
Francisco Herrera · Sebastián Ventura
Rafael Bello · Chris Cornelis
Amelia Zafra · Dánel Sánchez-Tarragó
Sarah Vluymans

Multiple
Instance
Learning
Foundations and Algorithms

Multiple Instance Learning

Francisco Herrera • Sebastián Ventura
Rafael Bello • Chris Cornelis
Amelia Zafra • Dánel Sánchez-Tarragó
Sarah Vluymans

Multiple Instance Learning
Foundations and Algorithms

123

Francisco Herrera
Department of Computer Science
and Artificial Intelligence

University of Granada
Granada
Spain

Sebastián Ventura
Department of Computer Sciences
University of Córdoba
Córdoba
Spain

Rafael Bello
Center of Information Studies
Central University “Marta Abreu” of Las
Villas

Santa Clara, Villa Clara
Cuba

Chris Cornelis
Department of Applied Mathematics,
Computer Science and Statistics

Ghent University
Ghent
Belgium

Amelia Zafra
Department of Computer Science
and Numerical Analysis

University of Córdoba
Córdoba
Spain

Dánel Sánchez-Tarragó
Central University “Marta Abreu” of Las
Villas

Santa Clara, Villa Clara
Cuba

Sarah Vluymans
Department of Applied Mathematics,
Computer Science and Statistics

Ghent University
Ghent
Belgium

ISBN 978-3-319-47758-9 ISBN 978-3-319-47759-6 (eBook)
DOI 10.1007/978-3-319-47759-6

Library of Congress Control Number: 2016954601

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Multiple instance learning (MIL) is a recent learning framework that has become
very popular lately. In this framework, objects are represented as sets of feature
vectors (or bags, in MIL terminology). This kind of representation is well suited for
certain problems, such as the prediction of structure–activity relationships, image
classification, document categorization or the prediction of protein binding sites. In
fact, MIL provides a much more natural representation than the one used in clas-
sical machine learning, where a single feature vector is used per object.

The first papers on MIL appeared in the early nineties. Their main interest is
solving classification problems where input data are represented as multiple
instances. This field, known as multiple instance classification (MIC), is the most
popular subparadigm of MIL, but not the only one. In recent years, papers have also
appeared on multiple instance regression (multi-instance learning with a continuous
output) and multi-instance clustering. This book aims to present a general and
comprehensible overview of the MIL paradigm, providing a formal definition of the
framework and covering the subparadigms it comprises, the most relevant algo-
rithms and the most representative applications.

The book is divided into three main parts. The first part (Chaps. 1–3) introduces
the most important concepts of the discipline that will be necessary to understand
the remainder of the book. Chapter 1 contains some introductory concepts on
knowledge discovery in databases, data preprocessing, and data mining, whereas
Chap. 2 introduces the multiple instance learning paradigm from a descriptive
perspective. The first part finishes with a chapter focused on MIC. Besides
including a formal definition of the problem and a taxonomy for MIC algorithms, it
also carries out a study of two important issues, namely distance metrics and
alternative learning hypotheses.

The second part of the book (Chaps. 4–7) provides an exhaustive review of the
different MIL algorithms. Chapters 4 and 5 describe the most important classifi-
cation algorithms, following the taxonomy introduced in Chap. 3. Chapter 6
introduces multiple instance regression, the other main task in supervised learning.
Chapter 7 covers two unsupervised learning tasks in the MIL framework: clustering
and association rule mining.

v

http://dx.doi.org/10.1007/978-3-319-47759-6_1
http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_1
http://dx.doi.org/10.1007/978-3-319-47759-6_2
http://dx.doi.org/10.1007/978-3-319-47759-6_4
http://dx.doi.org/10.1007/978-3-319-47759-6_7
http://dx.doi.org/10.1007/978-3-319-47759-6_4
http://dx.doi.org/10.1007/978-3-319-47759-6_5
http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_6
http://dx.doi.org/10.1007/978-3-319-47759-6_7

The last part of the book (Chaps. 8–10) deals with other recent areas. Data
reduction for MIL is addressed in Chap. 8. Chapter 9 discusses the problem of
learning with imbalanced multi-instance data. Finally, Chap. 10 introduces multiple
instance multiple label learning, a new learning framework that combines MIL with
multi-label learning.

The target audience for this book is anyone interested in a good understanding of
this important paradigm of machine learning, as well as a deep description of the
current state of the art in the discipline. Practitioners in the industry and enterprise
should find new insights and possibilities in the breadth of the topics covered.
Researchers and data scientists in universities, research centers, and companies
could appreciate this comprehensive review and uncover new ideas for productive
research efforts.

Granada, Spain Francisco Herrera
Córdoba, Spain Sebastián Ventura
Santa Clara, Cuba Rafael Bello
Ghent, Belgium Chris Cornelis
Córdoba, Spain Amelia Zafra
Santa Clara, Cuba Dánel Sánchez-Tarragó
Ghent, Belgium Sarah Vluymans

vi Preface

http://dx.doi.org/10.1007/978-3-319-47759-6_8
http://dx.doi.org/10.1007/978-3-319-47759-6_10
http://dx.doi.org/10.1007/978-3-319-47759-6_8
http://dx.doi.org/10.1007/978-3-319-47759-6_9
http://dx.doi.org/10.1007/978-3-319-47759-6_10

Contents

1 Introduction . 1
1.1 The Knowledge Discovery Process. 1
1.2 Preprocessing . 5

1.2.1 Data Preparation . 5
1.2.2 Data Reduction . 6

1.3 Data Mining . 7
1.3.1 Supervised Learning . 8
1.3.2 Unsupervised Learning . 9
1.3.3 Semi-supervised Learning . 10
1.3.4 Scalability Consideration . 10

1.4 Classification . 11
1.4.1 Validation Schemes . 12
1.4.2 Evaluation Measures . 14

References. 15

2 Multiple Instance Learning. 17
2.1 Formal Description . 17
2.2 Origin of MIL. 18

2.2.1 Relationship with Propositional Learning 19
2.2.2 Relationship with Relational Learning 20

2.3 MIL Paradigms. 20
2.3.1 Multi-instance Classification and Regression 21
2.3.2 Multi-instance Clustering. 21
2.3.3 Instance Annotation . 22

2.4 Applications of MIL . 23
2.4.1 Bioinformatics . 24
2.4.2 Image Classification and Retrieval. 24
2.4.3 Web Mining and Text Classification 25
2.4.4 Object Detection and Tracking 25
2.4.5 Medical Diagnosis and Imaging 26

vii

2.4.6 Other Classification Applications. 26
2.4.7 Regression Applications . 27
2.4.8 Clustering Applications . 28

References. 29

3 Multi-instance Classification . 35
3.1 Introduction . 35
3.2 Formal Description . 37
3.3 Taxonomy. 39
3.4 MI Assumptions . 42

3.4.1 Standard MI Assumption. 44
3.4.2 Weidmann et al.’s Hierarchy . 44
3.4.3 Collective Assumption. 45
3.4.4 Mixture Distribution Assumption 47
3.4.5 Soft Bag MI Assumption. 49

3.5 Distance Metrics . 50
3.5.1 Bags as Point Sets . 51
3.5.2 Bags as Probability Distributions. 54

3.6 Real-World Applications. 56
3.6.1 Bioinformatics . 56
3.6.2 Image Classification and Retrieval. 57
3.6.3 Web Mining and Text Classification 59
3.6.4 Medical Diagnosis and Imaging 61
3.6.5 Acoustic Classification . 62

3.7 Some Comments on Software Tools. 62
References. 64

4 Instance-Based Classification Methods. 67
4.1 Introduction . 67
4.2 Wrapper Methods to Single-Instance Learning Algorithms. 68
4.3 Maximum Likelihood-Based Methods . 70

4.3.1 Maximum Likelihood Principle 70
4.3.2 Diverse Density . 71
4.3.3 Logistic Regression . 73
4.3.4 Boosting . 74

4.4 Decision Rules and Tree-Based Methods 75
4.5 Instance-Level SVM . 77
4.6 Neural Network-Based Methods . 80

4.6.1 Feedforward Neural Networks . 80
4.6.2 Recurrent Neural Networks . 82
4.6.3 Decision-Based Neural Networks 82
4.6.4 Network Combinations . 82

4.7 Evolutionary Based Methods . 83

viii Contents

4.8 Experimental Analysis . 86
4.8.1 Setup . 86
4.8.2 Results and Discussion . 87

4.9 Summarizing Comments . 93
References. 94

5 Bag-Based Classification Methods . 99
5.1 Introduction . 99
5.2 Original Bag Space Methods . 100

5.2.1 Nearest Neighbor Methods . 100
5.2.2 Bag-Level SVM . 102

5.3 Mapped Bag Space Methods . 103
5.3.1 Mapping Methods Based on Bag Statistics 104
5.3.2 Mapping Methods Based on Prototype

Concatenation . 106
5.3.3 Mapping Methods Based on Counting 106
5.3.4 Mapping Methods Based on Distance 112
5.3.5 Bag-Level Distance Mapping Methods 115

5.4 Experimental Analysis . 115
5.4.1 Setup . 116
5.4.2 Results and Discussion . 117

5.5 Comparing Instance-Based, Bag-Based, and Traditional
Classification Methods . 122

5.6 Summarizing Comments . 123
References. 124

6 Multi-instance Regression . 127
6.1 Introduction . 127
6.2 MIR Formulation . 128

6.2.1 Problem Description . 128
6.2.2 Evaluation Measures . 128

6.3 Instance-Based Regression Methods . 129
6.3.1 Prime Instance Assumption . 130
6.3.2 Collective Assumption. 134

6.4 Bag-Based Regression Methods . 137
6.4.1 Original Bag Space Methods . 138
6.4.2 Mapped Bag Space Methods . 138

6.5 Summarizing Comments . 139
References. 139

7 Unsupervised Multiple Instance Learning . 141
7.1 Multiple Instance Cluster Analysis . 141

7.1.1 Introduction to Cluster Analysis 141
7.1.2 Multiple Instance Clustering Requirements 145
7.1.3 Multiple Instance Clustering Evaluation Measures. 146

Contents ix

7.1.4 Multiple Instance Clustering Methods 148
7.1.5 Multiple Instance Clustering as a Preprocessing

Step for Classification . 159
7.2 Multiple Instance Association Rule Mining 160

7.2.1 Association Rule Mining Introduction 161
7.2.2 Multiple Instance Association Rule Mining

Requirements. 162
7.2.3 Apriori-MI Algorithm . 164

7.3 Summarizing Comments . 166
References. 166

8 Data Reduction . 169
8.1 Introduction . 169
8.2 Multiple Instance Methods for Feature Selection 170

8.2.1 Introduction to Feature Selection 171
8.2.2 Filter Methods . 173
8.2.3 Embedded Methods . 175
8.2.4 Hybrid Method: HyDR-MI Algorithm. 181

8.3 Multiple Instance Methods for Bag Prototype Selection 182
8.3.1 Introduction to Bag Prototype Selection 182
8.3.2 Filter Methods . 184

8.4 Summarizing Comments . 187
References. 187

9 Imbalanced Multi-instance Data. 191
9.1 Introduction . 191

9.1.1 Dealing with Class Imbalance . 192
9.1.2 Evaluation Measures in the Imbalanced Domain 193

9.2 Single-Instance SMOTE . 194
9.3 Multi-instance Class Imbalance. 194

9.3.1 Problem Description . 195
9.3.2 Solutions for Multi-instance Class Imbalance 196

9.4 Multi-instance Resampling Methods . 196
9.4.1 BagSMOTE, InstanceSMOTE, Bag_oversampling 196
9.4.2 B-Instances . 198
9.4.3 B-Bags . 199

9.5 Customized Multi-instance Approaches 199
9.5.1 Cost-Sensitive Boosting Models 200
9.5.2 Fuzzy Rough Multi-instance Classifiers. 201

9.6 Experimental Analysis . 201
9.6.1 Setup . 202
9.6.2 Results and Discussion . 202

9.7 Summarizing Comments . 206
References. 206

x Contents

10 Multiple Instance Multiple Label Learning . 209
10.1 Introduction . 209
10.2 Formal Definition . 211
10.3 Applications . 212

10.3.1 Image Classification. 212
10.3.2 Video and Audio Concept Detection 213
10.3.3 Text Categorization . 214
10.3.4 Bioinformatics . 214

10.4 Evaluation Metrics . 215
10.5 Multi-instance Multi-label Learning Methods 216

10.5.1 Methods Based on Problem Degeneration 217
10.5.2 Methods Based on Problem Regularization 220

10.6 Case Study: Kaggle Yelp Challenge . 223
10.6.1 Dataset of Round 6 Yelp Challenge 224
10.6.2 Winners of Round 6 Yelp Challenge. 225

10.7 Relevant Multi-instance Multi-label Learning Research
Directions . 226

10.8 Summarizing Comments . 227
References. 227

Glossary . 231

Contents xi

Chapter 1
Introduction

Abstract This book reviews the multiple instance learning paradigm. This concept
was introduced as a type of supervised learning, dealing with datasets that are more
complex than traditionally encountered and presented. Before formally describing
multiple instance learning, itsmethods, developments and applications, this introduc-
tory chapter first recalls the general background of the knowledge discovery process
in data collections. In Sect. 1.1, we describe the steps involved in this process and
the traditional representation of data. Section1.2 considers one particular knowledge
discovery step, namely that of data preprocessing. We continue in Sect. 1.3 with a
discussion on data mining methods that are applied on the preprocessed data in
order to uncover some novel and useful information. Finally, Sect. 1.4 focuses on
classification problems and their evaluation.

1.1 The Knowledge Discovery Process

In everyday life, academics and industry, large amounts of data are collected and
stored. Examples include video data obtained from security cameras monitoring
public and private areas, interaction data extracted from social networks, transaction
data detailing online and in-store purchases, sensor data observing the growthof crops
in greenhouses and many more. Since an abundance of information is available and
easily collected and storage has become cheap, databases of enormous sizes can
be constructed. Small portions of data can still be processed manually, but this task
quickly becomes intractable with increasing database size. A supermarket chain, that
registers thousands or even millions of transactions on a daily basis, can for instance
use this data to model customer behavior and preferences. It requires automated
methods to do so.

Knowledge discovery in databases (KDD) involves the extraction of useful knowl-
edge from raw data. The term is commonly credited to [14]. It is the automated
procedure that makes sense of data that is too large or complex to be humanly inter-
preted. The full KDD process involves the understanding of the problem domain and
research goals, the collection and formatting of data as well as the modeling of the
information contained in it. Several models, going from raw data to understandable

© Springer International Publishing AG 2016
F. Herrera et al.,Multiple Instance Learning, DOI 10.1007/978-3-319-47759-6_1

1

2 1 Introduction

information, have been developed both from an academic and industrial perspective
[10]. We recall a popular hybrid model, used in industry and academics, that divides
this full process into six stages [9]:

1. Understanding the problem domain: in the first stage, the problem is defined
and background information about the domain in which it is situated is gathered.
This can for instance involve familiarizing oneself with the domain jargon. The
research objectives are specified.

2. Data understanding: the data is collected. It is evaluated whether this data is
appropriate and useful for the project aims and tools selected in later steps.

3. Data preprocessing: the previous phase collects raw data. In this step, the data
is prepared to the correct input format for the next stage. This can involve trans-
formation and reduction procedures. A more detailed discussion of the methods
applied in this step is presented in Sect. 1.2.

4. Data mining: specific methods are applied to derive the hidden knowledge from
the data prepared in the previous step. In Sect. 1.3, we provide more background
information on this phase.

5. Knowledge evaluation: the results obtained from the data mining method are
interpreted and validated. This involves a verification whether the derived infor-
mation is novel and useful.

6. Use of the discoveredknowledge: usage of the derived knowledge, either directly
in the application that the researcher had in mind when executing this process or
in some other domain to evaluate its strength there.

Within this scheme, the data preprocessing step is commonly estimated to take up
the most effort (e.g. [10]). The final knowledge extracted from the data may be rep-
resented in the form of classification rules, association rules, decision trees, clusters
of related samples and many others. A visual overview of the six steps is provided
in Fig. 1.1. The figure shows that all stages are linked in the two possible directions,
which indicates the iterative nature of theKDDprocess. Feedback loops are explicitly
allowed. Several specific examples are motivated in e.g. [10]:

• From data understanding to understanding the problem domain: after the data has
been collected, it can become evident that more or better domain knowledge is
required to understand it.

• From data preprocessing to data understanding: a clearer interpretation of the
data may be needed to set up the preprocessing step, e.g. the choice of algorithm.
For example, the proper way to deal with missing values may be derived from
characteristics of the data itself.

• From data mining to understanding the problem domain: when the selected data
mining method does not yield adequate results in this phase, the objectives set
in the first step may have to be revised. The selection of a different data mining
method can also lead the user back to the first step.

• From data mining to data understanding: the data mining step is not guaranteed
to yield good results. This can possibly be caused by an incorrect or incomplete
understanding of the data. A common example is the misinterpretation and misuse
of a categorical feature as a numeric one.

1.1 The Knowledge Discovery Process 3

Fig. 1.1 The six steps in the
knowledge discovery process

• From data mining to data preprocessing: when the prepared format in the pre-
processing step does not fit all the requirements set by the selected data mining
methods, additional preprocessing actions need to be performed.

• From knowledge evaluation to understanding the problem domain: when the dis-
covered knowledge is validated and a negative result is obtained, e.g. by testing it
against knowledge provided by domain experts, the entire KDD process needs to
be executed again.

• From knowledge evaluation to data mining: when the discovered knowledge is
correct, but not interesting or new, the data mining step can be repeated with a
different method, to possibly obtain more useful results.

The traditional data format lists each observation in a row. An observation (also
called sample, element or instance) is described by a number of features or attributes.
The values of these features can be ordered in a vector. Possibly, depending on the
application, an observation can have an associated outcome.We distinguish twomain
types of descriptive features. They can be either quantitative (also numeric) or quali-
tative (also categorical). Both types are further divided into two groups. Quantitative
features can be either continuous or discrete. In the former case, the feature takes
on real values, in the latter integer values. An example of a continuous feature can
be the weight of a woman, while a discrete feature is the number of pregnancies
she has had. The division of the qualitative features depends on whether an order
can be defined on the feature. If it can, the feature is ordinal. In the other case, it is
nominal. Example values for an ordinal feature are categories like ‘good’, ‘neutral’

4 1 Introduction

Table 1.1 A small example
dataset

A1 A2 A3 Class

Left −1.5 1 P

Left 1.5 2 N

Left 1.5 1 N

Center 0.6 2 P

Center 1.1 4 P

Right −3.9 1 P

Right 0 1 P

Right −0.9 3 N

Right −2.2 4 N

Right 0 2 N

and ‘bad’, which exhibit a clear order between them. For a nominal feature, we can
observe categories like ‘black’, ‘yellow’ and ‘red’, on which no order is naturally
defined. We note that ordinal qualitative features are sometimes encoded as integers,
e.g. by using 0 for ‘bad’, 1 for ‘neutral’ and 2 for ‘good’. These numbers represent the
ordinal relation. This encoding makes ordinal qualitative features somehow related
to discrete quantitative features, although the domain of ordinal features is always
limited to the predefined categories. For example, there is no interpretation for 4 in
this example.

An example dataset is presented in Table1.1. This is a small artificial dataset,
that could correspond to a survey on the voting behavior of citizens with respect to a
proposal to increase social benefits. It consists of ten observations, which correspond
to voters taking part in the survey. Each observation is described by three features
A1, A2 and A3 and has an associated outcome in the form of a class label. There are
two possible classes, positive (P) and negative (N), that is, whether the voter would
be in favor or not of the proposal. Features A1 and A3 are qualitative. The former is
nominal and corresponds to the political affiliation of voters, with ‘Left’, ‘Right’ and
‘Center’ as possible categories. The latter is ordinal and is a general evaluation of the
respondent of his or her physical condition, which can be ‘very poor’, ‘poor’, ‘good’
or ‘very good’. These categories are encoded as integers from 1 to 4. Feature A2

is quantitative and continuous. It presents the estimated difference in percentage of
medical expenses between the previous and current year. This information is collected
for all voters completing the survey, together with their disposition towards the social
benefit proposal.

This general format is themost common and traditional representation of a dataset.
However, this work focuses on multiple instance data, which is a more complex type
of data. The datasets in this domain therefore take on a different form than the one
presented in Table1.1. A detailed description will be provided in Sect. 2.1.

http://dx.doi.org/10.1007/978-3-319-47759-6_2

1.2 Preprocessing 5

1.2 Preprocessing

As explained in the previous section, a crucial step in the KDD process is the trans-
formation of the raw data to a form suitable to be processed by the selected data
mining method. Algorithms performing this step are called preprocessing methods.
The inclusion of the preprocessing step in the general model for KDD is necessary,
sincemost, if not all, dataminingmethods require their input data in a specific format.
Furthermore, a certain quality of the data needs to be guaranteed, in order to increase
the probability of obtaining useful results after the data mining step [25]. Procedures
dealing with imperfect data, like noise removal or missing data imputation, may
therefore be necessary.

A recent complete and thorough review on data preprocessing can be found in
[16]. The authors of this work divide these methods into two main groups: data
preparation algorithms and data reduction algorithms. Data preparation (Sect. 1.2.1)
is the conversion of the raw data to the correct format required by the selected data
mining method. Their application is necessary and enables the application of the
data mining algorithm. Data reduction methods (Sect. 1.2.2) on the other hand are
not used to ensure a correct data format, but rather to actively reduce the size of the
dataset. The reduction step is not always necessary to ensure that the data mining
method can be applied at all, but it can improve its performance and speed up its
computations.

1.2.1 Data Preparation

Data preparation methods provide the correct format for the input data. These algo-
rithms can be divided in three main groups, listed below.

• Data cleaning: some corrections are performed on the dataset, e.g., to remove
bad samples. This category includes two prominent examples. In missing data
imputation [23], missing values are handled. They are replaced by estimates, for
example, the mean or most common value for the corresponding feature. The
second group of popular data cleaning methods are noise identification algorithms
[28]. They detect noisy observations or feature values in the data. The actual
removal or replacement of these samples is a data reduction task.

• Data transformation: these methods explicitly convert the data to the format
required by the dataminingmethod, in order to enable its application or improve its
efficiency. A transformation example is data normalization, which is the process of
bringing all numeric features to the same scale. This ensures that all these features
are a priori given the same weight in the data mining step and unexpected results
are avoided.

• Data integration: in some applications, it may be required to merge several data
sources into a single dataset. An example situation is a clinical study on a specific
rare disorder, where the data has been collected in a variety of medical centers

6 1 Introduction

that do not store their findings in the same way. Care must be taken, e.g. when the
same feature appears under different names in the source datasets.

1.2.2 Data Reduction

Data reductionmethods reduce the size of the dataset. This can result in a performance
or efficiency gain in the data mining step.We discern five general groups of methods:

• Feature selection [21]: the number of features, the dimensionality of the data, is
reduced. The aim of these methods is to remove irrelevant and redundant features.
Irrelevant features are those that carry little information, or even none at all. An
extreme example is a feature that takes on the same value for all observations.
Redundant features are those that do not provide any additional useful information
on top of that represented by other features present in the dataset. As an example,
assume that in a geometry application both the diameter and radius of circles are
stored as features. Clearly, providing the diameter of a circle does not yield any
new information once its radius is already known. The reduction of the feature set
can result in a faster processing in the data mining step and better and easier to
interpret results.

• Instance selection [22]: this is the orthogonal problem to feature selection. Instead
of removing features (columns) from the dataset, observations (rows) are deleted.
These methods aim to detect and remove redundant or noisy elements or both.
As for features, redundant instances are those that are not very informative. For
example, dense areas of highly similar instances, both in terms of their feature
values and their outcome, can be reduced. Noisy elements have very similar feature
values as instances with a very different outcome. Their initial inclusion in the
dataset may have resulted frommeasurement or data entry errors. The retention of
only the informative and non-noisy elements in the dataset can improve the speed
and accuracy of the subsequent data mining method.

• Discretization [17]: these methods simplify the domain of a quantitative feature
by transforming it to a qualitative one. The numeric feature values are divided
into ranges that correspond to different categories. For each observation, its corre-
sponding feature value is mapped to the defined category. In this way, the number
of possible feature values is reduced. Discretization is used for instance when a
data mining method only accepts categorical features as input.

• Feature extraction [20]: the feature values of instances are modified and new
features are constructed as aggregates of a selection of the existing ones.

• Instancegeneration [30]: new instances are generated.They canbeused to replace
existing elements in order to gain a better representation of the instance space.
Related to instance selection, instancegeneration can select a subset of the available
instances to retain, modify some others and add some new artificial samples.

1.3 Data Mining 7

1.3 Data Mining

As described in Sect. 1.1, the preprocessing stage in the knowledge discovery process
is followed by the execution of a data mining method. Data mining is the significant
step that extracts information patterns from the preprocessed data. A recent book on
data mining methods within the KDD process is [11]. We can also refer the reader to
another detailed book [31], that provides an easy-to-understand introduction to the
area and describes the most prominent methods accompanied with many illustrative
examples.

A data mining method is presented with input data and processes it in such a
way to obtain the hidden information contained in this data. As stressed in e.g. [11],
it cannot be expected that a single data mining method works well in all possible
applications. It may exhibit an excellent performance in some, but yield mediocre
or poor results in others. This phenomenon is also referred to as the no free lunch
theorem [32]. The domain of data mining is divided into three subgroups in [11]:

• Undirected data mining: the user has no expectations about the results of the
method or their interpretation. This means that the preprocessed data is presented
to the method, while the user hopes to find an interesting pattern in the data,
although he does not specify what this pattern might be. Any novelty in these
results is not guaranteed, the discovered knowledge may simply be an affirmation
of previous results.

• Directed data mining: the user knows what he is interested in and specifies this
as a clear objective. The data is not simply fed to the algorithm, which must make
sense of it somehow, but it is rather establishedwhat type of information is expected
to be retrieved. The example referenced in [11] is the profile characterization of a
number of selected supermarket customers.

• Hypothesis testing and refinement: in this case, an even clearer objective is
provided than in the situation of directed data mining. In his research, the user has
formulated a hypothesis and he wishes to corroborate it with the results of the data
mining method on the collected data. If he is not satisfied with the conclusions,
the hypothesis can be refined and validated anew.

As noted in Sect. 1.1, the samples in the dataset do not necessarily have an associated
outcome. The setting where an outcome is provided for all instances is called super-
vised learning (Sect. 1.3.1). When none of the instances are paired with an outcome,
we consider unsupervised learning (Sect. 1.3.2). In the remaining case, where an
outcome is known for some of the instances and not for the others, we deal with
semi-supervised learning (Sect. 1.3.3). We discuss these three paradigms separately
below.

8 1 Introduction

1.3.1 Supervised Learning

In the case of supervised data, an outcome is available for all observations. The
learning goal is to construct a prediction model based on a set of observations with
known outcomes, in order to predict the outcome of new elements when they are
presented to the system. The input data is also referred to as training or learning
data, while the new observations are called test data. The test data can be used to
assess the validity of the model, as it was not used in the learning phase.

The constructed prediction model should (i) capture the hidden information
present in the training data well and (ii) not be too complex and, ideally, be easy
to understand. The latter is an important aspect. The well-known problem of overfit-
ting occurs when a learner fits the training data too closely and essentially learns it
by heart. Such a complex and detailed model does not generalize well to new, unseen
data and leads to poor predictions. In practice, overfitting is often explicitly avoided
by the user. This biases the learning process towards simpler models. The twofold
aim of a supervised learning method is consequently to understand the structure of
the training data as well as to make accurate predictions for the test data.

A first division within this group of methods can be made based on the type of
outcomes of the instances.Wedistinguish between classification and regression prob-
lems. In the former, the outcome is categorical and represents a class label. Table1.1
contains an example classification dataset. In the latter, we deal with numeric out-
comes. We list a number of prominent examples of prediction algorithms, that can
be used for either classification or regression, below.

• Neural networks [7]: methods of this type are inspired by the workings of the
human brain, more precisely the processes of neurons. An artificial neuron is
modeled as a unit that receives a number of weighted inputs and provides one
aggregated outcome. These units are placed together in a network. The network
generally consists of several layers: input and output layers as well as a number
of hidden layers. As a result, it can model complex data characteristics.

• Bayesian learning [6]: these methods are based on Bayes’ theorem from proba-
bility theory. The Naive Bayes methods assume complete independence between
the feature values in the prediction of the outcome. This assumption is rarely satis-
fied. Nevertheless, the methods still exhibit a strong prediction performance. More
complex Bayesian methods do not rely on the independence assumption.

• Instance-based learning [3]: these methods are also called lazy learners, a name
that refers to the fact that they do not construct a prediction model in the learning
phase. Instead, all training observations and their outcomes are kept available in
the prediction stage. Aside from the stored observations, a distancemeasure is pro-
vided aswell. To predict the outcome of a test element, the nearest stored instances,
based on the distance measure, are located. Their outcomes are aggregated into a
prediction.

• Support vectormachines [29]: these methods are originally defined for two-class
problems, that is, a classification problemwith only two possible class labels. They
construct a separating hyperplane between the two classes, such that a maximal

1.3 Data Mining 9

separation is achieved and a minimal amount of errors is made. This hyperplane
is not necessarily constructed in the input feature space. Kernel transformations
are often applied to obtain linear separability of the classes in a new feature space.
When the classes are not linearly separable, errors are unavoidable, that is, some
instanceswill be located on the incorrect side of the constructed hyperplane, amidst
instances of the opposite class. In later developments, regression problems and
classification problems with more than two classes have been addressed with sup-
port vector machine methods as well.

• Rule induction [15]: this group of algorithms constructs a set of rules based
on the training data to predict the outcome. The rules consist of a number of
antecedents, representing conditions on the feature values, and a consequent, the
prediction value. The constructed prediction model, that is, the set of rules, has a
high interpretability.

• Decision trees [26]: this is another group of methods yielding a highly human-
interpretable predictionmodel. Themodel is structured in the form of a tree, where
a path from the root node to a leaf is followed to obtain a prediction for a new
element. At each internal node, a division is made based on a feature value. For
example, one can imagine a split based on the values of a nominal feature, where
the value ‘Yes’ means that the path is continued to the left child of the node and
the value ‘No’ results in a step to the right child. Each path ends in a leaf node.
The outcome associated with this leaf is used as prediction.

We briefly note on a sub-domain within supervised learning called multi-label
learning [34]. A multi-label dataset differs from the format presented in Table1.1, as
multiple class labels are associatedwith each observation. Inmulti-label applications,
observations can naturally belong to several categories, e.g., a movie can belong
to both action and comedy categories at the same time. The goal of multi-label
classification is to detect as many of the appropriate class labels for each observation
as possible.

1.3.2 Unsupervised Learning

In unsupervised learning, as opposed to supervised learning, no outcomes or labels
are collected for the observations. The data collection therefore forms an inherently
cheaper task than in the case of supervised learning, as the possibly tedious annotation
step is avoided. Instead of the construction of a prediction model, the goal of an
unsupervised learningmethod is to extract natural patterns or groups from the training
data. As such, the algorithm aims to obtain a thorough and exact data description.
Two notable examples of this learning paradigm are described below.

• Clustering [2]: these algorithms sort the observations in groups, also called clus-
ters. A good clustering result is one where (i) elements in the same cluster are
highly similar and (ii) elements in different clusters are highly dissimilar. The
adequacy of these results depends on many components, like the selected cluster

10 1 Introduction

similarity measure and the suitability of the selected method to the characteristics
of the data. Some methods can for instance be preferred over others when there
are regions of very differing densities in the data. Another important question is
how many clusters should be constructed. Some methods require this value as a
user input, while others determine it automatically.

• Association rules [1]: this is another rule induction process, but it differs from
the group of supervised rule induction methods listed in Sect. 1.3.1. The super-
vised methods construct decision rules that are used to predict the outcomes of
new instances. Their rule antecedents serve as conditions on the feature values and
their consequent is interpreted as the predicted outcome. In unsupervised associ-
ation rule mining, relations between feature values are determined. Correlations
between feature values are encoded into rules, in which both the antecedent and
the consequent can refer to several features. An example association rule is ‘IF
high pollen level AND allergic THEN runny nose AND teary eyes’.

1.3.3 Semi-supervised Learning

On a midpoint between these two paradigms, supervised learning and unsupervised
learning, we find semi-supervised learning [8], where part of the training data is
annotated with an outcome and the remaining part is not. The number of unlabeled
instances is usually the largest, since the annotation step can be costly. Within the
domain of semi-supervised learning, we canmake a distinction betweenmethods that
are eithermore closely related to the supervised or the unsupervised domains. In semi-
supervised classification, for instance, labels are first predicted for the unlabeled part.
In a second stage, the now fully labeled training set is used to train a classification
model. In semi-supervised clustering, the data is clustered as would be done in
unsupervised learning, but the labeled data is used to assist the clustering in the form
of conditions that the final grouping should satisfy. These conditions can represent
elements that should certainly be grouped in the same clusters or ones that can not
be grouped together at all.

1.3.4 Scalability Consideration

One obvious performance measure of data mining methods is the accuracy and suit-
ability of their results. Two additional meaningful standards on which different data
mining methods are compared, are the associated runtime costs and their scalability
[18]. The efficiency of a method reflects how much time and resources its execution
requires. An optimal use of resources (storage, etc.) in a minimum amount of time is
aspired. The other important consideration for any data miningmethod is its scalabil-
ity to very large databases. This is the question of how well the runtime and resource
requirements of the method scale with respect to increasing size and complexity of

1.3 Data Mining 11

the data. When it can for instance be theoretically determined that the execution cost
of an algorithm is exponential in the number of observations, the method is rendered
quite useless. It may perform very well on small datasets, but is not likely to yield
a result on larger dataset within a reasonable amount of time. In the development of
any new method, the assessment of its theoretical complexity is therefore crucial.

Data mining methods can be specifically designed to deal with large and/or com-
plex data. Examples are algorithms performing parallel and distributed computations
[4]. Parallel computing is based on the fact that many methods involve subtasks that
can be executed at the same time. In distributed computing, a large dataset is com-
monly divided in smaller, easier-to-handle chunks. Each chunk is processed sepa-
rately and these processes can be executed in parallel. Another group of adapted
methods are the incremental or online algorithms. They can deal with data that
is dynamically presented to the system and process their inputs serially, as they are
made available. An example application is the visual tracking of objects, in which the
information that needs to be processed by the system clearly changes over time [27].

The research in big data has flourished over the last decade [24]. This term is used
to denote applications where the collected data has such a large size and/or presents
such a high degree of complexity that traditionally used dataminingmethods lack the
strength to process it. Some relevant big data computing settings are cloud computing
and cluster computing.Cloud computing [5] is a formof shared computing.Hardware
and software, the cloud, is made accessible by large data centers to its users over
the Internet. These resources are shared among all users. It removes the need for
individual users (e.g., small companies) to set up the systems themselves. The key
aspect of cloud computing is that the services hosted in the data center are made
available without geographical concerns, that is, a user may access a cloud in any
remote location. In cluster computing [33], a network of connected computers is set
up to work together as one system. Together, they form the cluster. As a result, an
increase in computer power is obtained. It is ideally suited to run multiple subtasks in
parallel. The user must design his project in such a way to optimally take advantage
of this architecture. A central component of any cluster system is the scheduler that
distributes the tasks over the available nodes and manages these jobs.

1.4 Classification

This is a book onmultiple instance learning, a learning paradigmoriginally developed
as an extension of traditional supervised learning. Most advancement in this area has
been in classification methods. In classification problems, as stated in Sect. 1.3.1,
the goal is to predict a class label. The outcome, which is available for all training
instances, is drawn from a finite set of possibilities, the classes. The prediction model
represents a relation that maps the feature values to a class decision.

A classification method (also called classifier) aims to discriminate between all
possible classes in the training set. The dataset presented in Table1.1 is an example
classification dataset. It represents a two-class problemwith positive (P) and negative

12 1 Introduction

A1

A2

P

A2 < 0

N

A2 ≥ 0

“Left”

P

“Center”

A3

P

A3 = 1

N

A3 ∈ {2, 3, 4}

“Right”

Fig. 1.2 Decision tree learned from the data in Table1.1

(N) as possible classes. A classifier learned on this data yields a model that is used to
decide whether a new element belongs to the positive or negative class. An example
model is presented in Fig. 1.2, where a decision tree classifier was learned on the
training data in Table1.1. The constructed classificationmodel is easily interpretable.
When a new instance is presented, its value for feature A1 is first tested. When this
feature takes on the value ‘Center’, the class is immediately predicted as positive.
If its value is ‘Left’, a second test is performed on the A2 feature. The instance is
predicted to belong to the positive class, when the value for A2 is strictly smaller
than zero, and to the negative class otherwise. Finally, when the value for A1 was
‘Right’, the second test is performed on the ordinal feature A3. When its value is 1,
the positive class is selected. In all the other cases, the negative class is predicted.

An important question is how to evaluate the prediction performance of a classi-
fier. This involves two separate considerations, namely the selection of the validation
scheme on the one hand and the evaluation measure on the other. The former sup-
ports the reliability of the conclusions, while the latter measures the classification
performance.

1.4.1 Validation Schemes

As described in Sect. 1.3.1, the training data are used to learn a classification model
that is afterward applied to make class predictions for unseen elements. The validity
of these predictions can only be checked when the real labels of the unseen elements
are known. To ensure a faithful evaluation of the prediction strength of a model, a
validation scheme is used. In general, the available dataset in split into parts repre-
senting the actual training and test sets. A prediction model is learned on the training
instances and evaluated on the test instances, for which the class labels are known
as well. Several different validation methods can be listed (see e.g. [19]):

• Holdout: this is the most straightforward type of validation. The dataset is divided
into two parts, one that acts as training set and one that acts as test set. A typical

1.4 Classification 13

division is to use two thirds of the dataset as training set and the remaining third as
test set. The classifier is executed on the training set alone and yields a prediction
model. Next, a label is predicted for the elements in the test set, which were not
used in the learning phase. The predicted label is compared to their real class,
which is known. One of the evaluation measures discussed below can be used to
represent the model prediction strength in a single scalar.

• Repeated holdout: the holdout method can be repeated several times in order to
obtain a more reliable performance estimate. In each repetition, a training and test
set is constructed

• Cross validation: in k-fold cross validation, the dataset is divided into k roughly
equal parts, called partitions or folds. The fold construction can be done bymaking
a random division in the dataset or using a more complex heuristic, like stratified
sampling, where the class distribution of the original dataset is reflected in the
partitions. A classification experiment is run k times. Every run, a different fold
is used as test set. The remaining folds are combined into a training set. After
the full process has been completed, the predictions on each of the k test folds
are combined into one measure, usually by averaging the values of the evaluation
measure computed on the separate folds. Common choices for the number k are 5
and 10. Its selection depends on the characteristics of the dataset, like overall size
and class distribution. The extreme case occurs when the number k is set equal
to the number of data samples. In this situation, every partition contains a single
element, so the test set is reduced to one test element. This setting is referred to as
leave-one-out validation.

• Repeated cross validation: the fold partitioning process and cross validation is
repeated a number of times, in order to decrease the variance of the estimation.
The final evaluation value is taken as average over the repetitions.

• Bootstrapping: several bootstrap samples of the dataset are created. A bootstrap
sample has the same size as the original dataset and is constructed by random sam-
pling with replacement. Duplicate instances can occur. A classifier is learned on
each of the bootstrap samples and used to predict the class labels of the full dataset.
We note an important difference with the other validation methods. Above, none
of the test instances where known at training time. In the bootstrapping proce-
dures, the instances in each training set (bootstrap sample) all occur in the test set
(original dataset), possibly multiple times. Due to the sampling with replacement,
part of the test instances still remain unknown in the learning phase. This is taken
into account when aggregating the prediction values from the different samples,
that is, the final prediction strength is not obtained by simply averaging the val-
ues corresponding to each bootstrap sample. An example is the .632+ bootstrap
estimator from [13].

14 1 Introduction

1.4.2 Evaluation Measures

After deciding which validation scheme will be used, an evaluation metric needs to
be selected. In each schemes above, predicted class labels are compared to the real
labels for the test instances.We list some popular evaluation measures based on these
comparisons for classification data below.

• Accuracy: this measure reflects the rate of correctly classified test instances, that
is, it represents the percentage of test elements for which the real and predicted
classes coincide. Its value is computed as

acc = corr(T s)

|T s| ,

where T s is the test set and the function corr(·) counts how many elements are
classified correctly.

• Error rate: this value is the complement of the accuracy and computes the rate
of misclassified test elements. It is given as

err = 1− acc = |T S| − corr(T s)

|T s| .

• Gmean: this measure is computed as the geometric mean of the classwise accu-
racies, that is,

g = c

√
√
√
√

c
∏

i=1

corr(Ci)

|Ci | ,

where c is the number of classes in the dataset and Ci is the i th class.
• Cohen’s kappa: this metric is related to the accuracy, but accounts for random
hits [12]. It is defined as, using the above notation,

κ =
|T s|

c
∑

i=1

corr(Ci) −
c

∑

i=1

|Ci |pred(Ci)

|T s|2 −
c

∑

i=1

|Ci |pred(Ci)

,

where pred(Ci) is the number of instances predicted to belong to class Ci . These
predictions may or may not be correct.

References 15

References

1. Adamo, J.M.: Data Mining for Association Rules and Sequential Patterns: Sequential and
Parallel Algorithms. Springer Science & Business Media, New York (2012)

2. Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms andApplications. CRC Press, Boca
Raton (2013)

3. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1),
37–66 (1991)

4. Andrews, G.R.: Foundations of Parallel and Distributed Programming. Addison–Wesley Long-
man Publishing Co. Inc, Boston (1999)

5. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM. 53(4),
50–58 (2010)

6. Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University Press, Cam-
bridge (2012)

7. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford
(1995)

8. Chapelle,O., Schölkopf, B., Zien,A.: Semi-supervisedLearning.MITpress, Cambridge (2006)
9. Cios, K.J., Kurgan, L.A.: Trends in data mining and knowledge discovery. In: Pal, N., Jain, L.

(eds.) Advanced Techniques in Knowledge Discovery and Data Mining, pp. 1–26. Springer,
London (2005)

10. Cios, K.J., Pedrycz,W., Swiniarski, R.W., Kurgan, L.A.: DataMining:AKnowledgeDiscovery
Approach. Springer, New York (2007)

11. Cios, K.J., Pedrycz, W., Swiniarski, R.W.: Data Mining Methods for Knowledge Discovery,
vol. 458. Springer Science & Business Media, New York (2012)

12. Cohen, J.: A coefficient of agreement for nominal scales. Edu. Psychol. Meas. 20(1), 37–46
(1960)

13. Efron, B., Tibshirani, R.: Improvements on cross-validation: the 632+ bootstrap method. J.
Am. Stat. Assoc. 92(438), 548–560 (1997)

14. Frawley, W.J., Piatetsky-Shapiro, G., Matheus, C.J.: Knowledge discovery in databases: An
overview. AI Mag. 13(3), 57 (1992)

15. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer, Berlin
(2012)

16. García, S., Luengo, J., Herrera, F.: Data Preprocessing in Data Mining. Springer, Switzerland
(2015)

17. García, S., Luengo, J., Sáez, J.A., López, V., Herrera, F.: A survey of discretization techniques:
taxonomy and empirical analysis in supervised learning. IEEE Trans. Knowl. Data Eng. 25(4),
734–750 (2013)

18. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers, Waltham (2011)

19. Kim, J.: Estimating classification error rate: repeated cross-validation, repeated hold-out and
bootstrap. Comput. Stat. Data Anal. 53(11), 3735–3745 (2009)

20. Liu, H., Motoda, H.: Feature Extraction, Construction and Selection: A Data Mining Perspec-
tive. Kluwer, Boston (1998)

21. Liu, H., Motoda, H.: Computational Methods of Feature Selection. CRC Press, Boca Raton
(2007)

22. Liu, H., Motoda, H.: Instance Selection and Construction for Data Mining, vol. 608. Springer
Science & Business Media, Dordrecht (2013)

23. Luengo, J.: García, S., Herrera, F.: On the choice of the best imputation methods for missing
values considering three groups of classification methods. Knowl. Inf. Syst. 32(1), 77–108
(2012)

24. Mayer-Schönberger, V., Cukier, K.: Big Data: A Revolution thatWill TransformHowWe Live,
Work, and Think. Houghton Mifflin Harcourt, New York (2013)

16 1 Introduction

25. Pyle,D.:DataPreparation forDataMining, vol. 1.MorganKaufmannPublishers, SanFrancisco
(1999)

26. Rokach, L., Maimon, O.: DataMining with Decision Trees: Theory and Applications, 2nd edn.
World Scientific, Singapore (2014)

27. Ross, D., Lim, J., Lin, R., Yang, M.: Incremental learning for robust visual tracking. Int. J.
Comput. Vision. 77(1–3), 125–141 (2008)

28. Sáez, J.A., Luengo, J., Herrera, F.: Predicting noise filtering efficacy with data complexity
measures for nearest neighbor classification. Pattern Recogn. 46(1), 355–364 (2013)

29. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT press, Cambridge (2002)

30. Triguero, I., Derrac, J., García, S., Herrera, F.: A taxonomy and experimental study on prototype
generation for nearest neighbor classification. IEEE Trans. Syst. Man. Cybern. Part C 42(1),
86–100 (2012)

31. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 3rd edn. Morgan Kaufmann Publishers, Burlington (2011)

32. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evolut.
Comput. 1(1), 67–82 (1997)

33. Yeo, C., Buyya, R., Pourreza, H., Eskicioglu, R., Graham, P., Sommers, F.: Cluster computing:
high-performance, high-availability, and high-throughput processing on a network of com-
puters. In: Zomaya, A. (ed.) Handbook of Nature-inspired and Innovative Computing, pp.
521–551. Springer, New York (2006)

34. Zhang, M., Zhou, Z.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data
Eng. 26(8), 1819–1837 (2014)

Chapter 2
Multiple Instance Learning

Abstract This chapter provides a general introduction to the main subject matter
of this work: multiple instance or multi-instance learning. The two terms are used
interchangeably in the literature and they both convey the crucial point of difference
with traditional (single-instance) learning. A formal description of multiple instance
learning is provided in Sect. 2.1 and we discuss its origins in Sect. 2.2. In Sect. 2.3,
we describe different learning tasks within this domain, which may or may not have
an equivalent in single-instance learning. Finally, Sect. 2.4 lists a wide variety of
applications corresponding to the different multi-instance learning paradigms.

2.1 Formal Description

The traditional data description presented in Chap. 1 corresponds to so-called single-
instance learning, where each observation or learning object is described by a num-
ber of feature values and, possibly, an associated outcome. In our object of study,
multiple-instance learning (MIL), the structure of the data is more complex. In this
setting, a learning sample or object is called a bag. The defining feature of MIL
is that a bag is associated with multiple instances or descriptions. Each instance is
described by a feature vector, as we saw in single-instance learning, but an associated
outcome is never reported. The only information available about an instance, aside
from its feature values, is its membership relationship to a bag.

Formally, an instance x corresponds to a point in the instance space X. It is
commonly assumed that X ⊆ R

d , that is, each instance is described by a vector of d
real-valued numbers, its feature values. However, as described in Sect. 1.1, datasets
often containmixed types of features. Tomodel these situations,X can be generalized
toX ⊆ A d = A1×· · ·×Ad , such that each instance is described by a d-dimensional
vector, where each attributeAi (i = 1, . . . , d) takes on values from a finite or infinite
set Vi . In this way, we can deal with mixed feature sets in which some of the features
are categorical and others are numeric.

A bag X is a collection of n instances, where every instance xi is drawn from the
instance space X. Each bag is allowed to have a different size, which means that the
value n can vary among the bags in the dataset. Multiple copies of the same instance

© Springer International Publishing AG 2016
F. Herrera et al.,Multiple Instance Learning, DOI 10.1007/978-3-319-47759-6_2

17

http://dx.doi.org/10.1007/978-3-319-47759-6_1
http://dx.doi.org/10.1007/978-3-319-47759-6_1

18 2 Multiple Instance Learning

Table 2.1 Structure of a multi-instance dataset with M bags

Bags Instances A1 A2 ... Ad Outcome

X1 x1,1
...
x1,n1

x1,1,1
...
x1,n1,1

x1,1,2
...
x1,n1,2

...

...

...

x1,1,d
...
x1,n1,d

y1

...

XM xM,1
...
xM,nM

xM,1,1
...
xM,nM ,1

xM,1,2
...
xM,nM ,2

...

...

...

xM,1,d
...
xM,nM ,d

yM

can be included in a bag. For this reason, many authors define a bag as X ∈ N
X, that

is, a multi-set containing elements from X such that duplicates can occur. Different
bags are also allowed to overlap and contain copies of the same instance. This forms
an indication of the higher level of complexity of MIL compared to single-instance
learning. Throughout this work, we use lowercase letters to represent instances (e.g.,
x , a, b) and uppercase letters to represent bags (e.g., X , A, B).

As an example, Table2.1 presents the general structure of amulti-instance dataset.
The first column represents the bags, sometimes also referred to as exemplars.
Each bag contains a number of instances, represented in the second column. Each
instance identifier corresponds to a vector description, of which the attribute values
are arranged from columnsA1 toAd . The first instance x1,1 in the first bag X1 is for
example represented by the feature vector 〈x1,1,1, x1,1,2, ..., x1,1,d〉. The last column
represents the outcome associated with the bag. It is important to stress that this
outcome is only known for a bag as a whole and not for each individual instance.
Depending on the learning task (see Sect. 2.3), the outcome may be a class label
(classification) or a real value (regression). In clustering applications, there are no
outcomevalues available.Webriefly note that thework of [11] showed that the perfor-
mance of multi-instance learners on datasets with very similar meta-characteristics,
like dimensionality and size, can be very different.

2.2 Origin of MIL

The multi-instance learning paradigm was introduced in the seminal work of [16]. It
arose in the context of learning taskswhere data observations (bags) canhavedifferent
alternative descriptions (instances). The authors of [16] focused on an application
in biochemistry: the drug activity prediction problem. Here, the task is to predict
whether or not a given molecule is a good drug molecule, which is measured by
its ability to bind to a given target. Each molecule can be represented as a bag, of
which the instances correspond to different conformations (molecular structures) of
that particular compound. Figure2.1 depicts this situation for a butane molecule. In

2.2 Origin of MIL 19

Fig. 2.1 Conformations of a butane molecule

this case, butane would be represented by a bag containing the 12 listed shapes as its
instances.

MIL emerged as an extension of supervised learning. bag-instances relationship
models the one-to-many relation characteristic of relational databases, since one bag
can contain several different instances. More than an extension, MIL can therefore
be considered a generalization of single-instance learning and the latter can be under-
stood as a special case of MIL where each bag contains a single instance. Moreover,
MIL has proven to be a bridge between two different paradigms: propositional learn-
ing on the one hand and relational learning on the other.

2.2.1 Relationship with Propositional Learning

Propositional or attribute-value learning corresponds to the setting described in
Sect. 1.1, where the training data is ordered in a single flat table. In single-instance
semi-supervised learning (Sect. 1.3.3), only part of the instance outcomes are avail-
able and it therefore shows a certain similarity with MIL, where the outcomes are
only known for the bags and not their instances. However, there is a fundamental

http://dx.doi.org/10.1007/978-3-319-47759-6_1
http://dx.doi.org/10.1007/978-3-319-47759-6_1

20 2 Multiple Instance Learning

difference between the two: the relationship between instances and bags inMIL does
not exist in semi-supervised learning. In the latter, labeled instances are at the same
level as unlabeled instances and there is no specific relationship between them. In
MIL on the contrary, a secondary structure is present in the dataset, defining the two
different levels of bags and instances. All instances in a bag are somehow interrelated,
because of their shared membership to the bag.

2.2.2 Relationship with Relational Learning

In relational learning, structured concept definitions are derived from structured train-
ing examples [14]. The training data models the different observations as well as the
relations between them, for instance by using multiple tables. A clear example is
given in [15], where the relational data is represented by two tables, one providing
the description of store customers and the other the marital relations between them.

Many learning methods have been developed for propositional learning, but these
can only be applied to data organized in a single table and the relations between
different observations can not be taken into account. Propositional algorithms can
therefore not be directly applied in relational learning problems. Relational data can
be transformed into an attribute-value table in a process called propositionalization,
but this implies a steep computational cost and its application to real problems is
limited as a result of an internal combinatorial explosion [47].

MIL has come to be considered as the missing link between relational and propo-
sitional learning, because, as stated above, the bag label models a one-to-many rela-
tionship. The contribution of [13] shows that multi-instance problems can also be
considered as a special case of inductive logic programming [37]. All inductive logic
programming problems (in the form of relational databases) can be transformed by
database join operations in a single one-to-many relationship. Such a relation can
in turn be naturally represented as a MIL problem [47, 48]. As will be discussed in
later chapters, many single-instance learning algorithms have already been adapted
to the multi-instance setting. This feature of MIL allows for many relational learning
problems to be solved by traditional supervised learning methods.

2.3 MIL Paradigms

As in traditional single-instance learning, discussed in Sect. 1.3, we can distin-
guish between a number of learning tasks within MIL. In Sect. 2.3.1 we discuss
the two supervised learning settings, classification and regression. Section2.3.2
describesmulti-instance clustering. Several other traditional learning tasks, like semi-
supervised ormulti-label learning, canfind a correspondingMILequivalent (e.g., [44,
82]). However, we must warn the reader that this general similarity between single-
instance and multi-instance learning tasks can not be transferred to their solution

http://dx.doi.org/10.1007/978-3-319-47759-6_1

2.3 MIL Paradigms 21

methods. Due to the relational nature, MIL solution methods are inherently more
complex. This also implies that some MIL tasks have no related single-instance
setting. The most prominent example is presented in Sect. 2.3.3.

2.3.1 Multi-instance Classification and Regression

In a multi-instance classification problem, the goal is to determine the class label of
new bags, based on the class labels in the training set or, more specifically, using a
prediction model built on the labeled training bags. The outcome associated with the
training bags is categorical.

More formally, in a classification problem,we dealwith a training set D = (X,L),
where X = 〈X1, . . . , Xm〉 is a set of bags and L = 〈�1, . . . , �m〉 a set of class labels,
with �i ∈ L (i = 1, . . . ,m) and L the finite set of all possible class labels. The bag
Xi is assigned the class label �i . Recall that only the class labels of the bags are
known and not those of the instances inside them. Later on in this work, we provide
a detailed discussion on the contribution of the individual instances to the bag label.
Traditionally, MIL has focused on two-class classification problems, dealing with
one positive and one negative class. However, in general the number of classes can be
larger, that is, |L| ≥ 2. The classification objective is to find a functionH : NX → L

based on the training set D. This function is the classification model and is used to
predict the class labels of new bags as accurately as possible. More details on multi-
instance classification will be provided in Chap.3.

When the outcomes are known for all training bags, but they correspond to real
values rather than class labels, we are dealing with a multi-instance regression prob-
lem. The data description is highly similar to the one for classification data. The
main difference is that the bag class labels are replaced by numerical values, that
is, L corresponds to a range of values in R rather than to a finite set. Multi-instance
regression was proposed in [2, 46], independently at the same conference. This task
is discussed further in Chap.6.

2.3.2 Multi-instance Clustering

Asdiscussed in Sect. 1.3.2, clustering is situated in the unsupervised learning domain.
The set of outcomesL associated to the training bagsX in D is not known or not avail-
able. The goal is to group these unlabeled bags based on a given similarity measure.
A multi-instance clustering method determines a set of groups G = {G1, . . .Gk}
and a function H : NX → G which assigns bags to groups such that it minimizes
the similarity differences between bags of the same group and maximizes the sim-
ilarity differences between bags of different groups. The choice of an appropriate

http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_6
http://dx.doi.org/10.1007/978-3-319-47759-6_1

22 2 Multiple Instance Learning

similarity measure is crucial in multi-instance clustering. As noted in [74], not all
instances within a bag contribute equally to the bag prediction, which implies that
the bags should ideally not be considered as collections of independent instances in
the definition of the similarity metric. Multi-instance clustering is discussed in more
detail in Chap. 7.

2.3.3 Instance Annotation

An important task in some MIL applications, which has no counterpart in single-
instance learning, is the instance-level classification. In this setting, apart from pre-
dicting a class label for a new bag, the assignment of class labels to its instances is
a key objective as well. Depending on the application, there are two possible cases.

In the first situation, given the training set D = (X,L), the objective is to locate
the instance or instances that are key to determining the class of the bag. In general,
key instances are considered those that are more likely to have the same (hidden)
label as their bag. A function h : X → L is constructed, such that the corresponding
aggregation function H (h (x1) , . . . , h (xn)) → L can predict class labels of a new
bag X = {x1, . . . , xn} with maximum possible accuracy. This learning strategy is
employed by a large group of multi-instance classification algorithms, described in
Chap.4. Some applications require the identification of key instances not only to
classify bags, but also because these instances are themselves relevant to the appli-
cation (e.g., [30]). An example application where the identification of true positive
instances is very informative, is that of the stock selection problem [33]. In that set-
ting, true positive instances correspond to stocks that fundamentally perform well,
which is an important subgroup to discern from the other stocks.

In the second case, the training set is represented as D = (X,L), where X =
〈X1, . . . , Xm〉 are bags and L = 〈L1, . . . ,Lm〉 are sets of instance labels associated
to the bags. In this situation, the setLi = {

λ1, . . . , λki

}

of explicit instance labels is
assigned to the bag Xi . These labels are drawn from a set Λ = {λ1, . . . , λs}, which
can be different from L. Unlike the traditional MIL approach, some instance labels
are known for each bag. The objective is to find a function that, given a new bag,
allows us to find instance labels that best describe it. This setting is very popular
in applications such as image annotation (e.g., [7]), where the annotation of image
segments (instances) can result in a global label for the complete image (bag). Since
one observation (bag) is associated with a set of (instance) labels, this approach
shows some similarity with multi-label classification (Sect. 1.3.1). However, multi-
label and multi-instance learning remain different paradigms. The former represents
each observation by multiple instances and a single global class label, while in the
latter an observation corresponds to one instance associated with several labels.

http://dx.doi.org/10.1007/978-3-319-47759-6_7
http://dx.doi.org/10.1007/978-3-319-47759-6_4
http://dx.doi.org/10.1007/978-3-319-47759-6_1

2.4 Applications of MIL 23

2.4 Applications of MIL

InMIL, amore complex structure of data observations can be represented. Themulti-
instance setting is required to model several real-world applications that we list in
this section. There is an inherent level of representation ambiguity in this type of
problems and we can distinguish between several sources. MIL data naturally arises
in the following situations:

• Alternative representations: different views, appearances or descriptions of the
same object are available. A classical example in this case is that of drug activity
prediction, the application for which MIL was originally developed in [16] (see
also Sect. 2.2).

• Compound objects: a compound object consists of several parts. In the example of
image recognition, an image corresponds to a bag and each image segment forms
an instance. An example is found in Fig. 2.2. The image segments can correspond
to different breakfast components like the slice of toast, the sausage, the beans,
and so on. Together, they form a full English breakfast.

• Evolving objects: in these applications, an evolving object is sampled at different
time intervals. This is also referred to as a time-series problem. The bag represents
the object, while the time point samples are its instances. An example is the study
around the use of MIL in bankruptcy prediction presented in [27].

Fig. 2.2 A full English breakfast

24 2 Multiple Instance Learning

The main research focus within the MIL community has been on multi-instance
classification problems. A variety of application domains are listed in Sects. 2.4.1–
2.4.6. In Sect. 2.4.7, we consider applications of multi-instance regression, while
multi-instance clustering applications are discussed in Sect. 2.4.8.

2.4.1 Bioinformatics

We have already discussed the application of drug activity prediction in Sect. 2.2.
Each bag corresponds to a molecule and its instances are the different molecular
shapes, as shown in Fig. 2.1. The objective in the original MIL proposal [16] is the
prediction ofmusky and non-muskymolecules.Other drug activity problems concern
the mutagenicity prediction of compound molecules [52] and activity prediction of
molecules as anticancer agents [6]. Studies like [21, 33, 72, 80] address the drug
activity prediction problem with their proposed multi-instance classifiers as well.

Another bioinformatics application of MIL is the protein identification task, like
the recognition of Thioredoxin-fold proteins, as explored in, e.g., [45, 55, 59]. Bind-
ing proteins of the Calmodulin protein are identified in a multi-instance classification
process in [36], while the application in [40] is the prediction of binding peptides for
the highly polymorphic MHC class II molecules. In [29], multi-instance multi-label
classification is used to automate the annotation of gene expression patterns. This
method was evaluated on Drosophila melanogaster (fruit fly).

2.4.2 Image Classification and Retrieval

Another widely studied MIL application area is that of image classification, where
the goal is to, given an image, decide on what it represents or to which of a given set
of categories it belongs. As an example, consider the early work of [34] that revolves
around the classification of natural scene images, e.g., images of waterfalls. In the
data representation, an image corresponds to a bag. The instances within this bag are
subimages, encoded as templates describing color and spatial characteristics of that
specific region. The subimages can be obtained by a partitioning process or, possibly
more appropriately, an image segmentation procedure. In a perfect segmentation, the
resulting regions correspond to individual objects. The classification objective is to
predict what the complete image represents. If we consider Fig. 2.2, a multi-instance
classifier should derive that it is processing an image of a full English breakfast based
on the different objects on the plate. This type of region-based image categorization
was also evaluated in [3, 9, 10, 24, 42], although not all of these referenced works
developed multi-instance classification methods specific for image data. They often
consider more general algorithms and evaluate them on a variety of applications.
Multi-instance image datasets have indeed become popular benchmarks to evaluate
new proposals on. One specific type of image classification, facial recognition, where

2.4 Applications of MIL 25

a bag of instances can represent images taken of the same person from different
angles, was studied in, e.g., [8, 19].

More complexmodels for themapping of images tomulti-instance datawere stud-
ied in later works. Themethod of [43]models the interrelations of instances (regions)
in a bag (image) to improve the categorization process, while [25] considers image
annotation by means of a joint multi-instance mapping and feature selection process.
The recent proposal of [20] develops a multi-instance semi-supervised classification
method based on sparse representation and evaluates it on image data.

A task related to image categorization is that of image retrieval. The aim in this
case is to obtain images from a dataset that are semantically relevant to the user, based
on his specified query or presented examples of images of interest. Multi-instance
approaches to this challenge represent, as above, an image as a bag, containing many
of its subimages as instances. Examples can be found in, e.g., [7, 66, 71, 75–77].

2.4.3 Web Mining and Text Classification

Another application domain ofMIL lies in webmining. Theweb index recommenda-
tion problem was introduced as a multi-instance problem in [81]. In this application,
a bag corresponds to a web index page and its instances refer to other websites to
which the page links. The recommendation task is to suggest relevant web pages to
users based on their browser history. Such knowledge is useful for the construction
of intelligent web browsers. This problem domain was also the central focus of [67,
69], in which genetic programming algorithms were developed to solve it. In [51], a
multi-instance classifier based on the Rocchio classifier [49] was developed for this
application.

A related task is that of document classification. In [3], the proposedmulti-instance
classificationmethod is evaluated on a document categorization problem. In this case,
a bag corresponds to a document and the instances are particular passages within that
document. In the experiments of [45], the dataset obtained in the biomedical study
of [5] is used. A bag corresponds to a biomedical article about a particular protein
and the instances are the paragraphs of the text. A positive bag is one that can be
labeled with a Gene Ontology code, while a negative bag cannot. The classification
goal is to discern between positive and negative bags.

2.4.4 Object Detection and Tracking

This domain requires methods that discern an object of interest in image or video
data. Examples are the application of the proposed multi-instance boosting method
to horse detection and pedestrian detection in [1]. In [32], the detection of landmines
based on radar images is studied in a multi-instance classification context. The study
of [61] considers the related aspect of saliency detection, which is the detection of

26 2 Multiple Instance Learning

the object in the image that draws the visual attention, as humans focus more on
some parts of pictures than on others. It is not known in advance what the object is,
only that it draws the attention of the observer.

In an object tracking application, a specific object is followed during the course of
a video sequence. Online methods have been proposed in, e.g., [4, 73]. In the recent
contributions of [31, 83], online multi-instance boosting algorithms for visual object
tracking problems are developed.

2.4.5 Medical Diagnosis and Imaging

Several studies on multi-instance data focus on applications within the medical
domain. In [22], amulti-instance classification framework is developed for computer-
aided medical diagnosis, like the detection of tumors. It is shown that the use of this
framework significantly improves the diagnostic accuracy in the evaluated applica-
tions. The study of [53] concerns the automatic detection of myocardial infarction
based on electrocardiography (ECG) recordings. For each patient, a 24-h ECG is
taken, which traces his or her heart activity for a full day. Such a recording is too
large to be interpreted by a cardiologist. Automated prediction tools are required to
detect any heart abnormalities in the data. In the input data for the multi-instance
classifier, a bag corresponds to a full ECG, while each instance represents a recorded
heartbeat.

The proposal of [41] studies the early detection of illnesses, like frailty and demen-
tia, in senior citizens. This is done in a noninterfering way, namely by using sensor
data, collected from a number of sensorsmonitoring elderly people in nursing homes.
A bag consists of 24 hourly sensors measurements (instances) taken in one day for a
single patient. The label of a bag is determined based on the report made by a nurse
for the patient on that particular day. It indicates whether the patient exhibited health
problems (positive) or not (negative).

