
Chapter 5
Bag-Based Classification Methods

Abstract In bag-based multi-instance methods, the main learning process occurs
at the level of bags. In this chapter, we analyze two important subcategories of bag-
based MIL classifiers. On the one hand, in Sect. 5.2, we examine classifiers that
define a distance or similarity measure between bags to work directly in the original
bag space. On the other hand, Sect. 5.3 is devoted to mapping-based classifiers that
transform each bag to a single-instance representation such that the learner can train
any single-instance classifier to label new bags.

5.1 Introduction

As opposed to instance-based classification methods, the learning process of bag-
based methods occurs at bag level. The main feature that distinguishes bag-based
from instance-based classifiers is that the former can predict the label of a new
bag considering each training bag as a whole entity, without the need to discover
any hidden instance labels. Instance-based classification methods need to construct
an instance classifier that is as accurate as possible, but this is not a requirement
for bag-based methods. Although some types of bag-based classifiers do train an
instance-level learning model, it is only used as a rough guide to the main bag-level
learning process. Moreover, the MI assumption of bag-based methods need typically
not be as precise as is the case for instance-based methods, but can be more flexible
and general. We discuss the following two important subcategories of bag-based
methods:

• Bag-based methods that work in the original bag space: these methods rely
on a metric function defined over bags. The metric is used in a distance-based
classification algorithm, e.g., a nearest neighbor algorithm. By introducing the
bag-wise distance measure, the learner is effectively upgraded to a full-fledgedMI
classification algorithm. We refer to these methods as original bag space classifi-
cation methods (original-BS methods, for short) and discuss them in more depth
in Sect. 5.2.

• Bag-based methods that work in a mapped space: these methods transform the
multi-instance data into a single-instance representation and train a single-instance
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100 5 Bag-Based Classification Methods

classifier on the transformed data. The same transformation is applied to an unseen
bag and its class label is predicted by the single-instance classifier learned in the
mapped space. We refer to these methods as mapped bag space classification
methods (mapped-BS methods, for short). They are discussed in Sect. 5.3.

5.2 Original Bag Space Methods

In single-instance learning, each instance is interpreted as a point in a multidimen-
sional space determined by the features of the problem at hand. Many traditional
single-instance learning algorithms rely on a distance function between points of
this space to determine separating boundaries between classes. In MIL, bags can
be understood as regions in the instance space and a bag-wise distance function
is required to evaluate similarity relations between them. Using such a bag-wise
distance function in a traditional distance-based learning algorithm, it becomes a
multi-instance algorithm able to locate bag class boundaries. The two main design
options of any bag-distance-based classification method are

• A distance-based classification method: we describe two distance-based meth-
ods: nearest neighbor methods (Sect. 5.2.1) and kernel methods (Sect. 5.2.2).

• A bag-wise distance/similarity function: recall that similarity functions can be
used instead of distance functions by inverting the objective function of the learner.
Both types of comparison measures are complementary and using one or the other
depends on the definition of the bag label prediction method. In Sect. 3.5, we listed
several distance and similarity functions that can be used in these algorithms.

5.2.1 Nearest Neighbor Methods

The CitationKNN algorithm was proposed in [20] and extends the traditional single-
instance k-nearest neighbors method (KNN) to the level of bags. To classify a new
bag X , CitationKNN uses a distance function between bags to determine which
training bags are closest to X . Inspired by the concept of citations in the field of
information science, this algorithm extends the set of nearest neighbors to consider
not only the r bags closest to X (references, Fig. 5.1), but also the bags for which X
is among the c closest bags (citers, Fig. 5.2). A voting scheme uses the class labels
of both references and citers to determine the class label of X .

Any bag-wise distance function can be used in CitationKNN (see Sect. 3.5). In
particular, the study of [20] uses the minimal Hausdorff distance (3.18), maximal
Hausdorff distance ((3.19), (3.20)) and k-th ranked Hausdorff distance (3.22).

The distance function employed in CitationKNN has a major impact on its per-
formance [2]. Each application domain can benefit more from a certain distance
function than from others and some applications may require the selection of a less
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Fig. 5.1 References. The
circle encompasses the
nearest 3-references to X
(filled balls). The closest
references correspond to the
(traditional) nearest
neighbors

Fig. 5.2 Citers. The 3-citers
nearest to X (filled balls) are
those whose three nearest
neighbors include X . Each
circle contains the three
nearest neighbors of the
sample located at its center.
For clarity, we have only
represented circles including
X . These are the 3-nearest
citers to X

conventional metric. For example, the work of [27] on a web mining application
adapts CitationKNN for text data represented by sets of terms, rather than the tra-
ditional attribute-value vector representation suffering from the so-called curse of
dimensionality. They represent an instance x by a set of textual terms {t1, t2, . . . , tn},
where ti (i = 1, . . . , n) is one of the n more frequent terms in the text fragment
corresponding to x . They use the minimal Hausdorff distance variant, i.e., k = 1 in
(3.22), and define a distance function between two instances a = {a1, a2, . . . , an}
and b = {b1, b2, . . . , bn} as

‖a − b‖ = 1 −
n∑

i, j = 1
ai = b j

1

n
,

based on the idea that the fewer common terms two instances share, the greater the
distance between them.
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CitationKNN has been extended to regression tasks [8], clustering [13] and multi-
label classification [24]. It has been used successfully in several application domains,
such as textual classification [21] and anomaly detection [23].

5.2.2 Bag-Level SVM

Bag-level kernels are used to measure the similarity between two bags in a trans-
formed representation space. They operate on whole bags and return a single number
assessing how close the two bags are. As stated in Sect. 3.5, the similarity is inversely
related to the distance. Kernel-based methods, as well as distance-based ones, rely
on space metrics to find the separating class boundaries. When a bag-level kernel is
used in a standard SVM, the latter becomes able to optimize the margin between bag
classes without any modification to the SVM itself. One of the first bag-level kernels
was presented by Gärtner et al. [11]. They define the set kernel between two bags A
and B as

kMI (A, B) =
∑

a∈A,b∈B
k p
I (a, b) ,

where kI is a kernel defined at the instance level. Theoretically, for sufficiently large
values of p, this kernel ensures the separability of the training set. Because of the
computational cost involved in the MI kernel above, [11] defines a minimax kernel
based on the minimum and maximum attribute values of instances in each bag,
namely

k (A, B) = (〈s (A) , s (B)〉 + 1)p ,

where s (·) defines the attribute transformation

s (X) =
〈
min
x∈X x1, . . . ,min

x∈X xm,max
x∈X x1, . . . ,max

x∈X xm

〉
.

