Chapter 9
Imbalanced Multi-instance Data

Abstract Class imbalance is widely studied in single-instance learning and refers
to the situation where the data observations are unevenly distributed among the
possible classes. This phenomenon can present itself in MIL as well. Section9.1
presents a general introduction to the topic of class imbalance, list the types of
solutions to deal with it, and the appropriate performance metrics. In Sect.9.2, we
recall a popular single-instance method addressing class imbalance. We provide a
detailed specification of multi-instance class imbalance in Sect.9.3 and discuss its
solutions in Sect. 9.4 on resampling methods and in Sect. 9.5 on custom classification
methods. Section 9.6 presents the experimental analysis accompanying this chapter.
Some summarizing remarks are listed in Sect.9.7.

9.1 Introduction

In the presence of class imbalance, the possible classes are unevenly represented in
the dataset. Some classes may contain many observations, while others only have
very few in comparison. The most common setting is that of a binary or two-class
problem, where the instances of the majority class considerably outnumber those of
the minority class. Elements of the minority class are usually labeled as positive and
those of the majority class as negative. These names indicate that in most applications
the minority class is the class of interest. In recent years, the focus of class imbalanced
learning has widened to the general setting of multi-class classification, where the
number of classes may exceed two. In this situation, there can be a mixture of majority,
medium-sized, and minority classes, which automatically yields more challenging
learning objectives. A large body of work has been done on the classification of
imbalanced data in single-instance problems [18, 21, 26, 31]. Application areas
in which class imbalance naturally presents itself include medical diagnosis [8, 19,
20, 22] and bioinformatics [41, 42, 44].
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9.1.1 Dealing with Class Imbalance

Traditional classifiers tend to lose some of their prediction strength in the presence of
class imbalance, because they make the internal assumption of similar class distrib-
utions or misclassification costs. By definition, the former is violated for imbalanced
data. The latter premise does not hold either, since a higher cost is usually associated
with the misclassification of a positive element than with that of a negative obser-
vation. As a result, standard classifiers fail, for instance by predicting the majority
label over-easily. Specific solutions to handle class imbalance have been proposed
in the literature. We can divide these approaches into two general groups:

e Data-level solutions: this group consists of preprocessing methods known as
resampling techniques. They modify the dataset before the application of a classi-
fier, which means that they are independent of the latter. We distinguish between
undersampling methods, that remove part of the majority class, oversampling
methods, that add new minority elements, and hybrid methods, that combine the
previous two approaches. A popular single-instance method, commonly used in
comparative studies on class imbalance, is the SMOTE oversampling method [7].
It is described in detail in Sect.9.2.

e Customized approaches: a second group of solutions handling class imbalance
is found at the algorithm-level. These methods do not modify the data. We can
make a further distinction between three diverse types of methods.

— The first subgroup consists of cost-sensitive methods (e.g., [11, 43]). These
algorithms assign different misclassification costs to the classes and aim to
minimize the overall cost. In this way, relatively more focus can be put on the
correct classification of minority class elements.

— Second, we list the methods that focus on the construction of a classifica-
tion model that is not hindered by the imbalance between classes. Based on
imbalance-resistant heuristics, a learner is designed to tackle the imbalance
problem.

— Finally, a third subgroup is formed by custom ensemble techniques (e.g., [16]),
that have already been used, possibly in combination with resampling methods,
in the classification of single-instance imbalanced data.

Both types of approaches have been proposed in single-instance as well as multi-
instance learning. The latter will be discussed in detail in Sect.9.3.

With respect to multi-class imbalanced learning, decomposition strategies can be
used to divide the multi-class problem in a set of binary ones, as done for single-
instance methods in e.g., [14]. In that study, the one-versus-one and one-versus-all
methods are used to derive binary prediction problems from the multi-class dataset.
For each of them, a two-class preprocessing method is applied in conjunction with
a classifier. The outcomes of all binary problems are aggregated to yield a single
prediction value. Any binary solution can be combined with a decomposition scheme
and aggregation method to perform a multi-class imbalanced classification. In single-
instance learning, multi-class resampling methods as well as general classifiers to deal
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with multi-class imbalance without a decomposition step have also been proposed
as well (e.g., [1, 39]).

