Chapter 10
Multiple Instance Multiple Label Learning

Abstract As applications grow more complex, proper data representation becomes
more relevant. Experience shows that a representation accurately reflecting existing
relations and interactions in the data renders the learning task easier to solve. In this
context, multiple instance multiple label learning (MIMLL) appears as a flexible
learning framework. The combination of MIL and multi-label learning introduces a
greater flexibility and ambiguity in the object representation by providing a natural
formulation for representing complicated objects. This chapter provides a general
introduction to MIMLL. First, a description and formal definition are presented
in Sects. 10.1 and 10.2. The main applications are listed in Sect. 10.3. Appropriate
evaluation metrics for MIMLL are described in Sect. 10.4. Section 10.5 presents an
overview of the proposed methods and Sect. 10.7 describes some current advances.
Finally, Sect. 10.6 describes the Yelp classification challenge.

10.1 Introduction

As described throughout this book, MIL is an alternative to traditional single-instance
learning and represents a complicated object by a set of instances. Even though it
allows to easily describe a complex concept, each observation is assumed to belong
to only one class. However, there exist classification scenarios in which samples can
belong to several classes. In such a situation, more flexibility needs to be introduced
in the representation. In the framework of multiple label learning (MLL) [5], each
observation can belong to several classes. Examples include images that belong to
several classes simultaneously and text documents classified to several news cate-
gories.

In this chapter, MIMLL is described, combining the multi-instance and multi-label
perspectives. Itis alearning framework that introduces flexibility and ambiguity in the
object representation of both the input and output spaces. An object is represented by
abag of instances and is allowed to have multiple class labels. MIMLL combines the
MIL and MLL frameworks to formalize objects in real-world problems. For instance,
in image classification, an image generally contains several naturally partitioned
patches (instances) and the complete image can correspond to multiple semantic
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Fig. 10.1 Example of MIMLL problem

classes, such as clouds, grassland, and lions. In bioinformatics, a gene sequence
generally encodes a number of segments (instances) and it may be associated with
several functional classes, such as metabolism, transcription, and protein synthesis. In
text categorization, each document usually consists of several sections or paragraphs
(instances), while the document may be assigned to a set of predefined topics, such as
sports and Olympic games. In Sect. 10.3, different application domains are described
in more depth.

Compared to traditional learning frameworks, MIMLL is more convenient and
natural for representing complex objects, because it adds a higher flexibility both
in the input space and output space. Figure 10.1 shows an application of image
annotation from the MIMLL perspective. Each image is composed of a bag of regions
and is associated with multiple labels. The relationship between the image regions and
labels is unknown. Concretely, the figure shows four different images where different
concepts are considered, such as giraffe, elephant, zebra, water, and grassland. The
combination of a multi-label object with a set of instances allows to obtain the relation
between the input patterns and their semantic meaning more easily. In some cases,
understanding why a particular object has a certain class label is even more important
than simply making an accurate prediction. Under the MIMLL representation, we
may discover that one object has label; because it contains instance; and another
has label, because it contains instance,, while the occurrence of both instance;
and instance, triggers a more complex concept, such as a particular African region
depending on the represented animals and landscape. In this context, MIMLL has
demonstrated better performance to discover high-level concepts. For example, the
concept of an African zone has a broad connotation and the images belonging to
the Africa concept are varied and therefore not easy to classify. However, if we can
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exploit some low-level sub-concepts that are less ambiguous and easier to learn, such
as water, grass, elephant, zebra, and giraffe, it is possible to induce the portrayed area
of Africa much easier than by learning it directly.

10.2 Formal Definition

As a preliminary step to define MIMLL, we study its relationship with single-instance
learning, multi-instance learning and multi-label learning, focusing on classification.
The definitions of single-instance learning and MIL can be consulted in Chaps. 1 and
2. Figure 10.2 shows the differences among the different learning frameworks.

In single-instance learning, an instance x is a point in the instance space X. It
is commonly assumed that X C R4, that is, each instance is described by a vector
of d elements. The space X can be generalized to X C &9 = & x --- x o
so that each instance is described by a d-dimensional vector where each attribute
2(i=1,...,d) takes values from a finite or infinite set %;.

In MIC, a bag X is a set of n instances {xi,...,x,}, x; € X, Vi € [1,...n].
Each bag can contain a distinct number of instances. In a training set D = (X, L),
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X =(Xi,...,X)isasetof mbagsand L = (€1, ..., £,,) isasetof class labels. Each
bag X; is assigned a class label ¢; € L foralli = 1, ..., m. The classes of instances
inside the bags are not known. The objective is to find a function fy;c : N* — L e L,
that allows us to predict class labels of new bags as accurately as possible. This
problem can be seen as multi-instance single label learning.

