
Chapter 2
Multiple Instance Learning

Abstract This chapter provides a general introduction to the main subject matter
of this work: multiple instance or multi-instance learning. The two terms are used
interchangeably in the literature and they both convey the crucial point of difference
with traditional (single-instance) learning. A formal description of multiple instance
learning is provided in Sect. 2.1 and we discuss its origins in Sect. 2.2. In Sect. 2.3,
we describe different learning tasks within this domain, which may or may not have
an equivalent in single-instance learning. Finally, Sect. 2.4 lists a wide variety of
applications corresponding to the different multi-instance learning paradigms.

2.1 Formal Description

The traditional data description presented in Chap. 1 corresponds to so-called single-
instance learning, where each observation or learning object is described by a num-
ber of feature values and, possibly, an associated outcome. In our object of study,
multiple-instance learning (MIL), the structure of the data is more complex. In this
setting, a learning sample or object is called a bag. The defining feature of MIL
is that a bag is associated with multiple instances or descriptions. Each instance is
described by a feature vector, as we saw in single-instance learning, but an associated
outcome is never reported. The only information available about an instance, aside
from its feature values, is its membership relationship to a bag.

Formally, an instance x corresponds to a point in the instance space X. It is
commonly assumed that X ⊆ R

d , that is, each instance is described by a vector of d
real-valued numbers, its feature values. However, as described in Sect. 1.1, datasets
often containmixed types of features. Tomodel these situations,X can be generalized
toX ⊆ A d = A1×· · ·×Ad , such that each instance is described by a d-dimensional
vector, where each attributeAi ( i = 1, . . . , d) takes on values from a finite or infinite
set Vi . In this way, we can deal with mixed feature sets in which some of the features
are categorical and others are numeric.

A bag X is a collection of n instances, where every instance xi is drawn from the
instance space X. Each bag is allowed to have a different size, which means that the
value n can vary among the bags in the dataset. Multiple copies of the same instance
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Table 2.1 Structure of a multi-instance dataset with M bags

Bags Instances A1 A2 ... Ad Outcome

X1 x1,1
...
x1,n1

x1,1,1
...
x1,n1,1

x1,1,2
...
x1,n1,2

...

...

...

x1,1,d
...
x1,n1,d

y1

... ... ... ... ... ... ...

XM xM,1
...
xM,nM

xM,1,1
...
xM,nM ,1

xM,1,2
...
xM,nM ,2

...

...

...

xM,1,d
...
xM,nM ,d

yM

can be included in a bag. For this reason, many authors define a bag as X ∈ N
X, that

is, a multi-set containing elements from X such that duplicates can occur. Different
bags are also allowed to overlap and contain copies of the same instance. This forms
an indication of the higher level of complexity of MIL compared to single-instance
learning. Throughout this work, we use lowercase letters to represent instances (e.g.,
x , a, b) and uppercase letters to represent bags (e.g., X , A, B).

As an example, Table2.1 presents the general structure of amulti-instance dataset.
The first column represents the bags, sometimes also referred to as exemplars.
Each bag contains a number of instances, represented in the second column. Each
instance identifier corresponds to a vector description, of which the attribute values
are arranged from columnsA1 toAd . The first instance x1,1 in the first bag X1 is for
example represented by the feature vector 〈x1,1,1, x1,1,2, ..., x1,1,d〉. The last column
represents the outcome associated with the bag. It is important to stress that this
outcome is only known for a bag as a whole and not for each individual instance.
Depending on the learning task (see Sect. 2.3), the outcome may be a class label
(classification) or a real value (regression). In clustering applications, there are no
outcomevalues available.Webriefly note that thework of [11] showed that the perfor-
mance of multi-instance learners on datasets with very similar meta-characteristics,
like dimensionality and size, can be very different.

2.2 Origin of MIL

The multi-instance learning paradigm was introduced in the seminal work of [16]. It
arose in the context of learning taskswhere data observations (bags) canhavedifferent
alternative descriptions (instances). The authors of [16] focused on an application
in biochemistry: the drug activity prediction problem. Here, the task is to predict
whether or not a given molecule is a good drug molecule, which is measured by
its ability to bind to a given target. Each molecule can be represented as a bag, of
which the instances correspond to different conformations (molecular structures) of
that particular compound. Figure2.1 depicts this situation for a butane molecule. In
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Fig. 2.1 Conformations of a butane molecule

this case, butane would be represented by a bag containing the 12 listed shapes as its
instances.

MIL emerged as an extension of supervised learning. bag-instances relationship
models the one-to-many relation characteristic of relational databases, since one bag
can contain several different instances. More than an extension, MIL can therefore
be considered a generalization of single-instance learning and the latter can be under-
stood as a special case of MIL where each bag contains a single instance. Moreover,
MIL has proven to be a bridge between two different paradigms: propositional learn-
ing on the one hand and relational learning on the other.

2.2.1 Relationship with Propositional Learning

Propositional or attribute-value learning corresponds to the setting described in
Sect. 1.1, where the training data is ordered in a single flat table. In single-instance
semi-supervised learning (Sect. 1.3.3), only part of the instance outcomes are avail-
able and it therefore shows a certain similarity with MIL, where the outcomes are
only known for the bags and not their instances. However, there is a fundamental
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difference between the two: the relationship between instances and bags inMIL does
not exist in semi-supervised learning. In the latter, labeled instances are at the same
level as unlabeled instances and there is no specific relationship between them. In
MIL on the contrary, a secondary structure is present in the dataset, defining the two
different levels of bags and instances. All instances in a bag are somehow interrelated,
because of their shared membership to the bag.