In the MI kernels proposed by Gärtner et al. [11], all attributes are treated with
equal weight. On the other hand, Blaschko et al. [3] propose conformal kernels which
can locally reduce or expand each attribute dimension based on the discriminative
importance of each attribute, while preserving the angles between vectors in the
transformed space.

Kwok and Cheung [14] present marginalized kernels, that assume that the data
are generated by a latent variable model. The observed variable is the bag and the
hidden variable is its label. In particular, let Z1 = (X1, �1) and Z2 = (X2, �2) be
two bags with their respective class labels. A joint kernel is defined as

kZ (Z1, Z2) =
n1∑

i=1

n2∑

j=1

k�

(
�1i , �1 j

)
kx

(
x1i , x2 j

)
,
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where k� (·, ·) is a kernel defined over the instance labels and kx (·, ·) is a kernel
defined over the instance space. The marginalized kernel, defined over two observed
variables X1 and X2, is obtained by taking the expectation of the joint kernel with
respect to the hidden variables �1 and �2, that is,

k (X1, X2) =
∑

�1∈L

∑

�2∈L
P (�1, X1) P (�2, X2) kZ (Z1, Z2) . (5.1)

It is possible to calculate this marginalized kernel in polynomial time. The posterior
distribution of �1 and �2 is obtained from a probabilistic model P (�i |Xi ) estimated
from the data.

Bag-level kernels make an implicit transformation of bags into a single-instance
representation such that standard SVMs can be directly applied to multi-instance
data. In Sect. 5.3, we show that an explicit transformation of the bags can also be set
up to obtain a single-instance dataset on which any single-instance learner can be
trained and used to predict bag labels.

5.3 Mapped Bag Space Methods

The multi-instance classification algorithms described in Chap.4 and Sect. 5.2 are
based on single-instance classifiers that have been modified to function in the MIL
setting. Although good results have been reported in many applications for these
multi-instance algorithms, the high cost of developing new algorithms today limits
the applicability of this approach. There is only a small number of multi-instance
algorithms compared to the large number of methods and algorithmic variants that
have been developed for single-instance learning.

In this section, we examine another approach to solving multi-instance classifica-
tion problems. Instead of using amodified single-instance classifier, a transformation
is applied to the multi-instance data resulting in a single-instance representation of
bags. In this new data representation, it is possible to construct a classification model
using any traditional single-instance algorithm, effectively solving themulti-instance
classification problem. The single-instance representation of multi-instance data not
only allows the use of any single-instance classifier, but also the application of data
preprocessing techniques, such as editing, cleaning, and dimensionality reduction,
which have been well studied in single-instance learning.

In map based methods, the learning process occurs at bag level, but always relies
on a mapping process. These methods transform the original multi-instance repre-
sentation, in which each bag is a set of points (instances) in the attribute space, into
another form of representation in which each bag is represented as a single point of
the induced space. Themulti-instance problem effectively becomes a single-instance
problem to which any traditional learning algorithm can be applied.

Map based methods differ among each other in their specific mapping processes.
In general, the following procedure is used. The methods are based on a function

http://dx.doi.org/10.1007/978-3-319-47759-6_4
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M : NX → 〈a1, . . . , ad〉 that transforms the multi-instance representation of a bag
X into a single vector M (X) = 〈a1, . . . , ad〉. The multi-instance training set is
transformed in a single-instance training set by applying the function M to each
training bag. Any suitable single-instance classifier is built on the new training set.
To classify a new bag, it is first converted to the new space using M and is then
fed to the classifier which predicts a label class. By representing a bag as a point
in the new space, some of the inherent ambiguity and imprecision of the multi-
instance dataset can be reduced. However, as it is practically impossible to eliminate
it completely, some of the original ambiguity remains encoded in the attribute values
of each vector. The amount of the ambiguity reduction depends on the design of the
mapping function M .

Mapping-based classification algorithms differ primarily in the design ofM and
the mapping process. Below, we examine each of these mapping strategies and the
classifiers that use them. For a better understanding, we have made a division in four
categories, considering the meaning of the attributes in the new representation space

• Mappingmethods based on bag statistics (Sect. 5.3.1): each attribute of the new
mapping space is the value of a statistic that is applied to the set of values of the
corresponding attribute in the original representation space.

• Mapping methods based on representative instance concatenation
(Sect. 5.3.2): each vector of the new mapping space is the concatenation of N
instances of the bag, where each instance is a representative of one pattern in the
instance space.

• Mapping methods based on counting (Sect. 5.3.3): each attribute of the new
mapping space indicates presence, amount or frequency of instances of the bag in
a specific region of the instance space.

• Mapping methods based on distance (Sect. 5.3.4): each attribute of the new
mapping space represents the distance (or similarity) of the bag to a specific region
of the instance space.

5.3.1 Mapping Methods Based on Bag Statistics

Bag statistics-based methods seek to represent each bag by a single attribute
vector that summarizes the statistical information of the bag. Consider a bag
X = {x1, . . . , xn} in which each instance is described by d attributes, i.e., xi =〈
x1i , . . . , x

d
i

〉
, ∀i ∈ [1, . . . , n]. The bag can be seen as a set of d random variables

with unknown probability distribution, for which we have a sample of size n. Several
statistics can be used to characterize the probability distribution of these random vari-
ables. In the new attribute space, in which the multi-instance examples are mapped,
each attribute of the original space is represented by one or more statistic values, that
attempt to capture the shape of the probability distribution of the original variable
within the bag. We list some examples of the kind of transformation performed on
the bags
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• Averagemapping:M (X) = 〈m1, . . . ,md〉, wherem j is themean value of the j th
attribute over all the instances of X . This transformation is used by the SimpleMI
algorithm described in [7] and included in the experiments of Sect. 5.4.