A fourth study [60] develops a multi-instance classification algorithm for the
detection of colonic polyps, abnormal growths in the colon. It revolves around video
classification. When a possible polyp is present in the colon, images of it are col-
lected from several viewpoints and combined into a video. Each candidate polyp
consequently corresponds to a bag. The different viewpoints or video frames are the
instances. The prediction aim is to decide whether the videoed candidate is an actual
polyp or not.

2.4.6 Other Classification Applications

In this final section on applications of multi-instance classification, we collect a
number of miscellaneous applications that do not fall within any of the categories
listed in the previous sections.

2.4 Applications of MIL 27

Multi-instance classification has been applied to prediction of student perfor-
mance [68]. This problem allows interesting relationships to be obtained that can
suggest activities and resources to students and educators that favor and improve
both learning and the effective learning process. From the MIL perspective, each
student is regarded as a bag which represents the work carried out and is composed
of one or several instances where each instance represents the different types of
work that the student has done. This representation has shown better results than
traditional single-instance representation [68]. The work of [70] proposes a genetic
programming model to solve this problem more efficiently.

The study of [35] proposes amethod for automatic subgoal discovery in reinforce-
ment learning [54]. The trajectory of an agent in a reinforcement learning process
is encoded as a bag. The observations made along this trajectory are the instances.
The bag label states whether the trajectory is successful or not, where the definition
of success depends on the problem description.

Multi-instance classification has been applied to several computer-related tasks as
well, for instance in the work of [50] that focused on computer security applications.
Impending failure of computer hard drives is predicted in [38]. A bag corresponds to
a single drive and its instances are observations of this drive taken at different time
points. In [26], the quality of object-oriented software is estimated. A class hierarchy
is transformed into a bag, containing the constituent classes as instances.

The proposed classification method of [33] was evaluated on a stock selection
problem. In this work, each bag represents amonth of trading. A positive bag contains
the 100 stocks (instances) with the highest returns in that month, while a negative
bag consists of the five stocks with the lowest returns.

The final classification application that we list, is graph mining, the process of
extracting knowledge from graph structured data. Multi-graph learning is a fur-
ther generalization of MIL, where every bag consists of several graphs. In MIL, all
instances in the bags are drawn from the same feature space, but this is no longer the
case in multi-graph learning. This area was the focus of the recent works [64, 65].

2.4.7 Regression Applications

Although to a lesser extent than for classification problems, we also encounter real-
world applications of multi-instance regression. We collect these examples in this
section.

The application referenced in one of the original proposals of multi-instance
regression [46] is related to the drug activity prediction problem. Instead of treating
this as a yes-or-no question, as done in the classification scenario, real-valued activity
levels are estimated for the molecules. The second initial proposal on multi-instance
regression [2] also interpreted drug activity prediction as a regression problem,where
the binding strength of a molecule is the prediction objective. The theoretical study
on multi-instance regression in [17] refers to the real-valued drug activity prediction
problem as an important application as well. In [12], the authors develop a method

28 2 Multiple Instance Learning

to predict the binding affinity of molecules based on their three-dimensional struc-
ture. They evaluate their method on thermolysin inhibitors, dopamine agonists, and
thrombin inhibitors. In later work, [56] considers the prediction of protein-ligand
affinities and [18] the prediction of the binding affinity of MHC class II molecules.

The study of [23] uses a real-valued outcome in the interval [0, 1] to express
the satisfaction degree of a bag to the concept. One of the evaluated applications
is landmark recognition for robot vision. In a navigation assignment, robots are
required to recognize whether or not they find themselves near one of a given set of
landmarks.

Multi-instance regression has also been used in remote sensing applications. The
contribution of [57] focuses on an agricultural process, namely the modeling of crop
yield based on remote sensing data. A bag corresponds to one county in the United
States. The instances in the bag are image pixels covering different parts of that
county. The same application was evaluated in [58], where the authors developed
a multi-instance regression method for structured data. In [62], a climate research
application related to aerosols is considered. The prediction value is the so-called
aerosol optical depth, which is a number related to the induced attenuation of radi-
ation. This value characterizes aerosols and is central in the construction of climate
models. Aerosols are globally monitored by satellites that provide data in the form of
multi-spectral images. In this application, a bag corresponds to a set of neighboring
pixels (instances) in such an image. The bag is labeled with an aerosol optical depth
value. The two remote sensing applications, aerosol optical depth prediction and crop
yield modeling, were also studied in [63].

Finally, we also list the multi-instance regression study of [39]. The authors
develop a robust system for age estimation of a person based on an image of his
or her face.

2.4.8 Clustering Applications

In this section, we review the applications for multi-instance clustering that have
been presented in the literature. Recall that the goal of this learning paradigm is to
arrange the bags in a number of well-separated groups of similar observations.

The proposal of [74] references an application in biochemistry. The execution
of experiments to determine the functionality of specific molecules can be costly.
Multi-instance clustering can be used in the often necessary step to derive the func-
tionality of a molecule by identifying similar molecules with known characteristics.
The method of [28] was evaluated on two types of clustering problems. The first one
consists of enzyme data, where a bag corresponds to an enzyme and its instances to
amino acid sequences. The second problem is the clustering of the molecules in the
drug activity prediction datasets taken from [16].

In [78, 79] a multi-instance clustering method based on the maximum margin
principle was proposed. It was evaluated on two separate applications. In image
clustering, the method is used to detect common hidden concepts or patterns in

2.4 Applications of MIL 29

images. As was done in the image classification applications listed in Sect. 2.4.2,
the images correspond to bags and the instances are image segments. The second
application is text clustering. In this case, a bag represents a document and is made
up from (possibly overlapping) passages taken from this document.

References

1. Ali, K., Saenko, K.: Confidence-rated multiple instance boosting for object detection. In: Pro-
ceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR
2014), pp. 2433–2440. IEEE, Los Alamitos (2014)

2. Amar, R.A., Dooly, D.R., Goldman, S.A., Zhang, Q.: Multiple-instance learning of real-valued
data. In: Brodley, C.E., Danyluk, A. (eds.) Proceedings of the 18th International Conference
on Machine Learning (ICML 2001), pp. 3–10. Morgan Kaufmann Publishers, San Francisco
(2001)

3. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance
learning. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information, vol.
15, pp. 561–568. MIT press, Cambridge (2002)

4. Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance
learning. IEEE Trans. Pattern Anal. 33(8), 1619–1632 (2011)

5. Blaschke, C., Leon, E., Krallinger, M., Valencia, A.: Evaluation of BioCreAtIvE assessment
of task 2. BMC Bioinform. 6(1), 1 (2005)

6. Braddock, P., Hu, D., Fan, T., Stratford, I., Harris, A., Bicknell, R.: A structure-activity analysis
of antagonism of the growth factor and angiogenic activity of basic fibroblast growth factor by
suramin and related polyanions. Br. J. Cancer 69(5), 890 (1994)

7. Carneiro, G., Chan, A.B., Moreno, P.J., Vasconcelos, N.: Supervised learning of semantic
classes for image annotation and retrieval. IEEE Trans. Pattern Anal. 29(3), 394–410 (2007)

8. Chang, K., Bowyer, K., Flynn, P.: An evaluation of multimodal 2d+3d face biometrics. IEEE
Trans. Pattern Anal. 27(4), 619–624 (2005)

9. Chen, Y., Wang, J.: Image categorization by learning and reasoning with regions. J. Mach.
Learn. Res. 5, 913–939 (2004)

10. Chen, Y., Bi, J., Wang, J.Z.: MILES: Multiple-instance learning via embedded instance selec-
tion. IEEE Trans. Pattern Anal. 28(12), 1931–1947 (2006)

11. Cheplygina, V., Tax, D.: Characterizing multiple instance datasets. In: Feragen, A., Pelilo, M.,
Loog,M. (eds.) Similarity-Based Pattern Recognition, pp. 15–27. Springer, Switzerland (2015)

12. Davis, J., Costa, V.S., Ray, S., Page, D.: An integrated approach to feature invention and model
construction for drug activity prediction. In: Ghahramani, Z. (ed.) Proceedings of the 24th
international conference on Machine learning (ICML 2007), pp. 217–224. ACM, New York
(2007)

13. De Raedt, L.: Attribute-value learning versus inductive logic programming: the missing links.
In: Page, D. (ed.) Inductive Logic Programming. Lecture Notes in Computer Science, vol.
1446, pp. 1–8. Springer, Berlin (1998)

14. De Raedt, L.: Logical and Relational Learning. Springer Science & Business Media, Berlin
(2008)

15. Deroski, S.: Relational data mining. In: Maimon, O., Rokach, L. (eds.) Data Mining and
Knowledge Discovery Handbook, pp. 887–911. Springer, New York (2009)

16. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance problem with
axis-parallel rectangles. Artif. Intell. 89(1–2), 31–71 (1997)

17. Dooly, D.R., Goldman, S.A., Kwek, S.S.: Real-valued multiple-instance learning with queries.
J. Comput. Syst. Sci. 72(1), 1–15 (2006)

18. El-Manzalawy, Y., Dobbs, D., Honavar, V.: Predicting MHC-II binding affinity using multiple
instance regression. IEEE ACM Trans. Comput. Biol. 8(4), 1067–1079 (2011)

30 2 Multiple Instance Learning

19. Faltemier, T., Bowyer, K., Flynn, P.: Using a multi-instance enrollment representation to
improve 3D face recognition. Comput. Vis. Image Underst. 112(2), 114–125 (2008)

20. Feng, S.,Xiong,W., Li, B., Lang,C.,Huang,X.:Hierarchical sparse representation basedmulti-
instance semi-supervised learning with application to image categorization. Signal Process. 94,
595–607 (2014)

21. Fu, G., Nan, X., Liu, H., Patel, R.Y., Daga, P.R., Chen, Y., Wilkins, D.E., Doerksen, R.J.:
Implementation of multiple-instance learning in drug activity prediction. BMC Bioinform.
13(15), 1 (2012)

22. Fung, G., Dundar, M., Krishnapuram, B., Rao, R.B.: Multiple instance learning for computer
aided diagnosis. Adv. Neural Inf. 19, 425 (2007)

23. Goldman, S.A., Scott, S.D.: Multiple-instance learning of real-valued geometric patterns. Ann.
Math. Artif. Intel. 39(3), 259–290 (2003)

24. Han, Y., Qi, X.: A complementary svms-based image annotation system. In: Proceedings of the
2005 IEEE International Conference on Image Processing (ICIP 2005), vol. 1, pp. 1185–1188.
IEEE, Los Alamitos (2005)

25. Hong, R., Wang, M., Gao, Y., Tao, D., Li, X., Wu, X.: Image annotation by multiple-instance
learning with discriminative feature mapping and selection. IEEE Trans. Cybern. 44(5), 669–
680 (2014)

26. Huang, P., Zhu, J.: Multi-instance learning for software quality estimation in object-oriented
systems: a case study. J. Zhejiang Univ.-Sci. C 11(2), 130–138 (2010)

27. Kotsiantis, S., Kanellopoulos, D., Tampakas, V.: Financial application of multi-instance learn-
ing: two greek case studies. J. Converg. Inf. Technol. 5(8), 42–53 (2010)

28. Kriegel, H.P., Pryakhin, A., Schubert, M.: An EM-approach for clustering multi-instance
objects. In: Ng, W., Kitsuregawa, M., Li, J., Chang, K. (eds.) Lecture Notes in Artificial Intel-
ligence, pp. 139–148. Springer, Berlin (2006)

29. Li, Y.X., Ji, S., Kumar, S., Ye, J., Zhou, Z.H.: Drosophila gene expression pattern annotation
through multi-instance multi-label learning. IEEE ACM Trans. Comput. Biol. 9(1), 98–112
(2012)

30. Liu, G., Wu, J., Zhou, Z.: Key instance detection in multi-instance learning. In: Hoi, S., Bun-
tine, W. (eds.) JMLR: Workshop and Conference Proceedings: Asian Conference on Machine
Learning, pp. 253–268 (2012)

31. Liu, J., Lu, Y., Zhou, T.: Instance significance guided multiple instance boosting for robust
visual tracking (2015). arXiv preprint. arXiv:1501.04378

32. Manandhar, A., Morton, K.D., Collins, L.M., Torrione, P.A.: Multiple instance learning for
landmine detection using ground penetrating radar. In: Harmon, R., Holloway, J., Broach, J.
(eds.) Proceedings of SPIE, Detection and Sensing of Mines, Explosive Objects and Obscured
Targets, pp. 721–835. SPIE, Bellingham (2012)

33. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Jordan, M.,
Kearns, M., Solla, S. (eds.) Advances in Neural Information, vol. 10, pp. 570–576. MIT press,
Cambridge (1998)

34. Maron, O., Ratan, A.L.: Multiple-instance learning for natural scene classification. In: Shavlik,
J. (ed.) Proceedings of the 15th International Conference on Machine Learning (ICML 1998),
vol. 98, pp. 341–349. Morgan Kaufmann Publishers, San Francisco (1998)

35. McGovern, A., Barto, A.G.: Automatic discovery of subgoals in reinforcement learning using
diverse density. In: Brodley, C., Danyluk, A. (eds.) Proceedings of the 18th International Con-
ference on Machine Learning (ICML 2001), pp. 361–368. Morgan Kaufmann Publishers, San
Francisco (2001)

36. Minhas, A., ul Amir, F., Ben-Hur, A.: Multiple instance learning of calmodulin binding sites.
Bioinformatics 28(18), i416–i422 (2012)

37. Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods. J. Logic
Program. 19, 629–679 (1994)

38. Murray, J., Hughes, G., Kreutz, K.: Machine learning methods for predicting failures in hard
drives: a multiple-instance application. J. Mach. Learn. Res. 6, 783–816 (2005)

http://arxiv.org/abs/1501.04378

References 31

39. Ni, B., Song, Z., Yan, S.: Web image mining towards universal age estimator. In: Proceedings
of the 17th ACM international conference on Multimedia, pp. 85–94. ACM, New York (2009)

40. Pfeifer, N., Kohlbacher, O.: Multiple instance learning allowsMHC class II epitope predictions
across alleles. In: Crandall, K., Lagergren, J. (eds.) Algorithms in Bioinformatics, pp. 210–221.
Springer, Berlin (2008)

41. Popescu, M., Mahnot, A.: Early illness recognition using in-home monitoring sensors and
multiple instance learning. Method. Inform. Med. 51(4), 359 (2012)

42. Qi, X., Han, Y.: Incorporating multiple svms for automatic image annotation. Pattern Recogn.
40(2), 728–741 (2007)

43. Qi, G.J., Hua,X.S., Rui, Y.,Mei, T., Tang, J., Zhang,H.J.: Concurrentmultiple instance learning
for image categorization. In: Proceedings of the 2007 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2007), pp. 1–8. IEEE, Los Alamitos (2007)

44. Rahmani, R., Goldman, S.A.: MISSL: Multiple-instance semi-supervised learning. In: Cohen,
W., Moore, A. (eds.) Proceedings of the 23rd International Conference on Machine Learning
(ICML 2006), pp. 705–712. ACM, New York (2006)

45. Ray, S., Craven,M.: Supervised versusmultiple instance learning: an empirical comparison. In:
De Raedt, L., Wrobel, S. (eds.) Proceedings of the 22nd International Conference on Machine
Learning (ICML 2005), pp. 697–704. ACM, New York (2005)

46. Ray, S., Page, D.: Multiple instance regression. In: Brodley, C., Danyluk, A. (eds.) Proceedings
of the 18th International Conference onMachine Learning (ICML 2001), pp. 425–432.Morgan
Kaufmann Publishers, San Francisco (2001)

47. Reutemann, P.: Development of a propositionalization toolbox.Master’s thesis, Albert Ludwigs
University of Freiburg, Germany (2004)

48. Reutemann, P., Pfahringer, B., Frank, E.: A toolbox for learning from relational data with
propositional andmulti-instance learners. In:Webb, G., Yu, X. (eds.) Lecture Notes inArtificial
Intelligence, pp. 421–434. Springer, Berlin (2005)

49. Rocchio, J.J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART
Retrieval System: Experiments in Automatic Document Processing, pp. 313–323. Prentice-
Hall, Englewood Cliffs (1971)

50. Ruffo, G.: Learning single and multiple instance decision trees for computer security applica-
tions. Ph.D. thesis, Department of Computer Science, University of Turin, Turin, Italy (2000)

51. Sánchez Tarragó, D., Cornelis, C., Bello, R., Herrera, F.: A multi-instance learning wrapper
based on the Rocchio classifier for web index recommendation. Knowl.-Based Syst. 59, 173–
181 (2014)

52. Srinivasan, A., Muggleton, S., King, R.D., Sternberg, M.J.: Mutagenesis: ILP experiments in
a non-determinate biological domain. In: Wrobel, S. (ed.) Proceedings of the 4th international
workshop on inductive logic programming, vol. 237, pp. 217–232. Gesellschaft fr Mathematik
und Datenverarbeitung MBH, Bonn (1994)

53. Sun, L., Lu, Y., Yang, K., Li, S.: ECG analysis using multiple instance learning for myocardial
infarction detection. IEEE Trans. Bio-Med. Eng. 59(12), 3348–3356 (2012)

54. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, Cambridge
(1998)

55. Tao, Q., Scott, S., Vinodchandran, N., Osugi, T.T.: Svm-based generalized multiple-instance
learning via approximate box counting. In: Greiner, R., Schuurmans, D. (eds.) Proceedings
of the 21st International Conference on Machine Learning (ICML 2004), p. 101. ACM, New
York (2004)

56. Teramoto, R., Kashima, H.: Prediction of protein-ligand binding affinities using multiple
instance learning. J Mol. Graph. Model. 29(3), 492–497 (2010)

57. Wagstaff, K.L., Lane, T.: Salience assignment for multiple-instance regression. In: Proceedings
of the ICML 2007 Workshop on Constrained Optimization and Structured Output Spaces.
Citeseer (2007)

58. Wagstaff, K.L., Lane, T., Roper, A.: Multiple-instance regression with structured data. In:
Bonchi, F., Berendt, B., Giannotti, F., Gunopulos, D., Turini, F., Zaniolo, C., Ramakrishnan,
N., Wu, X. (eds.) Proceedings of the 2008 IEEE International Conference on Data Mining
Workshops (ICDMW 08), pp. 291–300. IEEE, Los Alamitos (2008)

32 2 Multiple Instance Learning

59. Wang, C., Scott, S., Zhang, J., Tao, Q., Fomenko, D.E., Gladyshev, V.N.: A study in modeling
low-conservation protein superfamilies. CSE Technical reports, p. 35 (2004)

60. Wang, S., McKenna, M.T., Nguyen, T.B., Burns, J.E., Petrick, N., Sahiner, B., Summers,
R.M.: Seeing is believing: video classification for computed tomographic colonography using
multiple-instance learning. IEEE Trans. Med. Imaging 31(5), 1141–1153 (2012)

61. Wang, Q., Yuan, Y., Yan, P., Li, X.: Saliency detection by multiple-instance learning. IEEE
Trans. Cybern. 43(2), 660–672 (2013)

62. Wang, Z., Radosavljevic, V., Han, B., Obradovic, Z., Vucetic, S.: Aerosol optical depth predic-
tion from satellite observations by multiple instance regression. In: Apte, C., Park, H., Wang,
K., Zaki, M. (eds.) Proceedings of the 2008 SIAM International Conference on Data Mining,
pp. 165–176. SIAM, Philadelphia (2008)

63. Wang, Z., Lan, L., Vucetic, S.: Mixture model for multiple instance regression and applications
in remote sensing. IEEE Trans. Geosci. Remote 50(6), 2226–2237 (2012)

64. Wu, J., Zhu, X., Zhang, C., Yu, P.S.: Bag constrained structure pattern mining for multi-graph
classification. IEEE Trans. Knowl. Data. Eng. 26(10), 2382–2396 (2014)

65. Wu, J., Pan, S., Zhu, X., Cai, Z.: Boosting for multi-graph classification. IEEE Trans. Cybern.
45(3), 416–429 (2015)

66. Yang, C., Lozano-Pérez, T.: Image database retrieval with multiple-instance learning tech-
niques. In: Proceedings of the 16th International Conference onData Engineering, pp. 233–243.
IEEE, Los Alamitos (2000)

67. Zafra, A., Romero, C., Ventura, S., Herrera-Viedma, E.: Multi-instance genetic programming
for web index recommendation. Expert Syst. Appl. 36(9), 11470–11479 (2009)

68. Zafra, A., Romero, C., Ventura, S.: Multiple instance learning for classifying students in learn-
ing management systems. Expert Syst. Appl. 38(12), 15020–15031 (2011)

69. Zafra, A., Gibaja, E.L., Ventura, S.: Multiple instance learning with multiple objective genetic
programming for web mining. Appl. Soft Comput. 11(1), 93–102 (2011)

70. Zafra, A., Ventura, S.: Multi-instance genetic programming for predicting student performance
in web based educational environments. Appl. Soft Comput. 12(8), 2693–2706 (2012)

71. Zhang, C., Chen, X.: Region-based image clustering and retrieval using multiple instance
learning. In: Leow, W., Lew, M., Chua, T., Ma, W., Chaisom, L., Bakker, E. (eds.) Lecture
Notes in Computer Science, pp. 194–204. Springer, Berlin (2005)

72. Zhang, Q., Goldman, S.A.: EM-DD: an improved multiple-instance learning technique. In:
Dietterich, T., Becker, S., Ghahramani, Z (eds.) Advances in Neural Information, pp. 1073–
1080. MIT press, Cambridge (2001)

73. Zhang, K., Song, H.: Real-time visual tracking via online weighted multiple instance learning.
Pattern Recogn. 46(1), 397–411 (2013)

74. Zhang, M.L., Zhou, Z.H.: Multi-instance clustering with applications to multi-instance predic-
tion. Appl. Intell. 31(1), 47–68 (2009)

75. Zhang, Q., Goldman, S.A., Yu, W., Fritts, J.E.: Content-based image retrieval using multiple-
instance learning. In: Sammut, C., Hoffman, A. (eds.) Proceedings of the 19th International
Conference on Machine Learning (ICML 2002), pp. 682–689. Morgan Kaufmann Publishers,
San Francisco (2002)

76. Zhang, C., Chen, S.C., Shyu,M.L.:Multiple object retrieval for image databases usingmultiple
instance learning and relevance feedback. In: Proceedings of the 2004 IEEE International
Conference on Multimedia and Expo (ICME 2004), vol. 2, pp. 775–778. IEEE, Los Alamitos
(2004)

77. Zhang, C., Chen, X., Chen, M., Chen, S.C., Shyu, M.L.: A multiple instance learning approach
for content based image retrieval using one-class support vectormachine. In: Proceedings of the
2005 IEEE International Conference on Multimedia and Expo (ICME 2005), pp. 1142–1145.
IEEE, Los Alamitos (2005)

78. Zhang, D., Wang, F., Si, L., Li, T.: M3IC: maximum margin multiple instance clustering. In:
Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009),
vol. 9, pp. 1339–1344 (2009)

References 33

79. Zhang, D., Wang, F., Si, L., Li, T.: Maximum margin multiple instance clustering with appli-
cations to image and text clustering. IEEE Trans. Neural Netw. 22(5), 739–751 (2011)

80. Zhao, Z., Fu, G., Liu, S., Elokely, K.M., Doerksen, R.J., Chen, Y., Wilkins, D.E.: Drug activ-
ity prediction using multiple-instance learning via joint instance and feature selection. BMC
Bioinform. 14(Suppl 14), S16 (2013)

81. Zhou, Z., Jiang, K., Li, M.: Multi-instance learning based web mining. Appl. Intell. 22(2),
135–147 (2005)

82. Zhou, Z.H., Zhang,M.L., Huang, S.J., Li, Y.F.:Multi-instancemulti-label learning.Artif. Intell.
176(1), 2291–2320 (2012)

83. Zhou, T., Lu, Y., Qiu, M.: Online visual tracking using multiple instance learning with instance
significance estimation. Comput. Res. Repos. (2015)

Chapter 3
Multi-instance Classification

Abstract In the machine-learning community, the most widely used MIL paradigm
is Multi-Instance Classification (MIC). Most contributions in MIL are related to this
predictive task and a considerable number of problems have been solved successfully.
In Sects. 3.1 and 3.2, we introduce the MIC problem, give a formal definition, and
describe the evaluation metrics. Section 3.3 recalls a general taxonomy, describing the
main categories established within MIC. An in-depth study of the different methods
in each category is made in later chapters. In Sects. 3.4 and 3.5, we discuss two
specific design aspects related to MIC algorithms. In the former, we present the
different assumptions that can be used to relate class labels of instances within a
bag to the class label of the bag itself. The latter section describes the main distance
metrics that allow to determine similarity between bags. We conclude this chapter
by listing common MIC case studies found in the literature in Sect. 3.6 as well as the
relevant MIC software tools in Sect. 3.7.

3.1 Introduction

The classification task in MIL consists of predicting the class label of new bags,
based on a training set of bags with known labels. The general procedure is shown in
Fig. 3.1. The MIC algorithm uses the training data to learn a classifier, which is sub-
sequently used to predict the class label of new observations. The objective of MIC
is the same as that of traditional single-instance classification (Sect. 1.3.1). The main
difference between both paradigms lies with the representation of training objects.
As specified in Sect. 1.3.1, single-instance classification represents each learning
pattern with one instance in the form of a feature vector. For example, in an image
classification problem that tries to classify an image of the category lion, the image
would be represented by one instance as a feature vector (Fig. 3.2a). Each observa-
tion has an associated class label (label lion or label no lion). In the multi-instance
representation (Sect. 2.1), each observation, denoted as a bag in MIL terminology,
is represented with several instances or feature vectors. Figure 3.2b shows the same
image, interpreted as a bag of instances that each represents a patch of the original
image. The bag as a whole has an associated label (label lion or label no lion), but

© Springer International Publishing AG 2016
F. Herrera et al., Multiple Instance Learning, DOI 10.1007/978-3-319-47759-6_3

35

http://dx.doi.org/10.1007/978-3-319-47759-6_1
http://dx.doi.org/10.1007/978-3-319-47759-6_1
http://dx.doi.org/10.1007/978-3-319-47759-6_2

36 3 Multi-instance Classification

Fig. 3.1 Procedure of classification problem

(a) Single-instance classification

(b) Multiple instance classification

Fig. 3.2 Training data set for classification task

class labels of instances inside it are not known. In this example, we know that if
the bag label is lion, at least one instance (image patch) contains a lion. However, it
is not known which instance contains the learning object nor whether there is more
than one instance containing it.

Although the multi-instance representation gives us a very natural and flexible
way to represent complex learning objects, solving MIC problems is complicated,
since the relationship between instances and bags can be different depending on the
nature of the problem at hand. In the image classification example in Fig. 3.2b, the
representative information of an object is contained in only one instance (the lion).
The remaining instances are not relevant and can even confuse the learning process,
e.g., when they represent other animals.

3.1 Introduction 37

Beach (b) Desert (c) Ocean(a)

Fig. 3.3 Identifying the concept beach

(a) Desert1 (b) Desert2 (c) Forest

Fig. 3.4 Identifying the concept forest

In other problems, a different relation between instance class labels and the bag
class label can exist. For example, in an image classification problem with learning
target beach, it would be difficult to say which single part of an image is informative.
We would need to identify several objects (such as water and sand) to say that
the image is a beach scene. If only one instance type is present, the image may
be a desert or ocean scene (see Fig. 3.3). This reasoning can be extended to cases
where the mere presence of particular objects is not sufficient. For example, we can
consider the question of how many trees are required to identify an image as a forest
(see Fig. 3.4). In this situation, a certain fraction of instances or a particular number
of them is required to represent the learning object and therefore most (or even all)
instances can be informative.

Having described the large representation flexibility and the learning complexity
of MIC, the following section provides a formal definition of the problem.

3.2 Formal Description

Given a multi-instance dataset with n training bags, we structure the training set as
D = (X,L), where X = 〈X1, . . . ,Xn〉 is a set of bags and L = 〈�1, . . . , �n〉 a set
of class labels. The ith training object is represented by 〈Xi, �i〉, where the bag Xi

is associated with the label �i. As defined in Sect. 2.1, each bag Xi is drawn from
N

X, the set of all multi-sets containing elements from X, and Xi = 〈

xi1, . . . , xini
〉

is a
collection of ni instances described by d-dimensional vectors, that is, each instance

http://dx.doi.org/10.1007/978-3-319-47759-6_2

38 3 Multi-instance Classification

Fig. 3.5 Multiple instance classification

xij ⊂ X is a vector of d dimensions (X ⊆ R
d). The labels �i are drawn from L, the

finite set of all possible class labels. In MIC, the classes are weakly associated with
the bags, since although a bag may be labeled with a class, some (or even most) of
its instances may not be truly related to that class.

The MIC objective is to construct, based on the training set D, a function H :
N

X → L that allows to predict class labels of new bags as accurately as possible. The
process is shown in Fig. 3.5 where the input is a bag of instances and the output is a
single label. The fact that each pattern is represented by several instances complicates
the situation. The learning process needs to consider that the bag can have both
instances representing the concept to learn and others that do not. This task can be
addressed in two possible ways. On the one hand, an instance-level model can be
constructed to obtain instance labels, deriving bag labels from instance labels after
that. On the other hand, a bag-level model can attempt to obtain bag labels directly
from bag discrimination information, working with each bag as an inseparable entity.
The following chapters will examine these solution methods further. In the current
chapter, the idea is to show that the classification function has to consider the relation
between instances and bags in each particular problem. Such relations are not trivial
and do not need to be taken into account in single-instance classification. There exist
a great number of possibilities to model the relation between the set of instances and
its label. This provides a high level of flexibility in representing complex objects,
but makes it very difficult to define the most appropriate relationship. The instances
inside each bag can have ambiguity, redundancy, interactions, and other properties
to explore.

It is interesting to emphasize the case of |L| = 2. This situation deals with
two-class classification problems (one positive class and one negative class) and is
undoubtedly the most widely addressed problem in the MIC literature. A consider-
able number of methods described in the following chapters have been specifically
designed for |L| = 2. They can only be applied in that context and require modifi-
cations when more than two classes are present.

Finally, with respect to the output space, the output of a multi-instance classifier
consists of one class label. Therefore, the metrics to evaluate the performance of
multi-instance classifiers can be the same as the ones used in single-instance clas-
sification. A considerable number of performance metrics have been defined in the
literature, such as accuracy, sensitivity, and specificity. In Sect. 1.4, we listed the most
commonly used ones.

http://dx.doi.org/10.1007/978-3-319-47759-6_1

3.3 Taxonomy 39

3.3 Taxonomy

Currently, MIC algorithms cover virtually all categories of machine-learning meth-
ods. From decision rules and tree methods to the more sophisticated connectionist
and evolutionary methods or support vector machines, all of them have been adapted
in various ways to MIC. The growing number of MIC algorithms has created the
need to clearly and systematically list their characteristics. For this purpose, various
categorization systems have been proposed that try to capture distinctive features of
MIC methods. However, as is the case in traditional single-instance learning, it is not
possible to create a taxonomy that is both exhaustive and exclusive at the same time,
because any nontrivial categorization system will contain classification methods that
can be included in two or more categories.

One of the first attempts to order MIC methods was presented by Xu [43]. Two
important categories can be found in this taxonomy:

• Instance-based methods: these methods first try to determine instance class
labels, which are then used to derive class bag labels with an explicit rule.

• Metadata-based methods: these methods determine the bag class labels from
information extracted directly from the bags.

Later, Foulds [20] proposed a very different categorization, considering three cat-
egories widely followed by most works developed from 2009 onward. The categories
are set up according to their relationship with traditional single-instance classification
algorithms:

• Purpose-built: algorithms specifically designed to learn multi-instance concepts.
• Upgraded: adaptations of single-instance classification algorithms to MIC.
• Wrappers: methods that transform the structure of the multi-instance dataset to

a single-instance representation in order to apply existing single-instance classifi-
cation algorithms without modification.

This categorization has lost support in the last years, because as the number of
proposals increased, it could result in confusion. On the one hand, the purpose-built
algorithms can also be categorized into one of the well-established learning methods.
For example, Xu [43] shows that some methods included in this category, such as APR
MIL methods [18] and Diverse Density [31] can be seen as different implementations
of the maximum likelihood principle. On the other hand, the category of the upgraded
methods is too wide, since it includes both instance-based (upgraded) and bag-based
(upgraded) methods.

More recently, Amores [3] presented a MIC algorithm taxonomy of three clear
groups of methods. Currently, this taxonomy is the more widely followed. The cat-
egories are:

• Instance space paradigm: algorithms that seek discriminant functions in the
instance space. The bag label is derived using a multi-instance assumption linking
labels of instances with that of the bag.

40 3 Multi-instance Classification

• Bag space paradigm: methods that work in the bag space and define similarity or
distance measures between bags, allowing them to determine spatial relationships
between bags and classes.

• Embedded space paradigm: algorithms that work in an embedded space. They
transform the original input space into a new (embedded) space, where bags are
described by single attribute vectors. Single-instance algorithms can be applied in
the induced space.

Another categorization was presented by Foulds and Frank [21]. These authors
proposed a hierarchy of MIC algorithms based on the multi-instance assumptions that
they implicitly or explicitly embody. Although interesting and very thorough, this
categorization was not widely followed by later works. Two facts could explain this.
On the one hand, although there is a clear trend toward generalized assumptions and
many recent works have implicitly or explicitly dropped the standard assumption, it
is not often clearly stated what particular assumptions are used nor is their relation
with other assumptions specified. On the other hand, the classification of [21] divides
the methods into a higher number of categories and several of them are disconnected
from the rest.

Based on these previous studies, this book attempts to specify an adequate tax-
onomy which covers most algorithms and is easy to follow for the machine-learning
community. Concretely, based on the work of Amores [3], the proposed taxonomy is
divided into two main categories, instance-based methods and bag-based methods.
The latter are in turn divided into two categories that differ in their use of an embed-
ded space or not. We consider this an appropriate taxonomy, on the one hand because
it is relatively easy to recognize this categorization in any algorithm in the literature
and on the other hand because all previous proposals implicitly or explicitly take into
account this feature (with the exception of Fould [20]). However, since this grouping
still considers too many methods in each category, a second level of categorizing is
necessary. For this second level, we are not in accordance with Amores [3] and con-
sider a more convenient second division based on one of the ideas proposed by Fould
[20], where algorithms are divided in classic categories used in traditional single-
instance classification. The reason to choose this criterion is that the supervised
learning literature provides many single-instance algorithms that are well supported
both theoretically and empirically and can provide a solid foundation from which to
formulate MIC algorithms. Second, a significant number of publications followed
this criterion to group MIC algorithms in their work, because they are very familiar
to all members of the machine-learning community and simple to understand and
follow.

The proposed taxonomy is shown in Fig. 3.6. We provide a brief description below.
An in-depth discussion of each category, together with a review of the corresponding
methods and an experimental study, will be presented in later chapters.

1. Instance-based methods: these are algorithms whose learning process occurs
at the level of the instances. They assume the existence of different classes of
instances, i.e., instances have hidden class labels. Their second assumption is that
of an explicit relation between the class labels of instances in a bag and the class

3.3 Taxonomy 41

Fig. 3.6 Taxonomy of multiple instance classification algorithms

label of the bag itself. This relation is called the multi-instance (MI) assumption.
Instance-based methods construct a learning model to estimate instance class
labels in a bag and then, based on the MI assumption, they determine the bag
class label. Different assumptions establishing the relation between instance and
bag class labels are specified in Sect. 3.4. These methods can be divided into six
classic single-instance paradigms, that are described in detail in Chap. 4:

http://dx.doi.org/10.1007/978-3-319-47759-6_4

42 3 Multi-instance Classification

• Wrapper methods
• Maximum likelihood based methods
• Instance-level support vector machine
• Decision rules and trees
• Neural networks
• Evolutionary-based methods

2. Bag-based methods: these are algorithms whose learning process occurs at the
bag level. They do not attempt to determine sub-concepts or class labels for
individual instances, but instead consider the bag as a whole entity. These methods
are divided into two subcategories, methods that work in the original bag space
and methods that work in a mapped bag space.

• Original bag space based methods include classifiers that define a distance or
similarity measure between bags to work directly in the original bag space.
These methods rely on a bag comparison function and a method for estimat-
ing bag labels. With regard to the former, a distance function can be used
(Sect. 3.5), while there are two predominant methods for the latter:
– Nearest neighbor based methods
– Bag-level SVM

• Mapped bag space based methods include classifiers that transform each bag
to a single-instance representation, such that the learner can train any single-
instance classifier to label new bags. Map-based methods differ from each
other in the specific way they perform the mapping process, namely:
– Bag statistics mapping
– Prototype concatenation mapping
– Counting-based mapping
– Distance-based mapping
– Bag-level distance mapping
An extensive study of the bag-based methods can be found in Chap. 5.

3.4 MI Assumptions

As specified in Sect. 3.1, a MIC problem represents its learning objects as bags of
feature vectors. The bag class labels are available, but the class labels of the individual
instances are not defined. This type of representation allows to represent complex
objects in a very natural way and many different relations between instances in a
bag and bag class labels can be defined. This is where the different MI assumptions,
which define these relations, play a relevant role to solve MIC problems.

In initial MI research, a strong assumption was made. It is normally referred to as
the standard MI assumption and states that each instance has an unknown class label
which identifies it as either positive or negative. A bag is considered to be positive if
and only if it contains at least one positive instance. This assumption is reasonable
in the musk drug activity prediction problem [18], where a molecule is represented

http://dx.doi.org/10.1007/978-3-319-47759-6_5

3.4 MI Assumptions 43

by its different conformations and has the desired drug effect if and only if one or
more of its conformations binds to the target binding site. It is possible to say that a
single positive instance (a specific molecule conformation) is informative enough to
determine the bag class label. However, there are other MIC problem domains where
this assumption may not be applied. Alternative, more generalized, assumptions are
needed. For example, as stated in Sect. 3.1, the classification of concepts as beach or
forest in an image requires a certain fraction of instances (image patches) to represent
the concepts. In these cases, most or all instances could be informative.

Different assumptions can be applied depending on the MIC problem and the
chosen representation. It is not possible to state that one particular assumption is the
most effective heuristic applicable to the whole range of MIC problems. A given
assumption can be appropriate for one specific domain, but not advisable in others,
because its implied relation does not hold there. Generalized assumptions in a MI
scenario deserve special attention for solving the problem appropriately.

It is clear that if the standard MI assumption is relaxed, alternative interactions
between instances and bag class labels are possible. However, there are other points
that are not so obvious. First, the literature is not in agreement on whether the gen-
eralized version of the MI problem belongs within MIL or whether it is a separate
problem. There are works that state that alternative MI assumptions are generalized
MIL [32, 43], while others state that they are alternative MI assumptions within
the multi-instance framework [12, 21] and others compare multi-instance learning
with group-based learning [8, 15]. Second, while many recent works have implicitly
or explicitly dropped the standard assumption and use different alternative assump-
tions, they do not state the particular assumptions they use nor how these relate to
other assumptions. Therefore, it can be difficult to recognize the many existing MI
assumptions in the literature.

This section aims to present the different assumptions and how they are related.
Following the categorization used in Sect. 3.3, MIC methods are divided into three
categories: instance-based, bag-based, and map-based methods. In this section, we
pay attention to the assumptions considered by instance-based classifiers. Our starting
point is the work of Foulds and Frank [21]. Bag-based methods are not considered
in this study. Although the definition of similarity or dissimilarity creates implicit
assumptions about which instances are important, they need fewer assumptions about
the relations between instances and bags.

A summary of the different assumptions is shown in Fig. 3.7. Below, we describe
them following the formulation given in Sect. 3.2, where X = 〈X1, . . . ,Xm〉 is a set
of m bags and each bag is given as Xi = 〈

xi1, . . . , xini
〉

. The set of bag class labels is
L = 〈�i, . . . , �m〉, where �i ∈ L. A binary classification is assumed (|L| = 2), which
is the most widely used in MIC. This makes the specification more understandable
(the bags are positive or negative) and it could easily be extended for the case where
|L| > 2. A function h : X → Λ is defined that estimates instance class labels, where
Λ is the set of possible instance labels. The MI assumption is a functionH : NΛ → L

that relates the label of each bag with the labels of its instances.

44 3 Multi-instance Classification

Fig. 3.7 Multiple instance learning assumptions

3.4.1 Standard MI Assumption

The standard MI assumption states that each instance has a hidden class label �i ∈ L.
Under this assumption, a bag is positive if and only if at least one instance is positive.
If the positive class is represented with value 1 and the negative class with value 0,
the bag class label can be interpreted as the disjunction of instance class labels:

H (Xi) =
∨

xij∈Xi

{

h
(

xij
)}

. (3.1)

Alternatively, if the labels are arithmetically interpreted, then the standard MI
assumption can be described as

H (Xi) = max
xij∈Xi

{

h
(

xij
)}

. (3.2)

3.4.2 Weidmann et al.’s Hierarchy

Weidmann et al.’s hierarchy [41] is a fundamental reference on this topic, clearly
describing and relating different MI assumptions. In this hierarchy, three paradigms
are considered in increasing order of generality: the presence-based, the threshold-
based, and the count-based paradigms. The positive class is again represented with
value 1 and the negative class with value 0 to describe these assumptions.

3.4 MI Assumptions 45

• Presence-based MI assumption: this assumption states that a bag is positive
if and only if it contains one or more instances that belong to a set of required
instance-level concepts. It coincides with the standard assumption when only one
concept is considered. Let C = {c1, c2, . . . , cp} be the set of required instance-
level concepts and let �(Xi, cj) be the number of occurrences of concept cj in the
bag Xi. The bag label is defined as

H (Xi) =
{

1 if (∀cj ∈ C)(�(Xi, cj) ≥ 1)

0 otherwise.
(3.3)

• Threshold-based MI assumption: this assumption states that a bag is positive if
and only if there are at least a certain number of instances in the bag that belong
to each of the required concepts. Each concept can have a different threshold. The
bag label is defined as

H (Xi) =
{

1 if (∀cj ∈ C)(�(Xi, cj) ≥ zj)

0 otherwise,
(3.4)

where zj ∈ N is the lower threshold for concept cj.
• Count-basedMI assumption: under this MI assumption, there is a maximum and

a minimum number of instances of each concept which each bag has to cover to
be considered positive. Each concept can have different thresholds. Using zj ∈ N

and tj ∈ N as the lower and upper threshold for concept cj, the label of bag Xi is
given by

H (Xi) =
{

1 if (∀cj ∈ C)(zj ≤ �(Xi, cj) ≤ tj)

0 otherwise.
(3.5)

3.4.3 Collective Assumption

This group consists of the heuristic known as the collective assumption [22, 43] and
its proposed extensions.

• Collective assumption: this is an MI assumption where all instances in a bag
contribute equally to its label. It is a probabilistic rule that relates the probability
that a bag is assigned to certain class with the likelihood that the instances in the
bag are assigned to that class. Although it is not required that instances are divided
in the same classes as the bags, it is necessary to determine the contribution of
each instance (or its class) to different classes of bags. To do so, p

(

�|xij
)

must be
determined to compute for each instance xij its influence or degree of relationship
with each class � ∈ L of the bag space (� can be either positive + or negative −).
The values p

(

�|xij
)

can be interpreted as a probability distribution of the instances
xij over the bag classes L, i.e., (∀xij ∈ Xi)(

∑

�∈L p
(

�|xij
) = 1). In the probabilistic

46 3 Multi-instance Classification

understanding of the collective assumption, instances of a bag are a random sample
of an underlying instance population of the bag. The class probability function at
the bag level is the expected class value of the population, which is estimated by
the sample mean:

p (H (Xi) = �) = 1

ni

ni∑

j=1

p
(

�|xij
)

. (3.6)

• Weighted collective assumption: this extension of the collective assumption was
proposed in [20] and incorporates a weight function over the instance space. It
asserts that each instance contributes independently, but not necessarily equally,
to the class label of the bag. It assigns weights ωxij to all instances xij ∈ Xi and
computes the bag label as

p (H (Xi) = �) = 1
∑ni

j=1 ωxij

ni∑

j=1

[

p
(

�|xij
) ∗ ωxij

]

. (3.7)

• Product rule assumption: Li et al. [29] state that, following the assumption of
instance independence, the label of a bag should be computed with the product
rule. Given a bagXi, its instances are assumed to be conditionally statistically inde-
pendent. This means that, given the label of a bag �i (either positive or negative),
the instances are drawn independently:

p(xi1, xi2, · · · , xini |�i) =
ni∏

j=1

p(xij|�i).

By writing the probability density function p(xij|+) that an instance xij is drawn
from a positive bag as f +(xij) and from a negative bag as f −(xij), the independence
assumption can be rewritten as

p(xi1, xi2, · · · , xini |+) =
ni∏

j=1

f +(xij),

p(xi1, xi2, · · · , xini |−) =
ni∏

j=1

f −(xij).

(3.8)

The product rule can be used to combine the instance classifications into the label
of the bag. The product of the posteriors of instances, weighted by the bag prior,
is used to decide the bag label. We classify the bag Xi as positive if p(+|Xi) ≥
p(−|Xi), where p(+|Xi) or p(−|Xi) respectively denote the posterior probability
that the bag Xi is positive or negative, or equivalently if

3.4 MI Assumptions 47

p(+)−(ni−1)

ni∏

j=1

p(+|xij) ≥ p(−)−(ni−1)

ni∏

j=1

p(−|xij), (3.9)

where p(+|xij) and p(−|xij) reflect the information that the instance xij contains to
predict its bag to be positive or negative respectively and p(+) and p(−) denote
the prior probabilities for positive and negative bags.

• Sum rule assumption: Li et al. [29] show that the product rule (3.9) is very
sensitive to estimation errors of the posteriors. In case of large errors, it is preferable
to use the more robust sum rule, which can be derived as an approximation of the
product rule

(1 − ni)p(+) +
ni∑

j=1

p(+|xij) ≥ (1 − ni)(p(−)) +
ni∑

j=1

p(−|xij). (3.10)

3.4.4 Mixture Distribution Assumption

The mixture distribution assumption considers a recent group of assumptions (not
included in the review of Foulds and Frank [21]), where instances are modeled by a
mixture distribution of the concept and the nonconcept, which leads to a convenient
way to solve MIC as a classifier combining problem [29].

This assumption states that there exist both a concept C that defines the differ-
ence between the positive and negative bags, and a nonconcept C that denotes the
background region shared by both positive and negative bags. As such, there are two
distinct distributions to generate instances from: f C(·) for the concept C and f C(·)
for the nonconcept C. The instances in a negative bag are all drawn from C, while
the instances in a positive bag are from a mixture of both C and C, with a fraction α

of instances sampled from the concept C. Concretely,

f −(xij) = f C(xij), (3.11)

f +(xij) = αf C(xij) + (1 − α)f C(xij), (3.12)

with 0 < α < 1. The density of the concept f C(x) can be written as

f C(xij) = f +(xij) − (1 − α)f −(xij)

α
.

We denote the prior probabilities for positive and negative bags as p(+) = β and
p(−) = 1 − β, respectively, with 0 < β < 1. The prior probabilities for the concept
C and the nonconcept C are p(C) = αβ, p(C) = 1 − αβ.

• Product rule assumption: with the mixture assumption (3.11) and (3.12), the
label of a bag Xi can be determined from the classification of its instances xij into

48 3 Multi-instance Classification

the concept or nonconcept [29]. By using the relation between the probability
distribution functions and their posteriors, it can be deduced that

p(+|Xi) = p(C|xij) + β − αβ

1 − αβ
p(C|xij), (3.13)

p(−|Xi) = 1 − β

1 − αβ
p(C|xij), (3.14)

where p(C|xij) and p(C|xij) denote respectively the probability that xij belongs to
the concept C or the nonconcept C.
Substituting (3.13) and (3.14) into the decision rule (3.9), we find

β−(ni−1)

ni∏

j=1

(p(C|xij) + β − αβ

1 − αβ
p(C|xij)

≥ (1 − β)−(ni−1)

ni∏

j=1

1 − β

1 − αβ
p(C|xij).

(3.15)

If the posteriors p(C|xij) and p(C|xij) can be accurately estimated, an optimal
solution (in the sense of the Bayes error) for the bag label can be obtained from
(3.15).

• Sum rule assumption: the product rule above can also be approximated by the
more robust sum rule of [29]:

(1 − ni)β +
ni∑

j=1

(p(C|xij) + β − αβ

1 − αβ
p(C|xij)

≥ (1 − ni)(1 − β)−(ni−1) +
ni∑

j=1

1 − β

1 − αβ
p(C|xij).

(3.16)

• γ -rule assumption: if the posterior probabilities cannot be estimated properly and
it is only known that an instance is more probable to belong to the concept C or
the nonconcept C, the label of a bag is predicted by counting how many instances
are estimated to belong to the concept. The optimal threshold to label a bag as
positive is based on the sum rule defined in (3.16). It is preferred over the product
rule since there can be large estimation errors in the posteriors.
Assume that there are ni instances in bag Xi and a fraction g of them, so g · ni
instances, are estimated to be from the concept, then (3.16) can be rewritten as

3.4 MI Assumptions 49

(1 − ni)β +
∑

xij∈C
(p̂(C|xij) + β − αβ

1 − αβ
p̂(C|xij))

+
∑

xij∈C
(p̂(C|xij) + β − αβ

1 − αβ
p̂(C|xij))

≥ (1 − ni)(1 − β)−(ni−1) +
∑

xij∈C

1 − β

1 − αβ
p̂(C|xij)

+
∑

xij∈C

1 − β

1 − αβ
p̂(C|xij),

(3.17)

where p̂(C|xij) and p̂(C|xij) denote the estimated posteriors. There are g · ni
instances in the summation

∑

xij∈C and (1 − g) · ni instances in the summation
∑

xij∈C . To simplify, the posterior p̂(C|xij) is assumed to equal one if the instance
xij is classified to the concept and zero if it is classified to the nonconcept. Using
this, the above equation becomes

γ = (1 − αβ)(1 − 2β)

2(1 − β)ni
+ αβ.

A bag is classified to be positive if γ is larger than this threshold. The decision
criterion is called the γ -rule.

3.4.5 Soft Bag MI Assumption

The soft bag definition [30] includes a new consideration of multi-instance problems.
Previous generalized assumptions assume that all instances of negative bags are
negative examples. There is no ambiguity in these objects. The new formulation
assumes negative bags can also contain positive instances. As a result, negative bags
can also have a noisy instance composition. For example, if we consider the problem
of classifying images for the concept flower, negative images could include regions of
flowers. This labeling noise is common in weakly supervised learning, where human
annotators are asked to label data with a few keywords. The absence of the flower
label does not mean that there are no flowers in the image, just that the annotator
did not think of flower as one of its predominant concepts. This means that negative
bags can frequently contain positive instances.

To address this problem, Li et al. [30] consider a more general definition of MIL,
where both positive and negative bags are soft. A soft bag Xi is a set of instances
that are sampled independently from two distributions p+

Xi
(xij) (positive source) and

p−
Xi

(xij) (negative source). The positive source is the distribution of the target concept
(e.g., image patches of flower), the negative source is the distribution of background
material (e.g., image patches of everything else).

50 3 Multi-instance Classification

A soft bag Xi is a set of ni instances, where ni ≥ n and n ∈ N is a lower bound
on bag size. The bag label would be determined as follows. Let 0 < μ ≤ N be
a lower bound on the number of positive examples per positive bag. A soft bag Xi

is μ-positive if n+
i ≥ μ and μ-negative otherwise. Although a μ-negative soft bag

can contain positive instances, their number has to be less than that of a μ-positive
soft bag. Conventional supervised learning corresponds to ni = μ = 1, where a bag
contains either a positive or negative instance.

3.5 Distance Metrics

Intuitively, a distance is a numerical measure of how far two places or objects are
from each other. It refers to the difference in spatial location. In a broader sense,
related to classification, it can refer to the difference between any two objects. In this
context, distance metrics are a possible way to evaluate similarity and objects at a
closer distance are interpreted as being more similar.

It is very complicated to precisely determine the distance between objects and
many contributions deal with this problem in single-instance learning [26]. In MIL,
the process becomes more challenging. On the one hand, a multi-instance object is
represented as a bag of instances, such that the distance between objects is a set-to-set
distance. Compared to single-instance data for which we can use a vector distance
(e.g., Euclidean distance), distance estimation in MIL is inherently more difficult. On
the other hand, in MIL, labels are assigned to bags but not instances which is known as
weak label association. As a result, although a bag belongs to a class, some or most of
its instances may not be truly related to that class. The distance metric should consider
these particularities for obtaining appropriate results. For example, Fig. 3.8 shows
two images categorized as Fox and one categorized as Cat. Two figures represent a
red fox in different backgrounds, one of them in the snow and the other in a forest.
The third image represents a cat in a forest. When all image regions are compared, the
image background could determine a higher similarity between images that represent
different concepts. Appropriately modeling the distance between the image regions
could improve the similarity relation between images that really represent the same
concept.

(a) Red fox in the snow (b) Red fox in the forest (c) Cat in the forest

Fig. 3.8 Differences between animals in different backgrounds

3.5 Distance Metrics 51

To compute distances between any type of objects, we need a precise definition in
the form of a distance function or metric. Formally, given a set of objects X, a metric
is a function D : X × X → R with the following properties for all A,B,C ∈ X:

1. D (A,B) ≥ 0 (nonnegativity)
2. D (A,B) = 0 if and only if A = B (self-identity axiom)
3. D (A,B) = D (B,A) (symmetry)
4. D (A,B) ≤ D (A,C) + D (C,B) (triangle inequality)

The spatial structure defined by the distance D and the set of objects X is called
a metric space. Several types of metrics can be defined on any set X, each of them
capturing different aspects of the objects under comparison or properties of the spatial
structure [17, 26].

In some applications, the use of a similarity function can be more appropriate
than a distance function. Given a set of objects X, a function S : X × X → R is a
similarity function if it is nonnegative, symmetric and if S (A,B) ≤ S (A,A) holds
for all A,B ∈ X, with equality if and only if A = B. Distance and similarity are
inversely related notions. A distance function D can be obtained from a similarity
function S by using an appropriate transformation [17]. For example, often used
transformations are D = 1 − S, D = 1−S

S , D = − ln S and D = arccos(S).
Kernel functions, often used in SVMs, are basically similarity functions. Many

kernel functions have been developed for unconventional data structures such as
strings, trees, or graphs [23, 25]. They can also be transformed into distance functions.
The most popular transformation is

D (A,B) = √

K (A,A) − 2K (A,B) + K (B,B),

where K (A,B) denotes a kernel function defined over bags A and B. Other transfor-
mation methods may be used as appropriate [25].

Below, we describe some distance functions widely used in MIL. We define them
considering the distance between any two bags A and B with na and nb instances,
respectively. Following the work of Cheplygina et al. [14], we distinguish between
two different approaches to classify the distance metrics. The first considers each bag
as a point set, defining the distance as an aggregation of a set of distances between
two point sets. The second approach considers each bag as a distribution of points
and defines the distance by comparing the distributions represented by each point
set.

3.5.1 Bags as Point Sets

In this approach, the metric considers each bag as a point set or a subset of a high-
dimensional space. Typically, a distance between two bags is defined as an aggrega-
tion of distances between particular instances of each bag. The Euclidean distance

52 3 Multi-instance Classification

is typically used to measure the distance between instances, although other metrics
can be applied as well, such as the Manhattan or Chebyshev distance [11].

Hausdorff Distance

One possible metric is based on the Hausdorff distance. Several variants have been
proposed in the literature.

• Minimal Hausdorff distance [37]: this measure is defined as the minimum dis-
tance between all instances of bags A and B. For each instance, the closest instance
in the other bag is located. The minimum among these closest distances defines
the bag distance. Concretely,

DHausdorff−min (A,B) = min
a∈A

min
b∈B

d(a, b), (3.18)

where d(a, b) represents a distance function between instances. This measure is
symmetric, but it does not satisfy the identity property, since a zero distance does
not imply A = B when an instance in A coincides with an instance in B. The
triangle inequality is not always satisfied either. This measure is therefore not a
metric.

• Maximal Hausdorff distance [37]: this distance is defined as the maximal dis-
tance between an instance in A and its closest instance in B and vice versa. For
each instance, the closest instance in the other bag is located and the maximum of
these distances is used as the bag distance, given as

DHausdorff−max (A,B) = max {h (A,B) ,h (A,B)} , (3.19)

where
h (A,B) = max

a∈A
min
b∈B

d(a, b). (3.20)

Since h(A,B) = h(B,A), the measure h is not symmetric. The additional step
(3.19) is necessary for the symmetry criterion. This ensures that this distance
is a metric, because it satisfies the identity, symmetry, and triangle inequality
properties. However, it could be too sensitive to outliers.

• Average Hausdorff distance [49]: this metric is the average distance between an
instance in A and its closest instance in B and vice versa. The bag distance is given
by

DHausdorff−avg (A,B) =
∑

a∈A
min
b∈B

d(a, b) + ∑

b∈B
min
a∈A

d(a, b)

|A| + |B| . (3.21)

This measure satisfies the identity, symmetry, and triangle inequality properties.
• Adapted Hausdorff distance [46]: this distance combines the previous ones.

Since the information contained in instances depends on the class that their bag
belongs to, the metric is different when it evaluates the distance between two posi-

3.5 Distance Metrics 53

tive or negative bags or between one positive and one negative bag. The following
distinction is made based on the standard MI assumption:

– If both bags are negative, we can be sure that there is no instance in the pattern
that represents the positive concept. Therefore, an average distance is used to
measure the distance between these bags, because all instances are guaranteed
to be negative: DHausdorff−adap(A,B) = DHausdorff−avg(A,B).

– If both bags are positive, we know that at least one instance in each of them
represents the positive concept, but there is no information about which partic-
ular instance or instances. The minimal distance is used to measure the distance
between the bags, because the positive instances have a higher probability of
being close to each other: DHausdorff−adap(A,B) = DHausdorff−min(A,B).

– Finally, if we evaluate the distance between bags where one of them is a pos-
itive bag and the other is a negative one, the maximal Hausdorff distance is
used to calculate the distance between the two bags: DHausdorff−adap(A,B) =
DHausdorff−max(A,B).

• k-th rankedHausdorff distance [37]: this distance tries to improve the robustness
of the maximum Hausdorff distance against outliers, to which the max and min
operators are sensitive. Concretely, the maximum Hausdorff distance (3.20) is
redefined as

h (A,B) = kth
a∈A

min
b∈B

d(a, b), (3.22)

where kth represents the k-th largest value. When k = |A|, the k-th ranked
Hausdorff distance reduces to (3.20).

OWA Operator-Based Distances

Ordered weighted averaging operators (OWA) [44] can replace the classical max
and min operators to improve the performance of the Hausdorff distances. The OWA
aggregation of a sequence V ofm scalar values is computed by first sorting the values
of V in decreasing order and assigning the weight wi ∈ [0, 1] to the value at the ith

position, such that
m∑

i=1
wi = 1. The weighted average is computed as

OWAW (V) =
m

∑

i=1

wici,

where ci represents the ith largest value in V and W = 〈w1, . . . ,wm〉 is the weight
vector.

The OWA operator can be seen as a generalization of any aggregation operation
that can be made over a set of values. For example, the classical maximum operator
over a set of values V can be modeled with the weight vector 〈1, 0, . . . , 0〉. If the
value at the first position is an outlier, the aggregation result will be inappropriate.
A softened version of the maximum operator can be obtained by using a weight
vector that distributes the weight among many values, putting more weight in the

54 3 Multi-instance Classification

first positions (the highest values) and putting less and less weight in the following
positions.

In the OWA version of the maximal Hausdorff distance, (3.20) is replaced by

hOWA (A,B) = OWAWmax OWAWmin ‖a − b‖
︸ ︷︷ ︸

b∈B
︸ ︷︷ ︸

a∈A

. (3.23)

The OWA version of the average Hausdorff distance (3.21) is defined as

DOWA
Hausdorff−avg (A,B) =

∑

a∈A
OWAWmin ‖a − b‖

︸ ︷︷ ︸

b∈B
+ ∑

b∈B
OWAWmin ‖a − b‖

︸ ︷︷ ︸

a∈A
|A| + |B| . (3.24)

The weight vectors Wmax and Wmin are used to approximate the maximum and
minimum operators, respectively. Two weight vector schemes are suggested in [35].
For the maximum operator, the linearly decreasing weight vector is defined as

Wmax−L =
〈

2

m + 1
,

2 (m − 1)

m (m + 1)
, · · · ,

4

m (m + 1)
,

2

m (m + 1)

〉

(3.25)

and the inverse additive weight vector as

Wmax−IA =
〈

1

1
m∑

i=1

1
i

,
1

2
m∑

i=1

1
i

, · · · ,
1

(m − 1)
m∑

i=1

1
i

,
1

m
m∑

i=1

1
i

〉

, (3.26)

where m is the length of the weight vector, i.e., the number of values on which the
OWA operator is applied. The weight vector for the minimum operator is the reverse
sequence of the maximum weight vector. Vluymans et al. [35, 36] showed that these
OWA variants of Hausdorff distances are quite robust against outliers.

3.5.2 Bags as Probability Distributions

In this approach, each bag is considered as a probability distribution in the instance
space. Bag differences are characterized in terms of differences between the distri-
bution of their instances. For each bag, a probability density has to be estimated.
It is very hard to estimate a high-dimensional probability density function in a
high-dimensional feature space and very computationally demanding to estimate
the difference, or overlap, between two distributions. The instance distributions are
approximated and the distances are computed between the approximated distribu-
tions.

3.5 Distance Metrics 55

Earth Movers Distance

This distance measures the effort that is needed to transform the probability distribu-
tion A (‘pile of earth’) into another probability distribution B (‘hole in the ground’).
It is assumed that each instance in bag A with na instances contains 1

na
of the total

probability mass. Therefore, the pile consists of na smaller piles and the hole consists
of nb smaller holes. The distribution distance of earth movers distance is defined as

DEDM(A,B) =
∑

a∈A,b∈B
f (a, b)d(a, b), (3.27)

where d(a, b) is the Euclidean distance between points (the ground distance between
piles and holes) and f (a, b) is the flow that minimizes the overall distance, subject
to constraints that ensure that only available amounts of earth are transported into
available holes and that all the earth is indeed transported:

• f (a, b) ≥ 0,
• ∑

a∈A f (a, b) ≤ 1
nb

,

• ∑

b∈B f (a, b) ≤ 1
na

,
• ∑

a∈A,b∈B f (a, b) = 1

Mahalanobis Distance

This distance approximates the distribution of each bag by a Gaussian with mean
μ and covariance matrix

∑

. The Mahalanobis distance is defined as the difference
between two Gaussian distributions

DMahalanobis(A,B) = (μa − μb)
T

(

1

2

∑

a

+1

2

∑

b

)−1

(μa − μb). (3.28)

When the number of instances per bag is low and the feature dimensionality is high,
it can become hard (or even impossible) to invert the averaged covariance matrix.

Cauchy–Schwarz Divergence

This distance tries to solve the fact that a Gaussian distribution can be too restrictive.
It uses a multivariate Gaussian (or a Parzen density with a smaller width parameter)
instead. The Cauchy–Schwarz divergence is defined as the divergence between the
estimated distributions

DCauchy−S(A,B) = −log

(
Kσa+σb(A,B)

(K2σa(A,B)K2σb(A,B))1/2

)

, (3.29)

where

Kσ (A,B) =
∑

a∈A,b∈B

exp(1
−2σ 2 (a − b)T (a − b))

(2πσ 2)d/2
. (3.30)

56 3 Multi-instance Classification

According to [9, 14], when the distributions are form the same data source, σa =
σb holds.

3.6 Real-World Applications

In Chap. 2, the main application fields for MIC were described. Following the group-
ing established there, the most representative case studies of each application field
are listed in this section. The experimental studies conducted in later chapters will use
a selection of the data sets described in this section. With the purpose of highlighting
the data used in experimental studies, these will be printed in bold.

3.6.1 Bioinformatics

As commented in Sect. 2.4.1, in drug activity prediction, the task is to determine
whether a molecule has the desired activity, that is, whether it binds strongly to a
target protein. Molecules may adopt a wide range of shapes or conformations which
influence their binding properties. Different molecules have different numbers of
conformations. It is known that a molecule is active when at least one shape can
bind well (although it is not known which one) and it is inactive when none of its
conformations can bind well.

• Musk [18]: this problem consists of predicting whether a molecule has a musky
smell or not. A molecule is described by its different conformations. This problem
has become a classic benchmark to evaluate MIL algorithms. Its assumption is
based on the standard MI assumption: if at least one of the conformations can
cause a molecule to smell musky, the molecule is positive for the musky class. If
none of the conformations have this property, the molecule is negative. There are
two datasets, Musk1 and Musk2. The Musk1 dataset is smaller, both in having
fewer molecules (bags) and fewer instances per molecule. Many molecules are
shared between the two data sets, but Musk2 set includes more instances for the
shared molecules.