2.2.2 Relationship with Relational Learning

In relational learning, structured concept definitions are derived from structured train-
ing examples [14]. The training data models the different observations as well as the
relations between them, for instance by using multiple tables. A clear example is
given in [15], where the relational data is represented by two tables, one providing
the description of store customers and the other the marital relations between them.

Many learning methods have been developed for propositional learning, but these
can only be applied to data organized in a single table and the relations between
different observations can not be taken into account. Propositional algorithms can
therefore not be directly applied in relational learning problems. Relational data can
be transformed into an attribute-value table in a process called propositionalization,
but this implies a steep computational cost and its application to real problems is
limited as a result of an internal combinatorial explosion [47].

MIL has come to be considered as the missing link between relational and propo-
sitional learning, because, as stated above, the bag label models a one-to-many rela-
tionship. The contribution of [13] shows that multi-instance problems can also be
considered as a special case of inductive logic programming [37]. All inductive logic
programming problems (in the form of relational databases) can be transformed by
database join operations in a single one-to-many relationship. Such a relation can
in turn be naturally represented as a MIL problem [47, 48]. As will be discussed in
later chapters, many single-instance learning algorithms have already been adapted
to the multi-instance setting. This feature of MIL allows for many relational learning
problems to be solved by traditional supervised learning methods.

2.3 MIL Paradigms

As in traditional single-instance learning, discussed in Sect. 1.3, we can distin-
guish between a number of learning tasks within MIL. In Sect. 2.3.1 we discuss
the two supervised learning settings, classification and regression. Section2.3.2
describesmulti-instance clustering. Several other traditional learning tasks, like semi-
supervised ormulti-label learning, canfind a correspondingMILequivalent (e.g., [44,
82]). However, we must warn the reader that this general similarity between single-
instance and multi-instance learning tasks can not be transferred to their solution
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methods. Due to the relational nature, MIL solution methods are inherently more
complex. This also implies that some MIL tasks have no related single-instance
setting. The most prominent example is presented in Sect. 2.3.3.

2.3.1 Multi-instance Classification and Regression

In a multi-instance classification problem, the goal is to determine the class label of
new bags, based on the class labels in the training set or, more specifically, using a
prediction model built on the labeled training bags. The outcome associated with the
training bags is categorical.

More formally, in a classification problem,we dealwith a training set D = (X,L),
where X = 〈X1, . . . , Xm〉 is a set of bags and L = 〈�1, . . . , �m〉 a set of class labels,
with �i ∈ L (i = 1, . . . ,m) and L the finite set of all possible class labels. The bag
Xi is assigned the class label �i . Recall that only the class labels of the bags are
known and not those of the instances inside them. Later on in this work, we provide
a detailed discussion on the contribution of the individual instances to the bag label.
Traditionally, MIL has focused on two-class classification problems, dealing with
one positive and one negative class. However, in general the number of classes can be
larger, that is, |L| ≥ 2. The classification objective is to find a functionH : NX → L

based on the training set D. This function is the classification model and is used to
predict the class labels of new bags as accurately as possible. More details on multi-
instance classification will be provided in Chap.3.

When the outcomes are known for all training bags, but they correspond to real
values rather than class labels, we are dealing with a multi-instance regression prob-
lem. The data description is highly similar to the one for classification data. The
main difference is that the bag class labels are replaced by numerical values, that
is, L corresponds to a range of values in R rather than to a finite set. Multi-instance
regression was proposed in [2, 46], independently at the same conference. This task
is discussed further in Chap.6.

2.3.2 Multi-instance Clustering

Asdiscussed in Sect. 1.3.2, clustering is situated in the unsupervised learning domain.
The set of outcomesL associated to the training bagsX in D is not known or not avail-
able. The goal is to group these unlabeled bags based on a given similarity measure.
A multi-instance clustering method determines a set of groups G = {G1, . . .Gk}
and a function H : NX → G which assigns bags to groups such that it minimizes
the similarity differences between bags of the same group and maximizes the sim-
ilarity differences between bags of different groups. The choice of an appropriate
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similarity measure is crucial in multi-instance clustering. As noted in [74], not all
instances within a bag contribute equally to the bag prediction, which implies that
the bags should ideally not be considered as collections of independent instances in
the definition of the similarity metric. Multi-instance clustering is discussed in more
detail in Chap. 7.

2.3.3 Instance Annotation

An important task in some MIL applications, which has no counterpart in single-
instance learning, is the instance-level classification. In this setting, apart from pre-
dicting a class label for a new bag, the assignment of class labels to its instances is
a key objective as well. Depending on the application, there are two possible cases.

In the first situation, given the training set D = (X,L), the objective is to locate
the instance or instances that are key to determining the class of the bag. In general,
key instances are considered those that are more likely to have the same (hidden)
label as their bag. A function h : X → L is constructed, such that the corresponding
aggregation function H (h (x1) , . . . , h (xn)) → L can predict class labels of a new
bag X = {x1, . . . , xn} with maximum possible accuracy. This learning strategy is
employed by a large group of multi-instance classification algorithms, described in
Chap.4. Some applications require the identification of key instances not only to
classify bags, but also because these instances are themselves relevant to the appli-
cation (e.g., [30]). An example application where the identification of true positive
instances is very informative, is that of the stock selection problem [33]. In that set-
ting, true positive instances correspond to stocks that fundamentally perform well,
which is an important subgroup to discern from the other stocks.

