
Chapter 6
Multi-instance Regression

Abstract Regression is a popularmachine learning task that aims to predict a numer-
ical outcome. In multi-instance regression (MIR), each observation can be described
by several instances. After a brief introduction to this topic in Sect. 6.1, we present
a formal definition of MIR and its appropriate evaluation measures in Sect. 6.2. We
organize the MIRmethods in two main categories. Algorithms that focus on individ-
ual instances of each bag in their construction of a regression model are examined in
Sect. 6.3, while Sect. 6.4 discusses methods that treat bags as single entities to create
a regression model operating at the bag level. Section6.5 lists some summarizing
remarks.

6.1 Introduction

The multi-instance regression task (MIR) is the natural extension of traditional
(single-instance) regression to the multi-instance setting. MIR models the data in
the same way as MIC, with the important difference that each bag is associated with
a real-valued outcome and not a class. TheMIR objective is to approximate, based on
the training bags, a function that can predict the outcome of future bags as accurately
as possible. In Sect. 6.2, we present a more formal description of MIR. Compared to
the traditional regression task, the ambiguity introduced by the multiple descriptions
for every bag as well as the lack of information on how these descriptions relate to
the bag label make MIR intrinsically more challenging.

MIR has been studied much less than the multi-instance classification task. Nev-
ertheless, it is of great importance for two main reasons. On the one hand, regression
provides a theoretical basis to understand many classification methods and can gen-
erate useful ideas to the design of more effective classifiers. On the other hand, an
important motivation for the development of new algorithms is that many real-life
applications can be successfully modeled as MIR problems. These include drug
activity prediction, landmark recognition, remote sensing systems, age estimation,
and sentiment analysis (see Sect. 2.4.7).

We have already shown that MIC methods can be grouped into two major cate-
gories, namely instance-based and bag-based methods. MIR methods can be divided
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128 6 Multi-instance Regression

into these two categories as well. Instance-based MIR methods try to determine a
regression function for one prime instance, a subgroup of instances or all instances
inside the bag. The bag label is a function of the prime instance label or an aggre-
gation of several instance labels. This group of methods is discussed in Sect. 6.3.
Bag-based MIR methods treat each bag as a whole entity. These methods can rely
on bag-wise distance or kernel functions or can be based on mapping functions that
represent bags as single vectors on which single-instance regression models can be
learned. Section6.4 is devoted to bag-based MIR methods.

6.2 MIR Formulation

We begin our discussion on MIR methods with a brief description of the setting and
objective of this learning task. Evaluation measures to assess the quality of MIR
models are presented as well.

6.2.1 Problem Description

In a MIR problem, the training set D = (X,Y) consists of m bags X = 〈X1, . . .Xm〉
and their corresponding real-valued labels Y = 〈y1, . . . ym〉 with (∀i = 1 . . .m)(yi ∈
R). Each bag Xi has ni instances

{
xi1, . . . , xini

}
and each instance xij is described by

d features. In the simplest case all features take on real values, but in general real-
valued features can be mixed with categorical ones. Instance labels are not available.
The goal of MIR is to determine a function f over the bag space NX which can make
predictions ŷi = f (Xi) of the label yi of new bags Xi as accurately as possible.

A geometrical view of MIR is presented in Fig. 6.1. If we project the bag space in
a Cartesian plane, each bag can be viewed as a region in that plane. For simplicity,
the bag space in Fig. 6.1 has only two featuresX1 andX2. Bag labels are represented
as scores on the Y axis, orthogonal to the X1–X2 plane. When there is an infinite
number of bags covering the whole bag space, their label ordinates form a surface
over the plane. MIR aims to find a function f that is the best possible approximation
to that surface. As a consequence, f is sometimes referred to as the regression surface.