• Mutagenesis [33]: this problem consists of predicting the mutagenicity of the
molecules, that is, determining whether a molecule is mutagenic or not. A molecule
is described by the different conformations. The standard MI assumption can be
used: if at least one of the conformations has the mutagenic property, the molecule
is positive for the mutagenic class. It is non-mutagenic otherwise. There are three
datasets: mutagenesis-atoms, mutagenesis-bonds, and mutagenesis-chains.

The second bioinformatics task in protein identification. These problems compare
the sequences of each protein family and try to identify new families by examining
the structures. Normally, the similarity between sequences of different families is
low, so it is difficult to identify new families by just modeling the primary sequence.

http://dx.doi.org/10.1007/978-3-319-47759-6_2
http://dx.doi.org/10.1007/978-3-319-47759-6_2

3.6 Real-World Applications 57

Table 3.1 Description of case studies for the bioinformatics domain

Domain Application Dataset (Download) Attributes Pos.
bags

Neg.
bags

Total
bags

Instances

Bio-
informatics

Molecule
activity
prediction

Musk1 [5, 16, 47] 166 47 45 92 476

Musk2 [5, 16, 47] 166 39 63 102 6598

Mut. Atoms
[16, 47]

10 125 63 188 1618

Mut. Bonds
[16, 47]

16 125 63 188 3995

Mut. Chains
[16, 47]

24 125 63 188 5349

Protein
identifica-
tion

Thioredoxin-fold
[19]

8 25 168 193 26611

The secondary structure, such as the presence of certain patterns (called motifs) in
the sequence, is used instead. An example is the thioredoxin-fold dataset. The task is
to identify thioredoxin-fold proteins, which is a protein superfamily that is important
for understanding redox processes in cells. A primary sequence of each protein is
described by all the motifs in the sequence. The given proteins are first aligned with
respect to a motif that is known to be conserved in members of the family. Each
aligned protein is represented by a bag and an instance in the bag corresponds to
a position in a fixed length sequence around the conserved motif. Each position is
described by properties of the amino acid at that position and smoothed using the
same properties from its 16 neighbors.

Datasets of both applications are summarized in Table 3.1 where the most relevant
information about each dataset is shown.

3.6.2 Image Classification and Retrieval

As described in Sect. 2.4.2, this problem consists of identifying the intended target
object(s) in images. The major difficulty is that images may contain multiple and
possibly heterogeneous objects. The global description of a whole image is therefore
too coarse and identifying the object of interest is a very challenging open problem in
traditional learning frameworks. In the MIL setting, bags are images and the instances
are parts of the images, such as pixels, blobs, or segments.

This problem has been tackled with different assumptions which can be more
or less appropriate depending on the types of images in question. The standard
assumption, where a positive bag has at least one instance contains the target object,

http://dx.doi.org/10.1007/978-3-319-47759-6_2

58 3 Multi-instance Classification

Table 3.2 Description of case studies for the image classification domain

Domain Application Dataset Attributes Pos.
bags

Neg.
bags

Total
bags

Instances

Image
classifica-
tion

Animals Elephant [5, 16, 47] 230 100 100 200 1220

Fox [5, 16, 47] 230 100 100 200 1320

Tiger [5, 16, 47] 230 100 100 200 1391

Corel African [16] 9 100 1900 2000 7947

Horses [16] 9 100 1900 2000 7947

Cars [16] 9 100 1900 2000 7947

Beach [16] 9 100 1900 2000 7947

Mountains [16] 9 100 1900 2000 7947

Waterfalls [16] 9 100 1900 2000 7947

Historical [16] 9 100 1900 2000 7947

Food [16] 9 100 1900 2000 7947

Antique [16] 9 100 1900 2000 7947

Buses [16] 9 100 1900 2000 7947

Dogs [16] 9 100 1900 2000 7947

Battleships [16] 9 100 1900 2000 7947

Dinosaurs [16] 9 100 1900 2000 7947

Lizards [16] 9 100 1900 2000 7947

Skiing [16] 9 100 1900 2000 7947

Elephants [16] 9 100 1900 2000 7947

Fashion [16] 9 100 1900 2000 7947

Desserts [16] 9 100 1900 2000 7947

Flowers [16] 9 100 1900 2000 7947

Sunset [16] 9 100 1900 2000 7947

seems applicable when we consider each instances as a patch of image. Nevertheless,
other assumptions can be more appropriate in other cases. For example, if instances
are pixels, it might not be suitable to define pixels as belonging to the target concept.
Perhaps a fraction of positive instances is more suitable. Or, if instances are several
patches of an image which represent complex concepts, such as beach concept, it
would be difficult to say which part of the image is informative. In this case, it would
be necessary to identify several objects (such as water and sand) to say that it is a
beach. If only one type of instance is presented, it might be a desert scene or an ocean
scene. This reasoning can be extended even further to consider cases where simply
the presence of particular objects is not enough, for example, consider how much of
an image has to be covered by trees for you to call it a forest. In these cases, a certain
fraction of instances or a particular number of them is required for the positive class
label, and therefore most, or even all instances can be informative.

3.6 Real-World Applications 59

This problem has been widely tackled in MIL. Concretely, Tiger, Fox, and
Elephant are considered benchmark for evaluating new proposals in MIL. Following,
some of most representative case studies are considered and Table 3.2 summarizes
these case studies.

• Tiger, Fox, and Elephant datasets [4] are popular benchmarks for evaluating new
MIL proposals. For each of them, the task is to identify whether a given image
contains the animal. The standard MI assumption is most popular here, where
an image is considered as positive when at least one of its segments contains the
required animal. Although not very usual, other assumptions have been used [38].

• Corel dataset [12]: this problem consists of identifying 20 different categories
in images, such as, African, Horses, Cars, and so on. The dataset is commonly
divided in 20 different subproblems, using one of the classes as the positive class.
The standard assumption can be used [12], although other assumptions have been
considered as well [14, 38].

3.6.3 Web Mining and Text Classification

A document, such as an article, email discussion or website can be represented as a
collection of its parts, such as paragraphs or individual webpages, which are often
described by bag-of-words histograms. The goal is to assign a category to unlabeled
document. Different assumptions might be applicable here, which can be more or
less appropriate depending on the types of documents and document categories in
question. The standard assumption, where a positive bag has at least one positive
instance, seems applicable when we consider articles as relevant or not for a particular
topic. If at least one paragraph is relevant, then the whole article is considered relevant.
When classifying general-purpose documents, such as websites or email discussions,
the situation might be different. For example, most social websites could have a page
describing the security settings, but it would be wrong to put these websites in the
security category.

Similar to image classification, the case studies that cover this application are
very difficult to solve, because a text may contain multiple and heterogeneous topics.
These are hard problems in traditional learning and the use of a learning framework
with more generalized representations, such as MIL, is considered more appropriate.
Some case studies in this application field are described following and Table 3.3
summarizes these case studies.

• Newsgroup [52]: this problem consists of identifying 20 different news groups. It
is very widely used for assessing text classification methods. The bags are news
articles and the instances are paragraphs fixed to a specific number of words. For
MIC, this dataset is divided in 20 text categorization datasets and the standard
assumption is considered. Concretely, 50 positive and 50 negative bags are gen-
erated for each of the 20 news categories. Each positive bag contains 3 % posts

60 3 Multi-instance Classification

Table 3.3 Description of case studies for the web mining and text classification domains

Domain Application Dataset Attributes Pos.
bags

Neg.
bags

Total
bags

Instances

Textual
classifica-
tion

Newsgroup comp.graphics [16] 200 100 100 200 5443

comp.os.ms-
windows.mis
[16]

200 100 100 200 5443

comp.sys.ibm.pc.
hardware [16]

200 100 100 200 5443

comp.sys.mac.
hardware [16]

200 100 100 200 5443

comp.windows.x
[16]

200 100 100 200 5443

rec.autos [16] 200 100 100 200 5443

rec.motorcycles
[16]

200 100 100 200 5443

rec.sport.baseball
[16]

200 100 100 200 5443

rec.sport.hockey
[16]

200 100 100 200 5443

sci.crypt [16] 200 100 100 200 5443

sci.electronics [16] 200 100 100 200 5443

sci.med [16] 200 100 100 200 5443

sci.space [16] 200 100 100 200 5443

misc.forsale [16] 200 100 100 200 5443

talk.politics.misc
[16]

200 100 100 200 5443

talk.politics.guns
[16]

200 100 100 200 5443

talk.politics.mideast
[16]

200 100 100 200 5443

talk.religion.misc
[16]

200 100 100 200 5443

alt.atheism [16] 200 100 100 200 5443

soc.religion.christian
[16]

200 100 100 200 5443

TREC9 TST1 [5] 66552 200 200 400 3224

TST2 [5] 66153 200 200 400 3341

TST3 [5] 66144 200 200 400 3246

TST4 [5] 67085 200 200 400 3391

(continued)

3.6 Real-World Applications 61

Table 3.3 (continued)

Domain Application Dataset Attributes Pos.
bags

Neg.
bags

Total
bags

Instances

TST7 [5] 66823 200 200 400 3367

TST9 [5] 66627 200 200 400 3300

TST10 [5] 66082 200 200 400 3453

Web index
recom-
mendation

User 1 [16] 5999 21 92 113 3423

User 2 [16] 5999 21 92 113 3423

User 3 [16] 5999 21 92 113 3423

User 4 [16] 5999 89 24 113 3423

User 5 [16] 5999 89 24 113 3423

User 6 [16] 5999 89 24 113 3423

User 7 [16] 5999 55 58 113 3423

User 8 [16] 5999 55 58 113 3423

User 9 [16] 5999 55 58 113 3423

randomly drawn from the target category and the other instances (and all instances
in negative bags) are randomly and uniformly drawn from the other categories
[52].

• TREC9 [4] : this dataset is also known as OHSUMED. The task is to identify
different categories on MEDLINE articles. MEDLINE documents are annotated
with MeSH terms (Medical Subject Headings), each one defining a binary concept.
The total number of MEsH terms in TREC9 was 4903, but the dataset used in
Andrews et al. [4] is smaller. It contains the first seven categories of the pretest
portion. For MIC, this dataset is divided into passages using overlapping windows
of maximal 50 words each and at least 200 positive examples and the rest is
randomly selected of the other categories.

• Web Index Recommendation [45]: the task is to classify a webpage as interesting
or not. In total, nine users rate webpages, such that there are nine different datasets.
A webpage is a bag and the links on the webpage are its instances. Webpage links
are represented using word frequency. This problem has been addressed using the
standard MI assumption, that is, if a user is interested in at least one link, the web
page is interesting to him/her.

3.6.4 Medical Diagnosis and Imaging

Many applications in the medical domain could be classified as image classification,
because they often work with images. However, as the learning objective is related to

62 3 Multi-instance Classification

Table 3.4 Description of case studies for the medical diagnosis and imaging domains
Domain Application Dataset Attributes Pos. bags Neg. bags Total bags Instances

Image clas-
sification

Medical
diagnosis
and imaging

Messidor
[16]

687 654 546 1200 12352

UCBS
breast [16]

708 26 32 58 2002

medical diagnosis, these problems are included in the applications on computer-aided
medical diagnosis. Table 3.4 summarizes these case studies.

• Messidor [28]: the problem consists of predicting whether a medical image is of
a patient with diabetes or a healthy patient. A bag is an eye image and an instance
is a patch of 135 × 135 pixels. Patches, which do not have a sufficient amount of
foreground, are discarded. Different assumptions can be used [28].

• UCBS Breast [27]: the goal is to classify cancer images as malignant or benign.
The bags correspond to images and the instances are image equal-sized 7 × 7
patch. It is assumed that a bag is assigned the positive label if its corresponding
image includes a diseased region [27].

3.6.5 Acoustic Classification

In this case study, the task is to classify the species present in an audio recording. A
bag corresponds to a spectrogram, a graph of the spectrum of a signal as a function
of time, of a recording and each instance is a fragment of that spectrogram. In the
Birds songs dataset [7], 13 different bird species are responsible for the sound in the
recordings. Each bag is a 10 seconds audio recording. This dataset is divided in 13
different problems and the standard assumption is used [7]. Table 3.5 summarizes
these case studies.

3.7 Some Comments on Software Tools

To conclude this chapter, the main tools currently used to work with MIC problems
are briefly introduced. The features of MIL require specialized software to solve these
problems appropriately. The most noteworthy are three open-source tools developed
in Java which solve MIC problems.

• Weka [24]. It is a collection of machine-learning algorithms for data mining tasks,
such as, preprocessing, classification, regression, clustering, association rules, and

3.7 Some Comments on Software Tools 63

Table 3.5 Description of case studies for the acoustic classification domain

Domain Application Dataset Attributes Pos.
bags

Neg.
bags

Total
bags

Instances

Acoustic
classifica-
tion

Birds songs Brown creeper [16] 38 197 351 548 10232

Winter wren [16] 38 109 439 548 10232

Pacific-slope
flycatcher [16]

38 165 383 548 10232

Red-breasted
nuthatch [16]

38 82 466 548 10232

Dark-eyed junco
[16]

38 20 528 548 10232

Olive-sided
flycatcher [16]

38 90 458 548 10232

Hermit thrush [16] 38 15 533 548 10232

Chestnut-backed
chickadee [16]

38 117 431 548 10232

Varied thrush [16] 38 89 459 548 10232

Hermit warbler [16] 38 63 485 548 10232

Swainsons thrush
[16]

38 79 469 548 10232

Hammonds
flycatcher [16]

38 103 445 548 10232

Western tanager
[16]

38 46 502 548 10232

visualization. Weka is very flexible and allows to develop new machine-learning
schemes easily. It can be executed from a GUI or via the command line.
Originally, the multiple instance learning module was a separated package, but
from Weka version 3.5.3 on it is part of the software. A specific dataset format
is required to work in the MIC context, but Weka provides two filters to convert
from propositional format to multi-instance format and vice versa. Several MIC
algorithms are included: classic methods, such as, diverse density, diverse density
with expectation maximization, and other methods based on logistic regression,
methods based on support vector machines, methods based on nearest neighbors,
a simple wrapper method for applying standard propositional learners to multi-
instance data, and so on. This tool is available via http://www.cs.waikato.ac.nz/
ml/weka.

• KEEL [2]. It can be used for a large number of knowledge data discovery tasks,
such as preprocessing techniques, classification, regression, clustering, association
rules, and visualization. It also has interesting statistical methodologies module for
contrasting experiments. KEEL has been designed for both research and education
purposes. It can be executed from a GUI. Multiple instance learning is a specific

http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka

64 3 Multi-instance Classification

module within KEEL and requires a specific dataset format. Similar to the Weka
tool, it includes different MIC algorithms, such as the classic APR algorithms,
methods based on diverse density and diverse density with expectation maximiza-
tion, methods based on nearest neighbors, and methods based on evolutionary
algorithms. This tool is available via http://www.keel.es.

• JCLEC [34]. It is a software system for evolutionary computation research. It
provides a high-level software framework to execute any kind of evolutionary algo-
rithm, providing support for genetic algorithms (binary, integer, and real encod-
ing), genetic programming (Koza’s style, strongly typed and grammar based), and
evolutionary programming. It can be executed from the command line.
Multiple instance learning is a specific module in this tool and requires a specific
dataset format. Different evolutionary algorithms in MIC are included. The tool is
available via http://jclec.sourceforge.net.

Finally, we also list the page web http://lamda.nju.edu.cn, where the reader can
find different datasets and MATLAB implementations of multi-instance algorithms.

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast Discovery of Asso-
ciation Rules. Lect. Notes Artif. Int. 12(1), 307–328 (1996)

2. Alcalá, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: Keel data-
mining software tool: data set repository, integration of algorithms and experimental analysis
framework. J. Mult.-Valued Log. Soft Comput. 17(2–3), 255–287 (2010)

3. Amores, J.: Multiple instance classification: review, taxonomy and comparative study. Artif.
Intell. 201, 81–105 (2013)

4. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance
learning. In: Hanson, S.J., Cowan, J.D., Giles, C.L. (eds.) Proceedings of 15th Conference on
Advances in neural information processing systems (NIPS 2002), pp. 561–568. MIT Press,
Cambridge (2002)

5. Andrews, S., Tsochantaridis, I., Hofmann, T.: MIL dataset repository. http://www.cs.columbia.
edu/~andrews/mil/datasets.html

6. Banfield, J.D., Raftery, A.E.: Model-based Gaussian and non-Gaussian clustering. Biometrics
49(3), 803–821 (1993)

7. Briggs, F., Fern, X.Z., Raich, R.: Rank-loss support instance machines for MIML instance
annotation. In: Goethals, B. (ed.) Proceedings of the 18th ACM International Conference on
Knowledge discovery and data mining (SIGKDD 2012), pp. 534–542. ACM, New York (2012)

8. Brossi, S.D., Bradley, A.P.: A comparison of multiple instance and group based learning. In:
Langford, J., Pineau, J. (eds.) Proceedings of the International Conference on Digital Image
Computing Techniques and Applications (DICTA 2012), pp. 1–8. IEEE, Los Alamitos (2012)

9. Budka, M., Gabrys, B., Musial, K.: On accuracy of PDF divergence estimators and their applica-
bility to representative data sampling. Entropy 13(7), 1229–1266 (2011)

10. Cambridge Dictionary of English. Cambridge University Press (2016). http://dictionary.
cambridge.org/

11. Cha, S.H.: Comprehensive Survey on Distance/Similarity Measures between Probability Den-
sity Functions. Math. Mod. Meth. Appl. Sci. 4(1), 300–307 (2007)

12. Chen, Y., Bi, J., Wang, J.Z.: MILES: Multiple-instance learning via embedded instance selec-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1931–1947 (2006)

http://www.keel.es
http://jclec.sourceforge.net
http://lamda.nju.edu.cn
http://www.cs.columbia.edu/~andrews/mil/datasets.html
http://www.cs.columbia.edu/~andrews/mil/datasets.html
http://dictionary.cambridge.org/
http://dictionary.cambridge.org/

References 65

13. Chen, Y., Wu, O.: Contextual Hausdorff dissimilarity for multi-instance clustering. In: Liu,
Y. (ed.) Proceedings of the 9th International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD 2012), pp. 870–873. IEEE, Los Alamitos (2012)

14. Cheplygina, V., Tax, D.M., Loog, M.: Multiple instance learning with bag dissimilarities.
Pattern Recogn. 48(1), 264–275 (2015)

15. Cheplygina, V., Tax, D.M., Loog, M.: On classification with bags, groups and sets. Pattern
Recogn. Lett. 59, 11–17 (2015)

16. Cheplygina, V., Tax, D.M.J.: MIL dataset repository (matlab format). http://www.miproblems.
org/datasets

17. Deza, M.M., Deza, E.: Dictionary of Distances. Elsevier, Amsterdam (2006)
18. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with

axis-parallel rectangles. Artif. Intell. 89(1), 31–71 (1997)
19. Doran, G.B.: TRX protein sequence classification dataset (C4.5 format). http://engr.case.edu/

doran_gary/code.html
20. Foulds, J.R.: Learning instance weights in multi-instance learning. Master thesis, The Univer-

sity of Waikato, New Zealand (2008)
21. Foulds, J., Frank, E.: A review of multi-instance learning assumptions. Knowl. Eng. Rev. 25(1),

1–25 (2010)
22. Frank, E., Xu, X.: Applying propositional learning algorithms to multi-instance data. Master

thesis, The University of Waikato, New Zealand (2003)
23. Gärtner, T., Flach, P.A., Kowalczyk, A., Smola, A.: Multi-Instance Kernels. In: Sammut, C.,

Hoffmann, A. (eds.) Proceedings of the 19th International Conference on Machine Learning
(ICML 2002), pp. 179–186. Morgan Kaufmann Publishers, San Francisco (2002)

24. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data
mining software: an update. In: Fayyad, U. (ed.) Proceedings of the 15th ACM International
Conference on Knowledge discovery and data mining (SIGKDD 2009), Explorations Newslet-
ter, pp. 10–18. ACM, New York (2009)

25. Haussler, D.: Convolution kernels on discrete structures. Technical report, Department of Com-
puter Science, University of California, Santa Cruz, United States of America (1999)

26. Jousselme, A.L., Maupin, P.: Distances in evidence theory: Comprehensive survey and gener-
alizations. Int. J. Approx. Reason. 53(2), 118–145 (2012)

27. Kandemir, M., Zhang, C., Hamprecht, F. A.: Empowering multiple instance histopathology
cancer diagnosis by cell graphs. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe,
R. (eds.) Proceedings of the 17th International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI 2014), Lecture Notes Computer Science, vol. 8674,
no. 2, pp. 228–235 (2014)

28. Kandemir, M., Hamprecht, F.A.: Computer-aided diagnosis from weak supervision: a bench-
marking study. Comput. Med. Imag. Grap. 42, 44–50 (2015)

29. Li, Y., Tax, D.M., Duin, R.P., Loog, M.: Multiple-instance learning as a classifier combining
problem. Pattern Recogn. 46(3), 865–874 (2013)

30. Li, W., Vasconcelos, N.: Multiple instance learning for soft bags via top instances. In: Durand,
F., Freeman W.T. (eds.) Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2015), pp. 4277–4285. IEEE, Los Alamitos (2015)

31. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Jordan, M.,
Kearns, M., Solla, S. (eds.) Advances in Neural Information Processing Systems, no. 10. pp.
570–576. MIT press, Cambridge (1998)

32. Scott, S., Zhang, J., Brown, J.: On generalized multiple-instance learning. Int. J. Comput. Int.
Sys. 5(1), 21–35 (2005)

33. Srinivasan, A., Muggleton, S., King, R.D.: Comparing the use of background knowledge by
inductive logic programming systems. In: Lavrac, N., Dzeroski, S. (eds.) Proceedings of the 5th
International Workshop on Inductive Logic Programming (ICLP 1995), pp. 199–230. Springer,
London (1995)

34. Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervás, C.: JCLEC: a Java framework for
evolutionary computation. Soft Comput. 12(4), 381–392 (2008)

http://www.miproblems.org/datasets
http://www.miproblems.org/datasets
http://engr.case.edu/doran_gary/code.html
http://engr.case.edu/doran_gary/code.html

66 3 Multi-instance Classification

35. Vluymans, S., Sánchez Tarragó, D.S., Saeys, Y., Cornelis, C., Herrera, F.: Fuzzy multi-instance
classifiers. IEEE Trans. Fuzzy Syst. (2016) (in press)

36. Vluymans, S., Sánchez Tarragó, D.S., Saeys, Y., Cornelis, C., Herrera, F.: Fuzzy rough classi-
fiers for class imbalanced multi-instance data. Pattern Recogn. 53, 36–45 (2016)

37. Wang, J., Zucker, J.D.: Solving multiple-instance problem: A lazy learning approach. In: Lan-
gley, P. (ed.) Proceedings of the 17th International Conference on Machine Learning (ICML
2000), pp. 1119–1126. Morgan Kaufmann Publishers, San Francisco (2000)

38. Wang, H.Y., Yang, Q., Zha, H.: Adaptive p-posterior mixture-model kernels for multiple
instance learning. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 26th International Con-
ference on Machine Learning (ICML 2008), pp. 1136–1143. Omnipress, Lille Grand Palais
(2008)

39. Wang, H., Huang, H., Kamangar, F., Nie, F., Ding, C.H.: (2011). Maximum margin multi-
instance learning. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger,
K.Q. (eds.) Proceedings of 24th Conference on Advances in neural information processing
systems (NIPS 2011), pp. 1–9. MIT Press, Cambridge (2011)

40. Wang, H., Nie, F., Huang, H.: Learning Instance Specific Distance for Multi-Instance Classi-
fication. In: Wolfram, B., Dan, Roth., Program, C. (eds.) Proceedings of 25th Conference on
Artificial Intelligence (AAAI 2011), 2, pp. 6–15. AAAI Press, Vancouver (2011)

41. Weidmann, N., Frank, E., Pfahringer, B.: A two-level learning method for generalized multi-
instance problems. In: Lavrac, N., Gamberger, D., Blockeel, H., Todorovski, L. (eds.) Proceed-
ings of 14th European Conference on Machine Learning (ECML 2003), pp. 468–479. Springer,
Berlin (2003)

42. Xu, L., Neufeld, J., Larson, B., Schuurmans, D.: Maximum margin clustering. In: Saul, L.K.,
Weiss, Y., Bottou, L. (eds.) Proceedings of 17th Conference on Advances in neural information
processing systems (NIPS 2004), pp. 1537–1544. MIT Press, Cambridge (2004)

43. Xu, X.: Statistical learning in multiple instance problems. Master thesis, The University of
Waikato, New Zealand (2003)

44. Yager, R.R., Kacprzyk, J.: The Ordered Weighted Averaging Operators: Theory and Applica-
tions. Springer Science Business Media, New York (2012)

45. Zafra, A., Romero, C., Ventura, S., Herrera-Viedma, E.: Multi-instance genetic programming
for web index recommendation. Expert Syst. Appl. 36(9), 11470–11479 (2009)

46. Zafra, A., Pechenizkiy, M., Ventura, S.: ReliefF-MI: An extension of ReliefF to multiple
instance learning. Neurocomputing 75(1), 210–218 (2012)

47. Zafra, A., Ventura, S.: MIL dataset repository (weka format). http://www.uco.es/grupos/kdis/
momil

48. Zhang, D., Wang, F., Si, L., Li, T.: Maximum margin multiple instance clustering with appli-
cations to image and text clustering. IEEE Trans. Neural Netw. 22(5), 739–751 (2011)

49. Zhang, M.L., Zhou, Z.H.: Multi-instance clustering with applications to multi-instance predic-
tion. Appl. Intell. 31(1), 47–68 (2009)

50. Zhang, T., Liu, S., Xu, C., Lu, H.: M4L: maximum margin multi-instance multi-cluster learning
for scene modeling. Pattern Recogn. 46(10), 2711–2723 (2013)

51. Zhou, Z.H., Jiang, K., Li, M.: Multi-instance learning based web mining. Appl. Intell. 22(2),
135–147 (2005)

52. Zhou, Z.H., Sun, Y.Y., Li, Y.F.: Multi-instance learning by treating instances as non-iid samples.
In: Bottou, L., Littman, M. (eds.) Proceedings of the 26th International Conference on Machine
Learning (ICML 2009), pp. 1249–1256. Omnipress, Lille Grand Palais (2009)

http://www.uco.es/grupos/kdis/momil
http://www.uco.es/grupos/kdis/momil

Chapter 4
Instance-Based Classification Methods

Abstract Instance-based classification algorithms perform their main learning
process at the instance level. They try to approximate a function that assigns class
labels to instances. The instance classifier is combined with an underlying MI
assumption, which links the class label of instances inside a bag with the bag class
label. Many strategies have been devised to construct the instance classifier. We dis-
cuss the most prominent of them: wrapper methods (Sect. 4.2), maximum likelihood
methods (Sect. 4.3), decision trees and rules methods (Sect. 4.4), maximum margin
methods (Sect. 4.5), connectionist methods (Sect. 4.6), and evolutionary methods
(Sect. 4.7). An experimental analysis on the performance of representative instance-
based classifiers is presented in Sect. 4.8. Summarizing remarks are given in Sect. 4.9.

4.1 Introduction

Instance-based classification algorithms rely on two assumptions: (1) a process h
exists to determine the class label of instances and (2) the bag label can be obtained
by applying a rule H to the class labels of their instances. Rule H is theMI assumption
discussed in Sect. 3.4 which is a fixed choice in the algorithm. The crucial step is to
determine the process h to obtain class labels for instances. These methods construct
an instance classifier which is the best approximation of that process. Bag labels
are determined by direct application of the MI assumption H . The main learning
process occurs at instance level, which is why this category of algorithms is called
instance-based classification algorithms. Figure4.1 shows the general architecture of
an instance-based algorithm. A bag X ∈ N

X containing n instances x1, . . . , xn ∈ X

is represented. Four choices are involved:

1. Set L of bag labels: the size of L is the number of classes (infinite, if the task
would be regression). Two-class classification problems have been studied most
and many classification methods are specifically designed to address this setting.
Some methods are also able to handle multi-class classification and a few have
been developed to solve multi-instance regression problems.

© Springer International Publishing AG 2016
F. Herrera et al.,Multiple Instance Learning, DOI 10.1007/978-3-319-47759-6_4

67

http://dx.doi.org/10.1007/978-3-319-47759-6_3

68 4 Instance-Based Classification Methods

Fig. 4.1 General
architecture of
instance-based algorithms

2. Set Λ of instance labels: instance labels may correspond to bag subclasses or
instance-level concepts. Depending on what instances represent in relation to the
problem, Λ could be the same as L or could be some different set of classes.

3. The MI assumption H : this involves the explicit definition of a mapping from
the set of instance labels to the set of bag labels. As described in Sect. 3.4, it is
a function H : N

Λ → L that relates the class label of instances inside a bag
with the bag class label. This function expresses a relationship between the bag
and the many descriptions that its instances represent. The particular form of this
function depends on the characteristics of the problem, the semantics of bags and
instances and their interrelations.

4. A strategy to find the instance classifier h : X → Λ: this is the classifier used
to label instances inside each bag. We do not need the explicit construction of h,
but do require some method for estimating instance labels or their probabilities
from the training examples. Depending on the adopted MI assumption, it may
be sufficient to label certain key instances within each bag. For example, if the
standard MI assumption is used, identifying a positive instance inside a test bag
is enough to assign the bag to the positive class. A large variety of methods has
been used to approximate h and to determine instance labels. In the remainder
of this chapter, we describe some of the most important methods among which
are those based on decision rules, decision trees, maximum likelihood, maximum
margin, connectionist, and evolutionary methods.

4.2 Wrapper Methods to Single-Instance Learning
Algorithms

Single-instance learners cannot be applied directly to multi-instance data, because
they require a class label for every individual instance. A simple and natural way
of addressing this problem is to assume that each instance in a bag has the same
label as the bag itself. Next, a single-instance classifier can be constructed from the
training data and used to label instances of a new bag. However, what is actually
required, is a classifier for bags. A MI assumption is applied over instance labels
to get the bag label. In Fig. 4.2, we present a learner as a wrapper for a single-

http://dx.doi.org/10.1007/978-3-319-47759-6_3

4.2 Wrapper Methods to Single-Instance Learning Algorithms 69

Fig. 4.2 Working mode of a multi-instance wrapper

instance algorithm. The wrapper is an interface between the instance and bag levels.
At training time, instances are extracted from the bags by assigning them the label of
their parent bag. The wrapper supplies them to the single-instance learner. Instances
are properly weighted so that all training bags have equal importance regardless of
any differences in their sizes. A single-instance learning model is obtained. Given a
new bag to classify, its instances are extracted and classified by the single-instance
model. For each instance x , the model can return a class label or, even better, it
can return the posterior probability of each class Pr (c|x). The bag label is finally
obtained by the wrapper based on the bag’s instance labels (or its probabilities) and
relying on a given MI assumption.

One of the most influential MI assumptions is the standard MI assumption
(Sect. 3.4). Its rationality has been shown in cases like the drug activity predic-
tion problem. A wrapper that uses the standard MI assumption assigns the positive
label to a bag if any of its instance is predicted to be positive by the single-instance
classifier. However, in Sect. 4.8 we will show that such a MI wrapper can have a low
accuracy. The explanation behind this result is clear. We are assigning positive labels
to all instance in a positive bag, even when we know that many of then can actually
be negative, inducing too much noise in the positive class.

The collective assumption (Sect. 3.4) does not suffer from this problem, since
it is symmetric. This assumption states that all instances contribute equally and
independently to the bag label. In the classification stage, for each instance in the
bag to be classified, a class probability estimate for each of the possible classes is
provided by the single-instance classifier. These estimates are then averaged to form

http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3

70 4 Instance-Based Classification Methods

the prediction for the bag as a whole, yielding the expected class probability under
the given assumptions. Although this heuristic leads to biased probability estimates,
it works surprisingly well for many datasets, as will be indicated in Sect. 4.8.

4.3 Maximum Likelihood-Based Methods

In traditional machine learning there is an important group of learningmethods based
on the maximum likelihood principle. Many instance-basedMILmethods have been
developed on the basis of this statistical approach. In Sect. 4.3.1 we briefly describe
the maximum likelihood principle in the single-instance learning setting and present
a general strategy for adapting maximum likelihood-based learning algorithms to
the MIL setting. Specific MIL algorithms designed under the maximum likelihood
principle are described: diverse density (Sect. 4.3.2), logistic regression (Sect. 4.3.3),
and boosting (Sect. 4.3.4).

4.3.1 Maximum Likelihood Principle

In single-instance statistical learning, each instance x is regarded as a value of a
random variable X in the attribute space X. Its class label � ∈ L is a value of
the random variable L . The joint probability distribution p (X ,L) describes the
relation between X and L . It allows us to predict the class label � given a new
value of x . Although it can be inferred from the training data, it is typically a
very difficult problem. By using the product rule of probability, we can state that
p (X ,L) = p (L |X) p (X). The prior probability p (X) represents the proba-
bility of observing x in the data. The posterior class probability p (L |X) informs
us of the probability of a class label, given that the exemplar x is observed. Given
p (L |X) and based on decision theory [5], a classifier h will assign each new
instance x to the class � for which p (�|x) is larger. In the construction of h, p (L |X)

is inferred from the training data. The parameters Θ of h are trained to maximize
the likelihood of p (L |X). Maximizing the likelihood of p (L |X) is equivalent
to minimizing the expected loss function EX EL |X [Loss (X , h)] overX andL .
The loss function takes a prediction model as input and produces a single number
that indicates how well that prediction model performs. It depends on the true class.
This value is unknown for new instances, which is why we use the expectation of
the loss function. The expectation Ep [f] of some function f (x) under a probability
distribution p (x) is defined as the average value of f (x) weighted by the relative
probabilities of the different values of x . By minimizing the expected loss function,
a learning algorithm h can obtain the optimal parameters Θ̂ which maximize the
likelihood of p (L |X).

In the MIL setting, another random variable B is introduced, denoting the bags,
and it is p (L |B) that needs to be determined. A general strategy for adapting a

4.3 Maximum Likelihood-Based Methods 71

single-instance statistical learning algorithm to MIL requires the definition of three
elements [71]:

1. a function f that models p (L |X). Particularly, in a classification problem of
two classes (L = {0, 1}), f represents the probability pi j ≡ p

(

�i j = 1|xi j
)

that
the j th instance of the i th bag is classified as positive, given the parameters Θ of
a hypothetical instance classifier h.

2. a function g relating the probability pi ≡ p (�i = 1|Xi) that the i th bag is positive
with the probabilities pi j that its instances are positive, given h. This function
implements the MI assumption (whatever it is).

3. a loss function Loss (B, h) that takes the expectation of h over all the bags
rather than over the instances. The aim is to minimize the expected loss function
EBEL |B [Loss (B, h)]. Note that h is the instance-level classification model
with parameters Θ that determines p (L |X).

In the training stage, an optimization algorithm is executed to minimize the value of
the loss function to obtain h and hence an estimation of p (L |X).When classifying a
newbag Xtest , we first calculate p (L |xtest) and then p (L |Xtest) = g (p (L |xtest)),
based on the same assumptions used in item 2. We classify Xtest based on whether
p (L |Xtest) is above 0.5.

4.3.2 Diverse Density

Among instance-based MIL methods that rely on statistical learning, the most influ-
ential has been Diverse Density (DD) [46]. The classifier h = 〈w〉 consists of a
vector w ∈ X representing a positive instance prototype. DD uses a radial shape or
Gaussian-like to model p (L |X). The probability that an instance xi j is classified
positive for h is defined by a Gaussian centered at the point w:

pi j = exp
(

− ∥
∥xi j − w

∥
∥
2
)

. (4.1)

In [45], two ways are proposed to relate class probabilities of bags with that of
their instances. One is the noisy-or (NOR) model described as

pi = 1 −
∏

j

(

1 − pi j
)

. (4.2)

This model takes into account the influence of all instances of the bag to apply a
probabilistic version of the logical OR. The second proposal of [45] is the most-
likely-cause model defined as

pi = max
j

{

pi j
}

, (4.3)

72 4 Instance-Based Classification Methods

which considers only the most probably positive instance in the bag, which is the
instance closest to the prototype w. However, note that the max operator is not
differentiable. In order to apply an optimization algorithm based on gradient descent,
it is necessary to use an approximation of the max operator.

Both models of [45] are compatible with the standard MI assumption. A variant
of DD that implements the collective assumption has been presented in [22, 71],
where

pi = 1

ni

∑

j

pi j . (4.4)

As bag-level loss function, DD uses the negative binomial log-likelihood defined
as ∑

i

[

�i log (pi) + (1 − �i) log (1 − pi)
]

. (4.5)

This function is widely used by single-instance statistical learning algorithms.
In DD, the principle of maximum likelihood is interpreted as the search for the

point of instance space where instances from the largest number of positive bags
converge and at the same time is farthest from the instances of all negative bags. This
point is considered as the prototype of the positive concept and, in this framework,
is called the maximum diverse density point.

DD is a very popular algorithm and has been widely used as a benchmark for
comparison in the development of other MIL classifiers. It has been extended to
regression [1] and to learning problems with relational data [48]. It has also been
used for scaling attributes [83] and its approach has been widely used in the selection
of key instances in the bags [12, 23, 30, 43].

Expectation-Maximization Diverse Density

EM-DD [80] is a variant of DD that uses the expectation-maximization approach
(EM) to avoid using approximations of the max operator. It achieves a significant
reduction in the computational cost ofDD.EM-DDstartswith a hypothetical solution
w, which is some selected point in a positive bag. The algorithm iterates between
expectation andmaximization stages. In the expectation step, EM-DD uses the most-
likely-cause model to select one instance from each positive bag given the current
solution w. In the maximization step, an optimization method based on gradient
descent is applied to find a new vector w that maximizes the likelihood of the data
formed by all the negative points and the positive points that were selected in the
expectation step. Note that, as at this time each instance is assigned a label, the MIL
problem has been reduced to a single-instance problem and therefore the use of (4.3)
and the problem of its derivative is avoided. A similar method using the NOR model
is derived in [52].

4.3 Maximum Likelihood-Based Methods 73

4.3.3 Logistic Regression

Logistic regression is a statistical method often used in two-class single-instance
classification problems. In this method, the classifier h = 〈w〉 is a vector w of
the instance space X representing a normal to a hyperplane that separates the two
classes. The hyperplane is constructed by applying the logit function to the dependent
variable, converting a probability in the log-odds of that probability,

logit
(

EL |X [�i |xi]
) = logit (pi) = ln

(
pi

1 − pi

)

= wxi .

The logistic regression method has been adapted to the MIL setting several times.
From the logistic function

σ (x) = 1

1 + exp (−x)
,

which is the inverse of the logit function, in MIL, as in the single-instance setting,
the probability that an instance xi j is classified positive by h is defined as

pi j = σ
(

wxi j
)

. (4.6)

In [72], two ways are proposed to relate class probabilities of bags with that of
their instances based on the collective MI assumption. One is by the arithmetic mean
of the probabilities of each instance of the bag which is represented by (4.4). This
algorithm is called the arithmetic mean model. The other way estimates the log-odds
function instead of directly estimating the probability function. The log-odds bag-
level function is calculated as the average of the log-odds instance-level functions:

ln

(
pi

1 − pi

)

= 1

ni

ni∑

j=1

(
pi j

1 − pi j

)

. (4.7)

It follows that

pi =
[
∏ni

j=1 pi j
] 1

ni

[
∏ni

j=1 pi j
] 1

ni +
[
∏ni

j=1

(

1 − pi j
)
] 1

ni

, (4.8)

which means that the bag class probability is the normalized geometric mean of
the class probabilities of its instances. This algorithm is called the geometric mean
model. Substituting (4.6) in (4.8), we obtain

pi = σ (wx̄i) ,

74 4 Instance-Based Classification Methods

where x̄i = ∑ni
j=1 xi j denotes the average point of the i th bag. Note that this model

is equivalent to transforming the multi-instance to single-instance data, representing
each bag by the average of its instances and applying the single-instance linear-
logistic regression model directly to the transformed data.

The standardMI assumption has also been used to relate class probabilities of bags
with that of their instances. Several functions have been used to approximate the non-
differentiable maximum operator which characterizes the standard MI assumption.
In particular, [22, 59, 71] have used the NORmodel (4.2), while in [56] the function
pi = softmax (pi1, . . . , piN) is used where softmax is defined as

softmax (x1, . . . , xN) =
N

∑

i=1

xi exp (αxi)
∑N

j=1 exp
(

αx j
) .

Xu [71] showed that it is possible to increase the generalization capacity of multi-
instance logistic regression by using simple regularization techniques. The most
advanced and efficient regularization methods have been successfully applied to
multi-instance logistic regression in [26].

4.3.4 Boosting

Another popular single-instance method which has been adapted to a multi-instance
instance-based algorithm is boosting [60], which uses a statistical approach [25].
Like logistic regression, it aims to estimate the log-odds function, but it is based on
an additive model. The core idea is to take a (potentially weak) learning algorithm,
sequentially train several classifiers ht ∈ H and combine them into an (arbitrarily
strong) classifier h. The combination is commonly done by the weighted sum h =
∑T

t=1 αt ht (x), where αt are positive weights. Adaptations of boosting to MIL have
generally been developed in the gradient boosting framework [25, 47], where each
classifier ht is the best approximation in the space of classifiers H to the optimal
solution of a particular loss function based on a previous approximation. Once ht is
found, the value of αt is determined by a linear search over the loss function.

Xu and Frank [72] derive a boostingMI algorithm based on the collective assump-
tion. They define the class probability at instance level as

pi j = σ
(

h
(

xi j
))

(4.9)

and use (4.8) to compute the probabilities of bags, as they relate the log-odds of a bag
with that of its instances using the average operator. The optimized loss function is
EBEL |B

[

exp (−�H (X))
]

, where, following the collective assumption, H (Xi) =
1
ni

∑ni
j=1 h

(

xi j
)

.
Viola et al. [67] propose an adaptation of boosting to MIL based on the standard

MI assumption. They also use (4.9) to define the instance probabilities. They relate

4.3 Maximum Likelihood-Based Methods 75

these values to the bag probability as pi = g j
(

pi j
)

, where g (·) is a function that
approximates the max operator. The loss function used by Viola et al. is the negative
binomial log-likelihood (4.5).

This contribution has had a major impact on the area of visual detection and
tracking. Babenko et al. [3] developed an online MIL boosting based on Viola et al.’s
Noisy-OR boosting and the works on online boosting of Oza [51] and Grabner et al.
[31]. Meanwhile, Zeisl et al. [79] derive a general-purpose semi-supervised online
MI boosting method and show that it improves the robustness of the classifier to the
problem of the target drift in visual tracking applications. These ideas have inspired
many other improvements to the boosting algorithm applied to visual tracking, e.g.,
[53, 62, 63, 70].

4.4 Decision Rules and Tree-Based Methods

Decision tree learning methods recursively divide the input space into separate
regions to build a decision boundary. The regions are created by a greedy opti-
mization process. In each step, the algorithm builds a tree node by selecting the
attribute that causes the best separation of classes according to a cost function (e.g.,
entropy and Gini functions). The cost function measures the impurity of a node, i.e.,
the heterogeneity of a node regarding the class labels of the training examples in its
region. The impurity is maximum when there is an equal number of examples of
each class in the node. An important property of ordinary decision trees is that the
attribute which achieves maximum reduction of the cost function in a node is also
the one who gets the maximum reduction of the cost function in the whole tree. This
property allows us to determine the best attribute for a node evaluating the gain of
each attribute just locally. Pruning techniques can be applied during or after the tree
construction to improve the generalization capability of the model.

Chevalier andZucker [14] proposed the first instance-based decision tree, ID3-MI,
an adaptation of the popular ID3 method [54]. They redefined the entropy and infor-
mation gain functions based on bag labels rather than instance labels. The entropy
of a set S of instances is defined as

I n f o (S) = − P (S)

P (S) + N (S)
log2

(
P (S)

P (S) + N (S)

)

− N (S)

P (S) + N (S)
log2

(
N (S)

P (S) + N (S)

)

,

where P (S) and N (S) denote, respectively, the number of positive and negative
bags having instances in S. The information gain of an attribute A partitioning the
set S in {S1, . . . , Sv} is defined as

76 4 Instance-Based Classification Methods

Gain (S, A) = I n f o (S) −
v

∑

i=1

P (Si) + N (Si)

P (S) + N (S)
· I n f o (Si) .

Note that in instance-based MI trees, instances—not bags—are divided into each
node of the tree, which means that instances of the same bag are generally dispersed
by different branches of the tree. In the prediction stage, a bag is classified as positive
if at least one of its instances reaches a positive leaf node. The instance dispersion
tends to produce too complex trees. To keep the tree simple, as soon as an instance
of a positive bag is correctly classified, all other instances of the bag are excluded
from the induction process [14]. Another problem caused by the dispersion is that the
locality property mentioned above is lost. The order in which the nodes are expanded
becomes a critical factor.

Blockeel et al. proposedMITI [7], an improved version of ID3-MI with heuristics
aimed at correcting the problems caused by the dispersion of the instances. The most
important change is that MITI expands nodes in best-first order, prioritizing pure
positive nodes covering a larger number of examples. Another heuristic that proved
useful was to give more weight to instances of smaller bags.

Both ID3-MI and MITI faithfully adhere to the standard MI assumption. Ruffo
[58] proposes a MI decision tree governed by a threshold-based assumption
(Sect. 3.4). Ruffo trees learn concepts such as “contains at least three instances with
the property P.”

Decision rules have also been addressed inMIL. Chevaleyre and Zucker presented
RipperMI [14], an extension of the Ripper algorithm [18] to MIL. Ripper is a single-
instance rule learning algorithm based on the coverage measure. An observation x is
covered by a rule R, denoted Cover (R, x), if the attribute values of x satisfy all the
conditions of R. Given a set of examples E , the number of these examples covering
a rule R is called coverage of R, i.e., CoverageE (R) = |{x ∈ E : Cover (R, x)}|.
The coverage measure is used to decide when to add and remove conditions to the
rule during construction. The original definition of coverage ismodified inRipperMI,
such that it takes into account the number of covered bags instead of the number of
instances. Given a set of bags E , Chevaleyre and Zucker [14] redefine the coverage
of a rule as

CoverageE (R) = |{Xi ∈ E : Cover (R, Xi)}| ,

where
Cover (R, X) =

∨

xi∈X
Cover (R, xi) .

In [15], some deficiencies of RipperMI are discussed and several improvements
are proposed, including the growth of partial trees to generate the rules, a global
pruning method and a probabilistic coverage measure, which not only informs that
a bag is covered by a rule, but also takes into account the number of instances of the
bag that have been covered by the rule.

http://dx.doi.org/10.1007/978-3-319-47759-6_3

4.4 Decision Rules and Tree-Based Methods 77

The MITI tree learner is used by Bjerring and Frank [6] to generate decision rules
with a system called MIRI. A partial tree is grown until a positive leaf is found.
An if-then rule is created based on the path from the root node to the leaf. All bags
associatedwith the leaf are removed from the training set. The partial tree is discarded
and built from scratch with the remaining data. Bjerring and Frank show that MIRI
accuracy is similar to that of MITI, but MIRI generates much more compact models
which favors the interpretability.

The study of decision trees in MIL includes tree ensembles, since it is known that
they generally have greater predictive power than individual classifiers. Leistner et al.
proposedMIForest [41], which is an ensemble of several MI decision trees, based on
the idea of Random Forest [9]. The trees are built over the instance space for which
the algorithm must first identify instance labels. Instances are initially assigned the
label of their parent bag, afterwhich a preliminary forest is grown. The algorithm tries
to predict the true labels of the instances in an iterative manner. Based on the current
model, the instance label probability distribution p (�|x) is sought such that a specific
loss function is minimized. The loss function considers the condition that at least one
instance in each bag has to be from the target class. Note that it is an extension of the
standard MI assumption. Based on p (�|x), each tree randomly selects new instance
labels and updates the model. The cycle is repeated until convergence. The random
way in which labels are selected ensures the diversity of the trees, which allows the
reduction of generalization error. This approach results in a non-convex optimization
problem, which is resolved by a deterministic annealing technique [57].

Another variant of a tree ensemblewas developedbyBjerring andFrank [6] using a
randomization strategy.A random factor is introduced in the tree construction process
allowing to obtain several classifiers from the same dataset to form the ensemble.
For each node of the tree, a subset A of the available attributes is selected and the
best attribute in A is chosen based on the Gini index or some other criterion. The
ensemble output is the mode (or some aggregation) of the tree votes. Bjerring and
Frank [6] showed good results with MITI and MIRI ensembles.

4.5 Instance-Level SVM

Support vector machines (SVMs), one of the most widely used classification meth-
ods in machine learning, have been recalled in Sect. 1.3.1. Their popularity can be
attributed to their robustness and reliability. They require few training examples, and
are not affected by the number of dimensions and have a solid theoretical justifica-
tion. The use of slack variables allows to find an optimal separating hyperplane even
when some points are located in the margin or on the wrong side of the hyperplane.
Kernel functions, like Gaussian or polynomial functions, are used to solve classifica-
tion problems with nonlinear decision boundaries. Different kernel types determine
different forms of the decision boundary. Many SVM variants have been proposed in
the machine learning literature. They primarily differ in the kernel type, the margin
optimization formulation and the way in which the latter is solved. Formally, in a

http://dx.doi.org/10.1007/978-3-319-47759-6_1

78 4 Instance-Based Classification Methods

two-class problem, let w be the normal vector to the hyperplane separating the two
classes and b the hyperplane offset, an SVM is generally defined by the following
optimization problem:

min
w,b,ξ

1
2 ‖w‖2 + C

∑

i
ξi

s.t. (∀i)(yi (w · xi + b) ≥ 1 − ξi),

(∀i)(ξi ≥ 0),

(4.10)

where ξi is a slack variable corresponding to xi andC is a parameter allowing a trade-
off between the fit to the training data and the generalization capability (bias–variance
trade-off).

The adaptation of SVM to MIL has followed two different lines. The first line
works at the instance level, using kernels defined on individual instances. This group
of algorithms tries to identify instance labels (either for all instances or for only some
key instances) that allow to find an optimal margin between positive and negative
bags. These are instance-basedmethods and are discussed in this section. The second
line of multi-instance SVM research works at the bag level. Instead of identifying
instance labels, these algorithms use kernels defined over whole bags to optimize the
margin between the two classes of bags. This second SVM type will be discussed in
Sect. 5.2.2.

The first instance-based SVM methods were presented by Andrews et al. [2]
using the standard MI assumption. One of their methods, MI-SVM, tries to identify
the key instance of each positive bag, which is the instance that makes the bag
positive, assuming that this key instance is the one with the highest positive margin.
The remaining instances in positive bags are ignored. Following the standard MI
assumption, all instances in negative bags are considered negative. MI-SVM seeks
to maximize the margin between instances of negative bags and key instances of
positive bags. By incorporating slack variables they arrive at

min
w,b,ξ

1
2 ‖w‖2 + C

∑

i j ξi j

s.t. (∀i |yi = 0)(
(

w · xi j + b
) ≤ −1 + ξi j),

(∀i |yi = 1)(max j
(

w · xi j + b
) ≥ 1 − ξi j),

ξi j ≥ 0.

(4.11)

This is an optimization programwhose second restriction is not convex and is difficult
to solve. Andrews et al. choose to transform the problem to a mixed integer program
and solve it using an EM-like heuristic method. Unlike MI-SVM, the second method
presented by Andrews et al. [2], mi-SVM, does not discard negative instances of
positive bags. Both instances from negative bags and negative instances of positive
bags are involved in the construction of the negative margin. To this end, mi-SVM
tries to identify class labels of each instance in the positive bags. The corresponding
optimization program is given by

http://dx.doi.org/10.1007/978-3-319-47759-6_5

4.5 Instance-Level SVM 79

min
yi j

min
w,b,ξ

1
2 ‖w‖2 + C

∑

i j ξi j

s.t. (∀i |yi = 0)(yi j = 0),
(∀i |yi = 1)(

∑

j yi j ≥ 1),
y′
i j

(

w · xi j + b
) ≥ 1 − ξi j

ξi j ≥ 0,

(4.12)

where y′
i j = 2yi j −1. This is a mixed integer program, solved by [2] with a heuristic

method similar to the one referenced above.
A variant of MI-SVM is presented Bunescu and Mooney [10], aimed at simpli-

fying the optimization program. Consider a positive bag with n instances. Based on
the standard MI assumption, there can be up to n − 1 negative instances, but at least
one of them will be positive. The restriction

∑

j

(

w · xi j + b
) ≥ (−1) (n − 1) + 1 = 2 − n

is obtained. It may be violated if the margins of negative instances are large, which
causes a tendency to narrow margins. To ensure that the margins of all instances
in positive bags remain large, the restriction

∣
∣w · xi j + b

∣
∣ ≥ 1 is added. Although

this program is not convex, the authors show how to solve it with a concave–convex
(CCCP) solver [61] and that this algorithm works particularly well in problems with
sparse positive bags, where there are few positive instances in each positive bag.

Yang et al. [74] present ASVM, an SVM that introduces an asymmetric loss
function under the standard MI assumption. The method is based on the idea that
the misclassification costs of positive and negative bags is different. A false negative
instance in a positive bag does not necessarily lead to an error on the label of the bag
(assuming that there are several positive instances in the bag), while a false positive
instance in a negative bag certainly leads to an error in the bag label. ASVM tries to
minimize false positives and ensures that all negative instances are on the negative
side of the hyperplane. The program is defined as

min
w,b,ξ

1
2 ‖w‖2 + C

∑

i
ξi

s.t. (∀i)(yi (w · xi + b) ≥ 1 − (yi+1)
2 ξi),

(∀i)(ξi ≥ 0).

(4.13)

The authors demonstrated the effectiveness of this algorithm in image annotation
applications.

Cheung et al. [13] present an SVM regularization scheme with a loss function,
that takes into account both the loss associated with bag labels as well as the loss
between the prediction of each bag and the prediction of its instances, based on the
standard MI assumption. Instead of using a heuristic method, like in [2], they use a
concave–convex optimization which ensures convergence to a local optimum.

80 4 Instance-Based Classification Methods

Zhou and Xu [84] show that there is a link between MIL and semi-supervised
learning (Sect. 1.3.3). According to the standard MI assumption, all instances of
negative bags have negative labels, while instances in positive bags can be considered
unlabeled with the restriction that at least one instance in each bag is positive. On this
basis, they transform the MIL problem into a semi-supervised learning problem and
design anSVMwhich attempts tomaximize themargin on both labeled and unlabeled
instances, by assigning instances from positive bags to appropriate classes such that
the resulting margin is the maximum. A constrained concave–convex procedure
[61] is used to solve the optimization problem. Once the instances of a test bag are
classified by the SVM, they apply the standard MI assumption to retrieve the bag
label.

4.6 Neural Network-Based Methods

Artificial Neural Networks (ANNs) were recalled in Sect. 1.3.1. The operation of an
artificial neuron is characterized by its activation function. Given an input signal, the
activation function canmake the neuron fire, transmitting the signal through its output
connections which in turn can activate other neurons. Different types of neurons are
characterized by different activation functions. The connections between neurons
have numeric weights, which contribute to the calculation of the activation func-
tion and can be tuned based on the training data. Several ANNs architectures exist.
The most popular ANN model is the feedforward architecture, where connections
between the units (neurons) do not form a cycle. Typically, neurons are organized in
layers and there are input, hidden, and output layers. The informationmoves forward,
from the input nodes, through the hidden nodes (if any), to the output nodes. This
model is known as the multilayer perceptron. In this type of networks, it is common
that neurons use a sigmoid function as an activation function and weights are trained
using the backpropagation algorithm (BP). ANN models differ from each other in
the way in which neurons are connected, the way in which weights are trained and in
the activation functions. Many of these models have been adapted to theMIL setting.
In this section, we present some of the most representatives adaptations.

4.6.1 Feedforward Neural Networks

Both Ramon et al. [55] and Zhou et al. [85] presented a feedforward neural network
derived from the BP algorithm. As they are both based on the classical BP algorithm,
their training processes are very similar, but the difference lies in the formal definition
of the multi-instance function which measures the error of the neural network. In
MIL, this definition has to be changed to consider the discrimination of bags instead
of that of instances. Zhou et al. [85] use each instance of a bag as an input to the

http://dx.doi.org/10.1007/978-3-319-47759-6_1
http://dx.doi.org/10.1007/978-3-319-47759-6_1

4.6 Neural Network-Based Methods 81

network, while Ramon et al. [55] provide all the instances of each bag all at once in
parallel as input to the network.

On the basis of these first proposals, different extensions have been carried out.
Zhang et al. [83] improved BP-MIP by incorporating two different feature selec-
tion techniques. The first proposal, BP-MIP-DD, uses feature scaling with Diverse
Density [46] and the second one, BP-MIP-PCA, incorporates feature reduction with
principal component analysis (PCA) [35]. Zhang et al. [82] extend BP-MIP bymeans
of a new error function to solve multi-instance regression problems. These methods
are oriented to solve multi-instance classification problems.

Another extension of themodel proposed byRamon et al. [55] has been developed
by Li et al. [43]. Their proposal, called MIBP, selects the most positive instances
(points close to instances from positive bags and far from instances in negative bags)
for each bag and obtain a descriptor t in the feature space. The classification is carried
out by using the descriptor t in combination with differential feature weighting.
Recently, Li et al. [44] presented an optimization with respect to the computation
time of the previous models, by using parallel computing to speed up the learning
process.

One particular type of feedforward neural network is known as a Radial Basis
Function Network, as they use radial basis functions as activation functions. Zhang
et al. [81] proposed aRadial Basis Function (RBF) formulti-instance problems called
RBF-MIP. In this approach, the first layer is composed of clusters of bags formed
by merging training bags bottom-up, where the Hausdorff metric [21] is utilized to
measure distances between bags and between clusters. Weights of the second layer
of the network are optimized by minimizing a sum-of-squares error function and
worked out through singular value decomposition. In a later contribution, [8] studied
two variants of this architecture. The first applies a RBF network in a classical way,
while the second involves a modular neural architecture where each module is an
RBF network, called bag unit. This architecture can support a large number of bags.
Adding new bags to the system can be done easily without requiring any retraining
of the whole neural system, since each bag is modeled as a separate network. This
architecture therefore allows incremental learning.

Another particular type of feedforward neural network is theConvolutionalNeural
Network (CNN), where the connectivity pattern between neurons is inspired by the
organization of the animal visual cortex, whose neurons are arranged in such a way
that they correspond to overlapping regions of the visual field. CNNs make the
explicit assumption that the inputs are images, such that certain properties can be
encoded into the architecture. As a result, the forward function is more efficient to
implement and the amount of network parameters is vastly reduced. Zhou et al. [33]
proposed a framework that integrates MIL with CNNs. Their model is based on an
EM method for MIL integrated into a CNN that obtains patch-level predictions for
each image. In particular, they assume that there is a hidden variable associated with
each image patch, that indicates whether this patch is discriminative, that is, whether
the true hidden label of the patch is the same as the true label of the image.

82 4 Instance-Based Classification Methods

4.6.2 Recurrent Neural Networks

In contrast with a feedforward neural network, a recurrent neural network (RNN)
has directed cycles in the connections between its units. This allows the network
to create an internal memory and exhibit dynamic temporal behavior. Garcez et al.
[27] proposed a recurrent neural network model for MIL. In this approach, first, a
prototype vector is learned from the set of instances in a bag. Next, this prototype
vector is used in a supervised classification of the bag, given the bag label. In this
way, the instance learning can be seen as a kind of preprocessing for subsequent
supervised learning at the bag level. Uwents et al. [65] proposed an approach that
used different neural networks to represent classes of objects in a kind of unfolding
of a recurrent network in time, potentially with the use of different sets of weights. A
relational database is used to connect the networks, so that the output of one network
can become the input of another.

4.6.3 Decision-Based Neural Networks

A Decision-based Neural Network (DBNN) is an efficient classification neural net-
work with a modular structure. Each subnet is designated to represent one class.
Chuang et al. [17] proposed a Generalized Probability Decision Neural Network
(GPDNN) to model particular image concepts in the MIL setting. GPDNN uses data
distributions instead of data values as network input. These can approximate feature
distributions precisely, since image features in the form of distributions can be a
better representation than those in numerical form. Xu et al. [73] proposed a Mul-
tiple Instance Decision-Based Neural Networks (MI-DBNN) for MIL. MI-DBNN
is a probabilistic variant of DBNN. For each concept to be recognized, MI-DBNN
devotes one of its subnets to the representation of that particular concept. In order to
model all concepts, the discriminant functions in all subnets are designed to capture
theMILnature and are trained by theLUGS two-phase learning: locally unsupervised
(LU) learning and the globally supervised (GS) learning.

4.6.4 Network Combinations

Uwents et al. [66] proposed a way to combine different neural networks models by
using a cascade correlation method for MIL. They consider the combination of three
network architecture models: adapted feedforward networks, recurrent networks,
and networks with special aggregation units. The learning process is carried out in
a constructive way, adding neurons to the network one by one and looking for a
combination that is as simple as possible.

4.7 Evolutionary Based Methods 83

4.7 Evolutionary Based Methods

Evolutionary algorithms are computational modeling tools inspired by biological
evolution [32]. Four fundamental paradigms are grouped under this general denom-
ination: genetic algorithms, genetic programming, evolutionary programming, and
evolution strategy. All these methods apply the principles of Darwinian theory of
evolution [4] to solve problems. They share the following essential features:

• The use of a collaborative learning strategy considering a population of individuals
(solutions). In this context, each individual represents a point in the search space
of the problem and adds additional information to reach the final solution.

• An evolutionary process to generate new individuals (offspring) by means of
genetic operators, such as crossover and mutation.

• The definition of a fitness function to measure the quality of each individual.

Among successful evolutionary algorithm implementations, genetic programming
(GP) proposed by John Koza [40] retains a significant position, due to such valuable
characteristics as: its great flexibility in representing solutions, the fact that prior
knowledge about the statistical distribution of the data is not needed (data distribution
free) and it can detect and express unknown relationships that exist among data as
a mathematical expression. These characteristics convert these algorithms into a
paradigm of growing interest both for obtaining classification rules [42, 64] and for
other tasks related to prediction, such as feature selection [19, 50] and the generation
of discriminant functions [16, 37]. This shows thatGP is amature field that efficiently
achieves low error rates in supervised learning and is still introducing improvements
into its methods [36, 39].

An extension of GP is Grammar-Guided Genetic Programming (G3P) [68]. G3P
has shown to be an excellent approximation with a high performance in structured
problems and is considered one of the most promising areas in GP [49]. This type of
algorithms facilitates the efficient automatic discovery of empirical laws and provides
a more systematic way of handling typing. More importantly, G3P can constrain the
search space so that only grammatically correct individuals are generated. To achieve
these goals, G3P employs a context-free grammar, that establishes the syntactical
restrictions of the problem to be solved and its possible solutions. Similarly to other
evolutionary algorithms, G3P is based on fundamental evolutionary processes, such
as selection, reproduction, and replacement [29, 32].

Works on evolutionary algorithms in MIL have focused on G3P algorithms. Con-
cretely, Zafra and Ventura [76] proposed a Grammar-Guided Genetic Programming
algorithm for solving MIL problems, called G3P-MI. This method codifies each
individual as an IF-THEN rule generated by means of the context-free grammar. The
IF part of the rule (antecedent) contains a logical combination of conditions on the
feature values and the THEN part (consequent) contains the predicted class for the
concepts satisfied by the antecedent of the rule. In the particular case of two-class
classification where G3P-MI has been applied, this rule determines if a bag should be
considered positive or negative following the standardMI assumption. The individual
representation would be

84 4 Instance-Based Classification Methods

∑N = {〈condI〉,〈variable-cat〉,〈variable-num〉,〈value-cat〉,〈value-num〉,
〈cmp〉,〈cmp-num〉,〈cmp-int〉,〈cmp-cat〉,〈op-cat〉,〈op-num〉,〈op-int〉}
∑T = {GE,LT,EQ,NOT-EQ, IN,OUT,OR,AND}
〈condI〉 → 〈cmp〉

| OR 〈cmp〉〈condI〉
| AND 〈condI〉

〈cmp〉 → 〈op-num〉〈cmp-num〉
| 〈op-cat〉〈cmp-cat〉
| 〈op-int〉〈cmp-int〉

〈op-cat〉 → EQ
| NOTEQ

〈op-num〉 → GE
| LT

〈op-int〉 → IN
| OUT

〈cmp-cat〉 → 〈variable-cat〉〈value-cat〉
〈cmp-int〉 → 〈variable-num〉〈value-int〉〈value-int〉
〈cmp-num〉 → 〈variable-num〉〈value-num〉
〈variable-cat〉 → Any valid attribute in dataset
〈variable-num〉 → Any valid attribute in dataset
〈value-cat〉 → Any valid value
〈value-num〉 → Any valid value

Fig. 4.3 Grammar used for representing individuals genotypes in G3P-MI

If (condB(bag)) then
bag is an instance of the concept.

Else
bag is an instance of the concept.

End-If

where condB is a condition applied on bags, which can be expressed as

condB(bag) =
∨

∀instance∈bag
condI (instance), (4.14)

where∨ is the disjunction operator and condI is a condition applied on each instance
belonging to the bag that is obtained according to the grammar shown in Fig. 4.3.
The grammar is defined as the set of non terminals, set of terminals and the set
of productions written as Backus-Naur form (BNF) [38]. In this manner, the rule
antecedent would be composed by a disjunction (OR) and conjunction (AND) of
comparators. The final number of admitted attributes and values would be associated
with the attributes and their values defined in the classification problem to solve.