In the second case, the training set is represented as D = (X,L), where X =
〈X1, . . . , Xm〉 are bags and L = 〈L1, . . . ,Lm〉 are sets of instance labels associated
to the bags. In this situation, the setLi = {

λ1, . . . , λki

}
of explicit instance labels is

assigned to the bag Xi . These labels are drawn from a set Λ = {λ1, . . . , λs}, which
can be different from L. Unlike the traditional MIL approach, some instance labels
are known for each bag. The objective is to find a function that, given a new bag,
allows us to find instance labels that best describe it. This setting is very popular
in applications such as image annotation (e.g., [7]), where the annotation of image
segments (instances) can result in a global label for the complete image (bag). Since
one observation (bag) is associated with a set of (instance) labels, this approach
shows some similarity with multi-label classification (Sect. 1.3.1). However, multi-
label and multi-instance learning remain different paradigms. The former represents
each observation by multiple instances and a single global class label, while in the
latter an observation corresponds to one instance associated with several labels.
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2.4 Applications of MIL

InMIL, amore complex structure of data observations can be represented. Themulti-
instance setting is required to model several real-world applications that we list in
this section. There is an inherent level of representation ambiguity in this type of
problems and we can distinguish between several sources. MIL data naturally arises
in the following situations:

• Alternative representations: different views, appearances or descriptions of the
same object are available. A classical example in this case is that of drug activity
prediction, the application for which MIL was originally developed in [16] (see
also Sect. 2.2).

• Compound objects: a compound object consists of several parts. In the example of
image recognition, an image corresponds to a bag and each image segment forms
an instance. An example is found in Fig. 2.2. The image segments can correspond
to different breakfast components like the slice of toast, the sausage, the beans,
and so on. Together, they form a full English breakfast.

• Evolving objects: in these applications, an evolving object is sampled at different
time intervals. This is also referred to as a time-series problem. The bag represents
the object, while the time point samples are its instances. An example is the study
around the use of MIL in bankruptcy prediction presented in [27].

Fig. 2.2 A full English breakfast
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The main research focus within the MIL community has been on multi-instance
classification problems. A variety of application domains are listed in Sects. 2.4.1–
2.4.6. In Sect. 2.4.7, we consider applications of multi-instance regression, while
multi-instance clustering applications are discussed in Sect. 2.4.8.

2.4.1 Bioinformatics

We have already discussed the application of drug activity prediction in Sect. 2.2.
Each bag corresponds to a molecule and its instances are the different molecular
shapes, as shown in Fig. 2.1. The objective in the original MIL proposal [16] is the
prediction ofmusky and non-muskymolecules.Other drug activity problems concern
the mutagenicity prediction of compound molecules [52] and activity prediction of
molecules as anticancer agents [6]. Studies like [21, 33, 72, 80] address the drug
activity prediction problem with their proposed multi-instance classifiers as well.

Another bioinformatics application of MIL is the protein identification task, like
the recognition of Thioredoxin-fold proteins, as explored in, e.g., [45, 55, 59]. Bind-
ing proteins of the Calmodulin protein are identified in a multi-instance classification
process in [36], while the application in [40] is the prediction of binding peptides for
the highly polymorphic MHC class II molecules. In [29], multi-instance multi-label
classification is used to automate the annotation of gene expression patterns. This
method was evaluated on Drosophila melanogaster (fruit fly).

2.4.2 Image Classification and Retrieval

Another widely studied MIL application area is that of image classification, where
the goal is to, given an image, decide on what it represents or to which of a given set
of categories it belongs. As an example, consider the early work of [34] that revolves
around the classification of natural scene images, e.g., images of waterfalls. In the
data representation, an image corresponds to a bag. The instances within this bag are
subimages, encoded as templates describing color and spatial characteristics of that
specific region. The subimages can be obtained by a partitioning process or, possibly
more appropriately, an image segmentation procedure. In a perfect segmentation, the
resulting regions correspond to individual objects. The classification objective is to
predict what the complete image represents. If we consider Fig. 2.2, a multi-instance
classifier should derive that it is processing an image of a full English breakfast based
on the different objects on the plate. This type of region-based image categorization
was also evaluated in [3, 9, 10, 24, 42], although not all of these referenced works
developed multi-instance classification methods specific for image data. They often
consider more general algorithms and evaluate them on a variety of applications.
Multi-instance image datasets have indeed become popular benchmarks to evaluate
new proposals on. One specific type of image classification, facial recognition, where
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a bag of instances can represent images taken of the same person from different
angles, was studied in, e.g., [8, 19].

More complexmodels for themapping of images tomulti-instance datawere stud-
ied in later works. Themethod of [43]models the interrelations of instances (regions)
in a bag (image) to improve the categorization process, while [25] considers image
annotation by means of a joint multi-instance mapping and feature selection process.
The recent proposal of [20] develops a multi-instance semi-supervised classification
method based on sparse representation and evaluates it on image data.

A task related to image categorization is that of image retrieval. The aim in this
case is to obtain images from a dataset that are semantically relevant to the user, based
on his specified query or presented examples of images of interest. Multi-instance
approaches to this challenge represent, as above, an image as a bag, containing many
of its subimages as instances. Examples can be found in, e.g., [7, 66, 71, 75–77].

2.4.3 Web Mining and Text Classification

Another application domain ofMIL lies in webmining. Theweb index recommenda-
tion problem was introduced as a multi-instance problem in [81]. In this application,
a bag corresponds to a web index page and its instances refer to other websites to
which the page links. The recommendation task is to suggest relevant web pages to
users based on their browser history. Such knowledge is useful for the construction
of intelligent web browsers. This problem domain was also the central focus of [67,
69], in which genetic programming algorithms were developed to solve it. In [51], a
multi-instance classifier based on the Rocchio classifier [49] was developed for this
application.

