
Chapter 8
Data Reduction

Abstract An increase in dataset dimensionality and size implies a large computa-
tional complexity and possible estimation errors. In this context, data reduction meth-
ods try to construct a new and more compact data subset. This subset should maintain
the most representative information and remove redundant, irrelevant, and/or noisy
information. The inherent uncertainty of MIL renders the data reduction process
more difficult. Each positive bag is composed of several instances, of which only a
part approximate the positive concept. Information on which instances are positive
is not available. In this chapter, we first provide an introduction to data reduction.
Next, two main strategies to reduce MIL data are considered. Section 8.2 describes
the main concepts of feature selection as well as methods that try to reduce the num-
ber of features in MIL problems. Section 8.3 considers bag prototype selection and
analyzes the corresponding multi-instance methods.

8.1 Introduction

Data reduction is a complex problem in any machine learning framework. Different
techniques can be applied to obtain a reduced representation of the data, closely
maintaining the original integrity. The reduced dataset should be more efficient to
process and produce the same or similar analytical results.

As the dimensionality of a problem (number of features) increases, the well-known
curse of dimensionality manifests itself. This concept was introduced by Bellman [1]
to show that the number of samples required to estimate a function with a given level
of accuracy grows exponentially with the problem dimension. For a given sample
size, there is a maximum number of features above which the performance of an
algorithm will degrade rather than improve. In fact, many data mining algorithms
fail when the dimensionality is high, since data points become sparse and far apart
from each other.

The large amount of data produced in any current application has resulted in
datasets composed of thousands of objects represented by hundreds or even thou-
sands of features. The dimensionality is a serious obstacle for the efficiency of most
algorithms. Its reduction has become a necessary hot topic to ensure that algorithms

© Springer International Publishing AG 2016
F. Herrera et al., Multiple Instance Learning, DOI 10.1007/978-3-319-47759-6_8

169

170 8 Data Reduction

can perform appropriately. Data reduction techniques have been studied extensively
in many domains. Section 1.2 gave a brief introduction to data reduction, grouping
these methods as follows:

• Feature selection: the dimensionality is reduced by removing irrelevant or redun-
dant features [17]. The goal of feature selection is to find a minimum set of
attributes, such that the resulting probability distribution of the output is as close as
possible to the original distribution using all features. These methods facilitate the
understanding of the extracted knowledge and increase the speed of the learning
stage.

• Instance selection: the number of observations is reduced by removing less rel-
evant or noisy instances [16]. In MIL, these methods can be divided into two
categories, since data samples are bags composed of one or more instances. On
the one hand, bag prototype selection aims to reduce the number of training sam-
ples. The removal of a bag implies the elimination of all instances contained in it.
On the other hand, instance prototype selection reduces the number of instances
inside each bag. The number of bags remains the same, while less representative
instances within them are eliminated. Both methods reduce the size of the data
and therefore the computational complexity.

• Feature extraction: this is an extension of feature selection that allows the modifi-
cation of the internal values representing each attribute [15]. In feature extraction,
apart from the removal of attributes, feature subsets can be merged or can con-
tribute to the creation of artificial substitute features.

• Instance generation: this process extends instance selection by allowing the mod-
ification of samples [22]. These methods create or adjust artificial substitute exam-
ples that could better represent the decision boundaries in supervised learning.

In this chapter, data reduction in MIL is considered. We describe the two most
common techniques, feature selection, and bag prototype selection. All included
concepts and methods show the interaction of data reduction with classification.

8.2 Multiple Instance Methods for Feature Selection

Datasets may contain many irrelevant or redundant features. To give an example,
if we focus on the identification of a particular illness in several patients, attributes
such as the patient’s telephone number or surname are likely to be irrelevant, unlike
attributes such as age or blood pressure. Irrelevant features imply a huge amount of
data that results in an increase in processing time of a learner and a reduction of its
performance. Manually evaluating the features (e.g., by a domain expert) becomes
intractable when the number of attributes is high and the data behavior is not well-
known. Automatic feature selection methods have been extensively used to replace
the original data volume by an alternative, more reduced representation.

http://dx.doi.org/10.1007/978-3-319-47759-6_1

8.2 Multiple Instance Methods for Feature Selection 171

In this section, we first give an introduction to feature selection, providing a brief
background and the main taxonomy. We analyze the particularities of multi-instance
feature selection and discuss the representative methods.

8.2.1 Introduction to Feature Selection

Feature Selection (FS) methods select a subset of features from the initial dataset
according to certain criteria. These methods should remove noisy and irrelevant
features and maintain only the most informative ones. In this way, the feature subset
should be capable of producing results equal to or better than the full set. Reducing
the feature set has several benefits, such as minimizing the computational cost of
algorithms, improving the accuracy of the final result, and making the data mining
results easier to understand.

FS can be defined as a search problem to find a subset of features optimizing a
particular criterion. Formally, let A be the original feature set with cardinality M and
B the subset of desired features (B ⊂ A) with cardinality m (m << M) [10]. FS
tries to find an optimal subset B that minimizes the criterion function F . The main
steps of FS methods are the following [10]:

1. The generation of different subsets: the feature space is explored for the best
subset.

2. The evaluation of feature subsets: an evaluation function is used to test the
fitness of a feature subset. This function corresponds to the criteria that the FS
method tries to fulfill.

3. The stopping criterion: a stopping criterion to halt the search needs to be spec-
ified.

(a) Initial dataset (10 features) (b) Reduced dataset (6 features)

Fig. 8.1 MI feature selection method

172 8 Data Reduction

Figure 8.1 shows the process of feature selection in a MIL context. Figure 8.1a
depicts the initial dataset, where the samples are composed of several instances, that
is, several feature vectors. Figure 8.1b describes the dataset after application of FS,
where the number of features describing each instance has been reduced. FS in MIL
is more challenging than its counterpart in single-instance learning. In MIL, each
observation is represented by a number of instances. Instance labels are not available
and it is possible to find both positive and negative instances inside a positive bag.
Different methods assume that positive bags consist of mainly positive instances.
The negative instances in positive bags may limit the discriminative power of FS
methods. As a consequence, determining the significance of each attribute becomes
more difficult.