On the other hand, MLL describes each object by one instance associated with
several class labels. In a classification problem, we have a training set D = (X, L),
where X = (xy, ..., x,) is a set of m instances and L = (L;,...,L,,) isasetof m
class label sets. Each instance x; is assigned a set of class labels L; = (€;1, ..., i),
with £;; € L, Vj € [1, ..., k;]. The objective is to find a function fy;; : X — L C L
that assigns a combination of labels to each instance. This problem can be seen as
single-instance multi-label learning.

Based on the previous definitions and according to the formulation given by Zhou
et al. [39], the task of MIMLL would consist of learning a function fyy. : NX
L C L from a set of MIML training examples {(X;, L;)|1 < i < m}, where X; C X
is a bag of n; instances X; = (xj1, Xj2, ..., Xi,) and L; € L is a set of k; labels
Li={1,¢0,..., Eik,») associated with X;.

10.3 Applications

There are many real-world problems which can be properly formalized under
MIMLL, since their complex objects involve a representation ambiguity in the input
space (an object can have many input descriptions) and output space (an object can
belong to many classes). Most of them are based on applications studied in Sect. 2.4,
although each object is now represented not only by a set of instances but also by a
set of labels.

10.3.1 Image Classification

Image classification is one of the most widely studied MIMLL applications. The
purpose is to, given a image, identify the objects or categories that are portrayed.
Traditional studies have used global image features to solve this task. Such features
cannot characterize an image well, since it is usually composed of several complex
objects. MIMLL represents an image as a bag of instances, where each instance
corresponds to an image region. These image regional features can better characterize
complex contents. On the other hand, assigning a single label to an image may be
impractical in real applications. MIMLL achieves a more appropriate representation
by associating multiple labels with an image. The learning aim is to uncover the
unknown relationship between the regions and class labels. The learned relationship
can be used to classify unlabeled images.
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Region-based image classification of natural scene images has been addressed in
several works [1, 4, 14, 33-37]. These studies employ 2000 images and five cate-
gories (desert, mountains, sea, sunset, and trees). This task has become a benchmark
for image annotation. The classification objective is to predict which categories the
complete image represents. Only 22 % of the images in the dataset belong to more
than one class. The average number of labels per image is 1.24 £ 0.44. Each image
is represented as a bag of nine 15-dimensional instances (image patches).

Other works like [19, 22] use the classic Corel dataset containing 5000 images.
The whole set consists of 50 groups, such as beach, aircraft, and tiger. Each group
contains 100 similar images and every image is annotated with one to five categories.
The total number of keywords in the Corel dataset is 371.

10.3.2 Video and Audio Concept Detection

With the rapid development of storage devices, networks and compression tech-
niques, large collections of digital videos are available. Automatic video annotation
has emerged as an interesting topic in the multimedia research community to facil-
itate the annotation of videos with concepts describing the information in the video
content at the semantic level. These concepts can be used to index or browse the
video.

Traditional studies represent one video clip with a flat feature vector. However,
video data usually has a natural hierarchical structure. A video can be represented by
a hierarchy including, from large to small: shot, frame, and region within the frame.
Moreover, a video clip is generally relevant to multiple concepts. MIMLL represents
each shot as a bag of instances in which each instance corresponds to a key-frame of
the video. The relation between instances plays an important role, for example when
the number of key-frames containing the concept needs to be determined in order to
predict whether the shot is associated with that particular concept.

Xu et al. [29] work with 170h of TV news videos from 13 different programs in
English, Arabic, and Chinese to detect the presence or absence of 10 predetermined
benchmark concepts in each shot. These concepts are walking, running, explosion
fire, maps, flag US, building, waterscape waterfront, mountain, prisoner, sports, and
car.

The automatic recognition of bird species from audio files has been dealt with in
MIMLL as well. Habitat loss, declining biodiversity, and climate change require the
development of better tools to monitor birds, including their ranges, diversity, and
phenology. Birds are a good indicator of ecosystem health and diversity, because they
are relatively easy to detect, may provide information about other organisms (plants,
insects...) and respond quickly to environmental change. However, monitoring bird
populations and activity is an intensive task. Machine learning tools can be used
instead to estimate species presence/absence, abundance, gender, age, and other
individual characteristics. In MIMLL, each audio record is a bag of instances and each
instance is a segment of the spectrogram corresponding to syllables of bird sounds
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described by a feature vector of acoustic properties. The labels are the species present
in the recording.