6.2.2 Evaluation Measures

Evaluationmeasures are needed to assess howwell the regression function f approxi-
mates the real process. Any validation scheme (Sect. 1.4.1) can be used as appropriate
to the problem at hand. Despite the difference in data representation, MIR is similar
to traditional regression in the type of variable to be predicted. The same evalua-
tion metrics can therefore be used. The most common evaluation measures used for
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Fig. 6.1 Geometrical view
of MIR

regression are the mean absolute deviation (MAD) computed as

MAD = 1

n

n∑

i=1

|yi − f (Xi)|

and the mean squared error (MSE) given by

MSE = 1

n

n∑

i=1

(yi − f (Xi))
2 .

In both cases, the actual label yi is compared with the predicted outcome f (Xi) and
their differences are averaged over n test bags. InMSE, these differences are squared,
such that larger errors are penalized more.

6.3 Instance-Based Regression Methods

Chapter4 showed that instance-based classifiers perform their main learning process
at instance level. The same goes for instance-based regression methods. Attention
is payed to the individual instances within the bags. In general, one representative
instance is selected or generated for each bag and a regression model is constructed
over these instances. Any traditional single-instance regression learner can be used,
since it is fitted with just one instance from each bag. The most important design
option of instance-based regression methods is the way to model the relation of
instances with the bag label. Two assumptions dominate the MIR literature

http://dx.doi.org/10.1007/978-3-319-47759-6_4


130 6 Multi-instance Regression

• The prime instance assumption (Sect. 6.3.1): there is a single instance in every
bag which is responsible for the bag label. Algorithms based on the prime instance
assumption strive to select this “correct” instance in the bag.

• The collective assumption (Sect. 6.3.2): each instance in the bag makes a (possi-
bly different) contribution to the bag label. Methods based on this assumption try
to determine the weight that each instance has in the prediction of the bag label.

A second source of differences between instance-based methods lies with the selec-
tion of the regression model and solution procedure to be used. Commonly, one
assumes a class of regression functions f on X depending on a set of parameters �,
i.e., f ≡ f (X,�). As an example, consider the class of linear regression functions
consisting of a hyperplane determined by a normal vector W . To guarantee that the
obtained regression model f (X,�) is the best possible approximation according to
the training data, an optimization approach

�∗ = argmin
�

m∑

i=1

L (yi, f (Xi,�)) + λR (�) (6.1)

must be adopted. In expression (6.1), L is a loss function that indicates how well
the prediction model performs and R (�) is a regularization term favoring simple
models and thereby avoiding data overfitting. The parameter λ > 0 is a trade-off
between prediction accuracy and model complexity. The optimization solution �∗
is the best set of parameters defining the optimal regression model. Several loss
functions and regularization forms can be used in (6.1). For example, when squared
loss is combined with squared norm regularization we can obtain a closed form
solution. In other cases, gradient descent optimization methods need to be applied to
find an approximation.As this is a typical formulation of regressionmodels, abundant
explanations can be found in any modern machine-learning book.

In the following sections, we provide an in-depth analysis of the most relevant
assumptions involved in instance-based regression methods. Representative algo-
rithms are briefly described in each case.

6.3.1 Prime Instance Assumption

This approach assumes that the bag label is determined by only one instance in the
bag, namely the primary or prime instance. The remaining instances are consid-
ered noisy observations of the prime instance. This assumption was proposed in the
seminal work of Ray and Page [12] and has had a great impact on MIR works that
followed. Inspiration was drawn from the standard MIL assumption for classifica-
tion, which states that a single positive instance in a bag suffices for a positive bag
label (Sect. 3.4.1).

http://dx.doi.org/10.1007/978-3-319-47759-6_3
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6.3.1.1 Prime-MIR Algorithm

Formally, the prime-instance algorithm looks for the optimal regression model
f (x,�) in (6.1) based on the set of prime instances

{
x1p, . . . , xmp

}
, where xip is

the prime instance in bag Xi. The general prime-instance regression model is defined
as

�∗ = argmin
�

m∑

i=1

L
(
yi, f

(
xip,�

)) + λR (�) . (6.2)

In [10], the authors prove that the exhaustive search of the set of prime instances
satisfying (6.2) has an NP-complete computational complexity. An approximating
solution method is used in the form of an expectation-maximization (EM) algorithm.
First, prime instances are selected at random from each bag. This initial guess is
subsequently refined by iterating between expectation andmaximization steps. In the
maximization step, a new regression model is trained by using the current hypothesis
of prime instances. In the expectation step, new candidates of prime instances are
found by selecting the instance from each bag that has the lowest prediction error
according to the current regressionmodel. These steps are repeated until convergence.