Before describing the most relevant proposals of FS in MIL, we specify the FS
taxonomy. This categorization is probably the most known and employed in FS
methods over the years [18]. It is based on how the methods combine the FS search
with the construction of the classification model:

• Filtermethods: features are selected based on a performance measure independent
of the classification algorithm. In this case, FS is an independent preprocessing
step before the application of a particular classifier. The optimal feature subset or a
relevance ranking of the features is returned. The advantages are that these methods
are computationally fast, scalable, and independent of the classifier. On the other
hand, their main shortcomings are the fact that they ignore feature dependencies
and interactions with the classifier.

• Wrappermethods: a learner is used to measure the quality of feature subsets with-
out incorporating any information about the specific structure of the classification
or regression function. These methods can be combined with any learner.

• Embeddedmethods: FS is performed during the modeling phase of the classifier.
The FS method is embedded in the classifier. These methods have the advantage
that they include the interaction with the classification model. They are often far
less computationally intensive than wrapper methods. They directly return the final
classifier.

• Hybrid methods: these algorithms combine the best properties of filter and wrap-
per methods. First, a filter method is used to reduce the dimension of the feature
space and obtain several candidate feature subsets. Next, a wrapper is employed
to find the best candidate subset among them.

FS has become an apparent need in many learning paradigms. Numerous studies
show that the reduction can not only reduce computational complexity, but also
improve validation results and enhance semantic interpretability. Below, we describe
the most relevant FS methods in MIL. Table 8.1 provides an overview of the main
contributions in this area grouped as filter, wrapper, embedded, and hybrid methods.

8.2 Multiple Instance Methods for Feature Selection 173

Table 8.1 Features selection methods in multi-instance learning

Filter methods

ReliefF-MI algorithm [28]

Reliability-based algorithm [9]

Embedded methods

Boosting based methods Kernel based methods

MI-AdaBoost algorithm [27] MILES algorithm [5]

MCMI-AdaBoost algorithm [32] Ngiam et al. [20]

EBMIL algorithm [25] MIO algorithm [14]

BEL algorithm [31] MIL-MFS algorithm [11]

Online MIL adaboost algorithm [3] FSPO algorithm [19]

Hybrid methods

HyDR-MI algorithm [29]

8.2.2 Filter Methods

To select a feature subset, these algorithms take advantage of general characteristics
of the data, like distances or statistical dependencies between classes. They are faster
than other approaches, because they act independently of the induction algorithm.
However, they tend to select subsets with a high number of features. It is also difficult
to fix an internal threshold above which a feature is important enough to be selected.

Two multi-instance FS methods can be listed in this group. ReliefF-MI [28] is
based on the principles on the single-instance ReliefF algorithm [21]. The second
included proposal describes a multi-instance FS algorithm based on information
aggregation using a data reliability measure. Both methods assign a weight to each
feature to determine its relevance and specify a threshold on these weights to deter-
mine the final feature subset. As any filter method, they can be used as a preprocessing
step before the application of any classifier.

8.2.2.1 ReliefF-MI Algorithm

This method was proposed by Zafra et al. [28] and estimates the quality of features
based on how well their values distinguish between bags that are near each other.
A description of its main steps is given in Algorithm 11. First, bags are randomly
selected from the training data. For each sampled bag R, its k nearest neighbors
from the same class (nearest hits) are found as well as its k nearest neighbors of
the opposite classes (nearest misses). Based on these neighbors, the weight of each
feature is updated. These weights reflect the ability to distinguish class labels. A high
weight indicates that this feature differs among bags from different classes and is the
same in bags of the same class. Features are ranked by weight and those that exceed
a user-specified threshold are selected to form the final subset. The calculation of

174 8 Data Reduction

the nearest neighbors and the definition of the di f fbag function applied to the bags
is carried out with different variants of Hausdorff distance. The authors of [28] also
proposed the adapted Hausdorff distance (Sect. 3.5).

Experimental Study

The study of Zafra et al. [28] considers five benchmark real world datasets: Musk1,
Musk2, Elephant, Tiger, and Fox. A description of any of these is given in Sect. 3.6.
ReliefF-MI provides a reduced dataset in a preprocessing step independent of a
classifier. To show the efficiency of the method, the reduced dataset is used in 17
multi-instance classification algorithms. The results are evaluated on both accuracy
and execution time. They confirm the utility and efficiency of ReliefF-MI as a pre-
processing step for all included algorithms. The classifiers statistically improve both
their accuracy and execution time.

The experimental study also includes a comparison of different distance measures
used by ReliefF-MI, namely the maximal, minimal, average, and adapted Hausdorff
distances (Sect. 3.5). The results show that the adapted Hausdorff distance performs
statistically best, obtaining a better dimensionality reduction, and better classifier
accuracy. Its advantage lies with the different ways to measure the distance depending
on the specific information available in each bag.

Algorithm 11 ReliefF-MI algorithm
Input: X ← multi-instance training set {X1, X2, . . . , X N } (Xi ⊆ X)

Input: m ← number of times that the process is repeated
Input: k ← number of nearest examples of the same and different class considered in the process.
Input: ε ← threshold to determine if the feature is added to subset
Output: selected Subset , the selected feature subset
1: selected Subset = ∅
2: W = 0 � Feature weight vector
3: for i from 1 to m do
4: Ri ← bag randomly selected from X
5: Hk

Ri
← f ind K Nearest Neighbor SameClass(Ri , X) � Get k nearest hits

6: for each class C �= Class (Ri) do
7: Mk

Ri
← f ind K Nearest Neighbor Di f f erentClass(Ri , X) � Get k nearest misses

8: end for
9: for A from 1 to numberFeatures do

10: W[A] = W[A] +

k∑

j=1
di f fbag(A,Ri ,H j

Ri
)

m·k + ∑

C �=Class(Ri)