9.1.2 Evaluation Measures in the Imbalanced Domain

The evaluation of classification performance in the class imbalanced domain warrants
metrics that are not sensitive to the skewness in the class distributions. Among the
measures listed in Sect. 1.4, the accuracy is the most commonly used in general
studies. However, the research community agrees that it is not an appropriate measure
to use in the presence of class imbalance, as it can lead to misleading results. As an
example, consider a dataset with a 1000 observations, of which 900 belong to the
negative class and the remaining 100 to the positive class. When a classifier predicts
that each observation is negative, it attains an accuracy of 90 %. This is a high value
and it does not in any way reflect the fact that the entire positive class has been
misclassified. We conclude that this metric does not provide a faithful representation
of the performance of the classifier.

As an alternative to the accuracy, we can use g, the geometric mean of the class-
wise accuracies. The general definition is provided in Sect. 1.4. In a two-class setting,
which is most common in studies on class imbalance, this reduces to

¢ = ~TPR- TNR,

where TPR and TNR, respectively, correspond to the true positive and true negative
rates of the classification. By computing the rate of correct predictions for each class
separately, none of the classes can be ignored. In particular, in the above example,
the value for g is zero, since all positive observations were misclassified. This clearly
reflects the incapacity of the classifier.

A second measure that is commonly used in research on class imbalance, is the
Area Under the ROC-curve (AUC, [3]), defined for two-class problems. A ROC-curve
models the trade-off between true positive and false positive classifier predictions. It
was originally defined for probabilistic classifiers, that use a threshold value 6 on the
positive class probability. When the estimated probability is higher than 6, the sample
is classified as positive. In the other case, the negative class is predicted. By varying
0, different true positive and false positive rates are obtained. Each represents a point
in ROC-space and together they form the ROC-curve. The area under it gathers the
information represented by the curve in a single value. It can be computed by using
the procedure described in [13]. A detailed description of ROC-curves and AUC
computations can also be found in [33].
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Fig. 9.1 Tllustration of the
construction of one artificial
element in a single-instance
dataset by SMOTE, between
the seed x and a randomly
selected instance from
among its nearest neighbors
n; in the minority class

9.2 Single-Instance SMOTE

As noted above, one way to deal with class imbalance is to resample the dataset.
In single-instance learning, a popular resampling method is the Synthetic Minority
Oversampling Technique (SMOTE) proposed by Chawla et al. [7]. We recall this
algorithm here, as several multi-instance resampling proposals (Sect.9.4) are based
on it.

SMOTE is an oversampling method, that increases the size of the minority class by
adding artificial new instances to it. Synthetic instances are constructed by selecting
one of the existing minority elements as seed and introducing a new instance at a
random position on the line segment connecting this seed element to one of its k
nearest minority class neighbors, as illustrated in Fig.9.1. The pseudo-code of this
method can be found in Algorithm 19. We present the version that yields a perfectly
balanced dataset, that is, positive instances are created until their class reaches the
size of the negative class. This is the most commonly used setting, although the
amount of oversampling can also be controlled by a parameter, as presented in the
original proposal [7]. The value k is commonly set to 5. Step 8 of Algorithm 19
creates an artificial instance. Existing data samples are interpreted as vectors and a
new element is introduced at a random point on the line segment between them. The
user should take care to use an appropriate interpolation scheme for numeric and
categorical attributes.

9.3 Multi-instance Class Imbalance

We continue with a discussion on the presence of class imbalance in multi-instance
data. Compared to the single-instance setting, a very limited amount of work has
been done on multi-instance class imbalance. However, interest has been raised in
the past few years and it forms a promising area of future research.
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Algorithm 19 SMOTE algorithm

Input: Imbalanced single-instance dataset 7', with positive class P and negative class N. Number

of neighbors k
Output: A perfectly balanced dataset 7*
1:d < |[N|—|P| > amount of artificial instances
2:A <0 > initialize set of artificial instances

3:fori=1,...,ddo

4: x <« random positive instance from T

5: {n1,na, ..., ng} < k nearest neighbors of x in P

6: n < random selection from {ny, ny, ..., ng}

7 o < random value drawn from [0, 1]