A related task is that of document classification. In [3], the proposedmulti-instance
classificationmethod is evaluated on a document categorization problem. In this case,
a bag corresponds to a document and the instances are particular passages within that
document. In the experiments of [45], the dataset obtained in the biomedical study
of [5] is used. A bag corresponds to a biomedical article about a particular protein
and the instances are the paragraphs of the text. A positive bag is one that can be
labeled with a Gene Ontology code, while a negative bag cannot. The classification
goal is to discern between positive and negative bags.

2.4.4 Object Detection and Tracking

This domain requires methods that discern an object of interest in image or video
data. Examples are the application of the proposed multi-instance boosting method
to horse detection and pedestrian detection in [1]. In [32], the detection of landmines
based on radar images is studied in a multi-instance classification context. The study
of [61] considers the related aspect of saliency detection, which is the detection of
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the object in the image that draws the visual attention, as humans focus more on
some parts of pictures than on others. It is not known in advance what the object is,
only that it draws the attention of the observer.

In an object tracking application, a specific object is followed during the course of
a video sequence. Online methods have been proposed in, e.g., [4, 73]. In the recent
contributions of [31, 83], online multi-instance boosting algorithms for visual object
tracking problems are developed.

2.4.5 Medical Diagnosis and Imaging

Several studies on multi-instance data focus on applications within the medical
domain. In [22], amulti-instance classification framework is developed for computer-
aided medical diagnosis, like the detection of tumors. It is shown that the use of this
framework significantly improves the diagnostic accuracy in the evaluated applica-
tions. The study of [53] concerns the automatic detection of myocardial infarction
based on electrocardiography (ECG) recordings. For each patient, a 24-h ECG is
taken, which traces his or her heart activity for a full day. Such a recording is too
large to be interpreted by a cardiologist. Automated prediction tools are required to
detect any heart abnormalities in the data. In the input data for the multi-instance
classifier, a bag corresponds to a full ECG, while each instance represents a recorded
heartbeat.

The proposal of [41] studies the early detection of illnesses, like frailty and demen-
tia, in senior citizens. This is done in a noninterfering way, namely by using sensor
data, collected from a number of sensorsmonitoring elderly people in nursing homes.
A bag consists of 24 hourly sensors measurements (instances) taken in one day for a
single patient. The label of a bag is determined based on the report made by a nurse
for the patient on that particular day. It indicates whether the patient exhibited health
problems (positive) or not (negative).

A fourth study [60] develops a multi-instance classification algorithm for the
detection of colonic polyps, abnormal growths in the colon. It revolves around video
classification. When a possible polyp is present in the colon, images of it are col-
lected from several viewpoints and combined into a video. Each candidate polyp
consequently corresponds to a bag. The different viewpoints or video frames are the
instances. The prediction aim is to decide whether the videoed candidate is an actual
polyp or not.

2.4.6 Other Classification Applications

In this final section on applications of multi-instance classification, we collect a
number of miscellaneous applications that do not fall within any of the categories
listed in the previous sections.
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Multi-instance classification has been applied to prediction of student perfor-
mance [68]. This problem allows interesting relationships to be obtained that can
suggest activities and resources to students and educators that favor and improve
both learning and the effective learning process. From the MIL perspective, each
student is regarded as a bag which represents the work carried out and is composed
of one or several instances where each instance represents the different types of
work that the student has done. This representation has shown better results than
traditional single-instance representation [68]. The work of [70] proposes a genetic
programming model to solve this problem more efficiently.

The study of [35] proposes amethod for automatic subgoal discovery in reinforce-
ment learning [54]. The trajectory of an agent in a reinforcement learning process
is encoded as a bag. The observations made along this trajectory are the instances.
The bag label states whether the trajectory is successful or not, where the definition
of success depends on the problem description.

Multi-instance classification has been applied to several computer-related tasks as
well, for instance in the work of [50] that focused on computer security applications.
Impending failure of computer hard drives is predicted in [38]. A bag corresponds to
a single drive and its instances are observations of this drive taken at different time
points. In [26], the quality of object-oriented software is estimated. A class hierarchy
is transformed into a bag, containing the constituent classes as instances.

The proposed classification method of [33] was evaluated on a stock selection
problem. In this work, each bag represents amonth of trading. A positive bag contains
the 100 stocks (instances) with the highest returns in that month, while a negative
bag consists of the five stocks with the lowest returns.

The final classification application that we list, is graph mining, the process of
extracting knowledge from graph structured data. Multi-graph learning is a fur-
ther generalization of MIL, where every bag consists of several graphs. In MIL, all
instances in the bags are drawn from the same feature space, but this is no longer the
case in multi-graph learning. This area was the focus of the recent works [64, 65].

2.4.7 Regression Applications

Although to a lesser extent than for classification problems, we also encounter real-
world applications of multi-instance regression. We collect these examples in this
section.

The application referenced in one of the original proposals of multi-instance
regression [46] is related to the drug activity prediction problem. Instead of treating
this as a yes-or-no question, as done in the classification scenario, real-valued activity
levels are estimated for the molecules. The second initial proposal on multi-instance
regression [2] also interpreted drug activity prediction as a regression problem,where
the binding strength of a molecule is the prediction objective. The theoretical study
on multi-instance regression in [17] refers to the real-valued drug activity prediction
problem as an important application as well. In [12], the authors develop a method
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to predict the binding affinity of molecules based on their three-dimensional struc-
ture. They evaluate their method on thermolysin inhibitors, dopamine agonists, and
thrombin inhibitors. In later work, [56] considers the prediction of protein-ligand
affinities and [18] the prediction of the binding affinity of MHC class II molecules.