⎡

⎢
⎣

P(C)
1−P(Class(Ri))

k∑

j=1
di f fbag(A,Ri ,M j

Ri
(C))

m·k

⎤

⎥
⎦

11: end for
12: end for
13: for i from 1 to numberFeatures do
14: if W [i] > ε then
15: selectedSubset ← selectedSubset ∪{ fi }.
16: end if
17: end for

http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3

8.2 Multiple Instance Methods for Feature Selection 175

8.2.2.2 Reliability Based Algorithm

Gan and Yin [9] proposed a method that ranks features based on the reliability
measure of each attribute. The class labels are not used for evaluating features,
such that this method can also be applied in unsupervised learning. Based on the
OWA operator [24], a feature is considered reliable if its values are tightly grouped
together. The main steps are shown in Algorithm 12. First, the reliability of each
feature fr for each example Xi using its k nearest neighbors F RXi ,r is determined.
Second, the data reliability F Rr of each feature fr is computed by combining the
data reliability of all its values in all samples. From these values, the average data
reliability of all features F Raverage can be derived. As a last step, the features whose
F Rr is bigger than the average data reliability are selected. The calculation of the
nearest neighbors is carried out using the minimum Hausdorff distance, such that
the difference of feature fr between two bags is equal to the minimum difference of
feature fr between instances from those bags.

This method as well as ReliefF-MI both use a k nearest neighbor approach to
determine the relevance of each attribute. Both proposals use a Hausdorff distance
to determine the distance between bags. This bag-wise similarity measure is very
important in MIL, since it models the relevance and relationship of different instances
inside one bag. Gan et al. [9] use the minimal Hausdorff distance, while Zafra et al.
[28] uses the different variants presented in Sect. 3.5.

Experimental Study

The study of Gan and Yin [9] considers two datasets: Musk1 and Musk2 (Sect. 3.6).
To show the efficiency of their method, the obtained reduced dataset is fed to four
classifiers, whose accuracy is evaluated. The results show that the predictive accuracy
of the learners was enhanced by using the reduced dataset. The experimental study
also includes a comparative study using different values of the k parameter, which
represents the number of neighbors. The results show that different values of this
parameter scarcely affect the obtained results.

8.2.3 Embedded Methods

Embedded methods differ from other FS methods in the interaction of FS and learn-
ing. Wrapper and embedded methods are often confused. A wrapper method uses a
learner to measure the quality of feature subsets without incorporating knowledge
about the specific structure of the classification function. Embedded methods on the
other hand cannot separate the learning and FS parts. These methods learn which
features best contribute to the accuracy of the model while the model is being created.

In this section, we describe two embedded multi-instance FS methods, where FS
is combined with the Adaboost or SVM methods. These models implicitly select
important features and construct a classifier simultaneously.

http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3

176 8 Data Reduction

Algorithm 12 Reliability based method
Input: X ← multi-instance training set {X1, X2, . . . , X N } (Xi ⊆ X).
Input: k ← number of neighbors
Input: m ← number of features
Output: selected Subset , the selected feature subset
1: selected Subset = ∅
2: F Raverage = 0
3: for r from 1 to m do
4: max FeatureDi f f ← maxFeatureDifference(X, r). � Calculate maximum difference of

feature fr between two bags in whole training set
5: F Rr = 0
6: for each Xi ∈ X do
7: N k

Xi ,r
= f ind K Nearest Neighbor(X, k, Xi , r) � k nearest neighbor of Xi considering

feature fr
8: Dk

Xi ,r
= averageFeatureDi f f erence(N k

Xi ,r
, k). � Average difference of feature fr of

bag Xi with its k nearest neighbor
9: F Rk

Xi ,r
= bagFeatureData Reliabili t y(Dk

Xi ,r
, max FeatureDi f f). � Data reliability

of feature fr in bag Xi
10: F Rr = F Rr + F Rk

Xi ,r
. � Data reliability of each feature by combining all examples

11: end for
12: F Raverage = F Raverage + F Rr
13: end for
14: F Raverage = F Raverage/m � Average data reliability
15: for r from 1 to m do
16: if F Rr > F Raverage then
17: selectedSubset ← selectedSubset ∪{ fr }.
18: end if
19: end for

8.2.3.1 Adaboost for Feature Selection

Boosting techniques have been extensively used for FS in the MIL scenario. The
key idea behind AdaBoost is that a strong classifier can be created by combining
many weak classifiers. These weak classifiers need only perform slightly better than
random guessing. Given a set of training samples, AdaBoost maintains a weight
w for each of them. The weights are initialized uniformly. At each iteration t , one
weak classifier is selected and the training samples are provided using weights wt . A
weak classifier ht is trained on these samples. The weights are updated to put more
emphasis on misclassified samples. Samples that are correctly classified by ht get
lower weights, while misclassified samples are assigned higher weights. AdaBoost
focuses on samples with higher weights, which seem to be harder to predict correctly.
The process continues for T iterations. The final strong classifier is a combination
of the weak classifiers.

AdaBoost can be used to select the bag features and build the classifier simulta-
neously. The core idea is that each feature corresponds to a single weak classifier,
such that boosting can select some features out of the pool of all possible features
F . In each iteration t , the algorithm selects one new feature and adds it (with the
corresponding voting factor) to the ensemble. All features are evaluated and the best

8.2 Multiple Instance Methods for Feature Selection 177

one is selected to form the weak classifiers ht . The sample weights are updated. In the
last step, a strong classifier H is computed as a weighted linear combination of the
weak classifiers. The number of iterations T is related to the number of dimensions
with a sufficient differentiation ability in the whole feature vector. Algorithm 13
shows this process. Some differences with respect to the original AdaBoost method
[7] are evident. In this schema, the sums of sample weights for positive and negative
samples are always kept equal to 1/2. This maintains the balance between positive
and negative bags. The weak classifier uses the weights in its real-valued prediction.
The final strong classifier is a direct combination of the weak classifiers instead of a
weighted combination.