8: y<—x+4+a-(n—x) > generate a new instance by interpolation

9: Label y as positive
10: A <~ AU{y}

11: end for
122.T*«<~TUA

9.3.1 Problem Description

The nature of class imbalance can be more complex in MIL than it is in single-
instance learning. As argued by Wang et al. [35], the imbalance can occur at two
different levels, namely that of the instances and that of the bags. Instance-level
imbalance means that the number of positive instances in positive bags is relatively
low compared to the number of negative instances they contain. In the standard
MIL hypothesis, only one positive instance is required in a positive bag, such that
imbalance at the level of instances can easily present itself. Imbalance can also occur
at the bag-level, which is the direct generalization of class imbalance in single-
instance learning and fits in the general description given in Sect.9.1. It means that
the number of positive bags is small compared to the number of negative bags.

The effects that these two types of imbalance have on multi-instance classifiers
have been described by e.g., Mera et al. [23]. In the presence of instance-level imbal-
ance, instance-based methods (Chap.4) are likely to be biased toward the majority
class, since the number of actual positive instances is low compared to actual negative
instances. Mapping-based methods (Sect.5.3) can also be hindered by this type of
imbalance, when the mapping step is sensitive to instance imbalance. The example
given in [23] to illustrate this situation is the averaging function: if the number of
positive instances is relatively small in a bag, their information will be mostly lost
when averaging over all instances. Bag-level imbalance results in a bias of bag-based
classifiers (Sect.5.2) toward the majority class.

The work of Wang et al. [35] showed that multi-instance imbalance is most pro-
nounced at the level of the bags. Keeping this in mind, we define class imbalance for
multi-instance problems at the bag-level. It is reflected in a (possibly considerably)
larger number of bags of the majority class compared to the number of bags of the
minority class. The degree of imbalance is measured by the so-called imbalance ratio
(IR), which is defined as the ratio of the number of bags of the majority class over
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the number of bags of the minority class. Class imbalance results in more difficulty
to recognize the minority class, leading to a high number of misclassifications of
these bags. The study of [35] references the application of [37] concerning the object
detection of mines based on sonar images. This is an imbalanced problem, since
mines occur far less often than other objects (e.g., rocks).

9.3.2 Solutions for Multi-instance Class Imbalance

To date, we are not aware of any specific proposals to deal with multi-class imbalance
in MIL. The existing solutions have been specifically proposed with binary problems
in mind and have only been evaluated on this kind of data. However, the decompo-
sition strategies discussed in Sect.9.1 can be transferred from the single-instance
to the multi-instance setting, in conjunction with any of the binary class imbalance
solutions described below.

As noted above, compared to the amount of attention that the class imbalance
problem has received in single-instance learning, its exploration in MIL has been
very limited. Nevertheless, applications inherently prone to class imbalance also
present themselves in this domain and custom methods able to deal with the intrinsic
challenges of class imbalance are warranted. We discuss the recent developments in
Sects.9.4 and 9.5. As will be clear from Sect. 9.4, the study of multi-instance pre-
processing techniques has so far been largely limited to extensions of the SMOTE
method recalled in Sect.9.2. In single-instance learning, this technique has been
improved upon by many authors (e.g., [4, 5, 29]) and it is a valid question whether
similar improvements can be made in MIL. Extensions of other single-instance solu-
tions, like cost-sensitive support vector machines [32] or alternative ensemble tech-
niques (e.g., [17, 38]), should be further explored as well.

9.4 Multi-instance Resampling Methods

In this section, we discuss the resampling methods that have been proposed to deal
with multi-instance class imbalance. We recall the contributions of [23, 24, 35],
which, to the best of our knowledge, form the complete set of multi-instance resam-
pling methods dealing with class imbalance.

9.4.1 BagSMOTE, InstanceSMOTE, Bag_oversampling

Wang et al. [35] consider two approaches to deal with class imbalance in MIL:
resampling on the one hand and cost-sensitive methods on the other. We describe their
resampling methods here, the discussion of the cost-sensitive methods is postponed



9.4 Multi-instance Resampling Methods 197

to Sect.9.5. Two extensions of the SMOTE method of [7] are developed. Their first
method is called BagSMOTE and creates synthetic minority bags. The procedure is
presented in Algorithm 20. Each existing minority bag X leads to the creation of one
new bag, that is also labeled with the minority class. For each instance x € X, one of
its nearest instances from within all minority bags is selected. A synthetic element
is generated between x and its neighbor and added to the new bag.