The regression model f (x,�) obtained by means of (6.2) represents the hyper-
plane � that best approximates the prime instance outcomes, which in turn are sup-
posed to be the best approximation of the bag labels. When a new bag is presented to
the model, its prime instance needs to be located in order to evaluate the model and
obtain the bag label. However, the model of Ray and Page [12] does not provide any
information on which element is the prime instance. Although Cheung and Kwok [4]
and Ray [10] identified problem domains in which it is possible to assume that the
prime instance is the one with the largest output value, it is not possible to generalize
this heuristic to other domains.Wang et al. [20] suggest a statistical solution by using
the mean of the predictions of all instances in the new bag Xi, namely

ŷi = mean
(
f (xi1) , . . . , f

(
xini

))
. (6.3)

To increase the prediction robustness against outliers, the median of the instance
predictions can be more appropriate in some applications

ŷi = median
(
f (xi1) , . . . , f

(
xini

))
. (6.4)

While the original proposal [10] was very simple and uses a non-regularized
linear regression model, the general prime-instance model is more sophisticated. In
particular, nonlinearmodels can also be applied, as for example neural networks [20].
Another improvement is proposed by Wang et al. [20]. Instead of initializing prime
instances at random, the first selection can be based on predictions made by a simple
MIR model constructed on the training data. Prime-instance regression algorithms
have been used as benchmark in several studies [9, 19, 20].
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6.3.1.2 Two Levels Regularization Framework

In Sect. 4.5, we described the MI-SVM method [2], an instance-based classification
SVM based on the standard MIL assumption. It selects a primary instance from each
bag and trains a standard SVM with these instances. In Sect. 5.2.2, we described the
MI kernel [7], a kernel defined over whole bags. It allows for an SVM to be used at
bag level in the classification of multi-instance data. Cheung and Kwok [4] translate
both ideas to the regression setting and connect them in a unified framework. A
general loss function that depends on both the training bags and training instances
is defined. This function is split into two parts. The first part considers the loss
between each bag label yi and its prediction f (Xi), using the hinge loss function
max (0, 1 − yif (Xi)). The second part considers the loss between the prediction of
each bag f (Xi) and those of its constituent instances

{
f
(
xij

) |j = 1, . . . , ni
}
. It can

be defined in various ways. Cheung and Kwok present margin formulations for
the L1 loss � (υ1, υ2) = |υ1 − υ2|, the L2 loss � (υ1, υ2) = (υ1 − υ2)

2 and the ε-
insensitive loss � (υ1, υ2; ε) = max (0, |υ1 − υ2| − ε). The complete loss function is
defined as

V
(
{Xi, yi, f (Xi)}i ,

{
f
(
xij

)}
ij

)
= 1

m

m∑

i=1

max (0, 1 − yif (Xi))

+ λ

m

m∑

i=1

�

(
f (Xi) ,max

j
f
(
xij

)
)

, (6.5)

where λ is a parameter that trades off the two components. Based on the fact that an
instance can also be considered as a bag of size one, they use the representer theorem
and the Constrained Concave–Convex Procedure (CCCP) to solve the problem as
a quadratic programming problem, which guarantees the convergence to a local
optimum. As the max operator is not a smooth function, the gradient is replaced by
a convenient sub-gradient in each iteration of the CCCP procedure.