Algorithm 13 AdaBoost feature selection Algorithm for MIL
Input: X ← multi-instance training set {X1, X2, . . . , X N } (Xi ⊆ X)

Output: H , the final strong classifier
1: Map X to a new bag-level feature space
2: n+ ← number of positive samples
3: n− ← number of negative samples
4: if Class(Xi) is positive then � Initialize the weight vector
5: w(Xi) = 1

2 n+
6: else
7: w(Xi) = 1

2 n−
8: end if
9: for t from 1 to T do
10: Train the weak classifier h j for each feature j using w(Xi)
11: Calculate the training error e j of h j ,

e j =
∑

i

w(Xi)|h j (Xi) − Class(Xi)|

12: Choose ht = h j with the lowest error and set et = e j
13: Update weights for positive examples

wt+1(Xi) = wt (Xi) exp(−Class(Xi)·ht (Xi))

Ztp

14: Update weights for negative examples

wt+1(Xi) = wt (Xi) exp(−Class(Xi)·ht (Xi))

Ztn

� Ztp and Ztn are normalization factors to ensure that wt+1 is distribution and that the weight
of positive and negative samples all sum up to 1/2

15: end for

16: H(X) = sign[
T∑

t=1
ht (X)]

Depending on the employed weak classifiers, different proposals can be found
regarding the weight distribution in their training phase and the way they are com-
bined at the end of the algorithm. Different map-based algorithms are encountered.

178 8 Data Reduction

As described in Sect. 5.3, these methods map each bag into a new feature vector
and thereby transforms the multi-instance data to a single-instance representation.
The MIL problem is converted to a standard single-instance problem, usually with a
higher dimensionality such that it is convenient to perform a FS step. Any traditional
single-instance FS method can be applied. We list proposals using AdaBoost with a
linear weak classifier for selecting the bag features obtained by mapping and building
the final classifier simultaneously (Algorithm 13).

The MI-AdaBoost algorithm was proposed by Yuan et al. [27]. It uses AdaBoost
to select the bag features mapped by a certain set of instance prototypes. It considers
two types of instance prototypes: instances from positive bags and the clustering
centers of the instances from negative bags. The minimum Hausdorff distance is
used to measure the distance between bags.

Zhu et al. [32] proposed the MCMI-AdaBoost method, an algorithm that uses
AdaBoost to select the bag features by computing the Hausdorff distance to define
a similarity measure between two bags. The bags are mapped to a new bag feature
space based on this similarity. An AdaBoost algorithm is proposed to build a two-level
classifier converting the multi-class classification problem to a series of two-class
classification problems. The output of the first level indicates the possibility that a bag
belongs to one class. The second level performs a two-class classification between
the two classes with the highest possibility.

Based on their previous work, Yuan et al. developed the existence-based MIL
called EBMIL in [25]. This method is able to select different feature modalities for
each concept under MIL settings. As a step prior to AdaBoost, a mapping is applied
based on points in the instance-level feature space, that hold potential information
on the positive and opposite concepts. Positive instance prototypes and opposite
instance prototypes are considered. The former are all the instances from positive
bags, while the latter are the clustering centers of instances from negative bags.

More recently, Zhang et al. [31] proposed a boosted exemplar learning (BEL)
approach for the computer vision field. Based on the learned exemplar, M candidate
exemplars are obtained. Each action bag (e.g., an action in a video clip) is described
as an M-dimensional vector of its similarity with the M exemplars. The AdaBoost
algorithm integrates the FS and action modeling.

Ciliberto et al. [3] follow the philosophy of AdaBoost to design their online MIL
algorithm. They include a mechanism for online FS based on Algorithm 13. In an
online context, it is likely that useful and descriptive features (and hence potential
centers for new weak classifiers) will not be available from the start, but may become
available in a later stage. In the problem studied in [3], the object to be learned can
rotate, revealing its previously hidden parts.

Experimental Study

The studies of Yuan et al. [25, 27] consider the Corel and Musk datasets (Sect. 3.6) to
evaluate their proposals. The mean average precision and computation time are used
as evaluation measures. The experimental results show that MI-AdaBoost [27] is
much more efficient than the 1-norm SVM [5] and MI-Boosting [7]. Concretely, for
the Corel dataset, MI-AdaBoost performs better than MI-Boosting, while its results

http://dx.doi.org/10.1007/978-3-319-47759-6_5
http://dx.doi.org/10.1007/978-3-319-47759-6_3

8.2 Multiple Instance Methods for Feature Selection 179

are comparable with the 1-norm SVM. In the Musk datasets, MI-AdaBoost performs
better than both MI-Boosting and 1-norm SVM. The EBMIL algorithm [25] achieves
promising experimental results on the Corel dataset compared with four other feature
reduction methods, confirming its effectiveness.

Other models based on AdaBoost for feature selection described in this section
are applied to solve particular problems, such as the study of Zhu et al. [32] that
shows that their approach, the MCMI-AdaBoost method, is an effective solution for
the lung cancer classification problem. In order to evaluate its performance, they
compare the accuracy of their method with four other proposals, including classic
algorithms such as Citation-kNN and an SVM based algorithm. The study of Zhang
et al. [31] considers two available datasets of video action recognition, the KTH
human motion dataset and Weizmann human action dataset. To demonstrate the
validity and effectiveness of their BEL algorithm, they compare its results with four
other MIL classification methods based on the accuracy. The results show that the
BEL algorithm outperforms its competitors.

8.2.3.2 SVM for Feature Selection

SVMs have also been widely used for interweaving FS and classifier construction.
They allow the incorporation of feature weighting in their kernel function to combine
different features. The performance of these methods can be improved by providing
information about the features during model generation.

Ngiam et al. [20] incorporate feature weighting into the kernel function based on
the idea that different features work well with different concepts. In their proposal,
the weight learning is carried out by a simple greedy algorithm (Algorithm 14). In
order to obtain the final classifier, each concept is considered independently using
an SVM with extended Gaussian kernels over the χ2 distance:

K (Xi , X j) =
∑

f ∈F

1

μ f
χ2(f (Xi), f (X j)),

where μ f is the average χ2 distance for a particular feature, used to normalize the
distances across different features.