The study of [23] uses a real-valued outcome in the interval [0, 1] to express
the satisfaction degree of a bag to the concept. One of the evaluated applications
is landmark recognition for robot vision. In a navigation assignment, robots are
required to recognize whether or not they find themselves near one of a given set of
landmarks.

Multi-instance regression has also been used in remote sensing applications. The
contribution of [57] focuses on an agricultural process, namely the modeling of crop
yield based on remote sensing data. A bag corresponds to one county in the United
States. The instances in the bag are image pixels covering different parts of that
county. The same application was evaluated in [58], where the authors developed
a multi-instance regression method for structured data. In [62], a climate research
application related to aerosols is considered. The prediction value is the so-called
aerosol optical depth, which is a number related to the induced attenuation of radi-
ation. This value characterizes aerosols and is central in the construction of climate
models. Aerosols are globally monitored by satellites that provide data in the form of
multi-spectral images. In this application, a bag corresponds to a set of neighboring
pixels (instances) in such an image. The bag is labeled with an aerosol optical depth
value. The two remote sensing applications, aerosol optical depth prediction and crop
yield modeling, were also studied in [63].

Finally, we also list the multi-instance regression study of [39]. The authors
develop a robust system for age estimation of a person based on an image of his
or her face.

2.4.8 Clustering Applications

In this section, we review the applications for multi-instance clustering that have
been presented in the literature. Recall that the goal of this learning paradigm is to
arrange the bags in a number of well-separated groups of similar observations.

The proposal of [74] references an application in biochemistry. The execution
of experiments to determine the functionality of specific molecules can be costly.
Multi-instance clustering can be used in the often necessary step to derive the func-
tionality of a molecule by identifying similar molecules with known characteristics.
The method of [28] was evaluated on two types of clustering problems. The first one
consists of enzyme data, where a bag corresponds to an enzyme and its instances to
amino acid sequences. The second problem is the clustering of the molecules in the
drug activity prediction datasets taken from [16].

In [78, 79] a multi-instance clustering method based on the maximum margin
principle was proposed. It was evaluated on two separate applications. In image
clustering, the method is used to detect common hidden concepts or patterns in
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images. As was done in the image classification applications listed in Sect. 2.4.2,
the images correspond to bags and the instances are image segments. The second
application is text clustering. In this case, a bag represents a document and is made
up from (possibly overlapping) passages taken from this document.

References

1. Ali, K., Saenko, K.: Confidence-rated multiple instance boosting for object detection. In: Pro-
ceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR
2014), pp. 2433–2440. IEEE, Los Alamitos (2014)

2. Amar, R.A., Dooly, D.R., Goldman, S.A., Zhang, Q.: Multiple-instance learning of real-valued
data. In: Brodley, C.E., Danyluk, A. (eds.) Proceedings of the 18th International Conference
on Machine Learning (ICML 2001), pp. 3–10. Morgan Kaufmann Publishers, San Francisco
(2001)

3. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance
learning. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information, vol.
15, pp. 561–568. MIT press, Cambridge (2002)

4. Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance
learning. IEEE Trans. Pattern Anal. 33(8), 1619–1632 (2011)

5. Blaschke, C., Leon, E., Krallinger, M., Valencia, A.: Evaluation of BioCreAtIvE assessment
of task 2. BMC Bioinform. 6(1), 1 (2005)

6. Braddock, P., Hu, D., Fan, T., Stratford, I., Harris, A., Bicknell, R.: A structure-activity analysis
of antagonism of the growth factor and angiogenic activity of basic fibroblast growth factor by
suramin and related polyanions. Br. J. Cancer 69(5), 890 (1994)

7. Carneiro, G., Chan, A.B., Moreno, P.J., Vasconcelos, N.: Supervised learning of semantic
classes for image annotation and retrieval. IEEE Trans. Pattern Anal. 29(3), 394–410 (2007)

8. Chang, K., Bowyer, K., Flynn, P.: An evaluation of multimodal 2d+3d face biometrics. IEEE
Trans. Pattern Anal. 27(4), 619–624 (2005)

9. Chen, Y., Wang, J.: Image categorization by learning and reasoning with regions. J. Mach.
Learn. Res. 5, 913–939 (2004)

10. Chen, Y., Bi, J., Wang, J.Z.: MILES: Multiple-instance learning via embedded instance selec-
tion. IEEE Trans. Pattern Anal. 28(12), 1931–1947 (2006)

11. Cheplygina, V., Tax, D.: Characterizing multiple instance datasets. In: Feragen, A., Pelilo, M.,
Loog,M. (eds.) Similarity-Based Pattern Recognition, pp. 15–27. Springer, Switzerland (2015)

12. Davis, J., Costa, V.S., Ray, S., Page, D.: An integrated approach to feature invention and model
construction for drug activity prediction. In: Ghahramani, Z. (ed.) Proceedings of the 24th
international conference on Machine learning (ICML 2007), pp. 217–224. ACM, New York
(2007)

13. De Raedt, L.: Attribute-value learning versus inductive logic programming: the missing links.
In: Page, D. (ed.) Inductive Logic Programming. Lecture Notes in Computer Science, vol.
1446, pp. 1–8. Springer, Berlin (1998)

14. De Raedt, L.: Logical and Relational Learning. Springer Science & Business Media, Berlin
(2008)

15. Deroski, S.: Relational data mining. In: Maimon, O., Rokach, L. (eds.) Data Mining and
Knowledge Discovery Handbook, pp. 887–911. Springer, New York (2009)

16. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance problem with
axis-parallel rectangles. Artif. Intell. 89(1–2), 31–71 (1997)

17. Dooly, D.R., Goldman, S.A., Kwek, S.S.: Real-valued multiple-instance learning with queries.
J. Comput. Syst. Sci. 72(1), 1–15 (2006)

18. El-Manzalawy, Y., Dobbs, D., Honavar, V.: Predicting MHC-II binding affinity using multiple
instance regression. IEEE ACM Trans. Comput. Biol. 8(4), 1067–1079 (2011)



30 2 Multiple Instance Learning

19. Faltemier, T., Bowyer, K., Flynn, P.: Using a multi-instance enrollment representation to
improve 3D face recognition. Comput. Vis. Image Underst. 112(2), 114–125 (2008)

20. Feng, S.,Xiong,W., Li, B., Lang,C.,Huang,X.:Hierarchical sparse representation basedmulti-
instance semi-supervised learning with application to image categorization. Signal Process. 94,
595–607 (2014)

21. Fu, G., Nan, X., Liu, H., Patel, R.Y., Daga, P.R., Chen, Y., Wilkins, D.E., Doerksen, R.J.:
Implementation of multiple-instance learning in drug activity prediction. BMC Bioinform.
13(15), 1 (2012)

22. Fung, G., Dundar, M., Krishnapuram, B., Rao, R.B.: Multiple instance learning for computer
aided diagnosis. Adv. Neural Inf. 19, 425 (2007)

23. Goldman, S.A., Scott, S.D.: Multiple-instance learning of real-valued geometric patterns. Ann.
Math. Artif. Intel. 39(3), 259–290 (2003)

24. Han, Y., Qi, X.: A complementary svms-based image annotation system. In: Proceedings of the
2005 IEEE International Conference on Image Processing (ICIP 2005), vol. 1, pp. 1185–1188.
IEEE, Los Alamitos (2005)

25. Hong, R., Wang, M., Gao, Y., Tao, D., Li, X., Wu, X.: Image annotation by multiple-instance
learning with discriminative feature mapping and selection. IEEE Trans. Cybern. 44(5), 669–
680 (2014)

26. Huang, P., Zhu, J.: Multi-instance learning for software quality estimation in object-oriented
systems: a case study. J. Zhejiang Univ.-Sci. C 11(2), 130–138 (2010)

27. Kotsiantis, S., Kanellopoulos, D., Tampakas, V.: Financial application of multi-instance learn-
ing: two greek case studies. J. Converg. Inf. Technol. 5(8), 42–53 (2010)

28. Kriegel, H.P., Pryakhin, A., Schubert, M.: An EM-approach for clustering multi-instance
objects. In: Ng, W., Kitsuregawa, M., Li, J., Chang, K. (eds.) Lecture Notes in Artificial Intel-
ligence, pp. 139–148. Springer, Berlin (2006)

29. Li, Y.X., Ji, S., Kumar, S., Ye, J., Zhou, Z.H.: Drosophila gene expression pattern annotation
through multi-instance multi-label learning. IEEE ACM Trans. Comput. Biol. 9(1), 98–112
(2012)

30. Liu, G., Wu, J., Zhou, Z.: Key instance detection in multi-instance learning. In: Hoi, S., Bun-
tine, W. (eds.) JMLR: Workshop and Conference Proceedings: Asian Conference on Machine
Learning, pp. 253–268 (2012)

31. Liu, J., Lu, Y., Zhou, T.: Instance significance guided multiple instance boosting for robust
visual tracking (2015). arXiv preprint. arXiv:1501.04378

32. Manandhar, A., Morton, K.D., Collins, L.M., Torrione, P.A.: Multiple instance learning for
landmine detection using ground penetrating radar. In: Harmon, R., Holloway, J., Broach, J.
(eds.) Proceedings of SPIE, Detection and Sensing of Mines, Explosive Objects and Obscured
Targets, pp. 721–835. SPIE, Bellingham (2012)

33. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Jordan, M.,
Kearns, M., Solla, S. (eds.) Advances in Neural Information, vol. 10, pp. 570–576. MIT press,
Cambridge (1998)

34. Maron, O., Ratan, A.L.: Multiple-instance learning for natural scene classification. In: Shavlik,
J. (ed.) Proceedings of the 15th International Conference on Machine Learning (ICML 1998),
vol. 98, pp. 341–349. Morgan Kaufmann Publishers, San Francisco (1998)

35. McGovern, A., Barto, A.G.: Automatic discovery of subgoals in reinforcement learning using
diverse density. In: Brodley, C., Danyluk, A. (eds.) Proceedings of the 18th International Con-
ference on Machine Learning (ICML 2001), pp. 361–368. Morgan Kaufmann Publishers, San
Francisco (2001)

36. Minhas, A., ul Amir, F., Ben-Hur, A.: Multiple instance learning of calmodulin binding sites.
Bioinformatics 28(18), i416–i422 (2012)

37. Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods. J. Logic
Program. 19, 629–679 (1994)

38. Murray, J., Hughes, G., Kreutz, K.: Machine learning methods for predicting failures in hard
drives: a multiple-instance application. J. Mach. Learn. Res. 6, 783–816 (2005)

http://arxiv.org/abs/1501.04378


References 31

39. Ni, B., Song, Z., Yan, S.: Web image mining towards universal age estimator. In: Proceedings
of the 17th ACM international conference on Multimedia, pp. 85–94. ACM, New York (2009)

