: 1 Car Park, 5 Systems, Uploaded
on 2 August 2012. https://www.youtube.com/watch?v=VwS1QwXqgpk. Ac-
cessed on 10 March 2015

url:https://www.youtube.com/watch?v=MsIHFyWuk4k
url:https://www.youtube.com/watch?v=MsIHFyWuk4k
https://www.youtube.com/watch?v=I1QSSWe8pV8
https://www.youtube.com/watch?v=VwS1QwXqgpk

Chapter 13
Dynamic Control of Traffic Lights

Rene Haijema, Eligius M.T. Hendrix, and Jan van der Wal

Abstract Traffic lights are put in place to dynamically change priority between
traffic participants. Commonly, the duration of green intervals and the grouping, and
ordering in which traffic flows are served are pre-fixed. In this chapter, the problem
of minimizing vehicle delay at isolated intersections is formulated as a Markov De-
cision Process (MDP). Solving the MDP is hampered by a large multi-dimensional
state space that contains information on the traffic lights and on the queue lengths.
For a single intersection, an approximate solution is provided that is based on pol-
icy iteration (PI) and decomposition of the state space. The approach starts with a
Markov chain analysis of a pre-timed control policy, called Fixed Cycle (FC). The
computation of relative states values for FC can be done fast, since, under FC, the
multi-dimensional state space can be decomposed into sub-spaces per traffic flow.
The policy obtained by executing a single iteration of Policy Iteration (PI) using
relative values is called RV1. RV1 is compared for two intersections by simulation
with FC, a few dynamic (vehicle actuated) policies, and an optimal MDP policy
(if tractable). RV1, approximately solves the MDP, and compared to FC, it shows
less delay of vehicles, shorter queues, and is robust to changes in traffic volumes.
The approach shows very short computation times, which allows the application to
networks of intersections, and the inclusion of estimated arrival times of vehicles
approaching the intersection.

R. Haijema
Operations Research and Logistics group, Wageningen University, Wageningen, The Netherlands
e-mail: Rene.Haijema@wur.nl

E.M.T. Hendrix
Universidad de Málaga, Computer Architecture, Málaga, Spain
e-mail: eligius@uma.es

J. van der Wal
Faculty of Economics and Business, University of Amsterdam, Amsterdam, The Netherlands

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 13

371

mailto:Rene.Haijema@wur.nl
mailto:eligius@uma.es

372 R. Haijema et al.

13.1 Problem

Traffic lights are introduced to resolve conflicts between road users by dynamically
changing the priority to cars approaching an intersection from different directions.
In practice, the underlying optimization problem is not always clearly defined by
policy makers. Several objectives are possible: minimize average delay, minimize
pollution by cars (e.g., CO2 emission) or a combination. In addition, (political) con-
straints may apply such as public transport traveling at a separate lane has the high-
est priority over all other traffic flows. In practice, traffic engineers aim to set a
good (hopefully nearly optimal) control scheme using simulation software, queue-
ing delay formulas, and experience. For an overview of existing methods to control
road traffic, see [9].

Many road users experience traffic lights as a source of delay. This chapter
presents a model for the underlying Markov Decision Process (MDP) of minimiz-
ing the expected delay or waiting time of cars. The principle of the MDP model is
to dynamically adjust the traffic lights depending on the number of cars queued in
each queue, and the current state of the traffic lights. Accurate information on the
number of queued cars is available to the controller from magnetic loop detectors
cut into the surface of the road, or other sensors or cameras positioned along the
road [1, 7, 12].

A number of dynamic control policies, reported in the literature, like SCOOT and
SCAT [8], dynamically switch between off-line calculated fixed cycles (FC). The
approach that we present in this chapter has more freedom to choose: it does not
have to choose between pre-calculated time plans; instead it requires only one FC
to be calculated off-line. Another class of dynamic control is vehicle actuated (VA)
control policies, that are characterized by a minimum and a maximum green period
for each traffic flow, and a gap-out time to dynamically decide to end a green pe-
riod. The optimization of VA policies is complicated and usually requires heuristics,
because of the number of parameters to be set jointly for all traffic flow (see [14]).

Also solving an MDP for infrastructures with many traffic flows, requires heuris-
tics solution procedures. Because of the curse of dimensionality, the number of
states grows exponentially in the number of queues. Parallelization of algorithms
to solve MDPs, as in [6], provides (at best) a linear reduction of the solution time,
which is not enough to solve many complex infrastructures in practice. Two general
techniques to solve large scale MDPs are aggregation and decomposition to reduce
the state space. Decomposition has been applied successfully to other problem set-
tings, see [13] and [2]. Another method is named Approximate Dynamic Program-
ming, which is based on approximating the value function [10]. In this chapter, we
present an approach based on decomposition.

Section 13.2 describes the MDP model. Section 13.3 describes a way to approxi-
mately solve the MDP. The resulting policy is evaluated by simulation in Sect. 13.4.
A short discussion and some conclusions follow in Sect. 13.5. In Appendix of this
chapter follows a summary of notations.

13.2 Markov Decision Process (MDP) 373

13.2 Markov Decision Process (MDP)

The model includes the flows of cars at an intersection, excluding other participants
in traffic, such as pedestrians and public transport. The applied definition of wait-
ing time is the time a car spends in the queue regardless of the color of the light.
The corresponding optimization is modeled in terms of an MDP. Approximate solu-
tions of the model are derived via policy iteration in Sect. 13.3. The resulting traffic
control tables are then simulated in Sect. 13.4.

13.2.1 Examples: Terminology and Notations

To get familiar with the notation, consider the infrastructures in Fig. 13.1.
Figure 13.1a depicts a simple intersection with only F = 4 traffic flows leading
to four queues. The flows and queues are numbered clockwise: 1–4. Flows 1 and 3
are grouped into combination 1 (C1), as they receive green simultaneously. Combi-
nation 2 (C2) consists of flows 2 and 4. At most one combination at a time has right
of way (when its lights are green or yellow). When switching from green to one
combination to green to the other combination, the green lights are first changed
into yellow (for two time slots) followed by a clearance period (of one time slot)
during which all lights are red and after which lights of some combination are
changed into green. The clearance time is included to safely clear the intersection.
The recurring questions are when to end a green period, and which combination

(a) ”F4C2” serve 4 flows in 2 symmetric
combinations

4
2

1

3

C1

C1

C2

C2

(b) ”F12C2” serve 12 flows in 4 asym-
metric combinations

10

11

1

5
4

7

12

2 3

6

89

C1C1C2

C2C1C1

C4
C3
C3

C3
C3
C4

1 1 2

2

3
3

4

3
3

4

11

Fig. 13.1: Two typical infrastructures. (a) “F4C2” serve four flows in two symmetric
combinations. (b) “F12C2” serve 12 flows in four asymmetric combinations

374 R. Haijema et al.

to serve next, given the actual color of the traffic lights, the actual number of cars
present at each queue, and the probabilistic arrival process of new cars.

Figure 13.1b shows a more complex intersection where F = 12 flows are grouped
into four combinations C1–C4. C1 and C3 consist of twice as many flows than C2

and C4. As long as some cars are waiting at all queues, giving priority to C1 or C3

results in more departures per unit time than giving priority to C2 and C4. The deci-
sions ‘when-to-end-a-green-period’ as well as ‘which-combination-to-serve-next’,
should depend on the number of cars waiting at each queue: q = (q1,q2, . . . ,q12).
An optimal policy prescribes for each possible state of the queues, i.e. each value of
the vector q, the action to take given the current state of the lights l. Such an optimal
policy can be obtained from the solution of the underlying MDP.

13.2.2 MDP Model

To model the decision problem, time is modeled in time slots of a fixed length equal
to a safe traveling distance between two cars. Hence we set the length of a time
slot to 2 s, which correspond roughly with the time between two departures from a
queue.

13.2.2.1 State

The state (at the start of a slot) is s=(l,q), where l ∈ L is the state of the traffic lights.
S denotes the state space, which is composed of the state space of the traffic lights L
and the state space related to the queue lengths. L is a finite set of |L| elements. The
number of cars queued is in theory unbounded. However, for computational reasons,
we limit the length of each queue to Q−1 cars. The number of queue states is QF .
The total number of states is |S|= |L|QF , which grows exponentially in the number
of traffic flows F .

13.2.2.2 Action

The action a ∈ A(s) ⊆ L, taken at the start of a slot, changes the traffic light state
instantaneously, i.e. immediately after observing the state s. As switching between
green for some (combination of) flow(s) to green to another, takes time to clear the
intersection the choices for adjusting the lights is limited to A(s)⊆ L.

13.2.2.3 State Transition Probabilities

The state changes by the action choice on the traffic light, and by having cars depart-
ing or arriving at the queues. From each queue with one or more cars waiting, and

13.2 Markov Decision Process (MDP) 375

that has priority according to light state l, exactly one car will leave within a time
slot. Within a time slot, new cars arrive at the queues by F independent Bernoulli
processes: i.e. with probability λ f , a new car arrives at flow f (and with probability
1−λ f no car arrives). The car either forms or joins a queue, or, if having priority
and no car is queued on his lane, it crosses the intersection in the same slot without
delay.

The state transition probability from state s to state s′ = T (s,a) = (a,q′) taking
action a is

P(q′|s,a) =
F

∏
f=1

p f (q
′
f |(l,q f),a) (13.1)

where p f (q′f |(l,q f),a) depends on l and whether a car arrives (w.p. λ f) or not, as
follows:

• when l implies priority (green or yellow) to flow f :

p f (q
′
f |(l,q f),a) =

⎧
⎨

⎩

λ f if q′f = q f ,

1−λ f else if q′f = max{0,q f −1}
0 otherwise.

(13.2)

• when l implies no priority (=red) to flow f :

p f (q
′
f |(l,q f),a) =

⎧
⎨

⎩

λ f if q′f = q f +1
1−λ f else if q′f = q f

0 otherwise.
(13.3)

13.2.2.4 Contribution: Waiting Costs

The objective is to minimize the expected number of cars queued at the start of
a time slot, such that by Little’s law the expected waiting time is minimized. The
contribution in a time slot to this objective function is the so-called one-period or
direct cost function:

c(q) =
F

∑
f=1

q f . (13.4)

13.2.2.5 Bellman Equation

A stationary dynamic control policy π∗ that minimizes the expected number of
queued cars fulfils

π∗(s) = arg min
a∈A(s)

∑
q′

P(q′|s,a))v∗(s′). (13.5)

where there exists a constant g∗ and a value function v∗ being a solution of the
Bellman equation:

376 R. Haijema et al.

∀s ∈ S : v∗(s)+g∗ = c(q)+ min
a∈A(s)

∑
q′

P(q′|s,a))v∗(s′) (13.6)

The constant g∗ represents the expected number of cars waiting at the start of a time
slot when an optimal policy π∗ is followed.

At this point, we have to make a technical remark: to get a finite state space S,
we have limited each queue length to at most Q− 1 cars. However, in the Bellman
equation we have included transitions to states s′ that are beyond the state space.
(e.g. when a car is arriving at a queue that contains already Q−1 cars). To determine
v(s′) for these states we apply quadratic extrapolation. For details see [3].

13.2.2.6 Computational Complexity

Solving the Bellman equation involves solving a set of |S| equations in |S|+ 1 un-
knowns; therefore one has one degree of freedom to fix one of the elements of v∗.
Hence v∗(s) is a relative value of state s when an optimal policy π∗ is applied. The
Bellman equation can be solved using fixed point algorithms, such as value itera-
tion, or by exact algebraic methods. A detailed discussion of the theory and methods
to solve MDPs is found in [11].

However, solving the MDP is only possible for infrastructures with a ‘small’
number of traffic flows, and under non-saturated conditions such that a reasonable
bound to the queue lengths can be set. For example, for infrastructure F12C4, when
all 12 queues may have up to 9 cars, then each element q f can take 10 possible
values (0–9). Consequently, the number of possible vectors q is 1012. Hence the
state space of the MDP easily exceeds the computationally acceptable limit of say 10
million states. The computational limit can be extended a bit by parallelization [6].
However, that only partly solves the computational issue, as the number of states
grows exponentially with the number of traffic flows F . Large MDPs that cannot be
solved to optimality require an approximate solution method, like the one that we
discuss in the next Section.

13.3 Approximation by Policy Iteration

13.3.1 Policy Iteration (PI)

Instead of applying exact algebraic methods to solve Eq. (13.6), we apply a policy
iteration (PI) algorithm to approximate an optimal policy. PI successively repeats
the following two steps.

13.3 Approximation by Policy Iteration 377

Step 1 Policy evaluation step: for an initial policy π , determine for all s ∈ S the
associated relative state values vπ(s) that satisfy:

vπ(s)+gπ = c(q)+∑
q′

P(q′|s,π(s)))vπ(s′). (13.7)

Step 2 Policy improvement step: Next, policy π is improved by executing a policy
improvement step:

π ′(s) = arg min
a∈A(s)

∑
q′

P(q′|s,a))vπ(s′). (13.8)

if π ′ = π , then stop (as π = π∗), otherwise set π := π ′ and return to Step 1.

Just as any other methods to solve the Bellman equations, PI suffers from the com-
putational burden due to the large state space. The advantage of PI is that doing
only one iteration may already give a good approximation when the initial policy is
reasonably good.

13.3.2 Initial Policy: Fixed Cycle (FC)

A well studied policy is a static policy for which one pre-fixes the time intervals
at which flows get green and the cyclic order in which combinations of flows are
served. The cycle has a fixed length of D time units, which is the sum of the green
periods and the time period needed to switch between combinations. Such a policy
we call FC. The slots within a cycle are numbered t = 1,2, . . . ,D. The slot number
provides all relevant information about the state of the traffic lights: i.e. from t one
can derive for each flow f the color of the light, the time it takes till getting green,
yellow, or red. Thus the state of the traffic light l is for π = FC given by t.

FC could act as an initial policy for PI. Therefore one first needs to configure
FC: i.e. set D, (nearly) optimal lengths of the green periods, and the cyclic order in
which combinations get priority. An optimization algorithm for setting an initial FC
is presented in [3] and [4].

13.3.3 Policy Evaluation Step of FC

The relative state values of FC, vFC(s), can be decomposed in relative state values
vFC

f (t,q f) per traffic flow f :

vFC(s) =
F

∑
f=1

vFC
f (t,q f). (13.9)

378 R. Haijema et al.

Relative state values vFC
f (t,q f) are determined by value iteration:

Step 1a. Define V f
0 (t,q) = 0 for all t ∈ {1, . . . ,D} and q ∈ {0, . . . ,Q} and let ε take

a very small value (compared to the expected number of cars waiting at the
start of any time slot), e.g. 10−5.

Step 1b. For all t ∈ {1, . . . ,D} and q ∈ {0, . . . ,Q}, recursively compute V f
n+1(t,q)

as follows (with V f
n (D+1, ·) read as V f

n (1, ·)):
Start with n = 0 and V0 = 0.
Repeat

• if flow f is having priority (green or yellow) during time slot t:

V f
n+1(t,q) := q+λ f ·V f

n (t +1,q)+(1−λ f) ·V f
n (t +1,(q−1)+),

(13.10)
where x+ = max{0,x},

• if flow f is not having priority during time slot t (its light is red):

V f
n+1(t,q) := q+λ f ·V f

n (t+1,q+1)+(1−λ f) ·V f
n (t+1,q) . (13.11)

• n := n+1;

until max(V f
n −V f

n−D)−min(V f
n −V f

n−D)< ε .
Set N := n.
For all t ∈ {1, . . . ,D} and q ∈ {0, . . . ,Q}, the difference (V f

N (t,q) −
V f

N−D(t,q)) is at most ε off from the long-run average cost per cycle (g(f)),
as the D-step Markov chains are all irreducible.

Step 1c. We set the relative state values relative to a fixed reference state, (D,0).
Thus vFC

f is:

vFC
f ≡

V f
N−D+1 + · · ·+V f

N

D
−

V f
N−D+1(D,0)+ · · ·+V f

N (D,0)

D
·1 ,

(13.12)
where 1 is the all-ones vector.
A discussion of the relative value definition in (13.12) is found in [3]. The
differences V f

N (q, t)−V f
N (D,0) cannot be used for this purpose as FC is

a periodic policy and consequently these differences change periodically
with N.
An alternative criterion is to compare ∑D−1

d=0 V f
N−d/D against the average

cost over N slots:

vFC
f ≡

V f
N−D+1 + · · ·+V f

N

D
−N ·g , (13.13)

where g may be approximated by any element of
V f

N−V f
N−D+1

D , as N is suf-
ficiently large.

13.3 Approximation by Policy Iteration 379

For example, Fig. 13.2 shows for a particular queue state q = (4,2,2,1) at infras-
tructure F4C2, the valuation of the traffic light state t. Figure 13.2a shows for each
of the four flows, the individual preference of time slot t. Figure 13.2b shows the
sum of these preferences. On top of the x-axis (which shows the time slots of FC),
labels are added that indicate which of the two combination gets green (G1/G2), or
yellow (Y1/Y2), or whether all lights are red (R).In this case with q = (4,2,2,1),
the best time slot is slot 1 (i.e. first slot of green to combination 1), as it gives the
lowest relative (cost) value. FC loops over all time slots: after slot 12 (R=all red) it
continues at slot 1 (G1=green to combination 1).

13.3.4 Single Policy Improvement Step: RV1 Policy

The relative value vFC
f (τ ,q f) quantifies the preference of flow f for time slot τ ,

when q f cars are waiting at queue f . Assuming all flows are equally important, the
overall relative appreciation of time slot τ is the sum ∑F

f=1 vFC
f (τ ,q f), as depicted

in Fig. 13.2b.
By applying a single policy improvement step, one finds a new policy π ′ that

may interrupt or breaks FC by dynamically deciding to decrease or increase a green
period. That is, in state (t,q), policy π ′ switches the state of the traffic light to the
best time slot reachable from the current slot t:

π ′(t,q) = arg min
τ∈A(t,q)

F

∑
f=1

vFC
f (τ ,q f) , (13.14)

where A(t,q) is the set of time slots to which one may switch safely from the current
traffic light state t.

This process is illustrated by Fig. 13.2b: one selects the time slot that can be
reached from the current time slot t, and that yields the lowest sum of relative values.
That is, under cyclic control, if t = 1, 2, or 3, then π ′(t,q) = 1. If t = 9 or 10,
then π ′(t,q) = 10. For t = 8 holds π ′(t,q) = 9, as lights cannot switch from red
to yellow without granting first green to one combination. For all other values of t
holds π ′(t,q) = t, i.e., one may not interrupt FC during switching.

We call this policy in the rest of this chapter the RV1 policy as it follows from a
1-step policy improvement using the relative values of FC.

13.3.5 Computational Complexity of RV1

The computational complexity of determining RV1 is very low as the state space
under FC is effectively decomposed into the state per traffic flow. The computation
of the relative values for each flow can be done quickly off-line. It allows a high

380 R. Haijema et al.

(a) Relative value curves for flows 1 to 4 when q= (4,2,2,1) cars are waiting.

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 1 2 3 4 5 6 7 8 9 10 11 12

re
la

tiv
e

va
lu

e

slot number

G1 G1 G1 Y1 Y1 R G2 G2 G2 Y2 Y2 R

4 cars waiting at flow 1
2 cars waiting at flow 2
2 cars waiting at flow 3
1 cars waiting at flow 4

(b) Sum of the relative value curves when q= (4,2,2,1) cars are waiting at flow 1 to 4.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 1 2 3 4 5 6 7 8 9 10 11 12

re
la

tiv
e

va
lu

e

slot number

G1 G1 G1 Y1 Y1 R G2 G2 G2 Y2 Y2 R

Sum when (4,2,2,1) cars waiting

Fig. 13.2: Relative state values of FC. (a) Relative value curves for flows 1–4
when q = (4,2,2,1) cars are waiting. (b) Sum of the relative value curves when
q = (4,2,2,1) cars are waiting at flow 1–4

13.4 Results 381

bound on the queue length that is practically not restrictive. The computation of the
sum of relative value curves is to be done quickly online: based on the actual number
of cars queued at each queue and the actual state of the traffic lights, the best time
slot to jump to can be computed in real time using Eq. (13.14). This is an important
characteristic that allows applying RV1 to large and complex infrastructures.

13.3.6 Additional Iterations of PI

For problems with a large state space S, additional iterations of PI are not consid-
ered, since this is not possible to determine relative state values for policy RV1: i.e.
vRV 1(s) cannot be computed in reasonable time, as its state space cannot be decom-
posed. For problems with a small state spaces that allows additional iterations of PI
(without decomposition of the state space), one may continue PI by following the
procedure sketched in Sect. 13.3.1 until an optimal MDP policy is found.

13.4 Results

To assess the quality of RV1, its performance is evaluated by simulation and com-
pared against FC and some exhaustive control policies. Exhaustive control (XC)
grants green to a combination as long as cars are queued. Policy XC-1 switches to
yellow as soon as at each ‘green’ queue at most one car is waiting anticipating its
departure during the next (=first) yellow slot. XC-2 switches to yellow as soon as at
each ‘green’ queue (at most) two cars are waiting, and thus XC-2 anticipates their
departure during the next two yellow slots.

For both infrastructures F4C2 and F12C4 we consider symmetric cases: i.e. the
arrival rates are identical for all flows. For F4C2 an optimal MDP policy is evalu-
ated. For F12C4, the optimal MDP policy could not be determined due to the large
state space. Acyclic control, non-identical arrival rates, and other infrastructures are
reported in [3] and [5].

13.4.1 Simulation

The simulation model relies on the same assumptions as the MDP model. The accu-
racy of the results presented in the next subsections is primarily set by the number of
simulation runs and the length of each run. All reported simulation results are based
on 100 runs of 72,000 slots per run, corresponding to 4000 h in the real system. At
the start of each run, a warming-up period of 450 slots (= 15 min) is applied. The
reported mean waiting times are accurate up to (at least) 2–3 digits. To be concise,
we do not report confidence intervals.

382 R. Haijema et al.

13.4.2 Intersection F4C2

Table 13.1 shows the results for the fully-symmetric F4C2 intersection at varying
workloads ρ . In the cases of a workload of ρ = 0.4,0.6,0.8 all flows have identical
arrival probabilities of respectively λ f = 0.2,0.3,0.4. The workload ρ should be
well below 1, to accommodate time for switching between combinations.

The Optimize-fixed-cycle algorithm (see [3, 4]) suggests cycle lengths of 8, 12
and 22 slots respectively, as reported in the next-to-last row (in seconds). The effec-
tive green time of a combination is the length of the related green and yellow period
under FC. RV1 is based on FC with these cycle lengths and effective green times.

Table 13.1: Overall mean waiting time (in s) for the fully-symmetric F4C2

Rule ρ = 0.4 ρ = 0.6 ρ = 0.8

RV1 5.06 7.01 14.2

FC 5.43 +7% 8.27 +18% 17.0 +20%

XC 5.76 +14% 8.82 +26% 19.9 +40%

XC-1 5.03 −1% 7.21 +3% 15.5 +9%

XC-2 5.09 +1% 7.31 +4% 14.2 +0%

MDP cyclic 4.89 −3% 6.95 −1% 13.5 −5%

FC cycle length (in s) and 16 24 44

effective green times per combination (6, 6) (10, 10) (20, 20)

The performance of the cyclic RV1 strategy obtained by the one-step policy im-
provement algorithm, is close to that of the optimal cyclic MDP strategy. Next to
the average waiting times, we report the relative difference compared to RV1. The
cyclic MDP policy performs only slightly better. FC and XC yield on average 15
and 27% larger waiting times; when the load is high (ρ = 0.8) the biggest differ-
ences can be observed. On average, RV1 is just slightly better than the anticipating
exhaustive variants (XC-1 and XC-2). However, the differences are small for this
simple fully-symmetric case.

13.4.3 Complex Intersection F12C4

For infrastructure F12C4, the optimal MDP strategy cannot be computed, because
the number of states is prohibitively large. Even if the MDP model would trun-
cate queues at the unrealistic level of two cars, the total number of states is still quite
large: 8.5 · 106 states (= (1+ 2)12 queue states times 16 traffic light states). F12C4
is not only computationally more complex because of the number of states, but also

13.4 Results 383

because the combinations are asymmetric: C1 and C3 consist of four flows, whereas
C2 and C4 consists of two flows only. It seems to be more profitable to under-serve
combinations C2 and C4, since serving the other two combination results in more
departures per time slot as long as cars are present at the respective queues.

The asymmetry in the number of flows per combination, makes it more difficult
to define simple rules that perform well. We keep the same definition of exhaustive
control: all queues must be empty before the green signals are turned into yellow.
Under XC-2, green lights are turned into yellow as soon as at each of the flows that
have right of way less than three cars are queued.

In Table 13.2 the results for varying workloads at a F12C4 intersection are pre-
sented for the case where all flows have identical arrival intensities λ f = 0.1, 0.15,
and 0.2, providing a workload of ρ = 0.4, 0.6 and 0.8 respectively. RV1 outperforms
all other strategies. When the workload of the intersection is low (0.4) XC-2 per-
forms equally well. At a high load XC-2 is too simplistic. At ρ = 0.8, FC performs
even better than XC-2: XC-2 yields an average waiting time that is 28% higher than
under RV1.

Table 13.2: Overall mean waiting time (in s) at different loads for F12C4 (λ f = ρ/4)

Rule ρ = 0.4 ρ = 0.6 ρ = 0.8

RV1 13.5 19.3 41.8

FC 15.0 +11% 23.7 +23% 50.5 +21%

XC 19.2 +42% 33.4 +73% 89.8 +115%

XC-1 14.9 +10% 25.1 +30% 70.1 +68%

XC-2 13.5 +0% 19.6 +2% 53.3 +28%

FC cycle length (in s) 32 40 88

FC effective green times (in sec.) (6, 6, 6, 6) (8, 8, 8, 8) (20, 20, 20, 20)

Equal Allocation of Waiting Time

In Table 13.3, we study the waiting time at the different flows under a heavy work-
load of ρ = 0.8. Although the arrival rates λ f are identical for all flows, the mean
waiting time differs per combination. Combinations C1 and C3 are ‘thicker’ than
combinations C2 and C4, since the latter two combinations have only two flows
each, whereas C1 and C3 consists of four flows each. Therefore C1 and C3 experi-
ence a lower waiting time than combinations C2 and C4 under all policies except
FC. The average waiting time per car under FC is identical for each flow as each
flow experiences an effective green time of 20 s (10 slots) per cycle.

384 R. Haijema et al.

Table 13.3: Mean waiting times (in s) for symmetric F12C4 at ρ = 0.8

Rule EW overall EW C1, C3 EW C2, C4

RV1 41.8 37.4 50.6

FC dep. times 20, 20, 20, 20 s 50.5 +21% 50.5 50.4

XC 89.8 +115% 88.5 92.4

XC-1 70.1 +68% 68.9 72.4

XC-2 53.3 +28% 52.1 55.8

Although FC seems to be most fair in the sense that the flows experience similar
average waiting times, RV1 performs much better: the average waiting time to flows
of C1 and C3 is 13 s (or 26%) lower than under FC, while the average waiting times
to C2 and C4 are virtually the same as under FC. Notice further that both XC and
anticipative-exhaustive control (XC-1 and XC-2) perform worse than FC, when the
workload is high.

13.5 Discussion and Conclusions

The dynamic control of traffic lights can be formulated as an MDP. In practice, for
many infrastructures the state space may be too large to determine an optimal MDP
policy. Nevertheless, this chapter shows that the principles and theory of MDP can
still be applied to obtain good approximate solutions by executing a single iteration
of a policy improvement (PI) algorithm. Key to this approach is to start PI with a
well structured policy for which relative values of the state can be determined. For
the problem of controlling traffic lights, such a well-structured policy is fixed cycle
control (FC). Under FC the computation of relative values can be decomposed in
computing relative values of the traffic light state.

For a single intersection, an approximate solution is provided that is based on
policy iteration (PI) and decomposition of the state space. The approach starts with
a Markov chain analysis of a pre-timed control policy, called Fixed Cycle (FC).
The computation of relative states values for FC is fast as under FC the multi-
dimensional state space can be decomposed into sub-spaces per traffic flow. The
policy obtained by executing a single iteration of PI using relative values of FC, is
called RV1.

Numerical results obtained by simulation, shows RV1 greatly reduces the average
waiting time compared to FC (and other policies). As the relative values of states
under policy RV1 cannot be computed using decomposition, additional PI steps can
be executed only for infrastructures for which the state space is not too large.

Appendix: Notation 385

RV1 seems to be a promising policy for practical application as:

• RV1 is robust to changes in traffic volumes: RV1 performs well even when the
underlying FC is sub-optimal,

• RV1 is thus easy to maintain: if traffic conditions change the performance of
RV1 deteriorates less rapidly than FC,

• RV1 is fast: evaluating a change of the traffic lights is done online in a micro
second; also the off-line calculation of the relative values for each flow can be
done quickly,

• RV1 can be extended to include information on the predicted arrival time of a
car approaching the intersection,

• RV1 can be scaled up to complex intersection and networks of intersections.

Future research may be devoted to the above aspect. For bringing RV1 to practice,
it is relevant to include other vehicles and traffic flows, such as public transport,
bicycles and pedestrians. These additional traffic flows do not hamper the use of
RV1 policies. In addition, multiple criteria, like vehicle speed and CO2 emissions,
can be included. This chapter has shown that insights and approximations obtained
using an MDP framework are of practical importance to improve the control of
traffic lights.

Acknowledgements This work has been funded by grants from the Spanish state (TIN2015-
66680-C2-2-R) and, Junta de Andalucı́a (P11-TIC-7176), in part financed by the European Re-
gional Development Fund (ERDF).

Appendix: Notation

This section summarizes the notation used for defining the MDP: i.e. for respec-
tively, the state, action, transition probability, and value function.

s = (l,q = (l,q1,q2, . . . ,qF), with l ∈ L = state of traffic light,
and q f ∈ {0,1, . . . ,Q−1} is # cars queued at lane f

F = Number of traffic flows (=lanes)
a ∈ A(s)⊆ L = Change of traffic lights in state s
P(q′|s,a) =∏F

f=1 p f (q′f |(l,q f),a) = Probability that next period’s state is
s′ = (a,q′), when current state is s and action a is taken
p f (q′f |(l,q f),a) = Single-period transition probability related to lane f .
λ = probability a car arrives at lane f
c(q) = Costs per period
v∗(s) = Relative valuation of state s of an optimal policy
g∗ = Gain of Markov chain for an optimal policy

= Long-run average costs per period of an optimal policy
π∗(s) = Optimal change of traffic lights in state s

386 R. Haijema et al.

References

1. L. Baskar, B. De Schutter, J. Hellendoorn, Z. Papp, Traffic control and intelli-
gent vehicle highway systems: a survey. IET Intell. Transp. Syst. 5(1), 38–52
(2011)

2. S. Bhulai, Dynamic routing policies for multiskill call centers. Probab. Eng.
Inf. Sci. 23(01), 101–119 (2009)

3. R. Haijema, Solving large structured Markov decision problems for perishable
inventory management and traffic control. Ph.D. thesis, Univeristy of Amster-
dam, Tinbergen Institute, Amsterdam School of Economics, 2008

4. R. Haijema, E.M. Hendrix, Traffic responsive control of intersections with pre-
dicted arrival times: a Markovian approach. Comput. Aided Civ. Infrastruct.
Eng. 29(2), 123–139 (2014)

5. R. Haijema, J. van der Wal, An MDP decomposition approach for traffic con-
trol at isolated signalized intersections. Probab. Eng. Inf. Sci. 22(4), 587–602
(2008)

6. J.F. Herrera, E.M. Hendrix, L.G. Casado, R. Haijema, Data parallelism in traffic
control tables with arrival information, in Euro-Par 2014: Parallel Processing
Workshops (Springer, Berlin, 2014), pp. 60–70

7. H.X. Liu, A. Danczyk, Optimal sensor locations for freeway bottleneck identi-
fication. Comput. Aided Civ. Infrastruct. Eng. 24(8), 535–550 (2009)

8. J.Y.K. Luk, Two traffic-responsive area traffic control methods: SCAT and
SCOOT. Traffic Eng. Control 25, 14–22 (1984)

9. M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, Y. Wang, Review
of road traffic control strategies, in Proceedings of the IEEE, vol. 91 (IEEE,
New York, 2003), pp. 2043–2067

10. W.B. Powell, Approximate Dynamic Programming: Solving the Curses of Di-
mensionality. Wiley Series in Probability and Statistics (Wiley, New York,
2007)

11. M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming (Wiley, New York, 2014)

12. A. Stathopoulos, L. Dimitriou, T. Tsekeris, Fuzzy modeling approach for com-
bined forecasting of urban traffic flow. Comput. Aided Civ. Infrastruct. Eng.
23(7), 521–535 (2008)

13. J. Wijngaard, Decomposition for dynamic programming in production and in-
ventory control. Eng. Process. Econ. 4, 385–388 (1979)

14. D. Zhao, Y. Dai, Z. Zhang, Computational intelligence in urban traffic signal
control: a survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(4),
485–494 (2012)

Chapter 14
Smart Charging of Electric Vehicles

Pia L. Kempker, Nico M. van Dijk, Werner Scheinhardt, Hans van den Berg,
and Johann Hurink

Abstract A crucial challenge in future smart energy grids is the large-scale
coordination of distributed energy generation and demand. In the last years several
Demand Side Management approaches have been developed. A major drawback of
these approaches is that they mainly focus on realtime control and not on planning,
and hence cannot fully exploit the flexibility of e.g. electric vehicles over longer
periods of time.
In this chapter we investigate the optimization of charging an electric vehicle (EV).
More precisely, the problem of charging an EV overnight is formulated as a Stochas-
tic Dynamic Programming (SDP) problem. We derive an analytic solution for this
SDP problem which in turn leads to a simple short-term bidding strategy. From an
MDP point of view this solution has a number of special features:

• It leads to analytic optimal results based on order statistics.
• It allows for a more practical rule which can be shown to be nearly optimal.
• It is robust with respect to the modeling assumptions, showing little room for

further improvement even when compared to a solution with perfect foresight.

H. van den Berg
TNO, Cyber Security & Robustness TNO, The Hague, The Netherlands

Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
e-mail: j.l.vandenberg@tno.nl

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 14

387

P.L. Kempker (�)
TNO, Cyber Security & Robustness TNO, The Hague, The Netherlands
e-mail: pia.kempker@tno.nl

N.M. van Dijk
Stochastic Operations Research, University of Twente, Enschede, The Netherlands
e-mail: n.m.vandijk@utwente.nl

W. Scheinhardt • J. Hurink
Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
e-mail: w.r.w.scheinhardt@utwente.nl; j.l.hurink@utwente.nl

mailto:pia.kempker@tno.nl
mailto:n.m.vandijk@utwente.nl
mailto:w.r.w.scheinhardt@utwente.nl
mailto:j.l.hurink@utwente.nl
mailto:j.l.vandenberg@tno.nl

388 P.L. Kempker et al.

Numerical results with real-world data from the Belgium network show a sub-
stantial performance improvement compared to standard demand side management
strategies, without significant additional complexity. (This chapter is based on
Kempker et al. (Proceedings of the 9th EAI international conference on perfor-
mance evaluation methodologies and tools, Valuetools 2015, Berlin, 14–16 Decem-
ber 2015, pp 1–8, 2016).)

14.1 Introduction

Due to the limited availability of fossil fuels and their greenhouse effect, a change
of our energy supply to a generation based on renewable sources like wind and
sun is needed. This shift towards a sustainable energy supply is already ongoing
and called the ‘energy transition’. However, this change has a drastic impact on the
control of the energy system, as generation based on renewable sources is fluctuating
and uncontrollable, leading to a decrease of flexibility on the production side of the
supply chain. Therefore, the energy transition urges for more flexibility in other parts
of the energy supply chain. “Smartening” the grid and transforming the domestic
customers from static consumers into “smart users” in the production process can
help to overcome these issues.

The use of flexibility on the consumer side (or demand side) of the energy supply
chain is called Demand Side Management (DSM; see e.g. [6]). In literature, man-
agement methodologies are proposed to exploit the flexibility of consuming devices.
One of these methodologies is the so-called PowerMatcher (PM), which reflects a
recognized technology and aims to integrate demand and supply flexibility in the
operation of the electricity system by dynamic pricing in combination with a hi-
erarchical bidding procedure, see e.g. [4, 9]. However, as the PowerMatcher only
focuses on the coordination of demand and supply on the short-term, it has prob-
lems to fully exploit the flexibility of shiftable demands over longer periods of time
(e.g. for charging electric vehicles) and to achieve the efficiency potentially attain-
able due to this flexibility.

Recently, the PowerMatcher has therefore been extended by a planning module,
which provides coordinated predictions of demands and prices over longer periods
of time, e.g. a full day ahead. The output of the planning module can then be used
as input for users to determine their short-term bids in order to:

• meet their targets (e.g. fully charge an electric vehicle in time); and
• minimize charging costs.

In this chapter we refer to the extended PowerMatcher as EPM.
An important aspect for the proposed extension is to exploit the output of the

planning module for establishing a short-term bidding strategy for a user with a
certain amount of shiftable demand over the longer term (e.g. one night). Deal-
ing with the lack of any additional information, we make the modeling assumption
that prices for the short-term intervals covered by the planning period are indepen-
dent and identically distributed according to a normal distribution with mean value
equal to the long-term average. We show that finding the optimal short-term bidding

14.2 Background on DSM and PowerMatcher 389

strategy using this assumption can be formulated as an MDP/SDP problem. This
MDP/SDP problem can in principle be solved numerically. In fact, with an inde-
pendence assumption over multiple time periods, even an explicit analytic solution
can be derived. This in turn leads to a simple short-term bidding strategy. We also
briefly argue how the MDP/SDP approach can still be used for situations with more
dependence in the stochastic (fluctuations of the) prices during the planning period.
Numerical results show the performance of the Extended PowerMatcher (EPM)
compared to the ‘standard’ PowerMatcher and various other charging strategies. In
particular, using simulations with detailed real-world data for wind production and
household demands over a 6 months period, it is shown that the PowerMatcher ex-
tension with the simple bidding strategy works very well and in many cases provides
a considerable improvement over the standard PowerMatcher.

Finally, it appears that the outcomes of the EPM (despite the modeling assump-
tions mentioned above) are surprisingly close to the (theoretical) optimum achiev-
able even when all realized prices would have been known in advance (to be referred
to as strategy 6 in Sect. 14.4). The latter result implies, at least within the present
framework, that more precise estimations of the prices for successive short-term
time intervals are not imperative since the algorithm is sufficiently robust w.r.t. the
modeling assumptions. As such MDP/SDP has shown to be of practical use for
future implementations

• at network level for offering bidding strategies,
• at consumer (EV) level to minimize the daily cost for electric driving.

The chapter is organized as follows. In Sect. 14.2, some background on DSM
and a short description of the PowerMatcher and its planning module extension is
presented. Next, in Sect. 14.3, we concentrate on the charging problem for a sin-
gle user (EV). First we briefly present the steps for obtaining a practical rule. Next
an MDP/SDP formulation and its analytic solution are presented leading to an ex-
plicit short-term bidding strategy and a heuristic for the EPM. Section 14.4 provides
the numerical validation and evaluation based on weather data for the country of
Belgium, by comparison between the DP-heuristic and simple charging strategies.
Section 14.5 contains conclusions and topics for further research.

14.2 Background on DSM and PowerMatcher

A vast amount of literature on smart energy systems concerns DSM methodolo-
gies [1, 4, 5, 7]. These methodologies generally focus on strategies to optimize the
consumption pattern of consumers and to exploit the potential of distributed gener-
ation and electricity storage systems. The methodologies optimize at a device level,
where the considered smart devices are consuming, producing or buffering devices
(e.g. electric vehicles, PV panels or batteries). These smart devices can have mul-
tiple options for their operation at every moment in time, of course respecting the
device specific constraints (e.g. a fridge can be switched on or delayed, modulat-
ing boilers have multiple run levels and an energy buffer can be (dis)charged with

390 P.L. Kempker et al.

a certain amount of energy). The control methodologies take a decision for every
controllable device, often in a hierarchical way to maintain scalability. Furthermore
generic functions are used to express the device constraints and differences between
the control options of the devices. These functions are called utility functions, bid-
ding functions, cost functions, etc and reduce the optimization problem to a cost
optimization problem with a limited number of constraints. The outcome of such

Fig. 14.1: Visualization of PowerMatcher concept (source: http://flexiblepower.
github.io/technology/powermatcher/)

an optimization problem is an energy price, which in combination with the cost
function of the devices specifies the resulting dispatch for each device.

The demand side management methodologies differ in the way how time is con-
sidered. Some only use real-time control, i.e. they only optimize for the decisions
at the current moment, whereas other management methodologies optimize for a
longer period, often combined with a real-time control to compensate for forecast-
ing errors. For the real-time control strategies mostly cost functions in combination
with an optimization methodology are used. These optimization methodologies can
be split up in three groups: auction based optimization, game theory based optimiza-
tion and other mathematical optimization strategies. Planning strategies determine
the best sequence of decisions for every point in time on beforehand. However,
changes in the environment alter the value of the decision points. In other words,

http://flexiblepower.github.io/technology /powermatcher/
http://flexiblepower.github.io/technology /powermatcher/

14.2 Background on DSM and PowerMatcher 391

cost functions in a certain time interval may depend on decisions taken in earlier
time intervals. In literature, a lot of auction based methodologies for real-time con-
trol are proposed. In an auction based strategy the generators and consumers of
electricity place bids for the energy price (=cost function), these are aggregated and
then a market clearing price is calculated. One of the more developed methodologies
in this area is the PowerMatcher (see [4] and Fig. 14.1 for more details).

A drawback of real-time approaches is that they decide only for the next time
moment whereas many devices offer their demand flexibility over longer time hori-
zons. For the optimal utilization of this flexibility, a coordinated use of the devices
based on predictions over longer periods of time (e.g. day-ahead or week-ahead
horizons) is essential: Electric Vehicles (EVs) for example, can shift their demand
within the charging window between being plugged in and leaving again.

In the following, we sketch a coordinated planning extension to the Power-
Matcher. The planning module uses information from the household devices along
with forecasts of e.g. the wind power generation to predict the average price over
the following long-term period, and then make this prediction available to all agents
for use in their short-term strategies. This is achieved by combining two instances
of the PowerMatcher algorithm, using different time scales:

• Long-term scale (planning module): Each agent sends a demand profile for
the long-term horizon (total expected demand vs. average price). The planning
agent then predicts the average price over this time horizon.

• Short-term scale (matching module): Each agent sends its current demand pro-
file for the short-term horizon. Shiftable devices (e.g. electric vehicles) can
make their short-term demand flexibility dependent on the long-term average
price. The matching agent then determines the market-clearing price for the
next short-term interval.

If predictions about the fluctuation of the demands within the time window are avail-
able, the same architecture can be used to estimate the standard deviation of the price
over a time period T . This is the case for a numerical example in Sect. 14.4. Detailed
wind power predictions can be derived from the weather forecast, and the aggregate
fixed household demands follow a predictable daily pattern, from which a standard
deviation is easily derived. A more detailed description of the extended version of
the PowerMatcher can be found in [3].

For implementing the long-term scale, we apply a moving-horizon approach, re-
computing the expected average price for the updated time window on a regular
basis. In the later sections, where we focus on charging electric vehicles, we use
a night-ahead time horizon with a fixed end time, since in the scenarios we con-
sider, the EV has to be charged until the next morning. For other shiftable devices
other long-term horizons might be preferable, e.g. a 24-h-ahead moving horizon for
battery storage.

In the following sections we consider the planning and control problem resulting
from the introduction of the two different phases in more detail and discuss how we
may use the extra information provided by the coordinated planning mechanism.
We do this for the example of an electric vehicle in a network powered by wind
turbines and a diesel generator.

392 P.L. Kempker et al.

14.3 Optimal Charging Strategies

In order to develop the long-term bidding strategy, the PowerMatcher is confronted
with the following question: Given the predictions of the long-term average price
and its standard deviation, as provided by the planning module of the PowerMatcher,
how can this knowledge be used in the creation of short-term demand profiles?

Since different types of shiftable devices have different objectives and con-
straints, in this chapter we focus on the particular case of an EV that needs to be
charged for up to a certain amount overnight. More precisely, our objective is:

Objective: How to charge an electric vehicle overnight if the prices for the different
time periods during the night are uncertain.

Finding an appropriate bidding function for a specific time period means that we
need to find an appropriate amount of energy to be charged during that period for
each possible value of the price. Thus, even though we do not know the value of
the price beforehand, we can treat it as given, and then concentrate on the objective
above, where future prices are uncertain, but the current price is known.

In this section we approach this objective in a number of conceptual steps based
on MDP/SDP in order to determine an optimal charging strategy. These steps are as
follows:

Steps:
• Assumptions
• An MDP/SDP formulation
• An analytic solution based on order statistics
• A more practical rule or DP-heuristic rule
• A computational comparison of the DP-heuristic and simple rules.

First, in Sect. 14.3.1 the problem is formulated as a general MDP/SDP problem.
Here we use the modeling assumption that prices for different periods are indepen-
dent in order to obtain a computationally attractive solution form. This assumption
is reflected upon later in Sect. 14.4 by numerical results. Next, in Sect. 14.3.2, we
focus on the special case of i.i.d. prices; i.e., we now also assume that different
periods have the same price distribution, as is in principle the case in the context
of the extended PowerMatcher, where we only know the long run average price.
For this special case the MDP/SDP is shown to have an analytic solution. Finally,
since the explicit solution is based on order statistics, which are in general not easy
to compute, in Sect. 14.3.3 we present a simple heuristic which is more practical
to implement within the PowerMatcher. Both the modeling assumptions and the
heuristic are justified by simulations presented in Sect. 14.4.

For illustrative purposes, we consider a concrete setting of an EV which has to
be charged with 8 kWh of energy overnight (8 pm–8 am), and which is connected to
a network including wind and fossil fuel power.

14.3 Optimal Charging Strategies 393

14.3.1 MDP/SDP Problem Formulation

If the energy prices were known for each period, then the charging problem could
be regarded as a deterministic Knapsack Problem (see any introductory OR book
for standard Knapsack formulations). However, from a single user’s point of view,
these prices are not known in advance: They depend on external factors, such as
weather conditions, and on other users’ demand profiles.

A stochastic modeling approach is therefore proposed to incorporate the complex
bidding and price setting process. Accordingly, we introduce random variables Pt

for the price per unit of energy in period t, where t = 1, . . . ,T . Later on, in the
numerical experiments in Sect. 14.4, we choose suitable distributions for these, with
their expectation matching the long run expected average price from the planning
module. For presentational convenience from now on we consider these prices to be
given in discrete units (i.e., they are represented by discrete random variables).

Our objective now is to minimize the total cost to charge an EV within T time
intervals (e.g. for a one-night period, T = 24 periods of half an hour). At times
t = 1,2, . . . ,T a decision has to be made how much is to be charged during period t
(i.e., within time interval [t, t +1)). Let

Pt be the stochastic price variable for period t,
L be the total amount of energy to be charged by the end of period T

(i.e. during periods 1,2, . . . ,T),
xt be the amount still to be charged at time t, (i.e. during periods t, . . . ,T),
ut be the amount of energy to be charged during period t (decision variable),
umax be the maximum amount of energy that can be charged during any period.

As visualized in Fig. 14.2 for a simple example, the charging problem inher-
ently has the structure of a Decision Tree, or more precisely of a Markov Decision
Problem (MDP) (see [8] for an extensive treatment of MDPs) with the following
repetitive decision structure: Given the state at a particular time t, a decision is to be
taken, due to which:

• There are immediate expected costs for period t.
• The resulting state at time t +1 is determined stochastically.

Our goal is to determine optimal decisions ut which depend on the actual state at
time t. This state description should contain sufficient information to determine the
next state by a stochastic description. For our application, as opposed to standard
knapsack formulations, this means that the state description should not only contain
the amount xt to be charged, but also the (‘known’) current price pt . Hence, the state
at time t needs to be given by st = (xt ; pt).

Let Vt(x; p) be the minimal expected cost during time intervals t, . . . ,T , given
that the state at time t is (x; p) (i.e., given that we need to charge x during {t, . . . ,T}
and that the current price is Pt = p).

The optimal decisions for all states can be determined by iteratively solving the
following Stochastic Dynamic Programming equations: First, for t = T +1 we have

394 P.L. Kempker et al.

Fig. 14.2: Decision tree example for charging 8 kWh over 24 h, with a discrete
price distribution P(Pt = p) = 1/3 for p = 4,5,6, and possible charging decisions
ut ∈ {0,1,2}

VT+1(x) =

{
0 if x = 0
∞ otherwise.