• Min-Max mapping: M (X) = 〈a1, . . . , ad , b1, . . . , bd〉, where a j = mini (x
j
i )

and b j = maxi (x
j
i ) are the minimum and maximum values of the j th attribute

over all the instances in X . This transformation is used by the Min-Max kernel
proposed by [11].

• Moments mapping: M (X) = 〈m1, . . . ,md , v1, . . . , vd , s1, . . . , sd , k1, . . . , kd , 〉.
The values m j , v j , s j and k j represent the first to fourth statistical moment (i.e.,
mean, variance, skewness, and kurtosis) of the j th attribute of the instances in X .

The dimension of the new mapped space is the number of dimensions of the original
space multiplied by the number of statistics used to describe each variable.

Stratified Bag Statistics

The methods described above are limited to summarize statistical information of
all instances inside the bag and do not consider that within the same bag different
patterns can coexist. In different instance patterns, one or more attributes can have
different probability distributions. If all instances of the bag are treated as if they
belonged to the same pattern, the statistics will be unable to adequately describe the
mixture of distributions. A more sophisticated mapping method can try to discover
patterns or classes of instances in the data and represent each bag in the embedded
space with the statistics values of each original attribute for each instance pattern
separately. We call stratified bag statistics-based mapping.

The most common way to discover instance patterns in the data is to use unsu-
pervised methods, since instance class labels are unknown. Unsupervised methods
allow to find groups of instances with shared characteristics. These groups can be
considered as different instance classes.We can also use supervisedmethods, assum-
ing that instances are assigned to the same class labels of their bags. Clearly, this
assumption can cause a certain proportion of mislabeled instances, but the goal is
to obtain a first approximation of the underlying instance-level patterns. From this
first approximation, a learning algorithm can be trained to obtain a more accurate
instance-level classifier.

Learning methods based on stratified bag statistics represent each bag by a single
attribute vectorwith statistical information of the different patterns or instance classes
contained in the bag. The new attribute values related to each instance pattern are
concatenated in the vector describing the bag. Let C1, . . . ,Ck be instance patterns
found in the data and θ : NA → R a statistic (e.g., average, minimum, maximum,
or moments) applicable to the d attributes of a set of instances. The stratified bag
statistics based mapping is defined as

M (X) �→ 〈θ11, . . . , θ1d , θ21, . . . , θ2d , . . . , θk1, . . . , θkd〉 , (5.2)

where θi j represents the statistic value applied to the j th original attribute of the
instance subset in the bag belonging to the i th pattern. Equation5.2 represents the
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case where each attribute probability distribution is described by a single statistic, but
in general several statistics can be used for each attribute. The dimension of the new
embedded space is d × k × q, where d is the number of dimensions of the original
space, k is the number of patterns or classes of instances discovered in the data and
q is the number of statistics used to describe each original attribute distribution (e.g.,
in the Min-Max mapping two statistics are used, so q = 2).

5.3.2 Mapping Methods Based on Prototype Concatenation

This approach was introduced by Boughorbel et al. [4]. They look for k instance
patterns in the data and characterize each pattern Ci through its center pi . However,
instead of using statistics operating on individual attributes, they use a function
ϕ (X, pi ) : NX × X → X to select the instance in the bag closest to the center pi
of the i th pattern and use that instance as the pattern representative. The mapping
by Boughorbel et al. can be defined as M (X) �→ 〈v1, v2, . . . , vk〉, where vi is the
instance from X that is closest to the center pi of the i th pattern. The authors use
this transformation to construct an SVM with an ad hoc kernel. However, as with
all mapping methods described in this chapter, any other single-instance learning
algorithm can be applied to the mapped data as well.

This method can be generalized so that an aggregation of all instances of the bag
is used to represent the matching degree between the bag and the instance pattern.
Let S (x,C) ∈ [0, 1] be a function that measures the matching degree between an
instance x and a pattern C . A natural way of defining S (x,Ci ) is as a similarity
measure between instance x and the center of the i th pattern pi . The vector vi can
be calculated as

vi =
∑
x∈X

x · S (x,Ci )

∑
x∈X

S (x,Ci )
, (5.3)

which represents the average of the instances weighted by their matching degree with
the pattern. Thismethod is related to the stratified statisticmappingmethod described
in Sect. 5.3.1. When the matching function S (x,C) is binary, so that S (x,C) equals
1 if the similarity between x and C is above a given threshold and S (x,C) equals
0 otherwise, we can use (5.2) to compute vi using the average as the only statistic.
In the other case, if the matching function takes on continuous values in the interval
[0, 1], we have a generalization of (5.2), where the value of each attribute is weighted
with a matching degree.

5.3.3 Mapping Methods Based on Counting

This group of methods represent each bag as a single vector, where each attribute
is the number of instances of the bag that are found in a specific region of the
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instance space. In other words, they describe the relationship between the bag label
and instance classes covered by different regions of the instance space.

Multi-instance classifiers using a counting-based mapping are strongly inspired
by the MI assumptions hierarchy of Weidmann et al. (Sect. 3.4.2). Some algorithms
create binary attributes in the mapping process, where the i th attribute indicates the
presence or absence of instances of the bag in the i th region. These algorithms allow
to model the presence-based assumption, including the standard MI assumption.
Other algorithms create attributes that take on positive numeric values representing
absolute or relative frequencies of the instances belonging to the bag and lying
inside the corresponding region. These algorithms allow to model the threshold and
counting-based MI assumptions.

We can further divide this group into two major categories the acquisition of
the MI assumption into account. On the one side are those algorithms for which
the designers decide in advance which MI assumption is used. This category is
examined in Sect. 5.3.3.1. On the other side we consider the algorithms for which no
MI assumption has been specified. They learn the hypothesis from the data during
execution. Section5.3.3.2 is devoted to these methods.