Briggs et al. [3] and Pham et al. [17] work with more than 10 terabytes of audio
recordings of birds using unattended omnidirectional microphones. These micro-
phones pick up all sounds in the environment, particularly wind and stream noise.
There are often several birds vocalizing at once. The goal is to detect the presence or
absence of 13 different species of birds. Each recording contains between one and
five species, with 2.144 species on average.

10.3.3 Text Categorization

Another application domain of MIMLL is text categorization. Traditional studies
represent a whole document by means of a word bag. However, a document usually
consists of several separated semantic parts (paragraphs). Different topics evolve
along these parts. MIMLL represents each document as a bag of instances, where each
instance corresponds to a paragraph in the document or a text segment enclosed in a
sliding window of a particular size. Different labels are assigned to each document.

Several works deal with fragment-based text classification [1, 14, 31, 34-36].
Although all of them are based on the classic Reuters-21578 text collection, a bench-
mark for text categorization, different configurations have been used to represent
documents in the MIMLL framework. The original dataset contains 10788 and 10
classes, but the most commonly used dataset contains 2000 documents and the aim
is to categorize them in seven different categories. Documents with multiple labels
comprise around 15 % of the dataset and the average number of labels per document
is 1.15 £ 0.37.

10.3.4 Bioinformatics

Common bioinformatics tasks are the understanding of gene functions, interactions
and networks. Nature often brings several domains together to form multi-domain and
multi-functional proteins. Each domain may fulfill its own function independently
or together with its neighbors. With the rapid growth of the number of sequenced
genomes, the vast majority of proteins can only be annotated computationally. A
gene sequence generally encodes a number of segments, each one of which can be
expressed as an instance in MIMLL. The gene sequence itself may be associated with
several functional classes, such as metabolism, transcription, and protein synthesis.

Several works carry out the automated annotation of protein functions [26, 28].
They use a complete proteome on seven real-world organisms, containing 379 pro-
teins (bags) with a total of 320 gene ontology terms (classes) given by the Gene
Ontology Consortium. From the MIMLL perspective, each protein is represented as
a bag of instances, where each instance corresponds to a domain and is labeled with a
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group of gene ontology molecular function terms. The average number of instances
(domains) per bag (protein) is 3.20 &= 1.21 and the average number of labels per
example (protein) is 3.14 £ 3.33.

Li et al. [13] carry out the automated annotation of embryo images (concretely,
studies of Drosophila embryogenesis). They use six different ranges to classify the
gene expressions captured in the images with anatomical and development ontology
terms. Each image contains only one individual embryo represented by a bag. The
image is divided in several patches using a 128-dimensional vector to represent each
patch.

10.4 Evaluation Metrics

MIMLL algorithms make multi-label predictions. Their performance is evaluated
with multi-label metrics that also have to consider that the dataset consists of bags
of instances.

Similar to MLL [5], example-based metrics are calculated separately for each
bag and averaged over samples, while the label-based metrics are computed inde-
pendently for each label before averaging. Two different strategies can be applied,
namely macro-averaging and micro-averaging. In the former, the metric is calcu-
lated individually for each label and the result is divided by the number of labels. For
the latter, the hit and miss counts for each label are first aggregated and the metric
is computed only once after that. The metrics can also be grouped according to the
result provided by classifier. In binary bipartition, a vector of Os and 1s, indicating
which of the labels are relevant to each sample, is obtained. In label ranking, a label
list ranked according to some relevance measure is returned.

In this section, we describe five popular measures. These are example-based met-
rics to evaluate bipartitions. With respect to notation, D is a MIML dataset, D =
(X, L), where X isasetof nbags X = {Xj, ..., X,,}. Eachbag X; = {x;1, ..., xj,,} is
composed of n; instances and L = {L,, ..., L,} is a set of n label sets, where each
label set L; = {£;1, ..., £} is composed of k labels. The function i(X;) returns a set
of labels of X;. The | - | operator counts the number of elements in a set.

e Hamming loss: this metric counts the number of incorrect example-label pairs,

l—1
Hloss = - ; 7|h(Xi)ALi|,

where A denotes the symmetric difference between the two sets L;, the real label
set of the ith bag, and h(X;), the predicted one. There are [ labels in total. The
Hamming loss, which should be minimized, is an indicator of the errors of the
classifier proportional to the label set length. It results in different assessments for
the same amount of errors depending on the label set lengths of the dataset.
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e Accuracy: the ratio between the number of correctly predicted labels and the total
number of active labels, both in the real label set and the predicted one, is evaluated.
Like all example-based metrics, the accuracy is computed for each instance and
then averaged, namely