(14.1)

Next, for t = T,T −1, . . . ,1 and any (x; p) we have

Vt(x; p) = minu

[
up+∑

p′
P(Pt+1 = p′)Vt+1(x−u; p′)

]
. (14.2)

Here the sum is taken over all p′ in the support of Pt+1, and the minimum over all
u in [0,umax]. Finally, the charging problem with an amount of L to be charged over
[1,T +1] and with price p at t = 1 is denoted by V (L; p). The decision variable (or
‘action’, or ‘control’) u which minimizes (14.2) is given by ut(x; p) and can be said
to provide an optimal strategy. Thus, formally we define ut(x; p) as the amount we
need to charge at time t to minimize the total expected cost, when we need to charge
x during {t, . . . ,T} and Pt = p.

Returning to Fig. 14.2, this figure illustrates the example given earlier with T =
24, L = 8, umax = 2, and P1, . . . ,P24 i.i.d. with price distribution P(Pt = p) = 1/3 for
p = 4,5,6.

Remark 14.1 (Penalty Costs). Instead of a strict charging requirement at the end of
period T , we can also implement a penalty function for a remaining amount not
charged, e.g. by a fixed and a proportional penalty for xT+1 = xT −uT by

MIxT+1>0 + xT+1b.

14.3 Optimal Charging Strategies 395

Remark 14.2 (History-Dependent Prices). The formulation of our MDP/SDP can
easily be adapted for the case of history-dependent prices. In that case the state
of the system should include, apart from xt and pt , also the price history ht =
(p1, . . . , pt−1). Furthermore, the probabilities in (14.2) need to be replaced by
history-dependent conditional probabilities, so that (14.2) becomes

Vt(xt ; pt ,ht) = minu
[
upt

+∑
p′
P(Pt+1 = p′|Pt = pt ,ht)Vt+1(xt −u; p′,ht+1)

]
.

However, the joint distribution of P1,P2, . . . ,PT generally is not available (since
this would require much more communication than provided in the extended Pow-
erMatcher) and even if it is, the computations are computationally prohibitive or
require a special approximate procedure.

By the independence assumption and the MDP/SDP approach, optimal strategies
and corresponding values can now be computed directly and be numerically imple-
mented in the PowerMatcher. Since we only have information available about the
long-run average price, we assume that all prices are i.i.d. with this expectation. In
the next section we see that in this case an explicit analytic optimal decision rule can
be given, with its corresponding minimal cost. Note that real-world energy prices are
in general not i.i.d., but follow daily and seasonal patterns. However, due to the ro-
bustness of the PowerMatcher algorithm, possible performance improvements due
to more accurate models are limited (see Sect. 14.4).

14.3.2 Analytic Solution for i.i.d. Prices

In this section, we assume that the prices P1, . . . ,PT are independent and identically
distributed (i.i.d.) random variables. The particular choice of the underlying distri-
bution is not of interest in this context, but for the PowerMatcher its expectation
should match the long-run expected average prices resulting from the long-term
bidding process.

Recall the definition of Vt(x; p), and ut(x; p), and the MDP/SDP formulation in
(14.2). To find explicit expressions for Vt and ut for t = 1, . . . ,T we use the concept
of order statistics, defined as follows.

Considering the prices Pt , . . . ,PT , we denote the k-th smallest value of these by
Pt
(k) for k = 1, . . . ,T − t +1. Thus, we have

Pt
(1) ≤ Pt

(2) ≤ ·· · ≤ Pt
(T−t+1).

In particular Pt
(1) and Pt

(T−t+1) are respectively the minimum and maximum prices

during {t, . . . ,T}. For notational convenience we also define Pt
(0) = 0 and Pt

(T−t+2) =

∞. When some prices coincide, the ordering is not unique, but this is not important

396 P.L. Kempker et al.

since we only need their values in the sequel. In fact we only need the expected val-
ues of the order statistics, but note that these depend on the whole price distribution.

An optimal strategy and a corresponding value function are given in the following
theorem.

Theorem 14.1. Let k = � x
umax

�. An optimal strategy for (14.2), in the case of i.i.d.
prices, is given by

ut(x; p) =

⎧
⎪⎨

⎪⎩

0 if p > EPt+1
(k+1)

x− kumax if EPt+1
(k) < p≤ EPt+1

(k+1)

min(umax,x) if p≤ EPt+1
(k)

(14.3)

and its corresponding value function (minimal cost) is

Vt(x; p) = ∞ if
x

umax
> T − t +1,or else

Vt(x; p) = umax

k

∑
�=1

E[Pt
(�)|Pt = p]+ (x− kumax)E[P

t
(k+1)|Pt = p].

(14.4)

Intuitive explanation. Suppose we have perfect knowledge of all future prices
within the time horizon under consideration: Then we would pick the k = � x

umax
�

cheapest intervals out of the time horizon of T − t + 1 intervals, and charge umax

during each of these intervals. If x is not a multiple of umax then we would charge
the remainder x− kumax in the next-cheapest interval available.

However, in the setting of this chapter we do not have perfect knowledge of all
future prices: At each time step, we only know the current price (or a set of possi-
bilities for the bidding function) and (an estimate of) the probability distribution of
the future prices. This means we have to work with expectations instead: At time
t we decide to charge umax if we expect the current given price to be among the k
cheapest prices within the next T − t +1 time intervals.

Proof. W.l.o.g. we let umax = 1 by an appropriate choice of units. We prove optimal-
ity of the strategy given in (14.3) by showing that this strategy and the corresponding
expression (14.4) for V satisfy the Dynamic Programming equation in (14.2). We
proceed by induction, as follows.
Base step (t = T). The constraint that a total of x needs to be charged by time T +1
translates to

VT+1(x; p) =

{
∞ if x > 0
0 if x = 0

for all p. Using this, the minimizing argument from (14.2) shows that the strategy
for t = T satisfies uT (x; p) = x for x ≤ 1, which is in accordance with (14.3) since
EPT+1

(1) = ∞ (minimum of an empty set). Also, for x > 1 we can choose any u as
the minimizing argument in (14.2), so the strategy given in (14.3) is indeed a valid
optimal strategy. Furthermore, from (14.2) we also find that

14.3 Optimal Charging Strategies 397

VT (x; p) =

{
∞ if x > 1
up if x≤ 1,

which satisfies statement (14.4) for t = T .
Induction step. Supposing that statements (14.3) and (14.4) hold for t+1 and umax =
1, we need to prove that (14.3) and (14.4) also hold for t. We define the auxiliary
function v(u) as the function to be minimized in (14.2) and rewrite it as

v(u) = up+EPt+1

[�x−u�

∑
�=1

E[Pt+1
(�) |Pt+1]+ (x−u−�x−u�)E[Pt+1

(�x−u�+1)|Pt+1]
]

= up+
�x−u�

∑
�=1

EPt+1
(�) + (x−u−�x−u�)EPt+1

(�x−u�+1),

(14.5)

where the expectation EPt+1 is w.r.t. Pt+1, the other expectations in the first line are
w.r.t. Pt+2, . . . ,PT , and the expectations in the last line are w.r.t. Pt+1,Pt+2, . . . ,PT .
To minimize v(u), note that

�x−u�=
{
�x�, for u ∈ [0,x−�x�]
�x�−1, for u ∈ (x−�x�,1] , (14.6)

and hence

∂
∂u

v(u) = p−EPt+1
(�x−u�+1)

=

{
p−EPt+1

(�x�+1) if u ∈ [0,x−�x�]
p−EPt+1

(�x�) if u ∈ (x−�x�,1] .

Since v(u) is continuous w.r.t. u∈ [0,1] and EPt+1
(�x�+1)≥ EPt+1

(�x�) there are three cases:

• If p > EPt+1
(�x�+1) then ∂v

∂u > 0 for all u∈ [0,1] and hence the minimum is attained
at u = 0.

• If EPt+1
(�x�) < p ≤ EPt+1

(�x�+1) then ∂v
∂u ≤ 0 for u ∈ [0,x−�x�] and ∂v

∂u > 0 for u ∈
(x−�x�,1], and hence the minimum is attained at u = x−�x�.

• If p≤ EPt+1
(�x�) then ∂v

∂u ≤ 0 for all u∈ [0,1], and the minimum is attained at u = 1
(or u = x if x < 1).

398 P.L. Kempker et al.

This proves the optimality of (14.3). Now we can prove (14.4):

Vt(x; p) = minuv(u)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑�x��=1EPt+1
(�)

+ (x−�x�)EPt+1
(�x�+1) if p > EPt+1

(�x�+1)

(x−�x�)p+∑�x��=1EPt+1
(�)

if EPt+1
(�x�) < p≤ EPt+1

(�x�+1)

p+∑�x�−1
�=1 EPt+1

(�)
+ (x−�x�)EPt+1

(�x�) if p≤ EPt+1
(�x�)

=
�x�

∑
�=1

E
[
Pt
(�)|Pt = p

]
+(x−�x�)E

[
Pt
(�x�+1)|Pt = p

]

��

The optimal strategy given here is an almost bang-bang type strategy, in the sense
that for xt being any multiple of umax, the optimal decision u ∈ [0,umax] appears to
be either 0 or umax.

14.3.3 DP-Heuristic Strategy

The implementation of the optimal strategy in (14.3) requires us to compute expecta-
tions of order statistics. This is a difficult task in terms of computational complexity.
Therefore we propose an appealing heuristic, which may replace the optimal rule,
as follows. With k = � x

umax
�, let the heuristic strategy be given by

ut(x; p) =

⎧
⎪⎨

⎪⎩

min(umax,x) if F(p)≤ k
T−t+1

x− kumax if k
T−t+1 <F(p)≤ k+1

T−t+1

0 if F(p)> k+1
T−t+1 ,

(14.7)

where F is the common price distribution function. At first sight this may seem
equivalent to the optimal rule in (14.3): For strictly monotone F we have

p≤ EPt+1
(k) ⇔ F(p)≤ F

(
EPt+1

(k)

)
.

F
(

Pt+1
(k)

)
is a random variable which is distribution is given by the distribution of the

(k)-th order statistic of T − t uniformly distributed and independent (i.i.d.) random

variables on [0,1], so EF
(

Pt+1
(k)

)
= k

T−t+1 . However the heuristic strategy (14.7) is

not equivalent to the optimal strategy (14.3), since

F
(
EPt+1

(k)

)
�= EF

(
Pt+1
(k)

)

in general.

14.4 Numerical Results 399

Bidding strategy for EV, given Pavg, Pdev, pmin, pmax

price p such that
p_max

p_min

fraction

don’t charge

charge with rate umax

of remaining time needed for charging
0 0.2 0.4 0.6 0.8 1

P_avg + 2P_dev

P_avg + P_dev

P_avg

P_avg − P_dev

P_avg − 2P_dev

= (T − t) F(p)x

x

umax⎣ ⎦

price p such that = (T − t) F(p)x
umax

umax(T − t)

⎧ ⎤

Fig. 14.3: Bidding/charging strategy of EV, with the threshold DP-heuristic strategy
given by (14.7)

In what follows the heuristic based on (14.7) is referred to as DP heuristic.
Even though the difference between the optimal and heuristic DP rules may not
be negligible, we still use it in the next section with good results, thus strengthening
our belief that the EPM is a strong concept which seems to be robust with respect to
the strategy that is used.

The heuristic bidding strategy is illustrated in Fig. 14.3. The distance between the
thresholds corresponding to

⌊
x

umax

⌋
and

⌈
x

umax

⌉
(left and right entries) depends on x0

and umax (in Fig. 14.3, x0 = 8 and umax =
1
2).

14.4 Numerical Results

In this section, we compare the performance of different short-term charging strate-
gies in simulations using real-world data for wind production and fixed household
demands.

The data we use is available at [2]. It consists of 15-min averages for the network
of Belgium over the first 180 days of 2015 for:

• the measured load, aggregated over all households and industries (we consider
this the fixed demand),

• the wind production, measured in some locations and upscaled to fit the net-
work’s nominal capacity,

• long-term predictions of the aggregated load and of the wind production, up-
dated once a day at 11 am for all 15-min intervals in the next 24 h.

The Belgian network includes 4.8% wind production and 3.3% solar production:
We exclude solar production here since the only shiftable devices considered in the
simulation are electric vehicles. These charge overnight when the solar production
is zero. To compensate, and in order to incorporate the sharp increase in wind pro-

400 P.L. Kempker et al.

Fig. 14.4: Comparison of different bidding/charging strategies, prices and de-
mand/production for night 124

duction over the recent and coming years, we scale the overall loads by a factor of
1
5 , while keeping the wind power as it is.

For the purposes of this simulation, electric vehicles can charge from 8 pm till
8 am, and their demand is fixed at 8 kWh/night. For an analysis of realistic driving
patterns, we refer to [10].

In our example network, power is produced by wind turbines (generating cheap
electricity whenever there is wind) and a diesel generator (which has virtually un-
limited capacity but high unit prices). We add one EV to the network, in addition
to the fixed loads provided in the data. Since the demand of the EV is very small
compared to the fixed load, the EV is a price taker: while the current energy price
influences the EV’s decisions, the EV’s actions have no significant influence on the
prices. This would change if we added many EVs with similar demand patterns (e.g.
one for every household), a possible topic for further research.

We compare the following strategies for charging the EV:

Strategies:
1. Charge directly when plugged in, as fast as possible,
2. Charge evenly over the whole night,
3. DP-heuristic strategy (14.7), using last night’s average and standard deviation

as Pavg and Pdev (this corresponds to the standard PowerMatcher architecture),
4. DP-heuristic strategy (14.7), using coordinated night-ahead estimates of Pavg

and Pdev, estimated once at the beginning of the night (this corresponds to the
PowerMatcher approach with only one prediction round per night),

5. DP-heuristic strategy (14.7), using coordinated night-ahead estimates of Pavg

and Pdev, updated every 15 min (this corresponds to the extended PowerMatcher
approach)

6. Lower bound strategy, where we pick the cheapest time slots in retrospect, as-
suming perfect knowledge or individual estimates of all prices.

14.4 Numerical Results 401

Strategy
Single night 180 nights

Cost Improvement Cost Improvement
1 45.3 – 10,861 –
2 33.4 26% 10,672 1.7%
3 30.5 33% 10,626 2.2%
4 28.5 37% 10,190 6.2%
5 23.9 47% 9971 8.2%
6 22.0 51% 9909 8.8%

Table 14.1: Cost of charging during night 124 (left) and total cost of charging for
nights 1–180 (right). Percentual improvements are w.r.t. the simple (fast charging)
strategy 1; recall that strategies 3, 4 and 5 are based on the DP-heuristic expression
(7), while strategy 6 assumes full knowledge

With unit prices pwind = 1 and pdiesel = 10, we find the average unit price at time
t by calculating

pt =
pwind ∗wind used+ pdiesel ∗diesel used

wind used+diesel used
.

In Fig. 14.4, the outcomes of the different strategies are illustrated for night 124 of
2015. All strategies lead to different charging times, as indicated by � in the figure.
The costs for charging 8 kWh in this particular night can be found in the left part of
Table 14.1. Compared to charging when plugged in (strategy 1), the standard Power-
Matcher (strategy 3) leads to 33% lower costs. The coordinated planning algorithm
introduced in Sect. 14.2 (strategy 5) leads to another significant improvement (47%
lower cost than strategy 1), and performs only 4% worse than the lower bound (strat-
egy 6).

The total costs for charging one EV every night of the first 180 nights of 2015
can also be found in Table 14.1, on the right panel. Some nights show no difference
in costs (e.g. because there is no wind, and hence the unit prices are constant), while
in other nights the difference is large (as in night 124). In total, over the first half of
2015 and using imperfect price predictions, the standard PowerMatcher (strategy 3)
performs 2.2% better than strategy 1. Another improvement of 4% can be realized
by running the PowerMatcher once at 8 pm (strategy 4). Using the PowerMatcher
every 15 min instead of once at 8 pm (strategy 5) reduces the costs by another 2%,
with only 0.6% difference compared to the lower bound of 9909.

Remark 14.3 (Independence Assumption). Note that in Sect. 14.3 we assumed that
the distribution F(p) is known: In the simulations we modeled the prices as i.d.d.
and normally distributed for the EV strategy. Even though the realizations of the
prices resulting from the Belgian data are neither i.i.d. nor normally distributed, the
algorithm still leads to large cost reductions, with little room for further improve-
ment. This illustrates the robustness of the PowerMatcher algorithm w.r.t. modeling
simplifications and seems to justify the modeling assumption of i.i.d. prices.

402 P.L. Kempker et al.

14.5 Conclusion/Future Research

In this chapter we have shown the value of MDP/SDP for a future extension of the
PowerMatcher for coordination of distributed demand and supply in smart energy
grids. This classical SDP approach and its detailed analytic results enable a smart
exploitation of the flexibility of demand and prices for e.g. charging EVs. Also a
more practical rule could be developed which turned out be nearly optimal. The ef-
fectiveness of the simple-to-use strategy for charging EVs was verified numerically
by using real-world data.

One future step is to include ‘dependent’ demands over consecutive periods, such
as by using time serial (econometric) methods. Hereby it is of interest to investigate
if similar structural results still remain obtainable and if extended numerical proce-
dures can be developed.

Another interesting next step is to include so many EVs that their combined
decisions have a significant influence on the price. Other straightforward topics for
further research are the extension of the methods used in Sect. 14.3 to other shiftable
devices (e.g. battery storage), or other types of controllable devices. A remaining
topic of interest is the inherent trade-off between the amount and type of information
provided by a planning module and its additional computation and communication.

Acknowledgements We acknowledge the contributions of Yvonne Prins, Pamela MacDougall,
Koen Kok, and Leon Kester (all affiliated with TNO) to the research leading to this chapter.

Appendix

Energy Terminology

Demand Side Management (DSM): Use of the flexibility of electric devices in house-
holds or offices to influence the electricity demand profile.

Shiftable devices: Electricity consuming devices, for which the demand of electric-
ity can be shifted in time. Examples are washing machines, dryers and dishwashers.

Electric vehicles (EV): Vehicles like e.g., cars, busses, trucks or bicycles, which use
electricity from batteries to drive or to support driving.

PowerMatcher: A DSM technology using dynamic pricing and a hierarchical bid-
ding process to support the matching of supply and demand of electricity.

References 403

Notation

S State space (discrete/continuous)
T Number of periods, time t = 0,1, ...,T −1
st = (xt , pt) State, with:
xt Amount still to be charged after time t
pt Price per unit of energy at time t
at = ut Action/amount to be charged at time t
ca(s) = ut pt Expected one step cost in state st = (xt , pt), under

charge action a = ut

A(st) : u≤ umax Set of actions available in state st

δt Decision rule at time t : ut(xt , pt)
P(j|(s;a)) P(xt −ut |(xt , pt)) One step transition probability under

action ut(xt , pt) = ut in state st = (xt , pt)
Vt(s) Vt(xt , pt) Optimal value function of expected cumulative costs

over remaining T − t steps up to time T , starting in
state st = (xt , pt) at time t

References

1. C. Block, D. Neumann, C. Weinhardt, A market mechanism for energy alloca-
tion in micro-CHP grids, in 41st Hawaii International Conference on System
Sciences (2008), pp. 172–180

2. ELIA, Data download (2015). http://www.elia.be/nl/grid-data/data-download
3. P. Kempker, M. van Dijk, W. Scheinhardt, J. van den Berg, J. Hurink, Op-

timization of charging strategies for electric vehicles in powermatcher-driven
smart energy grids, in Proceedings of the 9th EAI International Conference
on Performance Evaluation Methodologies and Tools, Valuetools 2015, Berlin,
14–16 December 2015 (2016), pp. 1–8

4. K. Kok, The PowerMatcher: smart coordination for the smart electricity grid.
Ph.D. thesis, Vrije Universiteit, Amsterdam, 2013

5. A. Molderink, V. Bakker, M. Bosman, J.L. Hurink, G.J.M. Smit, Management
and control of domestic smart grid technology. IEEE Trans. Smart Grid 1(2),
109–119 (2010)

6. A. Molderink, V. Bakker, J.L. Hurink, G.J.M. Smit, Comparing demand side
management approaches, in IEEE PES Innovative Smart Grid Technologies
Conference (ISGT Europe) (2012), pp. 1–8

7. J. Oyarzabal, J. Jimeno, J. Ruela, A. Englar, C. Hardt, Agent based micro grid
management systems. in International Conference on Future Power Systems
2005. IEEE (2005), pp. 6–11

8. M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming (Wiley, New York, 2014)

http://www.elia.be/nl/grid-data/data-download

404 P.L. Kempker et al.

9. S. Rafiei, A. Bakhshai, A review on energy efficiency optimization in smart
grid, in 38th Annual Conference on IEEE Industrial Electronics Society
(IECON) (2012), pp. 5916–5919

10. V. Silva et al., Estimation of innovative operational processes and grid manage-
ment for the integration of EV. Project deliverable D6.2 (2011)

Part IV
Production

Chapter 15
Analysis of a Stochastic Lot Scheduling Problem
with Strict Due-Dates

Nicky D. van Foreest and Jacob Wijngaard

Abstract This chapter considers admission control and scheduling rules for a sin-
gle machine production environment. Orders arrive at a single machine and can be
grouped into several product families. Each order has a family dependent due-date,
production duration, and reward. When an order cannot be served before its due-
date it has to be rejected. Moreover, when the machine changes the production of
one type of family to another family, a setup time is incurred. The problem is to
find long-run average optimal policies that accept or reject orders and schedule the
accepted orders.
To obtain insight into the optimal performance of the system we model it as a
Markov decision process (MDP). This formal description leads to, at least, three
tangible goals. First, for small scale problems the optimal admission and scheduling
policy can be obtained with, e.g., policy iteration. Second, simple heuristic policies
can be formulated in terms of the concepts developed for the MDP, i.e., the states,
actions and (action-dependent) transition matrices. Finally, the simulator required to
study the performance of heuristic policies for large scale problems can be directly
implemented as an MDP. Thus, the formal description of the system in terms of an
MDP has considerable off-spin beyond the mere numerical aspects of solving the
MDP for small-scale systems.

15.1 Introduction

In this chapter we use Markov decision theory to model a production-to-order en-
vironment in which a single bottleneck machine produces one product family at
a time and is subject to significant setup times when the product family changes.

N.D. van Foreest (�) • J. Wijngaard
Faculty of Economics and Business, University of Groningen, Groningen, The Netherlands
e-mail: n.d.van.foreest@rug.nl; j.wijngaard@rug.nl

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 15

407

mailto:n.d.van.foreest@rug.nl
mailto:j.wijngaard@rug.nl

408 N.D. van Foreest and J. Wijngaard

The sequence in which families can be produced is arbitrary, rather than, for in-
stance, cyclic. Orders for all families arrive with geometrically distributed inter-
arrival times, require deterministic service time and have strict due-dates. If an ar-
riving order cannot be produced before its due-date, it has to be rejected upon ar-
rival. The aim of the production system is to maximize the long run average reward
per unit time. Following the survey in [1] we refer to this problem as a customized
stochastic lot scheduling problem (CSLSP) with strict due-dates. Here, the term cus-
tomized refers to make-to-order characteristic of the production situation, contrary
to e.g. the Stochastic Economic Lot Sizing Problem (SLSP) in which production is
make-to-stock hence allows more freedom in deciding the moment, type and quan-
tity of items to produce.

The CSLSP finds its motivation in a wide array of batch-processing environ-
ments, such as the production of paper, release liners, or paint, in which customer
orders have to be grouped in families with similar chemical of physical proper-
ties, and in which the switch-over times from one family to another are relatively
long. In these settings, suppliers not only have to ensure short and reliable delivery
times to their customers, but also have to realize high machine utilization due to the
extremely large operational costs of the equipment. More specifically, a thorough
industrial motivation is provided in [2]. The problem to efficiently produce base-
ball bats is discussed in [3]. The authors of [4] concentrate on the scheduling of
packaging pharmaceuticals on order. Finally, the first author has applied the ideas
developed in related work, c.f. [5, 6], to improve scheduling rules at paper mills and
release liners.

Clearly, maximizing the long run expected reward per unit time requires a policy
that judiciously accepts orders and schedules the accepted orders. Designing good
policies is, however, quite difficult since the acceptance and scheduling decisions
are subtlety related: the acceptance depends on a schedule of previously accepted
orders, and if the order is accepted, the order should be scheduled such that all
orders in the schedule are produced before their due-date. To illustrate, consider the
policy that separates each two accepted orders by a setup and applies a FIFO service
discipline. This policy is certainly simple, but also unattractive as it leads to a low
acceptance rate. Intelligent policies should try to form ‘runs’ of contiguous orders
of the same family to reduce the fraction of time spent on setups. In fact, it may
sometimes be better to reject an order even when the schedule allows to accept it,
the idea being that given the content of the current schedule the rejection leaves
room for later, more attractive, arrivals so that longer runs can be formed.

The contribution of this chapter is to show how MDPs can be used to model and
analyze the CSLSP. Since the CSLSP is a (very) difficult scheduling problem and
lacks much simplifying structure, e.g., linearity, the theory of MDPs seems to be one
of the few, if not the only, methods that can be used to analyze this problem. The
formalization of the CSLSP in terms of an MDP is, admittedly quite an elaborate
task, but it has considerably off-spin beyond just the computation of an optimal pol-
icy. The formalized concepts, i.e., actions, rewards and transition matrices, enable
us to specify heuristic policies in a mathematical unambiguous way. As a conse-
quence, we can benchmark heuristic policies against the optimal policy within one
framework, i.e., in terms of MDPs, for not too-large scaled problems. Also, with

15.2 Theoretical Background of the CSLSP 409

the MDP specification we can set up simulations for large scale systems. Finally,
the formal structure facilitates the communication about the system’s (desired) be-
havior, so that the debugging of the simulation code becomes easier, and, once the
project is finished, the specification serves as documentation. Thus, a second aim of
this chapter is to showcase the multifarious usefulness of MDPs.

The work presented here is based on previous work of the authors. The authors of
[7] develop a number of simple heuristic scheduling and acceptance policies and use
simulation to analyze and compare the performance of these heuristics. In [8] and
[2] simulation is also used to analyze aspects of the CSLSP. Reference [6] contains
the first implementation of the CSLSP as an MDP to compute optimal policies and
benchmark the heuristics developed earlier in [7]. Finally, the authors of [5] extend
the MDPs to more complicated systems with, e.g., family-dependent due-dates, and
use ideas developed in [9] to improve the heuristic policies, again with the tools of
MDPs.

The chapter is organized as follows. In Sect. 15.2 we discuss work related to
the CSLSP. Section 15.3 presents the model of the production system, the admis-
sible policies, and the optimization problem. Section 15.4 describes the associated
Markov decision process and formulates an interesting heuristic policy in terms of
the concepts developed for the MDP. Finally, Sect. 15.5 shows some results to illus-
trate the model. The last section concludes.

15.2 Theoretical Background of the CSLSP

Although variations of the CSLSP with due-dates have been investigated previously,
the analysis by means of MDPs seems not to be addressed before in the literature.

Polling models, see for instance [10] or [1], consider problems that can be seen as
relaxations of our production situation, for at least three reasons. First, many polling
systems are concerned with unlimited queues, while the restriction to meet due-
dates in our situation puts a natural limit on the length of the schedule. Polling mod-
els that do consider finite queue sizes, for instance [11, 12], relate a single queue to
each product family. In our case, however, the queueing capacity can be fully shared
among all families. Second, numerous polling models that include setups, e.g., [13–
15], assume that the server incurs a setup even when it visits an empty queue. This
is a reasonable assumption for polling models of telecommunication systems since
the locations between the queues are physically separated and the server (token) has
to visit a queue to see whether it is empty or not. However, setting up a machine for
non-present families appears quite unnatural for the scheduling problems occurring
in manufacturing situations; planners usually have a complete view of the order port-
folio. Third, many polling models, see e.g., [16], are concerned with cyclic policies.
However, our earlier work, c.f. [7], shows that it is detrimental to cyclically serve
the product families for the CSLSP with due-dates; the heuristic threshold policy
performs at least a few percent better. Strategies that use fixed polling tables, such
as developed in [17], also seem hard to apply here. As the due-dates of the orders

410 N.D. van Foreest and J. Wijngaard

in the production system need to be respected, the content of the schedule is highly
dynamic. Moreover, the schedules we are concerned with may contain multiple runs
of one product family. This last aspect has a further consequence in that policies
such as, e.g., ‘serve a queue of orders of the same family to exhaustion’, see for
instance [18], are not suitable here. It may be necessary to switch service from one
family to another before all orders of the family in service are produced.

Also the approach developed in [19] is not suitable for our case. They consider
fixed group sizes for orders with the same family and optimize over the sizes of the
groups. However, in the resulting policy group, completion times are not guaranteed,
hence orders may not meet their due-dates.

15.3 Production System, Admissible Policies, and Objective
Function

We start with describing the production system. Next, in Sect. 15.3.2, we introduce
the decisions that govern the acceptance and scheduling of arriving orders. Sec-
tion 15.3.3 discusses the objective function.

15.3.1 Production System

The production situation is modeled as follows. A single server receives a stream of
orders at arrival epochs 0 = T0 ≤ T1 ≤ T2, The inter-arrival times Ti+1−Ti are
i.i.d., integer valued, and geometrically distributed with success parameter p, that
is, according to

P(Ti+1−Ti = k) = p(1− p)k, for k = 0,1,2,

Since E(Ti+1−Ti) = (1− p)/p, the arrival rate λ = p/(1− p). Arriving orders be-
long to family f , which is one of N possible families, with probability q f , indepen-
dent of anything else. Thus, the arrival rate of family f is λ f = λq f . A job of family
f —we use the word ‘job’ and ‘order’ interchangeably—requires b f time units of
service, where b f is deterministic and integer valued. An order can be rejected upon
arrival, but if accepted it is scheduled for service such that it can be produced before
its due-date. We define the due-date horizon of an accepted job as the time left to its
due-date, and we say that an order is tight whenever its horizon is equal to the sum
of the order sizes and setup times scheduled in front of it together with its own ser-
vice time. Upon arrival each jobs has an initial due-date horizon of length h, which
is the same for all families. We remark in passing that, while it is possible in the
model to make the initial due-date horizons family-dependent, there is not a direct
practical relevance. In industry, see, e.g., [2], it is standard practice to use a uniform
lead time, as it is not so clear how to exploit different due-date horizons. Most surely

15.3 Production System, Admissible Policies, and Objective Function 411

the family with the shortest horizon will often be denied access to machine capacity,
and in general, this form of unfairness appears to be quite undesirable and hard to
resolve when different horizons are allowed.

Whenever two subsequent orders in the schedule belong to different product fam-
ilies a setup of (integer valued) duration u, which is the same for all families, is in-
serted between these two orders. When an order arrives at an empty system, a setup
is not necessary if the last produced order is of the same family as the arriving order.

We also require that service of orders and setups is non-preemptive.
With regard to the scaling of the system, observe that without loss of generality

it is possible to scale the due-date horizon and the sizes of the jobs and setups such
that at least for one family the jobs have unit time length or the setup time is of unit
length.

15.3.2 Admissible Actions and Policies

We now describe the actions that determine the acceptance/rejection of orders and
the formation of job schedules. In principle many actions are available: jobs can be
rejected or accepted, after a service completion the machine can stop, even though
there is work in the queue, accepted jobs can be inserted anywhere in the schedule
as long as the due-date constraints are satisfied, and so on. Some thought reveals,
however, that only three actions are interesting to consider. These admissible deci-
sions, Combine, Spawn, and Reject, are deterministic (only dependent on the state of
the schedule). We illustrate these actions below by means of the schedule instance in
Table 15.1. With these actions we form admissible policies, which we take to be sta-
tionary and non-anticipative with respect to the arrival process and work-conserving
(non-idling if the schedule contains orders).

1 2 3 4 5 6 7 8 9 10 11 12 13 14
R R s B B B s G s R

Table 15.1: An instance of a schedule of accepted orders. The symbols ‘R’, ‘G’, and
‘B’, refer to order colors, ‘s’ to a setup. The size of the schedule is 14 positions.
Jobs and setups have unit length here

The Combine action aims at reducing the fraction of setups by trying to com-
bine a new order with a run of the same family, i.e., a set of consecutive orders of
the same ‘kin’. By simple pairwise interchange arguments, see e.g., [20], it is easy
to see that the optimal sequence of jobs within a run is Earliest Due-Date first—
the reward cannot increase by inserting arriving orders before orders of the same
family—hence, the Combine action adjoins accepted orders only to the end of a
run. To illustrate, suppose a ‘blue order arrives. The schedule in Table 15.1 contains
one blue run, that is, at positions 4–6. The Combine action tries to join the order

412 N.D. van Foreest and J. Wijngaard

with this run by inserting it at position 7 and shifting the already present orders at
positions 8 and 10 back to positions 9 to 11. In case either one of the orders at po-
sitions 8 and 10 will be late as a result of the insertion, Combine is not allowed to
insert this new order at position 7.

The Spawn decision adjoins a new order to the end of the schedule so that it
‘spawns’ a new generation of its family. This acceptance will necessarily introduce
a setup between the last family and the new order. Hence, Spawn schedules the just
arrived job at position 12 and inserts a setup at position 11. Thus, to accept such
an order the schedule should at least provide room for the setup and the order. If
the content of the schedule is such that both Combine and Spawn are admissible,
the former action is always chosen. From a practical point of view this is entirely
reasonable: why delay an order more than necessary?

The Reject decision simply rejects the arriving order.
It is evident that many more actions are possible, but it seems that the above ac-

tions are the most interesting. For instance, it might be possible to spawn a new run
in between two other runs, but there does not seem to be a good reason to do so: the
due-date horizon of the new run is larger than the run that comes after it. Likewise,
when trying to combine a new arrival, the only sensible choice is to combine it with
the last run of the same family in the schedule. Otherwise the horizons of larger
number of runs will increase. To see this, assume that in the schedule of Table 15.1
a red order arrives. This might be combined with the red orders in positions 1 and
2, or with the order at position 10. Even if it would be possible to combine the new
order with the first run, it simply makes no sense to consider it.

15.3.3 Objective Function

The last step of the model specification consists of formulating a reward structure.
We set the acceptance reward for a job of family f equal r f > 0 and the earliness
cost to zero. The underlying motivation is that we assume that serving orders early is
acceptable when this potentially leads to accepting more orders. Hence, the reward
for accepting an order must be higher than the cost of producing early. We also set
the setup cost equal to zero. However, inserting setups arbitrarily cannot be optimal,
since a setup takes away a position in the schedule thereby preventing potential
rewards. There is no tardiness cost, as jobs cannot be late.

The objective is to find the maximal long run average reward per unit time of
the production system. More formally, given policy π , let Aπ(t) be the sum of the
rewards of the accepted orders up to and including time t. Then the long run average
expected reward per unit time, J(π), takes the form

J(π) = lim
t→∞

E (Aπ(t))
t

. (15.1)

The objective is to find
J� = max

π
J(π), (15.2)

15.4 The Markov Decision Process 413

where the maximization is taken over the class of admissible policies. Observe that
in case the reward per job is equal to the job length, the reward function J(π) repre-
sents the long run average fraction of accepted work, i.e., the utilization, associated
with policy π .

As an aside, the objective is often formulated in terms of a limit inferior. How-
ever, since the state space is finite, this subtlety is unnecessary as the limit exists by
Proposition 8.1.1 of [21].

15.4 The Markov Decision Process

We now turn to modeling the above production situation as a Markov decision pro-
cess (MDP). An MDP consists of a set of states, a set of decisions, state transition
functions P(s′|s,a) representing the transition probability from state s to a future
state s′ conditional on choosing decision a, and a function c(s,a) that provides the
reward earned when taking decision a in state s. For general background on the
definition and analysis of Markov decision processes we refer to [21] or [22].

As the specification of the system state s is somewhat involved, we characterize
the format of a state in Sect. 15.4.1. The actions have already been introduced in
Sect. 15.3.2; we only need to formalize the actions, which we do in Sect. 15.4.2.
Section 15.4.3 presents the state transition functions. The rewards c(s,a) are already
clear from Sect. 15.3.3: only decisions that lead to the acceptance of an order of
family f generate positive reward r f . In Sect. 15.4.4 we discuss a suitable method to
aggregate problem instances for which job size, arrival rate and reward are identical
for all families as this allows us to extend the system sizes considerably. Then,
in Sect. 15.4.5 we explain a convenient method to generate the state space of the
Markov chain. Finally, in Sect. 15.4.6 we use the formulation developed earlier to
specify the heuristic policy that performed best in [7].

15.4.1 Format of a State

We now turn to a characterization of the states,
Observe that, as the decision epochs coincide with the arrival epochs, we only

have to specify the state at the arrival epochs.
The simplest, but naive, state description would be to represent the schedule by

means of a tuple of jobs (j1, j2, . . . jn), and the ith job in the schedule as a tuple
(fi,hi) where fi is the job’s family and hi its horizon. Thus, the schedule of accepted
jobs would written as (f1,h1), . . . ,(fn,hn). Besides the schedule of jobs, the state
should also include the family f of the arriving job, so that the state becomes

((f1,h1),(f2,hs), . . . ,(fn,hn); f) .

414 N.D. van Foreest and J. Wijngaard

Note that from this sequence it is trivial to find the setups, hence it is not necessary
to include these.

This detailed state description is, however, unsuitable for numerical purposes: the
state space very quickly becomes unmanageable large. For this reason we develop
a way to aggregate the states by reconsidering the minimal information the actions
require, as only this information need to be captured in the state description.

First, observe that for the Spawn decision it is only necessary to know the length
of the schedule and the family of the new job. Second, the Combine decision re-
quires the due-date horizon of the ‘tightest’ order of each run, i.e., the order with
the smallest due-date horizon, since if the tightest order of a run is in time, all orders
in the run will be in time. Finally, the Reject decision can be applied to any state,
regardless the content of the schedule or the family of the arriving order. Thus, it suf-
fices that a state contains the sequence of runs, and, per run, the family, the length
(including a setup), and the due-date horizon of the ‘tightest’ job. As it is straight-
forward to convert the due-date horizon to a due-date horizon of the first job in the
run, we will henceforth assume that the first job in the run is also the tightest job.

To cast the above in suitable notation, write s = (σ ; f) where σ denotes the
content of the schedule and f indicates the family of the arriving order. The schedule
σ is an ordered tuple of runs (σ1, . . . ,σn). A run σi is also an ordered tuple (fi,hi,ri),
where fi is the run’s family, hi the due-date horizon of the first job (hence the tightest
job) in the run, and ri the length (including setup time).

The first run σ1 needs no due-date horizon information, since maintaining a run’s
horizon is only relevant to ensure that earlier runs cannot become too long. As there
are no runs in front of σ1, the horizon can be dropped, thus, σ1 = (f1,r1). When the
schedule is empty, we write σ = (f1,0), where f1 is the last produced family.

A simple observation allows us to reduce the information in s still further. Since
arriving orders cannot be combined with runs in front of a tight run, nor can new
runs be spawned before this tight run, the family and horizons of all the runs in
front of the last tight run in the schedule are superfluous, hence the lengths of these
runs can be added simply to the length of this tight run, and this run can be taken
as the run in the schedule. More formally, suppose that the kth run is the last tight
run. Then the schedule σ = (σ1, . . . ,σn) can be further simplified to the schedule
σ ′ = (σ ′1,σ ′2, . . . ,), where σ ′1 = (fk,∑k

i=1 ri), σ ′2 = σk+1, and so on.
Finally, in case the new job is combined with a run in the schedule, we need to

project back the horizon of the newly accepted job to the horizon of the first, i.e.,
tightest, job of the run. Suppose that the arriving order with due-date horizon h is to
be combined with run σk. As the due-date horizon of the first job is hk, its processing
time should start at hk−b fk time units from now at the latest, and the setup should
start at hk− b fk − u time units from now. Hence, as the run will then be finished at
hk− b fk − u+ rk, the new job cannot start earlier than this time. Clearly, to ensure
that also the new job will be in time, the due-date horizon of the first job must be
such that

hk−b fk −u+ rk ≤ h−b fk ,

15.4 The Markov Decision Process 415

as h−b fk is the latest possible start of the new job. Therefore, hk being the horizon
of the first job before the acceptance, the horizon of the first job must be set to

h′k = min{hk,h− (rk−u)}, (15.3)

after the acceptance.

15.4.2 Actions and Operators

Making a transition from one state to the next involves three steps. The first step is
to apply one of the actions Reject, Spawn, and Combine to the arriving order. The
second step consists of generating the time to the next arrival epoch, and removing
the related amount of workload from the schedule. In the third step, a new arriving
order is generated. We implement each step by means of operators, to be defined
now. For notational convenience, let |σ | = ∑n

i=1 ri denote the total amount of work
in the schedule including setups.

First we associate the actions Reject, Spawn and Combine to operators R,S ,C
which map states s = (σ ; f) to schedules σ = (σ1, . . . ,σn). The operator R simply
removes the arriving order:

R (σ ; f) = σ ;

S adjoins the order to the end of the schedule,

S (σ ; f) =
(
σ1, . . . ,σn,(f ,h,u+b f)

)
,

where u denotes the length of a setup and b f the size of the new job, and the operator
C combines the arrival with the last run of family f in the schedule:

C (σ ; f) = (σ1, . . . ,σk−1,(f ,h′k,rk +b f),σk+1, . . . ,σn), (15.4)

where h′k is defined in (15.3), and we assume that σk is the last run of family f in
the schedule.

For each state s, the set A(s) contains the actions that can be applied to s. Specif-
ically, since the Reject action is always possible, R ∈ A(s) for all s. With regard to
the Combine action, C ∈ A(s) if the insertion of the new of family f by Combine
does not lead to any other job in the schedule becoming late. In more formal terms,
suppose σk is the last job of family f in σ , as in (15.4). Then the insertion is al-
lowed if hi ≥ b f +∑i

l=1 rl for all i ≥ k+ 1. Finally, S ∈ A(s) when C /∈ A(s) and
|S (s)| ≤ h, i.e., the length of the schedule that results after the operation of S on s
is less than or equal to h.

We next need the time shift operator T , which maps a schedule to a schedule, to
implement the effect on the schedule when the time to the next arrival epoch is one
time unit. Clearly, if the schedule is not empty and the time to the next arrival epoch

416 N.D. van Foreest and J. Wijngaard

is one time unit, (part of) the first run of the schedule is produced, and the horizon
of the remaining runs is reduced by one time unit. Specifically, while temporarily
extending the definition of T to operate on single runs so that we can also write
T σ = (T σ1, . . . ,T σn), we have

T (f1,0) = (f1,0),

T σ = (f1,0), if |σ |= 1,

T σ = (T σ2, . . .T σn), if r1 = 1,

T σ1 = (f1,r1−1), if r1 ≥ 2,

T σi = (fi,hi−1,ri), if i≥ 2.

(15.5)

Shifting by l ≥ 0 time units is simple, just apply the l times composition T l . No
shift in time is represented by T 0, which is the identity operator.

The last operator F f maps a schedule to a state by augmenting σ with an arriving
order of family f :

F f (σ) = (σ ; f) , f = 1, . . . ,N.

15.4.3 Transition Matrices

With the above operators we can map a state s to a future state, and hence describe
the transition matrices associated with each of the actions Reject, Spawn, and Com-
bine.

If the next order arrives l time units from now and is of family f , then for any
a ∈ A(s) we write s′f l = (F f ◦T l ◦ a)(s) for the next state. The set F(s) of future
states of s is given by

F(s) =
{

s′f l

∣
∣s′f l = (Ff ◦T l ◦a)(s), for a ∈ A(s),0≤ l ≤ |a(s)|,1≤ f ≤ N

}
,

(15.6)

recall that |a(s)| denotes the length of a schedule after the operation of a on s). The
transition matrices now follow easily: the probability to jump from state s to a state
s′f l ∈ F(s) is

P
(

s′f l

∣
∣
∣s,a

)
= q f p(1− p)l , if l < |a(s)|, (15.7)

and

P
((

(f1,0); f)
∣
∣
∣s,a

)
= q f ∑

l≥|a(s)|
p(1− p)l = q f (1− p)|a(s)|, if l ≥ |a(s)|, (15.8)

where again f1 is the last produced family.

15.4 The Markov Decision Process 417

15.4.4 Further Aggregation in the Symmetric Case

In the case the families are symmetric, i.e., the arrival rates, job sizes and rewards
are equal for all families, it turns out that it is not necessary to store information
concerning the family of a run in the schedule. Because of the symmetry in arrival
rate, an arriving order is of family f with probability 1/N. Recall that a new run can
only be spawned if it is not possible to combine the arriving order with a run of the
same family in the schedule. Since we keep only track of runs in the schedule to
which new orders can be combined (i.e. runs preceding a tight run are aggregated,
see Sect. 15.4.1) it follows that the number of runs in the schedule cannot exceed
the number of families and that each family has at most one run in the schedule.
Therefore, the probability that an arriving order sees upon arrival a run in the sched-
ule to which it can be combined is n/N, where n denotes the number of runs in the
schedule.

The state can now be aggregated into a tuple (σ ;m) where σ = (r1;h2,r2; . . .)
denotes the content of the schedule and m is an indicator that denotes the run of the
schedule to which the arriving order can be combined (in case m≥ 1) or the case that
no run in the schedule is from the same family as the arriving order (in case m = 0).
For example, s = ((2;5,3;8;2);1) depicts the state in which an arriving order can
be combined with the first run in the schedule.

It is apparent that the operators C ,R, and S of Sect. 15.4.2 and the state transi-
tion probabilities of Sect. 15.4.3 have to be converted to the aggregated process. As
this is relatively easy we refrain from including the details.

15.4.5 State Space

The formal characterization of the state space S requires to enumerate all schedules
that can be obtained with the operations defined above. this, however, is a cumber-
some task due of the interaction between orders and setups. By far the easiest way
to generate S is by induction. Using the set of future states of s as defined in (15.6),
let S(i+1) =

⋃
s∈S(i) F(s), and take as initial set S(0) = {((f ,0);g)| f ,g = 1, . . . ,N}.

Once there is an i such that S(i+1) = S(i), it must be that S = S(i). Observe that this it-
erative procedure stops trivially, due to the finiteness of schedule length and number
of different families.

15.4.6 A Heuristic Threshold Policy

With the machinery developed above it is easy to formalize the heuristic policy that
was seen to perform best in the simulation studies carried out in [7].

418 N.D. van Foreest and J. Wijngaard

The intuition behind this heuristic is as follows. Any time spent on setups does
not increase the reward function as defined in (15.2), and potentially decreases it
as setup time cannot be used to process orders. Hence, policies that encourages the
formation of long runs, without violating the due-date constraints, appear the most
interesting. Furthermore, in case the load of one family does not suffice to fill the
machine capacity, it is obvious that the capacity should be shared among a few fami-
lies, hence, runs of orders of families should alternate. However, as soon as multiple
families share the capacity, they are in effect ‘competing’ for the capacity. As is
generally the case, and shown in [7], a good policy should regulate this competition.
In fact, we show there that if the load is high and the spawn action is not regulated,
typical runs contain just one or two jobs. A good policy should regulate the spawn
action to create combination potential: runs may only start when the schedule is not
full so that the first job of a run is not tight when the run starts. Since a threshold to
enable or disable the spawn action is about the simplest policy possible, we use this
threshold in the heuristic policy.

The details of this heuristic are as follows. For a given state s, the threshold
policy always applies the combine action if C ∈ A(s). If C �∈ A(s), the spawn action
is chosen, provided |S (s)| ≤ ch, where c is some constant smaller than 1, typically
around 0.8. If this condition is not satisfied, the Spawn action is not chosen, and the
order will be rejected.

Note that the threshold value c is uniform for the families. We expect this to
work well in symmetric cases, that is, in production situations in which the con-
tending families have roughly similar arrival rates, rewards, and job sizes. However,
when there is asymmetry, it may become better to make the threshold values family
dependent.

15.5 Numerical Study

In this section we carry out a simple performance analysis of the optimal policy
as obtained by policy iteration and compare this to the performance of the heuristic
policy.1 We investigate the effect of various system parameters in Sect. 15.5.1. From
the results, we will learn that the threshold policy has (near) optimal performance,
which makes it interesting to investigate the extent to which the threshold policy
resembles the optimal policy. For this purpose we use a method of [9] to visually
compare the optimal and heuristic policy.

In this chapter, we restrict the numerical analysis to cases with N = 3 families,
and initial due-date horizons h = {10,14,18}; we refer to [5, 6] for a much more
detailed analysis of the optimal and heuristic policy.

For notational convenience we use vectors b, q and r, to denote the job size,
arrival fraction and reward per family. For instance, b = (b1,b2) = (1,3) specifies
the scenario in which the job size of the first (second) family is 1 (3). Throughout

1 We implemented all algorithms in python and numpy, which are freely available on the web. At
request the code used for the computation can be obtained from the first author.

15.5 Numerical Study 419

we restrict the total load of the system ρ = λ ∑ f q f b f to the values 0.5,0.9 and 1.2.
Higher or lower values appear less relevant to study from a practical point of view.