5.3.3.1 Using an a Priori Count-Based MI Assumption

The best known algorithm using a count-based MI assumption is GMIL, which
first appeared in [17]. GMIL stands for Generalized Multiple Instance Learning and
is indeed a generalization of the standard MI assumption. The presence-based MI
assumption of the Weidmann hierarchy is generalized by GMIL as well. However,
it cannot represent learning problems obeying the threshold or counting based MI
assumption, because the attributes constructed in the mapping are binary.

Like all algorithms using count-based assumptions, GMIL first identifies regions
of the instance space that will be used in a second step to map bag attributes. Regions
are identified systematically and exhaustively. All possible axis-parallel boxes in the
instance space are explicitly enumerated. As an illustration, consider a discrete d-
dimensional instance space X = {1, . . . , v}d in a two-class classification problem.
In a one-dimensional space (d = 1), if the attribute has two possible values (v = 2),
there are three possible axis-parallel boxes as shown in Fig. 5.3. If the space has two
dimensions and each dimension can take one of two possible values, there are nine
possible axis-parallel boxes as shown in Fig. 5.4. If the space has three dimensions,
each with two possible values, there are 27 possible axis-parallel boxes as shown in
Fig. 5.5. In general, there are N = (v (v + 1) /2)d possible axis-parallel boxes in a
d-dimensional space. The reason why the regions have axis-parallel box shapes is
because the infinite norm is used to determine distances in the instance space. This
normdefines the length of ad-dimensional vector x as‖x‖∞ = max {|x1| , . . . , |xd |},
the largest absolute value of its components. GMIL creates twoBoolean attributes for
each box, indicating whether a bag contains an instance within that box. To reduce
the number of attributes, boxes containing the same set of points are grouped together
and only one representative box for each group is used.

http://dx.doi.org/10.1007/978-3-319-47759-6_3
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Fig. 5.3 There are three
axis-parallel boxes when
d = 1

Fig. 5.4 There are nine
axis-parallel boxes when
d = 2

Concretely, GMIL maps a bag X to M (X) = 〈a1, . . . , aN , a1, . . . , aN 〉. The
algorithm sets ai to 1 if any point of X is contained by the i th box and sets it
to 0 otherwise. It sets ai = 1 − ai , ∀i ∈ [1, . . . , N ]. All information is encoded
by the N first attributes. This would be sufficient for many learning algorithms.
However, GMIL was originally designed to learn monotone disjunctions using the
Winnow classifier [15]. SinceWinnow generates formulas generated only containing
disjunctions of the input variables, the negations of the first N attributes must also
be supplied such that any logical combination of the initial variables can be formed.

Once the bags have beenmapped to Boolean attributes, the algorithm tries to learn
the target concept using a specific MI assumption based on theoretical results from
geometric pattern recognition [12]. In the standard MI assumption, a single positive
instance inside a bag determines that the bag belongs to the positive concept. Instance
labels are typically determined by the proximity of the instance to a single target
point, but GMIL can represent more general concepts. It represents a concept by a
set of target points, more specifically, a set of attraction points, which can be seen as
instances from an ideal positive bag. GMIL can also include a set of repulsion points,
which can be seen as instances from an ideal negative bag. In this setting, a bag is
positive if and only if it is sufficiently close to attraction points and sufficiently far
from repulsion points.
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Fig. 5.5 There are 27 axis-parallel boxes when d = 3
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GMIL’s notion of distance between bags is based on the Hausdorff distance.
Recall from Sect. 3.5 that the Hausdorff distance between two sets of points P and Q
is defined as the largest distance from either a point in P to its nearest neighbor in Q
or from a point in Q to its nearest neighbor in P . Due to its use of the max operator,
theHausdorff distance is sensitive to outlier points. To improve the robustness against
noise, Scott et al. use the ranked full-Hausdorff distance

max

{
maxs
p∈P

{
min
q∈Q

{‖p − q‖∞
}}

,maxs
q∈Q

{
min
p∈P

{‖p − q‖∞
}}}

, (5.4)

in which instead of using the largest distance, the sth largest distance is used. In
(5.4), maxs denotes the sth largest value, P represents the pattern and Q is the
model. Positive bags are within a ranked full-Hausdorff distance of some threshold
γ from the ideal positive bag and at least a ranked full-Hausdorff distance of γ ′ away
from the ideal negative bag. Let Q = {q1, . . . , qk} be the set of attraction points and
Q = {q̄1, . . . , q̄k ′ } the set of repulsion points representing the target concept. The
concept can be modeled as a set of k axis-parallel attraction boxes and a set of k ′
axis-parallel repulsion boxes. A bag is positive if and only if it contains points within
at least r = k − s of the k attraction boxes and contains points within at most s of
the k ′ repulsion boxes.

The Winnow algorithm is used in [17] to implement the GMIL assumption. Win-
now is a linear-threshold algorithm that learns r -of-k threshold functions. It assigns
nonnegative real-valued weights wa to each attribute a. Weights are iteratively mod-
ified to find a hyperplane

N∑

i=1

aiwai + aiwai = θ,

which separates both classes, where θ is the threshold determined by the algorithm.
The k + k ′ more weighted attributes are selected at the end of training. The values
of the selected attributes correspond to the k attractions plus k ′ repulsion points
identified by the algorithm. In the classification stage, a bag is labeled positive if
ai1 + · · · + aik + ai1 + · · · + aik′ ≥ r .

Scott et al. also presented a GMIL variant using the ranked half-Hausdorff dis-
tance. Using this distance they assume that the model is accurate and compute the
distance from the bag to the model, but not vice versa. According to this variant,
positive bags are within a distance

maxs
q∈Q

{
min
p∈P

{‖p − q‖∞
}}

(5.5)

of some threshold γ to the ideal positive bag and, including repulsion points, beyond
a distance

mins
′

q∈Q

{
min
p∈P

{‖p − q‖∞
}}

(5.6)

http://dx.doi.org/10.1007/978-3-319-47759-6_3
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of another threshold γ ′ to the ideal negative bag. As before, the concept is a set
of k axis-parallel attraction boxes and a set of k ′ axis-parallel repulsion boxes. A
bag is positive if and only if it contains points within at least r = k − s of the
k attraction boxes and contains points within at most s ′ of the k ′ repulsion boxes.
Note that, in contrast to the full-Hausdorff distance model, the number of points
s which are tolerated to not fall in attraction boxes can be different to the number
of points s ′ which are tolerated to fall in repulsion boxes. Though it was theorized
that the half-Hausdorff variant should be more robust against noise and more able
to avoid overfitting, empirical results show a higher generalization ability of the
full-Hausdorff variant on data from several domains.