There are others kernel-based methods that carry out FS using an SVM model to
select important features and construct a classifier simultaneously. These methods
transform MIL into a FS problem by embedding bags into a new feature space.
According to the specific mapping function used in the transformation, the final
purpose of a method can change. The MILES method of Chen et al. [5] (Sect. 5.3.4)
falls in this category. MILES maps the bags via an instance similarity measure. It
uses each instance as a candidate target point, such that the induced space has a high
dimensionality. The authors use a 1−norm SVM to select relevant features and build
classifiers at the same time. At its core, this approach identifies relevant instances in
the new bag feature space, since each feature is induced by an instance.

http://dx.doi.org/10.1007/978-3-319-47759-6_5

180 8 Data Reduction

Algorithm 14 Greedy FS
Input: X ← multi-instance training set {X1, X2, . . . , X N } (Xi ⊆ X), Class(Xi) = 0 for the

negative examples and Class(Xi) = 1 for the positive examples
Input: F ← all features
Output: selected Subset , feature subset
1: repeat
2: for each feature f ∈ F do
3: Compute error rate if f is removed
4: end for
5: Remove the feature which results in the highest improvement
6: until removing any feature results in worse performance
7: repeat
8: for each feature f ∈ F do
9: Compute error rate if f is added
10: Compute error rate if f is removed
11: end for
12: selected Subset ← Add feature which give best improvement
13: until local optimum is reached

The Multiple Instance Online (MIO) method proposed by Li et al. [14] is an
online MI learning algorithm that has an efficient online update procedure. Similar
to MILES, it maps each bag to a feature space defined by all instances and then
performs joint FS and classification by using the 1-norm SVM.

The MIL-MFS (Multiple-Instance Learning with Multiple Feature Selection)
algorithm was proposed by Jhuo et al. [11] and uses multiple kernel learning. The
authors use a similarity based feature representation, where each instance may be
mapped into diverse feature spaces. It iteratively selects the fusing of multiple fea-
tures for classifier training.

More recently, Mao et al. [19] proposed the FSPO (Feature Selection method
for multivariate Performance measures Optimization) algorithm. They propose a
generalized sparse regularizer for FS, based on which a unified FS framework is
presented for general loss functions. Specifically, they propose a two-layer cutting
plane algorithm including group feature generation and selection to solve this prob-
lem effectively and efficiently. Multiple kernel learning is proposed to deal with the
exponential size of constraints induced by multivariate losses.

Experimental Study

The study of Jhuo et al. [11] considers the Corel dataset (Sect. 3.6). They compare
their proposal, the MIL-MFS algorithm, with four multi-instance classifiers based
on SVM. Their results show that their method achieves the best accuracy among the
included algorithms.

Considering a proposal of online MI learning, the study of Li et al. [14] utilizes
synthetic datasets and the Musk datasets (Sect. 3.6) to compare their MIO algorithm
with the MILES method. The experimental results show that their proposal outper-
forms MILES with a small number of passes. Moreover, the average error of nine

http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3

8.2 Multiple Instance Methods for Feature Selection 181

multi-instance classifiers is used to validate the efficiency of MIO and the latter is
shown to achieve competitive results.

Finally, a more recent study carried out by Mao et al. [19] considers the Corel
and News datasets (Sect. 3.6). They compare their FSPO algorithm with four feature
selection methods and evaluate the results using the F1 score measure [19]. Com-
paring with various feature selection methods, the FSPO algorithm is shown to be
superior to the others.

8.2.4 Hybrid Method: HyDR-MI Algorithm

Hybrid FS methods combine the advantages of filter and wrapper methods. To deter-
mine the important properties of the feature space, a filter method assigns a score to
each attribute. Features with very low scores are considered to be irrelevant and can
be discarded. The reduced or ranked feature set is provided to a wrapper method,
whose purpose is to select the best feature subset for a particular MIL algorithm.

Algorithm 15 HyDR-MI algorithm
Input: X ← multi-instance training set {X1, X2, . . . , X N } (Xi ⊆ X)

Output: subsetFeature, the most relevant feature subset
� ReliefF-MI Method

1: subsetFeature ← obtained with method ReliefF-MI
� Genetic Algorithm

2: P0 ← initial population, generated randomly
3: P0 ← evaluation of P0 using a classification method
4: t ← 0
5: repeat
6: Pparent ← selectionParents (Pt)
7: Pof f spring ← genetic operators crossover and mutation over Pparent
8: Pof f spring ← evaluation of Pof f spring using a classification method
9: Pt+1 ← update population using Pt and Pof f spring
10: t ← t + 1
11: until t < maxGenerations
12: subsetFeature ← the best individual obtained in genetic algorithm

Adhering to this setup, Zafra et al. [29] developed HyDR-MI (Hybrid Dimension-
ality Reduction method for Multiple Instance learning), as shown in Algorithm 15.
This method consists of a filter component based on the ReliefF-MI algorithm [28]
and a wrapper component based on a genetic algorithm [23] that optimizes the search
for the best feature subset from a reduced set of features obtained by filter. This com-
bination benefits both sides. On the one hand, the main restriction of the ReliefF-MI
algorithm is the necessity of setting a threshold which determines how many top
scored features should be selected. It evaluates each feature individually and can-
not handle the problem of feature redundancy appropriately. The genetic algorithm
assists the search for the best feature subset and thereby solves these issues. It uses

http://dx.doi.org/10.1007/978-3-319-47759-6_3

182 8 Data Reduction

the performance of a classifier as a fitness function and optimizes the FS by finding
the most suitable subset for that classifier. On the other hand, the main limitation of
a genetic algorithm is its computation time. ReliefF-MI helps to reduce the search
space to achieve better results in less time.

Experimental Study

The study of Zafra et al. [29] considers five benchmark datasets: Musk1, Musk2,
Elephant, Tiger, and Fox (Sect. 3.6). To show the efficiency of HyDR-MI compared
to ReliefF-MI [28], the results of 17 multi-instance classification algorithms are
compared based on the accuracy.

The results show the potential of HyDR-MI statistically improving the predictive
performance of many classifiers compared to ReliefF-MI. This is achieved by the
possibility to decide how many of the top ranked features are useful for each particular
algorithm and the possibility to discard redundant attributes.

8.3 Multiple Instance Methods for Bag Prototype Selection

The second data reduction technique that we consider in this chapter is bag prototype
selection. In Sect. 8.3.1, we introduce this concept. Section 8.3.2 describes several
multi-instance methods implementing this procedure.