15.5.1 Influence of the Load and the Due-Date Horizon

In our first experiment we study the effect of the system load ρ and the due-date
horizon h for N = 3 families with b = r = (1,1,1) and q = (1/3,1/3,1/3). Since
b = r the optimal value (15.2) is equal to the utilization of the system. As the per-
formance measure of interest we consider the acceptance ration, i.e., J∗/ρ for the
optimal policy and JH/ρ for the heuristic policy, which we denote by H.

Figure 15.1 contains three panels where h = 10 (left), 14 (middle), and 18 (right)
to show the influence of h. The straight lines correspond to the acceptance ratio
of the optimal policy for ρ is 0.5, 0.9 and 1.4. The variable on the x-axis is the
threshold c of the heuristic, so that we can also plot the dependence of JH/ρ as a
function of c.

The figure allows us to make a number interesting observations. First of all, the
acceptance ration order decreases as a function of ρ . This is natural: when for in-
stance ρ = 1.2 at least 20% of the offered load has to be rejected. Second, since the
graphs of the expected rewards of the threshold and optimal policy touch for some
value of c, the threshold policy can have (near) optimal performance. Third, when
c is large, in the order of 1, the threshold policy performs quite badly. This is due
to the fact that it gives rise to schedules in which short runs of jobs alternate with
setups, see [7] for further detail. On the other hand, when c ≈ 0, the performance
is also far from optimal. To see this, observe that when runs only start when the
schedule is nearly empty, the server must idle quite often. Fourth, the best value of
c becomes smaller as ρ becomes larger. This is as expected: the higher the load, the
more combination potential by using the combine action, hence longer runs. Finally,
by comparing the panels from left to right, to understand the behavior of h, we see
that the average reward J increases from left to right. This is not surprising since
longer due-date horizons also enable more combination potential.

15.5.2 Visualization of the Structure of the Optimal Policy

From the results of the previous sections it appears that a suitable threshold policy
might be optimal which in turn would imply that the optimal spawn/reject decision
has a threshold structure. To investigate this observation more formally we follow
an approach, proposed in [23], to visualize the structure of the optimal policy by
grouping multiple states into the sets

Ss
l (a) = {s |S ∈ A(s), |S (s)|= l,π�(s) = a}, for a ∈ {S ,R},
Sc(a) = {s |C ∈ A(s),π�(s) = a}, if a ∈ {C ,R},

(15.9)

420 N.D. van Foreest and J. Wijngaard

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

J/
rh

o

c

h=10

0.5

0.9

1.2
 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

J/
rh

o

c

h=14

0.5

0.9

1.2

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

J/
rh

o

c

h=18

0.5

0.9

1.2

Fig. 15.1: The long run acceptance ratio J/ρ per arrival as a function of the thresh-
old parameter c for the threshold and optimal policy. The straight lines correspond
to the performance of the optimal policy which, of course, cannot depend on c. The
highest, middle and lowest graphs correspond to ρ = 0.5,0.9, and 1.2, respectively.
The left, middle, and right panel correspond to h = 10,14, and 18. The other param-
eters are as follows: N = 3, u = 1, b = r = (1,1,1), and q = (1/3,1/3,1/3)

where π�(s) is the optimal action in state s. For example, Ss
6(S) is the set of states

with |S (s)| = 6 and for which it is optimal to spawn a new run rather than reject
the arriving order. Let η�(S̃) = ∑s∈S̃ η�(s), where η�(s) is the steady state fraction
of time the π�-controlled MDP spends in state s.

Table 15.2 shows the frequencies η�
(
Ss

l (S)
)

(in percentages) and η�
(
Ss

l (R)
)

for N = 3 and l = 2, . . . ,10. It is clear from the overlap at l = 7 that the optimal
spawn/reject decision is not of threshold type: for some states with l = 7 it is best to
spawn while for other states with l = 7 it is best to reject. Although this is somewhat
disappointing (the simple threshold policy is not optimal), not all structure is lost.
If we take the threshold equal to c = 7, the heuristic is not optimal in only 2.45%
of the states, while it is optimal in the rest, i.e., 100−2.45 = 97.55%, of the states.
Pertaining to the combine/reject decision, the right part of the table shows that the
optimal policy always chooses Combine whenever C ∈ A(s).

Appendix: Notation 421

|S (s)| 2 3 4 5 6 7 8 9 10 Total
Spawn 1.04 1.25 2.33 2.86 4.21 3.60 0.00 0.00 0.00 15.29
Reject 0.00 0.00 0.00 0.00 0.00 2.45 8.30 8.00 6.10 24.85

Total
Combine 51.47

Reject 0.00

Table 15.2: Frequency table for spawn/reject and combine/reject decision. The
parameters of the test instance are as follows: N = 3, h = 10, ρ = 1.2, u = 1,
b = r = (1,1,1), and q = (1/3,1/3,1/3)

15.6 Conclusion

In this chapter we show how we used Markov decision theory to analyze the cus-
tomized stochastic lot scheduling problem. The specification of this production sys-
tem as an Markov decision problem (MDP) proved to be very beneficial to under-
standing the system for several reasons. First, with the MDP we developed optimal
policies for (relatively) small problem instances. With the optimal policy we could
evaluate the performance of our earlier developed heuristics against the optimal pol-
icy. Next to this, the analysis of the structure of optimal policies provided guidance
to improve the heuristics to other, more general situations. Second, the formal spec-
ification of the actions and the related transition matrices helped to structure the
(coding of the) simulator that we used to study large problem instances. Third, once
we had the MDP and the simulator, we could use the results of the MDP to test the
output of the simulator for quite large problems, in the order of 106 states, thereby
providing confidence in the results of the simulator.

We believe that this structured approach extends well beyond the case we studied
in this chapter. For instance, small queueing networks with blocking and in which
the servers can fail are very hard to implement in a simulation environment. Typ-
ically, the design of a simulator for such systems requires the use of finite state
machines to structure the possible transitions of the system, prevent deadlocks, and
so on. For such situations, the development an MDP can prove to have much off-
spin. The formulation of the MDP will not only help to understand, decompose, and
model the system, but also guide the development of a simulation environment, and
finally help to validate the results of a simulator.

Appendix: Notation

A(s) Action state for state s
Aπ(t) Reward of accepted orders until time t under policy π
b f Size of order of family f
C Combine operator

422 N.D. van Foreest and J. Wijngaard

((f1,h1, . . . ,(fn,hn)) Schedule of accepted jobs
c Fraction of the duedate horizon
h Due-date horizon of a job
J(π) Long-run average reward rate under policy π
J∗ Optimal reward rate
λ Arrival rate of orders
λ f = λq f Arrival rate of orders of family f
N Number of order families
p Probability of an arrival in a slot
P Transition function
R Reject operator
q f Probability that an arrival belongs to family f
r f Reward for accepting an order family f
s = (σ , f) States consisting of schedule σ and arriving order

of family f
S State space
|S| Number of elements of the state space
S Spawn operator
σ Schedule
T Time shift operator
Ti Arrival epoch of order i

References

1. E. Winands, I. Adan, G. van Houtum, Eur. J. Oper. Res. 210(1), 1 (2011)
2. H. Ten Kate, Order acceptance and production control. Ph.D. thesis, University

of Groningen, Groningen, 1995
3. E. Schmidt, M. Dada, J. Ward, D. Adams, Interfaces 31(3), 16 (2001)
4. L. Strijbosch, R. Heuts, M. Luijten, Int. J. Oper. Prod. Manage. 22(5), 549

(2002)
5. R. Germs, N. van Foreest, Int. J. Prod. Res. 51, 940 (2013)
6. R. Germs, N. van Foreest, Eur. J. Oper. Res. 213, 375 (2011)
7. N.D. van Foreest, J. Wijngaard, J.T. Van der Vaart, Int. J. Prod. Res. 48, 3561

(2010)
8. J. Bertrand, J. Wortmann, J. Wijngaard, Production Control, a Structural and

Design Oriented Approach (Elsevier, Amsterdam, 1990)
9. R. Haijema, N. van Dijk, J. van der Wal, C.S. Sibinga, Int. J. Prod. Econ. 121(2),

464 (2009)
10. H. Takagi, in Stochastic Analysis of Computer and Communication Systems, ed.

by H. Takagi (Elsevier, Amsterdam, 1990), pp. 267–318
11. H. Takagi, Adv. Appl. Probab. 23(2), 373 (1991)
12. E. Kim, M. Van Oyen, IIE Trans. 32(9), 807 (2000)
13. L. Kleinrock, H. Levy, J. Oper. Res. 36(5), 716 (1988)

References 423

14. R. Righter, J.G. Shantikumar, Oper. Res. 12(3), 146 (1998)
15. D. Markovitz, L. Wein, Oper. Res. 49(2), 246 (2001)
16. M. Reiman, L. Wein, Oper. Res. 46(4), 532 (1998)
17. O. Boxma, H. Levy, J. Westrate, Queueing Syst. 9, 133 (1994)
18. Z. Liu, P. Nain, D. Towsley, Queueing Syst. 11, 59 (1992)
19. N. Vandaele, I.V. Nieuwenhuyse, S. Cupers, Eur. J. Oper. Res. 151, 181 (2003)
20. M. Pinedo, Planning and Scheduling in Manufacturing and Services, 2nd edn.

(Springer, New York, 2008)
21. M. Puterman, Markov Decision Processes, Discrete Stochastic Dynamic Pro-

gramming (Wiley, New York, 1994)
22. H. Tijms, A First Course in Stochastic Models (Wiley, Chichester, 2003)
23. R. Haijema, J. Van der Wal, N.M. van Dijk, Comput. Oper. Res. 34, 760 (2007)

Chapter 16
Optimal Fishery Policies

Eligius M.T. Hendrix, Rene Haijema, and Diana van Dijk

Abstract This paper describes and analyses a bi-level Markov Decision Problem
(MDP). The model has been used to study questions on the setting of fisheries quota.
The problem extends earlier models in literature and describes fish stock and eco-
nomic dynamics. At the first level, an authority decides on the quota to be fished
keeping in mind long term revenues. At the second level, fishermen react on the
quota set as well as on the current states of fish stock and fleet capacity by deciding
on their investment and fishery effort. An analysis of the behaviour of the model is
given and used to decide on how to discretize the state space. The aim is to derive
optimum quota settings based on value iteration. This chapter illustrates how a MDP
with continuous state and action space can be solved by truncation and discretization
of the state space and applying interpolation in the value iteration.

Key words: Dynamic programming, Fishery, Stochastic programming, Continuous
state space, Discretization

E.M.T. Hendrix (�)
Computer Architecture, Universidad de Málaga, Málaga, Spain
e-mail: eligius@uma.es

R. Haijema
Operations Research and Logistics, Wageningen University, Wageningen, The Netherlands
e-mail: rene.haijema@wur.nl

D. van Dijk
Department of Environmental Social Sciences, Swiss Federal Institute of Aquatic Science
and Technology (EAWAG), Dübendorf, Switzerland
e-mail: Diana.vanDijk@eawag.ch

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 16

425

mailto:eligius@uma.es
mailto:rene.haijema@wur.nl
mailto:Diana.vanDijk@eawag.ch

426 E.M.T. Hendrix et al.

16.1 Introduction

Authorities in fisheries management are responsible for making decisions in an
uncertain context related to the dynamics in fish stock due to environmental vari-
ability. From this perspective, it is useful to analyse fishery policies in a setting
of stochastic dynamic programming. Moreover, policy makers have to take into ac-
count the fisherman behaviour when setting the policy. The policy maker determines
quota not only based on known or unknown dynamics in fish stock and fleet capac-
ity of the fishery sector, but also based on how fishermen behave in an unregulated
setting. The implementation of these interactions in a model is a challenge, because
policy makers and fishermen may have different, and even conflicting objectives.
The policy maker seeks a long-term sustainable fish stock as well as maximization
of social benefits, while fishermen reveal short term profit seeking behaviour.

Fisheries policies are often analysed in the literature in a setting of dynamic op-
timization, where a sole owner determines optimal harvest and investment levels
for a specific fishery [2, 3, 6, 7]. Such models have been developed in determinis-
tic and stochastic settings, often assuming uncertainty in fish stock dynamics due
to environmental variability. The assumption of sole ownership, however, ignores
behaviour of fishermen and the extent to which a policy restricts this behaviour. The
behaviour of both policy maker and fishermen can be modeled in a game theoretic
setting. See [1] for an overview of the application of game theory to fishery over the
last 30 years.

In [9, 10], the authors developed a bi-level stochastic dynamic programming
model to analyse the interaction between the authority on higher level and the fish-
eries sector behaviour on lower level. In game theory, such a setting is called a
leader-follower (Stackelberg) situation where the optimal policy of the leader is de-
termined by the reaction of the follower, i.e. fishermen behaviour. In the developed
model, the objective of a policy maker is to determine levels of quota that maxi-
mize social benefits, subject to dynamics in fish stock and capital stock and based
on behaviour of fishermen. The model focuses on single-species fisheries, where
fish stock growth is considered stochastic. At the lower level the myopic fishermen
make their harvest and investment decisions based on available fish stock and cap-
ital stock and the restricted quota set by the authority at level one. This approach
resembles a two-stage dynamic game.

The resulting model can be considered from the perspective of a Markov Deci-
sion Problem (MDP). The challenge to determine the optimal strategy for the au-
thority is now given by the continuous state space of fish and capital stock and the
stochastic behaviour of the fish growth. In principle, the solution process can be
approached from the viewpoint of Value Iteration (VI). The focus of his chapter is
on the truncation and discretization of the state space in this approach.

To investigate this question, we first analyse the behaviour of the model in a
deterministic setting. The question is whether the process is stable and converges
automatically, whether there are transition states and what are the bounds of the area
where the fish and capital stock are developing. Second, we approach the problem
from a stochastic perspective within the bounds that have been derived. We argue

16.2 Model Description 427

that it would be good to base the discretization on the stationary distribution of the
state space. As we are dealing with a Markov Decision Problem, the interesting
feature is that this distribution depends of course on the optimal policy. However,
to derive a policy, we require a choice for the discretization. In this chapter, we
illustrate the choice of the discretization and optimal solution with the practical
case that has been elaborated in [10].

This paper is organized as follows. Section 16.2 describes the model. Sec-
tion 16.3 analyses the mathematical convergence behaviour of the model and the
natural bounds of the stationary state space. Section 16.4 describes the solution
approach based on value iteration and its interaction with the chosen discretization.
Section 16.5 summarizes our findings.

16.2 Model Description

The dynamic model is called a bio-economic model, as it describes dynamics of a
biological system as well as the dynamics of economic behaviour. The two parts
are linked by the decision aspect of the MDP which optimizes an objective function
given constraints. We describe the biological dynamics, economic system and opti-
mization separately. In the used symbols, we distinguish between model parameters
(exogenous in lower case letters) and decision variables (capitals) that are character-
ized by direct decision variables, dependent variables and stock variables. Without
loss of generality, the dynamics are represented by time steps and using an index t.

16.2.1 Biological Dynamics; Growth of Biomass

The development of the population size of one species of fish St measured in kton
is based on the Gordon-Schaeffer model. The used parameters are

Data
m carrying capacity of the specie in kton
g intrinsic growth rate
ξ lognormal random variable with c.d.f. G(ξ) based on parameters

μ and σ , with μ+ 1
2σ

2 = 0, such that the mean of ξ is 1.
The random variable describes a random multiplicative effect. This makes the

lognormal distribution appropriate. Now, let the stock variable be the fish stock St

in kton and Ht be the harvest in kton, then the dynamics of the fish stock is given by

St+1 = St +ξ (gSt

(
1− St

m

)
)−Ht . (16.1)

428 E.M.T. Hendrix et al.

16.2.2 Economic Dynamics; Harvest and Investment Decisions

The economic part of the model describes capital stock dynamics depending on
investment in fishery equipment and all costs the sector is confronted with to har-
vest the fish to be landed and sold. A fixed selling price cp is assumed. The used
parameters are

Data
cp selling price in euro/kton
d yearly depreciation rate of capital
ce cost of effort in euro/hpd
ci investment cost in euro/hpd
cs cost of the sales in euro/euro
q so-called catchability coefficient in Spence harvest function

Let Kt describe the capital stock and It be the investment. Following the neoclassical
investment theory we have

Kt+1 = Kt(1−d)+ It , (16.2)

where the fishery sector is confronted with investment costs ciIt .
To describe the cost of harvesting, a new decision variable Et is introduced rep-

resenting the fishing effort (intensity) such that the harvest Ht becomes in fact a de-
pendent variable. The variable Et is expressed in so-called horse-power-days (hpd),
which is a common metric in fishery capital. The relation between harvest H and
effort E is one of the elements where the biological and economic model come to-
gether. The harvest not only depends on the effort, but also on the current level of
fish stock in the sea. Following the Spence harvest function [8]

Ht = St
(
1− e−qEt

)
→ Et =

1
q

ln
St

St −Ht
. (16.3)

In the economic submodel, we have that effort is limited by capital

Et ≤ Kt → Ht ≤ St
(
1− e−qKt

)
, (16.4)

which implies that harvest is always less than fish stock:

Ht < St . (16.5)

The direct return of the fishery sector of harvest is determined by sales minus its
direct cost, (1−cs)cpHt . The effort cost ceE can be expressed in terms of harvest H
by substituting variable E: ceE = ce

q ln St
St−Ht

. The direct profit for the fishery sector

r(πt ,St ,Kt) = (1− cs)cpHt −
ce

q
ln

St

St −Ht

depends on the optimal effort and resulting optimal harvest Ht = H(πt ,St ,Kt) deci-
sion taken by the fishermen as described in Sect. 16.2.3.

16.2 Model Description 429

16.2.3 Optimization Model

The objectives to be optimized, depend on the players around the fishery scene, such
as different groups of fishing companies, countries and the European Union. In this
paper, we focus on an authority that optimizes the discounted stream of future social
benefits. Being confronted with a level of fish stock S and of a fleet K, the authority
sets quota π(S,K) at the first decision level. The fishery sector reacts on that by
deciding on investment level I(π,S,K) and harvest H(π,S,K) given the stock levels
and the quota π that was set by the authority at the first level.

16.2.3.1 Decisions at Level 2

At the second level, the harvest decision is limited by quota π , capital stock via
(16.4) and the marginal cost. Keep in mind that fish stock can be so low that the
effort cost is higher than the return; harvest levels for that year are zero. The profit
for the fishery sector given quota π and stock levels S and K is

r(π,S,K) = max
H

{
(1− cs)cpH− ce

q
ln

S
S−H

}
, (16.6)

subject to 0 ≤ H ≤ π and H ≤ S
(
1− e−qK

)
. If optimization problem (16.6) has an

interior solution, the analytical solution follows from the first order condition

d
dH

{
(1− cs)cpH− ce

q
ln

S
S−H

}
= 0. (16.7)

Given the upper and lower bounds in (16.6), the solution is given by

H(π,S,K) = min

{
(S− ce

cpq(1− cs)
)+,π,S

(
1− e−qK)

}
, (16.8)

where x+ stands for max{0,x}. With respect to the investment decisions, the model
assumes that the fishery sector observes the desired harvest level

ĥ(π,S) := min

{
(S− ce

cpq(1− cs)
)+,π

}
) (16.9)

and tunes its equipment for next year to have sufficient capital to reach ĥ

ĥ(π,S) = St
(
1− e−qKt+1

)
→ Kt+1 =

1
q

ln
St

St − ĥ(π,S)
. (16.10)

430 E.M.T. Hendrix et al.

Given the development of capital stock Kt in (16.2) and assuming nonnegativity of
investment, this leads to the investment function

I(π,S,K) =

(
1
q

ln
S

S− ĥ(π,S)
−K(1−d)

)+

. (16.11)

16.2.3.2 Decisions at Level 1

At the first level, we have that the authority tries to maximize long term welfare

max
π(S,K)

E
∞

∑
t=0

r(π(St ,Kt),St ,Kt)− ciI(π(St ,Kt),St ,Kt)

(1+α)t , (16.12)

where α is the discount rate and the decision π is subject to the dynamics of fish
stock S in (16.1) and capital K in (16.2).

Notice that we are dealing with a stationary system. That means that the optimum
strategy consists of a decision rule that tells the authority what quota π to set given
fish stock S and capital in fishery equipment K. Furthermore, the optimum strategy
depends on the behaviour of the fishery sector at the second level.

16.3 Model Analysis

We address the question what are reasonable values for the decision and state vari-
ables given parameter values. Therefore, we first look at implicit bounds in the de-
cision variables and transient states of the model and then consider the model when
it is behaving in a stationary way in steady state.

16.3.1 Bounds on Decision and State Space

With respect to the first level, no cost has been introduced so far to set the quota π .
This means, one has alternative optimal solutions if π is not binding in the decision
on the harvest level. We will always consider the minimum level to be chosen in
case π has alternative solutions. Often, this means that π = H. For convenience, let

ŝ =
ce

cpq(1− cs)

denote the level of fish stock under which it is not profitable to start harvesting.
Simply, π = H = 0 if S < ŝ.

The dynamics in fish stock described by (16.1) basically increases up to a car-
rying capacity m. If the fish stock due to environmental aspects exceeds that level,
it can only decrease to m. Due to the fishing behaviour, it is also known that for

16.3 Model Analysis 431

S < ŝ, no fishing takes place and growth is always positive. This means that values
S < ŝ correspond to transient states. basically, ŝ is a lower bound of the fish stock St ,
if the initial stock S0 > ŝ. At the other side, if the initial stock is higher than the
carrying capacity, S0 > m, then the stock can only go down from that level. So, also
values S > m correspond to transient states. For the elaboration of the optimal policy
π(S,K), given an initial stock S0, we have that in the system

St ∈ [min{S0, ŝ},max{S0,m}]. (16.13)

This means that the interesting range for harvest H and quota π is
H,π ∈ [0,max{S0,m}− ŝ].

These ranges also provide a range of appropriate values for the capital stock
K and investment I. Due to investment cost and depreciation, the level of capital
should not exceed what is required to catch the desired level, as specified by (16.10);
K, I ∈ [0,max{ 1

q ln(m
ŝ),K0}].

16.3.2 Equilibrium State Values in a Deterministic Setting

In this section, we assess the order of magnitude of the decision and state values
given an instance of parameter values. In order to get a feeling, the model is consid-
ered in a deterministic setting, so ξ = 1, where we analyse whether there is a unique
absorption state.

In an absorption state, we have that H, I,S,K are constant in time and do not
change any more. The harvest is a constant fraction of the fish stock S and in the
fish dynamics (16.1), now St+1 = St . For an absorption state value S ≥ ŝ one can
find

H = gS

(
1− S

m

)
→ S =

gm+
√
(gm)2−4gmH

2g
, (16.14)

otherwise no harvest takes place; H = 0 and S = m.
In the long run, capital and quota levels adapt to the harvest level; π = H and

K = 1
q ln S

S−H and I = dK = d
q ln S

S−H . The decision maker at level 1 should keep the
stationary revenue R as high as possible, whereas harvest equals the growth:

R := max
H

{
(1− cs)pH− ce +dci

q
ln

S
S−H

}
, (16.15)

subject to

H = gS(1− S
m
).

Substitution of the growth in the (constant over time) revenue function gives

R = g(1− cs)cpS(1− S
m
)+

ce +dci

q
ln((1−g)+

g
m

S). (16.16)

432 E.M.T. Hendrix et al.

For an interior optimum (S > ŝ), the first order condition of dR
dS = 0 yields equilib-

rium value

S =
3m
4
− m

2g

(

1− 1
2

√

(g−2)2 +
8g(ce +dci)

q(1− cs)mcp

)

. (16.17)

In the following section, we study how this absorption state value is reached, if the
system starts at an arbitrary level. The second question is how the system behaves if
the random variable ξ has a variation. Is the system stable? What is the correspond-
ing stationary distribution? Does the long term average state deviate and how fast
does it react on deviations from the equilibrium?

16.4 Discretization in the Value Iteration Approach

The behaviour of the system depends on the optimum quota rule π(S,K) that solves
(16.12) maximising future benefits. Focusing first on the deterministic case with
discounting, we know [5] that π(S,K) is an optimal rule, if there exists a value
function V (S,K) such that the Bellman equation

V (S,K) =

(
r(π(S,K),S,K)− ciI(π(S,K),S,K)+

1
1+α

V (S+1,K+1)

)
, (16.18)

is fulfilled, where S+1 and K+1 follow from the dynamic equations (16.1) and (16.2)
and the behavior at the second level of the model, i.e. depending on values for
π(S,K),S and K. This optimality condition implies that if one can find the value
function, one can also derive the optimal policy from

π(S,K) = argmax
π

(
r(π,S,K)− ciI(π,S,K)+

1
1+α

V (S+1,K+1)

)
. (16.19)

A value function and optimal policy can usually not be derived analytically.
Therefore, we rely on a fixed point approach, where the function V is captured by a
matrix with its values over a discretized state space. The optimum π(S,K) and cor-
responding value function V (S,K) are approximated by a value iteration approach.
In this approach, one starts with an arbitrary valuation of function V and deter-
mines (16.18) iteratively, up to convergence for all state values (S,K). Practically,
this works with a discretization of the state space (S,K) with vectors s,k, repeating
(16.18) for each grid point as outlined in the algorithm.

We will first outline the approach for a deterministic setting and illustrate the
results of a base case. After illustration, we extend to the consequences of having a
random variable in the model.

16.4 Discretization in the Value Iteration Approach 433

Algorithm 1 :Pseudo code value iteration
Funct data, x,k vectors, ε; output π,Y matrices

1. U = 0 matrix
2. for all i, j
3. for state values S = si,K = k j

4. yi j = maxπ
(

r(π,S,K)− ciI(π,S,K)+
V (S+1,K+1)

1+α

)

5. if maxi j(yi j−ui j)−mini j(yi j−ui j)> ε
6. U = Y and go to step 2

16.4.1 Deterministic Elaboration

Using S ∈ {s1,s2, . . . ,si, . . . ,smax} and K ∈ {k1,k2, . . . ,k j, . . . ,kmax} discretizes the
state space, such that function V (S,K) is approximated by the matrix Y with en-
trances yi j =V (si,k j). For each matrix entrance (i, j), iteratively the minimum over
π should be found of a function

yi j(π) = r(π,xi,k j)− ciI(π,xi,k j)+
1

1+α
V (S+1,K+1), (16.20)

where V is approximated by the matrix Y . This implies the use of interpolation of the
value V (S+1,K+1) for the state (S+1,K+1), where the dynamics and decision lead to
using the values in the matrix U . The implementation also requires considering the

100
0 1 2 3 4 5 6 7 8 9 10

150

200

250

300

350

fis
h

st
oc

k
s

time, t

400

450

500

Fig. 16.1: Convergence of stock to equilibrium state, deterministic model; K0 = 9

434 E.M.T. Hendrix et al.

appropriate boundaries s1,smax and k1,kmax of the system and whether all combi-
nations si,k j are feasible. As discussed in Sect. 16.3.1, one does not have to consider
fish stock values S < ŝ, as harvest is zero and quota can be taken π = 0. The upper
bound smax depends on the possibility to consider starting values S0 > m. We can
take [s1,xmax] = [ŝ,max{S0,m}]. Following the reasoning in Sect. 16.3.1, it is ap-
propriate to take [k1,kmax] = [0, 1

q ln(m
ŝ)]. The grid points si and k j are not required

to be equidistant in their corresponding range. A more refined grid, i.e. using more
grid points, results into a better approximation of the value function V and the policy
decision π .

The iterative minimisation of yi j(π) can be done by using a grid on a range
[0,qmax], or by using a one-dimensional minimisation algorithm.

Example 16.1. Our base case uses data taken from a study on North Sea plaice. This
specimen is one of the main commercially exploited flatfish in the North Sea and
is subject to increasing fishing pressure [4]: m = 460,g = 0.74,q = 0.0139,d =
0.1,α = 0.05, p = 1.83,ci = 2.1,cr = 0.25,ce = 3.54. For this base case, the level
ŝ under which fishing is not profitable, is ŝ = 185.6. The equilibrium value of fish
stock predicted by (16.17) is S = 349.5.

The value iteration algorithm is run with s1 = 170,smax= 500,k1 = 4,kmax= 70
and taking 23 equidistant points si and k j on each axis providing round numbers.
The iterative minimisation of π is done by a standard one-dimensional minimisation
algorithm FMINBND of MATLAB.

The iterative quota π converges after 20 iterations to the optimum one and the
value function difference is converging, where difference between the minimum and
maximum as defined in the algorithm reaches a value lower than ε = 0.1.

The behaviour of the system is sketched in Fig. 16.1 for four different starting
values S0 for the fish stock and an initial fishery capital stock of K0 = 9. The sys-
tem converges within 4 time steps to the equilibrium state. The stable dynamics of
the fish stock due to (16.1) is helped by the fishing behaviour. For low values of
fish stock, no fishing takes place and for values higher than the carrying capacity,
harvesting reduces the stock due to low effort cost. The authority helps to reach
the stable situation. For instance for S = 200,K = 9, the fishery sector would start
harvesting approximately 14 tons. However, the authority keeps the quota at zero in
order to promote the recovery of the fish stock, keeping long term welfare in mind.

16.4.2 Stochastic Implementation

Where ξ is a random variable, one should refine the Bellman equation. Expected
value and probabilities come into play. The Bellmann equation (16.18) for the opti-
mum solution π(S,K) is extended towards

V (S,K) = max
π

(
r(π,S,K)− ciI(π,S,K)+

1
1+α

EξV (S+1,K+1)

)
. (16.21)

16.4 Discretization in the Value Iteration Approach 435

Notice that the model requires to take the expected value Eξ over future revenues
and not over the current costs, because these costs only depend on the current
state (S,K).

There are several practical ways to discretize the distribution of ξ . For instance,
one can run over all possible grid points xi,k j for V+1 and assign a probability to
these outcomes given decision π . This approach is quite cumbersome, as it re-
quires re-calculating for many quota values and associated probability. The more
common approach is to discretize the space of possible outcomes of the stochas-
tic variable. A sharp way to do so is by using the quantiles of the lognormal
distribution. This works by using an equidistant grid over the probability range
[0,1] with a step pξ and generating a discrete outcome space {θ1,θ2, . . . ,θn} =
{G−1(pξ),G

−1(2pξ),G
−1(3pξ), . . . ,G

−1(1− pξ)}. The consequence of this oper-
ation is that the outcome space is truncated by the pξ -quantiles and every outcome
has the same probability of occurrence. Actually, (16.21) is approximated by using

EξV (S+1,K+1)≈ pξ
n

∑
i=1

V (S+θi(gS

(
1− S

m

)
)−H(π,S,K),K+1), (16.22)

where H is the harvest level chosen by the fishing sector at level 2 following from
(16.8). Interpolation from matrix U is required in the state space to value V+1 for
every possible outcome θi of the growth multiplier.

The ranges for the state variables do not change with respect to the deterministic
model, as the possible outcomes θi are always positive. This means, that for S < ŝ,
we have positive growth and for S > M, we have negative growth, so the same
bounds can be used as in the deterministic case. In the stochastic model, positive
growth can be much bigger than one. The calculation time for the value iteration
increases, because each evaluation of a suggested quota π requires n values of the
value function to be interpolated.

Example 16.2. In Example 16.1, the variable ξ is lognormal distributed with pa-
rameters σ = 0.159 and μ =−0.0126. Distributing n = 40 points over the outcome
space with pξ = 0.025 we have {θ1,θ2, . . . ,θn}= {0.596,0.716, . . . ,1.593}.

Running the value iteration algorithm, at each iteration using (16.22) for all grid
points from s× k and interpolating U for the n outcomes θi, provides convergence
of the optimum quota π(S,K) after 15 iterations already.

16.4.3 Analysis of the Stochastic Model

The model can be characterized as a continuous space stationary MDP with its op-
timal policy π(S,K) as depicted in Fig. 16.2. As illustrated, the discretisation to a
finite number of states on the s×k grid does not directly provide a transition proba-
bility from state to state, as realisations will typically not find values on a grid point.
Instead the optimal policy is derived by using interpolation of the value function.

436 E.M.T. Hendrix et al.

Fig. 16.2: Quota function found by value iteration stochastic model

We have observed for the deterministic case, that in principle the dynamic system
convergences to an equilibrium in a short amount of time. To measure the behavior
for the stochastic model the system has been simulated for 4 different starting values
S0 and 10 realisations of sample paths. These paths follow the optimum strategy
using the values of the base case and the probability distribution of the example. The
starting value for the capital stock is again taken as K0 = 9. Figure 16.3 illustrates
the fast convergence to absorption states around the equilibrium of the deterministic
model.

16.5 Conclusions

In this chapter, a bi-level discounted Markov Decision Problem (MDP) model is
analysed for setting optimal dynamic fishery policies. The model describes fish
stock and economic dynamics. At the first level, an authority decides on the quota to
be fished, keeping in mind long term social benefits. At the second level, fishermen
react on the quota set and on the current state by deciding on their investments and
fishery effort maximising the profit of that year.

The numerical solution by value iteration requires to limit the number of states.
Further, span convergence goes very slowly if many states are included that are very
unlikely to happen under an (nearly) optimal policy. The state space is discretized
into a finite state space by studying the properties of a deterministic model. The

16.5 Conclusions 437

Fig. 16.3: Realisations of stochastic paths for four different starting values of fish
stock following optimal quota setting; K0 = 9

thus obtained ranges of the state space are applied to solve the stochastic problem
on a uniform or equidistant grid. The action space is kept continuous, as well as
the random growth in fish stock. Applying value iteration to the states on the grid,
requires interpolation to estimate state values that are not on the grid.

Besides the ranges for the state space as obtained for an analyses of a determin-
istic problem, the choice of the grid points is arbitrarily set by the number of grid
points that we allow. More grid points would make the solution more accurate, but
would result in more states, and thus longer running times. Another way of increas-
ing the accuracy, is applying Chebychev discretization, which assumes a more dense
grid in areas of the state space with high probability of occurrence. Predetermin-
ing the areas of higher interest is however not straightforward, as estimates of the
likelihood of each state are not available. Computing steady state probabilities by
analysing a Markov chain would again first require discretization of the state space.
Alternatively, such a probability distribution could be estimated by simulating an
presumed optimal policy.

Given this analysis, an MDP approach based on value iteration is a feasible
option to derive the optimal policy.

Acknowledgements This work has been funded by grants from the Spanish state (TIN2015-
66680-C2-2-R) and, Junta de Andalucı́a (P11-TIC-7176), in part financed by the European Re-
gional Development Fund (ERDF).

438 E.M.T. Hendrix et al.

Appendix: Notation

This section describes the relation of the terminology in this chapter related to the
general notation in the book.

S Population size of fish measured in kton
K Capital of fleet size state in horse power days
π(S,K) Optimal policy with respect to quota level
V (S,K) Value function
r(π,S,K) One step revenue quota π in state (S,K)
ciI(π,S,K) One step investment cost for quota π in state (S,K)
U and Y Iterate matrices of V (S,K) over a discretized state space
α Discount factor

References

1. M. Bailey, U.R. Sumaila, M. Lindroos, Application of game theory to fisheries
over three decades. Fish. Res. 102(1–2), 1–8 (2010)

2. J.R. Boyce, Optimal capital accumulation in a fishery: A nonlinear irreversible
investment model. J. Environ. Econ. Manag. 28(3), 324–339 (1995)

3. A.T. Charles, Optimal fisheries investment under uncertainty. Can. J. Fish.
Aquat. Sci. 40(12), 2080–2091 (1983)

4. L. Kell, P. Bromley, Implications for current management advice for north sea
plaice (pleuronectes platessa l.): Part ii. increased biological realism in recruit-
ment, growth, density-dependent sexual maturation and the impact of sexual
dimorphism and fishery discards. J. Sea Res. 51(3–4), 301–312 (2004)

5. M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming (Wiley, New York, 1994)

6. G. Sethi, C. Costello, A. Fisher, M. Hanemann, L. Karp, Fishery management
under multiple uncertainty. J. Environ. Econ. Manag. 50(2), 300–318 (2005)

7. R. Singh, Q. Weninger, M. Doyle, Fisheries management with stock growth
uncertainty and costly capital adjustment. J. Environ. Econ. Manag. 52(2),
582–599 (2006)

8. M. Spence, Blue whales and applied control theory. Technical Report 108,
Institute for Mathematical Studies, Stanford University (1973)

9. D. van Dijk, R. Haijema, E.M.T. Hendrix, R.A. Groeneveld, E.C. van Ierland,
Fluctuating quota and management costs under multiannual adjustment of fish
quota. Ecol. Model. 265(0), 230–238 (2013)

10. D. van Dijk, E.M.T. Hendrix, R. Haijema, R.A. Groeneveld, E.C. van Ierland,
On solving a bi-level stochastic dynamic programming model for analyzing
fisheries policies: Fishermen behavior and optimal fish quota. Econ. Model.
272, 68–75 (2014)

Chapter 17
Near-Optimal Switching Strategies
for a Tandem Queue

Daphne van Leeuwen and Rudesindo Núñez-Queija

Abstract Motivated by various applications in logistics, road traffic and production
management, we investigate two versions of a tandem queueing model in which the
service rate of the first queue can be controlled. The objective is to keep the mean
number of jobs in the second queue as low as possible, without compromising the
total system delay (i.e. avoiding starvation of the second queue). The balance be-
tween these objectives is governed by a linear cost function of the queue lengths.
In the first model, the server in the first queue can be either switched on or off,
depending on the queue lengths of both queues. This model has been studied ex-
tensively in the literature. Obtaining the optimal control is known to be computa-
tionally intensive and time consuming. We are particularly interested in the scenario
that the first queue can operate at larger service speed than the second queue. This
scenario has received less attention in literature. We propose an approximation us-
ing an efficient mathematical analysis of a near-optimal threshold policy based on a
matrix-geometric solution of the stationary probabilities that enables us to compute
the relevant stationary measures more efficiently and determine an optimal choice
for the threshold value.
In some of our target applications, it is more realistic to see the first queue as a (con-
trollable) batch-server system. We follow a similar approach as for the first model
and obtain the structure of the optimal policy as well as an efficiently computable
near-optimal threshold policy.
We illustrate the appropriateness of our approximations using simulations of both
models.

D. van Leeuwen (�) • R. Núñez-Queija
CWI, Amsterdam, The Netherlands
e-mail: daphne.vanleeuwen@gmail.com; Rudesindo.Nunez.Queija@cwi.nl

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 17

439

mailto:daphne.vanleeuwen@gmail.com
mailto:Rudesindo.Nunez.Queija@cwi.nl

440 D. van Leeuwen and R. Núñez-Queija

17.1 Introduction

We investigate a dynamic flow control problem arising in various applications. As
a motivating illustration consider road traffic control, where trucks enter a crowded
metropolitan area to supply goods in the city center. More often than not, such a
scenario leads to clustering of transportation traffic near distribution facilities in
the city. Our specific aim here would be to develop a control method that reduces
long waiting lines of trucks at distribution centers located in or near cities. As a
solution we investigate the effectiveness of a buffer location (i.e. a parking facility
for trucks) near a distribution center to reduce the number of waiting trucks in busy
areas, thereby giving more space to other traffic and reducing emissions.

Indeed, the buffer location will temporarily ‘store’ trucks and prevent overly
crowded areas near the distribution center. On the down side, the introduction of
the buffer location introduces an additional hop in the route for the trucks, creating
potential inefficiency. When poorly operated, trucks may be waiting at the buffer
location, while the service location at the distribution center may have cleared all
the local backlog.

The problem setting described here illustrates a generic challenge in transporta-
tion logistics, manufacturing and production management. One may for example
think of an asphalting machine that must be supplied with liquid asphalt at the cor-
rect pace, avoiding too long storage of the perishable material, but also maintaining
sufficient supply to avoid expensive shutdown of the machine due to lack of mate-
rial. In a production assembly line one can also imagine the necessity to balance the
local inventory of assembly parts with the available space. And in road congestion
management the traffic density near bottleneck junctions must be kept low enough
to avoid traffic dead-lock, but on the other hand in the upstream direction the traf-
fic flow should be sufficient to prevent unnecessary delay. We discuss and describe
such control problems and design a generic strategy with practical applicability.

The above sketched situations are modeled by a controllable two-stage tandem
queue. Referring to our initial motivation, the first stage represents the buffer and
has infinite capacity. We first concentrate on the setting in which the server at the
first stage can be controlled by an on-off switch. The second stage represents the
distribution center for which we want to reduce the number of trucks. We seek an
optimal trade-off between the reduction in the number of vehicles at the second stage
and the additional delay caused by the on/off policy at the first stage. The optimal
operation point is determined by the minimization of a cost function. This function
accounts for waiting time costs in the buffering stage as well as costs for waiting
at the distribution center. Arrivals to this system are modeled by a Poisson process
and “service times” in both queues are exponentially distributed, which facilitates a
formulation as a Markov Decision Problem (MDP).

This model has been studied extensively in literature and it is known that it is
optimal to serve either at full speed or not to serve at all [14]. This type of strategies
are referred to as “bang-bang strategies”. Under certain cost assumptions it has been
shown that the structure of the optimal service rate gives a switching strategy divid-
ing the state space into two regions: one where the service rate is at its maximum

17.1 Introduction 441

and one where service is paused. Such structural properties of optimality can be
proven by showing the convexity of the value function in the Bellman optimality
equation, see for example [14] and [6]. Similar convexity properties also hold for
networks of queues [15]. Adopting the optimal control, several strategic questions
can be answered as well, such as the desirable distance of the buffer location from
the distribution center in order to regulate trucks optimally. In our model this dis-
tance is captured by the service rate at the first stage.

Full evaluation of the theoretically optimal strategy is often numerically infeasi-
ble, or at the least numerically overly time consuming for practical purposes. Several
papers have looked at approximation techniques for this model. The fluid approx-
imation developed in [1] works well when the second station works at a higher
rate than the first station. We will summarize and complement that analysis with
the opposite case (when the second station is the slowest) and show that then the
optimal strategy can well be approximated by a threshold-based decision rule. The
author in [10, pp. 439–441] developed a method to determine an approximation for
the threshold value for the discounted reward MDP, which does not have a direct
counterpart in the average reward problem. Alternatively, the authors in [5] propose
a fluid approximation, focusing on a large deviations analysis. They determine the
most probable evolution of the system toward rarely visited states, whereas we are
concerned with controlling the system for optimal average behavior, i.e., we con-
centrate on states that are visited frequently.

In this chapter we discuss an approximation technique for the best threshold value
in order to reduce the computational effort. This method uses matrix geometric anal-
ysis as described in [12]. Various papers, such as [4], have previously applied this
method to speed up computation. The exposition in [7] for a tandem queue similar to
ours is particularly relevant to develop our approximation as it gives an explanation
of the blocks which are necessary to capture the details of our model.

In practice, service at the first station may not be limited to one job at a time.
Indeed, in our primary example several trucks may jointly leave the parking facility
if the waiting line at the distribution center is very short. Similarly, in manufac-
turing and production planning, several items may be produced or delivered at the
same time. We therefore proceed to study an extension of the tandem queue with
controllable service rate, allowing for batch service in the first station. A service
batch corresponds, for example, to platoons of trucks jointly driving from the buffer
location to the distribution center. In this setting, it is reasonable to maintain the
service rate independent of the number of jobs that are jointly processed. We study
the impact of batch service at the first server and determine the structure of the op-
timal policy. It turns out that the optimal queue level at the second queue is fully
determined by the aggregate number of jobs in the two queues (i.e., the sum of the
two individual queues). If the optimal levels can be determined, the optimal batch
size is then easily computed for all states in the state space.

The batch model will be approximated in the same manner as the basic on-off
model. The extension of the matrix geometric method for use in the batch model
follows along the same lines as [11]. That reference focuses on a system which
requires a minimum batch size to initiate service, and additionally, service can be

442 D. van Leeuwen and R. Núñez-Queija

granted up to a predefined maximum batch size. In various other papers optimal
batch sizes are determined via a trade-off between startup costs for service and costs
per unit time for jobs in the system, see e.g. [3, 16]. Our model, however, does not
have startup costs for batch service. We determine the optimal batch size leading to
an optimal threshold level based on properties arising from the MDP formulation.

This chapter is structured as follows. We give a detailed description of the ba-
sic model in Sect. 17.2. In Sect. 17.3 we study the structure of the optimal policy
for various choices of the parameters and observe that for most cases of interest
in our context, the shape of the optimal switching curve suggests it can well be
approximated by a threshold policy. In Sect. 17.4 we set out to determine the best
choice for the threshold value using matrix-geometric analysis techniques. We then
turn our attention to the batch-service model in Sect. 17.5 and follow the same pro-
gram: we investigate the structural properties of the optimal strategy and develop a
matrix-geometric representation to numerically determine a near-optimal strategy.
In Sect. 17.6 we numerically study the appropriateness of the proposed strategies
for both models. We conclude the chapter in Sect. 17.7.

17.2 Model Description: Single Service Model

Our model consists of two queues in tandem. As alluded to before, the second queue
represents the actual service facility (distribution center, production plant or assem-
bly line), whereas the first queue serves as a temporary buffer to alleviate congestion
in the second queue. For analysis purposes we assume that jobs arrive to the first
queue according to a Poisson process at rate λ and jobs can be processed at rate
μ1. After service in the first queue, jobs proceed to the second queue, for which the
service rate is denoted with μ2. For stability we assume both λ < μ1 and λ < μ2.

So as to control the number of jobs at the second station we introduce a binary
decision at the first station, depicted in Fig. 17.1. The control mechanism may be
interpreted as an on/off switch at the first station with two states: {0,1}. State 0
represents a service rate of 0, i.e. all jobs waiting at the first station will be blocked
for service. State 1 represents the situation where each job at station 1 is served by
rate μ1 and continues to stage 2.

Fig. 17.1: The tandem queue with an on-off controlling mechanism

To formulate this as an optimization problem we introduce constant waiting costs
cwait , which are incurred per job and per unit of time. Jobs queueing at the second

17.2 Model Description: Single Service Model 443

station encounter additional costs indicated by cloc which, in our introductory exam-
ple, represents the costs of residing in the distribution area. Thus, the waiting cost
at the first server is c1 = cwait per job per unit of time, and at the second station it is
c2 = cwait +cloc. Naturally, we assume 0< c1 < c2. Due to larger costs at station 2, it
is more advantageous to hold customers in queue 1 rather than in queue 2. However,
one should avoid an empty station 2 when station 1 still has a backlog. We seek an
efficient trade-off between these two effects.

We formulate the problem as a Markov Decision Process. The system will be
observed at epochs of arrivals and service completions i.e. in discrete time. We use
uniformization to discretize the Markov chain as described in Lippman [9]. Our
discrete-time Markov Decision Process consists of the quadruple {S,A,P,C}. S
represents the state space of the system, and is defined as i = (x1,x2) ∈N2 . Here xi

is the number of jobs at stations i = 1 and i = 2, respectively.A represents the action
space; the set of actions that decision makers can take. In this problem A = {0,1}
representing either a blocked or an unblocked first server, respectively. Action 0
blocks service at station 1, i.e. no jobs can move from station 1 to station 2. For
action 1 jobs are served at the first station at rate μ1 and then move from station 1
to station 2. P contains the transition probabilities from state i to state j for action
a ∈ A; these can be written as pa(i, j). Finally, C denotes the cost function and
will be written as ca(i) which is the expected cost per unit of time for each state
i = (x1,x2) ∈ S and action a ∈ {0,1}.

An optimal strategy satisfies Bellman’s equation [2, 10]:

V ∗(i)+g∗ = mina∈A
{

ca(i)+ ∑
j∈S

pa(i, j)V ∗(j)
}

for i ∈ S, (17.1)

where g∗ and V ∗(i) give the optimal average reward and value function. The decision
rule can be determined by:

f (i) = argmina∈A
{

ca(i)+ ∑
j∈S

pa(i, j)V ∗(j)
}

for i ∈ S, (17.2)

where V ∗(j) satisfies V ∗(i)+g∗ = c f (i)+∑ j∈S p f (i, j)V ∗(j). Note the slight abuse
in notation in writing c f (i) and p f (i, j) instead of c f (i)(i) and p f (i)(i, j) as we should
have according to our earlier notation. Our goal is to minimize the average cost and
determine an optimal decision for each state.

To determine the optimal strategy in our tandem queue we use Eq. (17.2) where
ca(i), with i = (x1,x2), is given by c1x1 + c2x2. Recall that the cost c1 consists only
of the waiting cost per job at station 1 and c2 is a combination of the waiting costs
and additional costs for station 2, and that we assume 0 < c1 < c2.