1 ~ |L: N h(X;
Accuracy = — Z M
n = |L; U h(X))]

e Precision: this measure computes the ratio of the number of correctly predicted
labels and the total number of predicted labels. It can be interpreted as the per-
centage of predicted labels that are truly relevant for the bag. It is calculated as

L; N h(X;
Precision = — Z | |h(X()| )I.

e Recall: the ratio of the number of correctly predicted labels and the total number
of real labels is evaluated. Recall can be interpreted as the percentage of correctly
predicted labels among all truly relevant labels, that is,

ILi N h(X))]
Recall = E _.
n = L]

e F1 score: this metric, also known as the F-measure, is based on the precision
and recall statistics. The mean F1 score is obtained by averaging the F1 scores
of the individual labels. It is a weighted measure of how many relevant labels are
predicted and how many of the predicted labels are relevant. It is computed as

B N L]
F1S = -
core Z XN L]

10.5 Multi-instance Multi-label Learning Methods

MIMLL methods are classified according to the general grouping proposed by Zhou
et al. [39]. A distinction is made between algorithms that solve the problem by
degeneration or those that solve it by regularization. In degeneration methods, the
problem is transformed to a MIL or MLL task. In regularization algorithms on the
other hand, the problem is addressed directly using the MIML representation.
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10.5.1 Methods Based on Problem Degeneration

These methods use an intuitive way to tackle the problem by identifying its equivalent
in traditional supervised learning (that is, single-instance and single label learning,
SISL) via problem reduction. Both MIL and MLL are degenerate versions of MIMLL.
They are used as a bridge to solve the MIML problem. Based on this idea, two different
paradigms have been proposed.

o MIL as abridge: these models transform the MIMLL task, which learns a function
fumar : N* — 2% to a MIC task learning a function fy;c : N¥x L — {—1, +1}.
For any ¢ € L, fyuc(X;, £) = +1if £ € L; and —1 otherwise. The labels L* for
a new example X* can be determined as L* = {£ | sign[fyuc(X*, £)] = +1}. As
an illustration, Fig. 10.3 shows the transformation of a MIML problem with three
labels into three different MIC problems with one label each. The resulting MIC
task could be transformed into a traditional supervised learning task to learn a
function fg5;, : X — L € {—1, +1}, under a constraint specifying how to derive
fMlC(Xi, Z) fI‘OIl’lfSlSL(xij, Z)(] = 1, ey ni).ForanyE (S} Li,fs]SL(x,‘j, E) =+1ifl €

n;
L; and —1 otherwise. The constraint can be fy;c(X;, £) = sign | > fsst (xij, 0) |,

j=1
which is used to transform MIC tasks into traditional supervised learning tasks.
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Fig. 10.3 Using MIL as bridge to solve MIMLL problem
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e MLL as a bridge: these methods transform a MIMLL task into a MLL task,
that learns a function fy;; : Z — 2. For any z; € Z, furr(z) = fum (Xp) if
7 = ¢(X;), ¢ : N* — Z. The labels for a new example X* can be determined as
L* = fur (¢ (X*)). The mapping ¢ can be any that encodes bags as single vectors.
As an example, Fig. 10.4 shows two possible transformations. In Fig. 10.3a, each
instance in a bag is converted into an instance with the same labels, while Fig. 10.3b
depicts the situation where each bag is converted to one instance using as function ¢
returning the closest instance to the bag centroid. In the latter case, each bag yields
one pattern. The MLL task can be transformed into a traditional supervised learning
task learning a function fgys; : ZxIL — {—1, +1}.Forany £ € Ly, fssr(zi, £) = +1

10 Multiple Instance Multiple Label Learning

if £ € L; and —1 otherwise, such that fiy1; (z;) = {£ | fsise (zi, £) = +1}.

Table 10.1 shows an overview of algorithms developed within this scheme. A
distinction between them is made based on the degeneration scheme and on the
algorithm type used to solve the problem.
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Fig. 10.4 Using MLL as bridge to solve MIMLL problem
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Table 10.1 Models based on problem degeneration

Multi-label learning as brigde

Kernel-based methods
MIMLSVM [37]

MIMLSVM™ [13]
E-MIMLSVM™ [13]
SISL-MIML [10]

Ensemble methods
En-MIMLSVM [29]

Neural Networks-based Methods
CPNMIML [30]

Multi-instance learning as brigde

Ensemble methods
MIMLBOOST [37]