In regression problems, the loss functions has two parts as well. The first part
considers the loss between the value of each bag and its corresponding prediction.
As in ν-support vector regression [13], they use the ε-insensitive loss and an extra
νε term (where ν is a user-defined parameter) to penalize the value of ε. The sec-
ond part considers the loss between the prediction of each bag and those of its
constituent instances. Following Ray and Page [12], they assume that there is one
primary instance in each bag that is responsible for the output of the bag, which is
set to the one with the highest output value. By introducing slack variables δi, ξi, ξ ∗

i
the following optimization problem is presented:

http://dx.doi.org/10.1007/978-3-319-47759-6_4
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min
w,b,ξ,ξ∗,ε,δ

1
2 ‖w‖2 + Cνε + C

m

∑
iξi + C

m

∑
iξ

∗
i + Cλ

m

∑
iδi

s.t. f (Xi) − yi ≤ ε + ξi,

yi − f (Xi) ≤ ε + ξ ∗
i ,

−δi ≤ f (Xi) − maxj f
(
xij

) ≤ δi
ξi, ξ

∗
i , δi, ε ≥ 0.

(6.6)

Different loss functions for MI regression can be used. Both bags and instances
directly participate in the optimization process.

6.3.1.3 Probabilistic Prime-MIR Algorithm

The above prime-instance methods make strong assumptions on the prime instances.
The probabilistic method ofWang et al. [19] assumes that each instance has a certain
probability to be the prime instance of the bag. Under this assumption, the bag label
is treated as a random variable described by the mixture model

p (yi|Xi) =
ni∑

j=1

πijp
(
yi|xij

)
, (6.7)

where πij is the prior probability that the jth instance is the prime instance of the ith
bag. The value p

(
yi|xij

)
is the label probability in case the jth instance is the prime

instance. In the mixture model (6.7), the contribution of each instance to the bag
label is proportional to its probability of being the prime instance. The label of the
ith bag can be predicted as the expected value of the mixture model, which is the
weighted sum of the label probabilities for individual instances

ŷ (Xi) =
ni∑

j=1

πij
(
θ g

)
f
(
xij,w

)
,

where the prior probability πij is a function of the model parameters θ g and f
(
xij,w

)

is a regression function with parameters w. The parametrized probabilities πij and
p
(
yi|xij

)
are learned from the data using the expectation maximization algorithm.

Model parameters are randomly initialized at first. Later, expectation and maximiza-
tion steps are alternated until convergence. In the expectation step, the algorithm
evaluates the expected value of the log-likelihood of the training data with respect to
the current estimate of the model parameters. In the maximization step, the algorithm
updates these parameters to maximize the expectation. The framework allows for the
prime instance probability to be modeled as appropriate to the application at hand.
The method was successfully applied to two remote-sensing applications [19].
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6.3.1.4 Prime Instance-Based Applications

The prime instance assumption has been used in several real-life applications. In
[15], it was applied to the prediction of protein-ligand binding affinities to guide
optimization in structure-based drug discovery. A bag corresponds to a protein-
ligand pair and its instances are binding poses. The binding affinity of the ligand to
a particular protein is to be predicted. The gradient boosting approach [6] is used,
where an additive model f (x) = ∑

fk (x) is constructed to minimize a squared
loss function. In each boosting iteration, the instance with maximal output xmaxi is
selected from the ith bag. It is based on the domain-specific assumption that the
most plausible binding pose is that with the maximum predicted binding score. A
new training set R = {(

xmaxi , ri
)
, i = 1, . . .N

}
is arranged from the N training bags,

where ri = yi − f
(
xmaxi

)
is the pseudo-residual from the bag label and the predicted

output. This step effectively converts the initial MIR problem into a single-instance
regression problem. A single-instance regression model fk (x) is trained on R and
added to the boosting function f (x) to decrease the value of the loss function.

Another application of the prime instance assumption has been in the prediction of
polyp size in computed tomography images (CT) [8]. Polyps are precursors of cancer
tumors and their dimension indicates cancer staging. A polyp is represented by a bag
of polyp-like candidates extracted from a 3D CT scan. The polyp size y needs to be
predicted. It is approximated by a hyperplane wTx described by the weight vector w.
To make the size prediction, it is desirable to use the candidate whose segmentation
is the closest to the actual layout of the polyp. Therefore, the authors assume that the
primary instance is that whose estimated output f (x) = wTx differs the least from y,
i.e., min |y − f (x)|. Under this assumption, a ridge regression model is defined as

min
w

∑

j

min
i∈Ij

(
yj − wTxji

)2 + λ ‖w‖2 ,

where Ij is the index set of instances belonging to the jth bag. Like the prime-
instance algorithmdescribed above, an EMapproach is used to solve the optimization
problem.