The transition probabilities pa(i, j) are determined by the transition rates in
each state, applying uniformization as described in Lippman [9]. For action a = 1
(service in queue 1), we have for x1 ≥ 0 and x2 ≥ 0: p1((x1,x2),(x1 + 1,x2)) =
λ/(λ +μ1+μ2), p1((x1+1,x2),(x1,x2+1)) = μ1/(λ +μ1+μ2), and p1((x1,x2+
1),(x1,x2) = μ2/(λ + μ1 + μ2). On the boundary we have “dummy transitions”

444 D. van Leeuwen and R. Núñez-Queija

leading to p1((0,x2 + 1),(0,x2 + 1)) = μ1/(λ + μ1 + μ2), p1((x1 + 1,0),(x1 +
1,0)) = μ2/(λ +μ1 +μ2), and p1((0,0),(0,0)) = (μ1 +μ2)/(λ +μ1 +μ2).
Similarly, when a = 0 (no service in queue 1), we have for x1 ≥ 0 and x2 ≥ 0:
p0((x1,x2),(x1 +1,x2)) = λ/(λ +μ1 +μ2), and p0((x1,x2 +1),(x1,x2) = μ2/(λ +
μ1 + μ2). Now there can be no service in queue 1, giving p0((x1,x2 + 1),(x1,x2 +
1)) = μ1/(λ + μ1 + μ2). Finally, the remaining transitions on the boundary are
p0((x1,0),(x1,0)) = (μ1 +μ2)/(λ +μ1 +μ2).

Successive Approximation (SA) will be used to calculate the optimal decision
for each state so as to minimize average costs:

Vn(i) = min
a∈Ai

{
ca(i)+ ∑

j∈S
pa(i, j)V ∗n−1(j)

}
,

and
fn(i) = argmina∈Ai

{
ca(i)+ ∑

j∈S
pa(i, j)V ∗n−1(j)

}
.

17.3 Structural Properties of an Optimal Switching Curve

We start our discussion of the optimal strategy with a numerical illustration for a
particular example. Here and in the remainder of the chapter we will use c1 = 1
and c2 = 3 meaning that jobs incur waiting costs of 1 per unit of time and, only in
queue 2, an additional location cost of 2 units. These values were also chosen in the
example used by Meyn [10] for the discounted case. Our structural results hold for
all values that satisfy 0 < c1 < c2.

First we illustrate a dichotomy that occurs between the cases μ1 < μ2 i.e. the first
server serves jobs at lower speed than the second server, and the opposite μ1 > μ2.
The two graphs in Fig. 17.2 show the optimal strategy for the MDP under these two
settings. A red color indicates that it is optimal to block service at the first stage. The
green color implies a system working at maximum service speed at both stages. We
observe that in both cases, the optimal action is prescribed by a so-called “switching
curve” separating the green area from the red area. The shapes of the switching
curves in the two graphs are a bit different. On the left, the curve eventually grows
with a constant slope (this will be explained), whereas the graph on the right flattens
for larger values of x1. This difference appears to be fundamental to the two chosen
parameter sets: one where the first server is slower than the second, and the opposite
case. We will discuss this in more detail below.

To have a better understanding of the dynamics of the system operating under
such a switching curve, we include the drift and trajectory diagrams displayed in
Figs. 17.3 and 17.4. Irrespective of the shape of the switching curve, the drift above
the curve is positive in the horizontal direction (due to arrivals at rate λ) and neg-
ative in the vertical direction (by departures from the second queue at rate μ2).
Note that because of the stability condition λ < μ2, the horizontal component of
the drift is smaller than that in the vertical direction, but that is irrelevant for our

17.3 Structural Properties of an Optimal Switching Curve 445

Result of the MDP state space with parameters:
lambda1 = 3.0, mu1 = 4.0, mu2 = 6.0

10

20

30

40

50

60

70

Q
ue

ue
 2

: #
Jo

bs
 a

t s
ta

tio
n

2

10

20

30

40

50

60

70

Q
ue

ue
 2

: #
Jo

bs
 a

t s
ta

tio
n

2

10 20

Queue 1: #Jobs at station 1

30 40 50 60 70 80 90 100 10 20

Queue 1: #Jobs at station 1

30 40 50 60 70 80 90 100

Result of the MDP state space with parameters:
lambda1 = 3.0, mu1 = 8.0, mu2 = 6.0

Fig. 17.2: An illustration of the optimal actions for all states. In the figures red
indicates blocking (jobs are not served in queue 1) and green indicates that jobs at
server 1 are served at rate μ1

discussion here. Below the curve, the horizontal drift changes sign and has magni-
tude μ1−λ1, which is positive due to the stability condition λ < μ1. In the vertical
direction the drift is μ1−μ2. Here we observe a distinction between the case μ1 < μ2

in Fig. 17.3 and the case μ1 > μ2 in Fig. 17.4. In the first case (μ1 < μ2), we obtain
a negative vertical drift and a corresponding direction toward the horizontal axis.
If μ1 > μ2, the vertical drift is positive and the trajectory is directed toward the
switching curve from both sides.

μ2

λ

drift

μ2

λ

μ1

drift

x1

x2 Switching curve

x1

x2 Switching curve
Drift direction

Fig. 17.3: An illustration of the drift above and below the switching curve (left
graph) and a typical trajectory (right graph) ; μ1 < μ2

We now return to Fig. 17.2. The graph on the left suggests a close approximation
of the switching curve by a linear function with positive intercept at the vertical
axis. The graph on the right rather suggests an approximation by a horizontal line.
The difference in behavior can be explained by the parameter choice. The linear in-
creasing curve is the effect of a larger service capacity at the second stage, μ1 < μ2.

446 D. van Leeuwen and R. Núñez-Queija

Intuitively, an optimal strategy must aim at avoiding an empty queue 2, when there
are jobs in queue 1. The undesirable states are therefore located on the horizon-
tal axis. If μ1 < μ2, the first queue can not “catch up” with the second queue, and
therefore it should always provide sufficient inflow for queue 2 even at large system
states. To further explain this fact, we refer to Fig. 17.3. The typical trajectory leads
to the horizontal axis, which is the set of undesirable states. The linearly increasing
switching curve avoids that the horizontal axis is hit at a very large level. When
μ1 > μ2, the first server can catch up with the second server, because it serves at
higher speed, thereby decreasing the probability of starvation of the second stage.
All trajectories lead to the switching curve and then continue along the switching
curve toward the origin. Hence, the size of the second queue can be maintained at
a low level and consequently the switching curve flattens for larger levels of the
first queue.. This fundamental difference leads to a likewise fundamentally different
analysis of these two cases.

μ2

λ

drift

μ2

λ

μ1

drift

x1

x2 Switching curve

x1

x2 Switching curve
Drift direction

Fig. 17.4: An illustration of the drift above and below the switching curve (left
graph) and a typical trajectory (right graph); μ1 > μ2

The first case, μ1 < μ2, has been investigated thoroughly in [1] using a fluid
approximation. In this fluid approximation, the random trajectories are replaced by
deterministic ones, characterized by their (expected) drifts. The fluid approximation
can be shown to be the exact limit of the stochastic process under an appropriate
scaling. The limiting fluid process can be shown to have an optimal linear switching
curve, which translates into the optimal action for large system states, but lacks
information about the optimal strategy near the origin. As we have observed, at the
origin, the optimal switching curve for the stochastic model has a vertical offset.
That offset can be approximated using perturbation methods [1], and turns out to
give a good representation of the optimal strategy.

Unfortunately this method does not work when μ1 > μ2, which is the more rel-
evant setting for many of our motivating applications. For example, the “buffer”
location for the distribution center will likely not be located very far from the dis-
tribution center, which corresponds to relatively large values of μ1. The above fluid
approximation applied to μ1 > μ2 gives a switching curve that lies on the horizontal
axis which suggests that the first server should never be operated. This is well ex-
plained by the sub-linear shape of the switching curve in the right graph of Fig. 17.2.
On a linear scale, this graph vanishes for large system states.

17.4 Matrix Geometric Method for Fixed Threshold Policies 447

We therefore set out to obtain an approximate analysis for the case μ1 > μ2. The-
oretically it can be seen that the switching curve still increases indefinitely, albeit at a
sub-linear pace. The flat shape however, implies that over large ranges of buffer lev-
els in queue 1, the optimal action switches at a common buffer level of queue 2. This
suggests that the optimal switching curve may well be approximated by a horizontal
line, i.e. that a fixed threshold-based strategy should be close to optimal. Obtaining
the optimal threshold value from the Bellman equations is computationally hard. In
the sequel we use a matrix geometric analysis [12] to compute the best threshold
value and compare it to the optimal strategy. An alternative method to approximate
near-optimal threshold values for the discounted reward MDP was developed in [10,
pp. 439–441]. Unfortunately, when applied to the average reward problem (under
the usual limiting argument for discounted reward models [13, 8.2.2]) the threshold
value becomes equal to infinity. For the purpose of this chapter our focus lies on
an approximation for the average reward case. Alternatively, the authors of [5] ap-
proximate the curve using a large-deviations analysis. In that scaling, they obtain an
asymptotically optimal switching level.

17.4 Matrix Geometric Method for Fixed Threshold Policies

We have argued that for the case μ1 > μ2 the optimal switching curve can perhaps
be well approximated by a horizontal line. In order to compare the effectiveness
of such fixed-threshold strategies, we set out to determine the relevant performance
measures as functions of the threshold parameter K and then pick the best value
of K. In this section we show that the resulting model falls into the class of Quasi-
Birth-Death processes that allow for a matrix geometric solution. In order to cast our
model into the framework of [12], we partition the state space into levels and phases,
resulting in the generic structure of the generator matrix displayed in (17.3). In our
model, each level will correspond with a fixed number of jobs in the first queue, and
the phase within a level represents the number of jobs in the second queue. Thus,
the generator matrix can be written in the block form of (17.3). Transitions between
blocks correspond to a change in level (queue 1) and transitions within a block
represent a change in phase (queue 2). The number of levels is therefore unbounded
and the size of the block matrices (corresponding to the number of phases) is K+1,
where K is the fixed threshold level.

Formally the state space can be described by S = {(x1,x2) : x1 ∈ Z+,0 ≤ x2 ≤
K +1}. The level index x1 denotes the number of jobs at station 1 and x2, the phase
index, represents the number of jobs at station 2. The maximum number of jobs at
station 2 is now bounded by the threshold K.

448 D. van Leeuwen and R. Núñez-Queija

The generator matrix Q for this system is given by:

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B0 Λ 0 0 0 0 · · ·
M D Λ 0 0 0 · · ·
0 M D Λ 0 0 · · ·
0 0 M D Λ 0 · · ·
0 0 0 M D Λ · · ·
0 0 0 0 M D · · ·
0 0 0 0 0 M · · ·
· · · · · ·
· · · · · ·
· · · · · ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(17.3)

In this representation all blocks are square matrices of order K+1, and M+D+
Λ is a generator of a K +1 dimensional Markov process that follows the transitions
of the second queue, conditional on a non-empty first queue. The stability condition
is given by Neuts’ mean drift criterion [12]: We define π to be the equilibrium
distribution of a Markov process with generator M+D+Λ :

π(M+D+Λ) = 0 where πe = 1,

e being a K + 1 dimensional vector with all entries equal to 1. The process with
generator Q is stable if and only if πMe > πΛe, i.e., the drift to higher levels should
be strictly less than the drift to lower levels to guarantee stability of the system. For
a fixed threshold level K the blocks are defined as follows:

B0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λ · · · · · · · · · 0

μ2 −a1 · · · · · ·
...

...
. . .

. . .
. . .

...
...

... μ2 −a1
...

0 · · · · · · μ2 −a1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,Λ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ · · · · · · · · · 0
... λ · · · · · · · · ·
...

. . .
. . .

. . .
...

... · · · · · · λ
...

0 · · · · · · · · · λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

with a1 = λ +μ2,

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−a2 · · · · · · · · · 0
μ2 −a2 · · · · · · 0
...

. . .
. . .

. . .
...

...
... μ2 −a2 · · ·

0 · · · · · · μ2 −a1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 μ1 · · · · · · 0
... · · · μ1 · · ·

...
...

. . .
. . .

. . .
...

... · · · · · · · · · μ1

0 · · · · · · · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

with a2 = λ +μ1 +μ2.
The repetitive block structure implies a matrix geometric form for the sta-

tionary probabilities corresponding to Q. Defining the K + 1 dimensional vectors

17.4 Matrix Geometric Method for Fixed Threshold Policies 449

πi = (πi0 . . .πiK), where πx1 x2 is the stationary probability of having x1 jobs in the
first and x2 jobs in the second queue, the balance equations are:

π i−1Λ +π iD+π i+1M = 0 for i≥ 1,

and we can write:
π i = π i−1R→ π i = π0Ri,

where the matrix R is the minimal non-negative solution to the following quadratic
matrix equation:

R2M+RD+Λ = R.

Via iteration we may determine R (there are alternative and more efficient routines,
see [8]). Once we have determined a solution for R we can include the boundary
conditions. It then remains to compute π0 via the remaining boundary equation:

π0B0 +π1Λ = 0.

For a unique solution we impose the normalization condition that the probabilities
sum to 1. This gives:

π0e+
∞

∑
i=1

π0Rie = 1 or equivalently π0(I−R)−1e = 1.

In order to compute the cost function we determine the average queue length for
both queues:

E[x1] = π0R(I−R)−2e,

E[x2] = π0(I−R)−1J,

where J is the column vector (0,1, . . . ,K−1)T .

To determine the optimal threshold we simply minimize costs over all thresholds:

min
K∈N

{π0(I−R)−1 ∗ (c1R(I−R)−1e+ c2J).} (17.4)

Now we can compute the best threshold level with respect to the costs and com-
pare it with the MDP policy. From now on we will refer to this policy as the “optimal
threshold” policy, not implying that this policy is overall optimal, but rather that it
is optimal among the threshold policies. Determining the optimal threshold is much
less computationally demanding than finding the optimal strategy using the MDP
approach.

450 D. van Leeuwen and R. Núñez-Queija

17.5 Model Description: Batch Transition Model

We now extend the model allowing for batch services in the first queue. As we
elaborated on in the introduction, processing multiple jobs at the first server to pre-
vent starvation at the second server is a logical choice for various applications of
this model. To clarify in what ways this model extends the previous one, we will de-
scribe it while referring to the details of the first model. To gain understanding of the
new model a graphical representation is shown in Fig. 17.5. Compared to Fig. 17.1
we can see that the first queue is serving N jobs in one single service instead of
handling jobs individually.

Fig. 17.5: Graphical representation of the tandem queue with batch service in the
first queue

So as to allow the first queue to serve in batches we extend the decision space
from a ∈ {0,1} to a ∈ {0, . . . ,x1} when the number of jobs in the first queue is
x1 (the set of possible actions is thus dependent on the current state). The value of
a corresponds to the chosen batch size, which is naturally limited by the number
of jobs in the first queue. Next, we adapt the transition probabilities described in
Sect. 17.2. For i = (0,0) we have

pa(i, j) =

{
λ

λ+μ1+μ2
if j = (1,0)

μ1+μ2
λ+μ1+μ2

if j = (0,0)
,

and for i = (x1,x2) �= (0,0):

pa(i, j) =

⎧
⎪⎨

⎪⎩

λ
λ+μ1+μ2

if j = (x1 +1,x2)
μ1

λ+μ1+μ2
if j = (x1−a,x2 +a) for a ∈ {0, . . . ,x1}

μ2
λ+μ1+μ2

if j = (x1,x2−1) or i = j = (x1,0)
. (17.5)

For this system there’s always a strategy that stabilizes it as long as λ < μ2,
irrespective of the value of μ1 > 0. This is obvious, since we can always choose to
serve all jobs in queue 1 in a single batch, no mater how many there are. Different
from the single service model, there will be no clear distinction between the cases
μ1 > μ2 and μ1 < μ2, because the first station is always able to ‘catch up’ with the
second station, even for μ1 < μ2. In the batch transition model we will see that the
switching curve always flattens for larger x1 values as is illustrated in Fig. 17.6. More

17.5 Model Description: Batch Transition Model 451

details on this figure will be given when we investigate the structural properties of
the batch service model.

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50 60 70 80 90 100

Queue 1: #Jobs at station 1

Result of the MDP state space with parameters:
lambda1 = 4.0, mu1 = 2.0, mu2 = 6.0

Q
ue

ue
 2

: #
Jo

bs
 a

t s
ta

tio
n

2

2

0

4

6

8

10

12

14

Fig. 17.6: Output of the MDP for the batch service model for parameter set λ = 4,
μ1 = 2 and μ2 = 6. Each color represents a different optimal batch size for the
current state

17.5.1 Structural Properties of the Batch Service Model

We will apply similar numerical calculations to show the main structural properties
of the batch service model and compare with the single service model. For the single
service model, the state space was divided into two regions depending on the opti-
mal decision. For the batch transition model similar shapes are encountered when
grouping states with the same optimal decision. In Fig. 17.6 states colored in red
correspond as before to blocking of service at the first queue. The next layer corre-
sponds to states in which the optimal batch size is one, then we have states with an
optimal batch size of two, etcetera. This figure suggests that the optimal trajectories
of the process are near the curve dividing red from green colored states. In this nu-
merically obtained graph, the shape of this curve is again sublinear; we will indeed
show that this is confirmed when investigating a scaled version of the process. We
note once more, that this shape is not restricted to particular parameter settings, as
was the case in the single batch model where the sublinear shape corresponded to
the choice μ1 > μ2. The larger jumps now allow the system to move to the switching
curve in one step from any state.

452 D. van Leeuwen and R. Núñez-Queija

Although this is rather difficult to see from Fig. 17.6, we observe that the optimal
strategy can again be characterized by the single switching curve separating the red
states from all others. Given the total number of jobs in the system, say x1+x2 = N,
the optimal action is to serve a jobs in the first queue such that (x1−a,x2+a), which
also has N jobs in total, is on the switching curve. Should this value of a be negative
(this happens when (x1,x2) is in the red area), then no jobs should be served in the
first queue.

A graphical representation of the optimal transitions can be seen in Fig. 17.7 for
two different values of the total number of jobs in the system: N = N′ and N = N′′.
All states on a diagonal x1 + x2 = N “point” to the same destination state at the
intersection of this line and the switching curve.

(x1= N′′−4,x2=4)

(x1= N′−2,x2=2)

1

2

3

4

1

2

x1

x2 Switching curve

Fig. 17.7: A graphical representation of the optimal batch size for two examples

17.5.2 Matrix Geometric Method with Batch Services

Similar to the case μ1 > μ2 in the single service model, we wish to approximate
the (sublinear) switching strategy with a horizontal line, thereby implementing a
threshold-based strategy with, say, threshold value K. This model falls into the class
of G/M/1 type Markov chains that admit a matrix geometric solution for the station-
ary distribution. Note that, for a fixed threshold value, the condition λ < μ2 is not
sufficient for stability. For sure, the system can not be stable if λ ≥ Kμ1, because
Kμ1 is the maximum rate at which jobs can be pushed from the first station. The ad-
ditional condition λ < Kμ1 is therefore necessary, but certainly not sufficient either.
The precise stability condition can be shown to be

λ < μ1

(

K

(
μ2

μ1 +μ2

)K

+
K−1

∑
k=1

k
μ1

μ1 +μ2

(
μ2

μ1 +μ2

)k
)

. (17.6)

17.5 Model Description: Batch Transition Model 453

This can be obtained by interpreting the right hand side of this inequality as the
exact departure rate from the first station if that station were saturated (i.e., starting
with infinitely many jobs in station 1). We will not make this precise here, as we can
obtain this equation from Neuts’ mean drift condition, which we will do below.

To define the batch transition model in matrix geometric form extra blocks must
be added into the generator matrix, that allow for the larger transition jumps. As was
described in the previous section, the batch size can be derived from the switching
curve, effectively redistributing the total number of jobs over the two queues (with
the obvious limitation that no jobs can be moved from the second to the first queue).

The generator matrix Qbatch now has the following structure:

Qbatch =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B0 Λ 0 0 0 · · · · · ·
B1 D Λ 0 0 · · · · · ·
B2 M1 D Λ 0 · · · · · ·
...

...
. . .

. . .
. . .

. . . · · ·

BK−1 MK−2 MK−3 · · · · · ·
. . . · · ·

BK MK−1 MK−2 · · · · · ·
. . . · · ·

0 MK MK−1
. . .

. . . · · · · · ·
...

. . .
. . .

. . .
. . .

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(17.7)

The 0th level of the process represents the boundary states, comparable to the
single service model. The matrices B0, Λ and D are defined as before. Because
of the batch services, the block matrices below the diagonal must be adapted. The
matrices Bk, k− 1,2, . . . ,K correspond to transitions for which the first queue is
emptied. This is only possible when there are 1 up to K jobs in the first queue, and
the second queue has sufficient space left to accommodate the batch size:

B1 =M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 μ1 0 · · · 0

0 0 μ1 0
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 μ1

0 · · · · · · · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,B2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 μ1 · · · 0

0 0 0 μ1
...

...
. . .

. . . 0 μ1
... · · · · · · · · · 0
0 · · · · · · · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, · · · ,BK =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · · · · 0 μ1

0 · · · · · · 0 0
...

. . .
. . .

. . .
...

... · · · · · · · · ·
...

0 · · · · · · · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

The transitions corresponding to batch services that do not lead to an empty first
station are grouped in the matrices Mk:

MK = BK ,MK−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 · · · · · · 0
0 · · · 0 μ1

0 · · · · · · 0
...

. . .
. . .

...
0 · · · · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, · · · ,M1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · · · · 0
...

. . .
. . .

...
...

. . .
. . . 0

0 · · · 0 μ1

0 · · · · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

454 D. van Leeuwen and R. Núñez-Queija

From Neuts’ mean drift criterion [12] we can obtain the stability criterion in
(17.6). Similar to the single service model we now define π to be the equilibrium
distribution of a Markov process with generator Λ +D+∑K

k=1 Mk:

π(Λ +D+
K

∑
k=1

Mk) = 0 where πe = 1.

The process with generator Q is stable if and only if the drift condition π ∑K
k=1 Mke>

πΛe is satisfied.
Again, following [12], the stationary distribution has a matrix-geometric struc-

ture π i = π0Ri, for i = 1,2, . . . , where the matrix R is the minimal non-negative
solution of

Λ +RD+
K

∑
k=1

Rk+1 ·Mk = 0.

The boundary equations now read

π0

K

∑
k=0

Rk ·Bk = 0,

and the normalization condition is

π0

∞

∑
k=0

Rk · e = π0 · (I−R)−1 · e = 1.

Again, by computing the stationary distributions for varying values of the thresh-
old K, we may determine the best value of the threshold in terms of the average cost
as we did for the single service model using (17.4). Finally we can compare this
result with the optimal MDP policy.

17.6 Simulation Experiments

In this section we illustrate the effectiveness of the threshold policies, obtained using
the matrix geometric representation, with the optimal strategies from the MDP for-
mulation. For our comparison, we will simulate both classes of strategies, although
for the threshold strategies the reported results can also be directly obtained after
computing the stationary distribution.

In Fig. 17.8 the costs and the average queue lengths are plotted for varying service
rate at station 1. We observe that the performance of the best threshold policy is
almost identical to that of the optimal MDP policy. The right hand graph also shows
that the two policies are very close to each other in terms of the average queue
lengths. The discontinuities in the curves corresponding to the threshold policies
correspond to parameter choices where the optimal threshold value shifts by one. As
can be expected, the discontinuities for the MDP policies are much less pronounced,
as the optimal switching curve may shift only for a small number of states.

17.6 Simulation Experiments 455

4 4.5 5 5.5 6 6.5 7 7.5 8
0

2

4

6

8

10

12

Service ratef or server 1

A
ve

ra
ge

 c
os

t
pe

r
ti
m

e
un

it

cost MG solution
cost MDP solution

4 4.5 5 5.5 6 6.5 7 7.5 8
0

1

2

3

4

5

6

7

8

Service rate for server 1

A
ve

ra
ge

qu
eu

el
en

gt
h

Q1MG solution
Q1MDP solution
Q2MG solution
Q2MDP solution

Fig. 17.8: Comparison of the optimal MDP policy model and the threshold-based
approximation for the single service model for varying service rate μ1. The param-
eters are: λ = 3,μ1 ∈ [4,8],μ2 = 6

For the batch service model, the simulation results of the MDP and the threshold
strategies are reported in Fig. 17.9. We may now take μ1 to be smaller than λ with-
out compromising the stability of the optimal policy as long as condition (17.6) is
satisfied.

We again observe a remarkable fit in terms of cost, for almost all values of the
service rate at the first station. As could be expected, the costs are lower compared
to the single service model. As for the queue lengths, we observe that the batch ser-
vice mode allows to keep the first station at lower levels, but the queue lengths at the
second station remain at roughly the same level. For now we defer further compar-
isons between the models with and without batch services and focus on comparisons
between the MDP and the threshold strategies. Due to the more aggressive service
mode, the costs of the threshold policies are much less smooth than in Fig. 17.8
and the optimal mean queue lengths oscillate more for larger values of μ1. Indeed,
changing the threshold value by one has a much larger impact on the resulting pol-
icy (that aims to bring the queue length back to the horizontal switching curve in a
single service run). The strong fluctuations in queue lengths, make it all the more
surprising that the costs of the best threshold policy remain close to those of the
optimal MDP strategy.

We have now compared the rightfulness of the approximating threshold strate-
gies. Next we compare the gain of having batch service in the first station. In
Fig. 17.10 the best threshold values are determined, again for increasing service rate
at station 1. The single service model is not stable for λ ≥ μ1. We observe that the
threshold strategies only perform badly in the single service model when the system
approaches instability. For a large range of values with μ1 < μ2, the single-service
threshold strategy performs almost as well as the batch-service threshold strategy,
although in that case the optimal switching curve for the single-service model has a
rather steep (linear) ascent. It is quite surprising that the costs are comparable for the
two models, as long as μ1 does not approach the stability limit (i.e., remains > λ).

456 D. van Leeuwen and R. Núñez-Queija

1 2 3 4 5 6 7 8
0

2

4

6

8

10

Service rate μ1

A
ve

ra
ge

 c
os

ts
 p

er
 t
im

e
un

it

Cost MDP solution
Cost MG solution

1 2 3 4 5 6 7 8
0

1

2

3

4

5

Service rate μ1

A
ve

ra
ge

 q
ue

ue
 l
en

gt
h

Q1 MG solution
Q2 MG solution
Q1 MDP solution
Q2 MDP solution

Fig. 17.9: Comparison of the optimal MDP strategy and the threshold-based approx-
imation for the batch service model for varying service rate μ1. The parameters are:
λ = 3,μ1 ∈ [1,8],μ2 = 6

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

Servicerate μ1

O
pt

im
al

th
re

sh
ol

dl
ev

el

Batch transition
Single transition

1 2 3 4 5 6 7 8
0

5

10

15

20

Servicerate μ1

A
ve

ra
ge

co
st

sp
er

ti
m

eu
ni

t

Batch transition
Single transition

Fig. 17.10: Comparison of optimal threshold strategies for the single service and
batch service model; λ = 3,μ1 ∈ [1,8],μ2 = 6

The optimal threshold levels do, naturally, differ: that of the single service model is
considerably larger than in the batch service model (as could be expected).

Table 17.1 displays the costs for the two models for various threshold levels.
The batch transition model performs better for all threshold levels, also non-optimal
levels, but the difference is not very pronounced. The main advantage of the batch-
service model is that the costs are not that sensitive to the exact value of the thresh-
old. For the single-service model the costs are much more sensitive and small errors
in the threshold value may lead to considerable loss of efficiency.

17.7 Conclusion

We have investigated the optimal control of the number of jobs in an expensive ser-
vice station, by regulating the flow from a preceding buffer station. We started by de-
termining the optimal control policy using a Markov Decision Problem formulation.

17.7 Conclusion 457

λ = 4,μ1 = 5,μ2 = 6 λ = 4,μ1 = 7,μ2 = 6
K Single service Batch transition Single service Batch transition

3 – 18.39 13.04 7.34
4 50.17 7.16 7.20 6.00
5 14.01 6.87 6.75 6.19
6 11.23 7.06 6.78 6.47
7 10.42 7.29 6.90 6.70
8 10.12 7.47 7.00 6.87
9 10.00 7.61 7.10 6.99
10 9.96 7.71 7.17 7.07
11 9.95 7.78 7.22 7.12
12 9.96 7.83 7.25 7.16

Table 17.1: Comparing the costs of single and batch services for various threshold
levels.

The optimal strategy can in general be characterized by a switching curve; the shape
of this curve is determined by whether or not the first station has a larger service rate
than the second. If so, then the optimal switching curve is rather flat, otherwise it
increases approximately linearly. When the optimal switching curve is flat, it can
well be approximated by a horizontal one, which corresponds to a fixed threshold
strategy. Besides their practical relevance due to the simplicity of implementation,
threshold-based strategies have the advantage that they allow a much more detailed
analysis. By casting a threshold based control into the framework of Markov mod-
els with a matrix geometric stationary distribution, we can efficiently compute the
best threshold level. For this “optimal” threshold level, we indeed verified that it
performs very closely to the optimal MDP strategy.

For some of our motivating examples, the “feeding” process from the buffer sta-
tion need not necessarily be by individual jobs only. It is quite natural to allow mul-
tiple jobs to be served in a single service run from the first station. For this model
we again formulated and studied the corresponding MDP and established that the
optimal switching curve always has a flat shape, irrespective of the speeds of the
servers. Again, threshold based strategies were shown to be much more efficiently
solvable and have close to optimal performance.

Surprisingly, the best single-service threshold and the best batch-service thresh-
old policies were found to give comparable performance, unless the single-service
threshold policies were near their stability limit (the arrival rate being near the ser-
vice rate of the first station). In the latter case, batch-service threshold strategies
profit from their larger stability region.

Our results also translate into practical design rules. First of all, the simplicity of
threshold based rules make them much easier to implement in practical scenarios.
Note that the optimal switching curve policy requires to operate a different threshold
level depending on the load in the first station.

458 D. van Leeuwen and R. Núñez-Queija

A further insight is that for single service mode at the first station, it is important
that the service rate in that station is large enough (preferably larger than, or at
least comparable to that at the second station). When applied to the distribution
center setting, this implies that the parking facility should not be too far from the
distribution center; in fact, the travel time between the two should be smaller than,
or comparable to, the unloading time at the distribution center. If multiple jobs can
be simultaneously transferred between the two stations, the distance is not a major
issue. In that case, performance is rather insensitive to the service speed in the first
station (unless that speed is very low).

References

1. F. Avram, Optimal Control of Fluid Limits of Queueing Networks and Stochas-
ticity Corrections. Lectures in Applied Mathematics, vol. 33 (Springer, New
York, 1997), pp. 1–36

2. R.E. Bellman, Dynamic Programming. (Princeton University Press, Princeton,
NJ, 2003) Republished 2003: Dover

3. G.L. Curry, R.M. Feldman, An M/M/1 queue with a general bulk service rule.
Nav. Res. Logist. Q. 32(4), 595–603 (1985)

4. A. El-Rayes, M. Kwiatkowska, G. Norman, Solving infinite stochastic process
algebra models through matrix-geometric methods. School of Computer Sci-
ence Research Reports, University of Birmingham (1999)

5. A. Gajrat, A. Hordijk, A. Ridder, Large-deviations analysis of the fluid approx-
imation for a controllable tandem queue. Ann. Appl. Probab. 13, 1423–1448
(2003)

6. G. Koole, Convexity in tandem queues. Probab. Eng. Inf. Sci. 18(1), 13–31
(2004)

7. G. Latouche, M. Neuts, Efficient algorithmic solutions to exponential tandem
queues with blocking. SIAM J. Algebr. Discr. Meth. 1, 93–106 (1980)

8. G. Latouche, V. Ramaswami, A logarithmic reduction algorithm for quasi-birth-
and-death processes. J. Appl. Probab. 30, 650–674 (1993)

9. S.A. Lippman, Applying a new device in the optimisation of exponential queue-
ing systems. Oper. Res. 23(4), 687–710 (1975)

10. S.P. Meyn, Control Techniques for Complex Networks (Cambridge University
Press, Cambridge, 2008). ISBN 978-0-521-88441-9 hardback

11. M. Neuts, A general class of bulk queues with Poisson input. Ann. Math. Stat.
38(3), 759–770 (1967)

12. M. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic
Approach. (Courier Dover Publications, Mineola, 1981)

13. M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming (Wiley, New York, 1994)

References 459

14. Z. Rosberg, P.P. Varaiya, J. Walrand, Optimal control of service in tandem
queues. IEEE Trans. Autom. Control 27(3), 600-610 (1982)

15. R.R. Weber, S. Stidham, Optimal control of service rates in networks of queues.
Adv. Appl. Probab. 19, 202–218 (1987)

16. J. Weiss, The computation of optimal control limits for a queue with batch
services. Manag. Sci. 25(4), 320–328 (1979)

Part V
Communications

Chapter 18
Wireless Channel Selection with Restless Bandits

Julia Kuhn and Yoni Nazarathy

Abstract Wireless devices are often able to communicate on several alternative
channels; for example, cellular phones may use several frequency bands and are
equipped with base-station communication capability together with WiFi and Blue-
tooth communication. Automatic decision support systems in such devices need to
decide which channels to use at any given time so as to maximize the long-run av-
erage throughput. A good decision policy needs to take into account that, due to
cost, energy, technical, or performance constraints, the state of a channel is only
sensed when it is selected for transmission. Therefore, the greedy strategy of always
exploiting those channels assumed to yield the currently highest transmission rate
is not necessarily optimal with respect to long-run average throughput. Rather, it
may be favourable to give some priority to the exploration of channels of uncertain
quality.
In this chapter we model such on-line control problems as a special type of Restless
Multi-Armed Bandit (RMAB) problem in a partially observable Markov decision
process framework. We refer to such models as Reward-Observing Restless Multi-
Armed Bandit (RORMAB) problems. These types of optimal control problems were
previously considered in the literature in the context of: (i) the Gilbert-Elliot (GE)
channels (where channels are modelled as a two state Markov chain), and (ii) Gaus-
sian autoregressive (AR) channels of order 1. A virtue of this chapter is that we unify
the presentation of both types of models under the umbrella of our newly defined
RORMAB. Further, since RORMAB is a special type of RMAB we also present

J. Kuhn (�)
The University of Queensland, St. Lucia, Brisbane, Australia

University of Amsterdam, Amsterdam, The Netherlands
e-mail: j.kuhn@uva.nl

Y. Nazarathy
The University of Queensland, St Lucia, Brisbane, Australia
e-mail: y.nazarathy@uq.edu.au

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 18

463

mailto:j.kuhn@uva.nl
mailto:y.nazarathy@uq.edu.au

464 J. Kuhn and Y. Nazarathy

an account of RMAB problems together with a pedagogical development of the
Whittle index which provides an approximately optimal control method. Numerical
examples are provided.

18.1 Introduction

Communication devices are often configured to transmit on several alternative
channels, which may differ in their type (e.g. WiFi versus cellular) or in their phys-
ical frequencies. Further, due to physical transmitter limitations, a device can only
use a limited number of channels at any given time. Thus, the question arises which
channels to select for transmission so as to maximize the throughput that is achieved
over time.

Channel 1

Channel 2

Sele
ct 1

Channel state feedback

Fig. 18.1: A transmitting device needs to choose whether to transmit on Channel 1 or Channel 2.
Transmitting on a channel results in immediate channel state feedback

To illustrate the problem, we consider the scenario depicted in Fig. 18.1. At every
discrete time instance, the transmitter has the choice to use either channel 1 or chan-
nel 2. The channels cannot be used in parallel, for instance, due to hardware lim-
itations and/or energy constraints. The selected channel then yields an immediate
reward that depends on the condition of the channel (e.g. the reward may be mea-
sured as the number of bits successfully transmitted). Consequently, an observation
of the state of that channel is also obtained. The unselected channel on the other
hand is not observed in this time instance.

Ideally, the transmitter would choose channels in a way that achieves the largest
throughput over time. However, the nature of communication channels is often
stochastic and thus the transmitter does not know the current state of each channel
with certainty. A good prediction of the channel state can be obtained when there is
strong dependence between the current state of a channel and its state in the (recent)

18.1 Introduction 465

past. Such channel memory can for example be caused by other users interfering on
the same channel, multipath of physical signals, or other persistent disturbances.

In utilizing channel memory, to make wise channel selection decisions, the trans-
mitter needs to balance a trade-off between exploitation and exploration: On the one
hand, based on the controller’s belief regarding the current state of each channel, it
may make sense to choose the channel expected to transmit the highest number
of bits over the next time slot. On the other hand, it may be sensible to check the
condition of the other channel so as to decrease uncertainty regarding its current
state. How should channels be selected, based on the information available, so as to
maximize the long-run expected throughput?

A first step towards answering this control problem is to devise suitable chan-
nel models; that is, models that capture channel behaviour reasonably well and at
the same time are simple enough to be mathematically tractable. To capture such
a dependence, channel states are often modelled as Markov processes. One such
very simple process is the so-called Gilbert-Elliot channel (GE), where there are
two possible states, 0 (“bad”) and 1 (“good”), and transitions between states oc-
cur in a Markovian manner. The application of the GE model in channel selection
and specifically opportunistic spectrum access is motivated by its ability to capture
bursty traffic of primary users [7]. Due to its simplicity it has been very popular in
modelling channel selection problems; refer to the literature review in Sect. 18.5.

Another class of models, which has only recently come to attention in the con-
text of wireless channel selection [4, 20], are Gaussian autoregressive processes of
order 1 (which we denote by AR). Here, the channel state is a continuous random
variable following a normal distribution, and its evolution is determined by a sim-
ple linear recursion perturbed by Gaussian noise. It has been found that Gaussian
autoregressions model the logarithmic signal-to-noise ratio of a channel reasonably
well; for details see [1].

The virtue of both the GE and the AR model is that they are quite tractable, yet
allow to capture the exploration–exploitation trade-off that the controller faces. The
models are simple in the sense that the belief which the controller maintains about
the state of the channel is neatly summarized by sufficient statistics. In the GE case,
this sufficient statistic is given by the conditional probability of being in the good
state, given the information that is available to the controller at the time. In the AR
case, it is sufficient to keep track of the conditional mean and variance of the state,
which quantify the expected gain from exploitation and the need for exploration,
respectively.

An optimal policy for the channel selection problem needs to balance this
exploration–exploitation trade-off. While such a policy could in principle be com-
puted by dynamic programming, this is typically computationally infeasible in prac-
tice [33]. However, recognizing that the problem is essentially a Restless Multi-
Armed Bandit (RMAB) problem, we may apply techniques from RMAB theory to
find a (near-)optimal solution: the well-known Whittle index [41] (a generalization
of the celebrated Gittins index [8, 10]).

Our main focus in this chapter is on the RMAB formulation of the problem.
We call this special type of RMAB the Reward-Observing Restless Multi-Armed

466 J. Kuhn and Y. Nazarathy

Bandit (RORMAB) problem. While the chapter does not contain new results, it is
unique in that it provides a unified treatment of both the GE and the AR approaches
for channel models, and considers also the channel selection problem in the mixed
case where some of the channels are modelled as GE while the others are AR. This
is of interest in networks where some but not all of the channels may be subject to
user interference.

The remainder of this chapter is structured as follows. In Sect. 18.2 we formulate
the RORMAB problem, and present the GE and AR models in a unified manner.
In Sect. 18.3 we motivate the use of index policies and in particular the Whittle
index. The presentation can be used as a stand-alone brief account of RMAB prob-
lems. In Sect. 18.4 we show how to use channel models to evaluate the Whittle index
numerically, and use it as a solution strategy for an example channel selection prob-
lem. In the latter section we also provide a number of performance comparisons.
Section 18.5 contains a literature survey, and points out some open problems.

18.2 Reward-Observing Restless Multi-Armed Bandits

In this section we formulate the RORMAB problem within the context of wireless
channel selection. This type of problem is a special case of a Partially Observable
Markov Decision Process (POMDP) as considered in [36]. An MDP is partially
observable if the decision maker does not know the current state of the system with
certainty. In our setting, where we consider a network of d channels, the partially
observable state of the system can be represented as d-dimensional, and corresponds
to the joint state information of the individual channels.

We consider channels X1(t), . . . ,Xd(t), operating as independent Markov pro-
cesses in discrete time t ∈ N0. We assume that the models and their parameters are
known but do not have to be the same for each channel. At every time instance,
the decision maker chooses a subset a(t) of k channels, a(t)⊂ {1, . . . ,d}. For every
selected channel i ∈ a(t) a reward Ri

(
Xi(t)

)
is obtained and the value of Xi(t) is

observed, where each Ri(·) is assumed to be a known, deterministic function from
the underlying state space to R. The other channels i /∈ a(t) are not observed and do
not yield a reward.

In an ideal situation, at every decision time the controller would choose those
channels that yield the highest reward ∑i∈a(t) Ri

(
Xi(t)

)
. Unfortunately, this can-

not generally be achieved because channel states are stochastic and the values of
X1(t), . . . ,Xd(t) are not known at decision time t.

However, because the channel states are sequentially dependent due to the chan-
nel memory, the controller can use information about the previous state of a channel
to make predictions about the current state. The accuracy of the prediction depends
on the age of the information, i.e. the number of time steps ago that a channel was
last observed. This number is denoted by ηi(t) := min{τ ≥ 1 : i ∈ a(t− τ)}, so that
the last time channel i was chosen is given by t−ηi(t). The information available to
the transmitter at time t (prior to making its decision) can then be summarized and
represented by Y (t) :=

(
Y1(t), . . . ,Yd(t)

)
, where for i = 1, . . . ,d,

18.2 Reward-Observing Restless Multi-Armed Bandits 467

Yi(t) =
(
ηi(t),Xi

(
t−ηi(t)

))
.

Based on Yi(t), the controller’s belief about the state of channel i at time t is sum-
marized by Fi(x) := P

(
Xi(t) ≤ x | Yi(t)

)
, the conditional distribution of channel i

given the information collected up to that time. For the channel models we consider,
this probability distribution is characterised by scalar- or vector-valued sufficient
statistics. That is, for channel i there exists a parameter si(t) that fully specifies the
probability distribution of Xi(t) given the information Yi(t). In our first model (GE as
described below), Fi(·) is a Bernoulli distribution, so si(t) is the “success probabil-
ity”. In our second model (AR as described below), Fi(·) is a normal distribution,
hence, si(t) is a two-dimensional vector specifying the conditional mean and condi-
tional variance. Using the terminology common in literature on POMDP, we refer
to si(t) as the belief state of channel i at time t; indeed si(t) represents our belief
concerning the state of the channel.

In summary, as time evolves from t to t + 1, given the current belief state s :=
(s1, . . . ,sd) and a channel selection policy π , the following chain of actions takes
place:

s a

∑i∈a Ri(Xi)

p

observe state,

collect reward
update belief

Objective. Our aim is to find a policy π so as to maximize the accumulated rewards
over an infinite time horizon as evaluated by the average expected reward criterion

Gπ(s) := liminf
T→∞

1
T
Eπ

s

[
T−1

∑
t=0

∑
i∈a(t)

Ri(Xi(t)
)
]

, (18.1)

where the subscript indicates conditioning on Xi(0) being distributed with parame-
ter si. Note that other reward criteria have been considered, including finite horizon
problems and/or discounted rewards/costs [34]. In this chapter we focus on the av-
erage reward criterion (18.1) in order not to overload the exposition.

It can be proven formally [5, 36] that a POMDP with partially observable states
Xi(t) and rewards Ri

(
Xi(t)

)
is equivalent to a fully observable MDP with states

si(t) and rewards ri
(
si(t)

)
:= Esi(t)

[
Ri
(
Xi(t)

)]
in the sense that the best throughput

that can be achieved is the same for both, and it is achieved by the same (optimal)
policy. This justifies that we consider the MDP with states si(t) in the remainder of
this chapter.

468 J. Kuhn and Y. Nazarathy

Belief State Evolution. For RORMAB, the decisions determined by a policy π
affect the updating of the belief state based on the observation update mapping
Oi(·) and the belief propagation operator Ti(·) as follows:

si(t +1) =

{
Oi
(
Xi(t)

)
, if i ∈ a(t),

Ti
(
si(t)

)
, if i /∈ a(t).

(18.2)

The observation update mappingOi(·) determines how the belief state of channel
i is updated when that channel is selected for transmission. In this case we observe
Xi(t), and hence its realization can be used by the observation update rule when
implementing the controller. Further, for analytical, modelling and simulation pur-
poses, when i∈ a(t), the distribution of Xi(t) is determined by the known value si(t),
so Xi(t) can be replaced by a generic random variable coming from this distribution.

The belief propagation operator Ti(·) defines the update of the belief state of
a channel when it is not selected for transmission. Because in this case no new
observation is obtained, the update is deterministic.

Since a channel may remain unobserved for several consecutive time slots, it is
useful to also consider T k

i (·) (the k-step operator obtained by applying Ti(·) k times)
as well as attracting fixed points of the operator Ti(·). As we describe below, in both
the GE and the AR model, the k-step operator has an explicit form and converges to
a unique attracting fixed point; this is useful for understanding the dynamics of the
model.

We now specify the observation update and belief propagation operations in the
context of each of the two channel models.

Gilbert-Elliot (GE) Channels. In this case Xi(t) is a two state Markov chain on
the state space {0,1}, where 0 represents a “bad” state and 1 is a “good” state of the
channel. The transition matrix can be parametrized as

Pi =

[
p00

i p01
i

p10
i p11

i

]
=

[
1− γiρi γiρi

γiρi 1− γiρi

]
,

where we denote x := 1−x. One standard parametrization of this Markov chain uses
transition probabilities p01

i , p10
i ∈ [0,1] (and sets p00

i = p01
i , p11

i = p10
i). Alternatively

we may specify the stationary probability of being in state 1, denoted by γi ∈ [0,1],
together with the second eigenvalue of Pi, denoted by ρi ∈

[
1−min(γ−1

i , γi
−1), 1

]
.

Then ρi quantifies the time-dependence of the chain. If ρi = 0, the chain is i.i.d.,
otherwise there is memory. Specifically, when ρi > 0 there is positive correlation
between successive channel states and when ρi < 0 that correlation is negative. The
relationship between these parametrisations is given by γi = p01

i /(p01
i + p10

i), and
ρi = 1− p01

i − p10
i . The parametrization with transition probabilities p�ki ∈ [0,1] is

standard. As opposed to that, our alternative parametrization in terms of γi and ρi

has not been used much in the literature. Nevertheless, we find it captures the be-
haviour of the model in a useful manner, especially when carrying out numerical
comparisons.

18.2 Reward-Observing Restless Multi-Armed Bandits 469

As the Bernoulli distribution is fully specified by the success probability, it
suffices to keep track of this parameter. That is, we have

si(t) = ωi(t) := P
(
Xi(t) = 1 |Yi(t)

)
,

and hence the belief state space of channel i, denoted by Si, is given by the interval
[0,1]. Now the observation update operation is defined by:

Oi(x) =

{
p01

i , if x = 0 ,

p11
i , if x = 1 .

That is, if the observed channel was “bad” (x= 0), then the chance of a good channel
is given by the entry p01

i , and otherwise (x = 1) by p11
i . The belief propagation

operation is
Ti(ω) = ω p11

i +ω p01
i = ρiω+ γiρi .

This follows by evaluating the probability of {Xi(t + 1) = 1} based on ωi(t) and
the probability transition matrix Pi. It is a standard exercise for two state Markov
chains (recurrence relations) to show that the k-step transition probability, and thus
the k-step belief propagation operator, takes the form

T k
i (ω) = γi +ρk

i (ω− γi).

Note that γi is a fixed point of this operator, and the sequence T k
i (ω) converges to

this fixed point. Further note that if ρi > 0, this sequence is monotonic whereas if
ρi < 0, it oscillates about γi as it converges to it. The case of ρi = 0 is not of interest
in terms of decision making because in that case there is no channel memory.

Gaussian Autoregressive (AR) Channels. In this case the channel states follow
an AR process of order 1, that is,

Xi(t) = ϕi Xi(t−1)+ εi(t) ,

with
{
εi(t) : t ∈N0

}
denoting an i.i.d. sequence ofN

(
0,σ2

i

)
random variables. We

assume |ϕi| < 1, in which case the processes are stable in the sense that as time
evolves they converge to a stationary version. Note that if ϕi ∈ (0,1), the states
are positively correlated over time; for ϕi ∈ (−1,0) the correlation is negative. The
case ϕi = 0 may be neglected as it corresponds to observations being independent.
Linear combinations of Gaussian random variables are still Gaussian, and hence,
their conditional distribution at time t is fully described by the conditional mean
μi(t) and the conditional variance νi(t). That is, the sufficient statistic (vector) for
the state of channel i is:

si(t) =
(
μi(t), νi(t)

)
.

In this AR case, the observation update operation is:

Oi(x) =
(
ϕi x, σ2

i

)
.