GMIL has a theoretically sound foundation. However, it is not a practical learning
method, since it has a very high time complexity. In the sequence of Figs. 5.3, 5.4
and 5.5 it can be seen that the number of boxes grows exponentially as d increase.
A real application, with a moderate number of attributes, like Musk, is unfeasible to
be solved by GMIL. The strategy of using a reduced number of instances to build
the learning model [18] fails because, when the dimension is not trivially small, in
order to significantly reduce the computational cost, the number of instances must
be so small that it becomes insufficient to build an accurate model. A kernel-based
reformulation is another strategy used to improve the efficiency of GMIL. The kernel
performs the feature mapping implicitly and allows a support vector machine to be
applied directly to the data. However, computing the kernel on two bags requires
counting the number of boxes that contain at least one instance from each of both
bags, which again leads to severe scalability issues and quickly renders the problem
intractable as the problem size increases. To address this issue, a fully polynomial
randomized approximation scheme (FPRAS) was presented in [19], reducing the
time complexity from exponential to polynomial.

5.3.3.2 Learning a Count-Based MI Assumption

In Chap.4, we showed that instance-basedmethodsmake strong assumptions regard-
ing the MI hypothesis. Each instance-based algorithm implements a specific MI
assumption: some algorithms are based on the standard MI assumption, others on
the collective assumption, and so on. The GMIL algorithm discussed in Sect. 5.3.3.1
has a MI assumption wired in its design as well. In these methods, the MI assump-
tion is not only used in the classification stage to determine the bag label, but also
in the training stage to impose restrictions to help determine the class likelihood of
instances. If the imposedMI assumption does not conform reasonably well to a given
dataset, then the algorithm cannot build an appropriate learning model for it. Each
algorithm is only appropriate for those problems which conform to the applied MI
assumption.

Unlike instance-based methods and methods like GMIL that have a specific MI
assumption embedded in their design, mapping-based algorithms described in this
section do not assume a priori the existence of a specific relationship between the

http://dx.doi.org/10.1007/978-3-319-47759-6_4
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labels of each bag and of its instances. This relationship is learned from the data
instead, in the form of a count-based MI assumption. Training occurs in two steps

1. The method tries to identify regions in the instance space using either supervised
or unsupervised methods. These regions appear as a result of the instance space
structure.

2. The underlying MI assumption is learned. This is the relationship between the
bag labels and the instance space regions identified in the first step. To this end,
a new representation space is built, in which each attribute corresponds to one
of the regions. Each bag is mapped into this new space, such that the value
of the i th attribute indicates the presence or frequency of instances of the bag
in the i th region. Any single-instance learning model can be built on this new
single-instance training set.

Methods in this category differ fundamentally in the way they identify instance
patterns, i.e., in the first step described above. In the Two-Level Classification (TLC)
algorithm [22], a standard decision tree is used for this purpose. The tree is built
on all instances of all training bags. Each instance is assigned to its bag’s class
label. Instances are weighted such that all training bags have equal weight in the
construction of the learning model. Each node in the tree represents a region of the
instance space. In the second step, each bag is mapped to a new representation in
which each attribute contains the number of instances of the bag that have reached
the corresponding node in the tree.

ConstructiveClusteringEnsemble (CCE) [25] uses a clustering algorithm to deter-
mine the regions. The k-means algorithm is used to obtain a number of groups whose
centers are stored. In the second step, each bag is mapped to a new representation in
which each attribute indicates the presence of instances of the bag in the correspond-
ing group. An instance belongs to a group g if its distance to the center of g is less
than its distance to the center of the other groups. As it is not possible to determine the
optimal number of groups in advance, CCE generates many classifiers, each obtained
from a number of different groups, and then combines their predictions in a majority
vote.

Since these algorithms do not make a priori assumptions about the nature of
the relationship between bags and instances underlying the data, they can learn
a wider variety of problems. For example, all algorithms based on the standard
MI assumption take for granted that there are two classes of instances (positive
and negative). Algorithms learning the MI assumption during training can find an
arbitrary number of classes in the instance space and can discover relationships
between bags and instances that best fit the training data.

5.3.4 Mapping Methods Based on Distance

In count-based mapping methods, the attribute values of each bag are defined by the
location of instances of the bag inside a delimited region of instance space corre-
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sponding to that attribute. The notion of an instance membership to a region is strict.
It only accepts two extreme possibilities: the point either belongs or does not belong
to the region, depending on which side of the border of the region the point is located.
The fact that we can only have a vague idea of the borders of the instance regions is
ignored. Inmany applications, perfectly delimited regions boundariesmake no sense.
For example, if tall people are an important region of the instance space, it is difficult
to determine where we should start the region, at 1.70m, 1.80m, or 1.85m? Any
such value would be merely conventional. However, we can say that if an instance
is near the center of a region we can have a great certainty that it falls within the
region. The farther an instance is located from the center, the less likely it belongs to
the region. This is the idea behind distance-based mapping methods: each attribute
value in the output space is related to the distance from the bag to the center of a
region.

These methods try to identify instance regions that are representative of the struc-
ture of the instance space. Regions can be obtained through a clustering or classifi-
cation model constructed from training instances. A prototypical point is recorded at
the center of each region. In some cases, prototypes of only one class (usually the pos-
itive class) are used. In other cases, they are determined for each class. Each attribute
of the induced space corresponds to one of the prototypes found in the original space.
The attribute value is a distance measure (or a similarity measure) between the bag
and the prototype. Note that the bag contains many points (instances), while the
prototype is a single point. Specific distance functions between bags and prototypes
have to be used. Distance functions used in these cases are usually aggregations of
distances between the instances of the bag and the prototype. Distance-based map-
ping methods differ in how instance prototypes are determined and in their definition
of the distance function.