Algorithm 20 BagSMOTE algorithm

Input: Imbalanced multi-instance dataset T, number of neighbors &
Output: The oversampled dataset T*

I:A <9 > initialize set of artificial bags
2: for each positive bag X € T do

3: Y <0 > initialize artificial bag
4: for each instance x € X do

5: {n1,na, ..., ni} < k nearest neighbors of x among all instances in all positive bags

6: n < random selection from {ny, ny, ..., n}

7: o <« random value drawn from [0, 1]

8: y<x+oa-(n—x) > generate a new instance by interpolation
9: Y« YUy

10: end for

11: Label Y as positive

12: A<~ AU{Y}

13: end for

14: T* <~ TUA

The second method is called InstanceSMOTE and is presented in Algorithm 21.
It modifies the multi-instance dataset to a single-instance dataset by assigning all
instances to the class to which their parent bag belongs. The single-instance SMOTE
method is applied to this transformed dataset. Afterwards, the dataset is changed
back to its original multi-instance form, by assigning synthetic instances to the same
bag from which the corresponding seed was drawn. Clearly, the largest difference
between the BagSMOTE and InstanceSMOTE methods is that the first one creates
new bags, while the second one inserts new instances in already existing bags.

In their experiments, Wang et al. also include a third alternative, that randomly
duplicates minority bags to obtain a better balance between the classes. This method is
referred to as Bag_oversampling. The experimental study shows that the BagSMOTE
method yields the best results among the three proposals. The more intricate oversam-
pling procedure in BagSMOTE has a better performance than the random procedure
in Bag_oversampling. However, Bag_oversampling outperforms InstanceSMOTE,
which supports the statement of the authors that multi-instance class imbalance
occurs at the level of the bags and that there is where a solution should be applied.
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Algorithm 21 InstanceSMOTE algorithm

Input: Imbalanced multi-instance dataset T, number of neighbors k

Output: The oversampled dataset T*

1: T < {(x,class(X))|x € X, X € T} > transformation to single-instance data

2: T* <« output of Algorithm 19 on T with value k. Store parent bag of seed instance for each
artificial element.

3T« ¢

4: for each parent bag X € T do > transformation to multi-instance data

5: X* <« set of all instances x € T*, either original or artificial, linked to this parent bag

6:

7:

8:

Label X* with the class of X
T* « T* U {X*)
end for

9.4.2 B-Instances

Mera et al. [24] proposed a preprocessing method to improve the classification of
imbalanced multi-instance data by means of an enriched representation of the positive
class. In their later work [23], they refer to this method as B-Instances. By means of
kernel density estimation [25], they construct a function which estimates the degree
to which an instance can be considered as negative. This measure is used to locate
likely and unlikely positive elements within positive bags and use them in resampling
procedures. The method consists of three main steps:

1. Oversampling within positive bags: the set 7" is constructed containing the
most positive (least negative) instance from every positive bag. In their exper-
iments, the authors increase T to include the second most positive instance
from each positive bag as well, to improve the performance of the method. When
T+ has been determined, SMOTE is applied to oversample instances within the
positive bags. The elements from 7™ are used as seeds. A synthetic instance is
generated at a random position on the line segment connecting the seed with one
of its k nearest neighbors in the entire dataset. The constructed instance is added
to the bag which contained the seed element.

2. Undersampling within positive bags: undersampling is applied to the positive
bags. To this end, the least positive (most negative) instance in each positive bag
is located and added to the set 7~. For every element x € T, its k nearest
neighbors from among all data instances are determined. When the majority of
these neighbors originate from negative bags, x is interpreted as a borderline
element and it is decided to remove it.