6.3.2 Collective Assumption

In Sect. 3.4.3, we described the collective MIL assumption for classification, which
states that all instances in the bag contribute equally to the bag label. An extension
of the collective assumption allows that each instance contributes independently, but
not necessarily equally, to the class label of the bag. In this section, we consider a
similar idea applied to the regression setting. The notion of a primary instance inside
each bag is abandoned. Instead, all instances contribute equally to the bag label.
We present an implementation of this assumption in Sect. 6.3.2.1. In the extended

http://dx.doi.org/10.1007/978-3-319-47759-6_3
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collective MIR assumption, not all instances have the same contribution to the bag
label. Some instances are noisy and should be discarded, which is the idea behind
the method described in Sect. 6.3.2.2. Alternatively, we can try to determine the
weight that each instance has in the bag label formation. The algorithm described in
Sect. 6.3.2.3 exploits that information to make its bag label predictions.

6.3.2.1 Instance-MIR Algorithm

The Instance-MIR algorithm is the regression counterpart of the wrapper classifier
discussed in Sect. 4.2. Each instance xij from each bag Xi receives the label yi of its
bag.All instances are joined into a single-instancedatasetD = {(

xij, yi
)
, i = 1 . . .m,

j = 1 . . . ni}. To ensure that all bags are represented with the same importance in
D, independently of their size, each bag is sampled with replacement and added to
D the same number of times. An ordinary regression model f is trained on D. As
in the collective assumption for classification (Sect. 3.4.3), the bag label probability
is the expected outcome value of the instance population estimated by the sample
mean (6.3). Alternatively, the median of the instance predictions (6.4) can be used in
some applications to prevent outliers. The Instance-MIR algorithm has been used as
benchmark in several studies [9, 11, 19, 20], showing competitive results on many
datasets despite its simplicity.

6.3.2.2 Pruning-MIR Algorithm

The Instance-MIR algorithm, described in the previous section, uses all available
training instances to construct the regression model. When bags contain many noisy
instances, their inclusion can have a detrimental effect. On the other extreme, the
Prime-MIR algorithm selects a single instance from each bag, which makes it highly
probable that informative instances are discarded. The Pruning-MIR algorithm pro-
posed in [20] is a compromise solution between these two extremes. The assumption
is that each bag is generated by some random noise around a prime point in instance
space.Bag labels are assumed to be generated by some function of the prime instances
with added noise.

The algorithm aims to keep relevant instances from each bag, while removing
those that seem noisy. It starts from the Instance-MIR solution. In each iteration,
it discards a small fraction of the noisiest instances in each bag and trains a new
predictor (using Instance-MIR) on the remaining instances. The noisiest instances in
a bag are defined as those whose predictions are the farthest away from the median
prediction over the non-pruned instances. In this way, noise is gradually removed
and the quality of the training data is improved. The algorithm runs for as long as
there is an improvement in prediction accuracy.

http://dx.doi.org/10.1007/978-3-319-47759-6_4
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6.3.2.3 Weighted-MIR Algorithm

The weighted collective assumption states that each instance has a particular rel-
evance or weight in the bag label generation. Under this assumption, the label ŷ
of a bag Xi can be calculated as the weighted aggregation of the prediction of bag
instances, namely

ŷ (Xi) =
∑

j f
(
xij

)
wij

∑
j wij

, (6.8)

where the denominator is present for normalization. However, expression (6.8) gives
rise to problems. We need to determine both the instance weights wij and the regres-
sion model f .