One of the first algorithms using this type of mapping was DD-SVM [5]. This
algorithm selects instance prototypes for both classes based on the values of the
diverse density (DD) function. Under the diverse density framework, a prototype
for class C is a point of the instance space with a high probability of being
found in bags of class C . Prototypes are local extrema of the DD function, where the
positive prototypes are maxima and the negative prototypes minima. To locate the
prototypes, gradient descent methods are used over the DD function. To find the pos-
itive prototypes, optimization processes are started from each instance of the positive
bags, while for negative prototypes, searches start from each instance of the negative
bags. The located prototypes are used to map each bag to the new representation
space. Using T prototypes, a bag X is transformed as

M (X) = 〈S (t1, X) , . . . S (tT , X)〉 , (5.7)

where ti represents the i th prototype and S (ti , X) is a distance measure between
the bag X and ti . Specifically, in [5] an absolute distance measure S (t, X) =
min j

∥∥x j − t
∥∥ is used. The authors apply an SVM to the bags represented in the

mapped space to obtain a bag classification model. In general, as with all mapping
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methods, any single-instance learning algorithm can be used to build this model as
well.

The MILES algorithm [6] was introduced by the same authors as DD-SVM.
Instead of looking for class prototypes in each bag,MILES uses all training instances
as reference points to construct the new bag space. In other words, each instance is
treated as a prototype. The new representation space has as many attributes as the
total number of instances in the training set. More formally, let X = {X1, . . . Xm}
be the training bag set. We align the instances inside the bags and renumber them to
get the set of instances {tk |∃Xi ∈ X : tk ∈ Xi }, k = 1, . . . , T , where T = ∑m

i=1 ni .
We use (5.7) to map a bag X to the output space. To calculate the value of the i th
attribute, MILES uses the Gaussian similarity function given by

S (t, X) = max
j

exp

(
−

∥∥x j − t
∥∥2

σ 2

)
, (5.8)

where σ is a parameter to scale the attributes.
MILES is more computationally efficient than DD-SVM, because it avoids the

expensive optimization procedure over the diverse density function, which DD-SVM
must perform for every instance. Chen et al. [6] have shown that MILES is as good as
and sometimes superior to DD-SVM in generalization accuracy and it is also more
robust with respect to label noise.

The MILES mapping can be seen as a method for determining the weight of each
instance. Indeed, the SVM applied to the mapping space calculates a weight for each
attribute which is normally used for feature selection. The attributes of the mapped
space are precisely the instances of the training bags, which allows to determine the
influence of different parts of the instance space. However, MILES does not create
a well-defined weight function over the instance space, because the max operator,
used in (5.8) that determines the value of each attribute, only takes into account the
influence of the nearest instance of the bag to the target point, resulting in a bag-
dependent weight function [9]. Foulds et al. [9, 10] proposed the YARDS algorithm,
which is similar to MILES in almost everything except in that YARDS can find a
true weight function over the instance space. By replacing the max operator with the
sum operator, that is, by setting

S (t, X) =
∑

j

exp

(
−

∥∥x j − t
∥∥2

σ 2

)
,

the bag-dependence in the similarity function is removed. In YARDS, each instance
of the bag has an influence on the bag-level classification and that influence only
depends on the attributes of the instance and not on the rest of the bag.
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5.3.5 Bag-Level Distance Mapping Methods

In themappingmethods included in Sects. 5.3.3 and 5.3.4, bags are described by their
relationships with instance-level spatial structures. This mapping relates instance
space regions with bag classes. Another way to transform a multi-instance problem
into a single-instance one is by describing each bag through the spatial relationship
it has with the other bags of the training set. In this case, the mapping is done at the
bag level, but instance space regions are ultimately related to bag classes, since bags
are represented by multiple vectors in the instance space. However, in this mapping
each instance maintains the relationship with its bag, making it a more informative
mapping than that which only includes instance-level relations.

The idea of bag-level distance mapping methods has been developed by Zhang
and Zhou [26] with their BARTMIP algorithm. The work scheme of BARTMIP is
shown in Fig. 5.6. A multi-instance clustering model is built on the training bags,
dividing them in k groups. Each group is represented by its medoid, i.e., the most
central bag. Each bag is mapped to a vector of k attributes, one for each group of
bags. The i th attribute value of a bag is the distance from the bag to the i th medoid.
All training bags are mapped with this form of representation. It results in a single-
instance training set on which a single-instance classification algorithm is trained. In
the prediction step, the new bag is mapped in the same way to a vector of k attributes
and processed by the single-instance classification model.

The components of this algorithm can be selected from a wide variety of choices.
BATRMIP can train any single-instance classification algorithm and use any multi-
instance clustering algorithm. Multi-instance clustering algorithms are described
in Chap.7. Specifically, in [26], BARTMIP uses a multi-instance clustering algo-
rithm called BAMIC (Sect. 7.1.4.1), which is an adaptation of the single-instance
k-medoids clustering algorithm to the multi-instance setting. Many multi-instance
clustering methods depend on a bag-level distance function which in turn uses an
instance level distance function. Distance functions at bag and instance levels are
other components of the model that should be chosen. The optimal number of groups
to be generated in the clustering step can be determined by cross-validation. An alter-
native is to build several clustering models, each with a different number of groups,
and train a classifier model from each grouping. The ensemble prediction is obtained
by majority vote.

5.4 Experimental Analysis

In this section, we empirically compare the performance of some representative bag-
based MIC methods. We show experimental results for both original-BS methods
and mapped-BS methods and compare the two strategies. These experiments are
only intended for illustration purposes and cannot be taken as a rigorous comparison

http://dx.doi.org/10.1007/978-3-319-47759-6_7
http://dx.doi.org/10.1007/978-3-319-47759-6_7
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Fig. 5.6 BARTMIP algorithm

among classifiers. The experimental setup is specified in Sect. 5.4.1, while Sect. 5.4.2
presents the results.