Themain steps ofG3P-MI are based on a classic generational and elitist evolution-
ary algorithm (Algorithm 1). Initially, a population of classification rules is generated
following a procedure inspired by that defined by Geyer-Shultz [28]. Next, the indi-

4.7 Evolutionary Based Methods 85

viduals are evaluated using the product of sensitivity and specificity [76] as fitness
function. These measures are, respectively, defined as the proportion of cases cor-
rectly identified as meeting a certain condition (true positives) and the proportion
of cases correctly identified as not meeting this condition (true negatives). Once
the individuals are evaluated with respect to their ability to solve the problem, the
main loop of the algorithm is composed of the following operations. The first step
represents the parent selection where individuals are selected by means of binary
tournaments. The recombination and mutation processes are carried out with a cer-
tain probability [76]. Once the offspring is obtained through the previous procedure,
these new solutions are evaluated. In the last operation, the population is updated by
direct replacement, that is, the resulting offspring replaces the current population.
To guarantee that the best individual in the population is not lost during the updating
process, the algorithm employs elitism.

Algorithm 1 G3P-MI Algorithm
Input: Multi-instance dataset T , it is used to evaluate individuals.Maximumnumber of generations

maxgenerations
Output: The best individual of Pmax−population
1: P0 ← initializePopulation() � generate initial population of rules

2: P0 ← MultiInstanceEvaluator(P0, T) � Evaluate individuals (see Algorithm 2)

3: t ← 0 � initialize number of generations

4: repeat
5: � Select to parents by means of binary tournament

Pparents ← tournamentSelector(Pt)
6: � Obtain offspring population by means of crossover and mutation

Pof f spring ← parentReproduction(Pparents)
7: � Evaluate individuals of population (see Algorithm 2)

Pof f spring ← MultiInstanceEvaluator(Pof f spring , T)
8: � The next individual population is obtained using elitism

Pt+1 ← updatePopulation(Pof f spring , Pt)
9: � next generation

t ← t + 1
10: until (t ≤ max_generations)

Algorithm 2MultiInstance Evaluator
Input: Multi-instance dataset T . Individual population P
Output: Individual population evaluated Pevaluated

� In MIL the coverage function has to discriminate bags no instances

1: for each individual ∈ P do
2: rule ← individual genotype � Obtain the rule of the individual

3: Coveragemulti (rule) ← {bagi |Covermulti (rule, bagi)}
� bagi denotes the i − th bag in the data set

4: Covermulti (rule, bag) ← ∃ (instance ∈ bag) Coverinstance (rule, instance)
� Coverinstance is applied on particular instances

5: end for

86 4 Instance-Based Classification Methods

Evolutionary algorithms have been applied to different problems in MIL. Using
a G3P-based algorithm, Zafra et al. [78] determine if a particular index web page is
interesting for a user or not and Zafra and Ventura [75] predict if a student will fail
or pass a certain course identifying the most relevant activities to promote learning
from the MIL perspective.

Similar to traditional single-instance learning, the classification problem could
be considered a multi-objective problem, where there are different contradictory
objectives that have to be satisfied simultaneously. An extension of G3P-MI that
works over several objectives and obtains well-distributed Pareto solutions in a
MIL scenario has been proposed by Zafra and Ventura [77]. The authors proposed
a MultiObjective Grammar-Guided Genetic Programming for Multiple Instances
(MOG3P-MI). Three different evolutionary approaches were developed following
the philosophy of well-known multi-objective algorithms in traditional supervised
learning. The first approach (MOG3P-MIv1) followed the evolutionary strategy of the
Strength Pareto Evolutionary Algorithm (SPEA2) [87], the second one (MOG3P-
MIv2) is based on the Non-dominated Sorting Genetic Algorithm (NSGA2) [20]
and the third one (MOG3P-MIv3) is based on Multi-objective genetic local search
(MOGLS) [34]. The three versions are compared and a particular proposal called
MOG3P-MI is presented as the best option.

4.8 Experimental Analysis

In this section, we empirically compare the performance of some representative
instance-based MIC methods. These experiments are only intended for illustration
purposes and cannot be taken as a rigorous comparison among classifiers. Datasets
coming from various application areas are used. The experimental setup is specified
in Sects. 4.8.1 and 4.8.2 presents the results.

4.8.1 Setup

The datasets used in the experimental study are described in Table 4.1, as a selection
of the datasets presented in Sect. 3.6. We limit the study to two-class datasets, since
this is the kind of problem mostly studied so far. The table shows the total number
of bags, as well as the number of bags in each class, the number of instances and the
number of features. Thedatasets comprise different application domains, as described
in Sect. 3.6.WIR7 originated from awebmining application [86], but only text rather
than multimedia information is used. A strong feature selection process have been
applied to the originalWIR7 andTREC9-4 datasets, removing both poorly and highly
frequent words.

The included algorithms are listed in Table 4.2. They represent different
approaches described in this chapter and the two principal MI assumptions used

http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3

4.8 Experimental Analysis 87

Table 4.1 Description of the multi-instance datasets used in the comparison

Dataset #bags +bags −bags #inst #feat

Musk1 92 47 45 476 166

Musk2 101 39 62 12,179 166

Atoms 188 125 63 1618 10

Bonds 188 125 63 3995 16

Chains 188 125 63 5349 24

WIR7 113 55 58 3423 303

TREC9-4 400 200 200 3391 306

Beach 200 100 100 719 9

Fox 200 100 100 1320 230

Table 4.2 Instance-based classification algorithms to be compared

Algorithm Approach MIL assumption

EM-DD Diverse density Standard

MILR (Logistic regression) Traditional statistic Collective

MIBoost Ensembles Collective

MITI Decision trees Standard

miSVM Maximum margin Standard

MIWrapper Wrapper Std/Coll

G3P-MI Evolutionary Standard

in the literature. The implementations are taken from theWeka library, except that of
G3P-MI which was obtained from the JCLEC library. Both libraries are described in
Sect. 3.7. We use the default settings of the algorithms run in Weka. In G3P-MI, we
apply the default parameters set in [76]. In MIBoost, we use the classic tree induc-
tion Algorithm C4.5 as base classifier and perform 10 boosting iterations. Regarding
miSVM, we use an RBF kernel with C = 1 and γ = 0.5. These parameters were
selected after a gross grid search over the studied datasets. We use the fivefold cross
validation procedure and evaluate the performance of the classifiers by means of
their accuracy (Sect. 1.4).

4.8.2 Results and Discussion

For the sake of clarity, we organize the presentation of results in four parts. In
Sect. 4.8.2.1, we discuss the results of thewrappermethods of Sect. 4.2, that allow the
straightforward use of unmodified single-instance classifiers to multi-instance data.
Section4.8.2.2 presents the results of a representative selection of the most popular
and effective instance-based multi-instance learning algorithms. The results of two

http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_1

88 4 Instance-Based Classification Methods

MIL boosting methods are provided in Sect. 4.8.2.3. We compare them separately, as
they are ensemble methods and it is accepted that they generally outperform single-
classifiermethods. Finally, Sect. 4.8.2.4 compares the top performingmethods taking
into account accuracy, model interpretability, and training time.

4.8.2.1 Wrappers for Single-Instance Methods

Section4.2 discussed wrappers methods that can be used to apply single-instance
methods to MIL data. Table 4.3 presents the experimental results for these methods
that use the standard (Std) and the collective (Col) MI assumptions. We executed
both wrapper types with three single-instance classifiers: C4.5, logistic regression
(LR) and a support vector machine (SVM) with RBF kernel and same parameters
as described in the setup section. The bottom two rows show the average accuracy
and the standard deviation over the nine datasets. The best result in each row is
highlighted in bold. We observe the following:

• Different single-instance classifiers are appropriate for different MI problems.
SVMdominates in six out of nine datasets, but C4.5 excels in the threemutagenesis
datasets and LR works has decent results in text domain datasets. Consequently,
we observe that wrappers based on the standard assumption can beat those based
on the collective assumption when using C4.5 in mutagenesis datasets or when
using SVM in the other datasets. Previous studies have drawn similar conclusions
[56].

• Collective assumption-based wrappers learn consistently more accurate models
than standard assumption-based wrappers. In almost all cases, the wrapper based
on the collectiveMI assumptionhas better results than the onebasedon the standard

Table 4.3 Experimental results for wrapper methods

Method Std + C4.5 Col + C4.5 Std + LR Col + LR Std + SVM Col + SVM

Musk1 77.17 86.96 77.17 85.87 89.13 90.22

Musk2 67.33 81.19 67.33 81.19 83.17 89.11

Atoms 68.62 73.40 66.49 65.96 66.49 66.49

Bonds 76.06 77.13 66.49 67.02 66.49 70.74

Chains 76.60 85.11 66.49 71.28 66.49 70.74

WIR 53.98 74.34 60.18 77.88 54.87 77.88

TREC 74.00 81.25 68.25 80.75 70.50 82.75

Beach 63.00 74.00 68.50 79.00 4.50 80.50

Fox 55.00 59.00 57.00 55.00 60.00 62.50

Average 67.97 76.93 66.43 73.77 69.07 76.77

SD 8.50 7.84 5.29 9.19 10.15 9.23

4.8 Experimental Analysis 89

MI assumption. The theoretical arguments that were given in Sect. 4.2 are an
explanation of these results.

• Taking into account these two points, we can expect that using an appropri-
ate single-instance classifier in conjunction with the collective assumption-based
wrapper yields good results in many datasets. The challenge is to find the best
single-instance learner.

• On average, the best result is achieved by the collective assumption-based wrapper
with the C4.5 single-instance classifier. Even though this method did not reach the
highest score in most datasets, its performance was consistently good, as shown
by its low standard deviation. For this reason, we include this algorithm in the
Sect. 4.8.2.4.

4.8.2.2 Representative Instance-Based Methods

Table 4.4 contains the experimental results of the selected instance-based classifiers.
We note the following:

• The evolutionary algorithm G3P-MI dominates. It obtains the highest accuracy
in six out of nine datasets and is very close to the best result in the other three.
It has the highest average accuracy as well. Additionally, G3P-MI has the lowest
standard deviation, which means that it has an important stability in its results. We
select G3P-MI for the comparison carried out in Sect. 4.8.2.4.

• The tree induction MI algorithmMITI has a good performance on the three muta-
genesis datasets. In Table 4.3, C4.5 yields the best results on the mutagenesis data
as well. These observations suggest that the tree induction bias is appropriate to
model mutagenesis problems. Conversely, SVMs (both the single-instance version
with the wrapper and the multi-instance miSVM) perform poorly in these datasets.

Table 4.4 Experimental results for representative instance-based methods

Method EM-DD MILR MITI miSVM G3P-MI

Musk1 84.78 76.09 65.22 89.13 88.21

Musk2 84.16 75.25 62.38 83.17 83.94

Atoms 75.00 67.55 81.38 66.49 83.55

Bonds 73.94 81.91 82.98 66.49 82.42

Chains 70.74 78.72 82.45 66.49 83.81

WIR 61.06 70.80 61.06 58.41 72.47

TREC 52.00 71.00 71.50 69.25 87.87

Beach 73.50 78.00 62.50 80.00 83.54

Fox 61.00 50.50 56.50 59.00 67.72

Average 70.69 72.20 69.55 70.94 81.50

SD 10.29 8.76 9.73 10.13 6.87

90 4 Instance-Based Classification Methods

• EM-DD and miSVM obtain good results in some datasets, but not so in others,
yielding accuracies that are low on average and highly variable. The results of
MILR have less variability, but are considerably lower than those of G3P-MI.

4.8.2.3 Comparing Boosting Methods

In this section, we compare two MIL boosting approaches. The first method is the
multi-instance MIBoost algorithm described in Sect. 4.3 using the single-instance
C4.5 as base learner. The second is the single-instance AdaBoost method, using the
multi-instance MITI method as base learner. Both base learners are tree induction
algorithms, but eachworks in a different learning setting.Boostingmethods needbase
learners that are weak enough so they allow for variability in the learned hypothesis.
MITI classifiers readilymeet that condition, but in the case of C4.5we had to increase
its pruning level by putting the confidence factor to 0.025 used for pruning in this
experiment.

The key difference between these approaches is that in the AdaBoost+MITI
scheme, the loss function optimized by the boosting algorithm is used to search a
bag-level weak learner H . The error of H is used to compute bag-level weights.
In the MIBoost+C4.5 scheme, an instance-level weak learner h is searched and
the error of h is used to compute instance-level weights. A second difference is
that the AdaBoost+MITI scheme implements the standard MI assumption which
is encoded in the base classifier MITI, while the collective assumption is used by
the AdaBoost+MITI scheme as part of the loss function optimized by the boosting
procedure. Table 4.5 shows experimental results for boosting methods in MIL, from
which we can observe the following:

• Compared to Table 4.4, the results of AdaBoost are better than those of the single
MITI algorithm in seven out of nine datasets. The best results of AdaBoost are
attained in the mutagenesis datasets, precisely where MITI was already the best
in its pool.

• MIBoost results are better than those of the C4.5 collective wrapper in eight
datasets and worse in one dataset (Chains). Although Adaboost has better results
than MIBoost in the mutagenesis datasets, MIBoost has the best performance
by a wide margin in the remaining datasets. We select MIBoost for the overall
comparison in Sect. 4.8.2.4.

4.8.2.4 Overall Comparison of Instance-Based Methods

We selected the best performingmethods from the three previous experiments. These
are the evolutionary algorithm G3P-MI, MIWrapper (Col) + C4.5 and MIBoost +
C4.5. In this section, we present an overall comparison between them.

Figure 4.4 shows the accuracyof the selectedmethods in eachdataset.Note that the
accuracy axis starts at 40 to better distinguish the differences between the methods.

4.8 Experimental Analysis 91

Table 4.5 Experimental results for boosting method

Method MIBoost + C4.5 AdaBoost + MITI

Musk1 90.22 61.96

Musk2 82.18 69.31

Atoms 81.91 84.57

Bonds 80.85 84.57

Chains 82.98 84.04

WIR 83.19 62.83

TREC 83.75 76.75

Beach 84.00 71.00

Fox 60.00 51.00

Average 81.01 71.78

SD 7.84 11.14

Fig. 4.4 Experimental results for selected methods

Although the differences are only small in some datasets, we count 5 wins for G3P-
MI, 3 wins for MIBoost and one for the Wrapper method. The excellent results of
G3P-MI show that genetic programming is a powerful tool for learning complex
models such as the underlying MIL problems. The behavior of MIBoost suggests
that in the multi-instance setting the generalization ability of boosting algorithms is
usually better than that of single learners, as also occurs in single-instance learning
[69]. In several datasets, Wrapper obtains good results. This is remarkable, since it is

92 4 Instance-Based Classification Methods

a very simple classification method that allows the use of a single-instance classifier
such as C4.5. This fact was already observed in previous studies [22, 24].

We must note that while MIBoost and Wrapper achieve these results by using the
collective assumption, G3P-MI does so based on the standard assumption. It suggests
that the role of the MI assumption in the performance of the classifier might not be
as important as other characteristics of the learner.

Aside from accuracy, other important characteristics of a learning algorithm are
the training time and the model interpretability. In some applications, the time
required to learn the model can be a critical design factor. Figure 4.5 shows the
training time for selected classifiers in our experiments. In addition to the three best
performing classifiers discussed above, we also include other representative methods
in this comparison. G3P-MI has the largest training time. The high-computational
cost needed to evolve solutions is a drawback of genetic programming methods. In
this context, it is interesting to name the study of Cano et al. [11] that optimizes
the execution time of G3P-MI. Methods such as miSVM and EM-DD are time-
consuming as well. With respect to EM-DD, it is clear that the intensive computation
of the diverse density function and its slow convergence take a long time to be trained.
MIBoost, which shows very competitive accuracy, has a moderate training time. It is

Fig. 4.5 Training time in seconds for the methods in the study

4.8 Experimental Analysis 93

interesting that AdaBoost takes much less time to be trained than MIBoost and even
than some single classifiers. One reason of this behavior is that its base classifier is
MITI, of which the training time is lower than that of C4.5. The other reason is that
the loss function optimized by AdaBoost is less complex than that of MIBoost, as
explained in Sect. 4.8.2.3. MILR is not an expensive method and, as was shown in
Sect. 4.8.2.2, it can reach acceptable results in some datasets. TheWrapper method is
fast and quite accurate. Finally, MITI has the lowest training time. Although it is not
among the more accurate methods, MITI has another advantage: since its classifica-
tion model is a decision tree, it is easy to understand. Two other learning algorithms
are also among those that build the most interpretable models. One is the Wrapper
method that uses the C4.5 base classifier (which builds a decision tree) and the other
is G3P-MI, which represents the model in the form of IF-THEN classification rules,
providing a more natural description of the learned knowledge.

4.9 Summarizing Comments

Instance-based classification algorithms are among the most popular MIC methods.
In this chapter, we have reviewed a variety of these algorithms such as decision trees,
SVMs, and evolutionary algorithms. Most instance-based classification algorithms
are adaptations of single-instance classification algorithms to the multi-instance set-
ting. An important exception are the wrapper methods that allow the use of unmod-
ified single-instance classifiers in MIC problems.

In order tofind the function that best fits the trainingdata, onegeneral principle is to
minimize some loss function relating instance labels provided by a generative model
with bag labels of training data through theMI assumption. This optimization process
can take the form of a likelihood maximization in many statistical learners, margin
maximization in SVMs, information gain maximization in decision tree methods,
fitness function maximization in evolutionary algorithms, etc. As an alternative,
the adaptation of a single-instance classification algorithm to MIL can rely on any
appropriate MI assumption.

In an experimental study, we have compared some representative instance-based
classification algorithms, taking into account several quality aspects. The results
show that the optimal classifier for a given application depends on both the applica-
tion domain and priorities such as accuracy, training time, or model interpretability.
Instance-based methods that make accurate predictions, have fast training times and
construct interpretable models have been identified in this study.

94 4 Instance-Based Classification Methods

References

1. Amar, R.A., Dooly, D.R., Goldman, S.A., Zhang, Q.: Multiple-instance learning of real-valued
data. In: Brodley, C., Danyluk, A. (eds.) Proceedings of the 18th International Conference
on Machine Learning (ICML 2001), pp. 3–10. Morgan Kaufmann Publishers, San Francisco
(2001)

2. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance
learning. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information
Processing Systems, pp. 561–568. MIT Press, Cambridge (2002)

3. Babenko, B., Belongie, S., Yang, M.H.: Visual tracking with online multiple instance learning.
In: Flynn, P., Mortensen, E. (eds.) Proceedings of the 2009 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2009), pp. 983–990. IEEE, Los Alamitos (2009)

4. Bascom, J.: Darwin’s theory of the origin of species. Am. Theol. Rev. 3, 349–379 (1871)
5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)
6. Bjerring, L., Frank, E.: Beyond trees: adopting MITI to learn rules and ensemble classifiers for

multi-instance data. In: Wang, D., Reynolds, M. (eds.) Lecture Notes in Artificial Intelligence,
pp. 41–50. Springer, Berlin (2011)

7. Blockeel, H., Page, D., Srinivasan, A.: Multi-instance tree learning. In: De Raedt, L., Wrobel,
S. (eds.) Proceedings of the 22nd International Conference onMachine Learning (ICML 2005),
pp. 57–64. ACM, New York (2005)

8. Bouchachia, A.: Multiple instance learning with radial basis function neural networks. In: Pal,
N., Kasabov, N., Mudi, R., Pal, S., Parui, S. (eds.) Advances in Neural Information Processing
Systems (NIPS Conference), pp. 440–445. Springer, Berlin (2004)

9. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
10. Bunescu, R., Mooney, R.: Multiple instance learning for sparse positive bags. In: Proceedings

of the 24th International Conference on Machine Learning (ICML 2007), pp. 105–112. ACM,
New York (2007)

11. Cano, A., Zafra, A., Ventura, S.: Speeding up multiple instance learning classification rules on
GPUs. Knowl. Inf. Syst. 44(1), 127–145 (2015)

12. Chen, Y., Wang, J.: Image categorization by learning and reasoning with regions. J. Mach.
Learn. Res. 5, 913–939 (2004)

13. Cheung, P., Kwok, J.: A regularization framework for multiple-instance learning. In: Ghahra-
mani, Z. (ed.) Proceedings of the 23rd International Conference on Machine learning, pp.
193–200 (2006)

14. Chevaleyre, Y., Zucker, J.: Solving multiple-instance and multiple-part learning problems with
decision trees and rule sets. Application to the mutagenesis problem. In: Stroulia, E., Matwin,
S. (eds.) Lecture Notes in Artificial Intelligence, pp. 204–214. Springer, Berlin (2001)

15. Chevaleyre, Y., Bredeche, N., Zucker, J.: Learning rules from multiple instance data: issues
and algorithms. In: Proceedings of the 9th International Conference on Information Processing
and Management of Uncertainty in Knowledge-Based Systems (IPMU 2002), pp. 455–459.
Esia, Annecy (2002)

16. Chien, B.C., Lin, J.Y., Hong, T.P.: Learning discriminant functions with fuzzy attributes for
classification using genetic programming. Expert Syst. Appl. 23(1), 31–37 (2002)

17. Chuang, S.C., Xu, Y.Y., Fu, H.C.: Neural network based image retrieval with multiple instance
leaning techniques. In: Khosla, R., Howlett, R., Jain, L. (eds.) Lecture Notes in Artificial
Intelligence, pp. 1210–1216. Springer, Berlin (2005)

18. Cohen, W.: Fast effective rule induction. In: Prieditis, A., Russell, S. (eds.) Proceedings of the
12th International Conference on Machine Learning, pp. 115–123. Morgan Kaufmann, San
Francisco (1995)

19. Davis, R.A., Charlton, A.J., Oehlschlager, S., Wilson, J.C.: Novel feature selection method for
genetic programming using metabolomic 1H NMR data. Chemom. Intell. Lab. 81(1), 50–59
(2006)

20. Ded, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 149–172 (2002)

References 95

21. Deza, M.M., Deza, E.: Dictionary of Distances. Elsevier, Amsterdam (2006)
22. Dong, L.: A comparison of multi-instance learning algorithms. Master thesis, University of

Waikato, New Zealand (2006)
23. Feng, S., Xu, D.: Transductive multi-instance multi-label learning algorithm with application

to automatic image annotation. Expert Syst. Appl. 37(1), 661–670 (2010)
24. Frank, E., Xu, X.: Applying propositional learning algorithms tomulti-instance data. Technical

report 06/03, Department of Computer Science, University ofWaikato, Hamilton, NewZealand
(2003)

25. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boost-
ing (with discussion and a rejoinder by the authors). Ann. Stat. 28(2), 337–407 (2000)

26. Fu, Z., Robles-Kelly, A.: Fast multiple instance learning via L1,2 logistic regression. In: Pro-
ceedings of the 19th International Conference on Pattern Recognition (ICPR 2008), pp. 3815–
3818. IEEE, Los Alamitos (2008)

27. Garcez, A., Zaverucha, G.: Multi-instance learning using recurrent neural networks. In: Pro-
ceedings of the International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE,
Los Alamitos (2012)

28. Geyer-Schulz, A.: Fuzzy Rule-Based Expert Systems and Genetic Machine Learning, vol. 3.
Physica Verlag, Heidelberg (1997)

29. Goldberg, D.E.: Zen and the art of genetic algorithms. In: Proceedings of the 3rd International
Conference on Genetic Algorithms, pp. 80–85. Morgan Kaufmann Publishers, San Francisco
(1989)

30. Gondra, I., Xu, T.: A multiple instance learning based framework for semantic image segmen-
tation. Multimed. Tools Appl. 48(2), 339–365 (2010)

31. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: Chantler,
M., Trucco, E., Fisher, B. (eds.) Proceedings of the British Machine Vision Conference, pp.
47–56. British Machine Vision Association, Durham (2006)

32. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)

33. Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Efficient multiple
instance convolutional neural networks for gigapixel resolution image classification (2015).
arXiv:1504.07947

34. Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimization. Eur. J.
Oper. Res. 137(1), 50–71 (2002)

35. Jolliffe, I.: Principal Component Analysis. Springer, New York (2002)
36. Kattan, A., Agapitos, A., Ong, Y.S., Alghamedi, A., O’Neill, M.: GPmade faster with semantic

surrogate modelling. Inf. Sci. 355–356, 169–185 (2016)
37. Kishore, J.K., Patnaik, L.M., Mani, V., Agrawal, V.: Application of genetic programming for

multicategory pattern classification. IEEE Trans. Evol. Comput. 4(3), 242–258 (2000)
38. Knuth, D.E.: Backus normal form vs. Backus Naur form. Commun. ACM 7(12), 735–736

(1964)
39. Kouchakpour, P., Zaknich, A., Bräunl, T.: Dynamic population variation in genetic program-

ming. Inf. Sci. 179(8), 1078–1091 (2009)
40. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press, Cambridge (1992)
41. Leistner, C., Saffari, A., Bischof, H.: MIForests: multiple-instance learning with randomized

trees. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision - ECCV 2010, pp.
29–42. Springer, Berlin (2010)

42. Lensberg, T., Eilifsen, A., McKee, T.E.: Bankruptcy theory development and classification via
genetic programming. Eur. J. Oper. Res. 169(2), 677–697 (2006)

43. Li, C.H., Gondra, I.: A novel neural network-based approach for multiple instance learning.
In: Proceedings of the 2010 IEEE 10th International Conference on Computer and Information
Technology (CIT), pp. 451–456. IEEE, Los Alamitos (2010)

44. Li, C.H., Gondra, I., Liu, L.: An efficient parallel neural network-based multi-instance learning
algorithm. J. Supercomput. 62(2), 724–740 (2012)

http://arxiv.org/abs/1504.07947

96 4 Instance-Based Classification Methods

45. Maron, O.: Learning from ambiguity. Ph.D. thesis, Massachusetts Institute of Technology,
United States of America (1998)

46. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Jordan, M.,
Kearns, M., Solla, S. (eds.) Advances in Neural Information Processing Systems, pp. 570–576.
MIT Press, Cambridge (1998)

47. Mason, L., Baxter, J., Bartlett, P.L., Frean, M.R.: Boosting algorithms as gradient descent. In:
Solla, S., Leen, T., Müller, K. (eds.) Advances in Neural Information Processing Systems, pp.
512–518. MIT Press, Cambridge (2000)

48. McGovern, A., Jensen, D.: Identifying predictive structures in relational data using multiple
instance learning. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the 20th International
Conference on Machine Learning (ICML 2003), pp. 528–535. The AAAI Press, Menlo Park
(2003)

49. Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O‘Neill, M.: Grammar-based genetic pro-
gramming: a survey. Genet. Program. Evol. M 11(3–4), 365–396 (2010)

50. Muharram, M., Smith, G.D.: Evolutionary constructive induction. IEEE Trans. Knowl. Data
Eng. 17(11), 1518–1528 (2005)

51. Oza, N.C.: Online ensemble learning. Ph.D. thesis, University of California, Berkeley, United
States of America (2001)

52. Pao, H., Chuang, S., Xu, Y., Fu, H.: An EM based multiple instance learning method for image
classification. Expert Syst. Appl. 35(3), 1468–1472 (2008)

53. Qi, Z., Xu, Y., Wang, L., Song, Y.: Online multiple instance boosting for object detection.
Neurocomputing 74(10), 1769–1775 (2011)

54. Quinlan, J.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
55. Ramon, J., De Raedt, L.: Multi instance neural networks. In: Proceedings of the ICML-2000

Workshop on Attribute-Value and Relational Learning, pp. 53–60. Morgan Kaufmann Publish-
ers, San Francisco (2000)

56. Ray, S., Craven,M.: Supervised versusmultiple instance learning: an empirical comparison. In:
De Raedt, L., Wrobel, S. (eds.) Proceedings of the 22nd International Conference on Machine
Learning (ICML 2005), pp. 697–704. ACM, New York (2005)

57. Rose, K., Gurewitz, E., Fox, G.: Deterministic annealing, constrained clustering, and optimiza-
tion. In: Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN),
pp. 2515–2520. IEEE, Los Alamitos (1991)

58. Ruffo, G.: Learning single and multiple instance decision trees for computer security applica-
tions. Ph.D. thesis, University of Turin, Italy (2000)

59. Saul, L.K., Rahim, M.G., Allen, J.B.: A statistical model for robust integration of narrowband
cues in speech. Comput. Speech Lang. 15, 175–194 (2001)

60. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions.
Mach. Learn. 37(3), 297–336 (1999)

61. Smola, A.J., Vishwanathan, S., Hofmann, T.: Kernel methods for missing variables. In: Cow-
ell, R., Ghahramani, Z. (eds.) Proceedings of the 10th International Workshop on Artificial
Intelligence and Statistics (AISTATS), pp. 325–332. The Society for Artificial Intelligence and
Statistics (2005)

62. Song, Y., Li, Q.: Visual tracking based on multiple instance learning particle filter. In: Pro-
ceedings of the 2011 IEEE International Conference on Mechatronics and Automation, pp.
1063–1067. IEEE, Los Alamitos (2011)

63. Sternig, S., Roth, P., Bischof, H.: Inverse multiple instance learning for classifier grids. In:
Proceedings of the 20th International Conference on Pattern Recognition (ICPR), pp. 770–
773. IEEE, Los Alamitos (2010)

64. Tsakonas, A.: A comparison of classification accuracy of four genetic programming-evolved
intelligent structures. Inf. Sci. 176(6), 691–724 (2006)

65. Uwents, W., Blockeel, H.: Classifying relational data with neural networks. In: Kramer, S.,
Pfahringer, B. (eds.) Lecture Notes in Artificial Intelligence, pp. 384–396. Springer, Berlin
(2005)

References 97

66. Uwents, W., Blockeel, H.: A comparison between neural network methods for learning aggre-
gate functions. In: Jean-Fran, J., Berthold, M., Horváth, T. (eds.) Lecture Notes in Artificial
Intelligence, pp. 88–99. Springer, Berlin (2008)

67. Viola, P., Platt, J., Zhang, C.: Multiple instance boosting for object detection. In: Weiss, Y.,
Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems, pp. 1417–
1424. MIT Press, Cambridge (2005)

68. Whigham, P.A.: Grammatically-based genetic programming. In: Rosca, J.P. (ed.) Proceedings
of the Workshop on Genetic Programming: From Theory to Real-World Applications, pp.
33–41. University of Rochester, Rochester (1995)

69. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A.,
Liu, B., Philip, S.Y., Zhou, Z., Steinbach, M., Hand, D., Steinberg, D.: Top 10 algorithms in
data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)

70. Xie, Y., Qu, Y., Li, C., Zhang,W.: Online multiple instance gradient feature selection for robust
visual tracking. Pattern Recognit. Lett. 33(9), 1075–1082 (2012)

71. Xu, X.: Statistical learning inmultiple instance problems.Master thesis, University ofWaikato,
New Zealand (2003)

72. Xu, X., Frank, E.: Logistic regression and boosting for labeled bags of instances. In: Dai, H.,
Srikant, R., Zhang, C. (eds.) Lecture Notes in Artificial Intelligence, pp. 272–281. Springer,
Berlin (2004)

73. Xu, Y.Y., Shih, C.H.: Multiple-instance learning via decision-based neural networks. In:
Watada, J., Philips-Wren, G., Jain, L., Howlett, R. (eds.) Intelligent Decision Technologies,
pp. 885–895. Springer, Berlin (2011)

74. Yang, C.Y.C., Dong, M.D.M., Hua, J.H.J.: Region-based image annotation using asymmetrical
support vectormachine-basedmultiple-instance learning. In: Fitzgibbon,A., Taylor, C., LeCun,
Y. (eds.) Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2006), pp. 2057–2063. IEEE, Los Alamitos (2006)

75. Zafra, A., Ventura, S.: Predicting student grades in learningmanagement systems with multiple
instance learning genetic programming. In: Barnes, T., Desmarais, M., Romero, C., Ventura,
S. (eds.) Proceedings of the 2nd International Conference on Educational Data Mining, pp.
309–318 (2009)

76. Zafra,A.,Ventura, S.:G3p-MI: a genetic programming algorithm formultiple instance learning.
Inf. Sci. 180(23), 4496–4513 (2010)

77. Zafra, A., Ventura, S.: Multi-objective approach based on grammar-guided genetic program-
ming for solving multiple instance problems. Soft Comput. 16(6), 955–977 (2012)

78. Zafra, A., Romero, C., Ventura, S., Herrera-Viedma, E.: Multi-instance genetic programming
for web index recommendation. Expert Syst. Appl. 36(9), 11470–11479 (2009)

79. Zeisl, B., Leistner, C., Saffari, A., Bischof, H.: On-line semi-supervised multiple-instance
boosting. In: Boykov, Y., Schmidt, F.R., Kahl, F., Lemptisky, V. (eds.) Proceedings of the 2010
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2010), pp. 1879–1879.
IEEE, Los Alamitos (2010)

80. Zhang, Q., Goldman, S.A.: EM-DD: an improved multiple-instance learning technique. In:
Dietterich, T., Becker, S., Ghahramani (eds.) Advances in Neural Information Processing Sys-
tems, pp. 1073–1080. MIT Press, Cambridge (2001)

81. Zhang,M., Zhou, Z.:AdaptingRBFneural networks tomulti-instance learning.Neural Process.
Lett. 23(1), 1–26 (2006)

82. Zhang, M.L., Zhou, Z.H.: A multi-instance regression algorithm based on neural network. J.
Softw. 14(7), 1238–1242 (2003)

83. Zhang, M.L., Zhou, Z.H.: Improve multi-instance neural networks through feature selection.
Neural Process. Lett. 10(1), 1–10 (2004)

84. Zhou, Z., Xu, J.: On the relation betweenmulti-instance learning and semi-supervised learning.
In:Ghahramani, Z. (ed.) Proceedings of the 24th InternationalConference onMachineLearning
(ICML 2007), pp. 1167–1174. ACM, New York (2007)

85. Zhou,Z., Zhang,M.:Neural networks formulti-instance learning. Technical report,Department
of Computer Science and Technology, Nanjing University, Nanjing, China (2002)

98 4 Instance-Based Classification Methods

86. Zhou, Z., Jiang, K., Li, M.: Multi-instance learning based web mining. Appl. Intell. 22(2),
135–147 (2005)

87. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary
algorithm. Eurogen 3242(103), 95–100 (2001)

Chapter 5
Bag-Based Classification Methods

Abstract In bag-based multi-instance methods, the main learning process occurs
at the level of bags. In this chapter, we analyze two important subcategories of bag-
based MIL classifiers. On the one hand, in Sect. 5.2, we examine classifiers that
define a distance or similarity measure between bags to work directly in the original
bag space. On the other hand, Sect. 5.3 is devoted to mapping-based classifiers that
transform each bag to a single-instance representation such that the learner can train
any single-instance classifier to label new bags.

5.1 Introduction

As opposed to instance-based classification methods, the learning process of bag-
based methods occurs at bag level. The main feature that distinguishes bag-based
from instance-based classifiers is that the former can predict the label of a new
bag considering each training bag as a whole entity, without the need to discover
any hidden instance labels. Instance-based classification methods need to construct
an instance classifier that is as accurate as possible, but this is not a requirement
for bag-based methods. Although some types of bag-based classifiers do train an
instance-level learning model, it is only used as a rough guide to the main bag-level
learning process. Moreover, the MI assumption of bag-based methods need typically
not be as precise as is the case for instance-based methods, but can be more flexible
and general. We discuss the following two important subcategories of bag-based
methods:

• Bag-based methods that work in the original bag space: these methods rely
on a metric function defined over bags. The metric is used in a distance-based
classification algorithm, e.g., a nearest neighbor algorithm. By introducing the
bag-wise distance measure, the learner is effectively upgraded to a full-fledgedMI
classification algorithm. We refer to these methods as original bag space classifi-
cation methods (original-BS methods, for short) and discuss them in more depth
in Sect. 5.2.

• Bag-based methods that work in a mapped space: these methods transform the
multi-instance data into a single-instance representation and train a single-instance

© Springer International Publishing AG 2016
F. Herrera et al.,Multiple Instance Learning, DOI 10.1007/978-3-319-47759-6_5

99

100 5 Bag-Based Classification Methods

classifier on the transformed data. The same transformation is applied to an unseen
bag and its class label is predicted by the single-instance classifier learned in the
mapped space. We refer to these methods as mapped bag space classification
methods (mapped-BS methods, for short). They are discussed in Sect. 5.3.

5.2 Original Bag Space Methods

In single-instance learning, each instance is interpreted as a point in a multidimen-
sional space determined by the features of the problem at hand. Many traditional
single-instance learning algorithms rely on a distance function between points of
this space to determine separating boundaries between classes. In MIL, bags can
be understood as regions in the instance space and a bag-wise distance function
is required to evaluate similarity relations between them. Using such a bag-wise
distance function in a traditional distance-based learning algorithm, it becomes a
multi-instance algorithm able to locate bag class boundaries. The two main design
options of any bag-distance-based classification method are

• A distance-based classification method: we describe two distance-based meth-
ods: nearest neighbor methods (Sect. 5.2.1) and kernel methods (Sect. 5.2.2).

• A bag-wise distance/similarity function: recall that similarity functions can be
used instead of distance functions by inverting the objective function of the learner.
Both types of comparison measures are complementary and using one or the other
depends on the definition of the bag label prediction method. In Sect. 3.5, we listed
several distance and similarity functions that can be used in these algorithms.

5.2.1 Nearest Neighbor Methods

The CitationKNN algorithm was proposed in [20] and extends the traditional single-
instance k-nearest neighbors method (KNN) to the level of bags. To classify a new
bag X , CitationKNN uses a distance function between bags to determine which
training bags are closest to X . Inspired by the concept of citations in the field of
information science, this algorithm extends the set of nearest neighbors to consider
not only the r bags closest to X (references, Fig. 5.1), but also the bags for which X
is among the c closest bags (citers, Fig. 5.2). A voting scheme uses the class labels
of both references and citers to determine the class label of X .

Any bag-wise distance function can be used in CitationKNN (see Sect. 3.5). In
particular, the study of [20] uses the minimal Hausdorff distance (3.18), maximal
Hausdorff distance ((3.19), (3.20)) and k-th ranked Hausdorff distance (3.22).

The distance function employed in CitationKNN has a major impact on its per-
formance [2]. Each application domain can benefit more from a certain distance
function than from others and some applications may require the selection of a less

http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3

5.2 Original Bag Space Methods 101

Fig. 5.1 References. The
circle encompasses the
nearest 3-references to X
(filled balls). The closest
references correspond to the
(traditional) nearest
neighbors

Fig. 5.2 Citers. The 3-citers
nearest to X (filled balls) are
those whose three nearest
neighbors include X . Each
circle contains the three
nearest neighbors of the
sample located at its center.
For clarity, we have only
represented circles including
X . These are the 3-nearest
citers to X

conventional metric. For example, the work of [27] on a web mining application
adapts CitationKNN for text data represented by sets of terms, rather than the tra-
ditional attribute-value vector representation suffering from the so-called curse of
dimensionality. They represent an instance x by a set of textual terms {t1, t2, . . . , tn},
where ti (i = 1, . . . , n) is one of the n more frequent terms in the text fragment
corresponding to x . They use the minimal Hausdorff distance variant, i.e., k = 1 in
(3.22), and define a distance function between two instances a = {a1, a2, . . . , an}
and b = {b1, b2, . . . , bn} as

‖a − b‖ = 1 −
n

∑

i, j = 1
ai = b j

1

n
,

based on the idea that the fewer common terms two instances share, the greater the
distance between them.

http://dx.doi.org/10.1007/978-3-319-47759-6_3

102 5 Bag-Based Classification Methods

CitationKNN has been extended to regression tasks [8], clustering [13] and multi-
label classification [24]. It has been used successfully in several application domains,
such as textual classification [21] and anomaly detection [23].

5.2.2 Bag-Level SVM

Bag-level kernels are used to measure the similarity between two bags in a trans-
formed representation space. They operate on whole bags and return a single number
assessing how close the two bags are. As stated in Sect. 3.5, the similarity is inversely
related to the distance. Kernel-based methods, as well as distance-based ones, rely
on space metrics to find the separating class boundaries. When a bag-level kernel is
used in a standard SVM, the latter becomes able to optimize the margin between bag
classes without any modification to the SVM itself. One of the first bag-level kernels
was presented by Gärtner et al. [11]. They define the set kernel between two bags A
and B as

kMI (A, B) =
∑

a∈A,b∈B
k p
I (a, b) ,

where kI is a kernel defined at the instance level. Theoretically, for sufficiently large
values of p, this kernel ensures the separability of the training set. Because of the
computational cost involved in the MI kernel above, [11] defines a minimax kernel
based on the minimum and maximum attribute values of instances in each bag,
namely

k (A, B) = (〈s (A) , s (B)〉 + 1)p ,

where s (·) defines the attribute transformation

s (X) =
〈

min
x∈X x1, . . . ,min

x∈X xm,max
x∈X x1, . . . ,max

x∈X xm

〉

.

In the MI kernels proposed by Gärtner et al. [11], all attributes are treated with
equal weight. On the other hand, Blaschko et al. [3] propose conformal kernels which
can locally reduce or expand each attribute dimension based on the discriminative
importance of each attribute, while preserving the angles between vectors in the
transformed space.

Kwok and Cheung [14] present marginalized kernels, that assume that the data
are generated by a latent variable model. The observed variable is the bag and the
hidden variable is its label. In particular, let Z1 = (X1, �1) and Z2 = (X2, �2) be
two bags with their respective class labels. A joint kernel is defined as

kZ (Z1, Z2) =
n1∑

i=1

n2∑

j=1

k�

(

�1i , �1 j
)

kx
(

x1i , x2 j
)

,

http://dx.doi.org/10.1007/978-3-319-47759-6_3

5.2 Original Bag Space Methods 103

where k� (·, ·) is a kernel defined over the instance labels and kx (·, ·) is a kernel
defined over the instance space. The marginalized kernel, defined over two observed
variables X1 and X2, is obtained by taking the expectation of the joint kernel with
respect to the hidden variables �1 and �2, that is,

k (X1, X2) =
∑

�1∈L

∑

�2∈L
P (�1, X1) P (�2, X2) kZ (Z1, Z2) . (5.1)

It is possible to calculate this marginalized kernel in polynomial time. The posterior
distribution of �1 and �2 is obtained from a probabilistic model P (�i |Xi) estimated
from the data.

Bag-level kernels make an implicit transformation of bags into a single-instance
representation such that standard SVMs can be directly applied to multi-instance
data. In Sect. 5.3, we show that an explicit transformation of the bags can also be set
up to obtain a single-instance dataset on which any single-instance learner can be
trained and used to predict bag labels.

5.3 Mapped Bag Space Methods

The multi-instance classification algorithms described in Chap.4 and Sect. 5.2 are
based on single-instance classifiers that have been modified to function in the MIL
setting. Although good results have been reported in many applications for these
multi-instance algorithms, the high cost of developing new algorithms today limits
the applicability of this approach. There is only a small number of multi-instance
algorithms compared to the large number of methods and algorithmic variants that
have been developed for single-instance learning.

In this section, we examine another approach to solving multi-instance classifica-
tion problems. Instead of using amodified single-instance classifier, a transformation
is applied to the multi-instance data resulting in a single-instance representation of
bags. In this new data representation, it is possible to construct a classification model
using any traditional single-instance algorithm, effectively solving themulti-instance
classification problem. The single-instance representation of multi-instance data not
only allows the use of any single-instance classifier, but also the application of data
preprocessing techniques, such as editing, cleaning, and dimensionality reduction,
which have been well studied in single-instance learning.

In map based methods, the learning process occurs at bag level, but always relies
on a mapping process. These methods transform the original multi-instance repre-
sentation, in which each bag is a set of points (instances) in the attribute space, into
another form of representation in which each bag is represented as a single point of
the induced space. Themulti-instance problem effectively becomes a single-instance
problem to which any traditional learning algorithm can be applied.

Map based methods differ among each other in their specific mapping processes.
In general, the following procedure is used. The methods are based on a function

http://dx.doi.org/10.1007/978-3-319-47759-6_4

104 5 Bag-Based Classification Methods

M : NX → 〈a1, . . . , ad〉 that transforms the multi-instance representation of a bag
X into a single vector M (X) = 〈a1, . . . , ad〉. The multi-instance training set is
transformed in a single-instance training set by applying the function M to each
training bag. Any suitable single-instance classifier is built on the new training set.
To classify a new bag, it is first converted to the new space using M and is then
fed to the classifier which predicts a label class. By representing a bag as a point
in the new space, some of the inherent ambiguity and imprecision of the multi-
instance dataset can be reduced. However, as it is practically impossible to eliminate
it completely, some of the original ambiguity remains encoded in the attribute values
of each vector. The amount of the ambiguity reduction depends on the design of the
mapping function M .

Mapping-based classification algorithms differ primarily in the design ofM and
the mapping process. Below, we examine each of these mapping strategies and the
classifiers that use them. For a better understanding, we have made a division in four
categories, considering the meaning of the attributes in the new representation space

• Mappingmethods based on bag statistics (Sect. 5.3.1): each attribute of the new
mapping space is the value of a statistic that is applied to the set of values of the
corresponding attribute in the original representation space.

• Mapping methods based on representative instance concatenation
(Sect. 5.3.2): each vector of the new mapping space is the concatenation of N
instances of the bag, where each instance is a representative of one pattern in the
instance space.

• Mapping methods based on counting (Sect. 5.3.3): each attribute of the new
mapping space indicates presence, amount or frequency of instances of the bag in
a specific region of the instance space.

• Mapping methods based on distance (Sect. 5.3.4): each attribute of the new
mapping space represents the distance (or similarity) of the bag to a specific region
of the instance space.

5.3.1 Mapping Methods Based on Bag Statistics

Bag statistics-based methods seek to represent each bag by a single attribute
vector that summarizes the statistical information of the bag. Consider a bag
X = {x1, . . . , xn} in which each instance is described by d attributes, i.e., xi =
〈

x1i , . . . , x
d
i

〉

, ∀i ∈ [1, . . . , n]. The bag can be seen as a set of d random variables
with unknown probability distribution, for which we have a sample of size n. Several
statistics can be used to characterize the probability distribution of these random vari-
ables. In the new attribute space, in which the multi-instance examples are mapped,
each attribute of the original space is represented by one or more statistic values, that
attempt to capture the shape of the probability distribution of the original variable
within the bag. We list some examples of the kind of transformation performed on
the bags

5.3 Mapped Bag Space Methods 105

• Averagemapping:M (X) = 〈m1, . . . ,md〉, wherem j is themean value of the j th
attribute over all the instances of X . This transformation is used by the SimpleMI
algorithm described in [7] and included in the experiments of Sect. 5.4.

• Min-Max mapping: M (X) = 〈a1, . . . , ad , b1, . . . , bd〉, where a j = mini (x
j
i)

and b j = maxi (x
j
i) are the minimum and maximum values of the j th attribute

over all the instances in X . This transformation is used by the Min-Max kernel
proposed by [11].

• Moments mapping: M (X) = 〈m1, . . . ,md , v1, . . . , vd , s1, . . . , sd , k1, . . . , kd , 〉.
The values m j , v j , s j and k j represent the first to fourth statistical moment (i.e.,
mean, variance, skewness, and kurtosis) of the j th attribute of the instances in X .

The dimension of the new mapped space is the number of dimensions of the original
space multiplied by the number of statistics used to describe each variable.

Stratified Bag Statistics

The methods described above are limited to summarize statistical information of
all instances inside the bag and do not consider that within the same bag different
patterns can coexist. In different instance patterns, one or more attributes can have
different probability distributions. If all instances of the bag are treated as if they
belonged to the same pattern, the statistics will be unable to adequately describe the
mixture of distributions. A more sophisticated mapping method can try to discover
patterns or classes of instances in the data and represent each bag in the embedded
space with the statistics values of each original attribute for each instance pattern
separately. We call stratified bag statistics-based mapping.

The most common way to discover instance patterns in the data is to use unsu-
pervised methods, since instance class labels are unknown. Unsupervised methods
allow to find groups of instances with shared characteristics. These groups can be
considered as different instance classes.We can also use supervisedmethods, assum-
ing that instances are assigned to the same class labels of their bags. Clearly, this
assumption can cause a certain proportion of mislabeled instances, but the goal is
to obtain a first approximation of the underlying instance-level patterns. From this
first approximation, a learning algorithm can be trained to obtain a more accurate
instance-level classifier.

Learning methods based on stratified bag statistics represent each bag by a single
attribute vectorwith statistical information of the different patterns or instance classes
contained in the bag. The new attribute values related to each instance pattern are
concatenated in the vector describing the bag. Let C1, . . . ,Ck be instance patterns
found in the data and θ : NA → R a statistic (e.g., average, minimum, maximum,
or moments) applicable to the d attributes of a set of instances. The stratified bag
statistics based mapping is defined as

M (X) �→ 〈θ11, . . . , θ1d , θ21, . . . , θ2d , . . . , θk1, . . . , θkd〉 , (5.2)

where θi j represents the statistic value applied to the j th original attribute of the
instance subset in the bag belonging to the i th pattern. Equation5.2 represents the

106 5 Bag-Based Classification Methods

case where each attribute probability distribution is described by a single statistic, but
in general several statistics can be used for each attribute. The dimension of the new
embedded space is d × k × q, where d is the number of dimensions of the original
space, k is the number of patterns or classes of instances discovered in the data and
q is the number of statistics used to describe each original attribute distribution (e.g.,
in the Min-Max mapping two statistics are used, so q = 2).

5.3.2 Mapping Methods Based on Prototype Concatenation

This approach was introduced by Boughorbel et al. [4]. They look for k instance
patterns in the data and characterize each pattern Ci through its center pi . However,
instead of using statistics operating on individual attributes, they use a function
ϕ (X, pi) : NX × X → X to select the instance in the bag closest to the center pi
of the i th pattern and use that instance as the pattern representative. The mapping
by Boughorbel et al. can be defined as M (X) �→ 〈v1, v2, . . . , vk〉, where vi is the
instance from X that is closest to the center pi of the i th pattern. The authors use
this transformation to construct an SVM with an ad hoc kernel. However, as with
all mapping methods described in this chapter, any other single-instance learning
algorithm can be applied to the mapped data as well.

This method can be generalized so that an aggregation of all instances of the bag
is used to represent the matching degree between the bag and the instance pattern.
Let S (x,C) ∈ [0, 1] be a function that measures the matching degree between an
instance x and a pattern C . A natural way of defining S (x,Ci) is as a similarity
measure between instance x and the center of the i th pattern pi . The vector vi can
be calculated as

vi =
∑

x∈X
x · S (x,Ci)

∑

x∈X
S (x,Ci)

, (5.3)

which represents the average of the instances weighted by their matching degree with
the pattern. Thismethod is related to the stratified statisticmappingmethod described
in Sect. 5.3.1. When the matching function S (x,C) is binary, so that S (x,C) equals
1 if the similarity between x and C is above a given threshold and S (x,C) equals
0 otherwise, we can use (5.2) to compute vi using the average as the only statistic.
In the other case, if the matching function takes on continuous values in the interval
[0, 1], we have a generalization of (5.2), where the value of each attribute is weighted
with a matching degree.

5.3.3 Mapping Methods Based on Counting

This group of methods represent each bag as a single vector, where each attribute
is the number of instances of the bag that are found in a specific region of the

5.3 Mapped Bag Space Methods 107

instance space. In other words, they describe the relationship between the bag label
and instance classes covered by different regions of the instance space.

Multi-instance classifiers using a counting-based mapping are strongly inspired
by the MI assumptions hierarchy of Weidmann et al. (Sect. 3.4.2). Some algorithms
create binary attributes in the mapping process, where the i th attribute indicates the
presence or absence of instances of the bag in the i th region. These algorithms allow
to model the presence-based assumption, including the standard MI assumption.
Other algorithms create attributes that take on positive numeric values representing
absolute or relative frequencies of the instances belonging to the bag and lying
inside the corresponding region. These algorithms allow to model the threshold and
counting-based MI assumptions.

We can further divide this group into two major categories the acquisition of
the MI assumption into account. On the one side are those algorithms for which
the designers decide in advance which MI assumption is used. This category is
examined in Sect. 5.3.3.1. On the other side we consider the algorithms for which no
MI assumption has been specified. They learn the hypothesis from the data during
execution. Section5.3.3.2 is devoted to these methods.

5.3.3.1 Using an a Priori Count-Based MI Assumption

The best known algorithm using a count-based MI assumption is GMIL, which
first appeared in [17]. GMIL stands for Generalized Multiple Instance Learning and
is indeed a generalization of the standard MI assumption. The presence-based MI
assumption of the Weidmann hierarchy is generalized by GMIL as well. However,
it cannot represent learning problems obeying the threshold or counting based MI
assumption, because the attributes constructed in the mapping are binary.

Like all algorithms using count-based assumptions, GMIL first identifies regions
of the instance space that will be used in a second step to map bag attributes. Regions
are identified systematically and exhaustively. All possible axis-parallel boxes in the
instance space are explicitly enumerated. As an illustration, consider a discrete d-
dimensional instance space X = {1, . . . , v}d in a two-class classification problem.
In a one-dimensional space (d = 1), if the attribute has two possible values (v = 2),
there are three possible axis-parallel boxes as shown in Fig. 5.3. If the space has two
dimensions and each dimension can take one of two possible values, there are nine
possible axis-parallel boxes as shown in Fig. 5.4. If the space has three dimensions,
each with two possible values, there are 27 possible axis-parallel boxes as shown in
Fig. 5.5. In general, there are N = (v (v + 1) /2)d possible axis-parallel boxes in a
d-dimensional space. The reason why the regions have axis-parallel box shapes is
because the infinite norm is used to determine distances in the instance space. This
normdefines the length of ad-dimensional vector x as‖x‖∞ = max {|x1| , . . . , |xd |},
the largest absolute value of its components. GMIL creates twoBoolean attributes for
each box, indicating whether a bag contains an instance within that box. To reduce
the number of attributes, boxes containing the same set of points are grouped together
and only one representative box for each group is used.

http://dx.doi.org/10.1007/978-3-319-47759-6_3

108 5 Bag-Based Classification Methods

Fig. 5.3 There are three
axis-parallel boxes when
d = 1

Fig. 5.4 There are nine
axis-parallel boxes when
d = 2

Concretely, GMIL maps a bag X to M (X) = 〈a1, . . . , aN , a1, . . . , aN 〉. The
algorithm sets ai to 1 if any point of X is contained by the i th box and sets it
to 0 otherwise. It sets ai = 1 − ai , ∀i ∈ [1, . . . , N]. All information is encoded
by the N first attributes. This would be sufficient for many learning algorithms.
However, GMIL was originally designed to learn monotone disjunctions using the
Winnow classifier [15]. SinceWinnow generates formulas generated only containing
disjunctions of the input variables, the negations of the first N attributes must also
be supplied such that any logical combination of the initial variables can be formed.

Once the bags have beenmapped to Boolean attributes, the algorithm tries to learn
the target concept using a specific MI assumption based on theoretical results from
geometric pattern recognition [12]. In the standard MI assumption, a single positive
instance inside a bag determines that the bag belongs to the positive concept. Instance
labels are typically determined by the proximity of the instance to a single target
point, but GMIL can represent more general concepts. It represents a concept by a
set of target points, more specifically, a set of attraction points, which can be seen as
instances from an ideal positive bag. GMIL can also include a set of repulsion points,
which can be seen as instances from an ideal negative bag. In this setting, a bag is
positive if and only if it is sufficiently close to attraction points and sufficiently far
from repulsion points.

5.3 Mapped Bag Space Methods 109

Fig. 5.5 There are 27 axis-parallel boxes when d = 3

110 5 Bag-Based Classification Methods

GMIL’s notion of distance between bags is based on the Hausdorff distance.
Recall from Sect. 3.5 that the Hausdorff distance between two sets of points P and Q
is defined as the largest distance from either a point in P to its nearest neighbor in Q
or from a point in Q to its nearest neighbor in P . Due to its use of the max operator,
theHausdorff distance is sensitive to outlier points. To improve the robustness against
noise, Scott et al. use the ranked full-Hausdorff distance

max

{

maxs
p∈P

{

min
q∈Q

{‖p − q‖∞
}
}

,maxs
q∈Q

{

min
p∈P

{‖p − q‖∞
}
}}

, (5.4)

in which instead of using the largest distance, the sth largest distance is used. In
(5.4), maxs denotes the sth largest value, P represents the pattern and Q is the
model. Positive bags are within a ranked full-Hausdorff distance of some threshold
γ from the ideal positive bag and at least a ranked full-Hausdorff distance of γ ′ away
from the ideal negative bag. Let Q = {q1, . . . , qk} be the set of attraction points and
Q = {q̄1, . . . , q̄k ′ } the set of repulsion points representing the target concept. The
concept can be modeled as a set of k axis-parallel attraction boxes and a set of k ′
axis-parallel repulsion boxes. A bag is positive if and only if it contains points within
at least r = k − s of the k attraction boxes and contains points within at most s of
the k ′ repulsion boxes.

The Winnow algorithm is used in [17] to implement the GMIL assumption. Win-
now is a linear-threshold algorithm that learns r -of-k threshold functions. It assigns
nonnegative real-valued weights wa to each attribute a. Weights are iteratively mod-
ified to find a hyperplane

N
∑

i=1

aiwai + aiwai = θ,

which separates both classes, where θ is the threshold determined by the algorithm.
The k + k ′ more weighted attributes are selected at the end of training. The values
of the selected attributes correspond to the k attractions plus k ′ repulsion points
identified by the algorithm. In the classification stage, a bag is labeled positive if
ai1 + · · · + aik + ai1 + · · · + aik′ ≥ r .

Scott et al. also presented a GMIL variant using the ranked half-Hausdorff dis-
tance. Using this distance they assume that the model is accurate and compute the
distance from the bag to the model, but not vice versa. According to this variant,
positive bags are within a distance

maxs
q∈Q

{

min
p∈P

{‖p − q‖∞
}
}

(5.5)

of some threshold γ to the ideal positive bag and, including repulsion points, beyond
a distance

mins
′

q∈Q

{

min
p∈P

{‖p − q‖∞
}
}

(5.6)

http://dx.doi.org/10.1007/978-3-319-47759-6_3

5.3 Mapped Bag Space Methods 111

of another threshold γ ′ to the ideal negative bag. As before, the concept is a set
of k axis-parallel attraction boxes and a set of k ′ axis-parallel repulsion boxes. A
bag is positive if and only if it contains points within at least r = k − s of the
k attraction boxes and contains points within at most s ′ of the k ′ repulsion boxes.
Note that, in contrast to the full-Hausdorff distance model, the number of points
s which are tolerated to not fall in attraction boxes can be different to the number
of points s ′ which are tolerated to fall in repulsion boxes. Though it was theorized
that the half-Hausdorff variant should be more robust against noise and more able
to avoid overfitting, empirical results show a higher generalization ability of the
full-Hausdorff variant on data from several domains.

GMIL has a theoretically sound foundation. However, it is not a practical learning
method, since it has a very high time complexity. In the sequence of Figs. 5.3, 5.4
and 5.5 it can be seen that the number of boxes grows exponentially as d increase.
A real application, with a moderate number of attributes, like Musk, is unfeasible to
be solved by GMIL. The strategy of using a reduced number of instances to build
the learning model [18] fails because, when the dimension is not trivially small, in
order to significantly reduce the computational cost, the number of instances must
be so small that it becomes insufficient to build an accurate model. A kernel-based
reformulation is another strategy used to improve the efficiency of GMIL. The kernel
performs the feature mapping implicitly and allows a support vector machine to be
applied directly to the data. However, computing the kernel on two bags requires
counting the number of boxes that contain at least one instance from each of both
bags, which again leads to severe scalability issues and quickly renders the problem
intractable as the problem size increases. To address this issue, a fully polynomial
randomized approximation scheme (FPRAS) was presented in [19], reducing the
time complexity from exponential to polynomial.

5.3.3.2 Learning a Count-Based MI Assumption

In Chap.4, we showed that instance-basedmethodsmake strong assumptions regard-
ing the MI hypothesis. Each instance-based algorithm implements a specific MI
assumption: some algorithms are based on the standard MI assumption, others on
the collective assumption, and so on. The GMIL algorithm discussed in Sect. 5.3.3.1
has a MI assumption wired in its design as well. In these methods, the MI assump-
tion is not only used in the classification stage to determine the bag label, but also
in the training stage to impose restrictions to help determine the class likelihood of
instances. If the imposedMI assumption does not conform reasonably well to a given
dataset, then the algorithm cannot build an appropriate learning model for it. Each
algorithm is only appropriate for those problems which conform to the applied MI
assumption.

Unlike instance-based methods and methods like GMIL that have a specific MI
assumption embedded in their design, mapping-based algorithms described in this
section do not assume a priori the existence of a specific relationship between the

http://dx.doi.org/10.1007/978-3-319-47759-6_4

112 5 Bag-Based Classification Methods

labels of each bag and of its instances. This relationship is learned from the data
instead, in the form of a count-based MI assumption. Training occurs in two steps

1. The method tries to identify regions in the instance space using either supervised
or unsupervised methods. These regions appear as a result of the instance space
structure.

2. The underlying MI assumption is learned. This is the relationship between the
bag labels and the instance space regions identified in the first step. To this end,
a new representation space is built, in which each attribute corresponds to one
of the regions. Each bag is mapped into this new space, such that the value
of the i th attribute indicates the presence or frequency of instances of the bag
in the i th region. Any single-instance learning model can be built on this new
single-instance training set.

Methods in this category differ fundamentally in the way they identify instance
patterns, i.e., in the first step described above. In the Two-Level Classification (TLC)
algorithm [22], a standard decision tree is used for this purpose. The tree is built
on all instances of all training bags. Each instance is assigned to its bag’s class
label. Instances are weighted such that all training bags have equal weight in the
construction of the learning model. Each node in the tree represents a region of the
instance space. In the second step, each bag is mapped to a new representation in
which each attribute contains the number of instances of the bag that have reached
the corresponding node in the tree.

ConstructiveClusteringEnsemble (CCE) [25] uses a clustering algorithm to deter-
mine the regions. The k-means algorithm is used to obtain a number of groups whose
centers are stored. In the second step, each bag is mapped to a new representation in
which each attribute indicates the presence of instances of the bag in the correspond-
ing group. An instance belongs to a group g if its distance to the center of g is less
than its distance to the center of the other groups. As it is not possible to determine the
optimal number of groups in advance, CCE generates many classifiers, each obtained
from a number of different groups, and then combines their predictions in a majority
vote.

Since these algorithms do not make a priori assumptions about the nature of
the relationship between bags and instances underlying the data, they can learn
a wider variety of problems. For example, all algorithms based on the standard
MI assumption take for granted that there are two classes of instances (positive
and negative). Algorithms learning the MI assumption during training can find an
arbitrary number of classes in the instance space and can discover relationships
between bags and instances that best fit the training data.

5.3.4 Mapping Methods Based on Distance

In count-based mapping methods, the attribute values of each bag are defined by the
location of instances of the bag inside a delimited region of instance space corre-

5.3 Mapped Bag Space Methods 113

sponding to that attribute. The notion of an instance membership to a region is strict.
It only accepts two extreme possibilities: the point either belongs or does not belong
to the region, depending on which side of the border of the region the point is located.
The fact that we can only have a vague idea of the borders of the instance regions is
ignored. Inmany applications, perfectly delimited regions boundariesmake no sense.
For example, if tall people are an important region of the instance space, it is difficult
to determine where we should start the region, at 1.70m, 1.80m, or 1.85m? Any
such value would be merely conventional. However, we can say that if an instance
is near the center of a region we can have a great certainty that it falls within the
region. The farther an instance is located from the center, the less likely it belongs to
the region. This is the idea behind distance-based mapping methods: each attribute
value in the output space is related to the distance from the bag to the center of a
region.

These methods try to identify instance regions that are representative of the struc-
ture of the instance space. Regions can be obtained through a clustering or classifi-
cation model constructed from training instances. A prototypical point is recorded at
the center of each region. In some cases, prototypes of only one class (usually the pos-
itive class) are used. In other cases, they are determined for each class. Each attribute
of the induced space corresponds to one of the prototypes found in the original space.
The attribute value is a distance measure (or a similarity measure) between the bag
and the prototype. Note that the bag contains many points (instances), while the
prototype is a single point. Specific distance functions between bags and prototypes
have to be used. Distance functions used in these cases are usually aggregations of
distances between the instances of the bag and the prototype. Distance-based map-
ping methods differ in how instance prototypes are determined and in their definition
of the distance function.

One of the first algorithms using this type of mapping was DD-SVM [5]. This
algorithm selects instance prototypes for both classes based on the values of the
diverse density (DD) function. Under the diverse density framework, a prototype
for class C is a point of the instance space with a high probability of being
found in bags of class C . Prototypes are local extrema of the DD function, where the
positive prototypes are maxima and the negative prototypes minima. To locate the
prototypes, gradient descent methods are used over the DD function. To find the pos-
itive prototypes, optimization processes are started from each instance of the positive
bags, while for negative prototypes, searches start from each instance of the negative
bags. The located prototypes are used to map each bag to the new representation
space. Using T prototypes, a bag X is transformed as

M (X) = 〈S (t1, X) , . . . S (tT , X)〉 , (5.7)

where ti represents the i th prototype and S (ti , X) is a distance measure between
the bag X and ti . Specifically, in [5] an absolute distance measure S (t, X) =
min j

∥
∥x j − t

∥
∥ is used. The authors apply an SVM to the bags represented in the

mapped space to obtain a bag classification model. In general, as with all mapping

114 5 Bag-Based Classification Methods

methods, any single-instance learning algorithm can be used to build this model as
well.