Regression Based on Instance Weights

Wagstaff and Lane [16] develop a method to estimate instance weights in MIR under
the assumption that each instance contributes independently to the bag label. Given a
set ofm bags {X1, . . . ,Xm} and their respective labels Y = {y1, . . . , ym}, it is assumed
that an exemplar pi exists inside each bag Xi that can accurately predict the bag’s true
label, that is, yi = f (pi). The exemplar can be described as a convex combination
of instances, namely pi = ∑ni

j ψijxij, where ψij ≥ 0 and
∑

j ψij = 1. Note that
these two restrictions enforce pi to fall within the convex hull of the points in Xi. The
authors assume a linear regression ŷ (pi) = ΦTpi, whereΦ is the vector of regression
coefficients and pi is a column vector. An optimization problem is defined according
to the least squares objective dependent on P = {p1, . . . , pm}, Y , Φ and the set of
weight vectors 
 = {ψ1, . . . , ψm}, ψi = [ψi1, . . . , ψim]T . The L2 loss is used with
regularization terms ε1 and ε2 for each ψi and Φ, respectively, yielding

argmin
ψi,...,ψm,Φ

m∑

i=1

[(
yi − ΦTXiψi

)2 + ε1 ‖ψi‖2
]

+ ‖Φ‖2

s.t. (∀i, j)(ψij ≥ 0); (∀i)(
ni∑

j=1

ψij = 1),

where the factor Xiψi represents the aggregation of the instances in the ith bag to
one exemplar. This is a non-convex and difficult to optimize objective, because the
minimization is with respect to both Φ and {ψi} simultaneously. Wagstaff and Lane
[16] propose an alternating projections solver, that alternates between two projection
steps. First, the Φ values are fixed and each ψi is solved, which can be seen as a
projection of Φ on the ψi space. Next, the ψi vectors are fixed and projected back
onto the Φ space. The two steps are alternated until convergence.

Predicting Instance Weights

With the Wagstaff and Lane [16] optimization method we can obtain the coefficients
Φ of the regression hyperplane as well as the instance weight vectors ψi for each



6.3 Instance-Based Regression Methods 137

training bag. Using the regression model Φ, we could compute the output of a new
bag Xz as

ŷ (Xz) = ΦTXzψz,

where ψz is the weight vector representing the contribution of each instance in Xz

to the label of Xz. Unfortunately, the method of Wagstaff and Lane [16] is unable to
produce predictions. In their model, ψz is unknown, because the method can only
find ψi for training bags. Pappas and Popescu-Belis [9] present a simple solution to
this problem. They formulate another regression problem to predict instance weights
of unlabeled bags as ψ̂z = ΩTXz where Ω are the coefficients of a linear regression
model optimized over the weight vectors ψi of training bags. Assuming an �2-norm
for the regularization with an ε3 term, the optimization objective is

argmin
Ω

m∑

i=1

ni∑

j=1

(
ψij − ΩTxij

)2 + ε3 ‖Ω‖2 .

Well-known least squares solving techniques can be used to solve this minimization
task. The method allows to determine instance weights of an unlabeled bag and to
predict its label. It was successfully applied to a sentiment analysis application [9].
In this case, a text is a bag of sentences and each sentence is modeled as a word
vector. The desired prediction is a real-valued rating of the overall sentiment of the
text with respect to a specific aspect.

6.4 Bag-Based Regression Methods

In bag-based regression methods the main learning process occurs at bag level. Like
bag-based classifiers, regression methods that fall in this category can be further
divided into two groups:

• Bag-based regressionmethods that work in the original bag space: thesemeth-
ods rely on a metric function defined over bags, which is used in a distance-based
regression algorithm, e.g., a nearest neighbor algorithm. We refer to these meth-
ods as original bag space regression methods (original-BSmethods, for short) and
discuss them in more depth in Sect. 6.4.1.

• Bag-based regression methods that work in a mapped space: these methods
transform the multi-instance data into a single-instance representation and train
a single-instance regression algorithm in this transformed space. The same trans-
formation is applied to an unseen bag and its outcome is predicted by the single-
instance regression model learned in the mapped space. We refer to these methods
as mapped bag space regression methods (mapped-BS methods, for short). They
are discussed in Sect. 6.4.2.
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6.4.1 Original Bag Space Methods

Any single-instance distance-based regression method can be upgraded to a MIR
method by using an appropriate MIL metric. By virtue of this measure, the MIR
model can be learned and used to make predictions in the original bag space.