8.3.1 Introduction to Bag Prototype Selection

Bag prototype selection (BPS) methods reduce the dataset by selecting a subset of
samples. The aim is to eliminate noisy and irrelevant bags and preserve only the most
informative ones.

As multi-instance samples are bags composed of one or more instances, a different
interpretation can be raised compared to the concept of instance selection in single-
instance learning. BPS carries out a bag selection. From this perspective, the aim
would be similar to traditional instance selection, that is, reducing the number of
observations in the dataset. The distinctive feature is that the removal of a bag implies
the elimination of all instances contained in it. An instance selection within each bag
can be considered as well. This setting would eliminate individual instances, but it
does not reflect the traditional aim of instance selection, which is the reduction of
the number of data samples. The number of instances inside bags would be lower,
but the total number of bags would be maintained.

Nevertheless, instance prototype selection has always concerned MIC algorithm
developers. According to the standard MI assumption, negative bags contain only
negative instances, while positive bags contain both positive and negative ones.
Instance label ambiguity lies with the positive bags. Mislabeling negative instances
in positive bags can limit the performance of multi-instance classifiers. Many meth-
ods have focused on selecting a subset of instances from positive bags to learn the

http://dx.doi.org/10.1007/978-3-319-47759-6_3

8.3 Multiple Instance Methods for Bag Prototype Selection 183

(a) Initial dataset (n bags) (b) Reduced dataset (m bags)

Fig. 8.2 MI bag selection method

classifier. For example, the EM-DD algorithm [30] chooses one instance that is most
consistent with the current hypothesis in each positive bag to predict the label for a
new bag. DD-SVM [4] depends on the DD concept to identify instance prototypes.
Those instances corresponding to local maximizers of the DD function are chosen
as instance prototypes, after which an SVM with a Gaussian kernel is learned in the
embedded space. MILD [13] performs the instance selection based on a conditional
probability model. The instance having the highest ability to distinguish between
positive and negative training bags is chosen from each positive bag as an instance
prototype. The method learns a standard SVM with a Gaussian kernel using bag-level
features. MILIS [8] achieves the initial instance selection by modeling the distribution
of the negative population with a Gaussian-kernel-based kernel density estimator. It
depends on an iterative optimization framework to update instance prototypes and
learn a linear SVM.

Many algorithms can be included here, as several aim to locate the most relevant
instance(s) inside of a bag, as related in previous chapters. In this section, we focus on
BPS that tries to reduce the number of training bags. These methods have emerged
recently in MIL and have a similar finality as single-instance instance selection
methods. Figure 8.2 visualizes the BPS process. Figure 8.2a shows the initial dataset,
where each sample is composed of several instances. The preprocessed dataset is
shown in Fig. 8.2b. The number of bags has been reduced with respect to the initial
dataset.

BPS can be defined as a search problem to find a subset of bags which optimizes
a particular criterion. Formally, let T be the original dataset with n bags and S a
subset of m bags (m << n) [10]. BPS tries to find the optimal subset S that does not
contain superfluous bags and with which the performance obtained by the classifier
is similar to or better than that with the original set T .

Following a similar taxonomy as for FS (Sect. 8.2.1), different BPS methods can
be divided in filter, wrapper, and embedded categories. To the best of our knowledge,
only filter proposals have been presented for BPS. A summary of these methods is
shown in Table 8.2.

184 8 Data Reduction

Table 8.2 Bag prototype
selection methods in
multi-instance learning

Bag prototype selection methods

Filter methods

MICLONE algorithm [26]

MILNS algorithm [26]

MILSUP algorithm [26]

8.3.2 Filter Methods

Three proposals designed by Yuan et al. [26] can be classified as filter methods.
Their MILCLONE, MILNS, and MILSUP methods are respectively based on clonal
selection theory [2], the negative selection principle [12], and self-regulation and
suppression mechanisms in natural immune systems [6]. The main features of these
methods are described below.

8.3.2.1 MICLONE Algorithm

The MICLONE method [26] is based on clonal selection theory [2]. This theory
explains the basic response of the adaptive immune system to an antigenic stimulus.
Only those cells capable of recognizing an antigen proliferate, while those that do
not are not selected. The main steps of MICLONE are shown in Algorithm 16.
The training set is composed of antigens (training bags). One antigen is provided
to the algorithm at a time, until all have gone through the entire process. After the
initialization of memory cells, memory cell identification, generation of candidate
memory cell and memory cell introduction, the output is a set of memory cells, and
corresponding to bag prototypes. In more detail, the first stage initializes memory
cells, where some antigens are selected to form the memory pool. Second, memory
cell identification is carried out and candidate memory cell are generated. For a given
antigen X , its closest (most stimulated) antigen with the same class is chosen as its bag
prototype (memory cell) from the pool. A stimulation function, which can determine
the closest bag, needs to be defined. The authors use the minimum Hausdorff distance.
In the memory cell introduction stage, developed candidate memory cell are added
to the existing set. The most stimulated memory cell is removed from the pool, if the
affinity between the candidate memory cell and its parental instance from the most
stimulated cell is less than the product of the affinity threshold ATC L O N E and the
user-specified threshold AT SC L O N E . The former is calculated as

ATC L O N E =

n−1∑

i=1

n∑

j=i+1
a f f ini t y(Xi , X j)

n(n−1)

2

,

8.3 Multiple Instance Methods for Bag Prototype Selection 185

where n is the number of training antigens, Xi and X j are the i th and j th training
antigen and a f f ini t y(Xi , X j) returns the minimal Hausdorff distance between two
bags.

8.3.2.2 MILNS Algorithm

MILNS [26] is based on the negative selection algorithm [12]. These methods
describe the negative representation of information when negative examples are not
available. For example, in many anomaly detection applications, only positive (nor-
mal) examples are available for training, while negative (abnormal) examples are
not. The positive examples are used to obtain some representative negative examples
known as detectors.