The MILES algorithm [6] was introduced by the same authors as DD-SVM.
Instead of looking for class prototypes in each bag,MILES uses all training instances
as reference points to construct the new bag space. In other words, each instance is
treated as a prototype. The new representation space has as many attributes as the
total number of instances in the training set. More formally, let X = {X1, . . . Xm}
be the training bag set. We align the instances inside the bags and renumber them to
get the set of instances {tk |∃Xi ∈ X : tk ∈ Xi }, k = 1, . . . , T , where T = ∑m

i=1 ni .
We use (5.7) to map a bag X to the output space. To calculate the value of the i th
attribute, MILES uses the Gaussian similarity function given by

S (t, X) = max
j

exp

(

−
∥
∥x j − t

∥
∥
2

σ 2

)

, (5.8)

where σ is a parameter to scale the attributes.
MILES is more computationally efficient than DD-SVM, because it avoids the

expensive optimization procedure over the diverse density function, which DD-SVM
must perform for every instance. Chen et al. [6] have shown that MILES is as good as
and sometimes superior to DD-SVM in generalization accuracy and it is also more
robust with respect to label noise.

The MILES mapping can be seen as a method for determining the weight of each
instance. Indeed, the SVM applied to the mapping space calculates a weight for each
attribute which is normally used for feature selection. The attributes of the mapped
space are precisely the instances of the training bags, which allows to determine the
influence of different parts of the instance space. However, MILES does not create
a well-defined weight function over the instance space, because the max operator,
used in (5.8) that determines the value of each attribute, only takes into account the
influence of the nearest instance of the bag to the target point, resulting in a bag-
dependent weight function [9]. Foulds et al. [9, 10] proposed the YARDS algorithm,
which is similar to MILES in almost everything except in that YARDS can find a
true weight function over the instance space. By replacing the max operator with the
sum operator, that is, by setting

S (t, X) =
∑

j

exp

(

−
∥
∥x j − t

∥
∥
2

σ 2

)

,

the bag-dependence in the similarity function is removed. In YARDS, each instance
of the bag has an influence on the bag-level classification and that influence only
depends on the attributes of the instance and not on the rest of the bag.

5.3 Mapped Bag Space Methods 115

5.3.5 Bag-Level Distance Mapping Methods

In themappingmethods included in Sects. 5.3.3 and 5.3.4, bags are described by their
relationships with instance-level spatial structures. This mapping relates instance
space regions with bag classes. Another way to transform a multi-instance problem
into a single-instance one is by describing each bag through the spatial relationship
it has with the other bags of the training set. In this case, the mapping is done at the
bag level, but instance space regions are ultimately related to bag classes, since bags
are represented by multiple vectors in the instance space. However, in this mapping
each instance maintains the relationship with its bag, making it a more informative
mapping than that which only includes instance-level relations.

The idea of bag-level distance mapping methods has been developed by Zhang
and Zhou [26] with their BARTMIP algorithm. The work scheme of BARTMIP is
shown in Fig. 5.6. A multi-instance clustering model is built on the training bags,
dividing them in k groups. Each group is represented by its medoid, i.e., the most
central bag. Each bag is mapped to a vector of k attributes, one for each group of
bags. The i th attribute value of a bag is the distance from the bag to the i th medoid.
All training bags are mapped with this form of representation. It results in a single-
instance training set on which a single-instance classification algorithm is trained. In
the prediction step, the new bag is mapped in the same way to a vector of k attributes
and processed by the single-instance classification model.

The components of this algorithm can be selected from a wide variety of choices.
BATRMIP can train any single-instance classification algorithm and use any multi-
instance clustering algorithm. Multi-instance clustering algorithms are described
in Chap.7. Specifically, in [26], BARTMIP uses a multi-instance clustering algo-
rithm called BAMIC (Sect. 7.1.4.1), which is an adaptation of the single-instance
k-medoids clustering algorithm to the multi-instance setting. Many multi-instance
clustering methods depend on a bag-level distance function which in turn uses an
instance level distance function. Distance functions at bag and instance levels are
other components of the model that should be chosen. The optimal number of groups
to be generated in the clustering step can be determined by cross-validation. An alter-
native is to build several clustering models, each with a different number of groups,
and train a classifier model from each grouping. The ensemble prediction is obtained
by majority vote.

5.4 Experimental Analysis

In this section, we empirically compare the performance of some representative bag-
based MIC methods. We show experimental results for both original-BS methods
and mapped-BS methods and compare the two strategies. These experiments are
only intended for illustration purposes and cannot be taken as a rigorous comparison

http://dx.doi.org/10.1007/978-3-319-47759-6_7
http://dx.doi.org/10.1007/978-3-319-47759-6_7

116 5 Bag-Based Classification Methods

Fig. 5.6 BARTMIP algorithm

among classifiers. The experimental setup is specified in Sect. 5.4.1, while Sect. 5.4.2
presents the results.

5.4.1 Setup

We use the same datasets as in the experimental study of Chap.4, described in
Table4.1. The algorithms included in the study are named in the first column of
Table5.1. The second column describes the method type. CitationKNN andMISMO
are representative algorithms that work on the original bag space. The other algo-
rithms are mapping methods, one of each type described in Sect. 5.3 with the excep-
tion of prototype concatenation discussed in Sect. 5.3.2. Prototype concatenation
mapping methods have been excluded due to their high memory requirements. They
are appropriate to use in small problems, but even for medium-sized datasets (as
some are in these experiments) it is difficult to make comparative studies.

Unlike methods that work on the original bag space and construct an specific
classifier, a mapping method can train any standard classification algorithm. Their
performance depends on both the mapping method and the learner used as base
classifier. In order to get a better idea of the mapping method qualities, we try each

http://dx.doi.org/10.1007/978-3-319-47759-6_4
http://dx.doi.org/10.1007/978-3-319-47759-6_4

5.4 Experimental Analysis 117

Table 5.1 Bag-based
classification algorithms to be
compared

Algorithm Category

CitationKNN Original-BS distance-based
methods

MISMO Bag-level kernel methods

SimpleMI Bag statistic mapping
methods

MILES Distance-based mapping
methods

CCE Count-based mapping
methods

BARTMIP Bag-level distance mapping
methods

alternative with five popular classification algorithms: one nearest neighbor (1NN),
C4.5, logistic regression (LR), an SVM and AdaBoost with C4.5 as base classifier
(AdaBoost). We use Weka implementations for algorithms in the first four rows of
Table5.1, while the last two were implemented by us. A rough optimization was
made for the most important parameters of each method looking for those yielding
the best result across all the datasets. We use default parameter settings for each
algorithm if not specified otherwise. We use the fivefold cross-validation procedure
and evaluate the performance of the classifiers by means of their accuracy (Sect. 1.4).

5.4.2 Results and Discussion

In Sect. 5.4.2.1, we show empirical results of the selected original-BS methods. We
compare typical mapped-BSmethodswith each another using several base classifiers
in Sect. 5.4.2.2. Finally,we compare the original-BS andmapped-BSbased classifiers
in Sect. 5.4.2.3.

5.4.2.1 Original-BS Methods

Table5.2 presents the experimental results of two original-BSmethods, namely Cita-
tionKNN and a bag-level SVM. The latter is a standard SVM using the Gärtner et al.
MI kernel described in Sect. 5.2.2 with the standard RBF instance-level kernel. The
table lists the best results for each algorithm after a simple parameter adjustment was
done looking for the best average result over all data. The results shown for Cita-
tionKNNwere obtained withC = 2 and R = 2 and those for SVMwithC = 1.0 and
γ = 0.5. The last two rows of the table show the average accuracy and the standard
deviation of each classifier over the nine datasets. The best accuracy is highlighted in
bold for each dataset. SVM is the winner in six out of nine cases, while CitationKNN

http://dx.doi.org/10.1007/978-3-319-47759-6_1

118 5 Bag-Based Classification Methods

Table 5.2 Classification accuracy for methods working in the original bag space

Dataset CitationKNN SVM

Musk1 89.13 88.04

Musk2 84.16 83.17

Atoms 70.21 74.47

Bonds 74.47 85.11

Chains 73.40 84.57

WIR 64.60 69.91

TREC 47.75 74.75

Beach 82.00 80.50

Fox 50.00 61.00

Average 70.64 77.95

SD 14.42 8.70

wins in three datasets. The higher average accuracy of SVM supports the idea that it
has a significantly better performance than CitationKNN over the studied problem
domains. The lower standard deviation of the SVMmeans that its good performance
is more evenly distributed across all datasets than that of the CitationKNN, which
instead obtains very good results in a few datasets, but poor results in many of them.

5.4.2.2 Mapped-BS Methods

Table5.3 presents a summary of the experimental results of the selected mapped-BS
methods using five base classifiers. The average accuracy computed over the nine
datasets along with the confidence interval with a significance level α = 0.05 is
shown for each pair of mapping method and classifier. The algorithm parameters
were set as follows: σ = 250 in MILES, 60% of clustering in BARTMIP, five
iterations in CCE and 10 iterations in Adaboost. The SVM in all mapping methods
uses an RBF kernel with C = 10.0 and γ = 0.5. The most accurate mapped-BS
method for each base classifier is highlighted in bold. SimpleMI obtains the best
performance for three classifiers: C4.5, SVM, and Boosting. BARTMIP is the best
performing mapped-BS method for the 1NN and LogReg classifiers. This suggests
that SimpleMI and BARTMIP are two of the most accurate mapped-BS methods
overall, since they achieve the highest quality predictions with several base classifiers
over a range of datasets from different application domains.

Table5.4 presents the detailed experimental results of each mapped-BS method
executed with its best base classifier following the conclusions of Table5.3. The
highest accuracy for each dataset among the four methods is marked in bold. Sim-
pleMI and BARTMIP are again the most outstanding algorithms, as each one wins
in four datasets. With respect to the application domains, it seems that SimpleMI is
best suited for molecular activity prediction, while BARTMIP looks like the leader

5.4 Experimental Analysis 119

Table 5.3 Average classification accuracy of mapping methods using different base classifiers

Base classifier SimpleMI MILES BARTMIP CCE

1NN 74.99 ± 6.32 72.47 ± 5.77 75.24 ± 8.21 70.55 ± 6.79

C4.5 76.73 ± 5.41 68.54 ± 8.04 73.42 ± 6.17 67.19 ± 5.55

LogReg 70.07 ± 5.75 69.81 ± 4.34 78.59 ± 5.75 74.00 ± 5.54

SVM 79.18 ± 6.81 69.09 ± 7.84 78.58 ± 8.47 70.40 ± 6.31

Boosting 76.77 ± 5.19 70.16 ± 8.70 74.81 ± 6.78 69.32 ± 5.19

Table 5.4 Classification accuracy for best performing mapping method schemes

Dataset SimpleMI MILES BARTMIP CCE

Musk1 91.30 77.17 84.78 80.43

Musk2 91.09 66.34 85.15 74.26

Atoms 73.40 80.85 84.04 78.19

Bonds 84.57 79.79 82.45 79.26

Chains 85.64 79.79 86.17 77.66

WIR 62.83 61.06 63.72 73.45

TREC 75.75 68.25 71.50 68.25

Beach 82.50 80.00 83.00 80.50

Fox 65.50 59.00 66.50 54.00

in the image recognition domain. In the next section, we delve deeper into this topic
when we compare all bag-based methods to each other.

5.4.2.3 Overall Comparison

In Sects. 5.4.2.1 and 5.4.2.2, we pointed out the most accurate classifiers of each
type. We are now interested to make an overall comparison between original-BS and
mapped-BS methods in order to discover their advantages and disadvantages. The
best performing model of each type is taken into account in this comparison. Two
original-BS methods and four mapped-BS methods are included.

To discover which method is the best option in each case, we first separate the
results by application domain. In Fig. 5.7, we depict the accuracy of the methods
on the biochemical applications. Note that the accuracy axis values start at 40 to
better distinguish the differences between the methods. SimpleMI, BARTMIP, and
MISMO dominate in almost all datasets, while CitationKNN and MILES are not
stable in their results. It is remarkable that BARTMIP performs quite good in the five
datasets.

In Figs. 5.8 and 5.9, we show the accuracy of the methods on datasets from the
textual and image domain, respectively. From these charts, we can not identify one
algorithm that is superior to the others in any of these domains. The advantage

120 5 Bag-Based Classification Methods

Fig. 5.7 Biochemistry domain

Fig. 5.8 Textual domain

(discussed in the previous section) of BARTMIP over SimpleMI on image datasets
is negligible. We can only point out some general trends. CitationKNN and MILES
have again poorer results compared to the other methods. SimpleMI, BARTMIP and
MISMO excel in most datasets. Figure5.10 shows the average accuracy of the six
methods over the nine datasets and supports the above statement.

We are also interested in analyzing the training time of the models. Figure5.11
shows the average training time of the six methods over the nine datasets. Note that

5.4 Experimental Analysis 121

Fig. 5.9 Imaging domain

Fig. 5.10 Average accuracy of selected bag-based classification methods over the experimental
datasets

a logarithmic scale is used to represent time intervals, such that differences between
methods can be correctly perceived. Time values are given in seconds, but we are
mostly interested in the relative time proportions of the different models. The training

122 5 Bag-Based Classification Methods

Fig. 5.11 Average training time of selected bag-based classificationmethods over the experimental
datasets

time of CitationKNN is mainly devoted to the calculation of bag-level distances,1

whereas kernel calculations made by MISMO are three times faster than the work of
CitationKNN. The very small training time of SimpleMI is one of the most remark-
able things in the figure. The key lies in the simplicity of its mappingmethod.MILES
has a fair training time complexity, which is in line with its moderately simple map-
ping method. Conversely, BARTMIP training has a considerable time complexity.
This method has a much more complex mapping method, that includes bag-level
distance calculations and bag-level clustering. Finally, training CCE takes a long
time. It includes instance-level distance calculations and instance-level clustering,
that are much more time demanding than their bag-level relatives.

5.5 Comparing Instance-Based, Bag-Based,
and Traditional Classification Methods

In Chap.4 and this chapter, we discussed two classifier families that work very
differently: one of them learns at the instance level, the other at the bag-level. In both

1The implementation used for CitationKNN calculates the neighbor list of each bag in the training
step.

http://dx.doi.org/10.1007/978-3-319-47759-6_4

5.5 Comparing Instance-Based, Bag-Based, and Traditional Classification Methods 123

cases, we have presented comparative experiments on the performance of several
representativemembers of each family.Anobvious question is how these two families
compare. This does not have an easy answer and has been the subject of study of some
recent work [1, 2]. There is another more basic question that some researchers have
put forward [1, 16], namely whether multi-instance classifiers outperform single-
instance classifiers in all multi-instance datasets.

Ray and Craven [16] found that single-instance classification algorithms can per-
formwell for severalMIL problems, outperformingMI classifiers in some cases. This
strongly impacts theMIL community, as occasional reports have shown thatMI clas-
sifiers with good success records were beaten by simple single-instance models in
some datasets.

Alpaydin et al. [1] designed artificial datasets with increasing complexity levels,
corresponding to more and more complex dependencies between instances in a bag.
They compare instance-based, bag-based, and single-instance classifiers on artificial
datasets of different sizes and levels. Their conclusion was that, in general, single-
instance classifiers can only handle the simplest MIL problems corresponding to the
lowest complexity level, instance-based classifiers are good to solve problems from
the first and second complexity levels and bag-based classifiers can solve problems
from the first three levels. Datasets from the fourth complexity level require even
more advanced classification methods. Alpaydin et al. also found that datasets where
single-instance classifiers outperformmulti-instancemethods are those with the low-
est complexity level and with a small number of bags, because there is not enough
data to train the bag-level classifiers.

This explanation clarifies the general relation that appears between algorithms
and data complexity. Nevertheless, we should keep in mind that no classifier exists
that can handle all different application domains. Faced with a new MIL problem,
the best algorithm might be an instance-based, a bag-based or a traditional classifier.

5.6 Summarizing Comments

Bag-based classification algorithms are an important group of MIC methods. They
predict the bag class mainly using information at the bag level. They do not strive
to predict instance class labels and have more flexible and generals MI assumptions.
Several bag-based methods have appeared in the literature. According to their main
features, we organize them in a category system depicted in Fig. 5.12. There are two
principal categories of bag-based classifiers: (i) methods that operate on the original
bag space by relying on a distance, similarity or kernel function and (ii) methods
that use a mapping function to transform the data to a single-instance representation,
such that single-instance classifiers can be trained and used to predict bag labels.
Several types of transformations have been developed. Some mapping functions are
based on simple bag statistics. Others represent the new space by concatenating pro-
totypes extracted from the training bags. Other mapping methods count the number

124 5 Bag-Based Classification Methods

Fig. 5.12 Bag-based methods hierarchy

of instance of the bag falling in specific regions of the instance space and yet others
compute the distance from the bag to the centers of these regions.

The experimental study shows that each of the discussed methods can attain high
accuracy in some application domains. Nevertheless, we do not recommend CCE
because of its large training time and uncertain performance. We advise the use of
SimpleMI, because it often attains a very good accuracy and is very fast to train.
BARTMIP is also a good option, because of its stable performance over several
domains.

References

1. Alpaydin, E., Cheplygina, V., Loog, M., Tax, D.M.: Single-versus multiple-instance classifi-
cation. Pattern Recognit. 48, 2831–2838 (2015)

2. Amores, J.: Multiple instance classification: review, taxonomy and comparative study. Artif.
Intell. 201, 81–105 (2013)

3. Blaschko, M., Hofmann, T.: Conformal multi-instance kernels. In: Schölkopf, B., Platt, J.C.,
Hoffman. T. (eds.) Proceedings of the 19th Conference on Advances in Neural Information
Processing Systems (NIPS 2006), pp. 1–6. MIT Press, Cambridge (2006)

References 125

4. Boughorbel, S., Tarel, J.P., Boujemaa, N.: The intermediate matching kernel for image local
features. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN
2005), pp. 889–894. IEEE, Los Alamitos (2005)

5. Chen, Y., Wang, J.: Image categorization by learning and reasoning with regions. J. Mach.
Learn. Res. 5, 913–939 (2004)

6. Chen, Y., Bi, J., Wang, J.: MILES: multiple-instance learning via embedded instance selection.
IEEE Trans. Pattern Anal. 28, 1931–1947 (2006)

7. Dong, L.: A Comparison ofMulti-instance Learning Algorithms.Master thesis, The University
of Waikato, New Zealand (2006)

8. Dooly, D.R., Zhang, Q., Goldman, S.A., Amar, R.A.: Multiple-instance learning of real-valued
data. J. Mach. Learn. Res. 3, 651–678 (2002)

9. Foulds, J.: Learning instance weights in multi-instance learning. Master thesis, The University
of Waikato, New Zealand (2008)

10. Foulds, J., Frank, E.: A review ofmulti-instance learning assumptions. Knowl. Eng. Rev. 25(1),
1–25 (2010)

11. Gärtner, T., Flach, P.A., Kowalczyk, A., Smola, A.: Multi-instance kernels. In: Sammut, C.,
Hoffmann, A. (eds.) Proceedings of the 19th International Conference on Machine Learning
(ICML 2002), pp. 179–186. Morgan Kaufmann Publishers, San Francisco (2002)

12. Goldman, S.A., Kwek, S.S., Scott, S.D.: Agnostic learning of geometric patterns. J. Comput.
Syst. Sci. 62(1), 123–151 (2001)

13. Henegar, C., Clément, K., Zucker, J.D.: Unsupervised multiple-instance learning for functional
profiling of genomic data. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) Proceedings
of the 16th European Conference on Machine Learning (ECML 2006), pp. 186–197. Springer,
Berlin (2006)

14. Kwok, J., Cheung, P.: Marginalized multi-instance kernels. In: López, R., Veloso, M.M. (eds.)
Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJACI 2007),
pp. 901–906. IJCAI/AAAI Press, Hyderabad (2007)

15. Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Mach. Learn. 2(4), 285–318 (1988)

16. Ray, S., Craven,M.: Supervised versusmultiple instance learning: an empirical comparison. In:
De Raedt, L., Wrobel, S. (eds.) Proceedings of the 22nd International Conference on Machine
Learning (ICML 2005), pp. 697–704. ACM, New York (2005)

17. Scott, S., Zhang, J., Brown, J.: On generalized multiple-instance learning. Int. J. Comput. Int.
Sys. 5(1), 21–35 (2005)

18. Tao, Q., Scott, S.: A faster algorithm for generalized multiple-instance learning. In: Valerie,
B., Zdravko, M. (eds.) Proceedings of the 17th International Florida Artificial Intelligence
Research Society Conference (FLAIRS 2004), pp. 550–555. AAAI Press, Menlo Park (2004)

19. Tao, Q., Scott, S.D., Vinodchandran, N.V., Osugi, T.T., Mueller, B.: Kernels for generalized
multiple-instance learning. IEEE T Pattern Anal. 30(12), 2084–2098 (2008)

20. Wang, J., Zucker, J.: Solving the multiple-instance problem: a lazy learning approach. In:
Langley, P. (ed.) Proceedings of the 17th International Conference onMachine Learning (ICML
2000), pp. 1119–1126. Morgan Kaufmann Publishers, San Francisco (2000)

21. Wei, H., Yu, W.: Text representation and classification based on multi-instance learning. In:
Lan, H., Yang, Y.-H. (eds.) Proceedings of the 10th International Conference on Management
Science and Engineering Management (ICMSE 2009), pp. 34–39. IEEE, Los Alamitos (2009)

22. Weidmann, N., Frank, E., Pfahringer, B.: A two-level learning method for generalized multi-
instance problems. In: Lavrac, N., Gamberger, D., Blockeel, H., Todorovski, L. (eds.) Pro-
ceedings of the 14th European Conference on Machine Learning (ECML 2003), pp. 468–479.
Springer, Heidelberg (2006)

23. Yang,W.,Gao,Y.,Cao,L.: TRASMIL: a local anomaly detection frameworkbasedon trajectory
segmentation and multi-instance learning. Comput. Vis. Image Underst. 117(10), 1273–1286
(2013)

24. Zhang, M.: A K-nearest neighbor based multi-instance multi-label learning algorithm. In:
Grégoire, E. (ed.) Proceedings of the 22nd International Conference on Tools with Artificial
Intelligence (ICTAI 2010), pp. 207–212. IEEE, Los Alamitos (2010)

126 5 Bag-Based Classification Methods

25. Zhou, Z., Zhang, M.: Solving multi-instance problems with classifier ensemble based on con-
structive clustering. Knowl. Inf. Syst. 11(2), 155–170 (2007)

26. Zhang, M., Zhou, Z.: Multi-instance clustering with applications to multi-instance prediction.
Appl. Intell. 31(1), 47–68 (2009)

27. Zhou, Z., Jiang,K., Li,M.:Multi-instance learning basedwebmining.Appl. Intell. 22, 135–147
(2005)

Chapter 6
Multi-instance Regression

Abstract Regression is a popularmachine learning task that aims to predict a numer-
ical outcome. In multi-instance regression (MIR), each observation can be described
by several instances. After a brief introduction to this topic in Sect. 6.1, we present
a formal definition of MIR and its appropriate evaluation measures in Sect. 6.2. We
organize the MIRmethods in two main categories. Algorithms that focus on individ-
ual instances of each bag in their construction of a regression model are examined in
Sect. 6.3, while Sect. 6.4 discusses methods that treat bags as single entities to create
a regression model operating at the bag level. Section6.5 lists some summarizing
remarks.

6.1 Introduction

The multi-instance regression task (MIR) is the natural extension of traditional
(single-instance) regression to the multi-instance setting. MIR models the data in
the same way as MIC, with the important difference that each bag is associated with
a real-valued outcome and not a class. TheMIR objective is to approximate, based on
the training bags, a function that can predict the outcome of future bags as accurately
as possible. In Sect. 6.2, we present a more formal description of MIR. Compared to
the traditional regression task, the ambiguity introduced by the multiple descriptions
for every bag as well as the lack of information on how these descriptions relate to
the bag label make MIR intrinsically more challenging.

MIR has been studied much less than the multi-instance classification task. Nev-
ertheless, it is of great importance for two main reasons. On the one hand, regression
provides a theoretical basis to understand many classification methods and can gen-
erate useful ideas to the design of more effective classifiers. On the other hand, an
important motivation for the development of new algorithms is that many real-life
applications can be successfully modeled as MIR problems. These include drug
activity prediction, landmark recognition, remote sensing systems, age estimation,
and sentiment analysis (see Sect. 2.4.7).

We have already shown that MIC methods can be grouped into two major cate-
gories, namely instance-based and bag-based methods. MIR methods can be divided

© Springer International Publishing AG 2016
F. Herrera et al.,Multiple Instance Learning, DOI 10.1007/978-3-319-47759-6_6

127

http://dx.doi.org/10.1007/978-3-319-47759-6_2

128 6 Multi-instance Regression

into these two categories as well. Instance-based MIR methods try to determine a
regression function for one prime instance, a subgroup of instances or all instances
inside the bag. The bag label is a function of the prime instance label or an aggre-
gation of several instance labels. This group of methods is discussed in Sect. 6.3.
Bag-based MIR methods treat each bag as a whole entity. These methods can rely
on bag-wise distance or kernel functions or can be based on mapping functions that
represent bags as single vectors on which single-instance regression models can be
learned. Section6.4 is devoted to bag-based MIR methods.

6.2 MIR Formulation

We begin our discussion on MIR methods with a brief description of the setting and
objective of this learning task. Evaluation measures to assess the quality of MIR
models are presented as well.

6.2.1 Problem Description

In a MIR problem, the training set D = (X,Y) consists of m bags X = 〈X1, . . .Xm〉
and their corresponding real-valued labels Y = 〈y1, . . . ym〉 with (∀i = 1 . . .m)(yi ∈
R). Each bag Xi has ni instances

{

xi1, . . . , xini
}

and each instance xij is described by
d features. In the simplest case all features take on real values, but in general real-
valued features can be mixed with categorical ones. Instance labels are not available.
The goal of MIR is to determine a function f over the bag space NX which can make
predictions ŷi = f (Xi) of the label yi of new bags Xi as accurately as possible.

A geometrical view of MIR is presented in Fig. 6.1. If we project the bag space in
a Cartesian plane, each bag can be viewed as a region in that plane. For simplicity,
the bag space in Fig. 6.1 has only two featuresX1 andX2. Bag labels are represented
as scores on the Y axis, orthogonal to the X1–X2 plane. When there is an infinite
number of bags covering the whole bag space, their label ordinates form a surface
over the plane. MIR aims to find a function f that is the best possible approximation
to that surface. As a consequence, f is sometimes referred to as the regression surface.

6.2.2 Evaluation Measures

Evaluationmeasures are needed to assess howwell the regression function f approxi-
mates the real process. Any validation scheme (Sect. 1.4.1) can be used as appropriate
to the problem at hand. Despite the difference in data representation, MIR is similar
to traditional regression in the type of variable to be predicted. The same evalua-
tion metrics can therefore be used. The most common evaluation measures used for

http://dx.doi.org/10.1007/978-3-319-47759-6_1

6.2 MIR Formulation 129

Fig. 6.1 Geometrical view
of MIR

regression are the mean absolute deviation (MAD) computed as

MAD = 1

n

n
∑

i=1

|yi − f (Xi)|

and the mean squared error (MSE) given by

MSE = 1

n

n
∑

i=1

(yi − f (Xi))
2 .

In both cases, the actual label yi is compared with the predicted outcome f (Xi) and
their differences are averaged over n test bags. InMSE, these differences are squared,
such that larger errors are penalized more.

6.3 Instance-Based Regression Methods

Chapter4 showed that instance-based classifiers perform their main learning process
at instance level. The same goes for instance-based regression methods. Attention
is payed to the individual instances within the bags. In general, one representative
instance is selected or generated for each bag and a regression model is constructed
over these instances. Any traditional single-instance regression learner can be used,
since it is fitted with just one instance from each bag. The most important design
option of instance-based regression methods is the way to model the relation of
instances with the bag label. Two assumptions dominate the MIR literature

http://dx.doi.org/10.1007/978-3-319-47759-6_4

130 6 Multi-instance Regression

• The prime instance assumption (Sect. 6.3.1): there is a single instance in every
bag which is responsible for the bag label. Algorithms based on the prime instance
assumption strive to select this “correct” instance in the bag.

• The collective assumption (Sect. 6.3.2): each instance in the bag makes a (possi-
bly different) contribution to the bag label. Methods based on this assumption try
to determine the weight that each instance has in the prediction of the bag label.

A second source of differences between instance-based methods lies with the selec-
tion of the regression model and solution procedure to be used. Commonly, one
assumes a class of regression functions f on X depending on a set of parameters �,
i.e., f ≡ f (X,�). As an example, consider the class of linear regression functions
consisting of a hyperplane determined by a normal vector W . To guarantee that the
obtained regression model f (X,�) is the best possible approximation according to
the training data, an optimization approach

�∗ = argmin
�

m
∑

i=1

L (yi, f (Xi,�)) + λR (�) (6.1)

must be adopted. In expression (6.1), L is a loss function that indicates how well
the prediction model performs and R (�) is a regularization term favoring simple
models and thereby avoiding data overfitting. The parameter λ > 0 is a trade-off
between prediction accuracy and model complexity. The optimization solution �∗
is the best set of parameters defining the optimal regression model. Several loss
functions and regularization forms can be used in (6.1). For example, when squared
loss is combined with squared norm regularization we can obtain a closed form
solution. In other cases, gradient descent optimization methods need to be applied to
find an approximation.As this is a typical formulation of regressionmodels, abundant
explanations can be found in any modern machine-learning book.

In the following sections, we provide an in-depth analysis of the most relevant
assumptions involved in instance-based regression methods. Representative algo-
rithms are briefly described in each case.

6.3.1 Prime Instance Assumption

This approach assumes that the bag label is determined by only one instance in the
bag, namely the primary or prime instance. The remaining instances are consid-
ered noisy observations of the prime instance. This assumption was proposed in the
seminal work of Ray and Page [12] and has had a great impact on MIR works that
followed. Inspiration was drawn from the standard MIL assumption for classifica-
tion, which states that a single positive instance in a bag suffices for a positive bag
label (Sect. 3.4.1).

http://dx.doi.org/10.1007/978-3-319-47759-6_3

6.3 Instance-Based Regression Methods 131

6.3.1.1 Prime-MIR Algorithm

Formally, the prime-instance algorithm looks for the optimal regression model
f (x,�) in (6.1) based on the set of prime instances

{

x1p, . . . , xmp
}

, where xip is
the prime instance in bag Xi. The general prime-instance regression model is defined
as

�∗ = argmin
�

m
∑

i=1

L
(

yi, f
(

xip,�
)) + λR (�) . (6.2)

In [10], the authors prove that the exhaustive search of the set of prime instances
satisfying (6.2) has an NP-complete computational complexity. An approximating
solution method is used in the form of an expectation-maximization (EM) algorithm.
First, prime instances are selected at random from each bag. This initial guess is
subsequently refined by iterating between expectation andmaximization steps. In the
maximization step, a new regression model is trained by using the current hypothesis
of prime instances. In the expectation step, new candidates of prime instances are
found by selecting the instance from each bag that has the lowest prediction error
according to the current regressionmodel. These steps are repeated until convergence.

The regression model f (x,�) obtained by means of (6.2) represents the hyper-
plane � that best approximates the prime instance outcomes, which in turn are sup-
posed to be the best approximation of the bag labels. When a new bag is presented to
the model, its prime instance needs to be located in order to evaluate the model and
obtain the bag label. However, the model of Ray and Page [12] does not provide any
information on which element is the prime instance. Although Cheung and Kwok [4]
and Ray [10] identified problem domains in which it is possible to assume that the
prime instance is the one with the largest output value, it is not possible to generalize
this heuristic to other domains.Wang et al. [20] suggest a statistical solution by using
the mean of the predictions of all instances in the new bag Xi, namely

ŷi = mean
(

f (xi1) , . . . , f
(

xini
))

. (6.3)

To increase the prediction robustness against outliers, the median of the instance
predictions can be more appropriate in some applications

ŷi = median
(

f (xi1) , . . . , f
(

xini
))

. (6.4)

While the original proposal [10] was very simple and uses a non-regularized
linear regression model, the general prime-instance model is more sophisticated. In
particular, nonlinearmodels can also be applied, as for example neural networks [20].
Another improvement is proposed by Wang et al. [20]. Instead of initializing prime
instances at random, the first selection can be based on predictions made by a simple
MIR model constructed on the training data. Prime-instance regression algorithms
have been used as benchmark in several studies [9, 19, 20].

132 6 Multi-instance Regression

6.3.1.2 Two Levels Regularization Framework

In Sect. 4.5, we described the MI-SVM method [2], an instance-based classification
SVM based on the standard MIL assumption. It selects a primary instance from each
bag and trains a standard SVM with these instances. In Sect. 5.2.2, we described the
MI kernel [7], a kernel defined over whole bags. It allows for an SVM to be used at
bag level in the classification of multi-instance data. Cheung and Kwok [4] translate
both ideas to the regression setting and connect them in a unified framework. A
general loss function that depends on both the training bags and training instances
is defined. This function is split into two parts. The first part considers the loss
between each bag label yi and its prediction f (Xi), using the hinge loss function
max (0, 1 − yif (Xi)). The second part considers the loss between the prediction of
each bag f (Xi) and those of its constituent instances

{

f
(

xij
) |j = 1, . . . , ni

}

. It can
be defined in various ways. Cheung and Kwok present margin formulations for
the L1 loss � (υ1, υ2) = |υ1 − υ2|, the L2 loss � (υ1, υ2) = (υ1 − υ2)

2 and the ε-
insensitive loss � (υ1, υ2; ε) = max (0, |υ1 − υ2| − ε). The complete loss function is
defined as

V
(

{Xi, yi, f (Xi)}i ,
{

f
(

xij
)}

ij

)

= 1

m

m
∑

i=1

max (0, 1 − yif (Xi))

+ λ

m

m
∑

i=1

�

(

f (Xi) ,max
j

f
(

xij
)
)

, (6.5)

where λ is a parameter that trades off the two components. Based on the fact that an
instance can also be considered as a bag of size one, they use the representer theorem
and the Constrained Concave–Convex Procedure (CCCP) to solve the problem as
a quadratic programming problem, which guarantees the convergence to a local
optimum. As the max operator is not a smooth function, the gradient is replaced by
a convenient sub-gradient in each iteration of the CCCP procedure.

In regression problems, the loss functions has two parts as well. The first part
considers the loss between the value of each bag and its corresponding prediction.
As in ν-support vector regression [13], they use the ε-insensitive loss and an extra
νε term (where ν is a user-defined parameter) to penalize the value of ε. The sec-
ond part considers the loss between the prediction of each bag and those of its
constituent instances. Following Ray and Page [12], they assume that there is one
primary instance in each bag that is responsible for the output of the bag, which is
set to the one with the highest output value. By introducing slack variables δi, ξi, ξ ∗

i
the following optimization problem is presented:

http://dx.doi.org/10.1007/978-3-319-47759-6_4
http://dx.doi.org/10.1007/978-3-319-47759-6_5

6.3 Instance-Based Regression Methods 133

min
w,b,ξ,ξ∗,ε,δ

1
2 ‖w‖2 + Cνε + C

m

∑

iξi + C
m

∑

iξ
∗
i + Cλ

m

∑

iδi

s.t. f (Xi) − yi ≤ ε + ξi,

yi − f (Xi) ≤ ε + ξ ∗
i ,

−δi ≤ f (Xi) − maxj f
(

xij
) ≤ δi

ξi, ξ
∗
i , δi, ε ≥ 0.

(6.6)

Different loss functions for MI regression can be used. Both bags and instances
directly participate in the optimization process.

6.3.1.3 Probabilistic Prime-MIR Algorithm

The above prime-instance methods make strong assumptions on the prime instances.
The probabilistic method ofWang et al. [19] assumes that each instance has a certain
probability to be the prime instance of the bag. Under this assumption, the bag label
is treated as a random variable described by the mixture model

p (yi|Xi) =
ni∑

j=1

πijp
(

yi|xij
)

, (6.7)

where πij is the prior probability that the jth instance is the prime instance of the ith
bag. The value p

(

yi|xij
)

is the label probability in case the jth instance is the prime
instance. In the mixture model (6.7), the contribution of each instance to the bag
label is proportional to its probability of being the prime instance. The label of the
ith bag can be predicted as the expected value of the mixture model, which is the
weighted sum of the label probabilities for individual instances

ŷ (Xi) =
ni∑

j=1

πij
(

θ g
)

f
(

xij,w
)

,

where the prior probability πij is a function of the model parameters θ g and f
(

xij,w
)

is a regression function with parameters w. The parametrized probabilities πij and
p
(

yi|xij
)

are learned from the data using the expectation maximization algorithm.
Model parameters are randomly initialized at first. Later, expectation and maximiza-
tion steps are alternated until convergence. In the expectation step, the algorithm
evaluates the expected value of the log-likelihood of the training data with respect to
the current estimate of the model parameters. In the maximization step, the algorithm
updates these parameters to maximize the expectation. The framework allows for the
prime instance probability to be modeled as appropriate to the application at hand.
The method was successfully applied to two remote-sensing applications [19].

134 6 Multi-instance Regression

6.3.1.4 Prime Instance-Based Applications

The prime instance assumption has been used in several real-life applications. In
[15], it was applied to the prediction of protein-ligand binding affinities to guide
optimization in structure-based drug discovery. A bag corresponds to a protein-
ligand pair and its instances are binding poses. The binding affinity of the ligand to
a particular protein is to be predicted. The gradient boosting approach [6] is used,
where an additive model f (x) = ∑

fk (x) is constructed to minimize a squared
loss function. In each boosting iteration, the instance with maximal output xmaxi is
selected from the ith bag. It is based on the domain-specific assumption that the
most plausible binding pose is that with the maximum predicted binding score. A
new training set R = {(

xmaxi , ri
)

, i = 1, . . .N
}

is arranged from the N training bags,
where ri = yi − f

(

xmaxi

)

is the pseudo-residual from the bag label and the predicted
output. This step effectively converts the initial MIR problem into a single-instance
regression problem. A single-instance regression model fk (x) is trained on R and
added to the boosting function f (x) to decrease the value of the loss function.

Another application of the prime instance assumption has been in the prediction of
polyp size in computed tomography images (CT) [8]. Polyps are precursors of cancer
tumors and their dimension indicates cancer staging. A polyp is represented by a bag
of polyp-like candidates extracted from a 3D CT scan. The polyp size y needs to be
predicted. It is approximated by a hyperplane wTx described by the weight vector w.
To make the size prediction, it is desirable to use the candidate whose segmentation
is the closest to the actual layout of the polyp. Therefore, the authors assume that the
primary instance is that whose estimated output f (x) = wTx differs the least from y,
i.e., min |y − f (x)|. Under this assumption, a ridge regression model is defined as

min
w

∑

j

min
i∈Ij

(

yj − wTxji
)2 + λ ‖w‖2 ,

where Ij is the index set of instances belonging to the jth bag. Like the prime-
instance algorithmdescribed above, an EMapproach is used to solve the optimization
problem.

6.3.2 Collective Assumption

In Sect. 3.4.3, we described the collective MIL assumption for classification, which
states that all instances in the bag contribute equally to the bag label. An extension
of the collective assumption allows that each instance contributes independently, but
not necessarily equally, to the class label of the bag. In this section, we consider a
similar idea applied to the regression setting. The notion of a primary instance inside
each bag is abandoned. Instead, all instances contribute equally to the bag label.
We present an implementation of this assumption in Sect. 6.3.2.1. In the extended

http://dx.doi.org/10.1007/978-3-319-47759-6_3

6.3 Instance-Based Regression Methods 135

collective MIR assumption, not all instances have the same contribution to the bag
label. Some instances are noisy and should be discarded, which is the idea behind
the method described in Sect. 6.3.2.2. Alternatively, we can try to determine the
weight that each instance has in the bag label formation. The algorithm described in
Sect. 6.3.2.3 exploits that information to make its bag label predictions.

6.3.2.1 Instance-MIR Algorithm

The Instance-MIR algorithm is the regression counterpart of the wrapper classifier
discussed in Sect. 4.2. Each instance xij from each bag Xi receives the label yi of its
bag.All instances are joined into a single-instancedatasetD = {(

xij, yi
)

, i = 1 . . .m,

j = 1 . . . ni}. To ensure that all bags are represented with the same importance in
D, independently of their size, each bag is sampled with replacement and added to
D the same number of times. An ordinary regression model f is trained on D. As
in the collective assumption for classification (Sect. 3.4.3), the bag label probability
is the expected outcome value of the instance population estimated by the sample
mean (6.3). Alternatively, the median of the instance predictions (6.4) can be used in
some applications to prevent outliers. The Instance-MIR algorithm has been used as
benchmark in several studies [9, 11, 19, 20], showing competitive results on many
datasets despite its simplicity.

6.3.2.2 Pruning-MIR Algorithm

The Instance-MIR algorithm, described in the previous section, uses all available
training instances to construct the regression model. When bags contain many noisy
instances, their inclusion can have a detrimental effect. On the other extreme, the
Prime-MIR algorithm selects a single instance from each bag, which makes it highly
probable that informative instances are discarded. The Pruning-MIR algorithm pro-
posed in [20] is a compromise solution between these two extremes. The assumption
is that each bag is generated by some random noise around a prime point in instance
space.Bag labels are assumed to be generated by some function of the prime instances
with added noise.

The algorithm aims to keep relevant instances from each bag, while removing
those that seem noisy. It starts from the Instance-MIR solution. In each iteration,
it discards a small fraction of the noisiest instances in each bag and trains a new
predictor (using Instance-MIR) on the remaining instances. The noisiest instances in
a bag are defined as those whose predictions are the farthest away from the median
prediction over the non-pruned instances. In this way, noise is gradually removed
and the quality of the training data is improved. The algorithm runs for as long as
there is an improvement in prediction accuracy.

http://dx.doi.org/10.1007/978-3-319-47759-6_4
http://dx.doi.org/10.1007/978-3-319-47759-6_3

136 6 Multi-instance Regression

6.3.2.3 Weighted-MIR Algorithm

The weighted collective assumption states that each instance has a particular rel-
evance or weight in the bag label generation. Under this assumption, the label ŷ
of a bag Xi can be calculated as the weighted aggregation of the prediction of bag
instances, namely

ŷ (Xi) =
∑

j f
(

xij
)

wij
∑

j wij
, (6.8)

where the denominator is present for normalization. However, expression (6.8) gives
rise to problems. We need to determine both the instance weights wij and the regres-
sion model f .

Regression Based on Instance Weights

Wagstaff and Lane [16] develop a method to estimate instance weights in MIR under
the assumption that each instance contributes independently to the bag label. Given a
set ofm bags {X1, . . . ,Xm} and their respective labels Y = {y1, . . . , ym}, it is assumed
that an exemplar pi exists inside each bag Xi that can accurately predict the bag’s true
label, that is, yi = f (pi). The exemplar can be described as a convex combination
of instances, namely pi = ∑ni

j ψijxij, where ψij ≥ 0 and
∑

j ψij = 1. Note that
these two restrictions enforce pi to fall within the convex hull of the points in Xi. The
authors assume a linear regression ŷ (pi) = ΦTpi, whereΦ is the vector of regression
coefficients and pi is a column vector. An optimization problem is defined according
to the least squares objective dependent on P = {p1, . . . , pm}, Y , Φ and the set of
weight vectors = {ψ1, . . . , ψm}, ψi = [ψi1, . . . , ψim]T . The L2 loss is used with
regularization terms ε1 and ε2 for each ψi and Φ, respectively, yielding

argmin
ψi,...,ψm,Φ

m
∑

i=1

[
(

yi − ΦTXiψi
)2 + ε1 ‖ψi‖2

]

+ ‖Φ‖2

s.t. (∀i, j)(ψij ≥ 0); (∀i)(
ni∑

j=1

ψij = 1),

where the factor Xiψi represents the aggregation of the instances in the ith bag to
one exemplar. This is a non-convex and difficult to optimize objective, because the
minimization is with respect to both Φ and {ψi} simultaneously. Wagstaff and Lane
[16] propose an alternating projections solver, that alternates between two projection
steps. First, the Φ values are fixed and each ψi is solved, which can be seen as a
projection of Φ on the ψi space. Next, the ψi vectors are fixed and projected back
onto the Φ space. The two steps are alternated until convergence.

Predicting Instance Weights

With the Wagstaff and Lane [16] optimization method we can obtain the coefficients
Φ of the regression hyperplane as well as the instance weight vectors ψi for each

6.3 Instance-Based Regression Methods 137

training bag. Using the regression model Φ, we could compute the output of a new
bag Xz as

ŷ (Xz) = ΦTXzψz,

where ψz is the weight vector representing the contribution of each instance in Xz

to the label of Xz. Unfortunately, the method of Wagstaff and Lane [16] is unable to
produce predictions. In their model, ψz is unknown, because the method can only
find ψi for training bags. Pappas and Popescu-Belis [9] present a simple solution to
this problem. They formulate another regression problem to predict instance weights
of unlabeled bags as ψ̂z = ΩTXz where Ω are the coefficients of a linear regression
model optimized over the weight vectors ψi of training bags. Assuming an �2-norm
for the regularization with an ε3 term, the optimization objective is

argmin
Ω

m
∑

i=1

ni∑

j=1

(

ψij − ΩTxij
)2 + ε3 ‖Ω‖2 .

Well-known least squares solving techniques can be used to solve this minimization
task. The method allows to determine instance weights of an unlabeled bag and to
predict its label. It was successfully applied to a sentiment analysis application [9].
In this case, a text is a bag of sentences and each sentence is modeled as a word
vector. The desired prediction is a real-valued rating of the overall sentiment of the
text with respect to a specific aspect.

6.4 Bag-Based Regression Methods

In bag-based regression methods the main learning process occurs at bag level. Like
bag-based classifiers, regression methods that fall in this category can be further
divided into two groups:

• Bag-based regressionmethods that work in the original bag space: thesemeth-
ods rely on a metric function defined over bags, which is used in a distance-based
regression algorithm, e.g., a nearest neighbor algorithm. We refer to these meth-
ods as original bag space regression methods (original-BSmethods, for short) and
discuss them in more depth in Sect. 6.4.1.

• Bag-based regression methods that work in a mapped space: these methods
transform the multi-instance data into a single-instance representation and train
a single-instance regression algorithm in this transformed space. The same trans-
formation is applied to an unseen bag and its outcome is predicted by the single-
instance regression model learned in the mapped space. We refer to these methods
as mapped bag space regression methods (mapped-BS methods, for short). They
are discussed in Sect. 6.4.2.

138 6 Multi-instance Regression

6.4.1 Original Bag Space Methods

Any single-instance distance-based regression method can be upgraded to a MIR
method by using an appropriate MIL metric. By virtue of this measure, the MIR
model can be learned and used to make predictions in the original bag space.

The most popular algorithm in this category is RCitationKNN [1]. Its name
makes reference to CitationKNN [18] for regression. The minimal Hausdorff dis-
tance (Sect. 3.5) is plugged into the CitationKNN algorithm. To obtain the prediction
of a new bag, the closest neighbors (citers and references) are consulted and their
outcomes averaged. The traditional KNN is also upgraded to MIL in [1].

As an alternative, a support vector regression model [14] can be transferred to the
MIL setting by replacing its instance-level kernel by a bag-level kernel, for example
the MI kernel [7].

6.4.2 Mapped Bag Space Methods

Mapping methods (Chap. 5) allow the transformation of bags into single-instance
vectors. Once the MIL data has been mapped to a single-instance representation,
any traditional classifier can be learned on the data. The same mapping methods
can be used for regression and traditional regression models can be learned over
the single-instance representations afterward. For example, in [21], the BARTMIP
mapping is applied to MIR benchmark problems. Another illustrative example is
the bioinformatic application described in [5] where the MILES mapping [3] is first
applied and a support vector regression (SVR) model [14] is subsequently trained
on the mapped data. We refer the interested reader to Sect. 5.3. Below, we discuss
two mapping methods that are of particular interest, because they have been used as
benchmarks in several studies on MIR [9, 19, 20].

6.4.2.1 Aggregate-MIR

The mapping step of the Aggregate-MIR algorithm [20] is similar to the average
mapping described in Sect. 5.3.1. Each bag Xi is mapped to a single instance (x̄i, yi)
where x̄i is obtained by averaging all its instances, namely

x̄i = mean
({

xij, j = 1 . . . ni
})

.

A single-instance set D is obtained after mapping all training bags. A traditional
regression model is trained on it. To predict the label of a new bag Xi, we apply the
mapping method to Xi and obtain the corresponding x̄i. The bag label is predicted as

ŷ (Xi) = f (x̄i) .

http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_5
http://dx.doi.org/10.1007/978-3-319-47759-6_5
http://dx.doi.org/10.1007/978-3-319-47759-6_5

6.4 Bag-Based Regression Methods 139

The method can be more appropriate when the dataset has a low noise level and large
bags. This simple method may be useful to initialize more advanced MIR methods.

6.4.2.2 Cluster-MIR

The Cluster-MIR algorithm [17] was set up for MIR problems with a structured
instance space. The assumption is that instances in each bag are drawn from different
underlying data distributions and that only one distribution is responsible for the bag
label. The method can be considered as a generalization of Aggregate-MIR and
is related to the stratified bag statistic mapping described in Sect. 5.3.1. The first
step is to determine the space structure by the use of unsupervised learning. A soft
clustering algorithm is applied over all instances of all training bags to identify k
clusters. Training bags are mapped with respect to each cluster. A bag X is mapped
with respect to a cluster θ as M (X, θ) �→ 〈a1, . . . , ad〉, where aj = ∑m

i=1 rθ ixij, xij
is the value of the jth attribute in the ith instance of the bag X and rθ i is the relevance
of xi with respect to the jth group. A total number k of single-instance datasets are
obtained from the mapping of training bags with respect to each cluster. A regression
model is constructed in each mapped dataset. The best regression model is selected
based of the training data. At prediction time, a new bag is mapped with respect
to the cluster corresponding to the selected regression model. Note that for k = 1,
Cluster-MIR reduces to Aggregate-MIR.

6.5 Summarizing Comments

MIR is an important task within the MIL paradigm. Although the number of studies
onMIRmethods is small compared to the abundant literature on multi-instance clas-
sifiers, an increased interest onMIR is apparent in recent years. CurrentMIRmethods
can be categorized into two groups, instance-based methods and bag-based meth-
ods, much like the categories of classification methods. In a few cases, a traditional
regression method is modified to the MIL setting. Mostly, the data is manipulated
(e.g., an instance is selected, many instances are aggregated to a single instance per
bag or bags are mapped to single vectors), such that traditional regression methods
can be applied without modifications.

References

1. Amar, R., Dooly, D., Goldman, S., Zhang, Q.: Multiple-instance learning of real-valued data.
In: Brodley, C., Danyluk, A. (eds.) Proceedings of the 18th International Confernce onMachine
Learning (ICML 2001), pp. 3–10. Morgan Kaufmann Publishers, San Francisco (2001)

2. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance
learning. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information
Processing Systems, pp. 561–568. MIT press, Cambridge (2002)

http://dx.doi.org/10.1007/978-3-319-47759-6_5

140 6 Multi-instance Regression

3. Chen, Y., Bi, J., Wang, J.: MILES:Multiple-instance learning via embedded instance selection.
IEEE Trans. Pattern Anal. Mach. Intell. 28, 1931–1947 (2006)

4. Cheung, P., Kwok, J.: A regularization framework for multiple-instance learning. In: Cohen,
W., Moore, A. (eds.) Proceedings of the 23rd International Conference on Machine learning
(ICML 2006), pp. 193–200. ACM, New York (2006)

5. EL-Manzalawy, Y., Dobbs, D., Honavar, V.: Predicting MHC-II Binding Affinity Using Mul-
tiple Instance Regression. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(4), 1067–1079 (2011)

6. Friedman, J.H.: Greedy function approximation: a gradient boostingmachine. Ann. Stat. 29(5),
1189–1232 (2001)

7. Gärtner, T., Flach, P.A., Kowalczyk, A., Smola, A.: Multi-instance kernels. In: Sammut, C.,
Hoffmann, A. (eds.) Proceedings of the 19th International Conference on Machine Learning
(ICML 2002), pp. 179–186. Morgan Kaufmann Publishers, San Francisco (2002)

8. Lu, L., Bi, J., Wolf, M., Salganicoff, M.: Effective 3D object detection and regression using
probabilistic segmentation features in CT images. In: Proceedings of the 2011 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR 2011), pp. 1049–1056. IEEE, Los
Alamitos (2011)

9. Pappas, N., Popescu-Belis, A.: Explaining the stars: weighted multiple-instance learning for
aspect-based sentiment analysis. In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pp. 455–466. The Associations for Computational Linguistics,
Stroudsburg (2014)

10. Ray, S.: Learning from data with complex interactions and ambiguous labels. PhD Thesis,
University of Wisconsin at Madison, United States of America (2005)

11. Ray, S., Craven,M.: Supervised versusmultiple instance learning: an empirical comparison. In:
De Raedt, L., Wrobel, S. (eds.) Proceedings of the 22nd International Conference on Machine
Learning (ICML 2005), pp. 697–704. ACM, New York (2005)

12. Ray, S., Page, D.: Multiple instance regression. In: Brodley, C., Danyluk, A. (eds.) Proceedings
of the 18th International Confernce on Machine Learning (ICML 2001), pp. 425–432. Morgan
Kaufmann Publishers, San Francisco (2001)

13. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT press, Cambridge (2002)

14. Shevade, S., Keerthi, S., Bhattacharyya, C., Murthy, K.: Improvements to the SMO algorithm
for SVM regression. IEEE Trans. Neural Netw. 11(5), 1188–1193 (2000)

15. Teramoto, R., Kashima, H.: Prediction of protein-ligand binding affinities using multiple
instance learning. J Mol. Gr. Model. 29(3), 492–497 (2010)

16. Wagstaff, K., Lane, T.: Salience assignment for multiple-instance regression. In: Proceedings
of the ICML 2007 Workshop on Constrained Optimization and Structured Output Spaces,
Citeseer (2007)

17. Wagstaff, K.L., Lane, T., Roper, A.: Multiple-instance regression with structured data. In:
Bonchi, F., Berendt, B., Giannotti, F., Gunopulos, D., Turini, F., Zaniolo, C., Ramakrishnan,
N., Wu, X. (eds.) Proceedings of the 2008 IEEE International Conference on Data Mining
Workshops (ICDMW 08), pp. 291–300. IEEE, Los Alamitos (2008)

18. Wang, J., Zucker, J.: Solving the Multiple-Instance Problem: a Lazy Learning Approach. In:
Langley, P. (ed.) Proceedings of the 17th International Conference onMachine Learning (ICML
2000), pp. 1119–1126. Morgan Kaufmann Publishers, San Francisco (2000)

19. Wang, Z., Lan, L., Vucetic, S.: Mixture model for multiple instance regression and applications
in remote sensing. IEEE Trans. Geosci. Remote Sens. 50(6), 2226–2237 (2012)

20. Wang, Z., Radosavljevic, V., Han, B., Obradovic, Z., Vucetic, S.: Aerosol optical depth predic-
tion from satellite observations by multiple instance regression. In: Apte, C., Park, H., Wang,
K., Zaki, M. (eds.) Proceedings of the 2008 SIAM International Conference on Data Mining,
pp. 165–176. SIAM, Philadelphia (2008)

21. Zhang, M., Zhou, Z.: Multi-instance clustering with applications to multi-instance prediction.
Appl. Intell. 31(1), 47–68 (2009)

Chapter 7
Unsupervised Multiple Instance Learning

Abstract Unsupervised MIL is a descriptive task where the learning process is
carried out without information about the labels of bags. This is a common setting
when it is hard or costly to obtain labeled data or when the objective is to find
inherent or unknown relations in data. As for supervised learning techniques stud-
ied in this book, unsupervised MIL is more complex than traditional single-instance
unsupervised learning due to the inherent ambiguity in MIL. In this chapter, we con-
sider the two main tasks in unsupervised learning that have been addressed from the
MIL perspective. The first is cluster analysis, where the learning process consists of
building groups in which similar examples are put together and less similar exam-
ples are separated (Sect. 7.1). The second task is association rule mining, where the
learning process consists of obtaining rules that show unknown relationships in data
(Sect. 7.2).

7.1 Multiple Instance Cluster Analysis

This section sets up the basis for studying multiple instance cluster analysis.
Section 7.1.1 introduces cluster analysis, listing the basic concepts as well as a
taxonomy in the traditional single-instance scenario. Section 7.1.2 details the more
relevant conditions considered in multi-instance clustering. Common measures to
evaluate cluster analysis techniques are described in Sect. 7.1.3. Sections 7.1.4.1,
7.1.4.2, 7.1.4.3, 7.1.4.4 and 7.1.4.5 present an overview of the most significant multi-
instance clustering methods. Finally, Sect. 7.1.5 is devoted to the use of clustering as
a preprocessing step before the application of other data mining techniques (e.g., a
classifier).

7.1.1 Introduction to Cluster Analysis

Cluster analysis or clustering tries to group a given collection of unlabeled patterns
into different subsets containing similar patterns. These groups are called clusters.

© Springer International Publishing AG 2016
F. Herrera et al., Multiple Instance Learning, DOI 10.1007/978-3-319-47759-6_7

141

142 7 Unsupervised Multiple Instance Learning

They are collections of data objects that are similar to others within the cluster and
dissimilar to objects in other clusters. A clustering method should produce clusters
with high intraclass similarity and low interclass similarity.

Clustering has become a very interesting tool to guide the discovery of previously
unknown groups in many research areas including data mining, statistics, machine
learning, spatial database technology, information retrieval, web search, biology,
and marketing. Moreover, as a result of the large dimensionality of data nowadays,
clustering is often used in a preprocessing phase to facilitate the solution of other
tasks. Cluster analysis is consequently a highly active topic in data mining research.
The variety of data representation techniques, proximity measures, and ways to group
data has produced a rich assortment of clustering methods. The main characteristics
and categories are commented on in this section.

7.1.1.1 General Scheme

Most cluster analysis methods rely on (dis)similarities between patterns. In a single-
instance setting, let X = {x1, . . . , xj, . . . , xN } be the set of data objects, where each
pattern is represented in a d-dimensional space, that is, xi = {xi1, xi2, . . . , xid}, for
i ∈ [1,N]. The main steps of dissimilarity-based clustering are the following [9]:

1. Choose a pattern proximity measure. This is usually a distance function defined
on pairs of patterns.

2. Compute the dissimilarity between pattern pairs. The dissimilarity metric usually
satisfies the properties, for k, l ∈ [1,N]:
• dissimilarity(xk, xl) ≥ 0,
• dissimilarity(xk, xk) = 0,
• dissimilarity(xk, xl) = dissimilarity(xl, xk).

3. Select the desired type of clustering. As described below, example types are
hierarchical, partitioning or density based clustering.

4. Choose a criterion to evaluate the clusters, e.g., homogeneity and/or separation
of the clusters.

5. Apply the selected algorithm on the data to obtain the clusters.

7.1.1.2 Clustering Taxonomy

As this task has been extensively studied in traditional single-instance learning [19],
different categorizations of clustering can be found in the literature [9, 10]. It is
however difficult to provide a categorization of clustering methods without overlap,
because many methods have features from several categories. In order to present a
relatively organized picture of clustering methods, we detail one of the most com-
mon categorizations used in single-instance clustering. In the following sections,
this grouping is respected to categorize the multi-instance clustering techniques. The

7.1 Multiple Instance Cluster Analysis 143

(a) Patterns to group (b) Partitioning method

Fig. 7.1 Partitioning clustering method

major fundamental clustering methods can be classified in six groups [10], namely:
partitioning methods, hierarchical methods, density based methods, grid-based meth-
ods, model-based methods, and maximum margin based methods.

• Partitioning methods: these methods attempt to provide a conventional partition
of N objects into k disjunct clusters, such that each object belongs to exactly one
cluster. An iterative process is used to add objects to clusters or exchange them
between clusters. The existence of a function F is assumed that evaluates the
quality of clusters and allows to optimize the constructed partitions. A general
partitioning algorithm involves the following steps [8]:

1. Construct an initial partition of the data into k clusters and compute the value of
F. The algorithms are usually very sensitive to the selection of the initial partition.

2. Iteratively change the partition to optimize the value of F as much as possible,
maintaining the value of k. Empty or new clusters cannot appear. Algorithms
differ from each other in the way they modify the partition and their definition
of F.

3. If no further optimization of F is possible, the method halts and yields the current
partition as the final result.

An example partitioning method is described in Fig. 7.1. The input patterns are
shown in Fig. 7.1a and the desired clusters in Fig. 7.1b. Partitioning methods work
well for the detection of sphere-shaped clusters in small to medium size databases.

• Hierarchical methods: the objects are grouped in a sequence of partitions, going
from singleton clusters to one cluster containing all individuals or the other way
around. Two main types are distinguished:

– Agglomerative (bottom-up): in the first step, each object is considered as a sep-
arate cluster. These clusters are fused together into increasingly larger clusters
during the analysis. In the final step, all objects are combined into a trivial
cluster.

144 7 Unsupervised Multiple Instance Learning

– Divisive (top-down): the opposite strategy is followed. The clustering process
starts with all objects in a single cluster, which is divided into two parts in the
first step. Each of them is further subdivided in the following steps until every
cluster contains a single object.

Neither type allows corrections. If two objects are clustered together or separated
at the beginning of the analysis, their mutual relationships cannot be changed,
even when at a different hierarchical level relocation would improve the results.
The classificatory ability of the human brain seems to be closer to the divisive
approaches, whereas computerized realizations are much simpler for the agglom-
erative strategies. Figure 7.2 shows an example of hierarchical clustering. The input
patterns are shown in Fig. 7.1a. Figure 7.2b represents the process of agglomerative
and divisive algorithms.

• Density based methods: these methods assume that the objects that belong to
each cluster are drawn from a specific probability distribution [4]. Their aim is
to identify the clusters and their distribution parameters. In general, objects in a
high density region are considered to belong to the same cluster. These methods
are designed to discover clusters of arbitrary shape. However, they do not perform
well when the density of the data space is low.

• Grid based methods: these algorithms attempt to divide the space into a finite
number of cells that form a grid structure on which all clustering operations are
performed. The main advantage of this approach is its fast processing time [10],
which is independent of the number of data objects and only depends on the number
of cells in each dimension of the quantized space. Due to its efficiency, grid-based
methods can be integrated with other clustering methods, such as density-based
methods and hierarchical methods.

• Model-based methods: the grouping between the given data and some mathe-
matical models is optimized [7]. Unlike conventional clustering, which identifies
groups of objects, model-based clustering methods also find characteristic descrip-
tions for each group that represent concepts or classes. The problem of determining
the number of components and the component probability distributions can be for-
mulated as statistical model selection problems.

(a) Patterns to group (b) Hierarchical method

Fig. 7.2 Hierarchical clustering method

7.1 Multiple Instance Cluster Analysis 145

• Maximummargin based methods: the data is grouped based on maximum mar-
gin hyperplanes. Xu et al. [18], motivated by the success of large margin methods
in supervised learning, proposed a method for clustering extending the theory of
SVMs to unsupervised learning. While large margin supervised learning methods
are usually formulated as convex optimization problems, large margin unsuper-
vised learning is more complex and leads to non-convex integer programs. Most
maximum margin clustering methods rely on reformulating and relaxing the non-
convex optimization problem to deal with the high computation cost or sensitivity
to the choice of kernel function.

7.1.2 Multiple Instance Clustering Requirements

Multiple Instance Clustering (MI-clustering) splits up a set of unlabeled objects into a
number of more or less homogeneous subgroups on the basis of a similarity measure.
In this sense, the clustering algorithms rely to a great extent on the definition of the
similarity metric. Normally, it is subjectively selected based on its ability to obtain
relevant clusters. Once a proximity measure has been chosen, a clustering criterion
function converts its task in an optimization problem. The clusters are created such
that the similarity between objects within a subgroup is larger than the similarity
between objects belonging to different subgroups.