40. Pfeifer, N., Kohlbacher, O.: Multiple instance learning allowsMHC class II epitope predictions
across alleles. In: Crandall, K., Lagergren, J. (eds.) Algorithms in Bioinformatics, pp. 210–221.
Springer, Berlin (2008)

41. Popescu, M., Mahnot, A.: Early illness recognition using in-home monitoring sensors and
multiple instance learning. Method. Inform. Med. 51(4), 359 (2012)

42. Qi, X., Han, Y.: Incorporating multiple svms for automatic image annotation. Pattern Recogn.
40(2), 728–741 (2007)

43. Qi, G.J., Hua,X.S., Rui, Y.,Mei, T., Tang, J., Zhang,H.J.: Concurrentmultiple instance learning
for image categorization. In: Proceedings of the 2007 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2007), pp. 1–8. IEEE, Los Alamitos (2007)

44. Rahmani, R., Goldman, S.A.: MISSL: Multiple-instance semi-supervised learning. In: Cohen,
W., Moore, A. (eds.) Proceedings of the 23rd International Conference on Machine Learning
(ICML 2006), pp. 705–712. ACM, New York (2006)

45. Ray, S., Craven,M.: Supervised versusmultiple instance learning: an empirical comparison. In:
De Raedt, L., Wrobel, S. (eds.) Proceedings of the 22nd International Conference on Machine
Learning (ICML 2005), pp. 697–704. ACM, New York (2005)

46. Ray, S., Page, D.: Multiple instance regression. In: Brodley, C., Danyluk, A. (eds.) Proceedings
of the 18th International Conference onMachine Learning (ICML 2001), pp. 425–432.Morgan
Kaufmann Publishers, San Francisco (2001)

47. Reutemann, P.: Development of a propositionalization toolbox.Master’s thesis, Albert Ludwigs
University of Freiburg, Germany (2004)

48. Reutemann, P., Pfahringer, B., Frank, E.: A toolbox for learning from relational data with
propositional andmulti-instance learners. In:Webb, G., Yu, X. (eds.) Lecture Notes inArtificial
Intelligence, pp. 421–434. Springer, Berlin (2005)

49. Rocchio, J.J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART
Retrieval System: Experiments in Automatic Document Processing, pp. 313–323. Prentice-
Hall, Englewood Cliffs (1971)

50. Ruffo, G.: Learning single and multiple instance decision trees for computer security applica-
tions. Ph.D. thesis, Department of Computer Science, University of Turin, Turin, Italy (2000)

51. Sánchez Tarragó, D., Cornelis, C., Bello, R., Herrera, F.: A multi-instance learning wrapper
based on the Rocchio classifier for web index recommendation. Knowl.-Based Syst. 59, 173–
181 (2014)

52. Srinivasan, A., Muggleton, S., King, R.D., Sternberg, M.J.: Mutagenesis: ILP experiments in
a non-determinate biological domain. In: Wrobel, S. (ed.) Proceedings of the 4th international
workshop on inductive logic programming, vol. 237, pp. 217–232. Gesellschaft fr Mathematik
und Datenverarbeitung MBH, Bonn (1994)

53. Sun, L., Lu, Y., Yang, K., Li, S.: ECG analysis using multiple instance learning for myocardial
infarction detection. IEEE Trans. Bio-Med. Eng. 59(12), 3348–3356 (2012)

54. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, Cambridge
(1998)

55. Tao, Q., Scott, S., Vinodchandran, N., Osugi, T.T.: Svm-based generalized multiple-instance
learning via approximate box counting. In: Greiner, R., Schuurmans, D. (eds.) Proceedings
of the 21st International Conference on Machine Learning (ICML 2004), p. 101. ACM, New
York (2004)

56. Teramoto, R., Kashima, H.: Prediction of protein-ligand binding affinities using multiple
instance learning. J Mol. Graph. Model. 29(3), 492–497 (2010)

57. Wagstaff, K.L., Lane, T.: Salience assignment for multiple-instance regression. In: Proceedings
of the ICML 2007 Workshop on Constrained Optimization and Structured Output Spaces.
Citeseer (2007)

58. Wagstaff, K.L., Lane, T., Roper, A.: Multiple-instance regression with structured data. In:
Bonchi, F., Berendt, B., Giannotti, F., Gunopulos, D., Turini, F., Zaniolo, C., Ramakrishnan,
N., Wu, X. (eds.) Proceedings of the 2008 IEEE International Conference on Data Mining
Workshops (ICDMW 08), pp. 291–300. IEEE, Los Alamitos (2008)



32 2 Multiple Instance Learning

59. Wang, C., Scott, S., Zhang, J., Tao, Q., Fomenko, D.E., Gladyshev, V.N.: A study in modeling
low-conservation protein superfamilies. CSE Technical reports, p. 35 (2004)

60. Wang, S., McKenna, M.T., Nguyen, T.B., Burns, J.E., Petrick, N., Sahiner, B., Summers,
R.M.: Seeing is believing: video classification for computed tomographic colonography using
multiple-instance learning. IEEE Trans. Med. Imaging 31(5), 1141–1153 (2012)

61. Wang, Q., Yuan, Y., Yan, P., Li, X.: Saliency detection by multiple-instance learning. IEEE
Trans. Cybern. 43(2), 660–672 (2013)

62. Wang, Z., Radosavljevic, V., Han, B., Obradovic, Z., Vucetic, S.: Aerosol optical depth predic-
tion from satellite observations by multiple instance regression. In: Apte, C., Park, H., Wang,
K., Zaki, M. (eds.) Proceedings of the 2008 SIAM International Conference on Data Mining,
pp. 165–176. SIAM, Philadelphia (2008)