470 J. Kuhn and Y. Nazarathy

This is due to the fact that an observation of x at time t implies a predicted expected
value of ϕi x at time t +1 with variance σ2

i . In contrast, the belief propagation oper-
ation is given by

Ti(μi, νi) =
(
ϕi μi, ϕ2

i νi +σ2
i

)
. (18.3)

It is easy to show by recursion of the mean and the variance that the k-step belief
propagation is:

T k
i (μi, νi) =

(
ϕk

i μi, ϕ2k
i νi +

1−ϕ2k
i

1−ϕ2
i

σ2
i

)
. (18.4)

The belief state space in this case is Si = R× [νmin
i ,νmax

i) where νmin
i = σ2

i and
νmax

i = σ2
i /(1−ϕ2

i). The attracting fixed point of Ti(·) is the mean-variance pair
(0, νmax

i). It is further interesting to note that the second coordinate of the belief
state can only attain values in a countable subset of [νmin

i ,νmax
i). This is because

when the channel is selected, the conditional variance decreases to the value νmin
i ,

and thus, νi in (18.4) is always proportional to σ2
i , where the factor is given by a

geometric series in ϕ2
i . Observe further that, since νi < νmax

i and because |ϕi|< 1,
it always holds that the variance increases when updated with Ti(·), that is, the de-
cision maker’s uncertainty regarding the state of the channel indeed grows as long
as no new observation is obtained.

Mixed Model Example. Having specified the GE and AR channel models, we
now consider a mixed model example, which is also used for numerical illustration
in Sect. 18.4. Research in this field to date seems to have focussed on problems with
channels of the same type (mostly GE, some AR); it is therefore interesting to inves-
tigate a mixed channel model example, where a proportion q ∈ [0,1] of the channels
is GE and the others are AR. This can occur in examples where the dominating phe-
nomena of some of the channels is user interference (GE channels), while for other
channels the key feature is slow-fading behaviour (AR channels).

Our model parameters are αi,γi for i = 1, . . . ,qd (GE channels) and ϕ j,σ2
j for

j = qd +1, . . . ,d (AR channels); we assume that qd is an integer.
For the purpose of exposition we consider the following stylised case of reward

functions:

Ri(xi) =
xi− γi√
γi (1− γi)

, and R j(x j) =

√
1−ϕ2

j

σ j
x j , (18.5)

where xi is a value observed in GE channel i and x j is the value observed in AR
channel j. We specifically choose these functions so that the steady state values of
rewards from both channels have zero-mean and unit-variance, hence making the
channels equivalent in these terms. That is, in the case where the controller does not
have additional state information, the controller obtains the same mean and variance
on any channel chosen.

18.3 Index Policies and the Whittle Index 471

The state space of the MDP with (joint belief) states s = (s1, . . . ,sd), with scalars
si, i = 1, . . . ,qd, and 2-dimensional vectors s j, j = qd +1, . . . ,d, is given by:

S := [0,1]qd×
d

∏
j=qd+1

R× [νmin
j ,νmax

j).

An optimal policy π for such an MDP is usually not available in closed form. It can
then be computed approximately with the aid of dynamic programming algorithms,
on a discretized and truncated state space. This is feasible with sufficient accuracy
only if d is very small (and indeed this is carried out as part of the numerical ex-
amples provided in Sect. 18.4 for d = 2). With more channels, the computational
task quickly becomes intractable. Therefore, we resort to a sensible index heuristic
(the Whittle index), which we present in the next section.

18.3 Index Policies and the Whittle Index

In this section we explain the idea behind the use of index policies and specifically
the Whittle index, a generalization of the well-studied Gittins index [8, 41]. Whittle
proposed this type of index as a heuristic solution to RMAB problems. We first
describe a general form of RMAB problem so as to put our specific RORMAB
problem in context.

Consider state processes s1(t), . . . ,sd(t) subject to an action a(t) ⊂ {1, . . . ,d}
which selects k of the d processes at each time. In the (more general) context of
RMAB, we refer to each of these processes as an arm of a bandit. Based on the
control decisions captured in the control set a(·), each of the processes evolves either
according to an active mapping Ai(·) if i ∈ a(t), or according to a passive mapping
Pi(·) otherwise. This can be represented as follows:

si(t +1) =

{
Ai
(
si(t),Ui(t)

)
, if i ∈ a(t),

Pi
(
si(t),Ui(t)

)
, if i /∈ a(t).

(18.6)

Here, {Ui(t), i = 1, . . . ,d} are independent i.i.d. (driving) sequences of uniform
(0,1) random variables. An alternative representation is to use Markovian transi-
tion kernels, one for the active operation and one for the passive operation.

Remark: Comparing (18.6) and (18.2) it is evident that our RORMAB channel
selection problem is a special case of the RMAB problem. Channels and belief
states of the RORMAB correspond to arms and states of the RMAB, respectively.
In the RORMAB, the active mapping Ai(s,u) is replaced by Oi

(
F−1(u ; s)

)
where

F−1(· ; s) is the inverse probability transform generating a random value of the state,
distributed with parameter(s) s; and the passive mapping Pi(s,u) does not depend
on the random component and is replaced by Ti(s). In the remainder of this section

472 J. Kuhn and Y. Nazarathy

we depart from the RORMAB context and present a brief exposition of RMAB and
the Whittle index.

The RMAB problem arose as a generalisation of the Multi-Armed Bandit (MAB)
problem. For the MAB it is assumed that Pi(s,u) = s; that is, unselected arms do not
evolve. This problem is known to be solved optimally in great generality by the cel-
ebrated Gittins index [8]. Whittle’s RMAB generalization allows for “restless” state
processes, where arms keep evolving also while they are not used for transmission
(although not necessarily according to the same transition kernel). This modelling
framework is more realistic for the channel selection problem but also appears in a
variety of other application areas; see [41] for further examples. For RMAB prob-
lems, index policies are typically not optimal. However, the Whittle index, which we
present below, has in many cases proven to be asymptotically optimal with respect
to the average reward criterion as the number of arms grows large [38, 40].

We now first describe index policies in general before we turn to Whittle’s opti-
mization problem and the associated Whittle index policy.

Index Policies. Index policies are defined in terms of functions ι1, . . . , ιd such that
ιi maps the current state of arm i to a certain priority index, irrespective of the current
state of any other arm.

Definition 18.1. Let s := (s1, . . . ,sd) denote the vector of states in a system with d
arms. An index policy πι with stationary decision rule δι , activates those k arms that
correspond to the k largest indices,

δι
(
s
)
= argmax

a⊂{1,...,d}: |a|=k
∑
i∈a

ιi
(
si
)
.

Ties are broken arbitrarily, but in compliance with the requirement that k arms have
to be selected.

For an intuitive justification as to why index policies may work well in large sys-
tems, consider the following: Pick an arbitrary arm and suppose we want to decide
whether to select it as active or not (passive), based on the current state. Gener-
ally, we would make our decision dependent on the states of the remaining arms. In
this way, our decision strategy is highly influenced by the proportion of arms that
are in a certain state. In a large system with many arms, however, this proportion can
usually be expected to remain relatively stable over time. In this sense, the larger the
system, the less important it is for us to consider other arms; we always find our-
selves in roughly the same situation for decision making. In conclusion, in a system
with many arms, little is lost if we make decisions for each arm solely based on its
current state, disregarding the current state of any other arm in the system.

How to best define the index functions ιi? A simple example is the myopic in-
dex. In the context of RORMAB, where states are actually belief states, it is defined
by ιM

i (si) = Esi

[
Ri(Xi)

]
. Thus, under the myopic policy the transmitter greedily

chooses those channels that promise the largest immediate rewards (“exploitation”).

18.3 Index Policies and the Whittle Index 473

However, as one may expect, it turns out that such a policy is not necessarily op-
timal (see our numerical examples in Sect. 18.4, as well as the literature survey in
Sect. 18.5). It may be favourable to give some priority to “exploring” other channels
in order to decrease the transmitter’s uncertainty with respect to their current state.

Moving back to the more general RMAB, this motivates us to consider the more
sophisticated Whittle index, which takes the possible need for considering future
states (or “exploration” in the case of RORMAB) into account. To derive his heuris-
tic, Whittle relaxed the constraint that exactly k arms have to be selected at each time
point, and replaced it by the requirement that k arms are selected on average. Since
the latter constraint is weaker, the optimal throughput (value/gain of the MDP) un-
der this constraint is an upper bound for the optimal throughput that can be achieved
in the original problem. We shall see that this relaxation allows to formulate the de-
cision making problem as a Lagrange optimization problem, from which Whittle
obtained a rule for determining ιi

(
si
)
.

Whittle’s Optimization Problem. For ease of exposition we consider an MDP
with a finite state space S = S1× ·· ·× Sd . We further remain in the setting where
arms that are not selected do not yield a reward (this assumption is easily generalized
so that the Whittle index is applicable much more broadly [41]). Under suitable
regularity conditions, the optimal long-run average throughput rate is independent
of the initial state of the system (see e.g. [5]); in this section we assume that we are
in such a setting.

Recall the definition of the average reward criterion, Eq. (18.1). For a time hori-
zon T (T → ∞) we sum up the rewards that are obtained from the selected arms
at each time point. Equivalently, we could group selected arms according to their
states, and keep track of how many arms were selected while being in a specific
state, over the whole time horizon. That is, rather than considering each time step t
separately and adding up rewards as obtained at each time step, we can consider
how many arms were in a certain state when selected, and multiply this proportion
with the reward that is obtained from an arm in that state. If we do so for all states,
then the total is equivalent to the value of the average reward as T → ∞.

This is the viewpoint we are taking in this section; it is inspired by the exposition
in [27]. Define pi(s) as the expected long-run fraction of time that arm i is selected
when it currently is in state s ∈ Si; that is,

pi(s) := lim
T→∞

1
T
Eπ

[
T

∑
t=0

1
{

i ∈ a(t), si(t) = s
}
]

.

Subject to Whittle’s relaxation, we can then formulate the optimization problem as
the Linear Programming (LP) problem:

GW = max
p

d

∑
i=1

∑
s∈Si

ri(s) pi(s), subject to
d

∑
i=1

∑
s∈Si

pi(s) = k , (18.7)

474 J. Kuhn and Y. Nazarathy

where ri(s) denotes the reward that is obtained from selecting arm i when its state is s
(as before ri(·) is a known, deterministic function). Formulating this as an equivalent
Lagrangian optimization problem we obtain:

L(λ) = max
p

d

∑
i=1

∑
s∈Si

ri(s) pi(s)−λ

(
d

∑
i=1

∑
s∈Si

pi(s) − k

)

= max
p

d

∑
i=1

∑
s∈Si

(
ri(s)−λ

)
pi(s)+λk

=
d

∑
i=1
Li(λ)+λk ,

(18.8)

with
Li(λ) = max

pi
∑
s∈Si

(
ri(s)−λ

)
pi(s) . (18.9)

Since in (18.8) there is no longer a common constraint for the arm, each arm can be
optimized separately through (18.9). By strong LP duality we know that there exists
a Lagrange multiplier λ ∗ that yields L(λ ∗) = GW . LP complementary slackness en-
sures that (assuming λ ∗ �= 0) any optimal solution to (18.8) must satisfy the relaxed
constraint, and is therefore also optimal for Whittle’s relaxed problem (18.7). It was
observed by Whittle [41] that we can interpret the Lagrange multiplier as a cost for
selecting an arm (or equivalently, as a subsidy for not selecting an arm). That is,
imposing a cost of λ ∗ on the selection of an arm causes the controller to select k
arms on average under a policy that optimises GW .

Indexability and the Whittle Index. In accordance with [41], we make the fol-
lowing reasonable regularity assumption.

Assumption: Arm i is indexable, that is, the set of states for which it is optimal to
select arm i decreases monotonically from Si to /0 as the cost λ increases from −∞
to ∞. This property holds for every arm in the system.

While this assumption is intuitively appealing, it turns out that it does not gen-
erally hold [38, 41], and proving its validity can be surprisingly difficult [8]. In the
context of RORMAB, it has been verified for the GE model as considered in [22],
and numerical evidence suggests that it also holds for the AR model [20]; the latter,
however, is still to be proven.

Indexability implies that for each arm i there exists a function of the current state,
λi(s), such that it is optimal to select the arm whenever λi(s) > λ and to leave it
passive otherwise (the decision maker is indifferent when λ = λi(s)). In this sense,
λi(s) measures the “value” of arm i when it is in state s. Furthermore, applying
this policy to all arms in the case where λ = λ ∗ (that is, selecting arm i whenever
λi(s)> λ ∗) results in a policy that is optimal for Whittle’s relaxed problem (18.7).1

This motivates choosing the index function ιi(·) as ιW
i (s) := λi(s) (as was proposed

in [41]).

1 When λi(s) = λ ∗, one needs to decide for the action to be taken in state s in an appropriately
randomized fashion that ensures that the relaxed constraint is satisfied [40, 41].

18.3 Index Policies and the Whittle Index 475

How do we find λi(·)? Recall that the decision maker is indifferent when
λ = λi(s), and that we are interested in the case where the cost λ is chosen to be
the optimal cost λ ∗ that causes the decision maker to select k arms on average. Fur-
thermore, we saw that the Lagrangian (18.8) can be solved by considering arms one
by one (in accordance with the intuition described at the beginning of this section,
where it is argued that not much is lost by decoupling arms provided the system
is large enough). In fact, (18.9) is the Lagrangian corresponding to a one-arm sub-
problem in which there is only a single arm which can be selected or not, and where
selecting the arm yields the state-dependent reward as well as an associated cost λ .
Now the optimal λi(s) is the one that makes us indifferent between selecting or not
selecting the arm when it is in state s. In summary, we define the Whittle index as
follows (cf. [41]).

Definition 18.2. The Whittle index is the largest cost λ in (18.9) such that it is still
optimal to select the arm in the one-arm sub-problem.

Intuitively, the Whittle index can perhaps best be thought of as an opportunity
cost, to be paid for loosing the opportunity to select one of the other arms in the con-
strained system with multiple arms. Naturally, we then prioritize arms with higher
opportunity cost.

Computing the Whittle Index. As stated in Definition 18.2, the Whittle index is
derived from the optimal policy for the one-arm sub-problem. Thus, the compu-
tational complexity of the Whittle index increases only linearly with the number
of arms: we need the optimal policy for at most d non-identical single-arm sub-
problems. In contrast, the complexity of computing the optimal policy for the full
system increases exponentially (the latter problem is in fact PSPACE hard [33]).

It is well-known [14, 34] that in great generality the optimal average reward G is
constant (independent of the initial state), and satisfies Bellman’s optimality equa-
tion. For the one-arm sub-problem associated with arm i this optimality equation
reads as,

G+H(s) = max

{
ri(s)−λ +E

[
H
(
Ai(s,U)

)]
, E

[
H
(
Pi(s,U)

)]
}
, (18.10)

with s ∈ Si and U a uniform (0,1) random variable. Here, ri(s)−λ is the immediate
reward obtained from deciding to use the arm, corrected by the opportunity cost λ .
The bias function H accounts for the transient effect caused by starting at initial
state s rather than at equilibrium.

The optimal policy for this one-arm sub-problem is then to choose the action that
maximizes the right-hand side of (18.10). It can be found from dynamic program-
ming algorithms such as (relative) value or policy iteration. Then the Whittle index
for state s can be effectively computed by solving (18.10) for an increasing sequence
of λ and finding the maximal λ (namely λi(s)) for which selecting the arm is still
optimal.

476 J. Kuhn and Y. Nazarathy

Note that for the RORMAB, the one armed subsidy problem (18.10) becomes:

G+H(s) = max

{
Es
[
Ri(X)

]
−λ +Es

[
H
(
O(X)

)]
, H

(
T (s)

)
}
. (18.11)

As before, an observation is obtained which is the realization of a random vari-
able X with probability distribution determined by s (as indicated by the subscript).
If the arm is not used, then no reward is obtained and the belief is propagated using
the operator T . We solve this problem numerically for GE and AR arms in the next
section.

18.4 Numerical Illustration and Evaluation

We now return to RORMAB and compare the performance of the Whittle index
policy to that of the myopic policy and, for small d, to the optimal policy. To evaluate
the Whittle indices, we usually need the optimal policy associated with Whittle’s
one-armed problem with subsidy. We obtain the latter from relative value iteration
(on a discretized state space) using the optimality equation (18.11). This can be
written more explicitly using the reward functions from (18.5) as

G+H(ω) = max

{
Ri(ω)−λ +ω H

(
p11

i)+ω H(p01
i) , H

(
ω p11

i +ω p01
i

)
}

(18.12)

when the channel is GE (so that s = ω , and ri(s) = Ri(ω) since Ri(·) as defined in
(18.5) is affine), and

G+H(μ , ν) = max

{
R j(μ)−λ +

∫ ∞

−∞
H(ϕ y, σ2)φμ ,ν(y)dy, H

(
ϕμ ,ϕ2ν+σ2)

}

(18.13)

when the channel is AR (in which case s = (μ ,ν), and ri(s) = Ri(μ) since Ri(·) is
linear). Here φμ ,ν denotes the normal density with mean μ and variance ν . Note that
in the case of GE channels, the Whittle indices are in fact available in closed form,
[22]. Still, for the purposes of exposition, we carry out relative value iteration in this
section numerically.

Figure 18.2 shows the optimal switching curve for a small mixed system with
one AR and one GE channel. To the left of the curve, where ω is large in compar-
ison to μ , the optimal policy is to select the GE channel. To the right of the curve
selecting the AR channel is optimal. The curve shifts with the age of the AR chan-
nel: the more time has passed since the AR channel has last been observed, the more
inclined the transmitter should be to select that channel in order to update the avail-
able information regarding its state. In other words, it is indeed optimal to give some
priority to exploration if AR channels are present in the system. Note, however, that

18.4 Numerical Illustration and Evaluation 477

for “older” channels this effect is less pronounced because in that case the resulting
change in the conditional variance ν is smaller (recall the belief propagation of ν
defined by (18.3)).

−8 −6 −4 −2 0 2
0

0.2

0.4

0.6

0.8

1

μ

ω

Age=1
Age=2
Age=3

Fig. 18.2: Optimal switching curves for a system with d = 2 channels: an AR channel with
ϕ = 0.8 and σ = 2, and a GE channel with ρ = 0.5 and γ = 0.8. This figure shows the switching
curves on the ω,μ plane, one curve per age η ∈ {1,2,3}

Figure 18.3 shows a comparison of the rewards that are obtained per channel
on average under different policies. Here, k = d/2 channels are selected at a time
in a system with d channels, where half of the channels are GE and the other half
is AR. All of the AR channels are with ϕ = 0.8 and σ = 2 (as in Fig. 18.6). The GE
channels on the other hand are heterogeneous, with γ = 0.8 and ρi ∈ [0.2,0.8] evenly
spaced such that 0.8 = ρ1 > · · ·> ρd/2 = 0.2. Depicted are the average rewards per
arm obtained under the Whittle and the myopic index policy, and, as an upper bound,
we also computed the average rewards that could be obtained in a fully observable
system under the myopic policy. Due to the high computational complexity, the
optimal policy is only evaluated for d = 2.

All policies seem to approach a certain steady performance in terms of average
reward per arm rather quickly as the number of channels grows large while the ratio
k/d remains fixed. The achieved average reward level demonstrates the significant
improvement in throughput that can be achieved by utilising the channel memory:
the average reward is increased by more than 30% compared to the zero average
reward that is obtained when channel memory is not used.

Figure 18.3 also confirms that some degree of exploration is favourable: In this
example the Whittle index policy improves the average reward per arm by about 5%
with respect to the myopic policy. This is in contrast to scenarios where all channels
are GE and stochastically identical. In the latter case it can be shown that the Whittle
and the myopic index policy are equivalent. We give further details in (i) below.

478 J. Kuhn and Y. Nazarathy

2 4 6 8 10
0

5·10−2

0.1
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

d

A
ve

ra
ge

 r
ew

ar
d

pe
r

ar
m

Omniscient
Whittle
Myopic

Fig. 18.3: Comparison of Whittle and myopic index policies for increasing number of channels
d when half of the channels are GE and the other half is AR. For d = 2, the average reward
obtained under the optimal policy is indicated by a black dot. We compare to the average reward
that could be obtained if both arms were observed at each time point (that is in the fully observable
or “omniscient” setting)

From a practical perspective an increase of 5% may appear small, however, it can
be crucial in systems that are nearing fundamental limits. For example, for wireless
devices with limited battery life such an increase may effectively correspond to
a decrease of a few percent in power consumption, which may be significant in
increasing the operational time of the device.

Next, we investigate the Whittle indices ιW (ω) obtained for GE channels with
various parameter combinations (Fig. 18.4). We observe the following properties
of ιW (ω):

1. The index function ιW (ω) increases monotonically; the larger the conditional
probability that the channel is in a good state, the more priority should be given
to that channel. This implies that the Whittle index is equivalent to the myopic
policy in systems with identical channels, as we mentioned above.

2. ιW (ω) is affine within the ranges
[
0,min{p01, p11}

]
and

[
max{p01, p11},1

]
.

Further, it changes slope at γ .

These properties have been proven in [22] for GE channels with reward function
r(ω) given by the identity function.

We further note that the Whittle indices are overall smaller if γ is larger because
in this case the rewards are smaller (as R j defined by (18.5) is decreasing in γ).

In Fig. 18.5 we show the difference between the Whittle and the myopic in-
dex function. It can be seen that the index functions are basically identical on[
0,min{p01, p11}

]
and

[
max{p01, p11},1

]
: In these regions exploration is not es-

sential as it is rather certain that the state will evolve towards γ . Accordingly, we see
that ιW and ιM do differ around γ , and on a larger interval to the left of γ .

Figure 18.6 depicts the difference between Whittle and myopic indices as ob-
tained for an AR channel. The obtained indices increase with μ because the expected
immediate reward is larger. Note that for increasing age the Whittle indices increase

18.4 Numerical Illustration and Evaluation 479

ρ =0.5, γ =0.8, ρ =0.2, γ =0.8,

ρ =0.5, γ =0.5, ρ =0.2, γ =0.5

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

ω

W
hi

tt
le

in
de

x
ιW

(ω
)

Fig. 18.4: Whittle indices for GE channels
parametrized by α and γ

ρ =0.5, γ =0.8, ρ =0.2, γ =0.8,

ρ =0.5, γ =0.5, ρ =0.2, γ =0.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

w

ιW
(w

)-
ιM

(w
)

Fig. 18.5: Difference between Whittle and
myopic index function

relative to the myopic indices. Again this suggests that exploration pays off. Fur-
thermore, for high ages the difference between the Whittle and the myopic indices
is largest around zero, which corresponds to the unconditional mean reward of the
channel. Similarly to the GE case, this may be explained by noting that exploration
is more important if μ is close to the unconditional mean as it is less clear in which
direction the belief state will evolve. If μ is far away from the unconditional mean
on the other hand, then it is likely that the updated conditional mean will be closer
to the unconditional mean. However, when the age is close to zero, then due to the
positive correlation of the channel it is also important that μ was large just an in-
stance ago. Thus, while for small ages the Whittle indices are generally close to the
myopic indices, the largest difference can be seen for positive μ (however not too
far away from the unconditional mean of the channel).

0 5 10 15 20

−2

0

2

Age

m

0.2

0.4

Fig. 18.6: Contour plot of ιW (μ,ν)− ιM(μ) (the difference of Whittle and myopic indices), for
an AR channel with ϕ = 0.8, σ = 2

480 J. Kuhn and Y. Nazarathy

18.5 Literature Survey

There is a vast body of literature on MDP as well as topics related to (restless) multi-
armed bandits. Here, we focus on the RORMAB formulation of the basic channel
selection problem as formulated in this chapter, with GE or AR channels. Other
(approximate) solutions to this MDP problem have been put forward [15], but are
not considered here.

GE Channels. The Gilbert-Elliot model was proposed in [9] for the purpose of
modelling burst-noise telephone circuits. It was the first non-trivial channel model
with memory. Since the 1990s, the model and its generalizations have been used for
modelling flat-fading channels in wireless communication networks. Its application
in the context of Opportunistic Spectrum Access (OSA) is motivated by the bursty
traffic of primary users [17, 45]. For an account on the history of the GE model we
refer to [35].

Due to its simplicity, the GE model is mathematically tractable and has been
analysed extensively in the context of channel selection in wireless networks. We
survey a number of papers that model the problem as a RORMAB with GE channels.
Unless otherwise stated, channels are assumed to be independent and stochastically
identical.

One of the first papers in this context appears to be [19]. The paper is motivated
by the problem of allocating bandwidth of a shared wireless channel between a
base station and multiple homogeneous mobile users. Thus, from an engineering
perspective, the set-up slightly differs from the problem considered in this chapter;
the model and the mathematical analysis, however, apply directly to the channel
selection scenario (where simply “users” are replaced by “channels”).

In [19], the noisiness of the link for the users is modelled using the GE model.
At any point in time a user may either be connected to the base station or not. The
current state of a user is only observed when a packet is transmitted to that user.
Rewards are given by the number of successful transmissions. The analysis is with
respect to the discounted reward criterion over an infinite time horizon. The authors
show that the myopic policy is generally optimal for the case of d = 2 users. For the
case d > 2 and positively correlated channels it is proven that the myopic policy is
optimal if the discount factor is small enough (Condition (A) in [19]). Furthermore,
in the positively correlated scenario the myopic policy is seen to be equivalent to a
“persistent round robin” policy where the link is dedicated to each user in a cyclic
fashion according to their initial probability of being in a good state, and packets are
transmitted to the same user until a packet fails to be transmitted correctly.

Following this work, the GE channel model has been analysed extensively in
a surge of research on OSA, which goes back to [18]. The aim of this branch of
research is to find secondary user policies that efficiently exploit transmission op-
portunities created by the bursty usage patterns of licensed primary users in wireless
networks.

18.5 Literature Survey 481

One of the first to formulate the RORMAB with GE channels in the context
of OSA were Zhao et al. in 2005 [43]. The authors compare the transmission rate
achieved by the myopic policy to the optimal policy using numerical examples.

This work was the starting point of a sequence of papers analysing the perfor-
mance of the myopic policy. In [42], optimality is proven for the case of choosing
one out of two channels, with respect to expected total discounted rewards over
finite as well as infinite time horizon.

The scenarios in which the myopic policy is optimal are then generalized in a se-
quence of papers. Javidi et al. [16] consider the case of selecting 1 out of d channels
and prove optimality of the myopic policy under the discounted reward criterion for
positively correlated channels provided the discounted factor satisfies a certain in-
equality with respect to the transition probabilities. Under the additional ergodicity
criterion

|p11− p00|< 1, (18.14)

the myopic policy is further shown to be optimal under the average reward criterion
(cf. (18.1)). The work of [16] is extended in [21] to the case of selecting d− 1 out
of d channels.

In [44] for the case of choosing 1 out of d channels the result of [19] is confirmed
that the myopic policy is a persistent round robin scheme if channels are positively
correlated. It is further shown that if correlation is negative, then the myopic policy
is a round robin scheme, where the circular order is reversed in every time slot (and
as for the positively correlated case, the user switches to the next channel as soon
as the currently used channel signals has transitioned to the bad state). For the case
d = 2, the myopic policy is shown to be optimal in general, as had already been
established in [19]. Furthermore, it is shown that the performance of the myopic
policy is determined by the stationary distributions of a higher-order countable-state
Markov chain. The stationary distribution is known in closed form for the case d = 2.
For the case d > 2, lower and upper bounds are established.

For negatively correlated channels and the case of selecting 1 out of d channels,
the finite and infinite horizon discount-reward optimality of the myopic policy is
proven in [3], provided that either d ∈ {2,3} or the discount factor is less than
half. These results also hold under average rewards under the additional ergodicity
condition (18.14). For the finite-horizon discounted reward criterion, the results of
[3] are generalized in [2] to the case of selecting k channels.

In 2014, Liu et al. [24] provide a unifying framework of the optimality conditions
for the myopic policy that resulted from the OSA-motivated research of the channel
selection problem with GE channels. The problem formulation in [24] is more gen-
eral as it allows one to sense k out of d (identically distributed) channels but select
only l ≤ k of those channels for transmission based on the outcome of the sensing.
The authors provide a set of unifying sufficient conditions under which the myopic
policy is optimal. It is shown that the optimal policy is not generally myopic if l < k.
(This is intuitive because the user is allowed to explore channels without having to
use them.)

482 J. Kuhn and Y. Nazarathy

The Whittle index policy has also been studied both for the bandwidth allocation
problem that was put forward in [19], and also in the context of OSA. As opposed
to [19], a paper by Niño-Mora [28] handles the problem of bandwidth allocation
when users are heterogeneous. The author proves that the problem is indexable and
provides closed-form expressions for the index function.

For the basic RORMAB with GE channels, Liu and Zhao [22] prove that the
Whittle index and the myopic policy are equivalent for positively correlated iden-
tical channels, thus, yielding the optimality of the Whittle index in this case. In
[32], the indexability and closed-form expression for the Whittle index in the case
of discounted rewards are derived for a more general model where the achievable
transmission rate (the reward) for a channel in the bad state is, in general, non-zero
and any rate above this achievable rate leads to outage.

Apart from the index policies proposed in this line of research, algorithms for
approximating an optimal policy have also been investigated. See, for example,
[11, 13], where algorithms for the more general model with correlated channels
are proposed and investigated regarding their performance.

In the context of GE channels a number of generalizations of the basic model
considered in this chapter have been considered. For example, a paper by Niño-
Mora [29] allows for non-identical channels with sensing errors/measurement noise.
Imperfect sensing was also considered in [23, 39]. In [32] the authors consider a
problem where in both states, good and bad, transmission may fail with a certain
non-zero probability, and it is only observed whether transmission was successful
or not. Another recent paper with imperfect sensing is [26]. In this paper the focus is
on stability issues of queues associated with channel (server) selection in the context
of imperfect sensing.

The paper [25] deals with random delay of feedback arrivals. Correlated channels
were considered in [11–13]. Action-dependency of channel model parameters is
taken into account in [37]. A very substantial paper is [38], which considers an
RMAB in continuous time, and allows for non-identical channels, a time-dependent
number of channels, and multiple actions. In this paper, a more general class of
index policies is considered, which includes the Whittle index if the bandit problem
is indexable. Asymptotic optimality for this class is proven for systems with many
channels.

AR Channels. The AR channel model has only recently come to attention in the
context of channel selection, and consequently the mathematical analysis is still
at its starting point. The first to propose the application of this model for channel
selection were Avrachenkov et al. [4] in 2012. This is motivated by empirical studies
[1], showing that the AR model captures the signal-to-noise ratio (SNR) behaviour
of the channels reasonably well.

In [4], the authors compare the performance of the myopic and an ad-hoc ran-
domized policy to the optimal policy by means of numerical examples. It is con-
cluded that the myopic policy is “nearly optimal” when all channels are similarly
correlated, with respect to the long-run average reward criterion. In contrast, the

References 483

randomized policy appears to perform better when there is a significant difference
in the magnitude of the correlation of the channels.

Subsequently, the authors show how to model the problem when two transmit-
ters are present that can possibly interfere with each other. In this case the SNR is
replaced by the signal-plus-interference-to-noise-ratio (SINR) to model the states
of the channels. The scenario is formalized as a competitive MDP (also called a
stochastic game)—an MDP in which the instantaneous rewards for each player and
the transition probabilities among the states are controlled by the joint actions of
the players in each state. Then, similar to the single user case, a randomized and a
myopic policy are suggested (now based on the SINR).

A second paper that deals with channel selection with AR channels is [20]. This
paper investigates structural properties of the Whittle index with respect to expected
total discounted rewards. The monotonicity and convexity of the value function as-
sociated with the one-channel (arm) sub-problem is proven. Furthermore, numerical
evidence for the indexability of the one-channel problem is provided, and the Whit-
tle index policy is shown to outperform the myopic policy in numerical examples.

Then, a parametric index is proposed that is as simple as the myopic index but
allows to give some priority to exploration, and therefore yields a better performance
than the latter. For this parametric index, recursive equations are put forward that
identify the asymptotic behaviour of the network in the setting with many channels.
In addition, a simple heuristic algorithm is proposed to evaluate the performance of
index policies; the latter is used to optimize the parametric index.

We also note that a related body of literature deals with the problem of optimal
sensing of Kalman filters. A key paper in this line of research is [31]. A related paper
is [30] as well as the recent [6] which appears to provide an indexability proof using
a new novel method. It is possible that ideas put forward in these papers dealing with
the Whittle index and simple Gaussian processes may be fruitful for the RORMAB
problem with AR channels. This avenue of research remains to be explored.

Acknowledgements YN is supported by Australian Research Council (ARC) grants DP130100156
and DE130100291. JK is supported by DP130100156. The authors are indebted to Aapeli Vuori-
nen for his contribution to the numerical computations. We also thank the anonymous referee,
Michel Mandjes and Thomas Taimre for their comments.

References

1. R. Aguero, M. Garcia, L. Munoz, BEAR: A bursty error auto-regressive model for indoor
wireless environments, in 18th International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC) (IEEE, New York, 2007), pp. 1–5

2. S.H.A. Ahmad, M. Liu, Multi-channel opportunistic access: a case of restless bandits with
multiple plays, in 47th Annual Allerton Conference on Communication, Control, and Com-
puting (IEEE, New York, 2009), pp. 1361–1368

3. T.W. Archibald, D. Black, K.D. Glazebrook, Indexability and index heuristics for a simple
class of inventory routing problems. Oper. Res. 57(2), 314–326 (2009)

484 J. Kuhn and Y. Nazarathy

4. K. Avrachenkov, L. Cottatellucci, L. Maggi, Slow fading channel selection: a restless multi-
armed bandit formulation, in International Symposium on Wireless Communication Systems
(ISWCS) (IEEE, New York, 2012), pp. 1083–1087

5. D.P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1 (Athena Scientific Bel-
mont, 1995)

6. C.R. Dance, T. Silander, When are Kalman-filter restless bandits indexable? arXiv preprint
arXiv:1509.04541, 2015

7. D. Duchamp, N. Reynolds, Measured performance of a wireless LAN, in 17th Conference on
Local Computer Networks (IEEE Press, New York, 1992), pp. 494–499

8. J. Gittins, K. Glazebrook, R. Weber, Multi-Armed Bandit Allocation Indices, 2 edn. (Wiley
Online Library, Hoboken, 2011)

9. E.N. Gilbert, Capacity of a burst-noise channel. Bell Syst. Tech. J. 39(5), 1253–1265 (1960)
10. J.C. Gittins, Bandit Processes and Dynamic Allocations. J. R. Stat. Soc. Ser. B Methodol.

41(2), 148–177 (1979)
11. S. Guha, K. Munagala, Approximation algorithms for partial-information based stochastic

control with Markovian rewards, in 48th Annual Symposium on Foundations of Computer
Science (FOCS’07) (IEEE, New York, 2007), pp. 483–493

12. S. Guha, K. Munagala, P. Shi, Approximation algorithms for restless bandit problems, in
ACM-SIAM Symposium on Discrete Algorithms (SODA) (2009)

13. S. Guha, K. Munagala, P. Shi, Approximation algorithms for restless bandit problems. J.
ACM 58(1), 3 (2010)

14. O. Hernández-Lerma, J.B. Lasserre, Discrete-Time Markov Control Processes: Basic Opti-
mality Criteria, vol. 30 (Springer, New York, 2012)

15. A. Itai, Z. Rosberg, A golden ratio control policy for a multiple-access channel. IEEE Trans.
Autom. Control 29(8), 712–718 (1984)

16. T. Javidi, B. Krishnamachari, Q. Zhao, M. Liu, Optimality of myopic sensing in multi-channel
opportunistic access, in International Conference on Communications (ICC’08) (IEEE, New
York, 2008), pp. 2107–2112

17. L.A. Johnston, V. Krishnamurthy, Opportunistic file transfer over a fading channel: a POMDP
search theory formulation with optimal threshold policies. IEEE Trans. Wirel. Commun. 5(2),
394–405 (2006)

18. R. Knopp, P.A. Humblet, Information capacity and power control in single-cell multiuser
communications, in International Conference on Communications (ICC’95), vol. 1 (IEEE,
New York, 1995), pp. 331–335

19. G. Koole, Z. Liu, R. Righter, Optimal transmission policies for noisy channels. Oper. Res.
49(6), 892–899 (2001)

20. J. Kuhn, M. Mandjes, Y. Nazarathy, Exploration vs exploitation with partially observable
Gaussian autoregressive arms, in 8th International Conference on Performance Evaluation
Methodologies and Tools (Valuetools) (2014)

21. K. Liu, Q. Zhao, Channel probing for opportunistic access with multi-channel sensing, in
Asilomar Conference on Signals, Systems and Computers (IEEE, New York, 2008)

22. K. Liu, Q. Zhao, Indexability of restless bandit problems and optimality of Whittle index for
dynamic multichannel access. IEEE Trans. Inf. Theory 56(11), 5547–5567 (2010)

23. K. Liu, Q. Zhao, B. Krishnamachari, Dynamic multichannel access with imperfect channel
state detection. IEEE Trans. Signal Process. 58(5), 2795–2808 (2010)

24. Y. Liu, M. Liu, S.H.A. Ahmad, Sufficient conditions on the optimality of myopic sens-
ing in opportunistic channel access: a unifying framework. IEEE Trans. Inf. Theory 60(8),
4922–4940 (2014)

25. S. Murugesan, P. Schniter, N.B. Shroff, Multiuser scheduling in a Markov-modeled downlink
using randomly delayed arq feedback. IEEE Trans. Inf. Theory 58(2), 1025–1042 (2012)

26. Y. Nazarathy, T. Taimre, A. Asanjarani, J. Kuhn, B. Patch, A. Vuorinen, The challenge of
stabilizing control for queueing systems with unobservable server states, in 5th Australian
Control Conference (AUCC), Nov 2015, pp. 342–347

References 485

27. J. Niño-Mora, Dynamic priority allocation via restless bandit marginal productivity indices.
Top 15(2), 161–198 (2007)

28. J. Niño-Mora, An index policy for dynamic fading-channel allocation to heterogeneous mobile
users with partial observations, in Next Generation Internet Networks (NGI) (IEEE, New York,
2008), pp. 231–238 .

29. J. Niño-Mora, A restless bandit marginal productivity index for opportunistic spectrum access
with sensing errors, in Network Control and Optimization, ed. by R. Núñez-Queija, J. Resing.
Lecture Notes in Computer Science, vol. 5894 (Springer, Berlin, 2009), pp. 60–74

30. J. Niño-Mora, S.S. Villar, Multitarget tracking via restless bandit marginal productivity indices
and Kalman filter in discrete time, in Proceedings of the 48th IEEE Conference on Decision
and Control, 2009 Held Jointly with the 2009 28th Chinese Control Conference. CDC/CCC
2009 (IEEE, New York, 2009), pp. 2905–2910

31. J.L. Ny, E. Feron, M. Dahleh et al., Scheduling continuous-time Kalman filters. IEEE Trans.
Autom. Control 56(6), 1381–1394 (2011)

32. W. Ouyang, S. Murugesan, A. Eryilmaz, N. B. Shroff, Exploiting channel memory for joint
estimation and scheduling in downlink networks, in 30st Annual International Conference on
Computer Communications (INFOCOM) (IEEE, New York, 2011), pp. 3056–3064

33. C.H. Papadimitriou, J.N. Tsitsiklis, The complexity of optimal queuing network control.
Math. Oper. Res. 24(2), 293–305 (1999)

34. M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, vol.
414 (Wiley, New York, 2009)

35. P. Sadeghi, R.A. Kennedy, P.B. Rapajic, R. Shams, Finite-state Markov modeling of fading
channels – a survey of principles and applications. IEEE Signal Process. Mag. 25(5), 57–80
(2008)

36. R.D. Smallwood, E.J. Sondik, The optimal control of partially observable Markov processes
over a finite horizon. Oper. Res. 21(5), 1071–1088 (1973)

37. J.A. Taylor, J.L. Mathieu, Index policies for demand response. IEEE Trans. Power Syst. 29(3),
1287–1295 (2014)

38. I.M. Verloop, Asymptotically optimal priority policies for indexable and non-indexable rest-
less bandits. Ann. Probab. To appear. Retrieved 07/09/2015 from https://hal.archives-ouvertes.
fr/hal-00743781.

39. K. Wang, L. Chen, Q. Liu, K. Al Agha, On optimality of myopic sensing policy with imper-
fect sensing in multi-channel opportunistic access. IEEE Trans. Commun. 61(9), 3854–3862
(2013)

40. R. Weber, G. Weiss, On an index policy for restless bandits. J. Appl. Probab. 27(3), 637–648
(1990)

41. P. Whittle, Restless bandits: activity allocation in a changing world. J. Appl. Probab. 25A,
287–298 (1988). Special volume: A celebration of applied probability

42. Q. Zhao, B. Krishnamachari, Structure and optimality of myopic sensing for opportunistic
spectrum access, in International Conference on Communications (ICC’07) (IEEE, New York,
2007)

43. Q. Zhao, L. Tong, A. Swami, Decentralized cognitive mac for dynamic spectrum access,
in First International Symposium on New Frontiers in Dynamic Spectrum Access Networks
(DySPAN) (IEEE, New York, 2005)

44. Q. Zhao, B. Krishnamachari, K. Liu, On myopic sensing for multi-channel opportunistic
access: structure, optimality, and performance. IEEE Trans. Wirel. Commun. 7(12), 5431–
5440 (2008)

45. M. Zorzi, R.R. Rao, L.B. Milstein, Error statistics in data transmission over fading channels.
IEEE Trans. Commun. 46(11), 1468–1477 (1998)

https://hal.archives-ouvertes.fr/hal-00743781
https://hal.archives-ouvertes.fr/hal-00743781

Chapter 19
Flexible Staffing for Call Centers with
Non-stationary Arrival Rates

Alex Roubos, Sandjai Bhulai, and Ger Koole

Abstract We consider a multi-period staffing problem of a single-skill call center.
The call center is modeled as a multi-server queue in which the staffing levels can
be changed only at specific moments in time. The objective is to set the staffing
levels such that a service level constraint is met in the presence of time-varying
arrival rates. We develop a Markov decision model to obtain time-dependent staffing
levels for both the case where the arrival rate function is known as well as unknown.
The characteristics of the optimal policies associated to the two cases are illustrated
through a numerical study based on real-life data. We show that the optimal policies
provide a good balance between staffing costs and the penalty probability for not
meeting the service level.

Key words: Call centers, Markov decision processes, Staffing, Time-varying
arrival rates

19.1 Introduction

Call centers have become the central focus of many companies, as these centers stay
in direct contact with the firm’s customers and form an integral part of their cus-
tomer relationship management. Running a successful call center operation means
managing by the numbers. One of the most important numbers in call centers is the

A. Roubos (�)
CCmath, H.J.E. Wenckebachweg 48, 1096 AN Amsterdam, The Netherlands
e-mail: alex@ccmath.com

S. Bhulai • G. Koole
Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081a,
1081 HV Amsterdam, The Netherlands
e-mail: s.bhulai@vu.nl; ger.koole@vu.nl

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 19

487

mailto:alex@ccmath.com
mailto:s.bhulai@vu.nl
mailto:ger.koole@vu.nl

488 A. Roubos et al.

number of agents serving incoming calls at each moment of time. Since more than
two-thirds of the operating costs can be attributed to personnel, getting the right
number of agents in place is critical in terms of both the offered service and the
operating costs. This agent staffing problem is a complex problem in which many
issues have to be taken into account, e.g., demand forecasting, variability in the call
arrival patterns, quality of service, and flexibility of the workforce. We refer the
reader to the comprehensive surveys in [1, 12].

In this chapter, we consider the staffing problem in a single-skill call center
for a given working day. The inherent randomness in the call center, due to vari-
ability in the duration of the calls and fluctuations in the call arrival rates, makes
the staff problem complex. The randomness is the root cause of deviations of the
performance measures from the predicted values at the moment of planning, see,
e.g., [4, 16, 17, 19, 24, 31]. Traditionally, most call center literature assume known
and constant mean arrival rates, mainly for the purpose of tractability. However, in
addition to the usual uncertainty that is intrinsic to stochastic modeling, real call
center data shows that there is also uncertainty in the process parameters. Since
most performance indicators are sensitive to fluctuations in the parameters [18],
both types of uncertainty should be accounted for in any staffing algorithm.

A substantial body of the literature has focused on the probability distribution of
the arrival rates from a statistical perspective, see, e.g., [2, 4, 8, 9, 22, 26, 27, 29, 30].
These papers mostly deal with modeling the time-varying arrival process such that
the essential features of call center arrivals are captured, e.g., a variance larger than
the mean for the number of arrivals, a time-varying arrival intensity, and nonzero
correlation between arrival counts in different periods.

Staffing in the presence of time-varying arrival processes was analyzed first by
using the pointwise stationary approximation (PSA), see, e.g., [13, 15, 16], in which
it is assumed that the arrival rates are known, deterministic, and non-stationary.
However, the PSA does not explicitly consider non-stationary behavior that may
be induced by abrupt changes in the arrival rate, and it appears to perform less well
in these cases. Further numerical methods have been studied by Yoo [32], Ingolfs-
son et al. [18] and Feldman et al. [11]. The first two are based on methods that solve
the Chapman-Kolmogorov forward equations by using small, discrete intervals to
approximate the continuously varying parameter. The latter is based on an iterative
simulation-based staffing method to achieve time-stable performance.

The case of unknown non-stationary arrival rates has been studied by Jongbloed
and Koole [20], Steckley et al. [28], Harrison and Zeevi [17], Whitt [31], Robbins
[24] and Liao et al. [21]. The first paper mainly focuses on the characterization of the
uncertainty by providing bounds on the number of agents needed. The second paper
studies the impact of different performance measures under this uncertainty. The
next two papers focus on fluid approximations to determine the number of agents.
The next paper uses simulation to derive the number of agents, whereas the last
paper uses a robust programming formulation. Characteristic to these papers is that
they study the staffing problem under uncertainty using a fixed staffing approach.

19.1 Introduction 489

In contrast to these papers, in our problem there exists some flexibility to change
the number of agents at fixed moments of the working day and thus creates more
flexibility.

We model the arrival process as a non-stationary stochastic process with uncer-
tain rates. Moreover, as is common in call centers, the call center operates under a
service level that constrains the waiting time for incoming calls. The distinguishing
feature of our model is that the staffing levels can only be changed at specific mo-
ments of the day, but still have to respect the service level constraint. We assume
that there is a fixed number of employees with a permanent contract and a number
of flexible agents that can be changed throughout the day on specific moments. The
costs of using an agent differs between the fixed and flexible agents. The objective
is to find the optimal staffing level that minimizes the total call center operating cost
while meeting the service level constraint. We develop a Markov decision model
that determines the optimal agent staffing policies in case the arrival rate function
is both known and unknown. We conduct a numerical study in order to illustrate
the main characteristics of the optimal solutions corresponding to these approaches.
In the numerical illustration, we use real call center data and show how the opti-
mal policy balances the staffing costs and the penalty probability for not reaching
the service level. Furthermore, we show how the number of periods in which the
staffing level can be changed affects the staffing costs.

The paper that is closest to our model is [22]. In this paper intraday updates of the
call arrival rate are also allowed. The updates are based on the cumulative number
of actual arrivals and the cumulative number of expected arrivals. The ratio between
these numbers is used to adjust the forecast of the next intervals. Based on the up-
date, the new staffing levels in each period are updated using the stationary indepen-
dent period by period (SIPP) approach [14]. Moreover, the performance measure
used in the paper is the expected service level. In our work, we do not only look
at the expected service level, but at the whole distribution of the service level, and
incur a penalty when the service level at the end of the planning period is not above
a certain target. Hence, we need to address the effect of a change in the number of
agents on the service level at the next decision epoch. Clearly, the SIPP approach is
not sufficient to address this issue. Hence, we use a dynamic programming approach
to assess this impact. It is this aspect of the problem that distinguishes our model
from [22], but also from flexible staffing models in service facilities other than call
centers, e.g., [5–7, 10, 23].

The remainder of the chapter is structured as follows. In Sect. 19.2, we describe
the call center model under consideration and formulate the associated staffing prob-
lem. In Sect. 19.3 we formulate our staffing algorithm for the case of both known
and unknown arrival rate functions. In Sect. 19.4, we conduct a numerical study
to evaluate the alternative formulations. We illustrate the impact of the number of
moments at which the staffing level can be changed, and thus the benefits of flexi-
bility in the call center. The chapter ends in Sect. 19.5 with concluding remarks and
highlights some future research.

490 A. Roubos et al.

19.2 Problem Formulation

Consider a call center to which customers arrive according to a non-homogeneous
Poisson process with parameter λt for t ≥ 0. We assume that the call center has st

fixed permanent agents and ft flexible agents at each time t and only N workplaces
available so that st + ft ≤ N for all t ≥ 0. If upon arrival of a new customer at time
t no agent out of the st + ft agents is available, then the customer joins an infinite
buffer. In the other case, the customer is directly taken into service by an idle agent
and has an exponentially distributed service duration with parameter μt . Queued
customers are served in a first-come first-served order.