The first subgroup consists of kernel-based methods. Zhou et al. [37] published
one of the pioneering works in this area. They proposed the MIMLSVM method,
which solves a MIML problem by degenerating it into a single-instance multi-label
problem through a clustering process. Li et al. [ 13] proposed two different approaches
based on SVMs. The first one, MIMLSVM™, employs a degeneration strategy that
decomposes the learning of multiple labels into a series of binary classification tasks.
An SVM is constructed for each of them. Their second method, EEMIMLSVM™,
extends MIMLSVMT by incorporating the term correlations via kernel-based multi-
task learning techniques. An improved degeneration approach is defined by Nguyen
et al. [10], where the authors propose an SISL-MIML algorithm based on SVM.
They use quadratic and integer programming to solve the problem.

Ensemble methods are also encountered. Zhou et al. [37] were one of the first to
propose a solution to the MIML problem by degenerating it into a multi-instance
single-label problem. Their MIMLBOOST method reduces the problem by adding
pseudo-labels to every instance. Xu et al. [29] proposed the En-MIMLSVM algorithm
based on the MIMLSVM method. It is an ensemble that first samples several subsets
from the majority class independently. It then trains multiple classifiers using these
subsets and the minority class. All constructed classifiers are combined to obtain
the final decision. With this methodology, En-MIMLSVM is able to deal with class
imbalance.

With respect to neural networks-based methods, Yan et al. [30] proposed the CPN-
MIML algorithm that combines probabilistic latent semantic analysis (PLSA) with
the neural networks. Concretely, the PLSA model translates the MIML problem into
a single-instance multi-label problem. A neural network method is used to solve it.

The main shortcoming of degeneration models is that they do not use any infor-
mation about connections between instances and labels or correlations among labels.
This information is lost during the reduction process, although it can help improve
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the performance of algorithms. On the one hand, compared to the MLL framework,
MIMLL could capture the intrinsic causation of each individual label and directly
model the latent semantic meaning of instances. On the other hand, in contrast with
MIL methods that model individual labels independently, MIMLL can simultane-
ously model the labels as well as their interactions.

10.5.2 Methods Based on Problem Regularization

As stated above, the performance of degeneration algorithms may suffer from the
information loss incurred during the reduction process. Ideally, the connections
between instances and labels as well as the correlations among labels should be taken
into account. This group of methods includes the remaining regulation frameworks
that have been proposed to solve MIMLL problems. Table 10.2 shows an overview.

Table 10.2 Models based on problem regularization

Maximum margin-based methods
M3MIML [34]

MIMLwel [32]

Neural networks-based methods
MIMLRBEF [35]

IMIMLRBF [14]
IMIMLRBF-GMBO [1]
MIMLNN [4]

Nearest neighbor-based methods
MIML-kNN [36]
Markov-MIML-KNN [25]
Kernel-based methods
D-MIMLSVM [38]

ML_MLML [24]

Ensemble methods

Peng et al. [19]

EnMIMLNN [26]

Other methologies

Yang et al. [31]

MIML-RE [23]

MIMLGP [6]

Pham et al. (I) [16]

Pham et al. (IT) [17]
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Following the same procedure as above, these algorithms are grouped according to
the approach used to solve the MIMLL problem.

Maximum margin-based methods generally use a subset of the available instances
in a given bag and maximize the margin between classes. The score of a bag with
respect to each class is computed from the score-maximizing instance in the bag. One
of the earliest works in this context was of Zhang et al. [34], who proposed a max-
imum margin method named Maximum Margin Method for Multi-Instance Multi-
Label learning (M3MIML). This method directly considers the connections between
instances and labels by defining a specific margin on each example. M3MIML
assumes a linear model for each class, where the output for one class is set to
the maximum prediction of all the MIML examples instances with respect to the
corresponding linear model. Subsequently, the outputs for all possible classes are
combined to define the margin of the MIML example within the classification sys-
tem. Following a similar theory, Yang et al. [32] proposed the MIMLwel approach,
that assumes that highly relevant labels share some common instances and that the
underlying class means of bags for each label have a large margin. In this proposal,
a bag of instances is first mapped to a feature vector, where each element measures
the degree of the bag associated with a group of similar instances. Afterward, sparse
predictors are employed to learn the bag labels such that the class means of bags for
each label are maximized.