3. Undersampling within negative bags: the third stage consists of removing
instances from negative bags, using a similar procedure as in the undersampling
of the positive bags. For each instance in a negative bag, its k nearest neighbors
in the entire dataset are determined. When the majority of its neighbors belong
to positive bags, the instance is a borderline element in the negative bag and is
removed.
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In the experimental study of [24], their B-Instances preprocessing method was com-
bined with several classifiers and was shown to improve their performance on imbal-
anced multi-instance datasets. However, no comparison was offered with the methods
of [35].

9.4.3 B-Bags

The proposal of [23] uses kernel density estimation as well. It is largely based on the
standard MIL hypothesis, in that the method creates new positive bags that contain
only one positive instance. The method is called B-Bags. Based on the kernel density
estimation procedure, B-Bags aims to determine the most positive instance in the
positive bags. It is a bag oversampling method and creates a total number of n new
positive bags. For the construction of a synthetic positive bag, the following steps
are performed:

1. Positive instance: one artificial positive instance is constructed and added to the
new bag. Two random positive training bags are selected and, within each of them,
the most positive instance is determined based on kernel density estimation. The
new instance is obtained via linear interpolation between these two elements.

2. Negative instances: the remainder of the bag is filled with negative instances,
until the size of the new bag equals the average size of the training bags. The
construction of these negative instances also uses the two positive bags selected
in the previous step. The most negative instance is determined in the first one.
Random negative instances are selected in the second bag and artificial instances
are generated by means of interpolation.

Mera et al. stress that the difference with the BagSMOTE algorithm from [35] is that
their oversampling step is more informative, because it determines the most positive
instances within the positive bags and uses these to generate new positive instances.
The experiments of [23] compare B-Bags with their earlier proposal B-Instances and
with BagSMOTE, in combination with several multi-instance classifiers, on nine
datasets. B-Bags has the highest AUC in four out of the nine datasets and the highest
g value in five.

9.5 Customized Multi-instance Approaches

In this section, we discuss the second type of solutions to deal with class imbal-
ance, namely those at the algorithm-level. These are multi-instance classifiers that
incorporate some imbalance-resistant heuristics in their internal workings.
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9.5.1 Cost-Sensitive Boosting Models

Apart from their preprocessing techniques discussed in Sect. 9.4, cost-sensitive multi-
instance classification procedures are introduced by Wang et al. [35, 36] as well. Their
algorithms are based on the AdaBoost.M1 boosting scheme [15]. In single-instance
learning, this is an iterative method, which trains a classifier in each iteration and
reweighs instances based on their classification outcome, to ensure that misclassified
elements receive more attention in the next iteration. Its weight update formula is

) D, (i)K,;(x;, yi)
D;1(i) = fZ;y
t

with
K (xi, yi) = exp(—a;yih;(x;)). ©.1)

In these expressions, ¢ is the iteration number and Z, a normalization factor to ensure
that D, is a probability distribution. The function 4, refers to a single-instance
classifier and o, € R to the coefficient that represents the weight of 4, in the final
classification aggregation. As AdaBoost.M1 was proposed as a single-instance learn-
ing method, (x;, y;) refers to an instance x; and its outcome y;. AdaBoost.M1 does
not distinguish between classes in these weight update formulas. The cost-sensitive
boosting methods proposed in [35, 36] do make this distinction, by introducing class-
dependent costs in (9.1). A cost is defined for each class, that is, the methods use one
cost value for the positive class and one for the negative class. The ratio of these two
values is set in favor of the minority class. As a result, relatively more effort is taken
to correctly classify minority bags. The authors note that the real ratio between the
class-wise misclassification costs is generally not available. They advise to use the
imbalance ratio as cost ratio, as this value can be easily derived from the data. They
propose four versions of their algorithm, differing in the places where the cost fac-
tors are introduced. Their proposals are similar to the single-instance cost-sensitive
boosting algorithms from [30]. The methods are called Abl, Ab2, Ab3, and Ab4 and
there weight update formulas are

Abl:  Ki(X;, yi) = exp(—=Cia, yih, (X;))
Ab2: K (X;, yi) = Ciexp(—a;yih, (X;))
Ab3:  Ki(X;, y) = Ciexp(=Cia;y;h(X;))
Ab4: K (Xi, yi) = C} exp(—Clay yihi (X:))

Inthese formulas, X; refers toabagand y; to its outcome. The function 4, corresponds
to a multi-instance classifier. The value C; is the cost associated with the bag X;.
It can take on only two values, either the cost for the positive class or that of the
negative class, depending on the bag-label. Bags of the same class are automatically
associated with the same cost.