In this context, the inherent ambiguity of MIL, where each observation (bag)
consists of several unlabeled instances with a particular relationship between them,
renders the task of distributing objects into clusters more difficult. MI-Clustering has
its own characteristics and the similarity measures used in single-instance clustering
may not be appropriate, since instances in a bag usually exhibit different functionali-
ties. For example, in drug activity prediction, only one or a few of the conformations
describing a molecule would be responsible for its qualification. Similarly, only one
or few of the regions describing an image is useful in the object identification task.
These particularities should be taken into account in the similarity definition in MI-
Clustering. To clarify this point, Fig. 7.3 shows three bags representing images. Each
image is a bag and each instance in that bag corresponds to a particular region. If these
images depict animals, the aim would be to group them according to the portrayed
animal. Let us suppose that two of these bags contain a tiger (concretely, bag 1 whose
instances are represented by pink squares and bag 2 whose instances are represented
by orange circles) and the other bag contains an elephant (bag 3, green triangles). In
this scenario, the ideal division of clusters would be one cluster composed of bags
1 and 2 and the other one composed of bag 3. This is where the natural ambiguity
of MI-Clustering, about which portion of the image contains the clustering concept
(tiger or elephant in this case) and which portion may be irrelevant, comes in. In this
example, bags 2 and 3 could share an identical background and only differ in that
one contains a tiger and the other contains an elephant. On the contrary, bags 1 and 2
could only share the tiger instance, while their backgrounds are completely different,

146 7 Unsupervised Multiple Instance Learning

Fig. 7.3 Problems to group
three bags in two cluster

e.g., a snowy mountain compared to a green grassland. Depending on the selected
proximity distance (see Sect. 3.5), the clustering results can be very different.

This example highlights the fact that in MI-Clustering, the bags should not be
regarded as simple collections of independent instances. The characteristics and
relationships of the instances within bags should be carefully investigated. It is crit-
ical to identify the desired objects/concepts in each bag, such that the unsupervised
distance definitions can reveal the true distances between bags.

It is important to highlight that although this task has been extensively studied
in single-instance traditional learning, very few proposals have been developed in
MIL. In Sects. 7.1.4.1, 7.1.4.2, 7.1.4.3, 7.1.4.4 and 7.1.4.5, we examine each MI-
clustering method in detail, following the categorization specified in Sect. 7.1.1.
Some clustering algorithms integrate the ideas of several clustering methods, making
it difficult to classify a given algorithm to a unique category. We classify methods
according to the most relevant objective. For each algorithm, we also comment on
the experimental studies carried out by its developers.

7.1.3 Multiple Instance Clustering Evaluation Measures

There are different metrics to evaluate the clusters. They can be grouped into two
groups known as extrinsic and intrinsic measures. The former compare the clustering
against the real grouping. It is clear that these measures can only be applied when the
real grouping is available, that is, when the class of each pattern is known. Intrinsic
measures evaluate the goodness of a clustering by considering how well the clusters
are separated.

http://dx.doi.org/10.1007/978-3-319-47759-6_3

7.1 Multiple Instance Cluster Analysis 147

A considerable number of metrics can be found in literature. In this section,
only the measures used in Sects. 7.1.4.1, 7.1.4.2, 7.1.4.3, 7.1.4.4 and 7.1.4.5 are
included. For more details, other studies can be consulted [3, 10]. The definitions
below are similar to those in single-instance clustering. However, as the objects in
MI-Clustering are bags, the distance metric between patterns should be defined for
sets (Sect. 3.5).

7.1.3.1 Extrinsic Measures

Each constructed cluster Gi is assigned the class label of the majority of the objects
belonging to it. The dataset X is composed of N patterns {X1,X2, . . . ,XN } and each
pattern is a bag of instances Xi = {xi1, xi2, . . . , xini} composed of ni instances.

• Precision: this measure evaluates the proportion of bags that were identified as a
specific class and really belong to this specific class. It is defined as

Precision =

∑

Gi∈G
|{Xi|(Gi = argmaxGj∈GPr[Gj|Xi]) ∧ Class(Xi) = Class(Gi)})|

|X| .

• Recall: this metric evaluates the proportion of bags that belong to a specific class
and are correctly identified as such:

Recall =

∑

Gi∈G
|{Xi|(Gi = argmaxGj∈GPr[Gj|Xi]) ∧ Class(Xi) = Class(Gi)})|

|Xi|Class(Xi) = Class(Gi)| .

• F-measure: this is the harmonic mean of the above two measures, given as

F = 2 · Recall · Precision
Precision + Recall

.

• Entropy: the quality evaluation is based on the impurity in the class labels of
objects belonging to a cluster. It is given by

Entropyavg =

∑

Gi∈C
(|Gi| · (− ∑

Classj

pj,ilog(pj,i)))

|X| ,

where pj,i is the relative frequency of the class label Classj in the cluster Gi.

http://dx.doi.org/10.1007/978-3-319-47759-6_3

148 7 Unsupervised Multiple Instance Learning

7.1.3.2 Intrinsic Measures

The distance dBag(X1,X2) between bags X1 and X2 is measured by an appropriate
metric, like the ones listed in Sect. 3.5. The silhouette coefficient is a normalized
summation-type index. Cluster cohesion is measured based on the distance between
all points in the same cluster, while cluster separation is based on the nearest neighbor
distance. The measure is computed as

Silhouette = 1

N

∑

Gk∈G

∑

Xi∈Gk

b(Xi,Gk) − a(Xi,Gk)

max{a(Xi,Gk), b(Xi,Gk)} ,

where

a(Xi,Gk) = 1

|Gk|
∑

Xj∈Gk

dBag(Xi,Xj)

and

b(Xi,Gk) = minGl∈G\Gk

⎡

⎣
1

|Gl|
∑

Xj∈Gl

dBag(Xi,Xj)

⎤

⎦ .

7.1.4 Multiple Instance Clustering Methods

This section gives an overview of the most significant MI clustering methods grouped
according to the taxonomy specified in Sect. 7.1.1.2.

7.1.4.1 Partitioning Method: BAMIC Algorithm

Partitioning is one of the simplest and most fundamental forms of cluster analysis.
These methods organize the objects into several exclusive clusters. A general descrip-
tion can be found in Sect. 7.1.1. We describe the proposal of Zhang et al. [22], that
adapts the classical k-medoids algorithm, BAMIC (BAg-level Multi-Instance Clus-
tering) algorithm. Other works, such as Chen et al. [5], propose alternative distance
measures to improve the performance of this method.

Description

BAMIC was developed by Zhang and Zhou [22] and modifies the popular k-medoids
algorithm to partition the unlabeled training bags into k disjoint groups of bags.
Bags are considered as atomic elements and the k-medoids algorithm is employed to
construct groups based on the distances between them. The authors proposed a new
bagwise distance called the average Hausdorff distance (see Sect. 3.5).

http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3

7.1 Multiple Instance Cluster Analysis 149

The main steps of BAMIC are listed in Algorithm 3. The first step arbitrarily
selects k patterns to form the initial medoids, the representative bags for a cluster.
In each iteration, each bag is assigned to the cluster with the closest medoid. The
cluster medoids are recalculated by selecting the objects with the lowest value average
dissimilarity measure. The iterative process continues until the quality of the resulting
clustering cannot be improved by any replacement. This quality is measured by a
cost function of the average dissimilarity between an object and the medoid of its
cluster.

Algorithm 3 BAMIC Algorithm
Input: X ← unlabeled multi-instance training set {X1,X2, . . . ,XN } (Xi ⊆ X).
Input: k ← cluster number.
Input: Distancebag ← distance between bags (see Sect. 3.5).
Output: G ← clustered groups
Output: C ← medoids of clustered groups
1: for j ∈ {1, 2, . . . , k} do
2: Cj ←Randomly select a training bag in X as the initial representative bag of each cluster
3: end for
4: repeat
5: for j ∈ {1, 2, . . . , k} do
6: Gj = {Cj}
7: end for
8: for i ∈ {1, 2, . . . ,N} do
9: index = minj∈[1,k]Distancebag(Xi,Cj);
10: Gindex = Gindex ∪ {Xi}
11: end for
12: for j ∈ {1, 2, . . . , k} do
13: Cj = minXi∈Gj (

∑

Xk∈Gj

Distancebag(Xi,Xk)/|Gj|);
14: end for
15: until the clustering results do not change;
16: Groups = {Gj|j ∈ [1, k]}
17: Medoids = {Cj|j ∈ [1, k]};

Experimental Study

The experimental setting of [22] considers classic MIC datasets, Musk1 and Musk2
(Sect. 3.6). Versions of the BAMIC method using different measures of Hausdorff
(maximum, minimum and average Hausdorff distance, see Sect. 3.5) are compared.
To assess the efficacy of the method, the average purity and entropy is used. The
experimental results show that the different distance metrics perform appropriately
without significant differences between them.

http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3

150 7 Unsupervised Multiple Instance Learning

7.1.4.2 Hierarchical Method: UC-kNN Algorithm

A hierarchical clustering method can be either agglomerative or divisive, depend-
ing on whether the hierarchical decomposition is formed in a bottom-up or top-down
procedure (Sect. 7.1.1). We describe the UC-kNN (Unsupervised citation-kNN) algo-
rithm [11], an agglomerative hierarchical method. Its authors define a new similarity
metric based on mutual information.

Description

Henegar et al. [11] proposed the UC-kNN method by adapting the Citation-kNN
method of Wang and Zucker (Sect. 5.2.1) to MI-Clustering. Two bags X1 and X2

composed of n1 and n2 instances measure their relationship as

DX1→X2 = 1 − SX1→X2

[

1

2n12

n2∑

i=1

maxn12
j=1MI(x1i, x2j)

]

. (7.1)

The normalized pairwise mutual information MI(X1,X2) of two random variables
X1 and X2 is defined as

MI(X1,X2) = MI(X1,X2)

max{H(X1),H(X2)} ,

with MI(X1,X2) = H(X1) + H(X2) − H(X1,X2). The value H(X1) is the entropy
given by

H(X1) = −
n1∑

i=1

P(X1 = x1i)log2P(X1 = x1i).

Finally, n12 is the cardinality of n12, computed as

n12 = {x1i ∈ X1 | ∃x2j ∈ X2 : MI(x1i, x2j) ≥ TMI}.

The main steps of this algorithm are given in Algorithm 4. This method uses (7.1)
and follows a nearest neighbor approach. A bag Xi is presumed a good reference for
another bag Xj, if bag Xi is ranked among the k most closely related bags to bag Xj. At
initialization, the first p most cited bags (2 ≤ p < m) are assigned to each cluster as
representative bags. Next, every other bag is grouped with its closest representative
bag using a weighted voting procedure. Concretely, for each Xi different of the
p representative bags, the closest representative bag Xj is located, minimizing the
value

VGsXi = rank(Gs,Xi) + 1

k

k
∑

j=1

rank(Gs,Xj),

http://dx.doi.org/10.1007/978-3-319-47759-6_5

7.1 Multiple Instance Cluster Analysis 151

Algorithm 4 UC-kNN Algorithm
Input: X ← unlabeled multi-instance training bag set {X1,X2, . . . ,XN } (Xi ⊆ X).
Input: k ← number of nearest neighbor
Output: G ← Clustered groups
1: Calculate the bag relationship matrix using (7.1)
2: for (k ∈ {1, 2, . . . ,N − 1}) do
3: for (j ∈ {1, . . . ,N) do
4: RXj ← ∑

Xi∈X
rank(Xj,Xi) ssi rank(Xj,Xi) ≤ k

5: R = R ∪ {RXj }
6: end for
7: for (p ∈ {2, . . . ,m) do � m is the number of clusters
8: Gj (j ∈ [1, . . . , p]) ← the first p bags from R as cluster representative bag
9: for (Xi ∈ X and Xi /∈ Gj (j ∈ [1, . . . , p]) do
10: Xj ← Find k best references for Xi

11: VGsXi (s ∈ [1, . . . , p]) ← rank(Gs,Xi) + 1
k

k∑

j=1
rank(Gj,Xj)

12: Gj ← Gj ∪ Xi � Xi is assigned to closest cluster Gj
13: end for
14: Calculate silhouette index for the resulting partition of bags � Silhouette index is

defined in Sect. 7.1.3
15: end for
16: end for
17: Select the optimal partition of bags with maximum silhouette index, among those computed

for each possible combination of values of k and p.
18: Groups = {Gj|j ∈ [1,m]}

where Xj belongs to the k nearest neighbors of bag Xi. For each pair of values (k, p),
the method builds a partition P(k,p) = {G1 ∩ . . . ∩ Gp} of X into p distinct classes.
An optimal partition can be selected by using a standard quality evaluation measure.
The authors use the silhouette technique (Sect. 7.1.3).

Experimental Study

The experimental setting of [11] considers datasets related with pangenomic cDNA
microarray expression. UC-kNN is compared to two other classic algorithms: an
agglomerative hierarchical clustering and k-means partition clustering [12]. Both
were modified for MIL by reducing the multi-instance model to a single-instance
one and by relying on the symmetrical measure of the relationship between bags
given by

DX1→X2 = 1

2
(DX1→X2 + DX2→X1).

To evaluate the efficacy of the method, the silhouette index of the partitions is used
(Silhouette index is defined in Sect. 7.1.3). The experimental results of UC-kNN are
better than those of its competitors.

152 7 Unsupervised Multiple Instance Learning

7.1.4.3 Density Based Method: COSMIC Algorithm

Partitioning and hierarchical methods are designed to find sphere-shaped clusters.
They have difficulty finding clusters of arbitrary shape. Density based methods on
the other hand model clusters as dense regions in the data space, separated by sparse
regions. They can discover clusters of nonspherical shape. We describe the COS-
MIC (COnceptual Specified Multi-Instance Clusters) algorithm [14], classified as
a density-based clustering algorithm to find an arbitrary number of clusters and to
distinguish noisy instances.

Description

Kriegel et al. [14] proposed the COSMIC algorithm, a method for deriving concep-
tually specified multi-instance clusters. It is based on the classic OPTICS algorithm
[2] and consists of two steps. The first carries out a density based clustering and
obtains the clustered set of all instances. The second step generates all concepts that
contain at least a minimum support (MinPts). Some important notions have to be
considered in any density-based method:

• Core object: an object that has at least MinPts bags in its ε-neighborhood, where
ε is the size of neighborhood.

• Core distance: the smallest distance ε′ between a bag X and one bag in its ε-
neighborhood such that X would be a core object. In MI-Clustering, the definition
of the core-distance is dependent on at least μ multi-instance objects instead of μ

arbitrary instances.
• Reachability distance: for a bag X1, this is the smallest distance such that X1

is density-reachable from a core object. According to the definition of density-
reachability, X2 has to be a core object and X1 must be in the neighborhood of X2.
Therefore, the reachability-distance from X2 to X1 is

max(core-distance(X2), dist(X1,X2)).

If X2 is not a core object with respect to ε and MinPts, the reachability distance
to X1 from X2 is undefined. An object X1 may be directly reachable from several
core objects. Therefore, X1 may have multiple reachability distances with respect
to different core objects. The smallest reachability distance of X1 is of particular
interest, because it gives the shortest path for which X1 is connected to a dense
cluster.

The main steps of this method are listed in Algorithms 5 and 6. The first step of
COSMIC, shown in Algorithm 5, computes an ordering of all objects and stores the
core-distance and a suitable reachability distance for each object. COSMIC maintains
a list called ControlList to generate the output ordering. Objects in ControlList are
sorted by the reachability distance from their closest core objects, that is, by their
smallest reachability distance. The procedure starts with an arbitrary input object
as the current object Xi. It retrieves the ε-neighborhood of Xi, determines the core-
distance and sets the reachability distance to undefined. The current object is then

7.1 Multiple Instance Cluster Analysis 153

Algorithm 5 COSMIC Algorithm - First Step
Input: X ← unlabeled multi-instance training set {X1,X2, . . . ,XN } (Xi ⊆ X).
Input: ε ← radius parameter
Input: MinPts ← the neighborhood density threshold
Output: Gordered ← cluster ordering of objects, coreDistance of objects and reachabilityDistance

of objects.
1: Mark all bags as not visited
2: for (k ∈ {1, 2, . . . ,N}) do
3: Select the bag Xk
4: if (Xk is not visited) then
5: Nε(Xk) ← Obtain ε neighborhood
6: Xk ← visited
7: reachabilityDistanceXk ← undefined
8: coreDistanceXk ← coreDistance(Xk)

9: Gordered ← Xk
10: if (coreDistanceXk �= undefined) then
11: coreDistanceXk ← coreDistance(Xk)

12: for (each Xj ∈ Nε(Xk) that is not visited) do
13: distXj ← max(coreDistanceXk , distance(Xk,Xj))

14: if (reachabilityDistanceXj = undefined) then
15: reachabilityDistanceXj = distXj
16: ControlList ← Xj with reachabilityDistanceXj
17: else
18: if (distXj < reachabilityDistanceXj) then
19: reachabilityDistanceXj = distXj
20: Update reachabilityDistanceXj in ControlList
21: end if
22: end if
23: end for
24: for (Xi ∈ ControlList) do
25: Nε(Xi) ← Obtain ε neighborhood of Xi
26: Xi ← processed
27: coreDistanceXi ← coreDistance(Xi)

28: Gordered ← Xi
29: if (coreDistanceXi �= undefined) then
30: coreDistanceXk ← coreDistance(Xk)

31: for (each Xj ∈ Nε(Xk) ∧ Xj is not visited) do
32: distXj ← max(coreDistanceXk , distance(Xk,Xj))

33: if (reachabilityDistanceXj = undefined) then
34: reachabilityDistanceXj = distXj
35: ControlList ← Xj with reachabiliyDistanceXj
36: else
37: if (distXj < reachabilityDistanceXj) then
38: reachabilityDistanceXj = distXj
39: Update reachabilityDistanceXj in ControlList
40: end if
41: end if
42: end for
43: end if
44: end for
45: end if
46: end if
47: end for

154 7 Unsupervised Multiple Instance Learning

Algorithm 6 COSMIC Algorithm - Second Step
Input: X ← unlabeled multi-instance training set {X1,X2, . . . ,XN } (Xi ⊆ X).
Input: ε′ ← radius parameter
Input: Gordered ← cluster ordering of objects, coreDistance of objects and reachabilityDistance of

objects.
Output: G ← Clustered groups

� Extracting clusters from Gordered
1: Gid ← NOISE
2: for (Xi ∈ Gordered) do
3: if (reachabilityDistance(Xi) > ε′) then
4: if (coreDistance(Xi) ≤ ε′) then
5: Gid ← nextID(Gid)

6: Gid(Xi) ← Gid
7: else
8: Gid ← NOISE
9: end if
10: else
11: Gid(Xi) ← Gid
12: end if
13: end for

written to output. If Xi is not a core object, the method moves on to the next object in
the ControlList (or the input data set, if ControlList is empty). If Xi is a core object,
then for each object Xj in its ε-neighborhood, COSMIC updates its reachability
distance from Xi and inserts Xj into ControlList if Xj has not yet been processed. The
iteration continues until the input is fully consumed and ControlList is empty.

In the second step, shown in Algorithm 6, COSMIC uses the previously obtained
cluster ordering and describes the cluster groups according to this information. After
clustering the objects, COSMIC extracts the attributes that are useful for describing
formal concepts from the resulting reachability plot and lists all concepts that can be
found in the given dataset.

Experimental Study

The study of [14] considers drug activity prediction datasets, Musk1 and Musk2, iden-
tification protein datasets, Dobson and Doig and BRENDA, and a dataset on health-
care websites, WebKB. A description of any of these datasets is given in Sect. 3.6.
COSMIC is compared with PAM [12] and OPTICS [2]. Both are single-instance
clustering methods. To adapt them for MI-Clustering, the authors consider bags as
atomic elements and use the minimum Hausdorff distance and sum of minimum
distances (Sect. 3.5) as distance measure. To compare the methods, their precision
and running time is used. The results show that COSMIC obtains a more precise
clustering and scales well to larger data sets, obtaining a running time comparable
to the other methods.

http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3

7.1 Multiple Instance Cluster Analysis 155

7.1.4.4 Maximum Margin Based Method: M3IC-MBM Algorithm

Maximum margin based clustering proposes a method for clustering based on finding
maximum margin hyperplanes, that can separate the data from different classes in an
unsupervised way. These models yield a non-convex integer optimization problem
(see Sect. 7.1.1). We describe the M3IC-MBM (Maximum Margin Multiple Instance
Clustering with Modified Bag Margin) method proposed by Zhang et al. [21], that
tries to find the most representative instance by means of maximum margin. This
method was later extended by Zhang et al. [23].

Description

Zhang et al. [21] proposed the M3IC-MBM algorithm, that combines the Constrained
Concave-Convex Procedure (CCCP) and cutting plane methods. They formulate a
Maximum Margin Multiple Instance Clustering (M3IC) problem based on Maximum
Margin Clustering (MMC) [18], which aims to find the hyperplanes that maximize
the margin differences on at least one instance per bag in an unsupervised way.
Since M3IC problem results in a non-convex optimization problem, not possible to
solve directly, the authors propose a relaxed definition of the optimization problem
combining the constrained concave-convex procedure and the cutting plane method.
Concretely, the optimization problem, where the large margin constraint is imposed
on at least one instance per bag, is specified as

min(w̃,ξ≥0)

1

2
||w̃||2 + Cξ

s.t.i = 1, . . . ,N; ∀c ∈ Ω t1 ,

1

N
w̃T

N
∑

i=1

ci
∂f (w̃, i)

∂w̃
|(w̃=w̃(t)) ≥ 1

N

N
∑

i=1

ci − ξ

∀p, q ∈ {1, 2, . . . , k},

− l ≤
N

∑

i=1

∑

xijs∈Xi

1

ni
w̃T (xij(p) − xij(q)) ≤ l.

(7.2)

In this definition, k is the number of clusters and wp is the weight vector associated to
each cluster (p ∈ [1, k]). Ω t is a subset of constraints obtained using an adaptation of
the cutting plane algorithm [13]. The parameter l controls the cluster balance to avoid
the trivially optimal solution. In the vector xij(p), only the (p−1)dth to pdth elements
are nonzero and set to the corresponding values in xij, where d is the dimension of
xij. The most violated constraint vector is calculated as

ct0i =
{

1 if (w̃(t0))T
∂f (w̃,i)

∂w̃ |w̃=w̃(t) ≤ 1

0 otherwise.

156 7 Unsupervised Multiple Instance Learning

Algorithm 7 M3IC-MBM Algorithm
Input: X ← unlabeled multi-instance training set {X1,X2, . . . ,XN } (Xi ⊆ X).
Input: C ← regularization constant
Input: ε1 ← CCCP solution precision
Input: ε2 ← cutting plane solution precision
Input: k ← cluster number
Input: l ← cluster size balance
Output: G ← Clustered groups
1: Construct B̃ = {xij(r)}
2: Initialize w̃0, t = 0, �J = 10−3, J−1 = 10−3

3: while �J/Jt−1 > ε1 do
4: Derive problem (7.2)
5: Set the constraint set Ω = ∅, ∀1 ≤ i ≤ n, cj(i) = 0, s = −1
6: while Hts is true do
7: s = s + 1
8: Get (w̃ts, ξ ts) by solving (7.2) under Ω ts

9: Calculate the most violated bags, ctsi , by

ctsi =
{

1, if (w̃(ts))T
∂f (w̃,i)

∂w̃ |w̃=w̃(t) ≤ 1
0, otherwise

and update the constraint set Ω ts by Ω ts+1 = Ω ts ∪ cts

10: end while
11: t = t + 1
12: w̃(t) = w̃(t−1)s

13: �J = Jt−1 − Jt

14: end while
15: � Cluster Assignment
16: for Xi ∈ X do
17: Gp = argmaxp(w̃(t))T xij∗(p),

where j∗ = argmaxj∈Xi (maxu(w̃(t))T xij(u) − meanv((w̃(t))T xij(v)))
18: end for

The main steps of this method are given in Algorithm 7. It is characterized by an
outer iteration using CCCP and an inner iteration using the cutting plane method. In
this process, Hts is used to denote the constraint

(1/n)(w̃ts)T
n

∑

i=1

ctsi (∂f (w̃, i)/∂w̃|w̃=w̃(t)) ≤ (1/n)
n

∑

i=1

ctsi − (φ(ts) + ε2)

and Jt = (1/2)||w̃(t)||2 + Cφ(t).

Experimental Study

The study of [21] considers image classification data sets (Corel, SIVAL and natural
scenes) and a text classification data set (Reuters). M3IC-MBM is compared with
BAMIC (Sect. 7.1.4.1) using different Hausdorff distances and two classic methods
of single-instance clustering: k-means [12] and CPM3C [24]. K-means and CPM3C
are not designed to solve MI-Clustering, but were adapted as follows. These methods

7.1 Multiple Instance Cluster Analysis 157

first cluster all instances. Next, for each bag, the cluster assignment is determined by
the assignment that appears most frequently for the instances in that bag.

The accuracy, normalized mutual information and running time are used to com-
pare the methods. The results show that the performance of M3IC-MBM is better
than that of the other proposals. It obtains more accurate results than the conven-
tional clustering methods. With respect to the running time, M3IC-MBM is faster
than BAMIC and CPM3C and comparable to k-means.

7.1.4.5 Model Based Method: MIEM-Clustering Algorithm

We focus on probabilistic model based methods. These methods could be grouped
in other taxonomic categories of Sect. 7.1.1, but, following other studies [6, 10], we
consider it clearer to list them as a separate category.

Probabilistic model based methods are based on probability models, where objects
are assumed to follow a finite mixture of probability distributions such that each
component distribution represents a cluster. The cluster parameters can be estimated
based on the data. It can be assumed that an unknown data category is a distribution
over the data space, which can be mathematically represented using a probability
density function (or distribution function).

We describe MIEM-Clustering (Multi-Instance EM Clustering) algorithm [15], an
approach which derives multi-instance clusters based on EM clustering. The method
groups the instances with ordinary EM clustering and uses a multinomial process to
group bags of instances afterward.

Description

Kriegel et al. [15] proposed the MIEM-Clustering algorithm. It is a statistical clus-
tering approach for MI objects. A bag is considered the result of selecting a concept
several times and generating an instance with the corresponding process each time.
Clusters of multi-instance objects are described as multinomial distributions over the
concepts.

The main steps are described in Algorithm 8. Each cluster Gj is associated with a
probabilitywj. It is often assumed thatw1, . . . ,wk are provided as part of the problem
setting and that

∑k
j=1 wj = 1, which ensures that all objects are generated by the k

clusters. The authors use a standard EM clustering algorithm on the union set of all
multi-instance objects. A mixture model is determined, describing the instances of
all bags. Assuming that each of the clusters within each mixture model corresponds
to some valid concept, the algorithm can derive distributions for the bag clustering.
Next, it is assumed that a bag containing ni instances can be modeled as ni draws
from the instance mixture model. Each cluster of bags is described by a distribution
over the instance clusters derived in the previous step and some prior probability.
In the case of the standard MI assumption, it can be expected that there is at least
one instance cluster that is very unlikely to appear in the multi-instance clusters
corresponding to the negative bags.

158 7 Unsupervised Multiple Instance Learning

Algorithm 8 MIEM Clustering Algorithm
Input: X ← unlabeled multi-instance training set {X1,X2, . . . ,XN } (Xi ⊆ X).
Input: σ ← threshold for optimizing EM algorithm.
Output: G ← Clustered groups

� Derive a Mixture Model for the instance set
1: for XE

i ∈ X do
2: Select a multi-instance cluster Gj .

� According to the prior distribution over the set of all clusters

3: Derive the number of instances n within the multi-instance object.
� According to some distribution depending on the chosen cluster

4: while n times do
5: Select some model component kp within the mixture model of instances.

� According to the multi-instance cluster specific distribution

6: Generate an instance according to the distribution corresponding to component kp.
7: end while
8: end for

� Calculate a start partitioning
9: for XE

i ∈ X do
10: csvj(Xi) = ∑

xih∈Xi Pr[kp] ∗ Pr[xih|kp]
11: end for
12: G ← clustered groups by means of k-means using csv.

� Use the EM algorithm to optimize the initial partitioning
13: while E(M) < σ do
14: E(M) = ∑

Xi∈X
log

∑

Gj∈M
Pr[Gj ∈ Xi]

� Pr[Gj ∈ Xi] is calculated according to (7.3)

15: Improve the distribution parameters of each cluster using from (7.4–7.6)
16: end while
17: G ← clusters are grouped according to model obtained.

The EM algorithm starts with an initial set of parameters and iterates until the
clustering cannot be improved, that is, until the clustering converges or the change is
sufficiently small (less than a threshold). A mixture model is first derived describing
concepts in the instance space. Next, the target distribution is initialized for each bag
by a so-called k-dimensional confidence summary vector (csv). The classic k-means
method is used to cluster the bags. In the final step, the distribution for each cluster
of bags is optimized by means of an iterative process.

Let each cluster groupGj be described by a prior probability Pr[Gj], a distribution
Pr[|Xi||Gj] over the number of instances in the bag Xi and a conditional probability
describing the likelihood that a bag Xi belongs to Gj. The probability of an object Xj

in the model M is calculated as

Pr[Gj|Xi] = 1

Pr[Xi] · Pr[Gj] · Pr[|Xi||Gj] ·
∏

xih∈Xi

∏

k∈MI

Pr[k|Gj]Pr[k|xih]. (7.3)

In the expectation step,E(M) can be calculated for a given set of distribution para-
meters and an instance model. To improve the distribution parameters, the authors
propose to update the distribution parameters during the maximization step. If WCj

7.1 Multiple Instance Cluster Analysis 159

denotes the prior probability of a cluster of bags, they compute

WGj = Pr[Gj] = 1

|X|
∑

Xi∈X
Pr[Gj|Xi]. (7.4)

To estimate the number of instances contained in a bag belonging to cluster Cj,
the authors employ a binomial distribution determined by the parameter lCj . The
parameters are updated according to

lGj =
∑

Xi∈X
Pr[Gj|Xi] · |Xi|

|X| · 1

MaxLength
, (7.5)

where MaxLength is the maximum number of instances for any bag in the dataset.
Finally, to estimate the relative number of instances drawn from concept kp for bags
belonging to cluster Gj, the updated parameter are derived under

Pkp,Gj = Pr[kp|Gj] =
∑

Xi∈X
(Pr[Gj|Xi] · ∑

u∈Xi
Pr[u|kp])

∑

Xi∈X
Pr[Gj|Xi] . (7.6)

Experimental Study

The experiments of [15] are run on a protein identification problem using the Brenda
dataset and a drug activity prediction problem using the Musk1 and Musk2 datasets.
MIEM-Clustering is compared to the PAM algorithm [12], that is adapted to MI-
Clustering by considering each bag as an atomic element and applying the maximum,
minimum and average Hausdorff distances (Sect. 3.5). To measure the effectiveness,
the authors use precision, F-measure and average entropy. It is shown that the per-
formance of MIEM-Clustering is better than the other proposals according to the
different metrics.

7.1.5 Multiple Instance Clustering as a Preprocessing Step
for Classification

Cluster analysis can be used as a standalone tool to gain insight in the data distribution,
to observe the characteristics of each cluster and to focus on a particular set of clusters
for further analysis. In this section, we describe some proposals using clustering as
a preprocessing step before constructing a prediction model.

Zhang and Chen [20] used MIL to solve region based image classification. This
problem has a high dimensionality, since each image is divided into several semantic
regions (instances). Before solving the problem with a one class SVM, a genetic
algorithm based clustering method is used to reduce the search space to a few clusters

http://dx.doi.org/10.1007/978-3-319-47759-6_3

160 7 Unsupervised Multiple Instance Learning

that are relevant to the query region, that is, a few clusters whose centroids are the
closest to that region. After clustering, the authors apply MIC to learn the region of
interest based on relevance feedback from the user on the whole image.

With a similar purpose of creating a new lower dimensional space in MIC, Tax
et al. [17] used a clustering method as a step in its classifier based on maximum
diverse density idea. A simple clustering method, like k-means clustering, is uti-
lized to obtain a fast preprocessing step. The Clustering Multi-instance learner is
constructed to exploit the standard MI assumption. The concept is modeled by a
spherical area in feature space, parametrized by a center and a radius. The center is
selected from a collection of locations that is obtained by some clustering procedure
on all instances of the positive bags. The distance to the concept center is used as the
instance classifier.

From a different perspective, Zhou and Zhang [25] proposed to solve MIC prob-
lems by adapting the multi-instance to single-instance representation, on which
single-instance methods can be applied. Concretely, they used a specific scheme
of constructive induction based on Constructive Clustering based Ensemble. In this
context, the clustering process is used to help change the representation. The instances
contained in all bags are first collected. Since their labels are unknown, a clustering
algorithm is employed to cluster the instances into d groups. Intuitively, since clus-
tering can help find the inherent structure of a dataset, the clusters might implicitly
encode some information on the distribution of the instances of different bags. The
proposal tries to represent the bags based on the clustering results. In particular, d
features are generated in such a way that if a bag has an instance in the ith cluster,
then the value of the ith feature is set to 1. It is set to 0 otherwise. Each bag is rep-
resented by a d-dimensional binary feature vector, such that existing single-instance
supervised classifiers can be employed to distinguish the bags. Various clustering
results can be generated for a specific set of instances. The authors use classic k-
means, but other traditional single-instance clustering method could be used as well.
Alternatively, several classifiers based on different clustering results can be produced
and combined in the prediction step.

7.2 Multiple Instance Association Rule Mining

Recently, association rule mining has been addressed from a multi-instance perspec-
tive [16]. As shown in other data mining techniques in the previous chapters, MIL is a
very flexible learning setting that allows to solve many problems more efficiently than
the single-instance paradigm. This section introduces the basis for multiple instance
association rule mining. Section 7.2.1 provides a definition of association rule mining
in the traditional scenario. Section 7.2.2 shows the most relevant requirements for
multiple instance association rule mining and Sect. 7.2.3 presents the classic method
Apriori which has been adapted to the MIL framework.

7.2 Multiple Instance Association Rule Mining 161

7.2.1 Association Rule Mining Introduction

Similar to clustering, association rule mining (ARM) is a descriptive task. Its aim
is to extract strong relationships among sets of items within a pattern of potential
interest. In general, ARM determines a pattern as interesting if it is highly frequent
in the database.

With massive amounts of data continuously being collected and stored, many
companies are becoming interested in mining such patterns from their databases. The
discovery of interesting correlation relationships among huge amounts of business
transaction records can help in many decision making processes, such as catalog
design, cross marketing and customer shopping behavior analysis.

A typical example of frequent itemset mining is market basket analysis. In this
problem, customer buying habits are analyzed by finding associations between the
different items that customers frequently purchased together in the supermarket. For
instance, a question could be that if a customer buys milk, how likely is he to also buy
bread. This information can lead to an increase in sales by helping retailers develop
marketing strategies.

Frequent itemset mining can be represented in the form of association rules, that
show items that are frequently associated or purchased together. For example, the
information that customers who purchase computers also tend to buy office software
could be represented in the association rule: IF computer THEN office software.
Association rules are similar to classification rules and are expressed as

IF Antecedent THEN Consequent

However, the main difference with respect to rule classification is that, in this case,
the rule antecedent and consequent can be composed of any subset of items. The only
requirement is that Antecedent ∩ Consequent = ∅. To simplify the descriptions, we
denote the antecedent as A and the consequent as C. The rule is referred to (A → C).

ARM, given a transactional dataset, tries to find rules that describe unknown
relations in the data. It detects when the occurrence of an item is associated with the
occurrence of another item in the same transaction. More concretely, the ARM task
aims to find, from the whole set of rules R, any association rule R that satisfies a
threshold α of interest specified by user, i.e.,

ARM = {∀R ∈ R : quality(R) ≥ α}

The level of interest of the rule is usually measured by means of rule support and
confidence. They respectively reflect the usefulness and certainty of discovered rules.
The support provides information on how frequently the item appears in the database.
If T = {t1, t2, . . . , tm} is the set of transactions, the support of a rule (A → C) is
defined as the proportion of transactions that contains A ∪ C,

SupportARM(A → C) = |{ti ∈ T : {A ∪ C} ⊆ ti}|
|T|

162 7 Unsupervised Multiple Instance Learning

The confidence gives information about of how often the rule is satisfied in the
database. It is the proportion of transactions that contains A and C and is defined as

ConfidenceARM(A → C) = SupportARM(AUC)

SupportARM(A)

Typically, association rules are considered interesting if they satisfy both a minimum
support threshold and a minimum confidence threshold. These thresholds can be set
by the user or domain experts.

7.2.2 Multiple Instance Association Rule Mining
Requirements

Multiple Instance Association Rule Mining (MI-ARM) obtains rules to describe
behaviors in multi-instance data. Below, an example is detailed to show its flexibility.
Figure 7.4 shows a transactional database, where ten features are used to representing
each transaction (see Fig. 7.4a). Let us consider attribute 1 (column 1) as an attribute
that represents the height of a person and that can take on three possible values (short
represented by striped white, medium represented by gray and tall represented by
white). We can obtain a MIL representation with three bags, each one representing

(a) Single-instance transactional
database

(b) Multiple instance transactional database
(considering attribute 1)

Fig. 7.4 Example of multiple instance association rule mining (I)

7.2 Multiple Instance Association Rule Mining 163

(a) Single-instance transactional
database

(b) Multiple instance transactional
database (considering attribute 10)

Fig. 7.5 Example of multiple instance association rule mining (II)

all transactions whose value of height is the same (see Fig. 7.4b). Bag 1 contains all
transactions where attribute height is short, bag 2 the transactions where attribute
height is medium and bag 3 the transactions where attribute height is tall. Figure 7.5
shows a different perspective of the dataset based on attribute 10, which represents
the sex of a person. In Fig. 7.5a, the pink solid color represents women and the white
striped color represents men. We can obtain a new perspective of the MIL dataset
where the data are grouped by this attribute (Fig. 7.5b). Other attributes or general
features could be used as well.

Consider the set of transactions T = {T1,T2, . . . ,Tm}. Each transaction Ti ∈ T
comprises ni instances, Ti = {ti1, ti2, . . . , tini}. Each instance tij is a subset of the total
set of items I = {i1, i2, . . . , ik} in the dataset. The main definitions are:

• Multiple instance association rule (MI-AR): this is an implication of the from
A → C, where A and C are subsets of items. The occurrence frequency of a
MI-AR is defined as the number of transactions satisfied by the rule. Considering
the standard MI assumption, a transaction Ti is satisfied if and only if at least one
instance tij is satisfied by the rule.

• Multiple instance association rule mining: this procedure aims to find, from a
multi-instance dataset, any MI-AR R in the full rule set R that satisfies specific
user thresholds α of interest, i.e., MI-ARM = {∀R ∈ R : quality(R) ≥ α}.
MI-ARM considers the same quality measures as above to determine the interest

of the rules. The main difference between ARM and MI-ARM lies with the concept

164 7 Unsupervised Multiple Instance Learning

of transactions and instances. The support of a rule A → C is defined as the number
of transactions satisfied by rule, that is,

SupportMI-ARM(A → C) = |{Ti ∈ T : (∃tij ∈ Ti)({A ∪ C} ⊆ tij)}|
|T|

A transactionTi is satisfied if and only if at least one instance tij is satisfied by the rule.
A major feature of the support quality measure in MI-ARM is that it is possible to
obtainA andC that satisfy all the transactions on their own, but that do not satisfy any
transactions when analyzed together, i.e., A ∩ C = ∅. This assertion is not possible
in classic ARM, since it considers each transaction as a single instance.

The confidence measure is defined as the proportion of the number of transactions
that include A and C among all the transactions that include A. It is calculated as

ConfidenceMI-ARM(A → C) = SupportMI-ARM(A ∪ C)

SupportMI-ARM(A)

Support and confidence are broadly conceived as the fitness quality measures in
ARM and, consequently, a great variety of proposals make use of them by applying
certain minimum thresholds. In Luna et al. [16] other definitions from the MIL
perspective can be found, such as lift, conviction and leverage.

7.2.3 Apriori-MI Algorithm

Apriori [1] is one of the best-known algorithm in ARM. It uses prior knowledge
of frequent itemset properties and carries out an iterative process. It first obtains
the frequent patterns and then extracts the association rules that satisfy a minimum
confidence value. Luna et al. [16] proposed Apriori-MI, an extension of the Apriori
algorithm for solving problems in the MIL framework.

Description

The main steps of Apriori-MI are given in Algorithm 9. It implements an iterative
approach known as a level-wise search, where k-itemsets are used to explore the next
level of (k + 1)-itemsets. First, the set of frequent 1-itemsets is found by scanning
the database to accumulate the count for each item and collecting those items that
satisfy minimum support. The resulting set is denoted by L1. Next, L1 is used to
find L2, the set of frequent 2-itemsets, which is used to find L3 and so on, until no
more frequent k-itemsets can be found. It is not needed to evaluate the coverage for
all the instances within each transaction. According to the standard MI assumption,
once a specific instance is satisfied, it is not necessary to analyze them further and
the algorithm can continue with the next transaction. A rule generation procedure of
is used to obtain MI-ARs (see Algorithm 10).

7.2 Multiple Instance Association Rule Mining 165

Algorithm 9 Apriori-MI Algorithm
Input: α, minimum threshold for support
Input: T ← multi-instance transactions set {T1,T2, . . . ,TN } (Ti ⊆ X)

Output: L , the frequent k-itemsets
1: k = 1,
2: L1 ← {k − patterns(T)}, � set of frequent 1-itemset
3: C ← ∅ � set of candidate k-items
4: k ← 2
5: while Lk−1 �= ∅ do
6: Ck ← {{a} ∪ {b}|a ∈ Lk−1 ∧ b ∈ Lk−1 ∧ b �= a ∧ {{a} ∪ {b}} /∈ Lk}
7: for Ti ∈ T do � For all transactions
8: for (c|c ∈ Ck) do
9: if (∃ti,j ∈ Ti ∧ c ⊆ tij) then
10: count[c] ← count [c] + 1
11: end if
12: end for
13: end for
14: Lk ← {c|c ∈ Ck ∧ count[c] ≥ α

15: k ← k + 1
16: end while
17: L ← ⋃

k Lk

Algorithm 10 Rule Generation Procedure
Input: L , the frequent k-itemsets
Input: β, minimum threshold for confidence
Output: R, association rule
1: R ← ∅
2: for (l ∈ L) s do
3: for (x ⊂ l such that x �= ∅ and x �= l) do
4: if support(l)/support(x) ≥ β then
5: R ← R ∩ {x ← (l − x)}
6: end if
7: end for
8: end for

Experimental Study

In [16], the idea is not to compare results of different algorithms, but rather to provide
an overview of the use of MI-ARM as an unsupervised and descriptive task. Its utility
is shown and compared with respect to classic ARM. Artificial and real-world datasets
are used to show the validity of MI-ARM, describing the support and confidence of
the obtained MI-ARs.

166 7 Unsupervised Multiple Instance Learning

7.3 Summarizing Comments

In this chapter, unsupervised MIL is addressed. Two important tasks in this learning
framework are discussed, cluster analysis and association rule mining. The most
relevant concepts and definitions are introduced.

If we consider the last decades, it can be observed that unsupervised MIL has
appeared more recently and is by far less investigated than traditional unsupervised
learning. In this chapter, a survey of the existing methods is given. In the case of MI-
Clustering, a field that has a few years of experience, different methods are reviewed
including partitioning, hierarchical, density based, probabilistic model based and
margin maximum based methods. In the case of MI-ARM, a very recent field, the
single currently known method is described. For each algorithm, the experimental
study of its developers is briefly reported. These experimental results indicate that
each algorithm has its own advantages and disadvantages depending on the problem
context. Unsupervised MIL is revealed as a promising area of future research.

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of associ-
ation rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. American
Association for Artificial Intelligence, Menlo Park (1996)

2. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: ordering points to identify
the clustering structure. In: Delis, A., Faloutsos, C., Ghandeharizadeh, S. (eds.) Proceedings
of the International Conference on Management of data (SIGMOD 1999), pp. 49–60. ACM,
New York (1999)

3. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.M., Perona, I.: An extensive comparative
study of cluster validity indices. Pattern Recogn. 46(1), 243–256 (2013)

4. Banfield, J.D., Raftery, A.E.: Model-based Gaussian and non-Gaussian clustering. Biometrics
49(3), 803–821 (1993)

5. Chen, Y., Wu, O.: Contextual Hausdorff dissimilarity for multi-instance clustering. In: Liu,
Y. (ed.) Proceedings of the 9th International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD 2012), pp. 870–873. IEEE, Los Alamitos (2012)

6. Fraley, C., Raftery, A.E.: How many clusters? Which clustering method? Answers via model-
based cluster analysis. Comput. J. 41(8), 578–588 (1998)

7. Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis, and density estimation.
J Am. Stat. Assoc. 97(458), 611–631 (2002)

8. Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)
9. Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming. Math. Program.

79(1–3), 191–215 (1997)
10. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers,

Waltham (2001)
11. Henegar, C., Clément, K., Zucker, J.D.: Unsupervised multiple-instance learning for functional

profiling of genomic data. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) Proceedings
of the 17th European Conference on Machine Learning (ECML 2006), pp. 186–197. Springer,
Heidelberg (2006)

12. Kaufman, L., Rousseuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis.
Wiley, New York (1990)

References 167

13. Kelley, J.E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math.
8(4), 703–712 (1960)

14. Kriegel, H.P., Pryakhin, A., Schubert, M., Zimek, A.: COSMIC: conceptually specified multi-
instance clusters. In: Clifton, C.W., Zhong, N., Liu, J., Wah, B.W., Wu, X. (eds.) Proceedings
of the 6th International Conference on Data Mining (ICDM 2006), pp. 917–921. IEEE, Los
Alamitos (2006)

15. Kriegel, H.P., Pryakhin, A., Schubert, M.: An EM-approach for clustering multi-instance
objects. In: Ng, W.K., Kitsuregawa, M., Li, J. (eds.) Advances in Knowledge Discovery and
Data Mining. Lecture Notes in Computer Science, vol. 3918, pp. 139–148. Springer, Berlin
(2006)

16. Luna, J.M., Cano, A., Sakalauskas, K., Ventura, S.: Discovering useful patterns from multiple
instance data. Inf. Sci. 357, 23–38 (2016)

17. Tax, D.M., Hendriks, E., Valstar, M.F., Pantic, M.: The detection of concept frames using
clustering multi-instance learning. In: Unay, D., Cataltepe, Z., Aksoy, S. (eds.) Proceedings of
20th the International Conference on Pattern Recognition (ICPR 2010), pp. 2917–2920. IEEE,
Los Alamitos (2010)

18. Xu, L., Neufeld, J., Larson, B., Schuurmans, D.: Maximum margin clustering. In: Saul, L.K.,
Weiss, Y., Bottou, L. (eds.) Proceedings of the 18th Conference on Advances in Neural Infor-
mation Processing Systems (NIPS 2004), pp. 1537–1544. MIT Press, Cambridge (2004)

19. Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Ann. Data Sci. 2, 165–193
(2015)

20. Zhang, C., Chen, X.: Region-based image clustering and retrieval using multiple instance
learning. In: Leow, W.-K., Lew, M.S., Chua, T.-S., Ma, W.-Y., Chaisorn, L., Bakker, E.M.
(eds.) Proceedings of the 4th International Conference on Image and Video Retrieval (CIVR),
pp. 194–204. Springer, Berlin (2005)

21. Zhang, D., Wang, F., Si, L., Li, T.: Maximum margin multiple instance clustering with appli-
cations to image and text clustering. IEEE Trans. Neural Networks 22(5), 739–751 (2011)

22. Zhang, M.L., Zhou, Z.H.: Multi-instance clustering with applications to multi-instance predic-
tion. Appl. Intell. 31(1), 47–68 (2009)

23. Zhang, T., Liu, S., Xu, C., Lu, H.: M4L: maximum margin multi-instance multi-cluster learning
for scene modeling. Pattern Recogn. 46(10), 2711–2723 (2013)

24. Zhao, B., Wang, F., Zhang, C.: Efficient maximum margin clustering via cutting plane algo-
rithm. In: Ghosh, J., Lambert, D., Skillicorn, D., Srivastava, J. (eds.) Proceedings of the 8th
International Conference on Data Mining (SIAM 2008), pp. 751–762. Society for Industrial
and Applied Mathematics, Philadelphia (2008)

25. Zhou, Z.H., Zhang, M.L.: Solving multi-instance problems with classifier ensemble based on
constructive clustering. Knowl. Inf. Syst. 11(2), 155–170 (2007)

Chapter 8
Data Reduction

Abstract An increase in dataset dimensionality and size implies a large computa-
tional complexity and possible estimation errors. In this context, data reduction meth-
ods try to construct a new and more compact data subset. This subset should maintain
the most representative information and remove redundant, irrelevant, and/or noisy
information. The inherent uncertainty of MIL renders the data reduction process
more difficult. Each positive bag is composed of several instances, of which only a
part approximate the positive concept. Information on which instances are positive
is not available. In this chapter, we first provide an introduction to data reduction.
Next, two main strategies to reduce MIL data are considered. Section 8.2 describes
the main concepts of feature selection as well as methods that try to reduce the num-
ber of features in MIL problems. Section 8.3 considers bag prototype selection and
analyzes the corresponding multi-instance methods.

8.1 Introduction

Data reduction is a complex problem in any machine learning framework. Different
techniques can be applied to obtain a reduced representation of the data, closely
maintaining the original integrity. The reduced dataset should be more efficient to
process and produce the same or similar analytical results.

As the dimensionality of a problem (number of features) increases, the well-known
curse of dimensionality manifests itself. This concept was introduced by Bellman [1]
to show that the number of samples required to estimate a function with a given level
of accuracy grows exponentially with the problem dimension. For a given sample
size, there is a maximum number of features above which the performance of an
algorithm will degrade rather than improve. In fact, many data mining algorithms
fail when the dimensionality is high, since data points become sparse and far apart
from each other.

The large amount of data produced in any current application has resulted in
datasets composed of thousands of objects represented by hundreds or even thou-
sands of features. The dimensionality is a serious obstacle for the efficiency of most
algorithms. Its reduction has become a necessary hot topic to ensure that algorithms

© Springer International Publishing AG 2016
F. Herrera et al., Multiple Instance Learning, DOI 10.1007/978-3-319-47759-6_8

169

170 8 Data Reduction

can perform appropriately. Data reduction techniques have been studied extensively
in many domains. Section 1.2 gave a brief introduction to data reduction, grouping
these methods as follows:

• Feature selection: the dimensionality is reduced by removing irrelevant or redun-
dant features [17]. The goal of feature selection is to find a minimum set of
attributes, such that the resulting probability distribution of the output is as close as
possible to the original distribution using all features. These methods facilitate the
understanding of the extracted knowledge and increase the speed of the learning
stage.

• Instance selection: the number of observations is reduced by removing less rel-
evant or noisy instances [16]. In MIL, these methods can be divided into two
categories, since data samples are bags composed of one or more instances. On
the one hand, bag prototype selection aims to reduce the number of training sam-
ples. The removal of a bag implies the elimination of all instances contained in it.
On the other hand, instance prototype selection reduces the number of instances
inside each bag. The number of bags remains the same, while less representative
instances within them are eliminated. Both methods reduce the size of the data
and therefore the computational complexity.

• Feature extraction: this is an extension of feature selection that allows the modifi-
cation of the internal values representing each attribute [15]. In feature extraction,
apart from the removal of attributes, feature subsets can be merged or can con-
tribute to the creation of artificial substitute features.

• Instance generation: this process extends instance selection by allowing the mod-
ification of samples [22]. These methods create or adjust artificial substitute exam-
ples that could better represent the decision boundaries in supervised learning.

In this chapter, data reduction in MIL is considered. We describe the two most
common techniques, feature selection, and bag prototype selection. All included
concepts and methods show the interaction of data reduction with classification.

8.2 Multiple Instance Methods for Feature Selection

Datasets may contain many irrelevant or redundant features. To give an example,
if we focus on the identification of a particular illness in several patients, attributes
such as the patient’s telephone number or surname are likely to be irrelevant, unlike
attributes such as age or blood pressure. Irrelevant features imply a huge amount of
data that results in an increase in processing time of a learner and a reduction of its
performance. Manually evaluating the features (e.g., by a domain expert) becomes
intractable when the number of attributes is high and the data behavior is not well-
known. Automatic feature selection methods have been extensively used to replace
the original data volume by an alternative, more reduced representation.

http://dx.doi.org/10.1007/978-3-319-47759-6_1

8.2 Multiple Instance Methods for Feature Selection 171

In this section, we first give an introduction to feature selection, providing a brief
background and the main taxonomy. We analyze the particularities of multi-instance
feature selection and discuss the representative methods.

8.2.1 Introduction to Feature Selection

Feature Selection (FS) methods select a subset of features from the initial dataset
according to certain criteria. These methods should remove noisy and irrelevant
features and maintain only the most informative ones. In this way, the feature subset
should be capable of producing results equal to or better than the full set. Reducing
the feature set has several benefits, such as minimizing the computational cost of
algorithms, improving the accuracy of the final result, and making the data mining
results easier to understand.

FS can be defined as a search problem to find a subset of features optimizing a
particular criterion. Formally, let A be the original feature set with cardinality M and
B the subset of desired features (B ⊂ A) with cardinality m (m << M) [10]. FS
tries to find an optimal subset B that minimizes the criterion function F . The main
steps of FS methods are the following [10]:

1. The generation of different subsets: the feature space is explored for the best
subset.

2. The evaluation of feature subsets: an evaluation function is used to test the
fitness of a feature subset. This function corresponds to the criteria that the FS
method tries to fulfill.

3. The stopping criterion: a stopping criterion to halt the search needs to be spec-
ified.

(a) Initial dataset (10 features) (b) Reduced dataset (6 features)

Fig. 8.1 MI feature selection method

172 8 Data Reduction

Figure 8.1 shows the process of feature selection in a MIL context. Figure 8.1a
depicts the initial dataset, where the samples are composed of several instances, that
is, several feature vectors. Figure 8.1b describes the dataset after application of FS,
where the number of features describing each instance has been reduced. FS in MIL
is more challenging than its counterpart in single-instance learning. In MIL, each
observation is represented by a number of instances. Instance labels are not available
and it is possible to find both positive and negative instances inside a positive bag.
Different methods assume that positive bags consist of mainly positive instances.
The negative instances in positive bags may limit the discriminative power of FS
methods. As a consequence, determining the significance of each attribute becomes
more difficult.

Before describing the most relevant proposals of FS in MIL, we specify the FS
taxonomy. This categorization is probably the most known and employed in FS
methods over the years [18]. It is based on how the methods combine the FS search
with the construction of the classification model:

• Filtermethods: features are selected based on a performance measure independent
of the classification algorithm. In this case, FS is an independent preprocessing
step before the application of a particular classifier. The optimal feature subset or a
relevance ranking of the features is returned. The advantages are that these methods
are computationally fast, scalable, and independent of the classifier. On the other
hand, their main shortcomings are the fact that they ignore feature dependencies
and interactions with the classifier.

• Wrappermethods: a learner is used to measure the quality of feature subsets with-
out incorporating any information about the specific structure of the classification
or regression function. These methods can be combined with any learner.

• Embeddedmethods: FS is performed during the modeling phase of the classifier.
The FS method is embedded in the classifier. These methods have the advantage
that they include the interaction with the classification model. They are often far
less computationally intensive than wrapper methods. They directly return the final
classifier.

• Hybrid methods: these algorithms combine the best properties of filter and wrap-
per methods. First, a filter method is used to reduce the dimension of the feature
space and obtain several candidate feature subsets. Next, a wrapper is employed
to find the best candidate subset among them.

FS has become an apparent need in many learning paradigms. Numerous studies
show that the reduction can not only reduce computational complexity, but also
improve validation results and enhance semantic interpretability. Below, we describe
the most relevant FS methods in MIL. Table 8.1 provides an overview of the main
contributions in this area grouped as filter, wrapper, embedded, and hybrid methods.

8.2 Multiple Instance Methods for Feature Selection 173

Table 8.1 Features selection methods in multi-instance learning

Filter methods

ReliefF-MI algorithm [28]

Reliability-based algorithm [9]

Embedded methods

Boosting based methods Kernel based methods

MI-AdaBoost algorithm [27] MILES algorithm [5]

MCMI-AdaBoost algorithm [32] Ngiam et al. [20]

EBMIL algorithm [25] MIO algorithm [14]

BEL algorithm [31] MIL-MFS algorithm [11]

Online MIL adaboost algorithm [3] FSPO algorithm [19]

Hybrid methods

HyDR-MI algorithm [29]

8.2.2 Filter Methods

To select a feature subset, these algorithms take advantage of general characteristics
of the data, like distances or statistical dependencies between classes. They are faster
than other approaches, because they act independently of the induction algorithm.
However, they tend to select subsets with a high number of features. It is also difficult
to fix an internal threshold above which a feature is important enough to be selected.

Two multi-instance FS methods can be listed in this group. ReliefF-MI [28] is
based on the principles on the single-instance ReliefF algorithm [21]. The second
included proposal describes a multi-instance FS algorithm based on information
aggregation using a data reliability measure. Both methods assign a weight to each
feature to determine its relevance and specify a threshold on these weights to deter-
mine the final feature subset. As any filter method, they can be used as a preprocessing
step before the application of any classifier.

8.2.2.1 ReliefF-MI Algorithm

This method was proposed by Zafra et al. [28] and estimates the quality of features
based on how well their values distinguish between bags that are near each other.
A description of its main steps is given in Algorithm 11. First, bags are randomly
selected from the training data. For each sampled bag R, its k nearest neighbors
from the same class (nearest hits) are found as well as its k nearest neighbors of
the opposite classes (nearest misses). Based on these neighbors, the weight of each
feature is updated. These weights reflect the ability to distinguish class labels. A high
weight indicates that this feature differs among bags from different classes and is the
same in bags of the same class. Features are ranked by weight and those that exceed
a user-specified threshold are selected to form the final subset. The calculation of

174 8 Data Reduction

the nearest neighbors and the definition of the di f fbag function applied to the bags
is carried out with different variants of Hausdorff distance. The authors of [28] also
proposed the adapted Hausdorff distance (Sect. 3.5).

Experimental Study

The study of Zafra et al. [28] considers five benchmark real world datasets: Musk1,
Musk2, Elephant, Tiger, and Fox. A description of any of these is given in Sect. 3.6.
ReliefF-MI provides a reduced dataset in a preprocessing step independent of a
classifier. To show the efficiency of the method, the reduced dataset is used in 17
multi-instance classification algorithms. The results are evaluated on both accuracy
and execution time. They confirm the utility and efficiency of ReliefF-MI as a pre-
processing step for all included algorithms. The classifiers statistically improve both
their accuracy and execution time.

The experimental study also includes a comparison of different distance measures
used by ReliefF-MI, namely the maximal, minimal, average, and adapted Hausdorff
distances (Sect. 3.5). The results show that the adapted Hausdorff distance performs
statistically best, obtaining a better dimensionality reduction, and better classifier
accuracy. Its advantage lies with the different ways to measure the distance depending
on the specific information available in each bag.

Algorithm 11 ReliefF-MI algorithm
Input: X ← multi-instance training set {X1, X2, . . . , X N } (Xi ⊆ X)

Input: m ← number of times that the process is repeated
Input: k ← number of nearest examples of the same and different class considered in the process.
Input: ε ← threshold to determine if the feature is added to subset
Output: selected Subset , the selected feature subset
1: selected Subset = ∅
2: W = 0 � Feature weight vector
3: for i from 1 to m do
4: Ri ← bag randomly selected from X
5: Hk

Ri
← f ind K Nearest Neighbor SameClass(Ri , X) � Get k nearest hits

6: for each class C �= Class (Ri) do
7: Mk

Ri
← f ind K Nearest Neighbor Di f f erentClass(Ri , X) � Get k nearest misses

8: end for
9: for A from 1 to numberFeatures do

10: W[A] = W[A] +

k∑

j=1
di f fbag(A,Ri ,H j

Ri
)

m·k + ∑

C �=Class(Ri)

⎡

⎢
⎣

P(C)
1−P(Class(Ri))

k∑

j=1
di f fbag(A,Ri ,M j

Ri
(C))

m·k

⎤

⎥
⎦

11: end for
12: end for
13: for i from 1 to numberFeatures do
14: if W [i] > ε then
15: selectedSubset ← selectedSubset ∪{ fi }.
16: end if
17: end for

http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3

8.2 Multiple Instance Methods for Feature Selection 175

8.2.2.2 Reliability Based Algorithm

Gan and Yin [9] proposed a method that ranks features based on the reliability
measure of each attribute. The class labels are not used for evaluating features,
such that this method can also be applied in unsupervised learning. Based on the
OWA operator [24], a feature is considered reliable if its values are tightly grouped
together. The main steps are shown in Algorithm 12. First, the reliability of each
feature fr for each example Xi using its k nearest neighbors F RXi ,r is determined.
Second, the data reliability F Rr of each feature fr is computed by combining the
data reliability of all its values in all samples. From these values, the average data
reliability of all features F Raverage can be derived. As a last step, the features whose
F Rr is bigger than the average data reliability are selected. The calculation of the
nearest neighbors is carried out using the minimum Hausdorff distance, such that
the difference of feature fr between two bags is equal to the minimum difference of
feature fr between instances from those bags.

This method as well as ReliefF-MI both use a k nearest neighbor approach to
determine the relevance of each attribute. Both proposals use a Hausdorff distance
to determine the distance between bags. This bag-wise similarity measure is very
important in MIL, since it models the relevance and relationship of different instances
inside one bag. Gan et al. [9] use the minimal Hausdorff distance, while Zafra et al.
[28] uses the different variants presented in Sect. 3.5.

Experimental Study

The study of Gan and Yin [9] considers two datasets: Musk1 and Musk2 (Sect. 3.6).
To show the efficiency of their method, the obtained reduced dataset is fed to four
classifiers, whose accuracy is evaluated. The results show that the predictive accuracy
of the learners was enhanced by using the reduced dataset. The experimental study
also includes a comparative study using different values of the k parameter, which
represents the number of neighbors. The results show that different values of this
parameter scarcely affect the obtained results.

8.2.3 Embedded Methods

Embedded methods differ from other FS methods in the interaction of FS and learn-
ing. Wrapper and embedded methods are often confused. A wrapper method uses a
learner to measure the quality of feature subsets without incorporating knowledge
about the specific structure of the classification function. Embedded methods on the
other hand cannot separate the learning and FS parts. These methods learn which
features best contribute to the accuracy of the model while the model is being created.

In this section, we describe two embedded multi-instance FS methods, where FS
is combined with the Adaboost or SVM methods. These models implicitly select
important features and construct a classifier simultaneously.

http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3

176 8 Data Reduction

Algorithm 12 Reliability based method
Input: X ← multi-instance training set {X1, X2, . . . , X N } (Xi ⊆ X).
Input: k ← number of neighbors
Input: m ← number of features
Output: selected Subset , the selected feature subset
1: selected Subset = ∅
2: F Raverage = 0
3: for r from 1 to m do
4: max FeatureDi f f ← maxFeatureDifference(X, r). � Calculate maximum difference of

feature fr between two bags in whole training set
5: F Rr = 0
6: for each Xi ∈ X do
7: N k

Xi ,r
= f ind K Nearest Neighbor(X, k, Xi , r) � k nearest neighbor of Xi considering

feature fr
8: Dk

Xi ,r
= averageFeatureDi f f erence(N k

Xi ,r
, k). � Average difference of feature fr of

bag Xi with its k nearest neighbor
9: F Rk

Xi ,r
= bagFeatureData Reliabili t y(Dk

Xi ,r
, max FeatureDi f f). � Data reliability

of feature fr in bag Xi
10: F Rr = F Rr + F Rk

Xi ,r
. � Data reliability of each feature by combining all examples

11: end for
12: F Raverage = F Raverage + F Rr
13: end for
14: F Raverage = F Raverage/m � Average data reliability
15: for r from 1 to m do
16: if F Rr > F Raverage then
17: selectedSubset ← selectedSubset ∪{ fr }.
18: end if
19: end for

8.2.3.1 Adaboost for Feature Selection

Boosting techniques have been extensively used for FS in the MIL scenario. The
key idea behind AdaBoost is that a strong classifier can be created by combining
many weak classifiers. These weak classifiers need only perform slightly better than
random guessing. Given a set of training samples, AdaBoost maintains a weight
w for each of them. The weights are initialized uniformly. At each iteration t , one
weak classifier is selected and the training samples are provided using weights wt . A
weak classifier ht is trained on these samples. The weights are updated to put more
emphasis on misclassified samples. Samples that are correctly classified by ht get
lower weights, while misclassified samples are assigned higher weights. AdaBoost
focuses on samples with higher weights, which seem to be harder to predict correctly.
The process continues for T iterations. The final strong classifier is a combination
of the weak classifiers.

AdaBoost can be used to select the bag features and build the classifier simulta-
neously. The core idea is that each feature corresponds to a single weak classifier,
such that boosting can select some features out of the pool of all possible features
F . In each iteration t , the algorithm selects one new feature and adds it (with the
corresponding voting factor) to the ensemble. All features are evaluated and the best

8.2 Multiple Instance Methods for Feature Selection 177

one is selected to form the weak classifiers ht . The sample weights are updated. In the
last step, a strong classifier H is computed as a weighted linear combination of the
weak classifiers. The number of iterations T is related to the number of dimensions
with a sufficient differentiation ability in the whole feature vector. Algorithm 13
shows this process. Some differences with respect to the original AdaBoost method
[7] are evident. In this schema, the sums of sample weights for positive and negative
samples are always kept equal to 1/2. This maintains the balance between positive
and negative bags. The weak classifier uses the weights in its real-valued prediction.
The final strong classifier is a direct combination of the weak classifiers instead of a
weighted combination.