Proposals based on neural network methods for tackling MIML problems have
been developed as well. Zhang et al. [35] proposed the MIMLRBF algorithm, which
uses a radial basis function (RBF). A k-medoids clustering step groups the examples
of each class. The weights of the method are optimized by a sum-of-squares error
function. An improved version of this model was proposed by Li et al. [14]. Their
IMIMLRBF method applies an improved k-medoids clustering on the data that still
performs appropriately in case of noise. Another improvement of MIMLRBF has
recently been developed [1]. The authors proposed a hybrid search method to estimate
the RBF neural network parameters (the weights, widths and centers of the hidden
units) simultaneously. First, the Gases Brownian Motion optimization algorithm is
used to determine the width and center of the network nodes. Next, the parameters are
optimized by a gradient-based method. Chen et al. [4] also proposed a multi-instance
multi-label algorithm based on neural networks, MIMLNN, based on the popular
multi-layer perceptron and derived with the classic backpropagation algorithm.

Proposals based on k-Nearest Neighbor are also used to solve this type of prob-
lems. Zhang et al. [36] proposed the MIML-kNN algorithm based on the popular -
nearest neighbor technique. MIMLKNN makes predictions based on neighboring and
citing examples. This algorithm was computationally optimized with MarkovMIML-
kNN learning [25]. MarkovMIMLKNN is a nearest neighbor approach to learn correct
labels based on neighbor information as well as on the affinities in a Markov chain.
The Markov chain computes the class probability of each object, instead of deter-
mining the k-nearest neighbors of the unseen object and using maximum a posteriori
probability to calculate its label.

With respect to methods based on kernels, Zhou et al. [38] proposed the D-
MIMLSVM algorithm using SVMs. Its basic assumption is that the labels associ-
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ated with the same examples are somehow related and that the bag classification
performance depends on the information loss between the labels and the predic-
tions on the bags as well as on the constituent instances. Recently, Tong et al. [24]
proposed the ML_MLML algorithm. This method proceeds in three steps. First,
instance correlations in a bag are described by constructing a graph. This graph is
mapped to a vector in a high-dimensional space to represent the bag features. With
this information, the multi-instance bag is transformed into a single-instance sam-
ple. Next, considering that predictions of different labels correspond to graphs in
different scales, MK_MIML introduces multi-kernel fusion. It constructs multiple
kernel functions according to different parameters and graphs in different scales.
In the fusion step, a convex combination of the kernels is considered. Finally, the
algorithm performs its classification by means of SVM.

Several proposals use ensemble-based methods. Peng et al. [19] proposed an
ensemble method to combine the results of MIMLSVM™ trained on different visual
features. More recently, Wu et al. [26] proposed an ensemble MIML learning frame-
work, ENAMIMLNN. Concretely, three algorithms were developed by combining the
advantage of three kinds of Hausdorff distance metrics and different voting-based
methods.

The remaining frameworks to address the MIML problem are grouped together.
Yang et al. [31] proposed the Dirichlet-Bernoulli Alignment (DBA) approach, a
probabilistic generative model for multi-class, multi-label, and multi-instance cor-
pora. DBA assumes a tree-structure in the data. Its model is similar to latent Dirichlet
Allocation. In DBA, each pattern is modeled as a mixture over the set of predefined
classes. An instance is then generated independently conditioned on a sampled class
label. The label of a pattern is generated from a Bernoulli distribution conditioned
on all the sampled labels used for generating its instances. From another perspec-
tive, Surdeanu et al. [23] proposed MIML-RE, a graphical model based on distant
supervision for relation extraction. It models both multiple instances (by modeling
the latent labels assigned to instances) and multiple labels (by providing a simple
method to capture dependencies between labels). The proposal of Briggs et al. [2]
presented a possible solution using label ranking. They proposed rank-loss sup-
port instance machines, that optimize a regularized rank-loss objective for each bag
and can be instantiated with different aggregation models connecting instance-level
and bag-level predictions. He et al. [6] proposed the MIMLGP algorithm based on
a Gaussian process. The basic idea is to define a latent function with a Gaussian
process prior in the instance space for every label and then output the probabili-
ties over different labels for each sample based on the latent function values of its
instances. In later work, MIMLGP was used to solve multi-label problems in visual
mobile robot navigation [7]. Recently, models based on the maximum likelihood
approach have been developed. Pham et al. [16] proposed a discriminative proba-
bilistic model based on maximum likelihood to determine the model parameters and
learn an instance-level classifier that accounts for novel instances. At the same time,
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Pham et al. [17] proposed a graphical model based on these principles taking into
account the inner structure of each class.

10.6 Case Study: Kaggle Yelp Challenge

The Yelp Restaurant Photo Classification recruitment competition! ran on Kaggle
from December 2015 to April 2016 corresponding with round 6 of the Yelp dataset
challenge. The Yelp Data Challenge is globally organized and consists of the classi-
fication of restaurants based on images that various Yelp users have posted. The idea
is to use business images to automatically capture meta-data and be able to seman-
tically infer coherent information regarding restaurants, which allows to improve
recommendations to users.