The cost-sensitive boosting schemes are experimentally shown to outperform
BagSMOTE in [35]. Based on their experimental work in [36], Wang et al. put Ab3
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forward as best performing version among their proposed cost-sensitive boosting
algorithms.

9.5.2 Fuzzy Rough Multi-instance Classifiers

In the recent contribution of Vluymans et al. [34], an algorithm-level solution to multi-
instance class imbalance was proposed as an extension of the single-instance classifier
from [27] that was developed for two-class imbalanced data. Two classifier families,
one instance-based and one bag-based are developed. Both use fuzzy rough set theory
[12], a mathematical concept that models vague and incomplete information.

To classify a new bag, these methods determine its membership degree to the
fuzzy rough lower approximation of the two classes. This value is a number between
0 and 1. For a bag X and a class C, it expresses the degree to which the similarity of
a training bag B with X implies the affinity of B with class C. When X has a high
membership to the fuzzy rough lower approximation of C, training bags similar to
X are likely to belong to class C. This information is used in the prediction step.
An unseen bag is assigned to the class for which its membership degree to the lower
approximation is highest.

The two classifier families in [34] differ from each other in the way they compute
the lower approximation values for a bag. The instance-based methods first determine
these values for the instances in the bag. These computations rely on a definition
of similarity between instances, an affinity degree of instances with bags and of
instances with classes. In a second phase, the instance-based values are aggregated
to the bag level. The bag-based algorithms on the other hand directly derive the
information from the bag as a whole, using an appropriate metric to measure the
similarity between bags and the affinity of bags with classes.

Within the two families, classifiers differ from each other in the way they mea-
sure instance or bag similarity as well as in their aggregation procedures. The best
performing representatives of the two families, referred to as FRI (Fuzzy Rough
Instance-based multi-instance classifier) and FRB (Fuzzy Rough Bag-based multi-
instance classifier) in [34], are experimentally shown to outperform the cost-sensitive
boosting methods described in Sect. 9.5.1 as well as BagSMOTE in combination with
the MITI classifier [6].

9.6 Experimental Analysis

In this section, we present an experimental comparison of methods dealing with
multi-instance class imbalance. These experiments are performed on datasets coming
from various application areas. We include both resampling methods and custom
multi-instance classifiers. The experimental setup is specified in Sects.9.6.1 and
9.6.2 presents the results.
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Table 9.1 Description of the class imbalanced multi-instance datasets used in this comparison

9 Imbalanced Multi-instance Data

Dataset # Bags # Inst # Feat IR
Bonds 160 3558 16 3.57
Chains 152 4630 24 4.63
Corell 2000 7947 9 19
Corel2 2000 7947 9 19
Thio 193 26611 8 6.72
WIR-2 113 3423 298 4.38
WIR-5 113 3423 303 3.71

9.6.1 Setup

The datasets used in this experimental study are described in Table9.1. We list the
total number of bags and instances as well as the number of features. The degree
of class imbalance is represented by the IR of the dataset. These datasets originate
from different application domains. We use the same versions and partitions as in the
experimental study of [34]. Bonds and Chains are bioinformatics datasets that origi-
nally appeared in [28] and were also used in the previous chapters. In this section, we
use the imbalanced versions of [36]. Thio (Thioredoxin) is a bioinformatics dataset
as well, while the two Corel datasets correspond to image recognition problems
and were used in e.g., [9]. Finally, the two WIR datasets relate to the web index
recommendation problem and were originally introduced in [45].

We use the fivefold cross validation procedure described in Sect. 1.4. In the com-
parison, we include the BagSMOTE (B-SMT), Bag_Oversampling (B-Over), and
B-Bags resampling methods as well as all custom classifiers discussed in Sect.9.5.
We use the parameter settings recommended by the authors of the original propos-
als. BagSMOTE, Bag_Oversampling, and B-Bags are combined with the tree-based
classifier MITI [6]. This classifier is used internally in the cost-sensitive boosting
methods from Sect.9.5.1 as well. We evaluate the performance of the classifiers by
means of the AUC and g metrics.