Algorithm 13 AdaBoost feature selection Algorithm for MIL
Input: X ← multi-instance training set {X1, X2, . . . , X N } (Xi ⊆ X)

Output: H , the final strong classifier
1: Map X to a new bag-level feature space
2: n+ ← number of positive samples
3: n− ← number of negative samples
4: if Class(Xi) is positive then � Initialize the weight vector
5: w(Xi) = 1

2 n+
6: else
7: w(Xi) = 1

2 n−
8: end if
9: for t from 1 to T do
10: Train the weak classifier h j for each feature j using w(Xi)
11: Calculate the training error e j of h j ,

e j =
∑

i

w(Xi)|h j (Xi) − Class(Xi)|

12: Choose ht = h j with the lowest error and set et = e j
13: Update weights for positive examples

wt+1(Xi) = wt (Xi) exp(−Class(Xi)·ht (Xi))

Ztp

14: Update weights for negative examples

wt+1(Xi) = wt (Xi) exp(−Class(Xi)·ht (Xi))

Ztn

� Ztp and Ztn are normalization factors to ensure that wt+1 is distribution and that the weight
of positive and negative samples all sum up to 1/2

15: end for

16: H(X) = sign[
T∑

t=1
ht (X)]

Depending on the employed weak classifiers, different proposals can be found
regarding the weight distribution in their training phase and the way they are com-
bined at the end of the algorithm. Different map-based algorithms are encountered.

178 8 Data Reduction

As described in Sect. 5.3, these methods map each bag into a new feature vector
and thereby transforms the multi-instance data to a single-instance representation.
The MIL problem is converted to a standard single-instance problem, usually with a
higher dimensionality such that it is convenient to perform a FS step. Any traditional
single-instance FS method can be applied. We list proposals using AdaBoost with a
linear weak classifier for selecting the bag features obtained by mapping and building
the final classifier simultaneously (Algorithm 13).

The MI-AdaBoost algorithm was proposed by Yuan et al. [27]. It uses AdaBoost
to select the bag features mapped by a certain set of instance prototypes. It considers
two types of instance prototypes: instances from positive bags and the clustering
centers of the instances from negative bags. The minimum Hausdorff distance is
used to measure the distance between bags.

Zhu et al. [32] proposed the MCMI-AdaBoost method, an algorithm that uses
AdaBoost to select the bag features by computing the Hausdorff distance to define
a similarity measure between two bags. The bags are mapped to a new bag feature
space based on this similarity. An AdaBoost algorithm is proposed to build a two-level
classifier converting the multi-class classification problem to a series of two-class
classification problems. The output of the first level indicates the possibility that a bag
belongs to one class. The second level performs a two-class classification between
the two classes with the highest possibility.

Based on their previous work, Yuan et al. developed the existence-based MIL
called EBMIL in [25]. This method is able to select different feature modalities for
each concept under MIL settings. As a step prior to AdaBoost, a mapping is applied
based on points in the instance-level feature space, that hold potential information
on the positive and opposite concepts. Positive instance prototypes and opposite
instance prototypes are considered. The former are all the instances from positive
bags, while the latter are the clustering centers of instances from negative bags.

More recently, Zhang et al. [31] proposed a boosted exemplar learning (BEL)
approach for the computer vision field. Based on the learned exemplar, M candidate
exemplars are obtained. Each action bag (e.g., an action in a video clip) is described
as an M-dimensional vector of its similarity with the M exemplars. The AdaBoost
algorithm integrates the FS and action modeling.

Ciliberto et al. [3] follow the philosophy of AdaBoost to design their online MIL
algorithm. They include a mechanism for online FS based on Algorithm 13. In an
online context, it is likely that useful and descriptive features (and hence potential
centers for new weak classifiers) will not be available from the start, but may become
available in a later stage. In the problem studied in [3], the object to be learned can
rotate, revealing its previously hidden parts.

Experimental Study

The studies of Yuan et al. [25, 27] consider the Corel and Musk datasets (Sect. 3.6) to
evaluate their proposals. The mean average precision and computation time are used
as evaluation measures. The experimental results show that MI-AdaBoost [27] is
much more efficient than the 1-norm SVM [5] and MI-Boosting [7]. Concretely, for
the Corel dataset, MI-AdaBoost performs better than MI-Boosting, while its results

http://dx.doi.org/10.1007/978-3-319-47759-6_5
http://dx.doi.org/10.1007/978-3-319-47759-6_3

8.2 Multiple Instance Methods for Feature Selection 179

are comparable with the 1-norm SVM. In the Musk datasets, MI-AdaBoost performs
better than both MI-Boosting and 1-norm SVM. The EBMIL algorithm [25] achieves
promising experimental results on the Corel dataset compared with four other feature
reduction methods, confirming its effectiveness.

Other models based on AdaBoost for feature selection described in this section
are applied to solve particular problems, such as the study of Zhu et al. [32] that
shows that their approach, the MCMI-AdaBoost method, is an effective solution for
the lung cancer classification problem. In order to evaluate its performance, they
compare the accuracy of their method with four other proposals, including classic
algorithms such as Citation-kNN and an SVM based algorithm. The study of Zhang
et al. [31] considers two available datasets of video action recognition, the KTH
human motion dataset and Weizmann human action dataset. To demonstrate the
validity and effectiveness of their BEL algorithm, they compare its results with four
other MIL classification methods based on the accuracy. The results show that the
BEL algorithm outperforms its competitors.

8.2.3.2 SVM for Feature Selection

SVMs have also been widely used for interweaving FS and classifier construction.
They allow the incorporation of feature weighting in their kernel function to combine
different features. The performance of these methods can be improved by providing
information about the features during model generation.

Ngiam et al. [20] incorporate feature weighting into the kernel function based on
the idea that different features work well with different concepts. In their proposal,
the weight learning is carried out by a simple greedy algorithm (Algorithm 14). In
order to obtain the final classifier, each concept is considered independently using
an SVM with extended Gaussian kernels over the χ2 distance:

K (Xi , X j) =
∑

f ∈F

1

μ f
χ2(f (Xi), f (X j)),

where μ f is the average χ2 distance for a particular feature, used to normalize the
distances across different features.

There are others kernel-based methods that carry out FS using an SVM model to
select important features and construct a classifier simultaneously. These methods
transform MIL into a FS problem by embedding bags into a new feature space.
According to the specific mapping function used in the transformation, the final
purpose of a method can change. The MILES method of Chen et al. [5] (Sect. 5.3.4)
falls in this category. MILES maps the bags via an instance similarity measure. It
uses each instance as a candidate target point, such that the induced space has a high
dimensionality. The authors use a 1−norm SVM to select relevant features and build
classifiers at the same time. At its core, this approach identifies relevant instances in
the new bag feature space, since each feature is induced by an instance.

http://dx.doi.org/10.1007/978-3-319-47759-6_5

180 8 Data Reduction

Algorithm 14 Greedy FS
Input: X ← multi-instance training set {X1, X2, . . . , X N } (Xi ⊆ X), Class(Xi) = 0 for the

negative examples and Class(Xi) = 1 for the positive examples
Input: F ← all features
Output: selected Subset , feature subset
1: repeat
2: for each feature f ∈ F do
3: Compute error rate if f is removed
4: end for
5: Remove the feature which results in the highest improvement
6: until removing any feature results in worse performance
7: repeat
8: for each feature f ∈ F do
9: Compute error rate if f is added
10: Compute error rate if f is removed
11: end for
12: selected Subset ← Add feature which give best improvement
13: until local optimum is reached

The Multiple Instance Online (MIO) method proposed by Li et al. [14] is an
online MI learning algorithm that has an efficient online update procedure. Similar
to MILES, it maps each bag to a feature space defined by all instances and then
performs joint FS and classification by using the 1-norm SVM.

The MIL-MFS (Multiple-Instance Learning with Multiple Feature Selection)
algorithm was proposed by Jhuo et al. [11] and uses multiple kernel learning. The
authors use a similarity based feature representation, where each instance may be
mapped into diverse feature spaces. It iteratively selects the fusing of multiple fea-
tures for classifier training.

More recently, Mao et al. [19] proposed the FSPO (Feature Selection method
for multivariate Performance measures Optimization) algorithm. They propose a
generalized sparse regularizer for FS, based on which a unified FS framework is
presented for general loss functions. Specifically, they propose a two-layer cutting
plane algorithm including group feature generation and selection to solve this prob-
lem effectively and efficiently. Multiple kernel learning is proposed to deal with the
exponential size of constraints induced by multivariate losses.

Experimental Study

The study of Jhuo et al. [11] considers the Corel dataset (Sect. 3.6). They compare
their proposal, the MIL-MFS algorithm, with four multi-instance classifiers based
on SVM. Their results show that their method achieves the best accuracy among the
included algorithms.

Considering a proposal of online MI learning, the study of Li et al. [14] utilizes
synthetic datasets and the Musk datasets (Sect. 3.6) to compare their MIO algorithm
with the MILES method. The experimental results show that their proposal outper-
forms MILES with a small number of passes. Moreover, the average error of nine

http://dx.doi.org/10.1007/978-3-319-47759-6_3
http://dx.doi.org/10.1007/978-3-319-47759-6_3

8.2 Multiple Instance Methods for Feature Selection 181

multi-instance classifiers is used to validate the efficiency of MIO and the latter is
shown to achieve competitive results.

Finally, a more recent study carried out by Mao et al. [19] considers the Corel
and News datasets (Sect. 3.6). They compare their FSPO algorithm with four feature
selection methods and evaluate the results using the F1 score measure [19]. Com-
paring with various feature selection methods, the FSPO algorithm is shown to be
superior to the others.

8.2.4 Hybrid Method: HyDR-MI Algorithm

Hybrid FS methods combine the advantages of filter and wrapper methods. To deter-
mine the important properties of the feature space, a filter method assigns a score to
each attribute. Features with very low scores are considered to be irrelevant and can
be discarded. The reduced or ranked feature set is provided to a wrapper method,
whose purpose is to select the best feature subset for a particular MIL algorithm.

Algorithm 15 HyDR-MI algorithm
Input: X ← multi-instance training set {X1, X2, . . . , X N } (Xi ⊆ X)

Output: subsetFeature, the most relevant feature subset
� ReliefF-MI Method

1: subsetFeature ← obtained with method ReliefF-MI
� Genetic Algorithm

2: P0 ← initial population, generated randomly
3: P0 ← evaluation of P0 using a classification method
4: t ← 0
5: repeat
6: Pparent ← selectionParents (Pt)
7: Pof f spring ← genetic operators crossover and mutation over Pparent
8: Pof f spring ← evaluation of Pof f spring using a classification method
9: Pt+1 ← update population using Pt and Pof f spring
10: t ← t + 1
11: until t < maxGenerations
12: subsetFeature ← the best individual obtained in genetic algorithm

Adhering to this setup, Zafra et al. [29] developed HyDR-MI (Hybrid Dimension-
ality Reduction method for Multiple Instance learning), as shown in Algorithm 15.
This method consists of a filter component based on the ReliefF-MI algorithm [28]
and a wrapper component based on a genetic algorithm [23] that optimizes the search
for the best feature subset from a reduced set of features obtained by filter. This com-
bination benefits both sides. On the one hand, the main restriction of the ReliefF-MI
algorithm is the necessity of setting a threshold which determines how many top
scored features should be selected. It evaluates each feature individually and can-
not handle the problem of feature redundancy appropriately. The genetic algorithm
assists the search for the best feature subset and thereby solves these issues. It uses

http://dx.doi.org/10.1007/978-3-319-47759-6_3

182 8 Data Reduction

the performance of a classifier as a fitness function and optimizes the FS by finding
the most suitable subset for that classifier. On the other hand, the main limitation of
a genetic algorithm is its computation time. ReliefF-MI helps to reduce the search
space to achieve better results in less time.

Experimental Study

The study of Zafra et al. [29] considers five benchmark datasets: Musk1, Musk2,
Elephant, Tiger, and Fox (Sect. 3.6). To show the efficiency of HyDR-MI compared
to ReliefF-MI [28], the results of 17 multi-instance classification algorithms are
compared based on the accuracy.

The results show the potential of HyDR-MI statistically improving the predictive
performance of many classifiers compared to ReliefF-MI. This is achieved by the
possibility to decide how many of the top ranked features are useful for each particular
algorithm and the possibility to discard redundant attributes.

8.3 Multiple Instance Methods for Bag Prototype Selection

The second data reduction technique that we consider in this chapter is bag prototype
selection. In Sect. 8.3.1, we introduce this concept. Section 8.3.2 describes several
multi-instance methods implementing this procedure.

8.3.1 Introduction to Bag Prototype Selection

Bag prototype selection (BPS) methods reduce the dataset by selecting a subset of
samples. The aim is to eliminate noisy and irrelevant bags and preserve only the most
informative ones.

As multi-instance samples are bags composed of one or more instances, a different
interpretation can be raised compared to the concept of instance selection in single-
instance learning. BPS carries out a bag selection. From this perspective, the aim
would be similar to traditional instance selection, that is, reducing the number of
observations in the dataset. The distinctive feature is that the removal of a bag implies
the elimination of all instances contained in it. An instance selection within each bag
can be considered as well. This setting would eliminate individual instances, but it
does not reflect the traditional aim of instance selection, which is the reduction of
the number of data samples. The number of instances inside bags would be lower,
but the total number of bags would be maintained.

Nevertheless, instance prototype selection has always concerned MIC algorithm
developers. According to the standard MI assumption, negative bags contain only
negative instances, while positive bags contain both positive and negative ones.
Instance label ambiguity lies with the positive bags. Mislabeling negative instances
in positive bags can limit the performance of multi-instance classifiers. Many meth-
ods have focused on selecting a subset of instances from positive bags to learn the

http://dx.doi.org/10.1007/978-3-319-47759-6_3

8.3 Multiple Instance Methods for Bag Prototype Selection 183

(a) Initial dataset (n bags) (b) Reduced dataset (m bags)

Fig. 8.2 MI bag selection method

classifier. For example, the EM-DD algorithm [30] chooses one instance that is most
consistent with the current hypothesis in each positive bag to predict the label for a
new bag. DD-SVM [4] depends on the DD concept to identify instance prototypes.
Those instances corresponding to local maximizers of the DD function are chosen
as instance prototypes, after which an SVM with a Gaussian kernel is learned in the
embedded space. MILD [13] performs the instance selection based on a conditional
probability model. The instance having the highest ability to distinguish between
positive and negative training bags is chosen from each positive bag as an instance
prototype. The method learns a standard SVM with a Gaussian kernel using bag-level
features. MILIS [8] achieves the initial instance selection by modeling the distribution
of the negative population with a Gaussian-kernel-based kernel density estimator. It
depends on an iterative optimization framework to update instance prototypes and
learn a linear SVM.

Many algorithms can be included here, as several aim to locate the most relevant
instance(s) inside of a bag, as related in previous chapters. In this section, we focus on
BPS that tries to reduce the number of training bags. These methods have emerged
recently in MIL and have a similar finality as single-instance instance selection
methods. Figure 8.2 visualizes the BPS process. Figure 8.2a shows the initial dataset,
where each sample is composed of several instances. The preprocessed dataset is
shown in Fig. 8.2b. The number of bags has been reduced with respect to the initial
dataset.

BPS can be defined as a search problem to find a subset of bags which optimizes
a particular criterion. Formally, let T be the original dataset with n bags and S a
subset of m bags (m << n) [10]. BPS tries to find the optimal subset S that does not
contain superfluous bags and with which the performance obtained by the classifier
is similar to or better than that with the original set T .

Following a similar taxonomy as for FS (Sect. 8.2.1), different BPS methods can
be divided in filter, wrapper, and embedded categories. To the best of our knowledge,
only filter proposals have been presented for BPS. A summary of these methods is
shown in Table 8.2.

184 8 Data Reduction

Table 8.2 Bag prototype
selection methods in
multi-instance learning

Bag prototype selection methods

Filter methods

MICLONE algorithm [26]

MILNS algorithm [26]

MILSUP algorithm [26]

8.3.2 Filter Methods

Three proposals designed by Yuan et al. [26] can be classified as filter methods.
Their MILCLONE, MILNS, and MILSUP methods are respectively based on clonal
selection theory [2], the negative selection principle [12], and self-regulation and
suppression mechanisms in natural immune systems [6]. The main features of these
methods are described below.

8.3.2.1 MICLONE Algorithm

The MICLONE method [26] is based on clonal selection theory [2]. This theory
explains the basic response of the adaptive immune system to an antigenic stimulus.
Only those cells capable of recognizing an antigen proliferate, while those that do
not are not selected. The main steps of MICLONE are shown in Algorithm 16.
The training set is composed of antigens (training bags). One antigen is provided
to the algorithm at a time, until all have gone through the entire process. After the
initialization of memory cells, memory cell identification, generation of candidate
memory cell and memory cell introduction, the output is a set of memory cells, and
corresponding to bag prototypes. In more detail, the first stage initializes memory
cells, where some antigens are selected to form the memory pool. Second, memory
cell identification is carried out and candidate memory cell are generated. For a given
antigen X , its closest (most stimulated) antigen with the same class is chosen as its bag
prototype (memory cell) from the pool. A stimulation function, which can determine
the closest bag, needs to be defined. The authors use the minimum Hausdorff distance.
In the memory cell introduction stage, developed candidate memory cell are added
to the existing set. The most stimulated memory cell is removed from the pool, if the
affinity between the candidate memory cell and its parental instance from the most
stimulated cell is less than the product of the affinity threshold ATC L O N E and the
user-specified threshold AT SC L O N E . The former is calculated as

ATC L O N E =

n−1∑

i=1

n∑

j=i+1
a f f ini t y(Xi , X j)

n(n−1)

2

,

8.3 Multiple Instance Methods for Bag Prototype Selection 185

where n is the number of training antigens, Xi and X j are the i th and j th training
antigen and a f f ini t y(Xi , X j) returns the minimal Hausdorff distance between two
bags.

8.3.2.2 MILNS Algorithm

MILNS [26] is based on the negative selection algorithm [12]. These methods
describe the negative representation of information when negative examples are not
available. For example, in many anomaly detection applications, only positive (nor-
mal) examples are available for training, while negative (abnormal) examples are
not. The positive examples are used to obtain some representative negative examples
known as detectors.

The main steps of this method are described in Algorithm 17. All positive bags
are regarded as self samples (self cells) and all negative bags as the set of candidate
detectors (antibodies) from which negative example prototypes will be selected.
Given a candidate detector, the method scans the set of self samples for the one
with the lowest affinity with the candidate detector. If the affinity approximated by
means of the minimum Hausdorff distance is greater than the product of the affinity
threshold ATN S and the threshold AT SN S provided by the user, the candidate detector
is considered as a negative example prototype. The affinity threshold is the average
affinity value over all self examples, which is calculated as

ATN S =

n−1∑

i=1

n∑

j=i+1
a f f ini t y(Xi , X j)

n(n−1)

2

,

where n is the number of self samples, Xi and X j are the i th and j th self samples
and a f f ini t y(Xi , X j) returns the minimal Hausdorff distance between these two.

Algorithm 16 MICLONE Algorithm
Input: X ← multi-instance training set {X1, X2, . . . , X N } (Xi ⊆ X), Class(Xi) ∈ {0, 1}
Output: subset Bags ← more relevant bag subset.
1: memory = initializeRandomRepertoire()
2: for Xi ∈ memory do
3: best = memoryCellIdentification(Class(Xi))
4: fit = generationCandidateMemoryCell(best, Xi)
5: Add f i t to memory cell
6: if a f f ini t y(f i t, closestbest) < (ATC L O N E · AT SC L O N E) then � closestbest its the

closest bag with the same class as Xi
7: Eliminate best of memory cell
8: end if
9: end for

186 8 Data Reduction

8.3.2.3 MILSUP Algorithm

MILSUP [26] is based on an immune inspired suppressive algorithm [6]. It is inspired
by the self-regulation and suppression mechanisms in the biological immune system.
According to the self-regulation mechanism, those cells unable to neutralize danger
tend to disappear from the organism (or be suppressed). By analogy, data not relevant
to the classifier is eliminated from the training set.

The main steps of MILSUP are described in Algorithm 18. The affinity approx-
imation between two bags is given by means of the minimal Hausdorff distance.
The dataset is divided into two subsets, the first one representing the lymphocytes in
the organism (training set) and the second one a set of pathogens (suppression set).
The algorithm sets out with the idea that the system’s model must identify the best
subset of lymphocytes in order to recognize pathogens. Specifically, each pathogen
in the suppression set is classified according to the closest lymphocytes in the train-
ing set. Those lymphocytes able to recognize pathogens are retained, while others
are eliminated. The recognition ability is determined by comparing the label of the
closest lymphocyte with that of the corresponding pathogen. If their labels are the
same, the lymphocyte is considered to have the ability to recognize the corresponding
pathogen, otherwise it is not.

Experimental Study

The study of Yuan et al. [26] considers five datasets: Musk1, Musk2, Elephant, Tiger,
and Fox (Sect. 3.6). The experimental study includes a comparison between the three
proposals (MILSUP, MICLONE, and MILNS). The reduced datasets provided by
these methods are used by 20 classifiers for the Elephant, Tiger, and Fox datasets
and by 12 classification algorithms for the Musk1 and Musk2 datasets. The accu-
racy and computation time are used as evaluation measures. The results show that
MILCLONE and MILNS are competitive with each other in terms of their effect on
the classification accuracy. They are superior to MILSUP. All methods considerably
reduce the computation time of the classifiers.

Algorithm 17 MILNS Algorithm
Input: X ← multi-instance training set {X1, X2, . . . , X N } (Xi ⊆ X)

Output: subset Bags ← more relevant bag subset.
1: sel f ← set of all positive bags
2: detector ← set of all negative bags
3: P ← ∅ � P is the set of bag prototypes
4: for Xd ∈ dectector do
5: X p ← argminXs∈Sel f a f f ini t y(Xs , Xd)

6: if a f f ini t y(X p, Xd) > ATN S · AT SN S then
7: Add X p to P
8: end if
9: end for

http://dx.doi.org/10.1007/978-3-319-47759-6_3

8.4 Summarizing Comments 187

Algorithm 18 MILSUP algorithm
Input: X ← multi-instance training set {X1, X2, . . . , Xn}, (Xi ⊆ X), Class(Xi) ∈ {0, 1}
Input: Fraction f ∈ [0, 1]
Output: bagSubset , most relevant bag subset
1: W BCs ← randomly assign f · n examples
2: Pathogens ← examples not assigned to WBCs
3: for X ∈ W BCs do � Set a survival signal for every WBC and initialize it to be false
4: SurvivalX = f alse
5: end for
6: for X p ∈ Pathogens do
7: NearestW BC ← argminw∈W BCsa f f ini t y(X p, Xw)

8: if Class(NearestW BC) = Class(X p) then
9: SurvivalNearestW BC = true
10: end if
11: end for
12: Eliminate those bags of W BCs with the survival signal set to false
13: Add to bagSubset those bags of W BCs with survival signal set to true

8.4 Summarizing Comments

Data reduction in MIL is a critical challenge. The inherent data ambiguity, where
instances in a positive bag may or may not approximate the positive concept, adds
more complexity to the problem. In this chapter, we considered two important tasks to
reduce the computational complexity and improve the performance of the subsequent
learner: FS and BPS. In case of FS, different methods are described adhering to the
well-known taxonomy based on filter, wrapper, and embedded methods. A similar
study is carried out for BPS, which is the more recently addressed task.

References

1. Bellman, R.: Dynamic Programming and Lagrange Multipliers. Princeton University Press,
Princeton (1957)

2. Burnet, S.F.M.: The Clonal Selection Theory of Acquired Immunity. Vanderbilt University
Press, Nashville (1959)

3. Ciliberto, C., Smeraldi, F., Natale, L., Metta, G.: Online multiple instance learning applied to
hand detection in a humanoid robot. In: De Luca, A. (ed.) Proceedings of the IEEE Interna-
tional Conference on Intelligent Robots and Systems (IROS 2011), pp. 1526–1532. IEEE, San
Francisco (2011)

4. Chen, Y., Wang, J.Z.: Image categorization by learning and reasoning with regions. J. Mach.
Learn. Res. 5, 803–821 (2004)

5. Chen, Y., Bi, J., Wang, J.Z.: MILES: multiple-instance learning via embedded instance selec-
tion. IEEE Trans. Pattern Anal. 28(12), 1931–1947 (2006)

6. Figueredo, G.P., Ebecken, N.F., Augusto, D.A., Barbosa, H.J.: An immune-inspired instance
selection mechanism for supervised classification. Memet. Comput. 4(2), 135–147 (2012)

7. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boost-
ing (with discussion and a rejoinder by the authors). Ann. Stat. 28(2), 337–407 (2000)

188 8 Data Reduction

8. Fu, Z., Robles-Kelly, A., Zhou, J.: MILIS: multiple instance learning with instance selection.
IEEE Trans. Pattern Anal. 33(5), 958–977 (2011)

9. Gan, R., Yin, J.: Feature selection in multi-instance learning. Neural Comput. Appl. 23(3–4),
907–912 (2013)

10. García, S., Luengo, J., Sáez, J.A., López, V., Herrera, F.: A survey of discretization techniques:
taxonomy and empirical analysis in supervised learning. IEEE Trans. Knowl. Data Eng. 25(4),
734–750 (2013)

11. Jhuo, I.H., Lee, D.T.: Multiple-instance learning: multiple feature selection on instance rep-
resentation. In: Proceedings of the 25th International Conference on Artificial Intelligence
(AAAI 2011), pp. 1794–1795. Association for the Advancement of Artificial Intelligence, San
Francisco (2011)

12. Ji, Z., Dasgupta, D.: V-detector: an efficient negative selection algorithm with “probably ade-
quate” detector coverage. Inf. Sci. 179(10), 1390–1406 (2009)

13. Li, W.J.: MILD: multiple-instance learning via disambiguation. IEEE Trans. Knowl. Data Eng.
22(1), 76–89 (2010)

14. Li, M., Kwok, J.T., Lu, B.L.: Online multiple instance learning with no regret. In: Boykov, Y.,
Schmidt, F.R., Kahl, F., Lempitsky, V. (eds.) Proceedings of the International Conference on
Computer Vision and Pattern Recognition (CVPR 2010), pp. 1395–1401. IEEE, Los Alamitos
(2010)

15. Liu, H., Motoda, H.: Feature Extraction, Construction and Selection: A Data Mining Perspec-
tive. Kluwer, Boston (1998)

16. Liu, H., Motoda, H.: Instance selection and construction for data mining. Kluwer Academic
Publisher, Norwell (2001)

17. Liu, H., Motoda, H.: Computational Methods of Feature Selection. CRC Press, Boca Raton
(2007)

18. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering.
IEEE Trans. Knowl. Data Eng. 17(4), 491–502 (2005)

19. Mao, Q., Tsang, I.W.H.: A feature selection method for multivariate performance measures.
IEEE Trans. Pattern Anal. 35(9), 2051–2063 (2013)

20. Ngiam, J., Goh, H.: Learning global and regional features for photo annotation. In: Peters, C.,
Muller, H., Caputo, B., Gonzalo, J., Jones, G.J.F., Kalpathy-Cramer, J., Former, P., Giampiccolo,
D. (eds.) Proceedings of 10th Workshop of Cross-Language Evaluation Forum for European
Languages (CLEF 2009), pp. 287–290. Springer, Berlin (2009)

21. Robnikikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF.
J. Mach. Learn. Res. 53(1–2), 23–69 (2003)

22. Triguero, I., Derrac, J., García, S., Herrera, F.: A taxonomy and experimental study on prototype
generation for nearest neighbor classification. IEEE Trans. Syst. Man Cybern. C 42(1), 86–100
(2012)

23. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)
24. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision

making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)
25. Yuan, X., Wang, M., Song, Y.: Concept-dependent image annotation via existence-based

multiple-instance learning. In: Proceedings of the IEEE International Conference on Systems.
Man and Cybernetics (SMC 2009), pp. 4112–4117. IEEE, Los Alamitos (2009)

26. Yuan, L., Liu, J., Tang, X.: Combining example selection with instance selection to speed up
multiple-instance learning. Neurocomputing 129, 504–515 (2014)

27. Yuan, X., Hua, X.S., Wang, M., Qi, G.J., Wu, X.Q.: A novel multiple instance learning approach
for image retrieval based on adaboost feature selection. In: Yun-Qing, S., Liao, M., Hu, Y.H.,
Sheu, P., Ostermann, J. (eds.) Proceedings of the International Conference on Multimedia and
Expo (ICME 2007), pp. 1491–1494. IEEE Service Center, Piscataway (2007)

28. Zafra, A., Pechenizkiy, M., Ventura, S.: ReliefF-MI: an extension of ReliefF to multiple instance
learning. Neurocomputing 75(1), 210–218 (2012)

29. Zafra, A., Pechenizkiy, M., Ventura, S.: HyDR-MI: a hybrid algorithm to reduce dimensionality
in multiple instance learning. Inf. Sci. 222, 282–301 (2013)

References 189

30. Zhang, Q., Goldman, S.: EM-DD: an improved multiple-instance learning technique. In:
Becker, S., Thrun, S., Obermayer, K. (eds.) Proceedings of the 17th Conference on Advances in
Neural Information Processing Systems (NIPS 1998), pp. 1073–1080. MIT Press, Cambridge
(1998)

31. Zhang, T., Liu, J., Liu, S., Xu, C., Lu, H.: Boosted exemplar learning for action recognition
and annotation. IEEE Trans. Circ. Syst. Video 21(7), 853–866 (2011)

32. Zhu, L., Zhao, B., Gao, Y.: Multi-class multi-instance learning for lung cancer image clas-
sification based on bag feature selection. In: Wang, L., Jin, Y. (eds.) Proceedings of the 5th
International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2008). Lecture
Notes in Artificial Intelligence, pp. 487–492. Springer, Berlin (2008)

Chapter 9
Imbalanced Multi-instance Data

Abstract Class imbalance is widely studied in single-instance learning and refers
to the situation where the data observations are unevenly distributed among the
possible classes. This phenomenon can present itself in MIL as well. Section9.1
presents a general introduction to the topic of class imbalance, list the types of
solutions to deal with it, and the appropriate performance metrics. In Sect. 9.2, we
recall a popular single-instance method addressing class imbalance. We provide a
detailed specification of multi-instance class imbalance in Sect. 9.3 and discuss its
solutions in Sect. 9.4 on resamplingmethods and in Sect. 9.5 on custom classification
methods. Section9.6 presents the experimental analysis accompanying this chapter.
Some summarizing remarks are listed in Sect. 9.7.

9.1 Introduction

In the presence of class imbalance, the possible classes are unevenly represented in
the dataset. Some classes may contain many observations, while others only have
very few in comparison. The most common setting is that of a binary or two-class
problem, where the instances of the majority class considerably outnumber those of
the minority class. Elements of the minority class are usually labeled as positive and
those of themajority class as negative. These names indicate that inmost applications
theminority class is the class of interest. In recent years, the focus of class imbalanced
learning has widened to the general setting of multi-class classification, where the
number of classesmayexceed two. In this situation, there canbe amixture ofmajority,
medium-sized, and minority classes, which automatically yields more challenging
learning objectives. A large body of work has been done on the classification of
imbalanced data in single-instance problems [18, 21, 26, 31]. Application areas
in which class imbalance naturally presents itself include medical diagnosis [8, 19,
20, 22] and bioinformatics [41, 42, 44].

© Springer International Publishing AG 2016
F. Herrera et al.,Multiple Instance Learning, DOI 10.1007/978-3-319-47759-6_9

191

192 9 Imbalanced Multi-instance Data

9.1.1 Dealing with Class Imbalance

Traditional classifiers tend to lose some of their prediction strength in the presence of
class imbalance, because they make the internal assumption of similar class distrib-
utions or misclassification costs. By definition, the former is violated for imbalanced
data. The latter premise does not hold either, since a higher cost is usually associated
with the misclassification of a positive element than with that of a negative obser-
vation. As a result, standard classifiers fail, for instance by predicting the majority
label over-easily. Specific solutions to handle class imbalance have been proposed
in the literature. We can divide these approaches into two general groups:

• Data-level solutions: this group consists of preprocessing methods known as
resampling techniques. They modify the dataset before the application of a classi-
fier, which means that they are independent of the latter. We distinguish between
undersampling methods, that remove part of the majority class, oversampling
methods, that add new minority elements, and hybrid methods, that combine the
previous two approaches. A popular single-instance method, commonly used in
comparative studies on class imbalance, is the SMOTE oversampling method [7].
It is described in detail in Sect. 9.2.

• Customized approaches: a second group of solutions handling class imbalance
is found at the algorithm-level. These methods do not modify the data. We can
make a further distinction between three diverse types of methods.

– The first subgroup consists of cost-sensitive methods (e.g., [11, 43]). These
algorithms assign different misclassification costs to the classes and aim to
minimize the overall cost. In this way, relatively more focus can be put on the
correct classification of minority class elements.

– Second, we list the methods that focus on the construction of a classifica-
tion model that is not hindered by the imbalance between classes. Based on
imbalance-resistant heuristics, a learner is designed to tackle the imbalance
problem.

– Finally, a third subgroup is formed by custom ensemble techniques (e.g., [16]),
that have already been used, possibly in combination with resampling methods,
in the classification of single-instance imbalanced data.

Both types of approaches have been proposed in single-instance as well as multi-
instance learning. The latter will be discussed in detail in Sect. 9.3.

With respect to multi-class imbalanced learning, decomposition strategies can be
used to divide the multi-class problem in a set of binary ones, as done for single-
instance methods in e.g., [14]. In that study, the one-versus-one and one-versus-all
methods are used to derive binary prediction problems from the multi-class dataset.
For each of them, a two-class preprocessing method is applied in conjunction with
a classifier. The outcomes of all binary problems are aggregated to yield a single
prediction value. Any binary solution can be combined with a decomposition scheme
and aggregationmethod to perform amulti-class imbalanced classification. In single-
instance learning,multi-class resamplingmethods aswell as general classifiers to deal

9.1 Introduction 193

with multi-class imbalance without a decomposition step have also been proposed
as well (e.g., [1, 39]).

9.1.2 Evaluation Measures in the Imbalanced Domain

The evaluation of classification performance in the class imbalanced domainwarrants
metrics that are not sensitive to the skewness in the class distributions. Among the
measures listed in Sect. 1.4, the accuracy is the most commonly used in general
studies. However, the research community agrees that it is not an appropriatemeasure
to use in the presence of class imbalance, as it can lead to misleading results. As an
example, consider a dataset with a 1000 observations, of which 900 belong to the
negative class and the remaining 100 to the positive class. When a classifier predicts
that each observation is negative, it attains an accuracy of 90%. This is a high value
and it does not in any way reflect the fact that the entire positive class has been
misclassified. We conclude that this metric does not provide a faithful representation
of the performance of the classifier.

As an alternative to the accuracy, we can use g, the geometric mean of the class-
wise accuracies. The general definition is provided in Sect. 1.4. In a two-class setting,
which is most common in studies on class imbalance, this reduces to

g = √
TPR · TNR,

where TPR and TNR, respectively, correspond to the true positive and true negative
rates of the classification. By computing the rate of correct predictions for each class
separately, none of the classes can be ignored. In particular, in the above example,
the value for g is zero, since all positive observations were misclassified. This clearly
reflects the incapacity of the classifier.

A second measure that is commonly used in research on class imbalance, is the
AreaUnder theROC-curve (AUC, [3]), defined for two-class problems.AROC-curve
models the trade-off between true positive and false positive classifier predictions. It
was originally defined for probabilistic classifiers, that use a threshold value θ on the
positive class probability.When the estimated probability is higher than θ , the sample
is classified as positive. In the other case, the negative class is predicted. By varying
θ , different true positive and false positive rates are obtained. Each represents a point
in ROC-space and together they form the ROC-curve. The area under it gathers the
information represented by the curve in a single value. It can be computed by using
the procedure described in [13]. A detailed description of ROC-curves and AUC
computations can also be found in [33].

http://dx.doi.org/10.1007/978-3-319-47759-6_1
http://dx.doi.org/10.1007/978-3-319-47759-6_1

194 9 Imbalanced Multi-instance Data

Fig. 9.1 Illustration of the
construction of one artificial
element in a single-instance
dataset by SMOTE, between
the seed x and a randomly
selected instance from
among its nearest neighbors
ni in the minority class

xn1

n5

n2
n3

n4

Synthetic element y

9.2 Single-Instance SMOTE

As noted above, one way to deal with class imbalance is to resample the dataset.
In single-instance learning, a popular resampling method is the Synthetic Minority
Oversampling Technique (SMOTE) proposed by Chawla et al. [7]. We recall this
algorithm here, as several multi-instance resampling proposals (Sect. 9.4) are based
on it.

SMOTE is an oversamplingmethod, that increases the size of theminority class by
adding artificial new instances to it. Synthetic instances are constructed by selecting
one of the existing minority elements as seed and introducing a new instance at a
random position on the line segment connecting this seed element to one of its k
nearest minority class neighbors, as illustrated in Fig. 9.1. The pseudo-code of this
method can be found in Algorithm 19. We present the version that yields a perfectly
balanced dataset, that is, positive instances are created until their class reaches the
size of the negative class. This is the most commonly used setting, although the
amount of oversampling can also be controlled by a parameter, as presented in the
original proposal [7]. The value k is commonly set to 5. Step 8 of Algorithm 19
creates an artificial instance. Existing data samples are interpreted as vectors and a
new element is introduced at a random point on the line segment between them. The
user should take care to use an appropriate interpolation scheme for numeric and
categorical attributes.

9.3 Multi-instance Class Imbalance

We continue with a discussion on the presence of class imbalance in multi-instance
data. Compared to the single-instance setting, a very limited amount of work has
been done on multi-instance class imbalance. However, interest has been raised in
the past few years and it forms a promising area of future research.

9.3 Multi-instance Class Imbalance 195

Algorithm 19 SMOTE algorithm
Input: Imbalanced single-instance dataset T , with positive class P and negative class N . Number

of neighbors k
Output: A perfectly balanced dataset T ∗
1: d ← |N | − |P| � amount of artificial instances
2: A ← ∅ � initialize set of artificial instances
3: for i = 1, . . . , d do
4: x ← random positive instance from T
5: {n1, n2, . . . , nk} ← k nearest neighbors of x in P
6: n ← random selection from {n1, n2, . . . , nk}
7: α ← random value drawn from [0, 1]
8: y ← x + α · (n − x) � generate a new instance by interpolation
9: Label y as positive
10: A ← A ∪ {y}
11: end for
12: T ∗ ← T ∪ A

9.3.1 Problem Description

The nature of class imbalance can be more complex in MIL than it is in single-
instance learning. As argued by Wang et al. [35], the imbalance can occur at two
different levels, namely that of the instances and that of the bags. Instance-level
imbalance means that the number of positive instances in positive bags is relatively
low compared to the number of negative instances they contain. In the standard
MIL hypothesis, only one positive instance is required in a positive bag, such that
imbalance at the level of instances can easily present itself. Imbalance can also occur
at the bag-level, which is the direct generalization of class imbalance in single-
instance learning and fits in the general description given in Sect. 9.1. It means that
the number of positive bags is small compared to the number of negative bags.

The effects that these two types of imbalance have on multi-instance classifiers
have been described by e.g., Mera et al. [23]. In the presence of instance-level imbal-
ance, instance-based methods (Chap.4) are likely to be biased toward the majority
class, since the number of actual positive instances is low compared to actual negative
instances. Mapping-based methods (Sect. 5.3) can also be hindered by this type of
imbalance, when the mapping step is sensitive to instance imbalance. The example
given in [23] to illustrate this situation is the averaging function: if the number of
positive instances is relatively small in a bag, their information will be mostly lost
when averaging over all instances. Bag-level imbalance results in a bias of bag-based
classifiers (Sect. 5.2) toward the majority class.

The work of Wang et al. [35] showed that multi-instance imbalance is most pro-
nounced at the level of the bags. Keeping this in mind, we define class imbalance for
multi-instance problems at the bag-level. It is reflected in a (possibly considerably)
larger number of bags of the majority class compared to the number of bags of the
minority class. The degree of imbalance ismeasured by the so-called imbalance ratio
(IR), which is defined as the ratio of the number of bags of the majority class over

http://dx.doi.org/10.1007/978-3-319-47759-6_4
http://dx.doi.org/10.1007/978-3-319-47759-6_5
http://dx.doi.org/10.1007/978-3-319-47759-6_5

196 9 Imbalanced Multi-instance Data

the number of bags of the minority class. Class imbalance results in more difficulty
to recognize the minority class, leading to a high number of misclassifications of
these bags. The study of [35] references the application of [37] concerning the object
detection of mines based on sonar images. This is an imbalanced problem, since
mines occur far less often than other objects (e.g., rocks).

9.3.2 Solutions for Multi-instance Class Imbalance

To date, we are not aware of any specific proposals to deal withmulti-class imbalance
inMIL. The existing solutions have been specifically proposed with binary problems
in mind and have only been evaluated on this kind of data. However, the decompo-
sition strategies discussed in Sect. 9.1 can be transferred from the single-instance
to the multi-instance setting, in conjunction with any of the binary class imbalance
solutions described below.

As noted above, compared to the amount of attention that the class imbalance
problem has received in single-instance learning, its exploration in MIL has been
very limited. Nevertheless, applications inherently prone to class imbalance also
present themselves in this domain and custommethods able to deal with the intrinsic
challenges of class imbalance are warranted. We discuss the recent developments in
Sects. 9.4 and 9.5. As will be clear from Sect. 9.4, the study of multi-instance pre-
processing techniques has so far been largely limited to extensions of the SMOTE
method recalled in Sect. 9.2. In single-instance learning, this technique has been
improved upon by many authors (e.g., [4, 5, 29]) and it is a valid question whether
similar improvements can be made inMIL. Extensions of other single-instance solu-
tions, like cost-sensitive support vector machines [32] or alternative ensemble tech-
niques (e.g., [17, 38]), should be further explored as well.

9.4 Multi-instance Resampling Methods

In this section, we discuss the resampling methods that have been proposed to deal
with multi-instance class imbalance. We recall the contributions of [23, 24, 35],
which, to the best of our knowledge, form the complete set of multi-instance resam-
pling methods dealing with class imbalance.

9.4.1 BagSMOTE, InstanceSMOTE, Bag_oversampling

Wang et al. [35] consider two approaches to deal with class imbalance in MIL:
resampling on the one hand and cost-sensitivemethods on the other.We describe their
resampling methods here, the discussion of the cost-sensitive methods is postponed

9.4 Multi-instance Resampling Methods 197

to Sect. 9.5. Two extensions of the SMOTE method of [7] are developed. Their first
method is called BagSMOTE and creates synthetic minority bags. The procedure is
presented in Algorithm 20. Each existing minority bag X leads to the creation of one
new bag, that is also labeled with the minority class. For each instance x ∈ X , one of
its nearest instances from within all minority bags is selected. A synthetic element
is generated between x and its neighbor and added to the new bag.

Algorithm 20 BagSMOTE algorithm
Input: Imbalanced multi-instance dataset T, number of neighbors k
Output: The oversampled dataset T∗
1: A ← ∅ � initialize set of artificial bags
2: for each positive bag X ∈ T do
3: Y ← ∅ � initialize artificial bag
4: for each instance x ∈ X do
5: {n1, n2, . . . , nk} ← k nearest neighbors of x among all instances in all positive bags
6: n ← random selection from {n1, n2, . . . , nk}
7: α ← random value drawn from [0, 1]
8: y ← x + α · (n − x) � generate a new instance by interpolation
9: Y ← Y ∪ y
10: end for
11: Label Y as positive
12: A ← A ∪ {Y }
13: end for
14: T∗ ← T ∪ A

The second method is called InstanceSMOTE and is presented in Algorithm 21.
It modifies the multi-instance dataset to a single-instance dataset by assigning all
instances to the class to which their parent bag belongs. The single-instance SMOTE
method is applied to this transformed dataset. Afterwards, the dataset is changed
back to its original multi-instance form, by assigning synthetic instances to the same
bag from which the corresponding seed was drawn. Clearly, the largest difference
between the BagSMOTE and InstanceSMOTE methods is that the first one creates
new bags, while the second one inserts new instances in already existing bags.

In their experiments, Wang et al. also include a third alternative, that randomly
duplicatesminority bags to obtain a better balance between the classes. Thismethod is
referred to as Bag_oversampling. The experimental study shows that the BagSMOTE
method yields the best results among the three proposals. Themore intricate oversam-
pling procedure in BagSMOTE has a better performance than the random procedure
in Bag_oversampling. However, Bag_oversampling outperforms InstanceSMOTE,
which supports the statement of the authors that multi-instance class imbalance
occurs at the level of the bags and that there is where a solution should be applied.

198 9 Imbalanced Multi-instance Data

Algorithm 21 InstanceSMOTE algorithm
Input: Imbalanced multi-instance dataset T, number of neighbors k
Output: The oversampled dataset T∗
1: T ← {(x, class(X)) | x ∈ X, X ∈ T} � transformation to single-instance data
2: T ∗ ← output of Algorithm 19 on T with value k. Store parent bag of seed instance for each

artificial element.
3: T∗ ← ∅
4: for each parent bag X ∈ T do � transformation to multi-instance data
5: X∗ ← set of all instances x ∈ T ∗, either original or artificial, linked to this parent bag
6: Label X∗ with the class of X
7: T∗ ← T∗ ∪ {X∗}
8: end for

9.4.2 B-Instances

Mera et al. [24] proposed a preprocessing method to improve the classification of
imbalancedmulti-instance data bymeans of an enriched representation of the positive
class. In their later work [23], they refer to this method as B-Instances. By means of
kernel density estimation [25], they construct a function which estimates the degree
to which an instance can be considered as negative. This measure is used to locate
likely and unlikely positive elements within positive bags and use them in resampling
procedures. The method consists of three main steps:

1. Oversampling within positive bags: the set T+ is constructed containing the
most positive (least negative) instance from every positive bag. In their exper-
iments, the authors increase T+ to include the second most positive instance
from each positive bag as well, to improve the performance of the method. When
T+ has been determined, SMOTE is applied to oversample instances within the
positive bags. The elements from T+ are used as seeds. A synthetic instance is
generated at a random position on the line segment connecting the seed with one
of its k nearest neighbors in the entire dataset. The constructed instance is added
to the bag which contained the seed element.

2. Undersampling within positive bags: undersampling is applied to the positive
bags. To this end, the least positive (most negative) instance in each positive bag
is located and added to the set T−. For every element x ∈ T−, its k nearest
neighbors from among all data instances are determined. When the majority of
these neighbors originate from negative bags, x is interpreted as a borderline
element and it is decided to remove it.

3. Undersampling within negative bags: the third stage consists of removing
instances from negative bags, using a similar procedure as in the undersampling
of the positive bags. For each instance in a negative bag, its k nearest neighbors
in the entire dataset are determined. When the majority of its neighbors belong
to positive bags, the instance is a borderline element in the negative bag and is
removed.

9.4 Multi-instance Resampling Methods 199

In the experimental study of [24], their B-Instances preprocessing method was com-
bined with several classifiers and was shown to improve their performance on imbal-
ancedmulti-instance datasets.However, no comparisonwas offeredwith themethods
of [35].

9.4.3 B-Bags

The proposal of [23] uses kernel density estimation as well. It is largely based on the
standard MIL hypothesis, in that the method creates new positive bags that contain
only one positive instance. The method is called B-Bags. Based on the kernel density
estimation procedure, B-Bags aims to determine the most positive instance in the
positive bags. It is a bag oversampling method and creates a total number of n new
positive bags. For the construction of a synthetic positive bag, the following steps
are performed:

1. Positive instance: one artificial positive instance is constructed and added to the
new bag. Two randompositive training bags are selected and, within each of them,
the most positive instance is determined based on kernel density estimation. The
new instance is obtained via linear interpolation between these two elements.

2. Negative instances: the remainder of the bag is filled with negative instances,
until the size of the new bag equals the average size of the training bags. The
construction of these negative instances also uses the two positive bags selected
in the previous step. The most negative instance is determined in the first one.
Random negative instances are selected in the second bag and artificial instances
are generated by means of interpolation.

Mera et al. stress that the difference with the BagSMOTE algorithm from [35] is that
their oversampling step is more informative, because it determines the most positive
instances within the positive bags and uses these to generate new positive instances.
The experiments of [23] compare B-Bags with their earlier proposal B-Instances and
with BagSMOTE, in combination with several multi-instance classifiers, on nine
datasets. B-Bags has the highest AUC in four out of the nine datasets and the highest
g value in five.

9.5 Customized Multi-instance Approaches

In this section, we discuss the second type of solutions to deal with class imbal-
ance, namely those at the algorithm-level. These are multi-instance classifiers that
incorporate some imbalance-resistant heuristics in their internal workings.

200 9 Imbalanced Multi-instance Data

9.5.1 Cost-Sensitive Boosting Models

Apart from their preprocessing techniques discussed inSect. 9.4, cost-sensitivemulti-
instance classification procedures are introduced byWang et al. [35, 36] aswell. Their
algorithms are based on the AdaBoost.M1 boosting scheme [15]. In single-instance
learning, this is an iterative method, which trains a classifier in each iteration and
reweighs instances based on their classification outcome, to ensure that misclassified
elements receive more attention in the next iteration. Its weight update formula is

Dt+1(i) = Dt (i)Kt (xi , yi)

Zt
,

with
Kt (xi , yi) = exp(−αt yi ht (xi)). (9.1)

In these expressions, t is the iteration number and Zt a normalization factor to ensure
that Dt+1 is a probability distribution. The function ht refers to a single-instance
classifier and αt ∈ R to the coefficient that represents the weight of ht in the final
classification aggregation. AsAdaBoost.M1was proposed as a single-instance learn-
ing method, (xi , yi) refers to an instance xi and its outcome yi . AdaBoost.M1 does
not distinguish between classes in these weight update formulas. The cost-sensitive
boostingmethods proposed in [35, 36] domake this distinction, by introducing class-
dependent costs in (9.1). A cost is defined for each class, that is, the methods use one
cost value for the positive class and one for the negative class. The ratio of these two
values is set in favor of the minority class. As a result, relatively more effort is taken
to correctly classify minority bags. The authors note that the real ratio between the
class-wise misclassification costs is generally not available. They advise to use the
imbalance ratio as cost ratio, as this value can be easily derived from the data. They
propose four versions of their algorithm, differing in the places where the cost fac-
tors are introduced. Their proposals are similar to the single-instance cost-sensitive
boosting algorithms from [30]. The methods are called Ab1, Ab2, Ab3, and Ab4 and
there weight update formulas are

Ab1: Kt (Xi , yi) = exp(−Ciαt yi ht (Xi))

Ab2: Kt (Xi , yi) = Ci exp(−αt yi ht (Xi))

Ab3: Kt (Xi , yi) = Ci exp(−Ciαt yi ht (Xi))

Ab4: Kt (Xi , yi) = C2
i exp(−C2

i αt yi ht (Xi))

In these formulas, Xi refers to a bag and yi to its outcome.The function ht corresponds
to a multi-instance classifier. The value Ci is the cost associated with the bag Xi .
It can take on only two values, either the cost for the positive class or that of the
negative class, depending on the bag-label. Bags of the same class are automatically
associated with the same cost.

The cost-sensitive boosting schemes are experimentally shown to outperform
BagSMOTE in [35]. Based on their experimental work in [36], Wang et al. put Ab3

9.5 Customized Multi-instance Approaches 201

forward as best performing version among their proposed cost-sensitive boosting
algorithms.

9.5.2 Fuzzy Rough Multi-instance Classifiers

In the recent contributionofVluymans et al. [34], an algorithm-level solution tomulti-
instance class imbalancewasproposed as an extensionof the single-instance classifier
from [27] that was developed for two-class imbalanced data. Two classifier families,
one instance-based and one bag-based are developed. Both use fuzzy rough set theory
[12], a mathematical concept that models vague and incomplete information.

To classify a new bag, these methods determine its membership degree to the
fuzzy rough lower approximation of the two classes. This value is a number between
0 and 1. For a bag X and a class C , it expresses the degree to which the similarity of
a training bag B with X implies the affinity of B with class C . When X has a high
membership to the fuzzy rough lower approximation of C , training bags similar to
X are likely to belong to class C . This information is used in the prediction step.
An unseen bag is assigned to the class for which its membership degree to the lower
approximation is highest.

The two classifier families in [34] differ from each other in the way they compute
the lower approximation values for a bag. The instance-basedmethods first determine
these values for the instances in the bag. These computations rely on a definition
of similarity between instances, an affinity degree of instances with bags and of
instances with classes. In a second phase, the instance-based values are aggregated
to the bag level. The bag-based algorithms on the other hand directly derive the
information from the bag as a whole, using an appropriate metric to measure the
similarity between bags and the affinity of bags with classes.

Within the two families, classifiers differ from each other in the way they mea-
sure instance or bag similarity as well as in their aggregation procedures. The best
performing representatives of the two families, referred to as FRI (Fuzzy Rough
Instance-based multi-instance classifier) and FRB (Fuzzy Rough Bag-based multi-
instance classifier) in [34], are experimentally shown to outperform the cost-sensitive
boostingmethods described in Sect. 9.5.1 aswell as BagSMOTE in combinationwith
the MITI classifier [6].

9.6 Experimental Analysis

In this section, we present an experimental comparison of methods dealing with
multi-instance class imbalance. These experiments are performed on datasets coming
from various application areas. We include both resampling methods and custom
multi-instance classifiers. The experimental setup is specified in Sects. 9.6.1 and
9.6.2 presents the results.

202 9 Imbalanced Multi-instance Data

Table 9.1 Description of the class imbalanced multi-instance datasets used in this comparison

Dataset # Bags # Inst # Feat IR

Bonds 160 3558 16 3.57

Chains 152 4630 24 4.63

Corel1 2000 7947 9 19

Corel2 2000 7947 9 19

Thio 193 26611 8 6.72

WIR-2 113 3423 298 4.38

WIR-5 113 3423 303 3.71

9.6.1 Setup

The datasets used in this experimental study are described in Table9.1. We list the
total number of bags and instances as well as the number of features. The degree
of class imbalance is represented by the IR of the dataset. These datasets originate
from different application domains. We use the same versions and partitions as in the
experimental study of [34]. Bonds and Chains are bioinformatics datasets that origi-
nally appeared in [28] and were also used in the previous chapters. In this section, we
use the imbalanced versions of [36]. Thio (Thioredoxin) is a bioinformatics dataset
as well, while the two Corel datasets correspond to image recognition problems
and were used in e.g., [9]. Finally, the two WIR datasets relate to the web index
recommendation problem and were originally introduced in [45].

We use the fivefold cross validation procedure described in Sect. 1.4. In the com-
parison, we include the BagSMOTE (B-SMT), Bag_Oversampling (B-Over), and
B-Bags resampling methods as well as all custom classifiers discussed in Sect. 9.5.
We use the parameter settings recommended by the authors of the original propos-
als. BagSMOTE, Bag_Oversampling, and B-Bags are combined with the tree-based
classifier MITI [6]. This classifier is used internally in the cost-sensitive boosting
methods from Sect. 9.5.1 as well. We evaluate the performance of the classifiers by
means of the AUC and g metrics.

9.6.2 Results and Discussion

In this section, we list the full results of the selected algorithms on all datasets and
interpret them accordingly. We divide the main discussion in two parts, related to the
evaluation by theAUCand the g value respectively.Wealso compare the performance
of the resampling methods in combination with three different classifiers.

http://dx.doi.org/10.1007/978-3-319-47759-6_1

9.6 Experimental Analysis 203

Table 9.2 Experimental AUC results for all methods

Dataset B-SMT B-Over B-Bags Ab1 Ab2 Ab3 Ab4 FRI FRB

Bonds 0.7371 0.7680 0.6800 0.6857 0.7183 0.8373 0.7297 0.7345 0.6435

Chains 0.6692 0.6797 0.5726 0.6446 0.6970 0.7855 0.7736 0.7913 0.6081

Corel1 0.7797 0.6016 0.8074 0.7512 0.6931 0.8746 0.7960 0.8751 0.7469

Corel2 0.7392 0.6005 0.7437 0.7703 0.5197 0.7490 0.7131 0.8444 0.8211

Thio 0.5298 0.6169 0.4979 0.6571 0.5000 0.6437 0.6304 0.7076 0.6414

WIR-2 0.7893 0.7580 0.7547 0.8196 0.6674 0.8043 0.7384 0.8323 0.8665

WIR-5 0.6538 0.7011 0.7067 0.6695 0.5440 0.7278 0.7125 0.8984 0.8783

Mean 0.6997 0.6751 0.6804 0.7140 0.6199 0.7746 0.7277 0.8120 0.7437

9.6.2.1 Evaluation by AUC

The AUC values are listed in Table9.2. For each dataset, we print the results of the
best performing method in bold. The table shows that, on average, the FRI method
from [34] attains the highest result. Furthermore, this method dominates the table by
yielding the highest AUC value in five out of seven datasets. In the remaining two
datasets, either Ab3 or FRB yield the best result.

Among the resampling methods, BagSMOTE gives the highest average value. It
outperforms Bag_Oversampling, which was demonstrated in the original proposal
[35] as well. Contrary to the observations in [23], B-Bags does not clearly outperform
BagSMOTE. The former yields a higher AUC value than the latter in only three out
of the seven datasets.

With respect to the custom learners for imbalanced multi-instance data, the first
matter that is evident fromTable9.2 is that they generally provide better classification
results than the resamplingmethods. Only the boostingmethodAb2 is excluded from
this observation, yielding an average AUC value considerably inferior to those of
the three resampling algorithms. Our experiments confirm the finding of [36], that
Ab3 is the best performing alternative for the cost-sensitive learners. Comparing the
two methods from [34], FRI can be preferred over FRB. As noted above, FRI also
stands out as best performing overall method when the classification performance is
evaluated by the AUC.

The results of Table9.2 are visually presented in Fig. 9.2. We have selected the
two oversampling methods BagSMOTE and B-Bags and the classification methods
Ab3 and FRI and plot their performance on all datasets.

9.6.2.2 Evaluation by g

The results for this evaluation can be found in Table9.3 and Fig. 9.3. The conclusions
are less clear-cut than for the AUC evaluation. The FRI method still yields the
highest average result, but is the best performing algorithm in only two out of the

204 9 Imbalanced Multi-instance Data

Bonds Chains Corel1 Corel2 Thio WIR-2 WIR-5
0

0.2

0.4

0.6

0.8

1

A
U
C

B-SMT B-Bags Ab3 FRI

Fig. 9.2 Classification results of the four selected methods, measured with the AUC

Table 9.3 Experimental g results for all methods

Dataset B-SMT B-Over B-Bags Ab1 Ab2 Ab3 Ab4 FRI FRB

Bonds 0.7026 0.7494 0.6197 0.4074 0.4743 0.7715 0.4071 0.6296 0.6583

Chains 0.5988 0.6228 0.4216 0.0000 0.2711 0.7465 0.0000 0.4163 0.4820

Corel1 0.7766 0.4808 0.8074 0.1995 0.2819 0.5358 0.0000 0.7846 0.6079

Corel2 0.7325 0.4876 0.7429 0.4527 0.0000 0.2115 0.0000 0.8016 0.7526

Thio 0.2440 0.5127 0.1852 0.2673 0.0000 0.0000 0.0000 0.6612 0.5521

WIR-2 0.7809 0.7563 0.7477 0.7323 0.3018 0.5898 0.0000 0.7198 0.8140

WIR-5 0.5914 0.6577 0.6616 0.4082 0.2041 0.6665 0.0000 0.7551 0.7879

Mean 0.6324 0.6096 0.5980 0.3525 0.2190 0.5031 0.0582 0.6812 0.6650

seven datasets. Both Ab3 and FRB are each dominant in two datasets as well. The
oversampling method B-Bags attains the best result in the seventh dataset.

As for the AUC, we can conclude that the best results are generally obtained by
custom classifiers rather than oversampling methods. However, we do note that the
cost-sensitive boosting methods do not perform well. Ab3 is still the best version
among them, but it does not perform at the same level as the resampling methods
or FRI and FRB. Among the resampling methods, BagSMOTE attains the highest
average result, followed by Bag_Oversampling. B-Bags performs best in three out
of seven datasets, a number that is not sufficient to support the conclusion of [23]
stating that this method can be preferred over the others. Naturally, as we fixed
the classification algorithm (MITI) executed after the resampling methods, these
observations may differ when another classifier is selected, as presented in the next
paragraph.

9.6 Experimental Analysis 205

Bonds Chains Corel1 Corel2 Thio WIR-2 WIR-5
0

0.2

0.4

0.6

0.8
g

B-SMT B-Bags Ab3 FRI

Fig. 9.3 Classification results of the four selected methods, measured with g

9.6.2.3 Resampling Methods

Resampling methods are performed in the preprocessing phase, which means that
they are independent of the classification step. In particular, they can be combined
with anymulti-instance classifier and their effect on the performance of the lattermay
depend on the selected method. Some classifiers may benefit more from resampling
than others.

In Table9.4 we evaluate the performance of the three oversampling methods in
conjunction with three different classifiers. The results for MITI were presented
above. We also include the CitationKNN method from [40], using two references
and four citers. The third method is the MILES algorithm with C4.5 from [9].

We compare the AUC and g values of these classifiers before (column ‘None’)
and after preprocessing by any of the three resampling methods. The results for
MITI were discussed above and we could put forward BagSMOTE as the preferred
oversampling method for this classifier on this group of datasets. We also note the
clear improvement in the twometrics of all resampling methods on the application of
MITI without preprocessing. Clearly, this classifier greatly benefits from resampling.
For CitationKNN, the AUC values of all resampling methods, as well as that of the
classifier without preprocessing, are close together. For the evaluation by g on the
other hand, the benefits of resampling are very clear. The highest g value is obtained
by the simple Bag_Oversampling method. This method also yields the best results
for MILES, for both evaluation metrics.

206 9 Imbalanced Multi-instance Data

Table 9.4 Results of the resampling methods combined with different classifiers, taken as averages
over the seven datasets

AUC g

Classifier None B-SMT B-Over B-Bags None B-SMT B-Over B-Bags

MITI 0.5866 0.6997 0.6751 0.6804 0.4880 0.6324 0.6096 0.5980

CitationKNN 0.7082 0.7098 0.7084 0.7033 0.1430 0.2905 0.4238 0.2863

MILES 0.5702 0.5829 0.5937 0.5809 0.2666 0.2648 0.4154 0.2927

9.7 Summarizing Comments

In this chapter, we have discussed the phenomenon of class imbalance and the chal-
lenges it poses to both single-instance and multi-instance classification. The skewed
distribution of the data observations among the classes inhibits the recognition of
underrepresented classes. In single-instance learning, many solution methods to deal
with class imbalance have been proposed over the past decades. A main distinction
can be made between data-level and algorithm-level solutions. The former modify
the dataset, e.g., by creating new minority class samples, and are independent of
the classification step. The latter are custom classifiers, that use imbalance-resistant
heuristics internally.

InMIL, comparatively less work has been done on this subject.We have described
the existing methods in this chapter, including resampling methods and custom clas-
sifiers.We have compared these algorithms in an experimental study based on appro-
priate metrics for the setting of imbalanced classes. Our experiments indicate that,
in imbalanced MIL, custom classifiers generally yield better results than resampling
algorithms.