The objective of the call center manager is to meet a service level requirement by
varying the number of flexible agents over the day. More precisely, divide the length
of the day into m smaller intervals, each of length θ . We assume that the arrival
rate function λt is constant over each interval and unknown. Hence, we also take st

to be constant over each interval. Let SLi represent the realized service level over
interval i = 1, . . . ,m, given by the fraction of customers that has waited less than the
acceptable waiting time τ upon starting service within that interval. The requirement
of the call center is that SL, the service level over the whole day, is at least α , where
SL is computed by the average of the SLi’s weighted by the arrival counts in each
interval. The decision variable of the call center manager to achieve this requirement
is the variable ft that can only be changed at epochs determined at the start of certain
intervals, namely at the start of interval t ∈ T = {1,κ + 1,2κ + 1, . . . ,m−κ + 1},
where κ is a divisor of m. Hence, the variable ft is fixed for a longer period than
λt and st , and needs to take into account the variability inherent to these variables.
This is especially challenging since the arrival rate function is not known.

The problem as described above is common in call centers. It is not realistic
to assume that the number of flexible agents are changed continuously over time.
The assumption that λt is constant over small time intervals is also not unrealistic,
since this is usually the result of data estimation procedures that reliably approxi-
mate the true arrival rate function when the interval length is small. We assume that
the permanent agents have a cost c1 per unit of time for each agent, and that the
flexible agents cost c2 per unit of time for each agent, with c2 > c1. Note that for
any given staffing policy, one cannot guarantee that SL ≥ α is always met at the
end of the day, due to randomness. When the service level at the end of the day is
not met, we impose that the call center manager incurs a penalty P. We model this
service level constraint as a soft constraint. With these additional cost definitions the
problem under study becomes

min
m

∑
i=1

(c1siθ + c2 fiθ)+P1{SL<α}

19.3 Solution Approach 491

subject to

ft = ft+1 = · · ·= ft+κ−1, ∀t ∈ T ,
st + ft ≤ N, t = 1, . . . ,m,

ft ∈N0, t = 1, . . . ,m.

19.3 Solution Approach

In order to solve the call center staffing problem, we cast the problem as a finite-
horizon Markov decision problem on epochs T . However, several simplifying
approximations are required for purposes of implementation. We refer to Appendix
for an exact formulation that solves the problem theoretically.

Let X denote the state space, where at epoch t ∈ T the state xt ∈ X denotes
the service level realized up to epoch t, i.e., xt = ∑t−1

i=1 λ̃iSLi/∑t−1
i=1 λ̃i for t ∈ T ,

where λ̃i is the value of λi derived from the observed arrival counts. Normally, the
state space would be modeled by [0,1], however, we discretize the state space to
X = {0,1/ω,2/ω, . . . ,1}, where the parameter ω controls how well the continuous
state space is approximated. The realized service level at each epoch is rounded
down to the nearest value in the new state space.

Let the action space be denoted by At = {0, . . . ,N − s̄t}, where s̄t

= max{st ,st+1, . . . ,st+κ−1}. Action at ∈ At means that the call center manager
schedules at = at+1 = · · ·= at+κ−1 flexible agents at epoch t after observing xt .

Note that the definition of the state space is such that the Markov property does
not hold. Therefore, it is impossible to give exact transition probabilities. Given that
the service level xt is known, we simulate the system to obtain the service level
xt+κ , given that st +at , . . . ,st+κ−1 +at+κ−1 agents are available. We assume that at
the beginning of each interval t, the system with arrival rate λt , service rate μt and
st +at agents has reached stationarity, which is not an unrealistic assumption when
changes in the dynamics are not too severe. Starting from a steady-state situation,
we apply simulations for the duration of an interval to obtain the service level dis-
tribution. Then, by convoluting this distribution over the κ intervals, we derive the
distribution for the next epoch. This approach has the advantage that we can simu-
late the transition probabilities up front for each combination of xt and at . Hence,
we can store a table with combinations of xt and at that give pt(xt ,at ,xt+κ), i.e., the
probability of moving from state xt to xt+κ when action at is chosen.

Finally, the direct costs are given by

ct(xt ,at) =
t+κ−1

∑
i=t

(c1siθ + c2aiθ +P1{i=m}1{SL<α}).

The first and second terms are related to the staffing of permanent and flexible
agents. The last term corresponds to the penalty P that is incurred if the service
level at the end of the day is not met.

492 A. Roubos et al.

The tuple (X ,A, p,c) completely describes the Markov decision process for this
problem.

Note that in the problem above, the values of st are given. However, in practice,
the values for st would be obtained by having an estimate of the values of λt for the
specific day. This would typically be done in light of long-term personnel planning
by using the Erlang C formula. The decision variable at can then be seen as short-
term planning that adjusts for deviations on this estimate. It is worthwhile to mention
that the use of the Erlang C formula for deriving values for st is not optimal in
general (see Sect. 19.4 for some examples), but provides a good starting point for
the staffing problem at hand.

In the description of our algorithm, we mention that at epoch t we define the
state xt as the realized service level up to epoch t. This service level is easy to com-
pute, since the arrival counts in intervals i < t are known. At epoch t we also need
the values λi for i ≥ t to determine the optimal actions. However, these values are
unknown and need to be obtained via an estimation procedure. Note that this esti-
mation procedure can be different than the procedure used to determine the values
of st , since the realized values up to epoch t can be used as well and provide better
information on the future values of λt . Examples of estimation procedures can be
found in, e.g., [2, 4, 27].

19.4 Numerical Experiments

In this section we show the characteristics of the optimal policies by means of nu-
merical experiments. The parameters of the experiments are based on real-life data,
or otherwise chosen to represent parameters that can be found in practice. We start
with an example that demonstrates the benefits of the flexibility in staffing. This
example assumes a known and constant arrival rate.

Remark 19.1. In order to evaluate the optimal policies, we apply independent sim-
ulations. We mainly focus on two performance measures: the total staffing costs
and the probability that a penalty is incurred if at the end of the day the service
level is lower than the target. Because the penalty probability is extremely small,
many simulations are necessary to obtain an accurate estimate, see, e.g., the topic of
rare-event simulation in [3]. For instance, for a probability p = 0.01 and a 95% con-
fidence interval with half-width equal to 0.1p, the number of simulations should be
at least n= 40,000. We perform n = 1,000,000 simulations, which can be calculated
within a few seconds. We present the half-width of the 95% confidence intervals be-
tween parentheses, but omit confidence intervals for values that have a negligible
half-width.

19.4 Numerical Experiments 493

19.4.1 Constant Arrival Rate

Consider a call center with no flexibility, i.e., only a fixed number of agents are
scheduled for the whole time horizon. The arrival rate is λ = 3 per minute and
the service rate is μ = 0.2 per minute. The acceptable waiting time is τ = 1/3 min
(20 s). Based on these parameters, the Erlang C formula tells us that we need s = 19
agents in order to meet the 80% service level target. Each agent costs c1 = 1 unit
per minute. Suppose the call center operates for a time horizon of T = 720 minutes
(12 h). The call center starts empty, and waiting customers at the end of the time
horizon are ignored.

With these parameters the costs for staffing are C = 1×19×720 = 13,680. How-
ever, despite the fact that the expected service level is above 80% as predicted by
the Erlang C formula, simulations show that the realized service level is in many
cases below 80%. With probability 0.34 the service level falls below the required
target and hence a penalty is incurred. This phenomenon that the service level is not
always reached in a finite-time horizon is discussed in [25]. One way to deal with
this problem, without flexibility, is to try a higher staffing level. With s = 20 the
costs for staffing are increased to C = 14,400. Furthermore, the probability that a
penalty is incurred is reduced to only 0.03.

We now allow flexible agents. We have a base staffing level of s = 19 for the
whole time horizon. Each 30 min there is the opportunity to add additional flexible
agents (i.e., m = 24, θ = 30 and κ = 1), against a cost of c2 = 1.2 units per minute
per agent. When choosing to do so, the extra agents are immediately available. We
take N = 30, which is sufficiently large for this example. Furthermore, we incur a
sufficiently high penalty of P = 106 for failing to meet the target service level at the
end of the day. The state space is discretized according to ω = 400. The transition
probabilities pt(xt ,at ,xt+κ) are determined from 10,000 sample path simulations for
each action at . By application of our method we find the optimal policy. Evaluation
by means of simulations shows that the costs for staffing are C = 14,192 and that the
probability of a penalty is 0.0018 (8.4×10−5). This is a considerable improvement
in both staffing costs and penalty probability compared to staffing 20 agents with no
flexibility.

The optimal policy is displayed in the left plot in Fig. 19.1. This figure should be
interpreted as follows. For a decision moment at time t, and given a realized service
level up to t, the number of flexible agents staffed is given by the figure. The optimal
policy suggests that in some cases 30 agents should be scheduled (a base staffing
level of 19 plus 11 flexible agents). With that many agents the probability to reach
a service level of 1 in a 30-minute interval is already 0.996. The large white area
below the curve denotes pairs of time epochs and service levels that always result in
an expected service level lower than the target. Hence, no flexible agents are staffed.

The right plot in Fig. 19.1 shows boxplots of the service level at a decision epoch.
The small circles are outliers, where an outlier is a data value more extreme than 1.5
times the interquartile range from the box. This figure shows that the average service

494 A. Roubos et al.

11
10
9
8
7
6
5
4
3
2
1

Se
rv

ic
el

ev
el

Time (minutes)

0 60 120 180 240 300 360 420 480 540 600 660 720
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (minutes)

Se
rv

ic
el

ev
el

60 120 180 240 300 360 420 480 540 600 660
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 19.1: Left plot: the optimal policy for the example with a constant arrival rate.
Right plot: boxplots of the service level at a decision epoch

Decision length (minutes)

0 50 100 150 200 250 300 350 400

×104

1.4

1.42

1.44

1.46

1.48

1.5

1.52

1.54

1.56

Available workplaces N

21 22 23 24 25 26 27 28 29 30

×104

1.415

1.42

1.425

1.43

1.435

1.44

1.445

1.45

1.455

Fig. 19.2: Value of flexibility

level nicely converges to approximately 0.85. Moreover, the variability greatly di-
minishes over time, and outliers are becoming more sparse.

19.4.1.1 Value of Flexibility

It is clear that staffing only a few flexible agents at the right moments keeps both
the staffing costs and the penalty probability low. In the previous example we could
vary the number of staffed flexible agents each 30 min. Allowing flexibility on this
time scale might not be possible for all call centers. Also, the optimal policy was
not restricted by the number of available workplaces. Therefore, we are interested
in the effect of different levels of flexibility on the performance measures.

Figure 19.2 shows how the staffing costs depend on the frequency with which
decisions can be made and on the number of available workplaces. The staffing costs
in the left plot increase up to a maximum of C = 15,840, which is attained at staffing

19.4 Numerical Experiments 495

Ca
lls

pe
rm

in
ut

e

Time (minutes)
0 60 120 180 360240 300 420 480 540 600 660 720

1

1.5

2

2.5

3

3.5

4

Fig. 19.3: The time-dependent arrival rate

22 agents for the whole day of 720 min. This plot shows that large improvements
can be obtained if the call center can react on a small time scale. But there is also a
significant gain if the call center can only adjust the staffing level once a day, after
360 min, since this reduces the staffing costs to C = 15,456. The right plot shows
that most of the improvement comes from the first few flexible agents. The plot
starts from a minimum of 21 workplaces, because with only 20 available workplaces
there will always be a considerable penalty probability of 3%. With 21 workplaces,
the staffing costs will be relatively high compared to a larger number of available
workplaces, since the flexible agents are almost always used.

19.4.2 Time-Dependent Arrival Rate

We now consider a call center with a time-dependent arrival rate. We still assume
that the arrival rate is known. In Fig. 19.3 the typical pattern of arrivals over the day
is depicted. Here we model the arrival rate as a piecewise constant function, where
each interval equals 15 min. All other parameters related to the model remain the
same. Based on the stationary Erlang C formula, we find the base staffing level in
each interval such that the target will be met. These staffing levels have the same
shape as the arrival rate. Performance assessment concludes that with no flexibility
the staffing costs are C = 12,855 and that the probability of failing to meet the target
service level at the end of the day is 0.18. When staffing one agent more in each
interval, the penalty probability is reduced to 0.01, but the staffing costs are then
C = 13,575.

With the opportunity to add flexible agents we can improve this situation. We as-
sume that decisions about flexible agents can only be made each consecutive 30 min,
and that we have a limited number of available workplaces of N = 30. This implies,
e.g., that we can only choose up to 5 flexible agents in the time periods [210,240)

496 A. Roubos et al.

13
12
11
10
9
8
7
6
5
4
3
2
1

Se
rv

ic
el

ev
el

Time (minutes)

120 420 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (minutes)

Se
rv

ic
el

ev
el

300 4800 60 180 240 300 360 480 540 660 720 60 120 180 240 360 420 540 600 660

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 19.4: Left plot: the optimal policy for the example with a time-dependent arrival
rate. Right plot: boxplots of the service level at a staffing period

and [240,270), since there are already 25 permanent agents scheduled at [225,255).
All other parameters related to our method and performance assessment remain the
same. When we apply our method we find the optimal policy as shown in Fig. 19.4.
The corresponding costs for staffing are C = 13,101 and the probability of a penalty
is 0.0062 (1.5×10−4). Again, this is a considerable improvement. It is astonishing
to notice that this performance can be achieved by requiring on average 6.8 flexible
agents at the right moments, which corresponds to only 3.4 agent hours.

The optimal policy reveals a very interesting characteristic. Until 120 min, no
flexible agents are needed at all. This is, of course, due to the low arrival rates at
the beginning of the day, which means that the realized service level up to 120 min
is not that important. Consequently, this provides an excellent opportunity to bet-
ter estimate the arrival rate in the remainder of the day, in case the arrival rate is
unknown.

The right plot in Fig. 19.4 shows boxplots of the service level at the beginning
of each 15 min staffing period. Most notably from this figure is that the whiskers
extending from the bottom of the boxes are becoming shorter. There are hardly any
realized service levels below the 80% service level target at the end of the day, which
demonstrates that our method works well for this example.

19.4.2.1 Optimal Permanent Agents

Although the scope of this chapter is on flexible agents, we do make a short re-
mark about the choice of the permanent agents. The flexibility of adding agents at
the decision epochs can, and should, be taken into account when making a long-
term planning of the permanent agents. Our method can also be used to do this.
Consider for example the following heuristic approach. Start with the vector s such
that si = min{k ∈N |k > λi/μi} for i = 1, . . . ,m. That is, the number of agents in
each interval is higher than the offered load, but as small as possible. Apply our

19.4 Numerical Experiments 497

Table 19.1: The number of permanent agents

Base 8, 9, 9, 10, 11, 12, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25,
25, 24, 23, 23, 22, 22, 23, 23, 24, 24, 24, 23, 22, 21, 20, 20,
19, 19, 19, 19, 19, 19, 18, 17, 15, 14, 12, 11, 10, 9, 9, 8

Optimal 7, 7, 8, 9, 10, 11, 13, 15, 16, 17, 19, 21, 23, 24, 25, 25,
25, 25, 24, 23, 22, 22, 23, 23, 23, 23, 24, 23, 22, 21, 20, 19,
18, 18, 18, 18, 19, 18, 16, 15, 13, 11, 9, 8, 7, 6, 6, 6

method to find the policy π(s) and the corresponding costs Cπ(s). The next step con-
sists of adding an additional permanent agent to exactly one interval, namely the
interval that will result in the largest decline in costs. Let s+ ei denote the vector
with an additional agent at interval i, and let j = argmini=1,...,m Cπ(s+ei). Then, if
Cπ(s+e j) < Cπ(s), update s to s+ e j. Continue this iteration until no improvement
can be found anymore.

We use this heuristic approach on the previous example with the time-dependent
arrival rate. All parameters remain the same, with the exception of P. We increased
the penalty to P = 1012 in order to keep the penalty probability low. We find the
optimal policy similar to the one in Fig. 19.4. However, due to an overall decrease in
the number of permanent agents, the staffing costs turn out to be much lower. They
are C = 12,935, and the penalty probability is 0.0099 (1.9×10−4). More flexible
agents are used now, in order to reach the target service level. On average 18.5
flexible agents are needed for specific 30-minute intervals per day.

In Table 19.1 the number of permanent agents are given, for each interval of
15 min. This table compares the heuristic optimal staffing levels with the base
staffing levels, where in each interval the target service level will be met according
to the Erlang C formula. The optimal levels are for the most part lower, indicating
that the availability of flexible agents is better utilized when necessary. Staffing is
higher in five intervals with a high arrival rate. This ensures a higher expected ser-
vice level in these intervals, and possibly compensating for other intervals of lesser
importance. It is interesting to note that the last couple of intervals are really un-
derstaffed. This is due to the fact that the average service level can only be changed
very limitedly near the end of the day.

19.4.3 Unknown Arrival Rate

In most practical situations the real arrival rate λt is not known. What is available is
a best estimate λ̂t that is estimated or forecast from historical data. It goes without
saying that if this estimate is accurate (λ̂t is close to λt) our method works well,
in the sense that the service level requirement will always be achieved, because it

498 A. Roubos et al.

reduces to the case of a known arrival rate. What we are interested in is the perfor-
mance in case the arrival rate estimate is inaccurate.

As more information becomes available over the course of the day, our algorithm
updates the arrival rate estimate. In practice this can be done quite accurately, since
a large database with historical arrival rates are available, and sophisticated updating
procedures can be used (see, e.g., [27]). However, what we will show is that even
with no knowledge of previous arrival rates, and therefore using a very basic updat-
ing method, our algorithm works just as well. The updating method we consider is
the historical proportion method [27], which works as follows. At decision epoch
t ∈ T calculate the ratio R between the realized and estimated arrival rate up to t,
i.e., R = ∑t−1

i=1 λ̃i/∑t−1
i=1 λ̂i. Then, update the estimate for the remainder of the day:

λ̂ ′i = Rλ̂i, i = t, . . . ,m. This new estimate, together with the realized arrival rate, is
then used to give an updated optimal policy.

As a result of this updating procedure, we need to evaluate the optimal policy
multiple times per day. This computation takes roughly 1 min to carry out, namely
we update 24 times a day for a calculation that runs for approximately a few seconds.
Hence, an accurate evaluation by means of extensive simulations becomes hardly
doable if n = 1,000,000 (see also Remark 19.1). Therefore, we have to settle for less
accuracy in our simulations with n = 1,000. Also, the state space is now discretized
according to ω = 200. As in the examples before, we take N = 30, a penalty of
P = 106 and allow flexible agents each consecutive 30 min.

In our experiments, we consider several cases with respect to the pattern of the
arrival rate. In the first example the estimated arrival rate is the real arrival rate
multiplied by a constant scalar, λ̂t = λt · β . In the second and third examples we
correctly estimate the arrival rate pattern, but we make a fixed under- or overestima-
tion, λ̂t = λt +β , with β =−0.5 and β = 0.5. Finally, the fourth and fifth examples
are examples with a wrongly estimated pattern, λ̂t = λt · βt , with βt = 1− 0.005t
and βt = 1+0.005t. That is, the estimate becomes increasingly more wrong. In all
examples, the true arrival rate is the one shown in Fig. 19.3.

For a fair comparison between the performance of the different examples we use
the same number of permanent agents in each interval across the examples, which is
the number determined by the Erlang C formula using λt , μ = 0.2, τ = 1/3 and α =
0.8 in each interval (i.e., the base staffing levels). A reason against using the Erlang
C formula with λ̂t is that in the overestimated situations the server costs would be
high and the penalty probabilities low, even without using flexible agents. Moreover,
from the previous examples we have seen that the base staffing levels do require
flexible agents in order to balance the server costs and the penalty probability.

The results of the experiments are shown in Table 19.2. The results for the first
example are independent of β , because the β disappears in the updated estimate af-
ter the first epoch. As the day progresses, the estimate for the remainder of the day
naturally becomes more accurate. Hence, this example can be seen in light of the
previous example with a known and time-dependent arrival rate, though with more
uncertainty. The results are also very similar. The underestimation of the arrival rate
in the second example actually becomes an overestimation, because of the updating

19.5 Conclusion and Discussion 499

Table 19.2: Results of experiments with an unknown and time-varying arrival rate

Example Service level Server costs Penalty probability

1 0.853 (0.002) 13,100 (24) 0.024 (0.009)
2 0.874 (0.002) 13,903 (31) 0.018 (0.008)
3 0.855 (0.002) 13,140 (30) 0.007 (0.005)
4 0.851 (0.002) 13,067 (28) 0.031 (0.011)
5 0.865 (0.002) 13,245 (25) 0.004 (0.004)

method. Therefore, more flexible agents are used resulting in higher server costs,
a higher service level and a decrease in penalty probability. The third example is
exactly the opposite, in the sense that for most intervals the arrival rate will be un-
derestimated. However, an overestimation will still happen in the last ten intervals.
This example shows that our method works by adapting only when the service level
is too low. That the penalty probability is low, is due to the overestimation in the
intervals at the end. Examples four and five show results as could be expected for
under- and overestimated arrival rates. That the penalty probability is not equal to
zero is again due to the approximate transition probabilities.

19.5 Conclusion and Discussion

In this chapter we have shown that significant improvements can be obtained by
introducing flexible agents. The improvements are expressed in the form of lower
staffing costs or a lower probability of failing to meet the service level target at the
end of the day, compared to the traditional approach that does not exploit this flex-
ibility. Numerical experiments showed that our approach works remarkably well,
even in the case of an unknown and time-varying arrival rate, with a forecast that is
not necessarily accurate.

We model the call center as a Markov decision process in a non-traditional man-
ner where our state variable denotes the service level as opposed to the number of
customers in the system. The transition probabilities are, due to the complexities of
calculating them exactly, obtained via simulations. This allows us to look further
than (non-homogeneous) Poisson arrivals and exponential service times. As more
information becomes available over the course of the day, we make use of a better
estimated arrival rate to update the optimal policy. In the same way, we can also up-
date the service time distribution. The case of agent absenteeism (e.g., a permanent
agent is scheduled to work, but did not show up) is easily handled by decreasing the
number of permanent agents st . The absent agent will be taken care of by a flexible
agent, if that turns out to be necessary.

Our approach is highly relevant to call center practice. Uncertainty in call ar-
rivals demands flexibility from a call center to guarantee good performance without
incurring excessive staffing costs. In practice, many call centers indeed have this

500 A. Roubos et al.

flexibility. Flexibility in the workforce is achieved by, e.g., managers that help an-
swering telephone calls during busy periods, or due to people that are flexible in their
working hours, and can be requested to work on an ad-hoc basis with flexible con-
tracts, such as students and agents that work from home. Additional flexibility can
be obtained at the moment a shift of an agent ends and that agent can be requested
to work overtime. This is practically relevant, since we observe that the demand for
flexible agents increases at the end of the day, see Fig. 19.4. The algorithm in this
chapter exploits this flexibility in call centers in an easily implementable fashion,
and therefore has the potential to be integrated in workforce management software
of call centers.

Appendix: Exact Solution

In this section, we formulate a discrete-time Markov decision problem for our origi-
nal continuous-time problem. We only discretize time into small intervals, but make
no other approximation. Hence, the formulation is nearly exact for small time inter-
vals, and thus computes nearly optimal policies for the original problem. We denote
the length of a time interval by 1/η , thus every 1/η time units the system is ob-
served.

In order to model the transitions of the system after each observation, we need
a large state space that contains all information to calculate the next state. Hence,
define the state space X to consist of tuples (n,sc,sd ,m,z,w1, . . . ,wn). In this tuple,
n∈N0 denotes the number of customers in the system at the time of an observation.
The realized waiting times of each of the n customers at the moment of observation
is given by w1, . . . ,wn ∈R+

0 . We will adopt the convention that customers in service
have a waiting time of 0. Further, let sc ∈N0 denote the number of servers currently
in use, and sd ∈N0 the number of servers that is desired to have. The service level
can be computed by the ratio of z ∈ N0, the number of customers served within
τ time units, and m ∈ N0, the number of customers served. These variables are
sufficient to model the state transitions in a Markovian way. Hence, the dynamic
programming backward recursion formula becomes

ηVk+1(n,sc,sd ,m,z,w1, . . . ,wn) = c1sk + c2(sc− sk)

+λ1{sc<n}Hk(n+1,sc,sd ,m,z,w1, . . . ,wsc ,wsc+1 +1/η , . . . ,wn +1/η ,0)
+λ1{sc=n}Hk(n+1,sc,sd ,m,z,w1, . . . ,wn,0)

+λ1{sc>n}Hk(n+1,sc,sd ,m+1,z+1,w1, . . . ,wn,0)

+μsc1{sc=sd}1{sc<n}
[
Hk(n−1,sc,sd ,m+1,z+1{wsc+1+1/η<τ},

w2, . . . ,wsc ,0,wsc+2 +1/η , . . . ,wn +1/η)
]

+μsc1{sc>sd}1{sc<n}
[
Hk(n−1,sc−1,sd ,m,z,

w2, . . . ,wsc ,wsc+1 +1/η , . . . ,wn +1/η)
]

Appendix: Exact Solution 501

+μn1{sc=sd}1{sc≥n}
[
Hk(n−1,sc,sd ,m,z,w2, . . . ,wn)

]

+μn1{sc>sd}1{sc≥n}
[
Hk(n−1,sc−1,sd ,m,z,w2, . . . ,wn)

]

+
(
η−λ −min{n,sc}μ

)[
1{sc≥n}Hk(n,sc,sd ,m,z,w1, . . . ,wn)

+1{sc<n}Hk(n,sc,sd ,m,z,w1, . . . ,wsc ,wsc+1 +1/η , . . . ,wn +1/η)
]
.

The index k counts the number of intervals to go until the end of the complete
period, the last interval. The first two terms describe the cost of using sk permanent
and sc− sk flexible agents. If upon arrival, the number of servers currently in use
is less than n, then there are n− sc customers in the queue. Hence, these customers
add 1/η time units to their waiting time (term 3). If sc = n, then everyone is in
service, and the arriving customer has to wait (term 4). If sc > n, then there are idle
servers. Hence, an arriving customer is served immediately and satisfies the service
level directly as well (term 5). The next two terms, terms 6 and 7, model the case
where a customer leaves the system when there are customers waiting in the queue.
The first case is where the number of servers currently in use is equal to the desired
number. Hence, 1/η is added to the waiting times and sc remains unchanged. When
the customer is taken into service, then the service level is also adjusted. The second
case is when sc is higher than sd , then additionally sc is decreased by one and no
customer is taken into service (thus, the service level is not updated either). Terms 8
and 9 model a similar situation, however, in this case there are a sufficient number
of servers available so that no customer is waiting. Hence, the waiting times are
not adjusted and neither is the service level. The final terms deal with the similar
cases in which no event occurs within the interval. Hence, only the waiting times
are updated when sc < n.

In the dynamic programming backward recursion formula, we have adopted the
notation H for the action operator. This action operator is equal to V for all intervals
k that are not a decision epoch, i.e., k /∈ T . However, for all k ∈ T , we have that

Hk(n,sc,sd ,m,z,w1, . . . ,wn) = min
l∈N0

{
{Vk(n,sc, l,m,z,w1, . . . ,wn) | l < sc}

∪{Vk(n, l, l,m,z,w1, . . . ,wn) | l ≥ sc}
}
.

The first set in the minimization models the case in which the number of servers is
decreased, hence sd is adjusted. The second set models the case in which the number
of servers is increased. Since this happens immediately, both sc and sd are set to the
desired level.

Finally, we finish the model by describing what happens at the last interval. In
this case, we can evaluate the realized service level and compare it to α . If the
service level is not met, then a penalty of P is incurred, and otherwise no additional
cost is incurred. This is given by the following equation.

ηV0(n,sc,sd ,m,z,w1, . . . ,wn) = c1sk + c2(sc− sk)+P1{z/m<α}.

502 A. Roubos et al.

References

1. O.Z. Akşin, M. Armony, V. Mehrotra, The modern call center: a multi-
disciplinary perspective on operations management research. Prod. Oper.
Manag. 16(6), 665–688 (2007)

2. S. Aldor-Noiman, P.D. Feigin, A. Mandelbaum, Workload forecasting for a call
center: methodology and a case study. Ann. Appl. Stat. 3(4), 1403–1447 (2009)

3. S. Asmussen, P.W. Glynn, Stochastic Simulation: Algorithms and Analysis
(Springer, New York, 2007)

4. A.N. Avramidis, A. Deslauriers, P. L’Ecuyer, Modeling daily arrivals to a tele-
phone call center. Manag. Sci. 50(7), 896–908 (2004)

5. J. Bard, H. Purnomo, Short-term nurse scheduling in response to daily fluctua-
tions in supply and demand. Health Care Manag. Sci. 8(4), 315–324 (2005)

6. R. Batta, O. Berman, Q. Wang, Balancing staffing and switching costs in a
service center with flexible servers. Eur. J. Oper. Res. 177(2), 924–938 (2007)

7. O. Berman, R.C. Larson, A queueing control model for retail services having
back room operations and cross-trained workers. Comput. Oper. Res. 31(2),
201–222 (2004)

8. L. Brown, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn, and L. Zhao. Multi-
factor Poisson and gamma-Poisson models for call center arrival times. Work-
ing Paper, 2004

9. L.D. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn, L. Zhao,
Statistical analysis of a telephone call center: a queueing-science perspective.
J. Am. Stat. Assoc. 100(469), 36–50 (2005)

10. F.F. Easton, J.C. Goodale, Schedule recovery: unplanned absences in service
operations. Decis. Sci. 36(3), 459–488 (2005)

11. Z. Feldman, A. Mandelbaum, W.A. Massey, W. Whitt, Staffing of time-varying
queues to achieve time-stable performance. Manag. Sci. 54(2), 324–338 (2008)

12. N. Gans, G.M. Koole, A. Mandelbaum, Telephone call centers: tutorial, review,
and research prospects. Manuf. Serv. Oper. Manag. 5(2), 79–141 (2003)

13. L.V. Green, P.J. Kolesar, The pointwise stationary approximation for queues
with nonstationary arrivals. Manag. Sci. 37(1), 84–97 (1991)

14. L.V. Green, P.J. Kolesar, J. Soares, Improving the SIPP approach for staffing
service systems that have cyclic demands. Oper. Res. 49(4), 549–564 (2001)

15. L.V. Green, P.J. Kolesar, J. Soares, An improved heuristic for staffing telephone
call centers with limited operating hours. Prod. Oper. Manag. 12(1), 46–61
(2003)

16. L.V. Green, P.J. Kolesar, W. Whitt, Coping with time-varying demand when
setting staffing requirements for a service system. Prod. Oper. Manag. 16(1),
13–39 (2007)

17. J. Harrison, A. Zeevi, A method for staffing large call centers based on stochas-
tic fluid models. Manuf. Serv. Oper. Manag. 7(1), 20–36 (2005)

References 503

18. A. Ingolfsson, E. Akhmetshina, S. Budge, Y. Li, X. Wu, A survey and exper-
imental comparison of service-level-approximation methods for nonstationary
M(t)/M/s(t) queueing systems with exhaustive discipline. INFORMS J. Com-
put. 19(2), 201–214 (2007)

19. T. Jiménez, G.M. Koole, Scaling and comparison of fluid limits of queues ap-
plied to call centers with time-varying parameters. OR Spectr. 26(3), 413–422
(2004)

20. G. Jongbloed, G.M. Koole, Managing uncertainty in call centers using Poisson
mixtures. Appl. Stoch. Model. Bus. Ind. 17(4), 307–318 (2001)

21. S. Liao, G.M. Koole, C. van Delft, O. Jouini, Staffing a call center with uncer-
tain non-stationary arrival rate and flexibility. OR Spectr. 34, 1–31 (2012)

22. V. Mehrotra, O. Ozlük, R. Saltzman, Intelligent procedures for intra-day updat-
ing of call center agent schedules. Prod. Oper. Manag. 19(3), 353–367 (2010)

23. E.J. Pinker, R.C. Larson, Optimizing the use of contingent labor when demand
is uncertain. Eur. J. Oper. Res. 144(1), 39–55 (2003)

24. T. Robbins, Managing service capacity under uncertainty. Ph.D. Thesis, Penn
State University, 2007

25. A. Roubos, G.M. Koole, R. Stolletz, Service level variability of inbound call
centers. Manuf. Serv. Oper. Manag. 14(3), 402–413 (2012)

26. H. Shen, J.Z. Huang, Forecasting time series of inhomogeneous Poisson pro-
cesses with application to call center workforce management. Ann. Appl. Stat.
2(2), 601–623 (2008)

27. H. Shen, J.Z. Huang, Interday forecasting and intraday updating of call center
arrivals. Manuf. Serv. Oper. Manag. 10(3), 391–410 (2008)

28. S.G. Steckley, S.G. Henderson, V. Mehrotra, Service system planning in the
presence of a random arrival rate. Working Paper, 2004

29. J.W. Taylor, A comparison of univariate time series methods for forecasting
intraday arrivals at call a center. Manag. Sci. 54(2), 253–265 (2008)

30. J. Weinberg, L.D. Brown, J.R. Stroud, Bayesian forecasting of an inhomoge-
neous Poisson process with applications to call center data. J. Am. Stat. Assoc.
102(480), 1186–1199 (2007)

31. W. Whitt, Staffing a call center with uncertain arrival rate and absenteeism.
Prod. Oper. Manag. 15(1), 88–102 (2006)

32. J. Yoo, Queueing models for staffing service operations. Ph.D. Thesis, Univer-
sity of Maryland, 1996

Chapter 20
MDP for Query-Based Wireless Sensor
Networks

Mihaela Mitici

Abstract Increased sensors availability and growing interest in sensor monitoring
has lead to an significant increase in the number of sensor networks deployed in the
last decade. Simultaneously, the amount of sensed data and the number of queries
calling this data significantly increased. The challenge is to respond to the queries
in a timely manner and with relevant data, without having to resort to hardware
updates or duplication. In this chapter we focus on the trade-off between the re-
sponse time of queries and the freshness of the data provided. Query response time
is a significant Quality of Service for sensor networks, especially in the case of
real-time applications. Data freshness ensures that queries are answered with rel-
evant data, that closely characterizes the monitored area. To model the trade-off
between the two metrics, we propose a continuous-time Markov decision process
with a drift, which assigns queries for processing either to a sensor network, where
queries wait to be processed, or to a central database, which provides stored and pos-
sibly outdated data. To compute an optimal query assignment policy, a discrete-time
discrete-state Markov decision process, shown to be stochastically equivalent to the
initial continuous-time process, is formulated. This approach provides a theoretical
support for the design and implementation of WSN applications, while ensuring a
close-to-optimum performance of the system.

M. Mitici (�)
Faculty of Aerospace Engineering, Air Transport and Operations,
Delft University of Technology, Delft, The Netherlands
e-mail: m.a.mitici@tudelft.nl

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 20

505

mailto:m.a.mitici@tudelft.nl

506 M. Mitici

20.1 Problem Description

Following increasing computing capabilities of modern sensors, wireless sensor net-
works (WSNs) have become an integrated platform where local query processing is
performed. Thus, not only storage facilities, such as central databases (DB), are able
to answer queries, but also the sensors within the WSN. Calls to the WSN are slow
and can overload the network, leading to high query response times. But the WSN
answers queries with fresh, recently sensed data. Calls to the DB are fast, but the
stored data is possibly outdated. A trade-off arises between the response time of
queries and the freshness of the data provided.

We analyze the cost of query processing seen as a trade-off between two QoS
requirements: (1) the response time of queries, which is the time between a query is
initiated until this query is solved and (2) the freshness (age) of the data provided,
which is the time between the moment sensed data is generated by a sensor and the
time this data is provided to a query (Fig. 20.1).

Wireless
Sensor
Network

Service
Providers
Portals
Widgets

Sensor
Data Lis-
tener

Query
Service

DB

Report

WSN Query

ClientsCentral Data Service

Fig. 20.1: High-level architecture of the query-based system: Queries generated by
clients are processed either by the WSN or by the DB. Reports are periodically
generated by the WSN and processed only by the WSN. After being processed,
reports update the DB

Queries are processed as follows. When a WSN query is initiated, the Query
Service of the network requests a sensor value from the network, and upon receiving
this request, the network sends its most recent value. We assume a processor sharing
service type for the WSN. This reflects the IEEE 802.15.4 MAC design principle of
distributing the processing capacity fairly among the jobs present in the network.
When a DB query is initiated, the query is answered with DB data, which was
stored at a previous time. Data is stored upon reporting. Data reports are periodically
pushed to a sink from the sensor network. The sink ultimately updates the DB with
the reported values.

20.2 Model Formulation 507

A WSN call increases the load of the network and results in possibly large query
response times. However, WSN calls are energy efficient. This is because only those
values that are of interest are transmitted. In the case of DB calls, the query re-
sponse time is significantly lower since the data is already stored and available at
the DB. However, data reporting increases energy consumption, especially when the
reported data is of no (immediate) interest. Also, available DB data is possibly out-
dated and might no longer accurately reflect the state of the monitored environment.

We model the trade-off between the query response time and data freshness by
means of a continuous-time Markov Decision Process with a drift [6]. The con-
tinuous character of the process, and in particular, the fact that a state-component
of the process evolves continuously over time, makes the problem non-standard
and computationally intractable, i.e. the standard way of deriving an optimal policy
recursively using dynamic programming is not directly applicable. For computa-
tional reasons, we first propose a non-standard exponentially uniformized Markov
decision process, which we show to be stochastically equivalent to the original
continuous-time Markov decision process with a drift. However, the exponentially
uniformized process still contains a continuous-state component. For further com-
putational tractability, we next argue a discrete-time and discrete-state Markov de-
cision process. We then determine an optimal query assignment policy for the
discrete-time and state process by means of stochastic dynamic programming. Fi-
nally, we show that our approach can be used for any given, fixed policy. We con-
sider two query assignment policies, commonly used in practice, and compare their
performance with the optimal policy.

20.2 Model Formulation

The system consists of a service facility (WSN) with Processor Sharing capabili-
ties and a storage facility (DB). Figure 20.2 shows the proposed model. Two types
of jobs: queries and reports, arrive at the system according to a Poisson process.
Queries arrive at rate λ1. Reports arrive at rate λ2. Reports are requests issued to the
WSN to sense the environment and send the data to the DB for storage. The service
requirements of the jobs are exponentially distributed with parameter μ , indepen-
dently of the job type. To ensure that the system is stable, we assume that λ2 < μ .
Queries are handled by a controller which assigns them either to the DB or to the
WSN. When assigned to the DB, queries are immediately answered with stored data.
However, the stored data might be outdated, i.e., the age of the data might exceed
a validity threshold T . Assigned to the WSN, the queries wait to receive the sensed
data, sharing the service with the other jobs present in the network. We assume a
query processing cost which is influenced by the type of query assignment (DB or
WSN assignment). The cost of a DB assignment is an instantaneous cost, indicat-
ing how much the age of the stored data has exceeded a validity threshold T . The
cost of a WSN assignment consists of penalties, accumulating over time, related to
having queries waiting in the WSN to be processed. These penalties increase upon
a WSN assignment, as a consequence of the Processor Sharing service type of the

508 M. Mitici

C WSN

Report Arrival (l2)

DB (T)
Report UpdateQuery Arrival (l1) WSN Assignment

DB Assignment

Fig. 20.2: A controller (C) assigns queries to a database (DB) or to the sensor net-
work (WSN). The DB solves queries instantaneously. The WSN solves reports and
queries. The data stored in the DB is considered outdated if the age of the data
exceeds a validity threshold T . After T is exceeded, the age of the data increases
linearly until a report completion updates again the DB

WSN. Upon a query arrival at the controller, the model decides between increasing
the query processing cost of the system with an instantaneous DB-related cost or
with a WSN-related cost.

We are interested in finding an optimal assignment strategy and in quantifying
the assignment cost of this optimal assignment strategy.

20.3 Continuous Time Markov Decision Process with a Drift

The system presented in Sect. 20.2 is formally introduced below as a Continuous
Time Markov Decision Process with a drift. Firstly, at any point in time, the system
is completely described by the number of queries, reports and the age of the data
stored in the DB. Thus, the state space of the problem is defined as follows.

• State space: S = N0×N0× [0,∞), where (i, j, t) ∈ S denotes the state with i
queries and j reports in the WSN, and the time t since the last report completion
(age of the stored data).

Upon a query arrival, the controller assigns the query for processing either to the
DB or to the WSN. The action space is, thus, defined as follows.

• Action: the controller takes an action a from the action space A = {D,W}, where
a = D denotes a DB assignment and a =W denotes a WSN assignment.

We define a policy π to be a mapping from the state space S→ A, which specifies
the action a ∈ A the controller takes when the system is in state (i, j, t) ∈ S and
a query arrival occurs. We make the natural assumption that this policy is right-
continuous in the age component t, which allows for threshold-type of assignment
policies of the form t > T , where T is a threshold.

The system has a state transition upon a query or report arrival, a query or report
completion. The rates at which these events happen are as follows.

20.3 Continuous Time Markov Decision Process with a Drift 509

• The transition rates, when in state (i, j, t) ∈ S and action a ∈ A is taken:

qa[(i, j, t),(i, j, t)′] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ1, (i, j, t)′ = (i+1, j, t), a =W

λ1, (i, j, t)′ = (i, j, t), a = D

λ2, (i, j, t)′ = (i, j+1, t)

μφ1(i, j), (i, j, t)′ = (i−1, j, t), i > 0

μφ2(i, j), (i, j, t)′ = (i, j−1,0), j > 0

(20.1)

with φ1(i, j) = i
i+ j ,φ2(i, j) = j

i+ j indicating the Processor Sharing service discipline
assumed for the WSN. The first line of (20.1) models a query arrival under action
a = W , i.e. the query is assigned to the WSN for processing. The state space illus-
trates an increment in the number of queries from i to i+1. The second line of (20.1)
models a query arrival under action a = D, i.e. the query is assigned to the DB. In
this case, the query is processed immediately, no changes occur in the number of the
queries and reports in the system. The third line of (20.1) models a report arrival.
The state of the system illustrates an increment in the number of reports. The fourth
line of (20.1) models a query completion at the Processor Sharing rate φ1(i, j) = i

i+ j .
The number of queries in the system is decremented to i−1. Lastly, the fifth line of
(20.1) models a report completion at the Processor Sharing rate φ2(i, j) = j

i+ j . The
age of the stored data is reset to zero as a report is completed and updates the DB
with the most recently sensed data.

The above Markov Decision Process has a deterministic drift for the age compo-
nent, t. This increases linearly as long as no report is completed. Also, we consider
two types of decisions. Firstly, the decision to assign an incoming query to the DB
affects only the infinitesimal generator of the Continuous Time Markov Decision
Process (see second line of (20.1)). Secondly, the decision to assign a query to the
WSN affects both the infinitesimal generator and determines a change in the state
of the system (see first line of (20.1)).

The dynamics of this controlled Markovian decision process are uniquely deter-
mined by its infinitesimal generators [1]. In the case of our system, under action a,
the generator is specified, for any function f : S×S× (0,∞)→ R, as follows:

Ha f (i, j, t) = ∑
(i, j,t)′

qa[(i, j, t),(i, j, t)′] · f [(i, j, t)′]+
d
dt

f (i, j, t) (20.2)

The generator in (20.2) shows that, over time: (1) a jump to a new state (i, j, t)′

occurs at rate qd and the time increases or (2) no jump occurs and the time increases.
The cost of the system is two-fold. Firstly, we consider the cost i of having i

queries waiting within the WSN to be processed. This cost gives an overview of
the load of the WSN. Secondly, we consider an instantaneous cost incurred every
time a query is solved by the DB. This is a penalty for each time unit the age of
the stored data exceeds a given threshold T . The two costs illustrate the trade-off
between the response time of the queries within the WSN and the age of the data
provided. Formally, we consider the following cost.

• Cost: when in state (i, j, t), a cost rate i for the queries waiting in the WSN and
an instantaneous cost (t−T)+, where x+ = max(x,0), upon a DB assignment.

510 M. Mitici

20.4 Exponentially Uniformized Markov Decision Process

The continuous character of the process described in Sect. 20.3, and in particular, the
continuous age component of the process, which evolves over time, make the query
assignment problem computationally intractable, i.e. the standard way of deriving
an optimal policy recursively using dynamic programming is not applicable for a
Continuous Time Markov Decision Process with a drift. More precisely, the method
of uniformization, commonly used to make a Continuous Time Markov Decision
Process computationally tractable, is not directly applicable due to the drift (the age
component evolving over time) of our process. Uniformization, as introduced in
[5], is a well-known technique used to transform a continuous time Markov jump
process into a discrete time Markov process. When the state is also discrete, the
process is referred to as a continuous time Markov chain (see, for instance, [2, 9]).

In [4] and [10], time discretization is applied to continuous-time Markov decision
processes with a drift component evolving over time. Time discretization is a some-
what similar method to uniformization. Time discretization, however, is an approx-
imative method which leads to technical weak convergence. Moreover, it does not
lead to exact computational results. To be able to compute an optimal query assign-
ment policy, we construct an exponentially uniformized Markov Decision Process,
and show it to be stochastically equivalent to the initial continuous-time Markov de-
cision process with a drift. This implies that the two processes are the same in terms
of expected assignment costs and policies. We next construct a discrete time and
state Markov decision process, which is computationally tractable. Based on this
process, an optimal assignment policy is computed. We then argue and numerically
show that the assignment policy computed also holds for the initial continuous-time
Markov decision process with a drift (Sect. 20.3).

We now uniformize the continuous-time Markov decision process with a drift
described in Sect. 20.3. First, let B be an arbitrarily large finite number such that
B ≥ λ1 + λ2 + μ . Next, we construct a process which, at exponential times with
parameter B, will have a transition from state (i, j, t) ∈ S, as specified in Sect. 20.3,
to (i, j, t)′ ∈ S. Denote by s the exponential realization time of this transition. Then,
given a transition realization of duration s, the transition probabilities under action
a ∈ A, from one transition epoch to the next, become:

Pa[(i, j, t),(i, j, t)′]=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1B−1, (i, j, t)′ = (i+1, j, t + s),a =W

λ1B−1, (i, j, t)′ = (i, j, t + s), a = D

λ2B−1, (i, j, t)′ = (i, j+1, t + s)

μB−1φ1(i, j), (i, j, t)′ = (i−1, j, t + s), i > 0

μB−1φ2(i, j), (i, j, t)′ = (i, j−1,0), j > 0

1− (λ1 +λ2 +μ1i+ j>0)B−1, (i, j, t)′ = (i, j, t + s)

0, otherwise.

20.5 Discrete Time and Discrete Space Markov Decision Problem 511

Theorem 20.1. For any policy π , the exponentially uniformized Markov Decision
Process and the original Continuous Time Markov Decision Process with a drift are
stochastically equivalent.

Proof. Appendix

A consequence of Theorem 20.1 is that the expected assignment cost for the expo-
nentially uniformized MDP and the CTMDP with a drift are the same. This, in turn,
leads to the same optimal policy for the two processes

Now observe that in the CTMDP with a drift, the actions are only taken upon
query arrivals, which occur at exponential times. In the case of the exponentially
uniformized MDP, the exponential times have parameter B. Thus, the actions will
still be taken at exponential times with parameter B, upon a query arrival. There-
fore, it is sufficient to keep track of the number of exponential phases N (Erlang
distribution with parameter B and N phases). This allows us to restrict ourselves to
a discrete-time and space Markov decision process in Sect. 20.5.

20.5 Discrete Time and Discrete Space Markov Decision Problem

Based on the exponentially uniformized model in Sect. 20.4, we formulate our
assignment problem as a discrete-time and space Markov decision problem as fol-
lows.

• State space: S = N0×N0×N0, where (i, j,N) ∈ S denotes a state with i queries
and j reports at the WSN and N is the age of the stored data, with N the number
of steps (exponentially distributed with uniformization parameter B) since the last
report completion.

• Action space: Upon a query arrival, an action a is taken from the action space
A = {D,W}, where a = D is a DB assignment and a =W is a WSN assignment.

• Transition probabilities, when in state (i, j,N) ∈ S and action a ∈ A:

Pa[(i, j,N),(i, j,N)′]=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ ′1, (i, j,N)′=(i+1, j,N +1),a =W

λ ′1, (i, j,N)′=(i, j,N +1), a = D

λ ′2, (i, j,N)′=(i, j+1,N +1)

μ ′φ1(i, j), (i, j,N)′=(i−1, j,N +1), i > 0

μ ′φ2(i, j), (i, j,N)′=(i, j−1,0), j > 0

1− (λ ′1 +λ ′2 +μ ′1i+ j>0), (i, j,N)′=(i, j,N +1)

0, otherwise
(20.3)

with φ1(i, j) = i
i+ j , φ2(i, j) = j

i+ j and λ ′i = λiB−1, i ∈ {1,2} and μ ′ = μB−1 as per
uniformization (see Sect. 20.4). The first two lines of (20.3) model query arrivals
under action a. The third line of (20.3) models report arrivals. The fourth and fifth

512 M. Mitici

lines of (20.3) model query and report completions, respectively. The sixth line of
(20.3) is a dummy transition as a result of the uniformization. The last line of (20.3)
prohibits any other state transition. Note that every step, the age is incremented,
except when a report is completed, i.e. age reset to zero.