9.6.2 Results and Discussion

In this section, we list the full results of the selected algorithms on all datasets and
interpret them accordingly. We divide the main discussion in two parts, related to the
evaluation by the AUC and the g value respectively. We also compare the performance
of the resampling methods in combination with three different classifiers.
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Table 9.2 Experimental AUC results for all methods

Dataset | B-SMT | B-Over | B-Bags | Abl Ab2 Ab3 Ab4 FRI FRB
Bonds [0.7371 |0.7680 |0.6800 |0.6857 |0.7183 |0.8373 |0.7297 |0.7345 |0.6435
Chains |0.6692 |0.6797 |0.5726 |0.6446 |0.6970 |0.7855 |0.7736 |0.7913 |0.6081
Corell |0.7797 |0.6016 |0.8074 |0.7512 |0.6931 |0.8746 |0.7960 |0.8751 |0.7469
Corel2 |0.7392 |0.6005 |0.7437 |0.7703 |0.5197 |0.7490 |0.7131 |0.8444 |0.8211
Thio 0.5298 [0.6169 |0.4979 |0.6571 |0.5000 |0.6437 |0.6304 |0.7076 |0.6414
WIR-2 |0.7893 |0.7580 |0.7547 |0.8196 |0.6674 |0.8043 |0.7384 |0.8323 |0.8665
WIR-5 [0.6538 |0.7011 |0.7067 |0.6695 |0.5440 |0.7278 |0.7125 |0.8984 |0.8783
Mean |0.6997 |0.6751 |0.6804 |0.7140 |0.6199 |0.7746 |0.7277 |0.8120 |0.7437

9.6.2.1 Evaluation by AUC

The AUC values are listed in Table 9.2. For each dataset, we print the results of the
best performing method in bold. The table shows that, on average, the FRI method
from [34] attains the highest result. Furthermore, this method dominates the table by
yielding the highest AUC value in five out of seven datasets. In the remaining two
datasets, either Ab3 or FRB yield the best result.

Among the resampling methods, BagSMOTE gives the highest average value. It
outperforms Bag_Oversampling, which was demonstrated in the original proposal
[35] as well. Contrary to the observations in [23], B-Bags does not clearly outperform
BagSMOTE. The former yields a higher AUC value than the latter in only three out
of the seven datasets.

With respect to the custom learners for imbalanced multi-instance data, the first
matter that is evident from Table 9.2 is that they generally provide better classification
results than the resampling methods. Only the boosting method Ab2 is excluded from
this observation, yielding an average AUC value considerably inferior to those of
the three resampling algorithms. Our experiments confirm the finding of [36], that
Ab3 is the best performing alternative for the cost-sensitive learners. Comparing the
two methods from [34], FRI can be preferred over FRB. As noted above, FRI also
stands out as best performing overall method when the classification performance is
evaluated by the AUC.

The results of Table9.2 are visually presented in Fig.9.2. We have selected the
two oversampling methods BagSMOTE and B-Bags and the classification methods
Ab3 and FRI and plot their performance on all datasets.

9.6.2.2 Evaluation by g
The results for this evaluation can be found in Table 9.3 and Fig. 9.3. The conclusions

are less clear-cut than for the AUC evaluation. The FRI method still yields the
highest average result, but is the best performing algorithm in only two out of the
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Fig. 9.2 Classification results of the four selected methods, measured with the AUC

Table 9.3 Experimental g results for all methods

Dataset | B-SMT | B-Over | B-Bags | Abl Ab2 Ab3 Ab4 FRI FRB

Bonds |0.7026 |0.7494 |0.6197 |0.4074 |0.4743 |0.7715 |0.4071 |0.6296 |0.6583
Chains | 0.5988 |0.6228 |0.4216 |0.0000 |0.2711 |0.7465 |0.0000 |0.4163 |0.4820
Corell |0.7766 |0.4808 |0.8074 |0.1995 |0.2819 |0.5358 |0.0000 |0.7846 |0.6079
Corel2 |0.7325 |0.4876 |0.7429 |0.4527 |0.0000 |0.2115 |0.0000 |0.8016 |0.7526
Thio 0.2440 | 0.5127 |0.1852 |0.2673 |0.0000 |0.0000 |0.0000 |0.6612 |0.5521
WIR-2 |0.7809 |0.7563 |0.7477 |0.7323 |0.3018 |0.5898 |0.0000 |0.7198 |0.8140
WIR-5 |0.5914 |0.6577 |0.6616 |0.4082 |0.2041 |0.6665 |0.0000 |0.7551 |0.7879
Mean |0.6324 |0.6096 |0.5980 |0.3525 |0.2190 |0.5031 |0.0582 |0.6812 |0.6650