63. Wang, Z., Lan, L., Vucetic, S.: Mixture model for multiple instance regression and applications
in remote sensing. IEEE Trans. Geosci. Remote 50(6), 2226–2237 (2012)

64. Wu, J., Zhu, X., Zhang, C., Yu, P.S.: Bag constrained structure pattern mining for multi-graph
classification. IEEE Trans. Knowl. Data. Eng. 26(10), 2382–2396 (2014)

65. Wu, J., Pan, S., Zhu, X., Cai, Z.: Boosting for multi-graph classification. IEEE Trans. Cybern.
45(3), 416–429 (2015)

66. Yang, C., Lozano-Pérez, T.: Image database retrieval with multiple-instance learning tech-
niques. In: Proceedings of the 16th International Conference onData Engineering, pp. 233–243.
IEEE, Los Alamitos (2000)

67. Zafra, A., Romero, C., Ventura, S., Herrera-Viedma, E.: Multi-instance genetic programming
for web index recommendation. Expert Syst. Appl. 36(9), 11470–11479 (2009)

68. Zafra, A., Romero, C., Ventura, S.: Multiple instance learning for classifying students in learn-
ing management systems. Expert Syst. Appl. 38(12), 15020–15031 (2011)

69. Zafra, A., Gibaja, E.L., Ventura, S.: Multiple instance learning with multiple objective genetic
programming for web mining. Appl. Soft Comput. 11(1), 93–102 (2011)

70. Zafra, A., Ventura, S.: Multi-instance genetic programming for predicting student performance
in web based educational environments. Appl. Soft Comput. 12(8), 2693–2706 (2012)

71. Zhang, C., Chen, X.: Region-based image clustering and retrieval using multiple instance
learning. In: Leow, W., Lew, M., Chua, T., Ma, W., Chaisom, L., Bakker, E. (eds.) Lecture
Notes in Computer Science, pp. 194–204. Springer, Berlin (2005)

72. Zhang, Q., Goldman, S.A.: EM-DD: an improved multiple-instance learning technique. In:
Dietterich, T., Becker, S., Ghahramani, Z (eds.) Advances in Neural Information, pp. 1073–
1080. MIT press, Cambridge (2001)

73. Zhang, K., Song, H.: Real-time visual tracking via online weighted multiple instance learning.
Pattern Recogn. 46(1), 397–411 (2013)

74. Zhang, M.L., Zhou, Z.H.: Multi-instance clustering with applications to multi-instance predic-
tion. Appl. Intell. 31(1), 47–68 (2009)

75. Zhang, Q., Goldman, S.A., Yu, W., Fritts, J.E.: Content-based image retrieval using multiple-
instance learning. In: Sammut, C., Hoffman, A. (eds.) Proceedings of the 19th International
Conference on Machine Learning (ICML 2002), pp. 682–689. Morgan Kaufmann Publishers,
San Francisco (2002)

76. Zhang, C., Chen, S.C., Shyu,M.L.:Multiple object retrieval for image databases usingmultiple
instance learning and relevance feedback. In: Proceedings of the 2004 IEEE International
Conference on Multimedia and Expo (ICME 2004), vol. 2, pp. 775–778. IEEE, Los Alamitos
(2004)

77. Zhang, C., Chen, X., Chen, M., Chen, S.C., Shyu, M.L.: A multiple instance learning approach
for content based image retrieval using one-class support vectormachine. In: Proceedings of the
2005 IEEE International Conference on Multimedia and Expo (ICME 2005), pp. 1142–1145.
IEEE, Los Alamitos (2005)

78. Zhang, D., Wang, F., Si, L., Li, T.: M3IC: maximum margin multiple instance clustering. In:
Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009),
vol. 9, pp. 1339–1344 (2009)



References 33

79. Zhang, D., Wang, F., Si, L., Li, T.: Maximum margin multiple instance clustering with appli-
cations to image and text clustering. IEEE Trans. Neural Netw. 22(5), 739–751 (2011)

80. Zhao, Z., Fu, G., Liu, S., Elokely, K.M., Doerksen, R.J., Chen, Y., Wilkins, D.E.: Drug activ-
ity prediction using multiple-instance learning via joint instance and feature selection. BMC
Bioinform. 14(Suppl 14), S16 (2013)

81. Zhou, Z., Jiang, K., Li, M.: Multi-instance learning based web mining. Appl. Intell. 22(2),
135–147 (2005)

82. Zhou, Z.H., Zhang,M.L., Huang, S.J., Li, Y.F.:Multi-instancemulti-label learning.Artif. Intell.
176(1), 2291–2320 (2012)

83. Zhou, T., Lu, Y., Qiu, M.: Online visual tracking using multiple instance learning with instance
significance estimation. Comput. Res. Repos. (2015)


	2 Multiple Instance Learning
	2.1 Formal Description
	2.2 Origin of MIL
	2.2.1 Relationship with Propositional Learning
	2.2.2 Relationship with Relational Learning 

	2.3 MIL Paradigms
	2.3.1 Multi-instance Classification and Regression
	2.3.2 Multi-instance Clustering
	2.3.3 Instance Annotation

	2.4 Applications of MIL
	2.4.1 Bioinformatics
	2.4.2 Image Classification and Retrieval
	2.4.3 Web Mining and Text Classification
	2.4.4 Object Detection and Tracking
	2.4.5 Medical Diagnosis and Imaging
	2.4.6 Other Classification Applications
	2.4.7 Regression Applications
	2.4.8 Clustering Applications

	References