The main steps of this method are described in Algorithm 17. All positive bags
are regarded as self samples (self cells) and all negative bags as the set of candidate
detectors (antibodies) from which negative example prototypes will be selected.
Given a candidate detector, the method scans the set of self samples for the one
with the lowest affinity with the candidate detector. If the affinity approximated by
means of the minimum Hausdorff distance is greater than the product of the affinity
threshold ATN S and the threshold AT SN S provided by the user, the candidate detector
is considered as a negative example prototype. The affinity threshold is the average
affinity value over all self examples, which is calculated as

ATN S =

n−1∑

i=1

n∑

j=i+1
a f f ini t y(Xi , X j)

n(n−1)

2

,

where n is the number of self samples, Xi and X j are the i th and j th self samples
and a f f ini t y(Xi , X j) returns the minimal Hausdorff distance between these two.

Algorithm 16 MICLONE Algorithm
Input: X ← multi-instance training set {X1, X2, . . . , X N } (Xi ⊆ X), Class(Xi) ∈ {0, 1}
Output: subset Bags ← more relevant bag subset.
1: memory = initializeRandomRepertoire()
2: for Xi ∈ memory do
3: best = memoryCellIdentification(Class(Xi))
4: fit = generationCandidateMemoryCell(best, Xi)
5: Add f i t to memory cell
6: if a f f ini t y(f i t, closestbest) < (ATC L O N E · AT SC L O N E) then � closestbest its the

closest bag with the same class as Xi
7: Eliminate best of memory cell
8: end if
9: end for

186 8 Data Reduction

8.3.2.3 MILSUP Algorithm

MILSUP [26] is based on an immune inspired suppressive algorithm [6]. It is inspired
by the self-regulation and suppression mechanisms in the biological immune system.
According to the self-regulation mechanism, those cells unable to neutralize danger
tend to disappear from the organism (or be suppressed). By analogy, data not relevant
to the classifier is eliminated from the training set.

The main steps of MILSUP are described in Algorithm 18. The affinity approx-
imation between two bags is given by means of the minimal Hausdorff distance.
The dataset is divided into two subsets, the first one representing the lymphocytes in
the organism (training set) and the second one a set of pathogens (suppression set).
The algorithm sets out with the idea that the system’s model must identify the best
subset of lymphocytes in order to recognize pathogens. Specifically, each pathogen
in the suppression set is classified according to the closest lymphocytes in the train-
ing set. Those lymphocytes able to recognize pathogens are retained, while others
are eliminated. The recognition ability is determined by comparing the label of the
closest lymphocyte with that of the corresponding pathogen. If their labels are the
same, the lymphocyte is considered to have the ability to recognize the corresponding
pathogen, otherwise it is not.

Experimental Study

The study of Yuan et al. [26] considers five datasets: Musk1, Musk2, Elephant, Tiger,
and Fox (Sect. 3.6). The experimental study includes a comparison between the three
proposals (MILSUP, MICLONE, and MILNS). The reduced datasets provided by
these methods are used by 20 classifiers for the Elephant, Tiger, and Fox datasets
and by 12 classification algorithms for the Musk1 and Musk2 datasets. The accu-
racy and computation time are used as evaluation measures. The results show that
MILCLONE and MILNS are competitive with each other in terms of their effect on
the classification accuracy. They are superior to MILSUP. All methods considerably
reduce the computation time of the classifiers.

Algorithm 17 MILNS Algorithm
Input: X ← multi-instance training set {X1, X2, . . . , X N } (Xi ⊆ X)

Output: subset Bags ← more relevant bag subset.
1: sel f ← set of all positive bags
2: detector ← set of all negative bags
3: P ← ∅ � P is the set of bag prototypes
4: for Xd ∈ dectector do
5: X p ← argminXs∈Sel f a f f ini t y(Xs , Xd)

6: if a f f ini t y(X p, Xd) > ATN S · AT SN S then
7: Add X p to P
8: end if
9: end for

http://dx.doi.org/10.1007/978-3-319-47759-6_3

8.4 Summarizing Comments 187

Algorithm 18 MILSUP algorithm
Input: X ← multi-instance training set {X1, X2, . . . , Xn}, (Xi ⊆ X), Class(Xi) ∈ {0, 1}
Input: Fraction f ∈ [0, 1]
Output: bagSubset , most relevant bag subset
1: W BCs ← randomly assign f · n examples
2: Pathogens ← examples not assigned to WBCs
3: for X ∈ W BCs do � Set a survival signal for every WBC and initialize it to be false
4: SurvivalX = f alse
5: end for
6: for X p ∈ Pathogens do
7: NearestW BC ← argminw∈W BCsa f f ini t y(X p, Xw)

8: if Class(NearestW BC) = Class(X p) then
9: SurvivalNearestW BC = true
10: end if
11: end for
12: Eliminate those bags of W BCs with the survival signal set to false
13: Add to bagSubset those bags of W BCs with survival signal set to true

8.4 Summarizing Comments

Data reduction in MIL is a critical challenge. The inherent data ambiguity, where
instances in a positive bag may or may not approximate the positive concept, adds
more complexity to the problem. In this chapter, we considered two important tasks to
reduce the computational complexity and improve the performance of the subsequent
learner: FS and BPS. In case of FS, different methods are described adhering to the
well-known taxonomy based on filter, wrapper, and embedded methods. A similar
study is carried out for BPS, which is the more recently addressed task.

References

1. Bellman, R.: Dynamic Programming and Lagrange Multipliers. Princeton University Press,
Princeton (1957)

2. Burnet, S.F.M.: The Clonal Selection Theory of Acquired Immunity. Vanderbilt University
Press, Nashville (1959)

3. Ciliberto, C., Smeraldi, F., Natale, L., Metta, G.: Online multiple instance learning applied to
hand detection in a humanoid robot. In: De Luca, A. (ed.) Proceedings of the IEEE Interna-
tional Conference on Intelligent Robots and Systems (IROS 2011), pp. 1526–1532. IEEE, San
Francisco (2011)

4. Chen, Y., Wang, J.Z.: Image categorization by learning and reasoning with regions. J. Mach.
Learn. Res. 5, 803–821 (2004)

5. Chen, Y., Bi, J., Wang, J.Z.: MILES: multiple-instance learning via embedded instance selec-
tion. IEEE Trans. Pattern Anal. 28(12), 1931–1947 (2006)