Yelp has millions of photos uploaded from all around the world. Some examples
are shown in Fig. 10.5. These pictures can provide valuable information and insights
into the restaurants they are visually describing. A user may want to know if a
restaurant is good for a romantic date, has live music, or serves alcohol. Currently,
restaurant labels are manually selected by Yelp users when they submit a photo. They
can give ratings and write reviews on businesses and services. While ratings are useful
to communicate the overall experience, they do not convey the context which led a

Fig. 10.5 Restaurant photos of the Yelp dataset

Thitps://www.kaggle.com/c/yelp-restaurant-photo-classification.
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Categories
Comment Service good
We have the best happy Food good

hours, the food is good, and
service is even better. When it
is winter we become regulars Ambience 0

Discounts | Happy hours

Prices 0

Fig. 10.6 Relating categories with comments

reviewer to that experience. For example, Fig. 10.6 considers a comment about a
restaurant given by a Yelp user: “We have the best happy hours, the food is good,
and service is even better. When it is winter we become regulars.” Together with the
comment, the user gave the restaurant a 4 star rating. This comment allows to identify
that the review talks about food, service and deals/discounts (happy hour). Food and
service categories are easy to interpret. Deals and discounts categories correspond to
offers during happy hour or specials run by the venue. Other categories, such as an
ambiance category related to the look and feel of the restaurant or a price category
are not considered in this comment.

This high-level categorization of reviews into relevant categories can help a user
to understand the rating assigned by others. It can assist other Yelp users to make a
personalized choice, especially when one does not have much time to peruse reviews.
It can also be used to rank restaurants according to these categories.

This task can be viewed as a MIMLL problem in the image domain. Each restau-
rant has an arbitrary number of photos associated with it and can be assigned to
multiple categories (many output labels).

10.6.1 Dataset of Round 6 Yelp Challenge

The full dataset is comprised of approximately 234000 images corresponding to 2000
restaurants. The number of images corresponding to each restaurant ranges from 1 to
2974, withroughly 117 images per restaurant on average. The test set contains 237152
images with information on around 10000 businesses. Each business can have nine
self-explanatory attributes which are not evenly distributed. The frequency, identifier,
and name of each individual label in the training set is presented in Table 10.3.

The goal is to predict class labels from photos uploaded by users. These labels
are annotated by the Yelp community and are based on a real-life scrape of Yelp
data. Labels can be incomplete or noisy. There are images in the dataset that include
photographs of outdoor scenes and leisure photos not at all related to a restaurant.
The attribute distribution across images is not uniform, as there are some attributes
that occur more frequently than others. Duplicate information can occur as well, as
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Table 10.3 Categories: ID Label Relative frequency
names and frequencies
0 Good for lunch 0.336
1 Good for dinner 0.497
2 Takes reservations | 0.513
3 Outdoor seating 0.502
4 Restaurant is 0.274
expensive
5 Has alcohol 0.625
6 Has table service | 0.680
7 Ambience is classy | 0.286
8 Good for kids 0.619

a consequence of users accidentally uploading the same photo of the same business
more than once.

The images are of variable size, ranging from icon-size to 500 x 500, although
almost all of them are larger than the required input size of 224 x 224. Figure 10.5
contains examples of restaurant pictures and food items. Approximately 70 % of the
pictures of a restaurant are of food items, a good number of these being shots of var-
ious items kept on the table. This information can be used for obtaining information
on suitability for lunch/dinner, alcohol, or table service. Other categories are more
difficult to obtain.

10.6.2 Winners of Round 6 Yelp Challenge

355 Kagglers accepted the challenge of Yelp to predict multiple attribute labels
for restaurants based on user-submitted photos. First place was awarded to Dmitrii
Tsybulevskii. Thuyen Ngo came in second. We comment on their work below.

First Place, Dmitrii Tsybulevskii

Dmitrii Tsybulevskii took first place in this competition. In order to tackle the multi-
label and multi-instance aspects of this problem, he used the embedded space para-
digm (Sect.5.3), where each bag is mapped to a single feature vector summarizing
its relevant information. To deal with the multi-label component, he used Binary
Relevance (BR) and Ensemble of Classifier Chains (ECC) with binary classification
methods. His best performing model was the multi-output neural network. This net-
work shares weights for the different label learning tasks and performs better than
several BR or ECC neural networks with binary outputs, because it takes into account
the multi-label aspect.