The most popular algorithm in this category is RCitationKNN [1]. Its name
makes reference to CitationKNN [18] for regression. The minimal Hausdorff dis-
tance (Sect. 3.5) is plugged into the CitationKNN algorithm. To obtain the prediction
of a new bag, the closest neighbors (citers and references) are consulted and their
outcomes averaged. The traditional KNN is also upgraded to MIL in [1].

As an alternative, a support vector regression model [14] can be transferred to the
MIL setting by replacing its instance-level kernel by a bag-level kernel, for example
the MI kernel [7].

6.4.2 Mapped Bag Space Methods

Mapping methods (Chap. 5) allow the transformation of bags into single-instance
vectors. Once the MIL data has been mapped to a single-instance representation,
any traditional classifier can be learned on the data. The same mapping methods
can be used for regression and traditional regression models can be learned over
the single-instance representations afterward. For example, in [21], the BARTMIP
mapping is applied to MIR benchmark problems. Another illustrative example is
the bioinformatic application described in [5] where the MILES mapping [3] is first
applied and a support vector regression (SVR) model [14] is subsequently trained
on the mapped data. We refer the interested reader to Sect. 5.3. Below, we discuss
two mapping methods that are of particular interest, because they have been used as
benchmarks in several studies on MIR [9, 19, 20].

6.4.2.1 Aggregate-MIR

The mapping step of the Aggregate-MIR algorithm [20] is similar to the average
mapping described in Sect. 5.3.1. Each bag Xi is mapped to a single instance (x̄i, yi)
where x̄i is obtained by averaging all its instances, namely

x̄i = mean
({
xij, j = 1 . . . ni

})
.

A single-instance set D is obtained after mapping all training bags. A traditional
regression model is trained on it. To predict the label of a new bag Xi, we apply the
mapping method to Xi and obtain the corresponding x̄i. The bag label is predicted as

ŷ (Xi) = f (x̄i) .

http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_5
http://dx.doi.org/10.1007/978-3-319-47759-6_5
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The method can be more appropriate when the dataset has a low noise level and large
bags. This simple method may be useful to initialize more advanced MIR methods.

6.4.2.2 Cluster-MIR

The Cluster-MIR algorithm [17] was set up for MIR problems with a structured
instance space. The assumption is that instances in each bag are drawn from different
underlying data distributions and that only one distribution is responsible for the bag
label. The method can be considered as a generalization of Aggregate-MIR and
is related to the stratified bag statistic mapping described in Sect. 5.3.1. The first
step is to determine the space structure by the use of unsupervised learning. A soft
clustering algorithm is applied over all instances of all training bags to identify k
clusters. Training bags are mapped with respect to each cluster. A bag X is mapped
with respect to a cluster θ as M (X, θ) �→ 〈a1, . . . , ad〉, where aj = ∑m

i=1 rθ ixij, xij
is the value of the jth attribute in the ith instance of the bag X and rθ i is the relevance
of xi with respect to the jth group. A total number k of single-instance datasets are
obtained from the mapping of training bags with respect to each cluster. A regression
model is constructed in each mapped dataset. The best regression model is selected
based of the training data. At prediction time, a new bag is mapped with respect
to the cluster corresponding to the selected regression model. Note that for k = 1,
Cluster-MIR reduces to Aggregate-MIR.

6.5 Summarizing Comments

MIR is an important task within the MIL paradigm. Although the number of studies
onMIRmethods is small compared to the abundant literature on multi-instance clas-
sifiers, an increased interest onMIR is apparent in recent years. CurrentMIRmethods
can be categorized into two groups, instance-based methods and bag-based meth-
ods, much like the categories of classification methods. In a few cases, a traditional
regression method is modified to the MIL setting. Mostly, the data is manipulated
(e.g., an instance is selected, many instances are aggregated to a single instance per
bag or bags are mapped to single vectors), such that traditional regression methods
can be applied without modifications.
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