• Cost function: The cost of the system is two-fold. Firstly, when i queries are
waiting to be solved within the WSN, the system incurs a cost per unit of time:

i (20.4)

This can be interpreted as, each unit of time, the system pays one unit for each
waiting query. At the end of a query’s service, the system had payed one unit for
each unit of time the query was in the system, i.e. the query response time. Secondly,
if an incoming query is assigned to the DB, an instantaneous penalty is incurred for
exceeding the validity threshold T of the stored data:

max(N′ −T)+, (x)+ = max{0,x}. (20.5)

where N′ = N/B is the age of the data in time units, i.e. the number of uniformiza-
tion steps multiplied by the expected length of a step. In this case, the system pays
for the time the validity threshold T is exceeded. Considering the cost of having
queries waiting in the WSN (20.4) and the instantaneous cost associated with a DB
assignment (20.5), when the system is in state (i, j,N), the cost incurred per unit of
time is:

Ca(i, j,N) = i+λ1(N
′ −T)+1(a=D), where(x)+ = max{0,x}. (20.6)

Equation (20.6) shows that the model assesses the trade-off between increasing the
processing cost of the system by the instantaneous cost (N′ −T) or by accumulating
i units of penalties every time slot, until a change in the number of queries occurs.

Remark 1: The number of exponential phases approximates the time until a report
completion by t + s = (N + 1) ·B−1. Also, the variance of an Erlang distribution
with N phases and parameter B, which is the case for our discretized age, is N+1

B2 . As
B ≥ λ1 +λ2 + μ can be chosen arbitrarily large (see [3]), by the law of large num-
bers, for very large B, the distribution of Erlang(N+1,B) will concentrate around
(N + 1) ·B−1. Thus, for large uniformization parameter B, the Discrete Time and
State MDP approximates the uniformized MDP arbitrarily close.

Remark 2: The value of the uniformization parameter B ≤ λ1 + λ2 + μ can be
seen as a scaling factor that does not influence the results. One could expect that,
for small values of B, a minor effect on the policy might be present due to the
approximation of the age component N′ = N/B (see Sect. 20.8.2). However, we
have not been able to find any such example. In other words, the approach followed
is strongly supported, both theoretically and numerically.

20.6 Standard Markov Decision Process 513

20.6 Standard Markov Decision Process

Based on the model in Sect. 20.5, the quadruple (S,A,P,C) completely describes the
discrete-time and state MDP. To determine an optimal assignment policy and to use
standard dynamic programming, we define the following value function:

Vn(i, j,N)=minimal expected assignment cost over n steps starting in state (i, j,N).

Then Vn(i, j,N) is computed recursively by means of the value iteration
algorithm (see, for instance, [8, Sect. 8.5.1]) as follows. First, we consider
V0(i, j,N) = 0. Next, we iterate according to the value iteration algorithm and
the following backward recursive equation:

Vn+1(i, j,N) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

i′+λ ′1 min

{
Vn(i+1, j,N +1)

(N−T ′)+ +Vn(i, j,N +1)

+λ ′2Vn(i, j+1,N +1)

+μ ′φ1(i, j)Vn(i−1, j,N +1)1i>0

+μ ′φ2(i, j)Vn(i, j−1,0)1 j>0

+[1− (λ ′1 +λ ′2 +μ ′1i+ j>0)]Vn(i, j,N +1).

(20.7)

where i′ = i/B and T ′ = T/B, following uniformization. The first term of (20.7) is
the cost of having i queries in service and a query assigned to either the WSN or
the DB. The next three terms represent the cost incurred by a transition due to a
report arrival, a query completion and a report completion, respectively. The final
term is the dummy term due to uniformization.

Simultaneously with computing Vn(i, j,N), the algorithm computes a ε-optimal
stationary policy πn which associates an optimizing action with the right-hand side
of (20.7) for any state (i, j,N). Given the assignment policy, it is possible to compute
the average assignment cost. Denote the minimal average assignment cost by g∗.
Since the underlying Markov chain is ergodic, g∗ is independent of the initial state.
We approximate g∗ using the following bounds developed in [7]:

L∗n ≤ g∗ ≤ L∗∗n , where (20.8)

L∗n = min[Vn+1(i, j,N)−Vn(i, j,N)],

L∗∗n = max[Vn+1(i, j,N)−Vn(i, j,N)].

In (20.8), L∗n is the minimum difference of the value function over two iteration
steps, n and n+ 1, whereas L∗∗n is the maximum difference of the value function
over steps n and n+1. For n→∞, L∗n and L∗∗n become arbitrarily close. The optimal
cost g∗ is computed with an accuracy ε by iterating the right-hand side of (20.7)
for n times until L∗∗n −L∗n ≤ ε/B, with B the uniformization parameter. The average

assignment cost is approximated as g∗ = (L∗∗n +L∗n)
2 . It can be shown that the lower

and upper bound converge in a finite number of steps (Theorem 8.5.4 [8]) to the
ε-optimal cost.

514 M. Mitici

20.7 Fixed Assignment Policies

In practice, simple assignment policies are employed to manage the query traffic.
Observe that following the procedure presented in Sect. 20.4, we can analyze any
fixed query assignment policy. Below we consider two fixed policies, commonly
used in practice.

20.7.1 Always Assign Queries to the DB

We consider a fixed assignment strategy πD that always assigns incoming queries to
the DB. Upon a query arrival, the cost incurred is (N−T)+. Then (20.7) becomes:

VDB
n+1(j,N) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ ′1[(N−T ′)++V DB
n (j,N +1)]

+λ ′2V DB
n (j+1,N +1)

+μ ′V DB
n (j−1,0)1 j>0

+[1− (λ ′1 +λ ′2 +μ ′1 j>0)]V DB
n (j,N +1).

(20.9)

where T ′ = T/B, following uniformization.

20.7.2 Always Assign Queries to the WSN

We consider a fixed assignment strategy πW that always assigns incoming queries
to the WSN. Then (20.7) becomes:

VWSN
n+1 (i, j,N) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i′+λ ′1VWSN
n (i+1, j,N +1)

+λ ′2VWSN
n (i, j+1,N +1)

+μ ′φ1(i, j)VWSN
n (i−1, j,N +1)1i>0

+μ ′φ2(i, j)VWSN
n (i, j−1,0)1 j>0

+[1− (λ ′1 +λ ′2 +μ ′1i+ j>0)]VWSN
n (i, j,N +1).

(20.10)

where i′ = i/B and T ′ = T/B, following uniformization.

20.8 Numerical Results 515

20.8 Numerical Results

20.8.1 Performance of Fixed Policies vs. Optimal Policy

Figure 20.3 shows the query assignment costs under the optimal assignment strategy
and the fixed strategy πD, for various tolerance thresholds T . The fixed strategy πW

is independent of T . As expected, as T increases, πDB converges to the optimal
assignment policy. This because the stored data is considered fresh for a longer time
and thus, it is more often optimal to assign an incoming query to the DB.

1 2 3 4 5 6 7 8

0.5

1

1.5

2

T

A
ss

ig
nm

en
t C

os
ts πD

πW

πOPT

Fig. 20.3: Assignment costs, λ1 = 0.2,λ2 = 0.1,μ = 0.4,T ∈ {1,2,4,8}

20.8.2 Optimal Policy Under Different Values
of the Uniformization Parameter

As argued in Sect. 20.5, the uniformization parameter B≤ λ1+λ2+μ can be seen as
a scaling factor that does not influence the results. Several numerical examples have
been investigated in Fig. 20.4, also showing no effect of B on the assignment policy.
Figure 20.4 shows that as the uniformization parameter B increases, the structure of
the optimal policy remains the same.

516 M. Mitici

(a)

Queries

R
ep

or
ts

10 20 30 40

10

20

30

40

(b)

Queries
R

ep
or

ts

10 20 30 40

10

20

30

40

(c)

Queries

R
ep

or
ts

10 20 30 40

10

20

30

40

Fig. 20.4: Various uniformization parameter B. WSN (blue), DB (green) assignment,
T = 1. (a) B = λ1 + λ2 + μ ,N = 30. (b) B = 5(λ1 + λ2 + μ),N = 150. (c) B =
10(λ1 +λ2 +μ),N = 300

20.9 Conclusion

We provided a formal support for the analysis of query processing strategies for
wireless sensor networks. We determined, using a Markov decision processes frame-
work, an optimal assignment policy which assigns queries for processing either to
the WSN or to a central DB. The optimal policy is based on the trade-off between
the penalties related to having queries waiting to be process in the WSN and an in-
stantaneous cost related to the age of the data stored at a central DB. We also argued
that our framework can be used for any given, fixed query assignment policy. Lastly,
we considered two fixed assignment policies, commonly used in practice, and we
compared numerically their performance to the optimal assignment policy.

Appendices

Proof of Theorem 1

Proof (Theorem 20.1). Let h(x) be a measurable function on some state space E of
a Markov process. Let P(v,x,Ξ) be a transition function expressing the probability
that a process which started in a state x is in the set Ξ at time v. Let Tvh(x) =∫

E P(v,x,dy)h(y) denote a shift operator on the space E. Then the operator

Hh(x) = lim
v→0

Tvh(x)−h(x)
v

is called the infinitesimal generator of the Markov process. The quantity Hh(x)
can be interpreted as the mean infinitesimal rate of change of the process starting

Appendices 517

in state x. Moreover, the infinitesimal generator uniquely define a Markov process
[1, Chap. 1]. Therefore, it is sufficient to show that the infinitesimal generator of the
exponential uniformized Markov decision process and the original continuous-time
Markov decision process with a drift are identical.

In our setting, we consider the state x = (i, j, t). Before addressing the in-
finitesimal generator of the exponentially uniformized Markov process defined in
Sect. 20.4, we first define the transition probability measure under action a ∈ A. Let
Pa
Δ t denote the transition probability measures over a time interval of length Δ t > 0,

given that at the last jump the system is in state (i, j, t) and that following a upon a
next jump, which occurs in the interval Δ t, decision d is taken and the system is in
a new state.

As we implicitly made the assumption that a policy π , prescribing an action a
upon a query arrival, when the system is in state (i, j, t), is right continuous and
since the set of decisions is finite and discrete, for any state (i, j, t) and fixed policy
π there exists a Δ t > 0 such that:

π(i, j, t +u) = π(i, j, t) = a, for all u≤ Δ t.

Let f : N×N×R be an arbitrary real valued function, differentiable in t. Then by
conditioning upon the exponential jump epoch with variable χ and for arbitrary
function f we obtain,

Pa
Δ t f (i, j, t) = e−Δ t·χ f (i, j, t +Δ t)

+
∫ Δ t

0
χe−uχ ∑

(i, j,t)′
Pa[(i, j, t),(i′, j′, t +u)] f (i′, j′, t +u)du+o(Δ t)2

= f (i, j, t +Δ t)−Δ tχ f (i, j, t +Δ t)

+Δ tχ ∑
(i′, j′) �=(i, j)

qa[(i, j, t),(i′, j′, t)] f (i′, j′, t +Δ t)χ−1

+Δ tχ [1−qa(i, j)χ−1] f (i, j, t +Δ t)+o(Δ t)2

= f (i, j, t +Δ t)+ χ ∑
(i′, j′) �=(i, j)

qa[(i, j, t),(i′, j′, t)][f (i′, j′, t +Δ t)

− f (i, j, t +Δ t)]+o(Δ t)2,

where we have used that qa[(i, j, t),(i′, j′, t)] = qa[(i, j, t + u),(i′, j′, t + u)] for any
(i′, j′) �= (i, j) and arbitrary s. The term o(Δ t)2 reflects the probability of at least two
jumps and the second term of the Taylor expansion for e−Δχ .

Hence, by subtracting f (i, j, t), dividing by Δ t and letting Δ t → 0, we obtain,

Pa
Δ t f (i, j, t)− f (i, j, t)

Δ t
= [f (i, j, t +Δ t)− f (i, j, t)]/Δ t

+ χ [f (i, j, t +Δ t)− f (i, j, t)]+o(Δ t)2

+ ∑
(i′, j′) �=(i, j)

qa[(i, j, t),(i′, j′, t)][f (i′, j′, t)− f (i, j, t)]

518 M. Mitici

→ d
dt

f (i, j, t)

+ ∑
(i′, j′) �=(i, j)

qa[(i, j, t),(i′, j′, t)][f (i′, j′, t)− f (i, j, t)]

=Ha f (i, j, t),which is the generator in (20.2).

Since the exponentially uniformized Markov decision process (defined in
Sect. 20.4) and the continuous-time Markov decision process with a drift (defined
in Sect. 20.3) share the same generators [1], the two processes are stochastically
equivalent.

Notation

S State space
(i, j,N) A state, given a discrete state space
Ca(i, j,N) Expected one step cost rate in state (i, j,N), under action a
A Set of actions available in state (i, j,N)
a Action when in state (i, j,N), given a discrete state space
W,DB Stationary Policy
PW ,PDB One step transition probability distribution/matrix

under policy W , DB
Pa[(i, j,N),(i, j,N)′] Transition probability into state (i, j,N)′, from

state (i, j,N), under action a
qa[(i, j,N),(i, j,N)′] Transition rate from state (i, j,N) into (i, j,N)′

under action a
VW

n (i, j,N),V DB
n (i, j,N) Value function under policy W , DB of expected

cumulative cost over n steps
Vn(i, j,N) Optimal value function of expected cumulative cost

over n steps, starting in state (i, j,N)
g∗ Optimal average expected cost function
B Uniformization parameter
H Infinitesimal generator of Markov decision process

References

1. E.B. Dynkin, Markov Processes, vol. 1 (Academic, New York, 1965)
2. I.I. Gikhman, A.V. Skorokhod, The Theory of Stochastic Processes: II, vol. 232

(Springer, New York, 2004)

References 519

3. A. Hordijk, R. Schassberger, Weak convergence for generalized semi-markov
processes. Stoch. Process. Appl. 12(3), 271–291 (1982)

4. A. Hordijk, F.A. van der Duyn Schouten, Discretization and weak convergence
in Markov decision drift processes. Math. Oper. Res. 9(1), 112–141 (1984)

5. A. Jensen, Markoff chains as an aid in the study of markoff processes. Scand.
Actuar. J. 1953(sup1), 87–91 (1953)

6. M. Mitici, M. Onderwater, M. de Graaf, J.-K. van Ommeren, N. van Dijk,
J. Goseling, R.J. Boucherie, Optimal query assignment for wireless sensor net-
works. AEU-Int. J. Electron. Commun. 69(8), 1102–1112 (2015)

7. A.R. Odoni, On finding the maximal gain for Markov decision processes. Oper.
Res. 17(5), 857–860 (1969)

8. M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming (Wiley, New York, 1994)

9. N. van Dijk, On a simple proof of uniformization for continuous and discrete-
state continuous-time markov chains. Adv. Appl. Probab. 22(3), 749–750
(1990)

10. N. van Dijk, A. Hordijk, Time-discretization for controlled Markov processes.
I. General approximation results. Kybernetika 32(1), 1–16 (1996)

Part VI
Financial Modeling

Chapter 21
Optimal Portfolios
and Pricing of Financial Derivatives
Under Proportional Transaction Costs

Jörn Sass and Manfred Schäl

Abstract A utility optimization problem is studied in discrete time 0 ≤ n ≤ N for
a financial market with two assets, bond and stock. These two assets can be traded
under transaction costs. A portfolio (Yn,Zn) at time n is described by the values
Yn and Zn of the stock account and the bank account, respectively. The choice of
(Yn,Zn) is controlled by a policy. Under concavity and homogeneity assumptions
on the utility function U , the optimal policy has a simple cone structure. The final
portfolio (Y ∗N ,Z

∗
N) under the optimal policy has an important property. It can be used

for the construction of a consistent price system for the underlying financial market.

Key words: Numeraire portfolio, Utility function, Consistent price system, Propor-
tional transaction costs, Dynamic programming

21.1 Introduction

We will start with discrete-time utility optimization which is now a classical subject
and can be treated as a Markov decision process in discrete time 0 ≤ n ≤ N. Our
main goal will be an application to adequate pricing of financial derivatives, in par-
ticular options, which is an important subject of financial mathematics. A financial
market is studied where two assets, bond and stock, can be traded under transaction

J. Sass (�)
Fachbereich Mathematik, TU Kaiserslautern, Erwin-Schrödinger-Str.,
Kaiserslautern D-67663, Germany
e-mail: sass@mathematik.uni-kl.de

M. Schäl
Institut für Angewandte Mathematik, Universität Bonn, Endenicher Allee 60,
Bonn D-53115, Germany
e-mail: schael@iam.uni-bonn.de

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4 21

523

mailto:sass@mathematik.uni-kl.de
mailto:schael@iam.uni-bonn.de

524 J. Sass and M. Schäl

costs. A mutual fund is a good example for the stock. Under concavity and homo-
geneity assumptions on the utility function U , it is known that the optimal policy
has a cone structure not only for models without but also for models with linear
transaction costs, see below. In the present paper we will focus on such models.

An Explanatory Model

In order to describe the application of the optimal policy from utility maximization
to pricing of financial derivatives, let us first consider a simple model with only one
period [0,N] (starting in 0 and finishing in N = 1) and without transaction costs. Let
BN be the value on the bank account at N if we start with one unit of money B0 = 1.
Then B−1

N is the classical discount factor. For fixed initial wealth x, the policy can
be described by a real number θ , the investment in the stock. Then the wealth at N
is Xθ

N = (x−θ)BN +S−1
0 θ SN = BN(x−θ +S−1

0 θ B−1
N SN), where S0 and SN are the

stock prices at 0 and N and S−1
0 θ is the invested number of stocks.

The classical present value principle for pricing future incomes is based on
the expectation of discounted quantities. According to this principle, an adequate
price for a contingent claim offering SN , i.e. one unit of stock, at N would be
pr(SN) = E[B−1

N SN]. But this answer may be wrong, because we know in the present
situation of a financial market that S0 is the adequate price. Starting with S0 one is
sure to have SN at N. But in general one has E[B−1

N SN] �= B−1
0 S0 = S0 and not the

equality one would like to have. Note that the equality means that the discounted
stock price process {B−1

0 S0,B
−1
N SN} is a martingale. It was a great discovery for the

stochastic community when one realized that martingales come into play. This is the
reason for a change of measure where the original real-world probability measure
P is replaced by an artificial martingale measure Q with Radon-Nikodym density q
w.r.t. P. One wants to study adequate prices pr(C) for a contingent claim C depend-
ing on the underlying financial derivative and maturing at N. In the present simple
model, one has C = f (SN) for some function f , since SN is the only random variable.
In multiperiod models, C is contingent upon the whole development of the stock up
to N. After a change of measure, one considers the present value principle under Q:

pr(C) = E[qB−1
N C] = EQ[B

−1
N C] with pr(SN) = EQ[B

−1
N SN] = S0. (21.1)

Then {B−1
0 S0,B

−1
N SN} is a martingale under Q and pr(·) is called a consistent price

system because of the relation pr(SN) = S0. In general however, one has several
choices for a martingale measure Q and one has to specify an additional preference
in order to distinguish one measure Q and thus one generally agreed prize. There-
fore, no preference-independent pricing of financial derivatives is possible.

21.1 Introduction 525

Construction of a Price System

Now we explain the relations to utility optimization and how to construct a martin-
gale measure Q and thus a consistent price system by the optimal investment θ ∗.
Let us consider the portfolio optimization problem where the wealth at N is Xθ

N =

BN(x−θ+S−1
0 θ B−1

N SN) defined as above and where we study maxθ E[U(B−1
N Xθ

N)].
Then we get for the optimal investment θ ∗ by differentiating:

E
[
U ′

(
B−1

N Xθ∗
N

)(
S−1

0 B−1
N SN −1

)]
= 0 or E

[
cU ′(B−1

N Xθ∗
N)B−1

N SN

]
= S0,

if the constant c is chosen such that E[cU ′(B−1
N X−1

N)] = 1. By a simple calculation
one obtains c = xE[U∗(B−1

N Xθ∗
N)]−1 with U∗(w) := U ′(w)w. Now we can set q =

cU ′(B−1
N Xθ∗

N) for q as above and we get

pr(C) = xE
[
U∗

(
B−1

N Xθ∗
N

)]−1
E
[
U ′

(
B−1

N Xθ∗
N

)
B−1

N C
]

(21.2)

where typically x = 1. In fact we then have E[qB−1
N SN] = S0 and q thus defines a

martingale measure. By a ‘marginal rate of substitution’ argument it can be shown
how this price depends in a traditional way on the investor’s preference or relative
risk aversion (see Davis [7], Schäl [26, Introduction]).

The Numeraire Portfolio

In the present paper, a special martingale measure Q is studied which is defined by
the concept of the numeraire portfolio. Then the choice of Q can be justified by
a change of numeraire (discount factor) in place of a change of measure. For this
approach one has to choose for U the log-utility with U ′(w) = w−1 and U∗(w) = 1
(see Becherer [2], Bühlmann and Platen [3], Christensen and Larsen [4], Goll and
Kallsen [9], Karatzas and Kardaras [13], Korn et al. [17], Korn and Schäl [15, 16],
Long [19], Platen [21], Schäl [25]). The optimal investment θ ∗ is called log-optimal.
In fact, then one obtains q = c(B−1

N Xθ∗
N)−1 and pr(C) = E[qB−1

N C] = E[c(Xθ∗
N)−1C]

and c = 1 for x = 1 since U∗(w) = 1. As a result we finally get

pr(C) = E[(Xθ∗
N)−1C]. (21.3)

Comparing (21.1) with the possibly wrong prize pr(C) = E[B−1
N C] (see above) and

with a consistent prize (21.1), we see the following: In (21.3) we stick to the original
probability measure but replace BN with the wealth Xθ∗

N which can be realized on
the market when starting with x = 1 on the bank account and investing according
to θ ∗. When looking for a discount factor, we thus assume that we will use x = 1 in
an optimal way instead of investing exclusively in the bank account. By the way, as
a consequence the (generalized) discount factor (Xθ∗

N)−1 is random.

526 J. Sass and M. Schäl

We think that it is easier to explain a change of the discount factor to a non-expert
than a change of measure since we here have a financial market where we have more
choices for investing one unit of money and not only the choice to invest in the bank
account.

The General Model with Transaction Costs

The problem of the paper is to carry over this idea to multiperiod financial models
(where N ≥ 1) in the presence of transaction costs. For such models, utility maxi-
mization and in particular log-optimality are also well studied. The wealth at stage n
will be given by portfolios (Yn,Zn) with generic values (y,z) describing the value of
the stock account and the bank account at time n, respectively. It is known that the
log-optimal dynamic portfolio can be described by two Merton lines in the (y,z)-
plane (see Kamin [12], Constantinides [5], Sass [22]) in place of one Merton line as
in the setting without transaction costs. For results in continuous time see Davis and
Norman [8], Magill and Constantinides [20] and Shreve and Soner [27].

Here we will contribute to that theory. We need a natural region for portfolios
(y,z) and therefore allow for negative values of y and z (but with y+ z > 0), i.e. for
short selling and borrowing. For any stage n < N, the region of admissible portfo-
lios will be the solvency region and it is divided by the two Merton lines into three
cones where it is optimal either (i) to buy (ii) to sell or (iii) not to trade, respectively.
These properties simplify numerical studies considerably. When looking for a nat-
ural region, ‘natural’ means that it is as large as possible and that these three cones
are not empty. The latter fact can happen if one restricts to nonnegative values of y
and z. We will provide a moment condition (R3) on the returns for the latter prop-
erty. Furthermore we will deal with open action spaces in order to be sure that the
optimal action lies in the interior. This is needed for the argument that the derivative
vanishes at a maximum point which was also used above in the simple explanatory
model.

Martingale Measures and the Numeraire Portfolio

Martingale measures and price systems are also discussed in the literature for mod-
els with transaction costs, see Jouini and Kallal [10], Koehl et al. [14], Kusuoka [18],
Schachermayer [24]. As explained above, they are basic for the concept of a nu-
meraire portfolio. Now the goal of the paper is the following: Study the log-optimal
dynamic portfolio and show that it defines a numeraire portfolio. The definition of
martingale measures is not so evident in the presence of transaction cost.

When maximizing the expected utility E[U(B−1
N (YN + ZN))], we will use YN +

ZN as total wealth at time N as in Bäuerle and Rieder [1, Sect. 4.5] and Cvitanić
and Karatzas [6]. A more general concept can also be used where one introduces

21.2 The Financial Model 527

liquidation costs L at time N and considers L(YN)+ZN in place of YN +ZN . For this
problem we refer the reader to Sass and Schäl [23]. Since L is not differentiable,
this case would cause a lot of additional problems and additional assumptions are
needed. Indeed, this paper aims at providing the proof in the case without liquidation
costs, since this case allows for much more straightforward arguments and requires
less assumptions.

A contingent claim C, maturing in N, is split into a contingent claim YC for the
stock account and a contingent claim ZC for the bank account. Then a price for
(YC,ZC) turns out to be

pr(YC,ZC) = E
[
(Y ∗N +Z∗N)

−1(YC +ZC)
]
. (21.4)

Here Y ∗N +Z∗N is the wealth at N under the optimal dynamic portfolio. The role of
(Y ∗N + Z∗N)

−1 is that of a generalized discount factor and (Y ∗N ,Z
∗
N) is then called a

numeraire portfolio at N.

Main Result

As main result, the log-optimal portfolio indeed turns out to define a numeraire
portfolio also for models with transaction costs. As in the classical case without
transactions costs, the message is the following: under very general conditions you
don’t need to change the measure for pricing a contingent claim. You can stick to the
probability measure P describing the real market and thus being open to statistical
procedures. Instead of the bank account you must use the wealth of the log-optimal
policy, starting with one unit of money as usual, as reference unit or benchmark
(in the terminology of Platen [21]). Thus we see a contingent claim C relative to
Y ∗N +Z∗N . Working with P is also extremely useful when integrating the modeling of
risk into finance as in combined finance and insurance problems, see Bühlmann and
Platen [3].

21.2 The Financial Model

The bond with prices Bn, n = 0, . . . ,N, will be described by positive deterministic
interest rates rn−1≥ 0 and the stock with prices Sn, n = 0, . . . ,N, will be described
by the relative return process consisting of positive independent random variables
{Rn−1,n = 1, . . . ,N}. Let B0 = 1 and S0 > 0 be deterministic. Then

Bn = Bn−1rn, B−1
n Sn = B−1

n−1Sn−1Rn, n = 1, . . . ,N. (21.5)

We write F = {Fn,n = 0, . . . ,N} for the filtration generated by {Rn,n = 1, . . . ,N}
where F0 is trivial and F = FN .

528 J. Sass and M. Schäl

A trading strategy is given by a real valued F-adapted stochastic process {Δn,0≤
n < N} describing the amount of money (wealth) invested in the stock. For the
transaction Δn, the total cost K(Δn) with transaction costs 0≤ μ < 1, λ ≥ 0 has to
be paid, where

K(θ) := (1+λ)θ for θ ≥ 0, K(θ) := (1−μ)θ for θ ≤ 0. (21.6)

A trading strategy will define a dynamic portfolio {(Yn,Zn),0 ≤ n ≤ N} describing
the wealth {Yn} on the stock account and the wealth {Zn} on the bank account. We
get the budget equations

Yn = Y n−1rnRn, Zn = Zn−1rn (21.7)

Y n−1 = Yn−1 +Δn−1, Zn−1 = Zn−1−K(Δn−1), (21.8)

where Y n−1 and Zn−1 are the wealth on the stock account and the bank account after
trading. We consider self-financing trading strategies where no additional wealth is
added or consumed. Then we have K(y) ≥ y and K(αy) = αK(y) (positive homo-
geneity).

We will only consider admissible trading strategies where the investor stays sol-
vent at any time in the following sense:

(a) YN +ZN > 0 and (b) Zn−K(−Yn)> 0 for n < N. (21.9)

Note that (21.9) implies Yn +Zn > 0 for n≤ N.

21.3 The Markov Decision Model

To ease notation we shall now assume rn = 1 and thus Bn = 1, 1 ≤ n ≤ N. This a
usual assumption and means that one uses directly discounted quantities as B−1

n Sn

and B−1
n Bn = 1 instead of Sn and Bn.

We will work with a Markov decision process where the state is described by
(y,z) where y denotes the wealth on the stock account and z the wealth on the bank
account.

Definition 21.3.1.

a. The state space at n is SN := {(y,z) : y+ z > 0} for n = N and S := {(y,z) :
z−K(−y)> 0}= {(y,z) : (1−μ)y+ z > 0,(1+λ)y+ z > 0} for n < N.

b. An action θ will denote the transaction describing the amount of money
(wealth) invested in the stock. The set of admissible actions will be defined
below.

c. The law of motion is defined by the budget Eqs. (21.7) and (21.8) where {Rn,n=
1, . . . ,N} are independent (but not necessarily identically distributed) random
variables. Thus, given the state (y,z) and the action θ at n− 1, the distribution
of the state at n is that of

((y+θ)Rn,z−K(θ)) .

21.3 The Markov Decision Model 529

SN is called the solvency region at stage N and S is called the solvency region
at all stages n < N. Obviously SN is defined as S replacing (λ ,μ) by (0,0). Thus,
SN and S are open convex cones and the boundaries are formed by half-lines. The
condition (21.9) can be written as (YN ,ZN)∈ SN and (Yn,Zn)∈ S for n < N. We will
make the following assumptions on Rn.

Assumption 21.3.2. We assume for n = 1, . . . ,N that Rn is bounded by real con-
stants R, R with

(R1) 0 < R≤ Rn ≤ R,

(R2) R < 1−μ , 1+λ < R,

(R3) E[(Rn−R)−1] = E[(R−Rn)
−1] = ∞.

For convenience, we omit the index n for R, R. Assumption (R3) implies that R,
R are in the support of Rn. Then (R2) implies a no-arbitrage condition, i.e., there
is a chance that one can loose money and that one can win money when investing
in the stock. Assumption (R3) is by far not necessary. Indeed, one only needs that
E[(Rn−R)−1] and E[(R−Rn)

−1] are big enough. But it is complicated to quantify
this property for each stage. Assumption (R3) is satisfied if P(Rn = r)> 0 for r = R,
R or if Rn has the uniform distribution on [R,R].

Definition 21.3.3. Γ := {(y,z) : (yr,z) ∈ S for R ≤ r ≤ R} and ΓN are the pre-
solvency regions where ΓN is defined as Γ replacing S with SN and thus (λ ,μ)
by (0,0).

Obviously ΓN contains all states at time N−1 after trading such that the system is
in SN at time N for every possible value r of RN . Assumption (R2) now guarantees
that ΓN ⊂ S and one can move from any state (y,z) ∈ S \ΓN to a state (y+ θ ,z−
K(θ)) ∈ ΓN by buying (θ > 0) or selling (θ < 0).

Lemma 21.3.4. Γ = {(y,z) : (1− μ)Ry + z > 0, (1 + λ)Ry + z > 0} and ΓN =
{(y,z) : Ry+z> 0, Ry+z> 0}. Γ and ΓN are closed convex cones and their bound-
aries are formed by two rays.

Definition 21.3.5. The set of admissible actions θ at stage n < N − 1 will be
chosen as

A(y,z) := {θ : (y+θ ,z−K(θ)) ∈ Γ }, (y,z) ∈ S,
and at stage N−1 as AN−1(y,z) defined as A(y,z) replacing Γ with ΓN .

Thus Δn−1 ∈ A(Yn−1,Zn−1) implies (Yn,Zn) ∈ S for n < N. Important quantities
will depend on the state (y,z) only through y/(y+ z) and are thus independent of
α on the ray {(αy,αz) : α > 0}. This fact will entail an important cone structure.
Therefore we introduce the risky fraction

Πn := Yn/(Yn +Zn). (21.10)

We will restrict attention to situations where Yn +Zn is strictly positive. Then Πn is
well-defined.

530 J. Sass and M. Schäl

Convention 21.3.6. If y,z, and π appear in the same context, then we always mean
π = y/(y+ z).

By use of Assumption (R2), it is easy to prove the following lemma.

Lemma 21.3.7. There exist some functions ϑ ,ϑ : (−λ−1,μ−1)→ R such that

A(y,z) = {θ ; ϑ(π)< θ/(y+ z)< ϑ(π)}.

The same result holds for AN−1 replacing (−λ−1,μ−1) by R, i.e. (λ ,μ) by (0,0).

Then the interval (ϑ(·),ϑ(·)) will be a function of Πn for (Yn,Zn) ∈ S . Note that
ϑ(π) may be negative (if π is too large) and ϑ(π) may be positive (if π is too small).

We will use the log-utility and consider the following maximization problem:

G∗n(y,z) := sup E[log(YN +ZN) |Yn = y, Zn = z], (21.11)

where the supremum is taken over all admissible trading strategies. The expecta-
tion in (21.11) is well-defined. In fact, for given (y,z), the integrand log(YN +ZN)
is bounded from above. For that fact it is sufficient to consider the case without
transaction costs which was treated in Korn and Schäl [15, Theorem 4.12]. From
dynamic programming we know that we can restrict to Markov policies where
Δn = δn(Yn,Zn). There a trading strategy will be described by a Markov policy
{δn, n = 0, . . . ,N− 1} if the decision rule δn is a function on S with δN−1(y,z) ∈
AN−1(y,z) and δn(y,z) ∈ A(y,z) for n < N−1. Set

Gn(y,z) := E[G∗n+1(yRn+1,z)]. (21.12)

Then the following optimality equation holds:

G∗n(y,z) = max
θ

Gn(y+θ ,z−K(θ)), (21.13)

where θ runs through AN−1(y,z) for n = N− 1 and through A(y,z) for n < N− 1.
The optimality criterion states (see e.g. [1, Theorem 2.3.8]): If there are maximizers
θ ∗ = δn(y,z) such that

Gn(y+θ ∗,z−K(θ ∗)) = max
θ

Gn(y+θ ,z−K(θ)), (21.14)

then {δn} defines an optimal Markov policy.

Definition 21.3.8. We call a line {(y+ θ ,z− (1− μ)θ) : θ ∈ R} a sell-line and a
line {(y+θ ,z− (1+λ)θ) : θ ∈ R} a buy-line.

We can now state the main theorem on the structure of the optimal Markov policy.

Theorem 21.3.9. For n = N−1, . . . ,1,0 we have

a. There exist numbers −1/λ < an ≤ bn < 1/μ such that the following holds:
There exists an optimal Markov policy {δn} where {δn} is defined by

21.4 Martingale Properties of the Optimal Markov Decision Process 531

(i) δn = 0 on the no-trading cone T notr
n := {(y,z) ∈ S : an ≤ π ≤ bn},

(ii) δn(y,z) = θ < 0 on the sell cone T sell
n := {(y,z) ∈ S ; bn < π < 1/μ} such

that (y+θ ,z−(1−μ)θ) is situated on the ray {(αbn,α(1−bn)) : α ≥ 0},
(iii) δn(y,z)= θ > 0 on the buy cone T buy

n := {(y,z)∈S : −1/λ < π < an} such
that (y+θ ,z−(1+λ)θ) is situated on the ray {(αan,α(1−an)) : α ≥ 0}.

b. G∗n(αy,αz) = logα+G∗n(y,z) for α > 0 and G∗n(y,z) is concave and isotone in
each component.

c. On the sell-line through (y,z), Gn attains its maximum in a point (αbn,α(1−
bn)) for some α ∈ R. On the buy-line through (y,z), Gn attains its maximum in
a point (αan,α(1−an)) for some α ∈ R.

d. The sell cone and the buy cone (and of course the no-trading cone) are not
empty.

Condition (R3) is only used for part (d) in Theorem 21.3.9, but it will play an
important role in Sects. 21.4 and 21.5. Now the theorem has the following inter-
pretation. Selling can be interpreted as walk on a sell-line in the (y,z)-plane. For
(y,z) in the sell-cone, optimal selling then means to walk on a sell-line (starting in
(y,z)) until one reaches the boundary of the no-trading-cone. The situation for the
buy-cone is similar. T notr

n ∪{0} is a closed convex cone and T notr
n degenerates to the

Merton-line if μ = λ = 0. In the present general case the boundaries of T notr
n may

be called the two Merton-lines. The proof of the theorem is given in Appendix 21.6.
A similar result holds for the power utility function Uγ(w) = γ−1wγ , 0 �= γ < 1 (see
Sass and Schäl [23]).

21.4 Martingale Properties of the Optimal Markov Decision
Process

Given the optimal policy {δn} from Theorem 21.3.9, the initial value (y,z), and the
sequence Rn(ω), n ≥ 1, we can construct the state process (Yn(ω),Zn(ω)), n ≥ 0.
In the sequel we will only consider this process {(Yn,Zn),n = 0, . . . ,N} determined
by the optimal policy. In this section we want to prove a martingale property of the
optimal Markov decision process which is important for the financial application. In
the model without transaction costs, {(Yn +Zn)

−1} is a martingale. In the presence
of transaction costs one has to modify Yn by a factor ρn which is close to one if the
transaction costs are small. Our main goal will be to prove that {(ρnYn +Zn)

−1} is
a martingale then.

Besides the risky fraction Πn we will consider the risky fraction after trading Π n

defined by

Π n := Y n/(Y n +Zn). (21.15)

Further we introduce

Π̂(π,r) :=
πr

πr+1−π
. (21.16)

532 J. Sass and M. Schäl

Then we obtain from Theorem 21.3.9:

Π n = 1{Πn≤an}an +1{an<Πn<bn}Πn +1{Πn≥bn}bn (21.17)

Πn+1 = Y nRn+1/(Y nRn+1 +Zn) = Π̂(Πn,Rn+1). (21.18)

By the definition of (Yn,Zn) above, we know that (21.11) becomes

G∗n(y,z) = E[log(YN +ZN) |Yn = y,Zn = z]. (21.19)

Then we have G∗N−1(y,z) = GN−1(y,z) for (y,z) in the no-trading cone aN−1 ≤ π ≤
bN−1 where

GN−1(y,z) = E[log(yRN + z)]. (21.20)

Definition 21.4.1. We define HN := YN +ZN = ρNYN +ZN , where ρN := 1, and for
n = N−1, . . . ,0

ρn := E[ρn+1Rn+1H−1
n+1 |Fn]/E[H−1

n+1 |Fn],

Hn := ρnYn +Zn.

Remark 21.4.2. In Definition 21.4.1, ρn is well-defined since Hn+1 is positive and
bounded away from zero given (Y n,Zn) = (y,z) ∈ ΓN (and Γ , respectively).

Lemma 21.4.3. One can write ρn = ρ̂n(Πn) for some function ρ̂n, i.e. ρn depends
on the history only through Πn.

a. For an ≤ π ≤ bn

ρ̂n(π) = E[ρ̂n+1(Π̂(π,Rn+1))Rn+1H−1
n+1]/E[H−1

n+1],

where Hn+1 = ρ̂n+1(Π̂(π,Rn+1))π Rn+1 +1−π .
b. For π ≤ an we have ρ̂n(π) = ρ̂n(an).
c. For π ≥ bn we have ρ̂n(π) = ρ̂n(bn).

Proof. For n = N we set ρ̂N = 1. For the induction step n+ 1→ n let Π n = π and
Y n + Zn = x be fixed. Then ρn = E[ρ̂n+1(Π̂(π,Rn+1)Rn+1H−1

n+1 |Fn]/E[H−1
n+1 |Fn],

where Hn+1 = ρ̂n+1(Πn+1)Yn+1 + Zn+1 = x
(
ρ̂n+1(Π̂(π,Rn+1))π Rn+1 +1−π

)
.

Thus ρn is in fact a function of Π n = π and thus ρ̂n a function of Πn.
Now (b) and (c) follow in view of (21.17). ��

Lemma 21.4.4. ρ̂n is continuous.

Proof. We know that ρN ≡ 1 is continuous. We will prove now that ρ̂n is continuous
if ρ̂n+1 is continuous. By Lemma 21.4.3(b), (c), ρ̂n is continuous for π ≤ an and for
π ≥ bn. For an ≤ π ≤ bn the statement follows from Lemma 21.4.3(a), since Π̂(π,r)
is continuous in π . ��

21.5 Price Systems and the Numeraire Portfolio 533

Theorem 21.4.5.

a. {H−1
n ,n = 0, . . . ,N} is a martingale,

b. 1−μ ≤ ρn ≤ 1+λ , n = 0, . . . ,N.

The proof is given in Appendix 21.6.

21.5 Price Systems and the Numeraire Portfolio

Price Systems and Martingale Measures Q

In this section discount factors play an important role. Then the theory seems to
become more transparent if we write the discount factor B−1

n explicitly. We are in-
terested in an alternative probability measure Q with density q = dQ/dP w.r.t P,
where Q has the same null sets as P, i.e. Q and P are equivalent. Then we have

q > 0 a.s. and E[q] = 1, Q(A) =
∫

A
qdP for A ∈ F . (21.21)

Now consider a contingent claim (YC,ZC) maturing in N and split into a contingent
claim YC for the stock account and a contingent claim ZC for the bank account. We
want to find a price pr(YC,ZC) for (YC,ZC) and will use the following approach
(ansatz) if (YC,ZC) is bounded or if YC +ZC ≥ 0:

pr(YC,ZC) = EQ
[
B−1

N (YC +ZC)
]
= E

[
qB−1

N (YC +ZC)
]
. (21.22)

Theorem 21.5.1. pr(·) as given by (21.22) defines a price system, i.e. one has
pr(YC,ZC)> 0 for any (YC,ZC) with the properties

YC +ZC ≥ 0 a.s., P(YC +ZC > 0)> 0. (21.23)

The proof of Theorem 21.5.1 is given by Kusuoka [18] for finite probability
spaces. There it is shown that the form (21.22) is also necessary for a consistent
price system as defined in Theorem 21.5.3 below. See also Sass and Schäl [23]. We
will write

qn := E[q |Fn]. (21.24)

Then {qn} is the density process and is a martingale under P by definition. Now we
define {ρn} given q = qN , ρN = 1. It will turn out that the process will agree with
{ρn} as defined in Sect. 21.4.

Definition 21.5.2. qnρnB−1
n Sn := E[qB−1

N SN |Fn], (i.e. ρn = EQ[Rn+1 · · ·RN |Fn]).

The equation in parentheses follows from Bayes’ rule. Then {qnρnB−1
n Sn} is a

martingale under P by definition which also means, in view of Bayes’ rule, that
{ρnB−1

n Sn} is a martingale under Q. If there are no transaction costs, i.e. λ = μ = 0,

534 J. Sass and M. Schäl

we have under condition (21.25) below ρn = 1, 1 ≤ n ≤ N. Then the discounted
stock price process {B−1

n Sn} forms a martingale under the probability measure Q
with density q and density process {qn}. That is the reason for calling Q a martin-
gale measure then.

Now we define the notion of a consistent price system and give a condition in
terms of {ρn}.

Theorem 21.5.3. Assume for 1≤ n≤ N

1−μ ≤ ρn ≤ 1+λ . (21.25)

Then the price system pr(·) is consistent, i.e.

pr(YC,ZC) = 1 for (YC,ZC) = (0,BN); (21.26)

(1−μ)S0 ≤ pr(YC,ZC)≤ (1+λ)S0 for (YC,ZC) = (SN ,0); (21.27)

pr(YC,ZC)≤ 0 for (YC,ZC) = (YN ,ZN), (21.28)

where (YN ,ZN) is the terminal portfolio under an arbitrary admissible policy with
start in (Y0,Z0) = (0,0).

Relation (21.26) is natural. If one starts with 1 unit of bond, then one can be sure
to have BN on the bank account at N. Relation (21.27) is also natural. Let us only
consider the case λ = μ = 0 without transaction costs. If one starts then with 1 unit
of stock, then one can be sure to have SN on the stock account at N. Relation (21.28)
excludes a sort of arbitrage opportunity. Starting with nothing one can never reach
a portfolio with a positive price. The proof of Theorem 21.5.3 is given by Kusuoka
[18] for finite probability spaces. There it is shown that (21.25) is also necessary for
a consistent price system.

The Numeraire Portfolio

Now we can explain the main purpose of the paper in terms of this section. We study
the following problem. Can we replace the discount factor B−1

N by a more general
one, H−1

N , where HN is the terminal total wealth under some traded portfolio, and
then keep to the original (physical) probability measure in place of Q. Thus we want
find an admissible policy with start in (Y0,Z0) and with total wealth HN = YN +ZN

at N such that E[qB−1
N (YC +ZC)] = E[H−1

N (YC +ZC)]. Then we have to define q by

B−1
N q = c(YN +ZN)

−1 = cH−1
N , c = E[H−1

N BN]
−1, (21.29)

where the case c = 1 is of particular interest.
From now on, we return to the setting where Bn ≡ 1.

Lemma 21.5.4. The definition of {ρn} in Sect. 21.4 agrees with Definition 21.5.2
and we have qn = cH−1

n .

We will require that c = 1 in Corollary 21.1 below.

21.6 Conclusive Remarks 535

Proof. Let (YN ,ZN) be the portfolio at N under the optimal policy as in Sect. 21.4.
Set HN := YN + ZN = ρNYN + ZN , ρn := E[ρn+1Rn+1H−1

n+1 |Fn]/E[H−1
n+1 |Fn] as in

Definition 21.4.1 and define Hn := ρnYn +Zn, n < N. Then we can conclude from
Theorem 21.4.5(a) that

{H−1
n } is a martingale. (21.30)

Upon setting q = qN := cH−1
N as above, we obtain qn = E[cH−1

N |Fn] = cH−1
n and

ρnH−1
n = ρnE[H−1

n+1 |Fn] = E[ρn+1Rn+1H−1
n+1 |Fn]. This yields

qnρnSn = cH−1
n ρnSn = cSn E[ρn+1Rn+1H−1

n+1 |Fn]

= cE[ρn+1Sn+1H−1
n+1 |Fn] = E[qn+1ρn+1Sn+1 |Fn].

Thus {qnρnSn} is a martingale under P and the definition of ρn in Sect. 21.4 agrees
with Definition 21.5.2. ��

Now we are allowed to apply Theorem 21.4.5(b) and we get condition (21.25).
Hence Theorem 21.5.3 applies and we know that pr(YC,ZC) = c [H−1

N (YC +ZC)] is
a consistent price system. For c we have 1 = E[q] = cE[H−1

N] = cH−1
0 by (21.30).

Thus

c = H0 = ρ0Y0 +Z0. (21.31)

For models without transaction costs, one usually starts with one unit of money to
get the discount factor. If we do the same in the present case, then we start with
(Y0,Z0) = (0,1) and thus with c = H0 = 1. Thus we get the following corollary as
main result.

Corollary 21.1. Let {(Yn,Zn)} be generated by an optimal policy as in Sect. 21.4.
If we start with (Y0,Z0) = (0,1) or more generally with H0 = ρ0Y0 +Z0 = 1, then a
consistent price system is given by

pr(YC,ZC) = E[(YN +ZN)
−1(YC +ZC)].

Definition 21.5.5. In the situation of Corollary 21.1 we call the dynamic portfolio
{(Yn,Zn)} a numeraire portfolio.

21.6 Conclusive Remarks

Extension 21.6.1. A similar result can be derived for power utility Uγ(x) = xγ/γ
with U ′

γ(w) = wγ−1 and U∗
γ (w) =U ′

γ(w)w = wγ for 0 �= γ < 1, where γ = 0 would
correspond to the log-utility. When starting again with (Y0,Z0) = (0,1), one obtains
a consistent price system (see Sass and Schäl [23]) by

prγ(YC,ZC) = E[U∗
γ (YN +ZN)]

−1E[U ′
γ(YN +ZN)(Y

C +ZC)], (21.32)

where {(Yn,Zn)} now is the optimal dynamic portfolio for Uγ . Then (R3) is to be re-
placed by E[(Rn−R)γ−1] = E[(R−Rn)

γ−1] =∞. Now (21.32) formally corresponds

536 J. Sass and M. Schäl

to formula (21.2), but YN + ZN still depends on the transaction costs. On the one
hand, the power utility allows to work with a more general relative risk aversion
1− γ of the investor. On the other hand we have to work with a probability measure
Qγ �= P. In fact, we then have

Qγ(A) =
∫

qγdP, A ∈ F , and qγ = E[U∗
γ (YN +ZN)]

−1U ′
γ(YN +ZN)B̃N

if we decide for B̃−1
N as discount factor. We can choose B̃N = BN or B̃N = YN +ZN

or more generally B̃N = Y 0
N +Z0

N , where {(Y 0
n ,Z

0
n)} is the dynamic portfolio under

any admissible policy {δ 0
n }.