References

1. Abdi, L., Hashemi, S.: To combat multi-class imbalanced problems bymeans of over-sampling
techniques. IEEE Trans. Knowl. Data Eng. 28(1), 238–251 (2016)

2. Amores, J.: Multiple instance classification: review, taxonomy and comparative study. Artif.
Intel. 201, 81–105 (2013)

3. Bamber, D.: The area above the ordinal dominance graph and the area below the receiver
operating characteristic graph. J. Math. Psychol. 12(4), 387–415 (1975)

4. Barua, S., Islam, M., Yao, X., Murase, K.: MWMOTE-majority weighted minority oversam-
pling technique for imbalanced data set learning. IEEETrans.Knowl.Data Eng. 26(2), 405–425
(2014)

5. Batista, G., Prati, R., Monard, M.: A study of the behavior of several methods for balancing
machine learning training data. ACM Sigkdd Explor. Newsl. 6(1), 20–29 (2004)

6. Blockeel, H., Page, D., Srinivasan, A.: Multi-instance tree learning. In: De Raedt, L., Wrobel,
S. (eds.) Proceedings of the 22nd International Conference onMachine Learning (ICML 2005),
pp. 57–64. ACM, New York (2005)

References 207

7. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: synthetic minority over-sampling
technique. J. Artif. Intel. Res. 16(1), 321–357 (2002)

8. Chen, Y.: An empirical study of a hybrid imbalanced-class DT-RST classification procedure
to elucidate therapeutic effects in uremia patients. Med. Biol. Eng. Comput. 1–19 (2016)

9. Chen, Y., Bi, J., Wang, J.Z.: MILES: multiple-instance learning via embedded instance selec-
tion. IEEE Trans. Pattern Anal. 28(12), 1931–1947 (2006)

10. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with
axis-parallel rectangles. Artif. Intel. 89(1–2), 31–71 (1997)

11. Domingos, P.:Metacost: a generalmethod formaking classifiers cost-sensitive. In: Proceedings
of the 5thACMSIGKDD International Conference onKnowledgeDiscovery andDataMining,
pp. 155–164. ACM, New York (1999)

12. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17(2–3),
191–209 (1990)

13. Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)
14. Fernández, A., López, V., Galar, M., Del Jesus, M.J., Herrera, F.: Analysing the classification

of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches.
Knowl. based Syst. 42, 97–110 (2013)

15. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Saitta, L. (ed.) Pro-
ceedings of the 13th InternationalConference onMachineLearning (ICML1996), pp. 148–156.
Morgan Kaufmann Publishers, San Francisco (1996)

16. Galar,M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for
the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans.
Syst. Man Cybern. C 42(4), 463–484 (2012)

17. Galar, M., Fernández, A., Barrenechea, E., Herrera, F.: EUSBoost: enhancing ensembles for
highly imbalanced data-sets by evolutionary undersampling. Pattern Recognit. 46(12), 3460–
3471 (2013)

18. He, H., Garcia, E.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9),
1263–1284 (2009)

19. Kharbat, F., Bull, L., Odeh, M.: Mining breast cancer data with XCS. In: Proceedings of the
9th Annual Conference on Genetic and Evolutionary Computation (GECCO 2007), pp. 2066–
2073. ACM, New York (2007)

20. Lee, Y., Hu, P., Cheng, T., Huang, T., Chuang, W.: A preclustering-based ensemble learning
technique for acute appendicitis diagnoses. Artif. Intel. Med. 58(2), 115–124 (2013)

21. López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with
imbalanced data: Empirical results and current trends on using data intrinsic characteristics.
Inf. Sci. 250, 113–141 (2013)

22. Mena, L., Gonzalez, J.: Machine learning for imbalanced datasets: application in medical
diagnostic. In: Sutcliffe, G., Goebel, R. (eds.) Proceedings of the 19th International Florida
Artificial Intelligence Research Society Conference (Flairs 2006), pp. 574–579. The AAAI
Press, Menlo Park (2006)

23. Mera, C., Arrieta, J., Orozco-Alzate, M., Branch, J.: A bag oversampling approach for class
imbalance in multiple instance learning. In: Parto, A., Kittler, J. (eds.) Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications, pp. 724–731. Springer,
Switzerland (2015)

24. Mera, C., Orozco-Alzate, M., Branch, J.: Improving representation of the positive class in
imbalanced multiple-instance learning. In: Campilho, A., Kamel, M. (eds.) Image Analysis
and Recognition, pp. 266–273. Springer, Switzerland (2014)

25. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3),
1065–1076 (1962)

26. Prati, R., Batista, G., Silva, D.: Class imbalance revisited: a new experimental setup to assess
the performance of treatment methods. Knowl. Inf. Syst. 45(1), 247–270 (2015)

27. Ramentol, E., Vluymans, S., Verbiest, N., Caballero, Y., Bello, R., Cornelis, C., Herrera, F.:
IFROWANN: imbalanced fuzzy-rough ordered weighted average nearest neighbor classifica-
tion. IEEE Trans. Fuzzy Syst. 23(5), 1622–1637 (2015)

208 9 Imbalanced Multi-instance Data

28. Reutemann, P.: Development of a propositionalization toolbox. Master thesis, Albert Ludwigs
University of Freiburg, Germany (2004)

29. Sáez, J.A., Luengo, J., Stefanowski, J., Herrera, F.: SMOTE-IPF: addressing the noisy and bor-
derline examples problem in imbalanced classification by a re-sampling method with filtering.
Inf. Sci. 291, 184–203 (2015)

30. Sun, Y., Kamel, M., Wong, A., Wang, Y.: Cost-sensitive boosting for classification of imbal-
anced data. Pattern Recognit. 40(12), 3358–3378 (2007)

31. Sun, Y., Wong, A., Kamel, M.: Classification of imbalanced data: a review. Int. J. Pattern
Recognit. 23(4), 687–719 (2009)

32. Veropoulos, K., Campbell, C., Cristianini, N.: Controlling the sensitivity of support vector
machines. In: Dean, T. (ed.) Proceedings of the 16th International Joint Conference on AI, pp.
55–60. Morgan Kaufmann Publishers, San Francisco (1999)

33. Vluymans, S.: Instance selection for imbalanced data.Master thesis, GhentUniversity, Belgium
(2014)

34. Vluymans, S., Sánchez Tarragó, D., Saeys, Y., Cornelis, C., Herrera, F.: Fuzzy rough classifiers
for class imbalanced multi-instance data. Pattern Recognit. 53, 36–45 (2016)

35. Wang, X., Liu, X., Japkowicz, N., Matwin, S.: Resampling and cost-sensitive methods for
imbalanced multi-instance learning. In: Wei, D., Washio, T., Xiong, H., Karypis, G., Thu-
raisingham, B., Cook, D., Wu, X. (eds.) Proceedings of the 2013 IEEE 13th International
Conference on Data Mining Workshops (ICDMW), pp. 808–816. IEEE, Los Alamitos (2013)

36. Wang, X., Matwin, S., Japkowicz, N., Liu, X.: Cost-sensitive boosting algorithms for imbal-
ancedmulti-instance datasets. In: Zaïne, O., Zilles, S. (eds.) Advances in Artificial Intelligence,
pp. 174–186. Springer, Berlin (2013)

37. Wang, X., Shao, H., Japkowicz, N., Matwin, S., Liu, X., Bourque, A., Nguyen, B.: Using
SVM with adaptively asymmetric misclassification costs for mine-like objects detection. In:
Wani, M., Khoshgoftaar, T., Zhu, X., Seliya, N. (eds.) Proceedings of the 11th International
Conference on Machine Learning and Applications (ICMLA 2012), pp. 78–82. IEEE, Los
Alamitos (2012)

38. Wang, S., Yao, X.: Diversity analysis on imbalanced data sets by using ensemble models. In:
Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Data Mining
(CIDM’09), pp. 324–331. IEEE, Los Alamitos (2009)

39. Wang, S., Yao, X.: Multiclass imbalance problems: Analysis and potential solutions. IEEE
Trans. Syst. Man Cybern. B 42(4), 1119–1130 (2012)

40. Wang, J., Zucker, J.: Solvingmultiple-instance problem: A lazy learning approach. In: Langley,
P. (ed.) Proceedings of the 17th International Conference on Machine Learning (ICML 2000),
pp. 1119–1125. Morgan Kaufmann Publishers, San Francisco (2000)

41. Yu,H.,Ni, J., Zhao, J.:ACOSampling: an ant colonyoptimization-basedundersamplingmethod
for classifying imbalanced DNA microarray data. Neurocomputing 101, 309–318 (2013)

42. Yu, H., Hong, S., Yang, X., Ni, J., Dan, Y., Qin, B.: Recognition of multiple imbalanced cancer
types based on DNA microarray data using ensemble classifiers. BioMed Res. Int. 2013, 1–13
(2013)

43. Zadrozny, B., Langford, J., Abe, N.: Cost-sensitive learning by cost-proportionate example
weighting. In:Wu, X., Tuzhilin, A., Shavlik, J. (eds.) Proceedings of the 3rd IEEE International
Conference on Data Mining (ICDM 2003), pp. 435–442. IEEE, Los Alamitos (2003)

44. Zhao, X., Li, X., Chen, L., Aihara, K.: Protein classification with imbalanced data. Proteins
Struct. Funct. Bioinform. 70(4), 1125–1132 (2008)

45. Zhou, Z., Jiang, K., Li, M.: Multi-instance learning based web mining. Appl. Intel. 22(2),
135–147 (2005)

Chapter 10
Multiple Instance Multiple Label Learning

Abstract As applications grow more complex, proper data representation becomes
more relevant. Experience shows that a representation accurately reflecting existing
relations and interactions in the data renders the learning task easier to solve. In this
context, multiple instance multiple label learning (MIMLL) appears as a flexible
learning framework. The combination of MIL and multi-label learning introduces a
greater flexibility and ambiguity in the object representation by providing a natural
formulation for representing complicated objects. This chapter provides a general
introduction to MIMLL. First, a description and formal definition are presented
in Sects. 10.1 and 10.2. The main applications are listed in Sect. 10.3. Appropriate
evaluation metrics for MIMLL are described in Sect. 10.4. Section10.5 presents an
overview of the proposed methods and Sect. 10.7 describes some current advances.
Finally, Sect. 10.6 describes the Yelp classification challenge.

10.1 Introduction

As described throughout this book,MIL is an alternative to traditional single-instance
learning and represents a complicated object by a set of instances. Even though it
allows to easily describe a complex concept, each observation is assumed to belong
to only one class. However, there exist classification scenarios in which samples can
belong to several classes. In such a situation, more flexibility needs to be introduced
in the representation. In the framework of multiple label learning (MLL) [5], each
observation can belong to several classes. Examples include images that belong to
several classes simultaneously and text documents classified to several news cate-
gories.

In this chapter,MIMLL is described, combining themulti-instance andmulti-label
perspectives. It is a learning framework that introducesflexibility and ambiguity in the
object representation of both the input and output spaces. An object is represented by
a bag of instances and is allowed to have multiple class labels. MIMLL combines the
MIL andMLL frameworks to formalize objects in real-world problems. For instance,
in image classification, an image generally contains several naturally partitioned
patches (instances) and the complete image can correspond to multiple semantic

© Springer International Publishing AG 2016
F. Herrera et al.,Multiple Instance Learning, DOI 10.1007/978-3-319-47759-6_10

209

210 10 Multiple Instance Multiple Label Learning

Fig. 10.1 Example of MIMLL problem

classes, such as clouds, grassland, and lions. In bioinformatics, a gene sequence
generally encodes a number of segments (instances) and it may be associated with
several functional classes, such asmetabolism, transcription, and protein synthesis. In
text categorization, each document usually consists of several sections or paragraphs
(instances), while the document may be assigned to a set of predefined topics, such as
sports and Olympic games. In Sect. 10.3, different application domains are described
in more depth.

Compared to traditional learning frameworks, MIMLL is more convenient and
natural for representing complex objects, because it adds a higher flexibility both
in the input space and output space. Figure10.1 shows an application of image
annotation from theMIMLLperspective. Each image is composed of a bag of regions
and is associatedwithmultiple labels. The relationship between the image regions and
labels is unknown. Concretely, the figure shows four different images where different
concepts are considered, such as giraffe, elephant, zebra, water, and grassland. The
combination of amulti-label objectwith a set of instances allows to obtain the relation
between the input patterns and their semantic meaning more easily. In some cases,
understanding why a particular object has a certain class label is evenmore important
than simply making an accurate prediction. Under the MIMLL representation, we
may discover that one object has label1 because it contains instance1 and another
has label2 because it contains instance2, while the occurrence of both instance1
and instance2 triggers a more complex concept, such as a particular African region
depending on the represented animals and landscape. In this context, MIMLL has
demonstrated better performance to discover high-level concepts. For example, the
concept of an African zone has a broad connotation and the images belonging to
the Africa concept are varied and therefore not easy to classify. However, if we can

10.1 Introduction 211

exploit some low-level sub-concepts that are less ambiguous and easier to learn, such
as water, grass, elephant, zebra, and giraffe, it is possible to induce the portrayed area
of Africa much easier than by learning it directly.

10.2 Formal Definition

As a preliminary step to defineMIMLL,we study its relationshipwith single-instance
learning, multi-instance learning andmulti-label learning, focusing on classification.
The definitions of single-instance learning andMIL can be consulted in Chaps. 1 and
2. Figure10.2 shows the differences among the different learning frameworks.

In single-instance learning, an instance x is a point in the instance space X. It
is commonly assumed that X ⊆ R

d , that is, each instance is described by a vector
of d elements. The space X can be generalized to X ⊆ A d = A1 × · · · × Ad

so that each instance is described by a d-dimensional vector where each attribute
Ai(i = 1, . . . , d) takes values from a finite or infinite set Vi.

In MIC, a bag X is a set of n instances {x1, . . . , xn}, xi ∈ X, ∀i ∈ [1, . . . n].
Each bag can contain a distinct number of instances. In a training set D = (X,L),

(a) Single-instance and single label
learning

(b) Multiple instance and single la-
bel learning

(c) Single-instance and multiple la-
bel learning

(d) Multiple instance and multiple
label learning

Fig. 10.2 Learning frameworks

http://dx.doi.org/10.1007/978-3-319-47759-6_1
http://dx.doi.org/10.1007/978-3-319-47759-6_2

212 10 Multiple Instance Multiple Label Learning

X = 〈X1, . . . ,Xm〉 is a set ofm bags andL = 〈�1, . . . , �m〉 is a set of class labels. Each
bag Xi is assigned a class label �i ∈ L for all i = 1, . . . ,m. The classes of instances
inside the bags are not known. The objective is to find a function fMIC : NX → L ∈ L,
that allows us to predict class labels of new bags as accurately as possible. This
problem can be seen as multi-instance single label learning.

On the other hand, MLL describes each object by one instance associated with
several class labels. In a classification problem, we have a training set D = (X,L),
where X = 〈x1, . . . , xm〉 is a set of m instances and L = 〈L1, . . . ,Lm〉 is a set of m
class label sets. Each instance xi is assigned a set of class labels Li = 〈�i1, . . . , �iki〉,
with �ij ∈ L,∀j ∈ [1, . . . , ki]. The objective is to find a function fMLL : X → L ⊆ L

that assigns a combination of labels to each instance. This problem can be seen as
single-instance multi-label learning.

Based on the previous definitions and according to the formulation given by Zhou
et al. [39], the task of MIMLL would consist of learning a function fMIML : NX →
L ⊆ L from a set of MIML training examples {(Xi,Li)|1 ≤ i ≤ m}, where Xi ⊆ X
is a bag of ni instances Xi = 〈xi1, xi2, . . . , xini〉 and Li ⊆ L is a set of ki labels
Li = 〈�i1, �i2, . . . , �iki〉 associated with Xi.

10.3 Applications

There are many real-world problems which can be properly formalized under
MIMLL, since their complex objects involve a representation ambiguity in the input
space (an object can have many input descriptions) and output space (an object can
belong to many classes). Most of them are based on applications studied in Sect. 2.4,
although each object is now represented not only by a set of instances but also by a
set of labels.

10.3.1 Image Classification

Image classification is one of the most widely studied MIMLL applications. The
purpose is to, given a image, identify the objects or categories that are portrayed.
Traditional studies have used global image features to solve this task. Such features
cannot characterize an image well, since it is usually composed of several complex
objects. MIMLL represents an image as a bag of instances, where each instance
corresponds to an image region. These image regional features can better characterize
complex contents. On the other hand, assigning a single label to an image may be
impractical in real applications. MIMLL achieves a more appropriate representation
by associating multiple labels with an image. The learning aim is to uncover the
unknown relationship between the regions and class labels. The learned relationship
can be used to classify unlabeled images.

http://dx.doi.org/10.1007/978-3-319-47759-6_2

10.3 Applications 213

Region-based image classification of natural scene images has been addressed in
several works [1, 4, 14, 33–37]. These studies employ 2000 images and five cate-
gories (desert, mountains, sea, sunset, and trees). This task has become a benchmark
for image annotation. The classification objective is to predict which categories the
complete image represents. Only 22% of the images in the dataset belong to more
than one class. The average number of labels per image is 1.24 ± 0.44. Each image
is represented as a bag of nine 15-dimensional instances (image patches).

Other works like [19, 22] use the classic Corel dataset containing 5000 images.
The whole set consists of 50 groups, such as beach, aircraft, and tiger. Each group
contains 100 similar images and every image is annotated with one to five categories.
The total number of keywords in the Corel dataset is 371.

10.3.2 Video and Audio Concept Detection

With the rapid development of storage devices, networks and compression tech-
niques, large collections of digital videos are available. Automatic video annotation
has emerged as an interesting topic in the multimedia research community to facil-
itate the annotation of videos with concepts describing the information in the video
content at the semantic level. These concepts can be used to index or browse the
video.

Traditional studies represent one video clip with a flat feature vector. However,
video data usually has a natural hierarchical structure. A video can be represented by
a hierarchy including, from large to small: shot, frame, and region within the frame.
Moreover, a video clip is generally relevant to multiple concepts. MIMLL represents
each shot as a bag of instances in which each instance corresponds to a key-frame of
the video. The relation between instances plays an important role, for example when
the number of key-frames containing the concept needs to be determined in order to
predict whether the shot is associated with that particular concept.

Xu et al. [29] work with 170h of TV news videos from 13 different programs in
English, Arabic, and Chinese to detect the presence or absence of 10 predetermined
benchmark concepts in each shot. These concepts are walking, running, explosion
fire, maps, flag US, building, waterscape waterfront, mountain, prisoner, sports, and
car.

The automatic recognition of bird species from audio files has been dealt with in
MIMLL as well. Habitat loss, declining biodiversity, and climate change require the
development of better tools to monitor birds, including their ranges, diversity, and
phenology. Birds are a good indicator of ecosystem health and diversity, because they
are relatively easy to detect, may provide information about other organisms (plants,
insects…) and respond quickly to environmental change. However, monitoring bird
populations and activity is an intensive task. Machine learning tools can be used
instead to estimate species presence/absence, abundance, gender, age, and other
individual characteristics. InMIMLL, each audio record is a bag of instances and each
instance is a segment of the spectrogram corresponding to syllables of bird sounds

214 10 Multiple Instance Multiple Label Learning

described by a feature vector of acoustic properties. The labels are the species present
in the recording.

Briggs et al. [3] and Pham et al. [17] work with more than 10 terabytes of audio
recordings of birds using unattended omnidirectional microphones. These micro-
phones pick up all sounds in the environment, particularly wind and stream noise.
There are often several birds vocalizing at once. The goal is to detect the presence or
absence of 13 different species of birds. Each recording contains between one and
five species, with 2.144 species on average.

10.3.3 Text Categorization

Another application domain of MIMLL is text categorization. Traditional studies
represent a whole document by means of a word bag. However, a document usually
consists of several separated semantic parts (paragraphs). Different topics evolve
along these parts.MIMLL represents each document as a bag of instances,where each
instance corresponds to a paragraph in the document or a text segment enclosed in a
sliding window of a particular size. Different labels are assigned to each document.

Several works deal with fragment-based text classification [1, 14, 31, 34–36].
Although all of them are based on the classic Reuters-21578 text collection, a bench-
mark for text categorization, different configurations have been used to represent
documents in the MIMLL framework. The original dataset contains 10788 and 10
classes, but the most commonly used dataset contains 2000 documents and the aim
is to categorize them in seven different categories. Documents with multiple labels
comprise around 15% of the dataset and the average number of labels per document
is 1.15 ± 0.37.

10.3.4 Bioinformatics

Common bioinformatics tasks are the understanding of gene functions, interactions
andnetworks.Nature often brings several domains together to formmulti-domain and
multi-functional proteins. Each domain may fulfill its own function independently
or together with its neighbors. With the rapid growth of the number of sequenced
genomes, the vast majority of proteins can only be annotated computationally. A
gene sequence generally encodes a number of segments, each one of which can be
expressed as an instance inMIMLL. The gene sequence itself may be associated with
several functional classes, such as metabolism, transcription, and protein synthesis.

Several works carry out the automated annotation of protein functions [26, 28].
They use a complete proteome on seven real-world organisms, containing 379 pro-
teins (bags) with a total of 320 gene ontology terms (classes) given by the Gene
Ontology Consortium. From the MIMLL perspective, each protein is represented as
a bag of instances, where each instance corresponds to a domain and is labeled with a

10.3 Applications 215

group of gene ontology molecular function terms. The average number of instances
(domains) per bag (protein) is 3.20 ± 1.21 and the average number of labels per
example (protein) is 3.14 ± 3.33.

Li et al. [13] carry out the automated annotation of embryo images (concretely,
studies of Drosophila embryogenesis). They use six different ranges to classify the
gene expressions captured in the images with anatomical and development ontology
terms. Each image contains only one individual embryo represented by a bag. The
image is divided in several patches using a 128-dimensional vector to represent each
patch.

10.4 Evaluation Metrics

MIMLL algorithms make multi-label predictions. Their performance is evaluated
with multi-label metrics that also have to consider that the dataset consists of bags
of instances.

Similar to MLL [5], example-based metrics are calculated separately for each
bag and averaged over samples, while the label-based metrics are computed inde-
pendently for each label before averaging. Two different strategies can be applied,
namely macro-averaging and micro-averaging. In the former, the metric is calcu-
lated individually for each label and the result is divided by the number of labels. For
the latter, the hit and miss counts for each label are first aggregated and the metric
is computed only once after that. The metrics can also be grouped according to the
result provided by classifier. In binary bipartition, a vector of 0s and 1s, indicating
which of the labels are relevant to each sample, is obtained. In label ranking, a label
list ranked according to some relevance measure is returned.

In this section, we describe five popular measures. These are example-based met-
rics to evaluate bipartitions. With respect to notation, D is a MIML dataset, D =
(X,L), where X is a set of n bags X = {X1, . . . ,Xn}. Each bag Xi = {xi1, . . . , xini} is
composed of ni instances and L = {L1, . . . ,Ln} is a set of n label sets, where each
label set Li = {�i1, . . . , �ik} is composed of k labels. The function h(Xi) returns a set
of labels of Xi. The | · | operator counts the number of elements in a set.

• Hamming loss: this metric counts the number of incorrect example-label pairs,

Hloss = 1

n

n
∑

i=1

1

l
|h(Xi)	Li|,

where 	 denotes the symmetric difference between the two sets Li, the real label
set of the ith bag, and h(Xi), the predicted one. There are l labels in total. The
Hamming loss, which should be minimized, is an indicator of the errors of the
classifier proportional to the label set length. It results in different assessments for
the same amount of errors depending on the label set lengths of the dataset.

216 10 Multiple Instance Multiple Label Learning

• Accuracy: the ratio between the number of correctly predicted labels and the total
number of active labels, both in the real label set and the predicted one, is evaluated.
Like all example-based metrics, the accuracy is computed for each instance and
then averaged, namely

Accuracy = 1

n

n
∑

i=1

|Li ∩ h(Xi)|
|Li ∪ h(Xi)| .

• Precision: this measure computes the ratio of the number of correctly predicted
labels and the total number of predicted labels. It can be interpreted as the per-
centage of predicted labels that are truly relevant for the bag. It is calculated as

Precision = 1

n

n
∑

i=1

|Li ∩ h(Xi)|
|h(Xi)| .

• Recall: the ratio of the number of correctly predicted labels and the total number
of real labels is evaluated. Recall can be interpreted as the percentage of correctly
predicted labels among all truly relevant labels, that is,

Recall = 1

n

n
∑

i=1

|Li ∩ h(Xi)|
|Li| .

• F1 score: this metric, also known as the F-measure, is based on the precision
and recall statistics. The mean F1 score is obtained by averaging the F1 scores
of the individual labels. It is a weighted measure of how many relevant labels are
predicted and how many of the predicted labels are relevant. It is computed as

F1Score = 1

n

n
∑

i=1

2 · |h(Xi) ∩ Li|
|h(Xi)| ∩ |Li| .

10.5 Multi-instance Multi-label Learning Methods

MIMLL methods are classified according to the general grouping proposed by Zhou
et al. [39]. A distinction is made between algorithms that solve the problem by
degeneration or those that solve it by regularization. In degeneration methods, the
problem is transformed to a MIL or MLL task. In regularization algorithms on the
other hand, the problem is addressed directly using the MIML representation.

10.5 Multi-instance Multi-label Learning Methods 217

10.5.1 Methods Based on Problem Degeneration

Thesemethods use an intuitiveway to tackle the problemby identifying its equivalent
in traditional supervised learning (that is, single-instance and single label learning,
SISL) via problem reduction.BothMILandMLLare degenerate versions ofMIMLL.
They are used as a bridge to solve theMIMLproblem.Basedon this idea, twodifferent
paradigms have been proposed.

• MILas abridge: thesemodels transform theMIMLL task,which learns a function
fMIML : NX → 2L, to a MIC task learning a function fMIC : NXx L → {−1,+1}.
For any � ∈ Li, fMIC(Xi, �) = +1 if � ∈ Li and −1 otherwise. The labels L∗ for
a new example X∗ can be determined as L∗ = {� | sign[fMIC(X∗, �)] = +1}. As
an illustration, Fig. 10.3 shows the transformation of a MIML problem with three
labels into three different MIC problems with one label each. The resulting MIC
task could be transformed into a traditional supervised learning task to learn a
function fSISL : X → L ∈ {−1,+1}, under a constraint specifying how to derive
fMIC(Xi, �) from fSISL(xij, �)(j = 1, . . . , ni). For any � ∈ Li, fSISL(xij, �) = +1 if � ∈
Li and −1 otherwise. The constraint can be fMIC(Xi, �) = sign

[
ni∑

j=1
fSISL(xij, �)

]

,

which is used to transform MIC tasks into traditional supervised learning tasks.

Fig. 10.3 Using MIL as bridge to solve MIMLL problem

218 10 Multiple Instance Multiple Label Learning

• MLL as a bridge: these methods transform a MIMLL task into a MLL task,
that learns a function fMLL : Z → 2L. For any zi ∈ Z, fMLL(zi) = fMIML(Xi) if
zi = φ(Xi), φ : NX → Z. The labels for a new example X∗ can be determined as
L∗ = fMLL(φ(X∗)). The mapping φ can be any that encodes bags as single vectors.
As an example, Fig. 10.4 shows two possible transformations. In Fig. 10.3a, each
instance in a bag is converted into an instancewith the same labels, while Fig. 10.3b
depicts the situationwhere each bag is converted to one instance using as functionφ

returning the closest instance to the bag centroid. In the latter case, each bag yields
one pattern. TheMLL task can be transformed into a traditional supervised learning
task learning a function fSISL : Z xL → {−1,+1}. For any � ∈ Li, fSISL(zi, �) = +1
if � ∈ Li and −1 otherwise, such that fMLL(zi) = {� | fSISL(zi, �) = +1}.
Table10.1 shows an overview of algorithms developed within this scheme. A

distinction between them is made based on the degeneration scheme and on the
algorithm type used to solve the problem.

(a) Each instance of a bag is a single-instance with bag labels

(b) The closest instance to bag centroid is used as single-instance with bag
labels

Fig. 10.4 Using MLL as bridge to solve MIMLL problem

10.5 Multi-instance Multi-label Learning Methods 219

Table 10.1 Models based on problem degeneration

Multi-label learning as brigde

Kernel-based methods

MIMLSVM [37]

MIMLSVM+ [13]

E-MIMLSVM+ [13]

SISL-MIML [10]

Ensemble methods

En-MIMLSVM [29]

Neural Networks-based Methods

CPNMIML [30]

Multi-instance learning as brigde

Ensemble methods

MIMLBOOST [37]

The first subgroup consists of kernel-based methods. Zhou et al. [37] published
one of the pioneering works in this area. They proposed the MIMLSVM method,
which solves a MIML problem by degenerating it into a single-instance multi-label
problem through a clustering process. Li et al. [13] proposed two different approaches
based on SVMs. The first one, MIMLSVM+, employs a degeneration strategy that
decomposes the learning of multiple labels into a series of binary classification tasks.
An SVM is constructed for each of them. Their second method, E-MIMLSVM+,
extends MIMLSVM+ by incorporating the term correlations via kernel-based multi-
task learning techniques. An improved degeneration approach is defined by Nguyen
et al. [10], where the authors propose an SISL-MIML algorithm based on SVM.
They use quadratic and integer programming to solve the problem.

Ensemble methods are also encountered. Zhou et al. [37] were one of the first to
propose a solution to the MIML problem by degenerating it into a multi-instance
single-label problem. Their MIMLBOOST method reduces the problem by adding
pseudo-labels to every instance.Xu et al. [29] proposed theEn-MIMLSVMalgorithm
based on the MIMLSVMmethod. It is an ensemble that first samples several subsets
from the majority class independently. It then trains multiple classifiers using these
subsets and the minority class. All constructed classifiers are combined to obtain
the final decision. With this methodology, En-MIMLSVM is able to deal with class
imbalance.

With respect to neural networks-basedmethods, Yan et al. [30] proposed theCPN-
MIML algorithm that combines probabilistic latent semantic analysis (PLSA) with
the neural networks. Concretely, the PLSAmodel translates the MIML problem into
a single-instance multi-label problem. A neural network method is used to solve it.

The main shortcoming of degeneration models is that they do not use any infor-
mation about connections between instances and labels or correlations among labels.
This information is lost during the reduction process, although it can help improve

220 10 Multiple Instance Multiple Label Learning

the performance of algorithms. On the one hand, compared to the MLL framework,
MIMLL could capture the intrinsic causation of each individual label and directly
model the latent semantic meaning of instances. On the other hand, in contrast with
MIL methods that model individual labels independently, MIMLL can simultane-
ously model the labels as well as their interactions.

10.5.2 Methods Based on Problem Regularization

As stated above, the performance of degeneration algorithms may suffer from the
information loss incurred during the reduction process. Ideally, the connections
between instances and labels as well as the correlations among labels should be taken
into account. This group of methods includes the remaining regulation frameworks
that have been proposed to solve MIMLL problems. Table10.2 shows an overview.

Table 10.2 Models based on problem regularization

Maximum margin-based methods

M3MIML [34]

MIMLwel [32]

Neural networks-based methods

MIMLRBF [35]

IMIMLRBF [14]

IMIMLRBF-GMBO [1]

MIMLNN [4]

Nearest neighbor-based methods

MIML-kNN [36]

Markov-MIML-kNN [25]

Kernel-based methods

D-MIMLSVM [38]

ML_MLML [24]

Ensemble methods

Peng et al. [19]

EnMIMLNN [26]

Other methologies

Yang et al. [31]

MIML-RE [23]

MIMLGP [6]

Pham et al. (I) [16]

Pham et al. (II) [17]

10.5 Multi-instance Multi-label Learning Methods 221

Following the same procedure as above, these algorithms are grouped according to
the approach used to solve the MIMLL problem.

Maximummargin-based methods generally use a subset of the available instances
in a given bag and maximize the margin between classes. The score of a bag with
respect to each class is computed from the score-maximizing instance in the bag. One
of the earliest works in this context was of Zhang et al. [34], who proposed a max-
imum margin method named Maximum Margin Method for Multi-Instance Multi-
Label learning (M3MIML). This method directly considers the connections between
instances and labels by defining a specific margin on each example. M3MIML
assumes a linear model for each class, where the output for one class is set to
the maximum prediction of all the MIML examples instances with respect to the
corresponding linear model. Subsequently, the outputs for all possible classes are
combined to define the margin of the MIML example within the classification sys-
tem. Following a similar theory, Yang et al. [32] proposed the MIMLwel approach,
that assumes that highly relevant labels share some common instances and that the
underlying class means of bags for each label have a large margin. In this proposal,
a bag of instances is first mapped to a feature vector, where each element measures
the degree of the bag associated with a group of similar instances. Afterward, sparse
predictors are employed to learn the bag labels such that the class means of bags for
each label are maximized.

Proposals based on neural network methods for tackling MIML problems have
been developed as well. Zhang et al. [35] proposed the MIMLRBF algorithm, which
uses a radial basis function (RBF). A k-medoids clustering step groups the examples
of each class. The weights of the method are optimized by a sum-of-squares error
function. An improved version of this model was proposed by Li et al. [14]. Their
IMIMLRBF method applies an improved k-medoids clustering on the data that still
performs appropriately in case of noise. Another improvement of MIMLRBF has
recently been developed [1]. The authors proposed a hybrid searchmethod to estimate
the RBF neural network parameters (the weights, widths and centers of the hidden
units) simultaneously. First, the Gases Brownian Motion optimization algorithm is
used to determine thewidth and center of the network nodes. Next, the parameters are
optimized by a gradient-based method. Chen et al. [4] also proposed a multi-instance
multi-label algorithm based on neural networks, MIMLNN, based on the popular
multi-layer perceptron and derived with the classic backpropagation algorithm.

Proposals based on k-Nearest Neighbor are also used to solve this type of prob-
lems. Zhang et al. [36] proposed the MIML-kNN algorithm based on the popular k-
nearest neighbor technique.MIMLkNNmakes predictions based on neighboring and
citing examples. This algorithmwas computationally optimizedwithMarkovMIML-
kNN learning [25].MarkovMIMLkNN is a nearest neighbor approach to learn correct
labels based on neighbor information as well as on the affinities in a Markov chain.
The Markov chain computes the class probability of each object, instead of deter-
mining the k-nearest neighbors of the unseen object and using maximum a posteriori
probability to calculate its label.

With respect to methods based on kernels, Zhou et al. [38] proposed the D-
MIMLSVM algorithm using SVMs. Its basic assumption is that the labels associ-

222 10 Multiple Instance Multiple Label Learning

ated with the same examples are somehow related and that the bag classification
performance depends on the information loss between the labels and the predic-
tions on the bags as well as on the constituent instances. Recently, Tong et al. [24]
proposed the ML_MLML algorithm. This method proceeds in three steps. First,
instance correlations in a bag are described by constructing a graph. This graph is
mapped to a vector in a high-dimensional space to represent the bag features. With
this information, the multi-instance bag is transformed into a single-instance sam-
ple. Next, considering that predictions of different labels correspond to graphs in
different scales, MK_MIML introduces multi-kernel fusion. It constructs multiple
kernel functions according to different parameters and graphs in different scales.
In the fusion step, a convex combination of the kernels is considered. Finally, the
algorithm performs its classification by means of SVM.

Several proposals use ensemble-based methods. Peng et al. [19] proposed an
ensemble method to combine the results of MIMLSVM+ trained on different visual
features. More recently, Wu et al. [26] proposed an ensemble MIML learning frame-
work, EnMIMLNN. Concretely, three algorithms were developed by combining the
advantage of three kinds of Hausdorff distance metrics and different voting-based
methods.

The remaining frameworks to address the MIML problem are grouped together.
Yang et al. [31] proposed the Dirichlet–Bernoulli Alignment (DBA) approach, a
probabilistic generative model for multi-class, multi-label, and multi-instance cor-
pora. DBA assumes a tree-structure in the data. Its model is similar to latent Dirichlet
Allocation. In DBA, each pattern is modeled as a mixture over the set of predefined
classes. An instance is then generated independently conditioned on a sampled class
label. The label of a pattern is generated from a Bernoulli distribution conditioned
on all the sampled labels used for generating its instances. From another perspec-
tive, Surdeanu et al. [23] proposed MIML-RE, a graphical model based on distant
supervision for relation extraction. It models both multiple instances (by modeling
the latent labels assigned to instances) and multiple labels (by providing a simple
method to capture dependencies between labels). The proposal of Briggs et al. [2]
presented a possible solution using label ranking. They proposed rank-loss sup-
port instance machines, that optimize a regularized rank-loss objective for each bag
and can be instantiated with different aggregation models connecting instance-level
and bag-level predictions. He et al. [6] proposed the MIMLGP algorithm based on
a Gaussian process. The basic idea is to define a latent function with a Gaussian
process prior in the instance space for every label and then output the probabili-
ties over different labels for each sample based on the latent function values of its
instances. In later work, MIMLGP was used to solve multi-label problems in visual
mobile robot navigation [7]. Recently, models based on the maximum likelihood
approach have been developed. Pham et al. [16] proposed a discriminative proba-
bilistic model based on maximum likelihood to determine the model parameters and
learn an instance-level classifier that accounts for novel instances. At the same time,

10.5 Multi-instance Multi-label Learning Methods 223

Pham et al. [17] proposed a graphical model based on these principles taking into
account the inner structure of each class.

10.6 Case Study: Kaggle Yelp Challenge

The Yelp Restaurant Photo Classification recruitment competition1 ran on Kaggle
from December 2015 to April 2016 corresponding with round 6 of the Yelp dataset
challenge. The Yelp Data Challenge is globally organized and consists of the classi-
fication of restaurants based on images that various Yelp users have posted. The idea
is to use business images to automatically capture meta-data and be able to seman-
tically infer coherent information regarding restaurants, which allows to improve
recommendations to users.

Yelp has millions of photos uploaded from all around the world. Some examples
are shown in Fig. 10.5. These pictures can provide valuable information and insights
into the restaurants they are visually describing. A user may want to know if a
restaurant is good for a romantic date, has live music, or serves alcohol. Currently,
restaurant labels are manually selected byYelp users when they submit a photo. They
can give ratings andwrite reviews on businesses and services.While ratings are useful
to communicate the overall experience, they do not convey the context which led a

Fig. 10.5 Restaurant photos of the Yelp dataset

1https://www.kaggle.com/c/yelp-restaurant-photo-classification.

https://www.kaggle.com/c/yelp-restaurant-photo-classification

224 10 Multiple Instance Multiple Label Learning

Fig. 10.6 Relating categories with comments

reviewer to that experience. For example, Fig. 10.6 considers a comment about a
restaurant given by a Yelp user: “We have the best happy hours, the food is good,
and service is even better. When it is winter we become regulars.” Together with the
comment, the user gave the restaurant a 4 star rating. This comment allows to identify
that the review talks about food, service and deals/discounts (happy hour). Food and
service categories are easy to interpret. Deals and discounts categories correspond to
offers during happy hour or specials run by the venue. Other categories, such as an
ambiance category related to the look and feel of the restaurant or a price category
are not considered in this comment.

This high-level categorization of reviews into relevant categories can help a user
to understand the rating assigned by others. It can assist other Yelp users to make a
personalized choice, especially when one does not havemuch time to peruse reviews.
It can also be used to rank restaurants according to these categories.

This task can be viewed as a MIMLL problem in the image domain. Each restau-
rant has an arbitrary number of photos associated with it and can be assigned to
multiple categories (many output labels).

10.6.1 Dataset of Round 6 Yelp Challenge

The full dataset is comprised of approximately 234000 images corresponding to 2000
restaurants. The number of images corresponding to each restaurant ranges from 1 to
2974,with roughly 117 images per restaurant on average. The test set contains 237152
images with information on around 10000 businesses. Each business can have nine
self-explanatory attributeswhich are not evenly distributed. The frequency, identifier,
and name of each individual label in the training set is presented in Table10.3.

The goal is to predict class labels from photos uploaded by users. These labels
are annotated by the Yelp community and are based on a real-life scrape of Yelp
data. Labels can be incomplete or noisy. There are images in the dataset that include
photographs of outdoor scenes and leisure photos not at all related to a restaurant.
The attribute distribution across images is not uniform, as there are some attributes
that occur more frequently than others. Duplicate information can occur as well, as

10.6 Case Study: Kaggle Yelp Challenge 225

Table 10.3 Categories:
names and frequencies

ID Label Relative frequency

0 Good for lunch 0.336

1 Good for dinner 0.497

2 Takes reservations 0.513

3 Outdoor seating 0.502

4 Restaurant is
expensive

0.274

5 Has alcohol 0.625

6 Has table service 0.680

7 Ambience is classy 0.286

8 Good for kids 0.619

a consequence of users accidentally uploading the same photo of the same business
more than once.

The images are of variable size, ranging from icon-size to 500× 500, although
almost all of them are larger than the required input size of 224× 224. Figure10.5
contains examples of restaurant pictures and food items. Approximately 70% of the
pictures of a restaurant are of food items, a good number of these being shots of var-
ious items kept on the table. This information can be used for obtaining information
on suitability for lunch/dinner, alcohol, or table service. Other categories are more
difficult to obtain.

10.6.2 Winners of Round 6 Yelp Challenge

355 Kagglers accepted the challenge of Yelp to predict multiple attribute labels
for restaurants based on user-submitted photos. First place was awarded to Dmitrii
Tsybulevskii. Thuyen Ngo came in second. We comment on their work below.

First Place, Dmitrii Tsybulevskii

Dmitrii Tsybulevskii took first place in this competition. In order to tackle the multi-
label and multi-instance aspects of this problem, he used the embedded space para-
digm (Sect. 5.3), where each bag is mapped to a single feature vector summarizing
its relevant information. To deal with the multi-label component, he used Binary
Relevance (BR) and Ensemble of Classifier Chains (ECC) with binary classification
methods. His best performing model was the multi-output neural network. This net-
work shares weights for the different label learning tasks and performs better than
several BR or ECC neural networks with binary outputs, because it takes into account
the multi-label aspect.

Second Place, Thuyen Ngo

Thuyen Ngo ranked in second place in this competition. He used a multilayer per-
ceptron to handle the multiple label and multiple instance aspects at the same time.

http://dx.doi.org/10.1007/978-3-319-47759-6_5

226 10 Multiple Instance Multiple Label Learning

For the multi-label part, he used 9 sigmoid units. To address the multi-instance task,
he employed a procedure known as the attention mechanism in the neural network
literature. The idea is to let the network learn by itself how to combine information
from many instances. The model is trained using the business-level labels, such that
each business represents a training sample. Standard cross entropy is used as the
loss function. With limited labeled data, this approach would have badly overfitted
the data, since it has more than 2M parameters. To remedy this, Thuyen Ngo used
dropout for almost all layers and early stopping to mitigate overfitting.

10.7 Relevant Multi-instance Multi-label Learning
Research Directions

Asdiscussed inSect. 3.5, the inherent features ofMIL require a careful studyof appro-
priate distancemeasures.WhenMIL is combinedwithMLL, this topic becomes even
more important. Jin et al. [9] proposed an iterative algorithm for MIMLL distance
metric learning. Their proposal first estimates the association between instances in a
bag and the assigned class labels. Next, it learns a distance metric from the estimated
association by means of discriminative analysis. Finally, the learned metric is used
to update the association between instances and class labels, which is further used
to improve the learning of the metric.

Another relevant area in any learning paradigm is the improvement of the algo-
rithmic efficiency. This task is more pronounced in MIMLL because its hypothesis
space expands dramatically, resulting in high complexity and limiting this type of
applications. A few studies deal with this problem directly. Huang et al. [8] proposed
theMIMLfast approach,which first constructs a low-dimensional subspace shared by
all labels and then trains label-specific linear models to optimize the approximated
ranking loss via stochastic gradient descent. Ren et al. [20] adapted MIMLfast to
perform appropriately in specific classification problems with a small quantity of
high-quality data. High-quality data are data where the number of training bags is
much less than the number of features.

We also encounter studies that exploit the power of the MIMLL framework by
combining it with others. In recent years, many learningmethods have been proposed
to work with multi-view data by considering the diversity of different views. These
views may be obtained from multiple sources or different feature subsets. The learn-
ing task can be conducted with abundant information showing a better generalization
ability than single-view learning. The combination ofmulti-view,multi-instance, and
multi-label learning has shown a greater flexibility for representing objects. Nguyen
et al. [11] proposed a Multimodal Multi-instance Multi-label Latent Dirichlet Allo-
cation (M3LDA), where the model consists of a visual-label part, a textual-label
part, and a label topic part that allows to work with discrete views. An extension
of this work was carried out by Nguyen et al. [12], presenting the Multi-Instance
Multi-Label Mixture (MIMLmix) algorithm, a more efficient model that allows to

http://dx.doi.org/10.1007/978-3-319-47759-6_3

10.7 Relevant Multi-instance Multi-label Learning Research Directions 227

work with continuous views. Wu et al. [27] modeled the music emotion recognition
as a multi-label multi-layer multi-instance multi-view learning problem. Music is
formulated as a hierarchical multi-instance structure, where multiple emotion labels
correspond to at least one of the instances with multiple views of each layer. To solve
this problem, a Hierarchical Music Emotion Recognition model was proposed. Shen
et al. [21] combined multi-task multi-label and multi-instance learning and they pro-
posedMTML-MIL, an algorithm based on SVM to leverage both large-scale loosely
tagged images and the inter-object correlations for achieving more effective training
of a large number of inter-related object classifiers.

Finally, in recent years, we encounter studies that accomplish the specification of
novelty detection in the MIMLL setting. Novelty detection is the task of classifying
new or unknown data that are not labeled during training and play an important
role in machine learning. It is a fundamental requirement of a good classification
or identification system, since the test data sometimes contains information about
objects that were not known at training time. Contrary to the common assumption in
MIMLL that each instance in a bag belongs to one of the known classes, in novelty
detection, bags may contain novel-class instances. The goal is to determine, for any
given instance in a new bag, whether it belongs to a known class or to a new one.
Several works in this line [15, 16, 18] show that novelty detection in the MIMLL
setting captures many real-world phenomena and has many potential applications of
recognition, such as handwritten digit recognition or letter recognition.

10.8 Summarizing Comments

In solving real-world problems, a good data representation is often more important
than having a strong learning algorithm, since a good representation may capture
more meaningful information and render the learning task easier to tackle. MIMLL
appears as a natural and convenient framework for problems involving complex
objects. It provides flexibility in both the input and output space. In this chapter, a
description of MIMLL is presented, including a formal definition, applications, and
main methods. The recent Yelp dataset challenge is recounted as an illustration of a
real-world MIMLL application.

References

1. Abdechiri, M., Faez, K.: Efficacy of utilizing a hybrid algorithmic method in enhancing the
functionality of multi-instance multi-label radial basis function neural networks. Appl. Soft
Comput. 34, 788–798 (2015)

2. Briggs, F., Fern, X.Z., Raich, R.: Rank-loss support instance machines for MIML instance
annotation. In: Goethals, B. (ed.) Proceedings of the 18th ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD 2012), pp. 534–542. ACM, New York
(2012)

228 10 Multiple Instance Multiple Label Learning

3. Briggs, F., Lakshminarayanan, B., Neal, L., Fern, X.Z., Raich, R., Hadley, S.J., Betts, M.G.:
Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label
approach. J. Acoust. Soc Am. 131(6), 4640–4650 (2012)

4. Chen, Z., Chi, Z., Fu, H., Feng, D.: Multi-instance multi-label image classification: a neural
approach. Neurocomputing 99, 298–306 (2013)

5. Gibaja, E.,Ventura, S.:Multi-label learning: a reviewof the state of the art and ongoing research.
Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 4(6), 411–444 (2014)

6. He, J., Gu, H., Wang, Z.: Bayesian multi-instance multi-label learning using Gaussian process
prior. Mach. Learn. 88(1), 273–295 (2012)

7. He, J., Gu, H., Wang, Z.: Multi-instance multi-label learning based on Gaussian process with
application to visual mobile robot navigation. Inf. Sci. 190, 162–177 (2012)

8. Huang, S.J., Zhou, Z.H.: Fast multi-instance multi-label learning. In: Proceedings of the 28th
AAAIConferenceonArtificial Intelligence (AAAI2014), pp. 1868–1874.AAAIPress,Québec
(2014)

9. Jin, R., Wang, S., Zhou, Z.H.: Learning a distance metric from multi-instance multi-label data.
In: Flynn, P., Mortensen, E. (eds.) Proceedings of 20th International Conference on Computer
Vision and Pattern Recognition (CVPR 2009), pp. 896–902. IEEE, Los Alamitos (2009)

10. Nguyen, N.: A new SVM approach to multi-instance multi-label learning. In: Webb, G.I., Liu,
B., Zhang, C., Gunopulos, D., Wu, X. (eds.) Proceedings of the IEEE International Conference
on Data Mining (ICDM 2010), pp. 384–392. Conference Publishing Services, Sydney (2010)

11. Nguyen, C.T., Zhan, D.C., Zhou, Z.H.: Multi-modal image annotation with multi-instance
multi-label LDA. In: Rossi, F., Thrun, S. (eds.) Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence (IJCAI 2013), pp. 1558–1564. AAAI Press, Québec (2013)

12. Nguyen, C.T., Wang, X., Liu, J., Zhou, Z.H.: Labeling complicated objects: multi-view multi-
instancemulti-label learning. In:Rossi, F., Thrun, S. (eds.) Proceedings of the 23rd International
Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 2013–2019. AAAI Press, Québec
(2014)

13. Li, Y.X., Ji, S., Kumar, S., Ye, J., Zhou, Z.H.: Drosophila gene expression pattern annotation
through multi-instance multi-label learning. IEEEACMTrans. Comput. Biol. Bioinform. 9(1),
98–112 (2012)

14. Li, C., Shi, G.: Weights optimization for multi-instance multi-label RBF neural networks using
steepest descent method. Neural Comput. Appl. 22(7), 1563–1569 (2013)

15. Lou, Q., Raich, R., Briggs, F., Fern, X.Z.: Novelty detection under multi-label multi-instance
framework. In: Sanei, S., Smaragdis, P., Nandi, A., Ho, A., Larsen, J. (eds.) Proceedings of the
International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE,
Los Alamitos (2013)

16. Pham, A.T., Raich, R., Fern, X.Z., Arriaga, J.P.: Multi-instance multi-label learning in the
presence of novel class instances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML 2015), vol. 3, pp. 2427–2435. Omnipress,
Lille Grand Palais (2015)

17. Pham, A.T., Raich, R., Fern, X.Z.: Simultaneous instance annotation and clustering in multi-
instance multi-label learning. In: Erdomu, D., Akcakaya, M., Kozat, S., Larsen, J. (eds.) Pro-
ceedings of the 25th InternationalWorkshoponMachineLearning forSignal Processing (MLSP
2015), pp. 1–6. IEEE, Los Alamitos (2015)

18. Pei, Y., Fern, X.Z.: Constrained instance clustering in multi-instance multi-label learning.
Pattern Recogn. Lett. 37, 107–114 (2014)

19. Peng, L., Xu, X., Wang, G.: An empirical study of automatic image annotation through multi-
instance multi-label learning. In: Tan, T., Zhou, M., Wang, Y. (eds.) Proceedings of the IEEE
Youth Conference on Information Computing and Telecommunications (YC-ICT 2010), pp.
275–278. Institute of Electrical and Electronics Engineers Inc, Beijing (2010)

20. Ren, D., Ma, L., Zhang, Y., Sunderraman, R., Fox, P.T., Laird, A.R., Turner, J.A., Turner, M.D.:
Online biomedical publication classification using multi-instance multi-label algorithms with
feature reduction. In: Wang, Y., Lu, J., Howard, N., Hu, X. (eds.) Proceedings of the 14th
International Conference on Cognitive Informatics & Cognitive Computing (ICCI-CC 2015),
pp. 234–241. IEEE, Los Alamitos (2015)

References 229

21. Shen, Y., Fan, J.P.: Multi-task multi-label multiple instance learning. J Zhejiang Univ. Sci. C
11(11), 860–871 (2010)

22. Shen, Y., Peng, J., Feng, X., Fan, J.: Multi-label multi-instance learning with missing object
tags. Multimed. Syst. 19(1), 17–36 (2013)

23. Surdeanu, M., Tibshirani, J., Nallapati, R., Manning, C.D.: Multi-instance multi-label learning
for relation extraction. In: Tsujii, J., Henderson, J., Pasca, M. (eds.) Proceedings of the Joint
Conference on EmpiricalMethods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL 2012), pp. 455–465. Association for Computational
Linguistics, Stroudsburg (2012)

24. Tong-tong, C., Chan-juan, L., Hai-lin, Z., Shu-sen, Z., Ying, L., Xin-miao, D.: Amulti-instance
multi-label scene classificationmethod based onmulti-kernel fusion. In: Arai, K. (ed.) Proceed-
ings of the Conference on Intelligent Systems (IntelliSys 2015), pp. 782–787. IEEE Service
Center, Piscataway (2015)

25. Wu, Q., Ng, M.K., Ye, Y.: Markov-miml: a markov chain-based multi-instance multi-label
learning algorithm. Knowl. Inf. Syst. 37(1), 83–104 (2013)

26. Wu, J.S., Huang, S.J., Zhou, Z.H.: Genome-wide protein function prediction through multi-
instance multi-label learning. IEEE ACM Trans. Comput. Biol. Bioinform. 11(5), 891–902
(2014)

27. Wu, B., Zhong, E., Horner, A., Yang, Q.: Music emotion recognition by multi-label multi-layer
multi-instance multi-view learning. In: Cai, Y., Tavanapong, W. (eds.) Proceedings of the 22nd
International Conference on Multimedia (MM 2014), pp. 117–126. ACM, New York (2014)

28. Wu, J.S., Hu, H.F., Yan, S.C., Tang, L.H.: Multi-instance multilabel learning with weak-label
for predicting protein function in electricigens. Biomed. Res. Int. 2015, 1–9 (2015)

29. Xu, X.S., Xue, X., Zhou, Z.H.: Ensemble multi-instance multi-label learning approach for
video annotation task. In: Sundaram, H., Feng, W.-C., Sebe, N. (eds.) Proceedings of the 19th
ACM International Conference on Multimedia (MM 2011), pp. 1153–1156. ACM, New York
(2011)

30. Yan, K., Li, Z., Zhang, C.: A New multi-instance multi-label learning approach for image and
text classification. Multimed. Tools Appl. 75(13), 7875–7890 (2015)

31. Yang, S.H., Zha,H., Hu, B.G.: Dirichlet-bernoulli alignment: a generativemodel formulti-class
multi-label multi-instance corpora. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams,
C.K.I., Culotta, A. (eds.) Proceedings of 22nd Conference on Advances in Neural Information
Processing Systems (NIPS 2009), pp. 2143–2150. MIT Press, Cambridge (2009)

32. Yang, S.J., Jiang, Y., Zhou, Z.H.: Multi-instance multi-label learning with weak label. In:
Rossi, F., Thrun, S. (eds.) Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), pp. 1862–1868. AAAI Press, Beijing (2013)

33. Zhang, M.L., Zhou, Z.H.: Multi-label learning by instance differentiation. In: Holte, R.C.,
Howe, A. (eds.) Proceedings of 22nd Conference on Artificial Intelligence (AAAI 2007), pp.
669–674. AAAI Press, Vancouver (2007)

34. Zhang, M.L., Zhou, Z.H.: M3MIML: a maximum margin method for multi-instance multi-
label learning. In: Giannotti, F., Gunopulos, D., Turini, F., Zaniolo, C., Ramakrishnan, N.,
Wu, X. (eds.) Proceedings of 8th IEEE International Conference on Data Mining (ICDM), pp.
688–697. IEEE, Los Alamitos (2008)

35. Zhang, M.L., Wang, Z.J.: MIMLRBF: RBF neural networks for multi-instance multi-label
learning. Neurocomputing 72(16), 3951–3956 (2009)

36. Zhang, M.L.: A k-nearest neighbor based multi-instance multi-label learning algorithm. In:
Gregoire, E. (ed.) Proceedings of the 22nd IEEE International Conference on Tools with Arti-
ficial Intelligence (ICTAI 2010), vol. 2, pp. 207–212. IEEE, Los Alamitos (2010)

37. Zhou, Z.H., Zhang, M.L.: Multi-instance multi-label learning with application to scene classi-
fication. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) Proceedings of 19th Conference on
Advances in Neural Information Processing Systems (NIPS 2006), pp. 1609–1616. MIT Press,
Cambridge (2006)

230 10 Multiple Instance Multiple Label Learning

38. Zhou, Z.H., Zhang, M.L., Huang, S.J., Li, Y.F.: MIML: a framework for learning with ambigu-
ous objects. Cornell University Library, pp. 1–57 (2008). arXiv:0808.3231

39. Zhou, Z.H., Zhang,M.L., Huang, S.J., Li, Y.F.:Multi-instancemulti-label learning.Artif. Intell.
176(1), 2291–2320 (2012)

http://arxiv.org/abs/0808.3231

Glossary

Accuracy The percentage of correctly classified observations.
Attribute A descriptive property, commonly represented as a column in a dataset.
Bag An observation in multi-instance learning, represented as a set of instances.
Bag prototype selection A data reduction technique that decreases the number of
training bags by eliminating noisy and irrelevant ones. It preserves the most infor-
mative bags.
BoostingAmachine learningmethod that takes a basic learner and iteratively creates
a set of classifiers that together make more accurate predictions than that the basic
learner does on its own.
Class imbalance An uneven distribution of classes in a dataset.
Classification The prediction of a discrete output.
Clustering The division of a dataset in cohesive and well-separated groups.
Cost functionA function estimating the cost involved in the predictions of a learning
model in order to evaluate its performance.
Cross validation A commonly used validation technique to confidently evaluate the
performance of an algorithm.
Data reductionThe reductionof a dataset, e.g., by removingobservations or features.
The aim can be to improve the interpretability and/or computational complexity of
a learner applied on the data.
Dataset A set of observations, usually represented as a matrix with observations in
the rows and features in the columns.
Dimensionality The number of features in a dataset.
Ensemble model A set of learning models that join their predictions according to a
given strategy.
Entropy A diversity measure of class labels in a set of observations. It is often used
to guide the construction of learning models such as, for example, decision trees.
Expectation-maximization A two-step iterative method to estimate parameters in
statistical models.
Example A single data element, commonly represented as a row in a dataset.
Exemplar See example.
Feature See attribute.

© Springer International Publishing AG 2016
F. Herrera et al.,Multiple Instance Learning, DOI 10.1007/978-3-319-47759-6

231

232 Glossary

Feature selection The selection of a subset of the available features in a dataset,
typically to remove redundancy or noise and to speed up computations.
Input space The geometric space generated by the descriptive features.
Instance A vector of feature values, one element of a bag in multi-instance learning.
Instance prototype selection A data reduction technique that decreases the number
of instances inside a bag by eliminating the less representative ones.
Instance space The geometric space in which instances are points.
Kernel function A function that allows to translate a representation space into a
higher dimensional space where a solution can be found.
Label The value of a decision attribute (e.g., class) associated with an observation.
Loss function See cost function.
Multiple instance learning A learning framework in which each observation is a
collection of feature vectors.
Multi-instance learning See multiple instance learning.
Multiple label learning A learning framework in which each observation is associ-
ated with multiple outcomes.
Multi-label learning See multiple label learning.
Multiple instance multiple label learning A learning framework where an obser-
vation is described by multiple instances and associated with multiple class labels.
Multi-instance multi-label learning See multiple instance multiple label learning.
Observation See example.
Outcome See label.
Outlier Unusual value, out of the expected range. This can be an entire observation
or a single feature value.
Output space The geometric space generated by the outcome(s).
Overfitting The construction of an overly complex model that fits the training data
(almost) perfectly, but has a poor generalization capacity.
PreprocessingA procedure applied before learning, in order to, among other things,
ensure a suitable format of the data.
Probability distributionA function that assigns a probability value to each possible
event.
Prototype An observation with representative characteristics.
Random variable A variable which takes values from a set of possibilities, each
with an associated probability.
Regression The prediction of a continuous output.
Regularization Amethod to constrain a problem formulation to prevent overfitting.
Sample See example.
Semi-supervised learning A learning setting in which some observations are asso-
ciated with an outcome, while others are not.
Single-instance learning The traditional learning setting, in which each observation
is represented by one feature vector.
Supervised learningA learning setting in which each observation is associated with
a known outcome.
Statistic A measure used to describe the data, e.g., the sample mean and variance.
Training data The data available to a learner, e.g., to base its prediction model on.

Glossary 233

Test data The data that is unavailable at the learning stage, but used to evaluate the
generalization performance of the learner.
Unsupervised learningA learning setting in which no outcome information is avail-
able for the observations.
Wrapper method An entity acting as an interface between two spaces or data struc-
tures.

	Preface
	Contents
	1 Introduction
	1.1 The Knowledge Discovery Process
	1.2 Preprocessing
	1.2.1 Data Preparation
	1.2.2 Data Reduction

	1.3 Data Mining
	1.3.1 Supervised Learning
	1.3.2 Unsupervised Learning
	1.3.3 Semi-supervised Learning
	1.3.4 Scalability Consideration

	1.4 Classification
	1.4.1 Validation Schemes
	1.4.2 Evaluation Measures

	References

	2 Multiple Instance Learning
	2.1 Formal Description
	2.2 Origin of MIL
	2.2.1 Relationship with Propositional Learning
	2.2.2 Relationship with Relational Learning

	2.3 MIL Paradigms
	2.3.1 Multi-instance Classification and Regression
	2.3.2 Multi-instance Clustering
	2.3.3 Instance Annotation

	2.4 Applications of MIL
	2.4.1 Bioinformatics
	2.4.2 Image Classification and Retrieval
	2.4.3 Web Mining and Text Classification
	2.4.4 Object Detection and Tracking
	2.4.5 Medical Diagnosis and Imaging
	2.4.6 Other Classification Applications
	2.4.7 Regression Applications
	2.4.8 Clustering Applications

	References

	3 Multi-instance Classification
	3.1 Introduction
	3.2 Formal Description
	3.3 Taxonomy
	3.4 MI Assumptions
	3.4.1 Standard MI Assumption
	3.4.2 Weidmann et al.'s Hierarchy
	3.4.3 Collective Assumption
	3.4.4 Mixture Distribution Assumption
	3.4.5 Soft Bag MI Assumption

	3.5 Distance Metrics
	3.5.1 Bags as Point Sets
	3.5.2 Bags as Probability Distributions

	3.6 Real-World Applications
	3.6.1 Bioinformatics
	3.6.2 Image Classification and Retrieval
	3.6.3 Web Mining and Text Classification
	3.6.4 Medical Diagnosis and Imaging
	3.6.5 Acoustic Classification

	3.7 Some Comments on Software Tools
	References

	4 Instance-Based Classification Methods
	4.1 Introduction
	4.2 Wrapper Methods to Single-Instance Learning Algorithms
	4.3 Maximum Likelihood-Based Methods
	4.3.1 Maximum Likelihood Principle
	4.3.2 Diverse Density
	4.3.3 Logistic Regression
	4.3.4 Boosting

	4.4 Decision Rules and Tree-Based Methods
	4.5 Instance-Level SVM
	4.6 Neural Network-Based Methods
	4.6.1 Feedforward Neural Networks
	4.6.2 Recurrent Neural Networks
	4.6.3 Decision-Based Neural Networks
	4.6.4 Network Combinations

	4.7 Evolutionary Based Methods
	4.8 Experimental Analysis
	4.8.1 Setup
	4.8.2 Results and Discussion

	4.9 Summarizing Comments
	References

	5 Bag-Based Classification Methods
	5.1 Introduction
	5.2 Original Bag Space Methods
	5.2.1 Nearest Neighbor Methods
	5.2.2 Bag-Level SVM

	5.3 Mapped Bag Space Methods
	5.3.1 Mapping Methods Based on Bag Statistics
	5.3.2 Mapping Methods Based on Prototype Concatenation
	5.3.3 Mapping Methods Based on Counting
	5.3.4 Mapping Methods Based on Distance
	5.3.5 Bag-Level Distance Mapping Methods

	5.4 Experimental Analysis
	5.4.1 Setup
	5.4.2 Results and Discussion

	5.5 Comparing Instance-Based, Bag-Based, and Traditional Classification Methods
	5.6 Summarizing Comments
	References

	6 Multi-instance Regression
	6.1 Introduction
	6.2 MIR Formulation
	6.2.1 Problem Description
	6.2.2 Evaluation Measures

	6.3 Instance-Based Regression Methods
	6.3.1 Prime Instance Assumption
	6.3.2 Collective Assumption

	6.4 Bag-Based Regression Methods
	6.4.1 Original Bag Space Methods
	6.4.2 Mapped Bag Space Methods

	6.5 Summarizing Comments
	References

	7 Unsupervised Multiple Instance Learning
	7.1 Multiple Instance Cluster Analysis
	7.1.1 Introduction to Cluster Analysis
	7.1.2 Multiple Instance Clustering Requirements
	7.1.3 Multiple Instance Clustering Evaluation Measures
	7.1.4 Multiple Instance Clustering Methods
	7.1.5 Multiple Instance Clustering as a Preprocessing Step for Classification

	7.2 Multiple Instance Association Rule Mining
	7.2.1 Association Rule Mining Introduction
	7.2.2 Multiple Instance Association Rule Mining Requirements
	7.2.3 Apriori-MI Algorithm

	7.3 Summarizing Comments
	References

	8 Data Reduction
	8.1 Introduction
	8.2 Multiple Instance Methods for Feature Selection
	8.2.1 Introduction to Feature Selection
	8.2.2 Filter Methods
	8.2.3 Embedded Methods
	8.2.4 Hybrid Method: HyDR-MI Algorithm

	8.3 Multiple Instance Methods for Bag Prototype Selection
	8.3.1 Introduction to Bag Prototype Selection
	8.3.2 Filter Methods

	8.4 Summarizing Comments
	References

	9 Imbalanced Multi-instance Data
	9.1 Introduction
	9.1.1 Dealing with Class Imbalance
	9.1.2 Evaluation Measures in the Imbalanced Domain

	9.2 Single-Instance SMOTE
	9.3 Multi-instance Class Imbalance
	9.3.1 Problem Description
	9.3.2 Solutions for Multi-instance Class Imbalance

	9.4 Multi-instance Resampling Methods
	9.4.1 BagSMOTE, InstanceSMOTE, Bag_oversampling
	9.4.2 B-Instances
	9.4.3 B-Bags

	9.5 Customized Multi-instance Approaches
	9.5.1 Cost-Sensitive Boosting Models
	9.5.2 Fuzzy Rough Multi-instance Classifiers

	9.6 Experimental Analysis
	9.6.1 Setup
	9.6.2 Results and Discussion

	9.7 Summarizing Comments
	References

	10 Multiple Instance Multiple Label Learning
	10.1 Introduction
	10.2 Formal Definition
	10.3 Applications
	10.3.1 Image Classification
	10.3.2 Video and Audio Concept Detection
	10.3.3 Text Categorization
	10.3.4 Bioinformatics

	10.4 Evaluation Metrics
	10.5 Multi-instance Multi-label Learning Methods
	10.5.1 Methods Based on Problem Degeneration
	10.5.2 Methods Based on Problem Regularization

	10.6 Case Study: Kaggle Yelp Challenge
	10.6.1 Dataset of Round 6 Yelp Challenge
	10.6.2 Winners of Round 6 Yelp Challenge

	10.7 Relevant Multi-instance Multi-label Learning Research Directions
	10.8 Summarizing Comments
	References

	Glossary