6. Figueredo, G.P., Ebecken, N.F., Augusto, D.A., Barbosa, H.J.: An immune-inspired instance
selection mechanism for supervised classification. Memet. Comput. 4(2), 135–147 (2012)

7. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boost-
ing (with discussion and a rejoinder by the authors). Ann. Stat. 28(2), 337–407 (2000)

188 8 Data Reduction

8. Fu, Z., Robles-Kelly, A., Zhou, J.: MILIS: multiple instance learning with instance selection.
IEEE Trans. Pattern Anal. 33(5), 958–977 (2011)

9. Gan, R., Yin, J.: Feature selection in multi-instance learning. Neural Comput. Appl. 23(3–4),
907–912 (2013)

10. García, S., Luengo, J., Sáez, J.A., López, V., Herrera, F.: A survey of discretization techniques:
taxonomy and empirical analysis in supervised learning. IEEE Trans. Knowl. Data Eng. 25(4),
734–750 (2013)

11. Jhuo, I.H., Lee, D.T.: Multiple-instance learning: multiple feature selection on instance rep-
resentation. In: Proceedings of the 25th International Conference on Artificial Intelligence
(AAAI 2011), pp. 1794–1795. Association for the Advancement of Artificial Intelligence, San
Francisco (2011)

12. Ji, Z., Dasgupta, D.: V-detector: an efficient negative selection algorithm with “probably ade-
quate” detector coverage. Inf. Sci. 179(10), 1390–1406 (2009)

13. Li, W.J.: MILD: multiple-instance learning via disambiguation. IEEE Trans. Knowl. Data Eng.
22(1), 76–89 (2010)

14. Li, M., Kwok, J.T., Lu, B.L.: Online multiple instance learning with no regret. In: Boykov, Y.,
Schmidt, F.R., Kahl, F., Lempitsky, V. (eds.) Proceedings of the International Conference on
Computer Vision and Pattern Recognition (CVPR 2010), pp. 1395–1401. IEEE, Los Alamitos
(2010)

15. Liu, H., Motoda, H.: Feature Extraction, Construction and Selection: A Data Mining Perspec-
tive. Kluwer, Boston (1998)

16. Liu, H., Motoda, H.: Instance selection and construction for data mining. Kluwer Academic
Publisher, Norwell (2001)

17. Liu, H., Motoda, H.: Computational Methods of Feature Selection. CRC Press, Boca Raton
(2007)

18. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering.
IEEE Trans. Knowl. Data Eng. 17(4), 491–502 (2005)

19. Mao, Q., Tsang, I.W.H.: A feature selection method for multivariate performance measures.
IEEE Trans. Pattern Anal. 35(9), 2051–2063 (2013)

20. Ngiam, J., Goh, H.: Learning global and regional features for photo annotation. In: Peters, C.,
Muller, H., Caputo, B., Gonzalo, J., Jones, G.J.F., Kalpathy-Cramer, J., Former, P., Giampiccolo,
D. (eds.) Proceedings of 10th Workshop of Cross-Language Evaluation Forum for European
Languages (CLEF 2009), pp. 287–290. Springer, Berlin (2009)

21. Robnikikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF.
J. Mach. Learn. Res. 53(1–2), 23–69 (2003)

22. Triguero, I., Derrac, J., García, S., Herrera, F.: A taxonomy and experimental study on prototype
generation for nearest neighbor classification. IEEE Trans. Syst. Man Cybern. C 42(1), 86–100
(2012)

23. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)
24. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision

making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)
25. Yuan, X., Wang, M., Song, Y.: Concept-dependent image annotation via existence-based

multiple-instance learning. In: Proceedings of the IEEE International Conference on Systems.
Man and Cybernetics (SMC 2009), pp. 4112–4117. IEEE, Los Alamitos (2009)

26. Yuan, L., Liu, J., Tang, X.: Combining example selection with instance selection to speed up
multiple-instance learning. Neurocomputing 129, 504–515 (2014)

27. Yuan, X., Hua, X.S., Wang, M., Qi, G.J., Wu, X.Q.: A novel multiple instance learning approach
for image retrieval based on adaboost feature selection. In: Yun-Qing, S., Liao, M., Hu, Y.H.,
Sheu, P., Ostermann, J. (eds.) Proceedings of the International Conference on Multimedia and
Expo (ICME 2007), pp. 1491–1494. IEEE Service Center, Piscataway (2007)

28. Zafra, A., Pechenizkiy, M., Ventura, S.: ReliefF-MI: an extension of ReliefF to multiple instance
learning. Neurocomputing 75(1), 210–218 (2012)

29. Zafra, A., Pechenizkiy, M., Ventura, S.: HyDR-MI: a hybrid algorithm to reduce dimensionality
in multiple instance learning. Inf. Sci. 222, 282–301 (2013)

References 189

30. Zhang, Q., Goldman, S.: EM-DD: an improved multiple-instance learning technique. In:
Becker, S., Thrun, S., Obermayer, K. (eds.) Proceedings of the 17th Conference on Advances in
Neural Information Processing Systems (NIPS 1998), pp. 1073–1080. MIT Press, Cambridge
(1998)

31. Zhang, T., Liu, J., Liu, S., Xu, C., Lu, H.: Boosted exemplar learning for action recognition
and annotation. IEEE Trans. Circ. Syst. Video 21(7), 853–866 (2011)

32. Zhu, L., Zhao, B., Gao, Y.: Multi-class multi-instance learning for lung cancer image clas-
sification based on bag feature selection. In: Wang, L., Jin, Y. (eds.) Proceedings of the 5th
International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2008). Lecture
Notes in Artificial Intelligence, pp. 487–492. Springer, Berlin (2008)

	8 Data Reduction
	8.1 Introduction
	8.2 Multiple Instance Methods for Feature Selection
	8.2.1 Introduction to Feature Selection
	8.2.2 Filter Methods
	8.2.3 Embedded Methods
	8.2.4 Hybrid Method: HyDR-MI Algorithm

	8.3 Multiple Instance Methods for Bag Prototype Selection
	8.3.1 Introduction to Bag Prototype Selection
	8.3.2 Filter Methods

	8.4 Summarizing Comments
	References