Second Place, Thuyen Ngo

Thuyen Ngo ranked in second place in this competition. He used a multilayer per-
ceptron to handle the multiple label and multiple instance aspects at the same time.
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For the multi-label part, he used 9 sigmoid units. To address the multi-instance task,
he employed a procedure known as the attention mechanism in the neural network
literature. The idea is to let the network learn by itself how to combine information
from many instances. The model is trained using the business-level labels, such that
each business represents a training sample. Standard cross entropy is used as the
loss function. With limited labeled data, this approach would have badly overfitted
the data, since it has more than 2M parameters. To remedy this, Thuyen Ngo used
dropout for almost all layers and early stopping to mitigate overfitting.

10.7 Relevant Multi-instance Multi-label Learning
Research Directions

Asdiscussedin Sect. 3.5, the inherent features of MIL require a careful study of appro-
priate distance measures. When MIL is combined with MLL, this topic becomes even
more important. Jin et al. [9] proposed an iterative algorithm for MIMLL distance
metric learning. Their proposal first estimates the association between instances in a
bag and the assigned class labels. Next, it learns a distance metric from the estimated
association by means of discriminative analysis. Finally, the learned metric is used
to update the association between instances and class labels, which is further used
to improve the learning of the metric.

Another relevant area in any learning paradigm is the improvement of the algo-
rithmic efficiency. This task is more pronounced in MIMLL because its hypothesis
space expands dramatically, resulting in high complexity and limiting this type of
applications. A few studies deal with this problem directly. Huang et al. [8] proposed
the MIMLfast approach, which first constructs a low-dimensional subspace shared by
all labels and then trains label-specific linear models to optimize the approximated
ranking loss via stochastic gradient descent. Ren et al. [20] adapted MIMLfast to
perform appropriately in specific classification problems with a small quantity of
high-quality data. High-quality data are data where the number of training bags is
much less than the number of features.

We also encounter studies that exploit the power of the MIMLL framework by
combining it with others. In recent years, many learning methods have been proposed
to work with multi-view data by considering the diversity of different views. These
views may be obtained from multiple sources or different feature subsets. The learn-
ing task can be conducted with abundant information showing a better generalization
ability than single-view learning. The combination of multi-view, multi-instance, and
multi-label learning has shown a greater flexibility for representing objects. Nguyen
et al. [11] proposed a Multimodal Multi-instance Multi-label Latent Dirichlet Allo-
cation (M3LDA), where the model consists of a visual-label part, a textual-label
part, and a label topic part that allows to work with discrete views. An extension
of this work was carried out by Nguyen et al. [12], presenting the Multi-Instance
Multi-Label Mixture (MIMLmix) algorithm, a more efficient model that allows to
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work with continuous views. Wu et al. [27] modeled the music emotion recognition
as a multi-label multi-layer multi-instance multi-view learning problem. Music is
formulated as a hierarchical multi-instance structure, where multiple emotion labels
correspond to at least one of the instances with multiple views of each layer. To solve
this problem, a Hierarchical Music Emotion Recognition model was proposed. Shen
et al. [21] combined multi-task multi-label and multi-instance learning and they pro-
posed MTML-MIL, an algorithm based on SVM to leverage both large-scale loosely
tagged images and the inter-object correlations for achieving more effective training
of a large number of inter-related object classifiers.

Finally, in recent years, we encounter studies that accomplish the specification of
novelty detection in the MIMLL setting. Novelty detection is the task of classifying
new or unknown data that are not labeled during training and play an important
role in machine learning. It is a fundamental requirement of a good classification
or identification system, since the test data sometimes contains information about
objects that were not known at training time. Contrary to the common assumption in
MIMLL that each instance in a bag belongs to one of the known classes, in novelty
detection, bags may contain novel-class instances. The goal is to determine, for any
given instance in a new bag, whether it belongs to a known class or to a new one.
Several works in this line [15, 16, 18] show that novelty detection in the MIMLL
setting captures many real-world phenomena and has many potential applications of
recognition, such as handwritten digit recognition or letter recognition.

10.8 Summarizing Comments

In solving real-world problems, a good data representation is often more important
than having a strong learning algorithm, since a good representation may capture
more meaningful information and render the learning task easier to tackle. MIMLL
appears as a natural and convenient framework for problems involving complex
objects. It provides flexibility in both the input and output space. In this chapter, a
description of MIMLL is presented, including a formal definition, applications, and
main methods. The recent Yelp dataset challenge is recounted as an illustration of a
real-world MIMLL application.
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