5.4.1 Setup

We use the same datasets as in the experimental study of Chap.4, described in
Table4.1. The algorithms included in the study are named in the first column of
Table5.1. The second column describes the method type. CitationKNN andMISMO
are representative algorithms that work on the original bag space. The other algo-
rithms are mapping methods, one of each type described in Sect. 5.3 with the excep-
tion of prototype concatenation discussed in Sect. 5.3.2. Prototype concatenation
mapping methods have been excluded due to their high memory requirements. They
are appropriate to use in small problems, but even for medium-sized datasets (as
some are in these experiments) it is difficult to make comparative studies.

Unlike methods that work on the original bag space and construct an specific
classifier, a mapping method can train any standard classification algorithm. Their
performance depends on both the mapping method and the learner used as base
classifier. In order to get a better idea of the mapping method qualities, we try each

http://dx.doi.org/10.1007/978-3-319-47759-6_4
http://dx.doi.org/10.1007/978-3-319-47759-6_4
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Table 5.1 Bag-based
classification algorithms to be
compared

Algorithm Category

CitationKNN Original-BS distance-based
methods

MISMO Bag-level kernel methods

SimpleMI Bag statistic mapping
methods

MILES Distance-based mapping
methods

CCE Count-based mapping
methods

BARTMIP Bag-level distance mapping
methods

alternative with five popular classification algorithms: one nearest neighbor (1NN),
C4.5, logistic regression (LR), an SVM and AdaBoost with C4.5 as base classifier
(AdaBoost). We use Weka implementations for algorithms in the first four rows of
Table5.1, while the last two were implemented by us. A rough optimization was
made for the most important parameters of each method looking for those yielding
the best result across all the datasets. We use default parameter settings for each
algorithm if not specified otherwise. We use the fivefold cross-validation procedure
and evaluate the performance of the classifiers by means of their accuracy (Sect. 1.4).

5.4.2 Results and Discussion

In Sect. 5.4.2.1, we show empirical results of the selected original-BS methods. We
compare typical mapped-BSmethodswith each another using several base classifiers
in Sect. 5.4.2.2. Finally,we compare the original-BS andmapped-BSbased classifiers
in Sect. 5.4.2.3.

5.4.2.1 Original-BS Methods

Table5.2 presents the experimental results of two original-BSmethods, namely Cita-
tionKNN and a bag-level SVM. The latter is a standard SVM using the Gärtner et al.
MI kernel described in Sect. 5.2.2 with the standard RBF instance-level kernel. The
table lists the best results for each algorithm after a simple parameter adjustment was
done looking for the best average result over all data. The results shown for Cita-
tionKNNwere obtained withC = 2 and R = 2 and those for SVMwithC = 1.0 and
γ = 0.5. The last two rows of the table show the average accuracy and the standard
deviation of each classifier over the nine datasets. The best accuracy is highlighted in
bold for each dataset. SVM is the winner in six out of nine cases, while CitationKNN

http://dx.doi.org/10.1007/978-3-319-47759-6_1
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Table 5.2 Classification accuracy for methods working in the original bag space

Dataset CitationKNN SVM

Musk1 89.13 88.04

Musk2 84.16 83.17

Atoms 70.21 74.47

Bonds 74.47 85.11

Chains 73.40 84.57

WIR 64.60 69.91

TREC 47.75 74.75

Beach 82.00 80.50

Fox 50.00 61.00

Average 70.64 77.95

SD 14.42 8.70

wins in three datasets. The higher average accuracy of SVM supports the idea that it
has a significantly better performance than CitationKNN over the studied problem
domains. The lower standard deviation of the SVMmeans that its good performance
is more evenly distributed across all datasets than that of the CitationKNN, which
instead obtains very good results in a few datasets, but poor results in many of them.

5.4.2.2 Mapped-BS Methods

Table5.3 presents a summary of the experimental results of the selected mapped-BS
methods using five base classifiers. The average accuracy computed over the nine
datasets along with the confidence interval with a significance level α = 0.05 is
shown for each pair of mapping method and classifier. The algorithm parameters
were set as follows: σ = 250 in MILES, 60% of clustering in BARTMIP, five
iterations in CCE and 10 iterations in Adaboost. The SVM in all mapping methods
uses an RBF kernel with C = 10.0 and γ = 0.5. The most accurate mapped-BS
method for each base classifier is highlighted in bold. SimpleMI obtains the best
performance for three classifiers: C4.5, SVM, and Boosting. BARTMIP is the best
performing mapped-BS method for the 1NN and LogReg classifiers. This suggests
that SimpleMI and BARTMIP are two of the most accurate mapped-BS methods
overall, since they achieve the highest quality predictions with several base classifiers
over a range of datasets from different application domains.

Table5.4 presents the detailed experimental results of each mapped-BS method
executed with its best base classifier following the conclusions of Table5.3. The
highest accuracy for each dataset among the four methods is marked in bold. Sim-
pleMI and BARTMIP are again the most outstanding algorithms, as each one wins
in four datasets. With respect to the application domains, it seems that SimpleMI is
best suited for molecular activity prediction, while BARTMIP looks like the leader
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Table 5.3 Average classification accuracy of mapping methods using different base classifiers

Base classifier SimpleMI MILES BARTMIP CCE

1NN 74.99 ± 6.32 72.47 ± 5.77 75.24 ± 8.21 70.55 ± 6.79

C4.5 76.73 ± 5.41 68.54 ± 8.04 73.42 ± 6.17 67.19 ± 5.55

LogReg 70.07 ± 5.75 69.81 ± 4.34 78.59 ± 5.75 74.00 ± 5.54

SVM 79.18 ± 6.81 69.09 ± 7.84 78.58 ± 8.47 70.40 ± 6.31

Boosting 76.77 ± 5.19 70.16 ± 8.70 74.81 ± 6.78 69.32 ± 5.19

Table 5.4 Classification accuracy for best performing mapping method schemes

Dataset SimpleMI MILES BARTMIP CCE

Musk1 91.30 77.17 84.78 80.43

Musk2 91.09 66.34 85.15 74.26

Atoms 73.40 80.85 84.04 78.19

Bonds 84.57 79.79 82.45 79.26

Chains 85.64 79.79 86.17 77.66

WIR 62.83 61.06 63.72 73.45

TREC 75.75 68.25 71.50 68.25

Beach 82.50 80.00 83.00 80.50

Fox 65.50 59.00 66.50 54.00

in the image recognition domain. In the next section, we delve deeper into this topic
when we compare all bag-based methods to each other.