seven datasets. Both Ab3 and FRB are each dominant in two datasets as well. The
oversampling method B-Bags attains the best result in the seventh dataset.

As for the AUC, we can conclude that the best results are generally obtained by
custom classifiers rather than oversampling methods. However, we do note that the
cost-sensitive boosting methods do not perform well. Ab3 is still the best version
among them, but it does not perform at the same level as the resampling methods
or FRI and FRB. Among the resampling methods, BagSMOTE attains the highest
average result, followed by Bag_Oversampling. B-Bags performs best in three out
of seven datasets, a number that is not sufficient to support the conclusion of [23]
stating that this method can be preferred over the others. Naturally, as we fixed
the classification algorithm (MITI) executed after the resampling methods, these
observations may differ when another classifier is selected, as presented in the next
paragraph.
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Fig. 9.3 Classification results of the four selected methods, measured with g

9.6.2.3 Resampling Methods

Resampling methods are performed in the preprocessing phase, which means that
they are independent of the classification step. In particular, they can be combined
with any multi-instance classifier and their effect on the performance of the latter may
depend on the selected method. Some classifiers may benefit more from resampling
than others.

In Table 9.4 we evaluate the performance of the three oversampling methods in
conjunction with three different classifiers. The results for MITI were presented
above. We also include the CitationKNN method from [40], using two references
and four citers. The third method is the MILES algorithm with C4.5 from [9].

We compare the AUC and g values of these classifiers before (column ‘None’)
and after preprocessing by any of the three resampling methods. The results for
MITI were discussed above and we could put forward BagSMOTE as the preferred
oversampling method for this classifier on this group of datasets. We also note the
clear improvement in the two metrics of all resampling methods on the application of
MITTI without preprocessing. Clearly, this classifier greatly benefits from resampling.
For CitationKNN, the AUC values of all resampling methods, as well as that of the
classifier without preprocessing, are close together. For the evaluation by g on the
other hand, the benefits of resampling are very clear. The highest g value is obtained
by the simple Bag_Oversampling method. This method also yields the best results
for MILES, for both evaluation metrics.
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Table 9.4 Results of the resampling methods combined with different classifiers, taken as averages
over the seven datasets

AUC g
Classifier None B-SMT |B-Over |B-Bags |None B-SMT |B-Over |B-Bags
MITI 0.5866 |0.6997 |0.6751 |0.6804 |0.4880 |0.6324 |0.6096 |0.5980
CitationKNN | 0.7082 | 0.7098 |0.7084 |0.7033 |0.1430 [0.2905 |0.4238 |0.2863
MILES 0.5702 |0.5829 |0.5937 |0.5809 |0.2666 |0.2648 |0.4154 |0.2927

9.7 Summarizing Comments

In this chapter, we have discussed the phenomenon of class imbalance and the chal-
lenges it poses to both single-instance and multi-instance classification. The skewed
distribution of the data observations among the classes inhibits the recognition of
underrepresented classes. In single-instance learning, many solution methods to deal
with class imbalance have been proposed over the past decades. A main distinction
can be made between data-level and algorithm-level solutions. The former modify
the dataset, e.g., by creating new minority class samples, and are independent of
the classification step. The latter are custom classifiers, that use imbalance-resistant
heuristics internally.

In MIL, comparatively less work has been done on this subject. We have described
the existing methods in this chapter, including resampling methods and custom clas-
sifiers. We have compared these algorithms in an experimental study based on appro-
priate metrics for the setting of imbalanced classes. Our experiments indicate that,
in imbalanced MIL, custom classifiers generally yield better results than resampling
algorithms.
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