Algorithm 21.6.2. The pricing of financial derivatives under proportional transac-
tion costs can now be done efficiently as follows. First, by backward induction one
can find numerically the boundaries aN−1, . . . ,a0 and bN−1, . . . ,b0 of the no-trade-
region which exist according to Theorem 21.3.9(c). Second, having computed these
constants, the dynamic portfolio (Yn,Zn), n = 0, . . . ,N, under the optimal policy can
then be computed forwardly for any path of the stock prices. These computations
are independent of the specific claims we want to price. For any financial derivative
C = (YC,ZC) we find a price according to Corollary 21.1. Since this price system
is consistent, the resulting price does not lead to arbitrage. This price is preference
based. Since it depends on the log-optimal portfolio it corresponds to an investor
with logarithmic utility which has relative risk aversion 1. Different relative risk
aversions 1− γ > 0 can be covered by using power utility functions as in Exten-
sion 21.6.1. Also for these the computation is efficient in the sense that the optimal
policy can be computed first and then prices for any claim can be found by taking
expectations as in (21.32).

The formulation of a utility optimization problem in discrete time 0≤ n≤ N for
a financial market as a Markov decision model is now classical. This is also true
for models with transaction costs (see Kamin [12], Constantinides [5]). However
we add some new features. In particular, we use the first order condition of the
optimal action as for (21.2). For that argument, it is necessary that the optimal action
lies in the interior of the action space which is guaranteed by working with open
action spaces. In fact, the first order condition leads to the martingale property in
Theorem 21.4.5(a).

In Lemma 21.5.4, {H−1
n } is identified as the density process {qn} and we see that

the martingale property for {H−1
n } must necessarily hold. Moreover this property is

also used in Lemma 21.5.4 to show that {H−1
n ρnSn} is a martingale as well.

The paper treats a financial model with one stock (and one bond). But models
with d stocks (d > 1) and transition costs play an important role and one can ask for
extensions of the present results to models with several stocks. Numerical results
show that for d > 1 the structure of the optimal policy may be complicated. Without
knowing the structure of the optimal policy, one can however prove by use of the
methods of Kallsen and Muhle-Karbe [11] that the main result remains true for
models where the underlying probability space is finite. In fact, for such models the
optimal policy defines a dynamic portfolio which is a numeraire portfolio. It seems
to be unknown whether this extends to infinite probability spaces.

Appendices 537

Appendices

Proof of Theorem 21.3.9

We will use backward induction in the dynamic programming procedure. Thus stage
N−1 will be the stage of the induction start. We set

gN(y,z) := log(y+ z) for (y,z) ∈ SN ,

GN−1(y,z) := E[gN(yRN ,z)] for (y,z) ∈ ΓN .

For the induction, we now consider the following more general optimization prob-
lem: The gain function g(y,z) is any function on SN satisfying the following hy-
potheses:

g is isotone in each component, concave, and g(αy,αz)= log(α)+g(y,z) for α>0.
(21.33)

Moreover we will use the following technical assumption:

For 0 �= (y′,z′) ∈ ∂SN there is a neighborhood N of (y′,z′) (21.34)

such that g(y,z) = log(y+ z)+ const on N .

Obviously (21.33) and (21.34) generalize the case where g = gN . Define the objec-
tive function by G(y,z) := E[g(yRN ,z)], (y,z) ∈ ΓN ,

G∗(y,z) := sup
θ∈AN−1(y,z)

G(y+θ ,z−K(θ))

= sup
ϑ(π)<ϑ<ϑ(π)

G(y+ϑ(y+ z),z−K(ϑ(y+ z)))

for (y,z) ∈ S . From dynamic programming we know that θ ∗ = δ ∗(y,z) is optimal
in state (y,z) at stage N − 1 if G∗(y,z) = G(y + θ ∗,z−K(θ ∗)) where G∗ is the
optimal gain function at stage N− 1 for the special case “g = gN”. G∗ will inherit
the properties of g.

Lemma 21.7.1.

a. G(y,z) is concave and isotone in each component and

G(αy,αz) = log(α)+G(y,z) for α > 0.

b. (Concavity and Isotony of AN−1)

(i) If θi ∈ AN−1(yi,zi) , γi > 0, i = 1,2, γ1 + γ2 = 1, then ∑γiθi ∈
AN−1(∑γi(yi,zi)).

(ii) AN−1 is increasing in each component, i.e., AN−1(y1,z1) ⊆ AN−1(y2,z2)
for y1 ≤ y2, z1 ≤ z2.

538 J. Sass and M. Schäl

c. G∗(αy,αz) = log(α)+G∗(y,z) for α > 0.

The simple proof is omitted. It makes use of the convexity of K and the relation

θ ∈ AN−1(αy,αz) if and only if θ ∈ {ϑ α(y+ z) : ϑ(π)< ϑ < ϑ(π)}.

The hypothesis (21.33) for G∗ in place of g will now follow from the following fact.

Proposition 21.7.2. G∗(y,z) is concave and isotone in each component.

The arguments of the proof are standard in dynamic programming (see Bäuerle
and Rieder [1]). The proof of Lemma 21.7.1(c) (also standard) would show that αθ ∗
is a maximizer for

G∗(αy,αz) = sup
θ∈AN−1(αy,αz)

G(αy+θ ,αz−K(θ)),

if θ ∗ is a maximizer for G∗(y,z). Therefore we can restrict attention to the case y+
z = 1 and we will consider (y,z) = (π,1−π) ∈ S . Now fix some π , say π = 1

2 , and
consider the following sell-line �sell and buy-line �buy in the (y,z)-plane parametrized
by ϑ :

�sell =

{(
1
2
+ϑ ,

1
2
− (1−μ)ϑ

)
: ϑ ∈ R

}
,

�buy =

{(
1
2
+ϑ ,

1
2
− (1+λ)ϑ

)
: ϑ ∈ R

}
.

Proposition 21.7.3. The maxima of G on �sell∩ΓN and on �buy∩ΓN are attained.

Proof. (i) We will only consider �sell and set R := RN . We know that (yN ,zN) :=
(1

2 +ϑ , 1
2 − (1−μ)ϑ) ∈ ∂ΓN where ϑ := ϑ(1

2). Now set s := ϑ −ϑ < 0 and define
the concave function

I(ϑ) := G(
1
2
+ϑ ,

1
2
− (1−μ)ϑ) = I(s+ϑ) = E[g((yN + s)R,zN− (1−μ)s)].

We will show below that the one-sided derivative d−
dϑ I(ϑ) = d−

ds I(s+ϑ) is negative
if ϑ is close to ϑ . This fact implies that I(ϑ) is decreasing if ϑ approaches ϑ and
thus I(ϑ) cannot be close to sup I. We only consider the case where yN > 0, zN < 0.
A similar argument will hold for the other boundary point of �sell.
(ii) Now we study d−

ds I(s + ϑ) = E[d−
ds g((yN + s)R,zN − (1− μ)s)], where the

equality follows from the monotone convergence theorem and the concavity. If
0 < η < yN ∧ (1− μ − R) is small, then ((yN + s)r,zN − (1− μ)s) is close to
(yNR,zN) ∈ ∂SN for −η < s < 0 and R ≤ r ≤ R+η . By hypothesis (21.34) we
then may assume that

g(y,z) = log(y+ z)+ const for (y,z) = ((yN + s)r,zN− (1−μ)s). (21.35)

Appendices 539

In order to use Fatou’s lemma we will show that d−
ds g((yN + s)R,zN − (1− μ)s) is

bounded from above by some c, say. Indeed we know from (21.33) that

g((yN + s)r,zN− (1−μ)s) = log((yN + s)r)+g(1,q(s)/r)

for q(s) := (zN− (1−μ)s)/(yN + s). Note that q(s) is decreasing. Now g(1,q(s)/r)
inherits this property since g is increasing; therefore its one-sided derivative d−

ds is
bounded from above by zero. The derivative log((yN + s)r) is obviously bounded
from above. Now we can conclude

limsup
ϑ→ϑ

d−

dϑ
I(ϑ)≤ E[limsup

s↗0

d−

ds
g((yN + s)R,zN− (1−μ)s)]≤ A+cP(R > R+η),

where A := E
[
1{R≤R+η}(yNR+ zN)

−1(R− (1−μ))
]

in view of (21.35). There we
have R− (1−μ)≤ (R+η)− (1−μ)≤ R− (1−μ)+η < 0. Now (yN ,zN) ∈ ∂ΓN

implies RyN + zN = 0 and thus (yNR+ zN)
−1 = (yN(R−R))−1. From (R3) we then

know that E[1{R≤R+η}(yN R+ zN)
−1] = ∞. This finally implies A =−∞. ��

Definition 21.7.4. Let (y−,z−) and (y+,z+) be maximum points of G on �sell ∩ΓN

and �buy∩ΓN , respectively. If there is more than one, define (y−,z−) (resp. (y+,z+))
such that the y-value y− is maximal (resp. y+ is minimal). Set a := y+/(y+ + z+),
b := y−/(y−+ z−).

Then in view of Lemma 21.7.1 we have for each α > 0

G(αy−,αz−) ≥ G(αy−+θ ,αz−− (1−μ)θ) for all θ and “>” if θ > 0

(21.36)

G(αy+,αz+) ≥ G(αy++θ ,αz+− (1+λ)θ) for all θ and “>” if θ < 0.

Lemma 21.7.5. a≤ b.

Since the proof is similar to the proofs in the literature (Sass and Schäl [23]
applies literally), it will be omitted. We will now study the following non-empty
cones.

Definition 21.7.6. T sell := {(y,z) ∈ S ; b < π < 1/μ} ,
T buy := {(y,z) ∈ S ;−1/λ < π < a} ,
T notr := {(y,z) ∈ S ; a≤ π ≤ b}= S \ (T sell∪T buy) .

By the definition of y±, the interval [a,b] is chosen as large as possible. Thus one
does not need to trade under the optimal policy if it is not absolutely necessary.

Proposition 21.7.7. For (y,z) ∈ T notr, it is optimal not to buy and not to sell.
For (y,z) ∈ T sell it is optimal to sell |θ−| where θ− = δ ∗(y,z) is defined by (21.37)
below.
For (y,z) ∈ T buy it is optimal to buy θ+ where θ+ = δ ∗(y,z) is defined by (21.38)
below.

540 J. Sass and M. Schäl

Proof. If (y,z) ∈ T sell, then

(y+θ−,z− (1−μ)θ−) = α ′(b,1−b) = α(y−,z−) ∈ α �sell (21.37)

for some α , α ′ > 0, θ− < 0. As a consequence

G(y+θ−,z− (1−μ)θ−) = G(αy−,αz−)

= max
θ

G(αy−+θ ,αz−− (1−μ)θ)

= max
θ ′

G(y+θ ′,z− (1−μ)θ ′)

≥ max
θ ′≥0

G(y+θ ′,z− (1+λ)θ ′)

in view of Lemma 21.7.1(c) and (21.36). Since

G∗(y,z) = max{sup
θ≥0

G(y+θ ,z− (1+λ)θ), sup
θ≤0

G(y+θ ,z− (1−μ)θ)},

we conclude that G(y+ θ−,z− (1− μ)θ−) = G∗(y,z). Hence it is optimal to sell
|θ−| (i.e. buy θ− < 0) in state (y,z).

Now let (y,z) /∈ T sell Then (y,z) = (αy−+θ−,αz−−(1−μ)θ−) for some α > 0,
θ− ≤ 0. Now G(αy−+θ ,αz−−(1−μ)θ) is concave in θ . Then for ε > 0 we know
that G(αy−,αz−) ≥ G(y,z) ≥ G(y− ε ,z− (1− μ)(−ε)) Therefore “no selling” is
as least as good as “selling any amount ε” in state (y,z).

Analogous results hold for T buy where we define θ+ for (y,z) ∈ T buy by

(y+θ+,z− (1+λ)θ+) = α ′(a,1−a) = α(y−,z−) (21.38)

for some α , α ′ > 0, θ+ > 0. ��

Corollary 21.2.

a. Let (y,z) be in the closure of T sell. Then

G∗(y,z) = log((1−μ)y+ z)+G(b,1−b)− log(1−μb).

b. Let (y,z) be in the closure of T buy. Then

G∗(y,z) = log((1+λ)y+ z)+G(a,1−a)− log(1+λa)

c. For (y,z) ∈ T notr we have G∗(y,z) = G(y,z).

Proof. We only consider (a). By continuity it is sufficient to consider (y,z) ∈ T sell.
Then it is optimal to sell |θ−| yielding according to (21.37)

G∗(y,z) = G(y+θ−,z− (1−μ)θ−) = G(αb,α(1−b)) = log(α)+G(b,1−b).

From (y+θ−,z−(1−μ)θ−) = (αb,α(1−b)) we get α = ((1−μ)y+z)/(1−μb).
��

Appendices 541

From the corollary we conclude that G∗ and S satisfy hypothesis (21.34) in place
of g and SN .

Now we can start the induction step of dynamic programming in order to find an
optimal trading strategy {δn, 0 ≤ n < N} which is known to be Markovian, i.e. δn

is a function of the state (y,z) ∈ S in stage n. Upon choosing g = gN , G = GN−1

(defined as above), we obtain δN−1 := δ ∗ where δ ∗ is also defined as above. As G∗

satisfies the hypothesis imposed on g, we can now repeat the optimization step, if
we replace SN by S and AN−1 by A(y,z) := {θ : (y+θ ,z−K(θ)) ∈ Γ }.

Proof of Theorem 21.4.5

From now on we use the notion martingale for a martingale under P (and not under
Q) and we write En[·] := E[· |Fn] for the conditional expectations given R1, . . . ,Rn.

Induction Start

Set R = RN , a = aN−1 , b = bN−1, Ĝ(y,z) = GN−1(y,z) = E[log(yR+ z)].

Lemma 21.7.8. ∂
∂θ Ĝ(y+θ ,z− kθ)|θ=0 = E[(R− k)(yR+ z)−1] for k > 0.

Proof. We will prove

∂±

∂θ
Ĝ(y+θ ,z− kθ)|θ=0 = E[(R− k)(yR+ z)−1] for k > 0. (21.39)

We know that log((y+θ)R+ z−kθ) and thus Ĝ(y+θ ,z−kθ) are concave in θ . In
limθ→0±

1
θ
(
Ĝ(y+θ ,z− kθ)− Ĝ(y,z)

)
we only need to interchange lim and expec-

tation which can be justified by monotone convergence. ��

Lemma 21.7.9. Let (YN−1,ZN−1) = (y,z), a≤ π ≤ b. Then

a. E[R(yR+ z)−1]≤ (1+λ)E[(yR+ z)−1];
b. E[R(yR+ z)−1]≥ (1−μ)E[(yR+ z)−1].

Proof. (a) In (y,z) “not to order” is at least as good as “to buy”, hence

0≥ 1
θ
(
Ĝ(y+θ ,z− (1+λ)θ)− Ĝ(y,z)

)
for θ > 0

by the optimality criterion (21.14). Part (b) is similar. ��

Lemma 21.7.10 (First Order Condition).

a. E[R(bR+1−b)−1] = (1−μ)E[(bR+1−b)−1];
b. E[R(aR+1−a)−1] = (1+λ)E[(aR+1−a)−1].

542 J. Sass and M. Schäl

Proof. (a) By Theorem 21.3.9, (b,1−b) is a maximum point on the sell-line through
(b,1−b) and (a,1−a) is a maximum point on the buy-line through (a,1−a). Now
Lemma 21.7.8 applies. ��

Lemma 21.7.11.

a. 1−μ ≤ ρN−1 ≤ 1+λ ;
b. ρ̂N−1(a) = 1 + λ = ρ̂N−1(π) for π ≤ a; ρ̂N−1(b) = 1− μ = ρ̂N−1(π) for

π ≥ b.

Proof. In view of Lemma 21.4.3(b), (c), we only consider the case (YN−1,ZN−1) =
(y,z), a≤ π ≤ b. Then we have HN = yR+ z

We get ρ̂N−1(π) = E[RH−1
N]/E[H−1

N] from Lemma 21.4.3 and thus statement (a)
from Lemma 21.7.9. In the same way we obtain (b) from Lemma 21.7.10. ��

Theorem 21.7.12.

a. EN−1[H
−1
N] = H−1

N−1 (martingale property of H−1);
b. EN−1[ρNRNH−1

N] = ρN−1H−1
N−1.

Proof. (a) We have

1 = EN−1[HNH−1
N] = EN−1[(ρNYN +ZN)H

−1
N]

= Y N−1EN−1[ρNRNH−1
N]+ZN−1EN−1[H

−1
N]

=
(
ρN−1Y N−1 +ZN−1

)
EN−1[H

−1
N]

= (ρN−1(YN−1 +ΔN−1)+ZN−1−K(ΔN−1))EN−1[H
−1
N]

= (HN−1 +ρN−1ΔN−1−K(ΔN−1))EN−1[H
−1
N].

From Lemma 21.7.11(b) we get ρN−1ΔN−1 = K(ΔN−1) which yields (a).
Part (b) follows now from the definition of ρN−1. ��

Corollary 21.3 (Induction Start). For k > 0

∂
∂θ

EN−1[G
∗
N((y+θ)RN ,z− kθ)]|θ=0 = (ρN−1− k)H−1

N−1

where G∗N(y,z) = log(y+ z).

Proof. Lemma 21.7.8 applies directly, where HN = yRN + z. ��

We thus know that the following induction hypothesis holds for n = N−1:

Induction Hypothesis 21.7.13.

i. For Yn = y, Zn = z, Πn = π

∂
∂θ

E[G∗n+1((y+θ)Rn+1,z− kθ)]|θ=0 = (ρ̂n(π)− k)H−1
n for an ≤ π < bn;

ii. ρ̂n(an) = 1+λ = ρ̂n(π) for π ≤ an; ρ̂n(bn) = 1−μ = ρ̂n(π) for π ≤ bn.

Appendices 543

Induction Step “N > n→ n−1”

We assume throughout this section that the induction hypothesis holds for n < N.
Suppose that Yn−1 = y, Zn−1 = z are given. We know that Πn = Π̂(π,Rn) where Π̂ is
defined by (21.16) and set G(y,z) := E[G∗n(yRn,z)], hence G∗n−1(y,z) = supθ G(y+
θ ,z−K(θ)), ρn := ρ̂n(πn). Then we have Hn = ρnyRn + z for an−1 ≤ π ≤ bn−1.

Proposition 21.7.14. Suppose an−1 ≤ π ≤ bn−1 and k > 0. Then

d
dθ

G(y+θ ,z− kθ)|θ=0 = En−1[(ρnRn− k)H−1
n] = (ρ̂n−1(π)− k)En−1[H

−1
n]

Proof. Let y,z be arbitrary. We consider one-sided derivatives. Since θ �→ G∗n((y+
θ)Rn,z− kθ) is concave by Theorem 21.3.9, we can interchange lim (i.e. d±

dθ) and
E[·] by the monotone convergence theorem. Consider first limθ→0+.

Then we have to study for fixed Rn = s and hence for fixed Πn = ys/(ys+ z)

lim
θ→0+

1
θ
(G∗n((y+θ)s,z− kθ)−G∗n(ys,z)) . (21.40)

Case (i, ii): πn ≥ bn or πn < an, respectively. We know (by Theorem 21.3.9) that
G∗n(ys,z) = log(�ys+ z)+const with �= 1−μ or �= 1+λ , respectively. By conti-
nuity this is also true for πn = bn and πn = an. We can write for the limit in (21.40)

d+

dθ
log(�(y+θ)s+ z− kθ)|θ=0 = (�s− k)(�ys+ z)−1

= (ρ̂n(Πn)s− k)(ρ̂n(Πn)ys+ z)−1 = (ρ̂n(Πn)s− k)H−1
n .

Case (iii) an ≤ πn < bn. Then G∗n(ys,z) = En[G∗n+1(ysRn+1,z)] by the optimality
properties (21.13), (21.14) and Theorem 21.3.9. Hence for small θ

1
θ
(G∗n((y+θ)Rn,z− kθ)−G∗n(yRn,z))

= E

[
1
θ
(
G∗n+1((y+θ)sRn+1,z− kθ)−G∗n+1(ysRn+1,z)

)
]

= sE

[
1

sθ

(
G∗n+1((ys+θs)Rn+1,z−

k
s

sθ)−G∗n+1(ysRn+1,z)

)]
.

The latter term converges for θ→0+ by Induction Hypothesis 21.7.13 (i) to
s(ρ̂n(πn)− k/s)H−1

n = (sρ̂n(πn)− k)H−1
n .

Altogether for all cases:

lim
θ→0+

1
θ
(G∗n(ys+ sθ ,z− kθ)−G∗n(ys,z)) = (ρ̂n(Πn)s− k)H−1

n .

Thus we finally obtain

lim
θ→0+

1
θ
(G(y+θ ,z− kθ)−G(y,z)) = En−1[(ρ̂n(πn) ·Rn− k)H−1

n].

The case limθ→0− is similar. ��

544 J. Sass and M. Schäl

Lemma 21.7.15. an−1 < bn−1 for (λ ,μ) �= (0,0).

Proof. We will write a = an−1, b = bn−1. We must prove that a �= b since we know
a ≤ b. Assume that a = b. Then a and b are maximum points on the buy-line and
the sell-line through (a,1− a) = (b,1− b), respectively. From Proposition 21.7.14
we then obtain for y = a = b, k ∈ {1+λ ,1−μ}

d
dθ

G(y+θ ,z− kθ)|θ=0 = En−1[(ρnRn− k)H−1
n] = 0,

hence En−1[ρnRnH−1
n] = kEn−1[H−1

n]. This equation cannot hold for two different
values of k ∈ {1+λ ,1−μ}. Thus a < b. ��
Proposition 21.7.16.

a. 1−μ ≤ ρn−1 ≤ 1+λ ;
b. ρ̂n−1(an−1) = 1+λ = ρ̂n−1(π) for π ≤ an, ρ̂n−1(bn−1) = 1− μ = ρ̂n−1(π)

for π ≥ bn.

Proof. By use of Proposition 21.7.14, the proof is similar to that of Lem-
mata 21.7.11. ��
Proposition 21.7.17. The martingale property of {H−1

n−1,H
−1
n } holds: En−1[H−1

n] =

H−1
n−1.

Proof. By use of Propositions 21.7.14 and 21.7.16, the proof is the same as the
proof of Theorem 21.7.12(a). ��

In view of Propositions 21.7.16 and 21.7.17 we thus proved Theorem 21.4.5 for
n−1 and the proof by induction is finished.

Notation

Since we have a non-stationary model and since we need some concepts (and their
notation) from finance, our notation is not always standard and we shall in this
appendix relate some of our notation to the concepts of classical MDP.

S and SN state space at time n < N and at time N, respectively,
(y,z) ∈ R2 state vector,
log(y+ z) final reward at time N depending on the final state

(YN ,ZN) = (y,z); the reward at time n < N is 0,
θ action,
E[log(y+θ)RN + z−K(θ))] expected one-step reward at time N−1 in state (y,z)

under action θ ,
A(y,z),AN−1(y,z) set of actions available in state (y,z) at time n < N

and at time N, respectively,
δn decision rule at time n,
δn(x,y) action at time n under decision rule δn if in

state (y,z),
{δ0, . . . ,δN−1}= {δn} policy with decision rule δn at time

n = 0,1, . . . ,N−1.

References 545

Further,

P(B′ ×B′′ |n,yn−1,zn−1,θn−1) =

∫

B′×B′′
P(dyn,dzn |n,yn−1,zn−1,θn−1)

= Prob
(
((yn−1 +θn−1)Rn,zn−1−K(θn−1)) ∈ B′ ×B′′

)

for measurable B′ ×B′′ ⊆ R2 is the (non-stationary) transition probability, and

E[log(YN +ZN |Yn = y,Zn = z]

is the value function at time n in state (y,z) over N−n future steps under a Markov
policy with decision rules {δ0, . . . ,δN−1}, where (Ym,Zm) for n<m≤N is described
by the random variables Rn+1, . . . ,RN according to

Ym+1 = (Ym +δm(Ym,Zm))Rm and Zm+1 = Zm−K(δm(Ym,Zm)).

Finally, the optimal value function at time n in state (y,z) over N−n future steps is

G∗n(y,z) = sup E[log(YN +ZN) |Yn = y,Zn = z],

where the supremum is taken over all admissible Markov policies.

References

1. N. Bäuerle, U. Rieder, Markov Decision Processes with Applications in Finance
(Springer, Berlin, 2011)

2. D. Becherer, The numeraire portfolio for unbounded semimartingales. Finance
Stochast. 5, 327–341 (2001)

3. H. Bühlmann, E. Platen, A discrete time benchmark approach for insurance and
finance. ASTIN Bull. 33, 153–172 (2003)

4. M.M. Christensen, K. Larsen, No arbitrage and the growth optimal portfolio.
Stoch. Anal. Appl. 25, 255–280 (2007)

5. G.M. Constantinides, Multiperiod consumption and investment behaviour with
convex transaction costs. Manag. Sci. 25, 1127–1137 (1979)

6. J. Cvitanić, I. Karatzas, Hedging and portfolio optimization under transaction
costs: a martingale approach. Math. Financ. 6, 133–166 (1996)

7. M.H.A. Davis, Option pricing in incomplete markets, in Mathematics of
Derivative Securities, ed. By M. Dempster, S. Pliska (Cambridge University
Press, Cambridge, 1997), pp. 216–226

8. M.H.A. Davis, A.R. Norman, Portfolio selection with transaction costs. Math.
Oper. Res. 15, 676–713 (1990)

9. T. Goll, J. Kallsen, A complete explicit solution to the log-optimal portfolio
problem. Adv. Appl. Probab. 13, 774–779 (2003)

546 J. Sass and M. Schäl

10. E. Jouini, H. Kallal, Martingales and arbitrage in securities markets with trans-
action const. J. Econ. Theory 66, 178–197 (1995)

11. J. Kallsen, J. Muhle-Karbe, On the existence of shadow prices in finite discrete
time. Math. Meth. Oper. Res. 73, 251–262 (2011)

12. J.H. Kamin, Optimal portfolio revision with a proportional transaction costs.
Manag. Sci. 21, 1263–1271 (1975)

13. I. Karatzas, C. Kardaras, The numéraire portfolio in semimartingale financial
models. Finance Stochast. 11, 447–493 (2007)

14. P.F. Koehl, H. Pham, N. Touzi, On super-replication in discrete time under trans-
action costs. Theory Probab. Appl. 45, 667–673 (2001)

15. R. Korn, M. Schäl, On value preserving and growth optimal portfolios. Math.
Meth. Oper. Res. 50, 189–218 (1999)

16. R. Korn, M. Schäl, The numeraire portfolio in discrete time: existence, related
concepts and applications. Radon Ser. Comput. Appl. Math. 8, 1–25 (2009). De
Gruyter

17. R. Korn, F. Oertel, M. Schäl, The numeraire portfolio in financial markets mod-
eled by a multi-dimensional jump diffusion process. Decisions Econ. Finan. 26,
153–166 (2003)

18. S. Kusuoka, Limit theorem on option replication with transaction costs. Ann.
Appl. Probab. 5, 198–121 (1995)

19. J. Long, The numeraire portfolio. J. Financ. 44, 205–209 (1990)
20. M.J.P. Magill, M. Constantinides, Portfolio selection with transaction costs. J.

Econ. Theory 13, 245–263 (1976)
21. E. Platen, A benchmark approach to finance. Math. Financ. 16, 131–151 (2006)
22. J. Sass, Portfolio optimization under transaction costs in the CRR model. Math.

Meth. Oper. Res. 61, 239–259 (2005)
23. J. Sass, M. Schäl, Numerairs portfolios and utility-based price systems under

proportional transaction costs. Decisions Econ. Finan. 37, 195–234 (2014)
24. W. Schachermayer, The fundamental theorem of asset pricing under propor-

tional transaction costs in finite discrete time. Math. Financ. 14, 19–48 (2004)
25. M. Schäl, Portfolio optimization and martingale measures. Math. Financ. 10,

289–304 (2000)
26. M. Schäl, Price systems constructed by optimal dynamic portfolios. Math.

Meth. Oper. Res. 51, 375–397 (2000)
27. S.E. Shreve, H.M. Soner, Optimal investment and consumption with transaction

costs. Ann. Appl. Probab. 4, 609–692 (1994)

Appendix A: Basic Notation for MDP

S State space
s/s A state vector/scalar, given a continuous/discrete state space
i A state, given a countable state space
r Reward
ra(s) Expected one step reward/reward rate in state s, under action a
c Costs
ca(s) Expected one step cost/cost rate in state s, under action a
a Action
A(s) Set of actions available in state s,

given a continuous/discrete state space
A(i) Set of actions available in state i,

given a countable state space
α Discount factor
δ Decision rule
δt Decision rule at time t
δt(s) Action at time t, when in state s,

given a continuous/discrete state space
π = (δ ,δ , . . .) Stationary Policy
π = (δ0,δ1,δ2, . . .) Policy with decision rule at time t = 0,1,2, . . .
Pπ One step transition probability distribution/matrix

under policy π
P(dy|(s,a)) Transition probability/distribution under action π(s) = a,

in state s
Pπ (dy|s) Transition probability distribution/matrix under policy π
p(j|i,a) Transition probability into state j, when in state i,

under action a
Qπ Transition rate (infinitesimal generator) matrix under policy π
Qa

i, j Transition rate from state i into j (countable) under action a
q(s’|(s,a)) Transition rate from a state s into a state s’ under action a,

given a continuous/discrete state space
V π

t Value function under policy π of expected cumulative
reward/costs over t steps (up to time t)

V π
t (s) Value function under policy π of expected cumulative reward

/costs over t steps (up to time t) starting in state s at time 0
V ∗t (s) or Vt(s) Optimal value function of expected cumulative reward/costs

over t steps up to time t, starting in state s at time 0
V π
α Discounted value function under policy π

V ∗α or Vα Optimal discounted value function
Gπ (s),gπ (if ergodic) Average expected reward/cost function/value under policy π
G∗(s) or G(s), g∗ or g (if ergodic) Optimal average expected reward/cost function/value
W π (s)/W ∗(s) or W (s) Expected total reward/costs, limt→∞V π

t (s), given that the
limit exists, under policy π/ an optimal policy

Hπ (s)/H∗(s) or H(s) Bias of the policy π/ an optimal policy

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4

547

Appendix B: Dichotomy and Criteria

The table below gives a compact overview of the dichotomy on Discrete or contin-
uous (time and state) modeling aspects. Here the distinction is made based upon the
natural or primary description, i.e. not on the used solution procedure e.g. as by uni-
formization. It also states the performance measure of interest and the optimization
criterion used.

© Springer International Publishing AG 2017
R.J. Boucherie, N.M. van Dijk (eds.), Markov Decision Processes in Practice,
International Series in Operations Research & Management Science 248,
DOI 10.1007/978-3-319-47766-4

549

550 Appendix B: Dichotomy and Criteria

Ch. Topic Measure Time State Criteria
R: Rewards DT: Discrete DS: Discrete Time Horizon:
C: Costs CT: Continuous CS: Continuous ITH: Infinite
O: Other FTH: Finite

Costs:
AC: Average
DC: Discounted

General theory
1 One-step R/C DT DS ITH

improvements O: Delay/Payoff AC
2 Value function approx- O: Delay/Loss DT DS ITH

imation in queueing AC
3 ADP: approximate R: Revenues DT DS FTH

dynamic programming C: Routing (ITH: DC)
4 Infinite state C CT DS ITH

queueing O: Delay AC
5 Infinite state C DT/CT DS ITH

structural properties O: Delay AC/DC
Healthcare
6 Screening and treat- O: QALY DT DS + CS FTH - ITH

ment of diseases (see chapter)
7 Breast cancer O: QALY DT DS FTH - ITH

(see chapter)
8 Patient appoint- O: Service level/ DT DS ITH

ment scheduling Overtime DC
9 Ambulance dispatching O: Late arrivals/ CT DS ITH

Response time AC
10 Blood supply O: Outdating DT DS FTH

(+ ITH: AC)
Transportation
11 Airports: noise load O: Noise Load DT CS FTH

management
12 Car park O: Imbalance CT DS FTH

13 Traffic lights O: Delays/ Queues CT DS ITH
AC

14 Electric vehicles C: Charging DT DS FTH

Production
15 Lot scheduling R: Order DT DS ITH

Acceptances AC
16 Fisheries R: Welfare/profit DT CS ITH

DC
17 Flow controllable O: Delays/workload CT DS ITH

service rates AC
Communications
18 Wireless channel O: Throughput DT DS + CS ITH

selection AC
19 Call center C: Staffing/ CT CS FTH

staffing Service level
20 Query wireless O: Freshness/ CT DS + CS ITH

sensoring Response times AC
Financial modelling
21 Financial derivatives R/C: Utility DT CS FTH

and costs DC

	Foreword
	Preface
	Part I: General Theory
	Part II: Healthcare
	Part III: Transportation
	Part IV: Production
	Part V: Communications
	Part VI: Financial Modeling
	Summarizing
	Acknowledgments

	Contents
	List of Contributors
	Part I General Theory
	1 One-Step Improvement Ideas and Computational Aspects
	1.1 Introduction
	1.2 The Average-Cost Markov Decision Model
	1.2.1 The Concept of Relative Values
	1.2.2 The Policy-Improvement Step
	1.2.3 The Odoni Bounds for Value Iteration

	1.3 Tailor-Made Policy-Iteration Algorithm
	1.3.1 A Queueing Control Problem with a Variable Service Rate

	1.4 One-Step Policy Improvement for Suboptimal Policies
	1.4.1 Dynamic Routing of Customers to Parallel Queues

	1.5 One-Stage-Look-Ahead Rule in Optimal Stopping
	1.5.1 Devil's Penny Problem
	1.5.2 A Game of Dropping Balls into Bins
	1.5.3 The Chow-Robbins Game

	References

	2 Value Function Approximation in Complex Queueing Systems
	2.1 Introduction
	2.2 Difference Calculus for Markovian Birth-Death Systems
	2.3 Value Functions for Queueing Systems
	2.3.1 The M/Cox(r)/1 Queue
	2.3.2 Special Cases of the M/Cox(r)/1 Queue
	2.3.3 The M/M/s Queue
	2.3.4 The Blocking Costs in an M/M/s/s Queue
	2.3.5 Priority Queues

	2.4 Application: Routing to Parallel Queues
	2.5 Application: Dynamic Routing in Multiskill Call Centers
	2.6 Application: A Controlled Polling System
	References

	3 Approximate Dynamic Programming by Practical Examples
	3.1 Introduction
	3.2 The Nomadic Trucker Example
	3.2.1 Problem Introduction
	3.2.2 MDP Model
	3.2.2.1 State
	3.2.2.2 Decision
	3.2.2.3 Costs
	3.2.2.4 New Information and Transition Function
	3.2.2.5 Solution

	3.2.3 Approximate Dynamic Programming
	3.2.3.1 Post-decision State
	3.2.3.2 Forward Dynamic Programming
	3.2.3.3 Value Function Approximation

	3.3 A Freight Consolidation Example
	3.3.1 Problem Introduction
	3.3.2 MDP Model
	3.3.2.1 State
	3.3.2.2 Decision
	3.3.2.3 Costs
	3.3.2.4 New Information and Transition Function
	3.3.2.5 Solution

	3.3.3 Approximate Dynamic Programming
	3.3.3.1 Post-decision State
	3.3.3.2 Forward Dynamic Programming
	3.3.3.3 Value Function Approximation

	3.4 A Healthcare Example
	3.4.1 Problem Introduction
	3.4.2 MDP Model
	3.4.2.1 State
	3.4.2.2 Decision
	3.4.2.3 Costs
	3.4.2.4 New Information and Transition Function
	3.4.2.5 Solution

	3.4.3 Approximate Dynamic Programming
	3.4.3.1 Post-decision State
	3.4.3.2 Forward Dynamic Programming
	3.4.3.3 Value Function Approximation

	3.5 What's More
	3.5.1 Policies
	3.5.2 Value Function Approximations
	3.5.3 Exploration vs Exploitation

	Appendix
	References

	4 Server Optimization of Infinite Queueing Systems
	4.1 Introduction
	4.2 Basic Definition and Notations
	4.3 Motivating Examples
	4.3.1 Optimization of a Queueing System with Two Different Servers
	4.3.2 Optimization of a Computational System with Power Saving Mode
	4.3.3 Structural Properties of These Motivating Examples

	4.4 Theoretical Background
	4.4.1 Subset Measures in Markov Chains
	4.4.2 Markov Chain Transformation
	4.4.3 Markov Decision Processes with a Set of Uncontrolled States
	4.4.3.1 Decisions Only in Subset1 Without an Effect on the Transitions to Subset2
	4.4.3.2 Decisions Only in Subset1 with an Effect on the Transitions to Subset2
	4.4.3.3 Decisions Only in Subset1 with Limited Boundary to the Other Set

	4.4.4 Infinite Markov Chains with Regular Structure
	4.4.4.1 Birth Death Process

	4.5 Solution and Numerical Analysis of the Motivating Examples
	4.5.1 Solution to the Queue with Two Different Servers
	4.5.2 Solution to the Power-Saving Model

	4.6 Further Examples
	4.6.1 Optimization of a Queuing System with Two Markov Modulated Servers
	4.6.2 Structural Properties of the Example with Markov Modulated Servers

	4.7 Infinite MDPs with Quasi Birth Death Structure
	4.7.1 Quasi Birth Death Process
	4.7.2 Solving MDPs with QBD Structure
	4.7.2.1 QBD Measures Associated Infinite Sets

	4.8 Solution and Numerical Analysis of MDPs with QBD Structure
	4.8.1 Solution of the Example with Markov ModulatedServers
	4.8.2 Markov Modulated Server with Three Background States

	4.9 Conclusion
	References

	5 Structures of Optimal Policies in MDPs with Unbounded Jumps: The State of Our Art
	5.1 Introduction
	5.2 Discrete Time Model
	5.2.1 Discounted Cost
	5.2.1.1 Value Iteration
	5.2.1.2 Roadmap to Structural Properties

	5.2.2 Approximations/Perturbations
	5.2.2.1 Type of Perturbations
	5.2.2.2 Smoothed Rate Truncation (SRT)

	5.2.3 Average Cost
	5.2.3.1 Roadmap to Structural Properties
	5.2.3.2 Examples Where the DAOE Has No Unique Solution

	5.3 Continuous Time Model
	5.3.1 Uniformisation
	5.3.2 Discounted Cost
	5.3.2.1 Roadmap to Structural Properties

	5.3.3 Average Cost
	5.3.4 Roadmap to Structural Properties
	5.3.4.1 Roadmap Summary

	5.3.5 Proofs
	5.3.6 Tauberian Theorem

	Appendix: Notation
	References

	Part II Healthcare
	6 Markov Decision Processes for Screening and Treatment of Chronic Diseases
	6.1 Introduction
	6.2 Background on Chronic Disease Modeling
	6.3 Modeling Framework for Chronic Diseases
	6.3.1 MDP and POMDP Model Formulation
	6.3.2 Solution Methods and Structural Properties
	6.3.3 Model Validation

	6.4 MDP Model for Cardiovascular Risk Control in Patients with Type 2 Diabetes
	6.4.1 MDP Model Formulation
	6.4.2 Results: Comparison of Optimal Policies Versus Published Guidelines

	6.5 POMDP for Prostate Cancer Screening
	6.5.1 POMDP Model Formulation
	6.5.2 Results: Optimal Belief-Based Screening Policy

	6.6 Open Challenges in MDPs for Chronic Disease
	6.7 Conclusions
	References

	7 Stratified Breast Cancer Follow-Up Using a Partially Observable MDP
	7.1 Introduction
	7.2 Model Formulation
	7.2.1 Optimality Equations
	7.2.2 Alternative Representation of the Optimality Equations
	7.2.3 Algorithm

	7.3 Model Parameters
	7.4 Results
	7.4.1 Sensitivity Analyses

	7.5 Conclusions and Discussion
	Appendix: Notation
	References

	8 Advance Patient Appointment Scheduling
	8.1 Introduction
	8.2 Problem Description
	8.3 Mathematical Formulation
	8.3.1 Decision Epochs
	8.3.2 State Space
	8.3.3 Action Sets
	8.3.4 Transition Probabilities
	8.3.5 Immediate Cost
	8.3.6 Optimality Equations

	8.4 Solution Approach
	8.5 Practical Results
	8.5.1 Computerized Tomography Scan Appointment Scheduling
	8.5.2 Radiation Therapy Treatment Scheduling

	8.6 Discussion
	8.7 Open Challenges
	Appendix: Notation
	References

	9 Optimal Ambulance Dispatching
	9.1 Introduction
	9.1.1 Previous Work
	9.1.2 Our Contribution

	9.2 Problem Formulation
	9.3 Solution Method: Markov Decision Process
	9.3.1 State Space
	9.3.2 Policy Definition
	9.3.3 Rewards
	9.3.3.1 Fraction of Late Arrivals
	9.3.3.2 Average Response Time

	9.3.4 Transition Probabilities
	9.3.5 Value Iteration

	9.4 Solution Method: Dynamic MEXCLP Heuristic for Dispatching
	9.4.1 Coverage According to the MEXCLP Model
	9.4.2 Applying MEXCLP to the Dispatch Process

	9.5 Results: A Motivating Example
	9.5.1 Fraction of Late Arrivals
	9.5.2 Average Response Time

	9.6 Results: Region Flevoland
	9.6.1 Analysis of the MDP Solution for Flevoland
	9.6.2 Results

	9.7 Conclusion and Discussion
	9.7.1 Further Research

	Appendix: Notation
	References

	10 Blood Platelet Inventory Management
	10.1 Introduction
	10.1.1 Practical Motivation
	10.1.2 SDP-Simulation Approach
	10.1.3 Outline

	10.2 Literature
	10.3 SDP-Simulation Approach for the Stationary PPP
	10.3.1 Steps of SDP-Simulation Approach
	10.3.2 Step 1: SDP Model for Stationary PPP
	10.3.3 Case Studies

	10.4 Extended SDP-Simulation Approach for the Non-Stationary PPP
	10.4.1 Problem: Non-Stationary Production Breaks
	10.4.2 Extended SDP-Simulation Approach
	10.4.3 Extension: Including Non-Stationary Periods

	10.5 Case Study: Optimal Policy Around Breaks
	10.5.1 Data
	10.5.2 Step I: Stationary Problem
	10.5.3 Steps II to IV: Christmas and New Year's Day
	10.5.4 Steps II to IV: 4-Days Easter Weekend
	10.5.5 Conclusions: Extended SDP-Simulation Approach

	10.6 Discussion and Conclusions
	Appendix: Notation
	References

	Part III Transportation
	11 Stochastic Dynamic Programming for Noise Load Management
	11.1 Introduction
	11.2 Noise Load Management at Amsterdam Airport Schiphol
	11.3 SDP for Noise Load Optimisation
	11.4 Numerical Approach
	11.4.1 Transition Probabilities
	11.4.2 Discretisation

	11.5 Numerical Results
	11.5.1 Probability of Exceeding the Noise Load Limit
	11.5.2 Comparison with the Heuristic
	11.5.3 Increasing the Number of Decision Epochs

	11.6 Discussion
	Appendix
	References

	12 Allocation in a Vertical Rotary Car Park
	12.1 Introduction
	12.2 Background
	12.2.1 The Car Parking Allocation Problem
	12.2.2 Markov Decision Processes

	12.3 The Markov Decision Process
	12.4 Numerical Results
	12.5 Simulation Results
	12.6 Conclusion
	Appendix
	References

	13 Dynamic Control of Traffic Lights
	13.1 Problem
	13.2 Markov Decision Process (MDP)
	13.2.1 Examples: Terminology and Notations
	13.2.2 MDP Model
	13.2.2.1 State
	13.2.2.2 Action
	13.2.2.3 State Transition Probabilities
	13.2.2.4 Contribution: Waiting Costs
	13.2.2.5 Bellman Equation
	13.2.2.6 Computational Complexity

	13.3 Approximation by Policy Iteration
	13.3.1 Policy Iteration (PI)
	13.3.2 Initial Policy: Fixed Cycle (FC)
	13.3.3 Policy Evaluation Step of FC
	13.3.4 Single Policy Improvement Step: RV1 Policy
	13.3.5 Computational Complexity of RV1
	13.3.6 Additional Iterations of PI

	13.4 Results
	13.4.1 Simulation
	13.4.2 Intersection F4C2
	13.4.3 Complex Intersection F12C4

	13.5 Discussion and Conclusions
	Appendix: Notation
	References

	14 Smart Charging of Electric Vehicles
	14.1 Introduction
	14.2 Background on DSM and PowerMatcher
	14.3 Optimal Charging Strategies
	14.3.1 MDP/SDP Problem Formulation
	14.3.2 Analytic Solution for i.i.d. Prices
	14.3.3 DP-Heuristic Strategy

	14.4 Numerical Results
	14.5 Conclusion/Future Research
	Appendix
	References

	Part IV Production
	15 Analysis of a Stochastic Lot Scheduling Problem with Strict Due-Dates
	15.1 Introduction
	15.2 Theoretical Background of the CSLSP
	15.3 Production System, Admissible Policies, and Objective Function
	15.3.1 Production System
	15.3.2 Admissible Actions and Policies
	15.3.3 Objective Function

	15.4 The Markov Decision Process
	15.4.1 Format of a State
	15.4.2 Actions and Operators
	15.4.3 Transition Matrices
	15.4.4 Further Aggregation in the Symmetric Case
	15.4.5 State Space
	15.4.6 A Heuristic Threshold Policy

	15.5 Numerical Study
	15.5.1 Influence of the Load and the Due-Date Horizon
	15.5.2 Visualization of the Structure of the Optimal Policy

	15.6 Conclusion
	Appendix: Notation
	References

	16 Optimal Fishery Policies
	16.1 Introduction
	16.2 Model Description
	16.2.1 Biological Dynamics; Growth of Biomass
	16.2.2 Economic Dynamics; Harvest and InvestmentDecisions
	16.2.3 Optimization Model
	16.2.3.1 Decisions at Level 2
	16.2.3.2 Decisions at Level 1

	16.3 Model Analysis
	16.3.1 Bounds on Decision and State Space
	16.3.2 Equilibrium State Values in a Deterministic Setting

	16.4 Discretization in the Value Iteration Approach
	16.4.1 Deterministic Elaboration
	16.4.2 Stochastic Implementation
	16.4.3 Analysis of the Stochastic Model

	16.5 Conclusions
	Appendix: Notation
	References

	17 Near-Optimal Switching Strategies for a Tandem Queue
	17.1 Introduction
	17.2 Model Description: Single Service Model
	17.3 Structural Properties of an Optimal Switching Curve
	17.4 Matrix Geometric Method for Fixed Threshold Policies
	17.5 Model Description: Batch Transition Model
	17.5.1 Structural Properties of the Batch Service Model
	17.5.2 Matrix Geometric Method with Batch Services

	17.6 Simulation Experiments
	17.7 Conclusion
	References

	Part V Communications
	18 Wireless Channel Selection with Restless Bandits
	18.1 Introduction
	18.2 Reward-Observing Restless Multi-Armed Bandits
	18.3 Index Policies and the Whittle Index
	18.4 Numerical Illustration and Evaluation
	18.5 Literature Survey
	References

	19 Flexible Staffing for Call Centers with Non-stationary ArrivalRates
	19.1 Introduction
	19.2 Problem Formulation
	19.3 Solution Approach
	19.4 Numerical Experiments
	19.4.1 Constant Arrival Rate
	19.4.1.1 Value of Flexibility

	19.4.2 Time-Dependent Arrival Rate
	19.4.2.1 Optimal Permanent Agents

	19.4.3 Unknown Arrival Rate

	19.5 Conclusion and Discussion
	Appendix: Exact Solution
	References

	20 MDP for Query-Based Wireless Sensor Networks
	20.1 Problem Description
	20.2 Model Formulation
	20.3 Continuous Time Markov Decision Process with a Drift
	20.4 Exponentially Uniformized Markov Decision Process
	20.5 Discrete Time and Discrete Space Markov Decision Problem
	20.6 Standard Markov Decision Process
	20.7 Fixed Assignment Policies
	20.7.1 Always Assign Queries to the DB
	20.7.2 Always Assign Queries to the WSN

	20.8 Numerical Results
	20.8.1 Performance of Fixed Policies vs. Optimal Policy
	20.8.2 Optimal Policy Under Different Values of the Uniformization Parameter

	20.9 Conclusion
	Appendices
	References

	Part VI Financial Modeling
	21 Optimal Portfolios and Pricing of Financial Derivatives Under Proportional Transaction Costs
	21.1 Introduction
	21.2 The Financial Model
	21.3 The Markov Decision Model
	21.4 Martingale Properties of the Optimal Markov Decision Process
	21.5 Price Systems and the Numeraire Portfolio
	21.6 Conclusive Remarks
	Appendices
	References

	Appendix A: Basic Notation for MDP
	Appendix B: Dichotomy and Criteria