5.4.2.3 Overall Comparison

In Sects. 5.4.2.1 and 5.4.2.2, we pointed out the most accurate classifiers of each
type. We are now interested to make an overall comparison between original-BS and
mapped-BS methods in order to discover their advantages and disadvantages. The
best performing model of each type is taken into account in this comparison. Two
original-BS methods and four mapped-BS methods are included.

To discover which method is the best option in each case, we first separate the
results by application domain. In Fig. 5.7, we depict the accuracy of the methods
on the biochemical applications. Note that the accuracy axis values start at 40 to
better distinguish the differences between the methods. SimpleMI, BARTMIP, and
MISMO dominate in almost all datasets, while CitationKNN and MILES are not
stable in their results. It is remarkable that BARTMIP performs quite good in the five
datasets.

In Figs. 5.8 and 5.9, we show the accuracy of the methods on datasets from the
textual and image domain, respectively. From these charts, we can not identify one
algorithm that is superior to the others in any of these domains. The advantage
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Fig. 5.7 Biochemistry domain

Fig. 5.8 Textual domain

(discussed in the previous section) of BARTMIP over SimpleMI on image datasets
is negligible. We can only point out some general trends. CitationKNN and MILES
have again poorer results compared to the other methods. SimpleMI, BARTMIP and
MISMO excel in most datasets. Figure5.10 shows the average accuracy of the six
methods over the nine datasets and supports the above statement.

We are also interested in analyzing the training time of the models. Figure5.11
shows the average training time of the six methods over the nine datasets. Note that
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Fig. 5.9 Imaging domain

Fig. 5.10 Average accuracy of selected bag-based classification methods over the experimental
datasets

a logarithmic scale is used to represent time intervals, such that differences between
methods can be correctly perceived. Time values are given in seconds, but we are
mostly interested in the relative time proportions of the different models. The training
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Fig. 5.11 Average training time of selected bag-based classificationmethods over the experimental
datasets

time of CitationKNN is mainly devoted to the calculation of bag-level distances,1

whereas kernel calculations made by MISMO are three times faster than the work of
CitationKNN. The very small training time of SimpleMI is one of the most remark-
able things in the figure. The key lies in the simplicity of its mappingmethod.MILES
has a fair training time complexity, which is in line with its moderately simple map-
ping method. Conversely, BARTMIP training has a considerable time complexity.
This method has a much more complex mapping method, that includes bag-level
distance calculations and bag-level clustering. Finally, training CCE takes a long
time. It includes instance-level distance calculations and instance-level clustering,
that are much more time demanding than their bag-level relatives.

5.5 Comparing Instance-Based, Bag-Based,
and Traditional Classification Methods

In Chap.4 and this chapter, we discussed two classifier families that work very
differently: one of them learns at the instance level, the other at the bag-level. In both

1The implementation used for CitationKNN calculates the neighbor list of each bag in the training
step.

http://dx.doi.org/10.1007/978-3-319-47759-6_4
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cases, we have presented comparative experiments on the performance of several
representativemembers of each family.Anobvious question is how these two families
compare. This does not have an easy answer and has been the subject of study of some
recent work [1, 2]. There is another more basic question that some researchers have
put forward [1, 16], namely whether multi-instance classifiers outperform single-
instance classifiers in all multi-instance datasets.

Ray and Craven [16] found that single-instance classification algorithms can per-
formwell for severalMIL problems, outperformingMI classifiers in some cases. This
strongly impacts theMIL community, as occasional reports have shown thatMI clas-
sifiers with good success records were beaten by simple single-instance models in
some datasets.

Alpaydin et al. [1] designed artificial datasets with increasing complexity levels,
corresponding to more and more complex dependencies between instances in a bag.
They compare instance-based, bag-based, and single-instance classifiers on artificial
datasets of different sizes and levels. Their conclusion was that, in general, single-
instance classifiers can only handle the simplest MIL problems corresponding to the
lowest complexity level, instance-based classifiers are good to solve problems from
the first and second complexity levels and bag-based classifiers can solve problems
from the first three levels. Datasets from the fourth complexity level require even
more advanced classification methods. Alpaydin et al. also found that datasets where
single-instance classifiers outperformmulti-instancemethods are those with the low-
est complexity level and with a small number of bags, because there is not enough
data to train the bag-level classifiers.

This explanation clarifies the general relation that appears between algorithms
and data complexity. Nevertheless, we should keep in mind that no classifier exists
that can handle all different application domains. Faced with a new MIL problem,
the best algorithm might be an instance-based, a bag-based or a traditional classifier.

5.6 Summarizing Comments

Bag-based classification algorithms are an important group of MIC methods. They
predict the bag class mainly using information at the bag level. They do not strive
to predict instance class labels and have more flexible and generals MI assumptions.
Several bag-based methods have appeared in the literature. According to their main
features, we organize them in a category system depicted in Fig. 5.12. There are two
principal categories of bag-based classifiers: (i) methods that operate on the original
bag space by relying on a distance, similarity or kernel function and (ii) methods
that use a mapping function to transform the data to a single-instance representation,
such that single-instance classifiers can be trained and used to predict bag labels.
Several types of transformations have been developed. Some mapping functions are
based on simple bag statistics. Others represent the new space by concatenating pro-
totypes extracted from the training bags. Other mapping methods count the number
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Fig. 5.12 Bag-based methods hierarchy

of instance of the bag falling in specific regions of the instance space and yet others
compute the distance from the bag to the centers of these regions.

The experimental study shows that each of the discussed methods can attain high
accuracy in some application domains. Nevertheless, we do not recommend CCE
because of its large training time and uncertain performance. We advise the use of
SimpleMI, because it often attains a very good accuracy and is very fast to train.
BARTMIP is also a good option, because of its stable performance over several
domains.
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