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Chapter 7
Multiscale Modelling of Bionano Interface

Hender Lopez, Erik  G.  Brandt, Alexander Mirzoev, Dmitry Zhurkin, 
Alexander Lyubartsev, and Vladimir Lobaskin

Abstract  We present a framework for coarse-grained modelling of the interface 
between foreign nanoparticles (NP) and biological fluids and membranes. Our 
model includes united-atom presentations of membrane lipids and globular proteins 
in implicit solvent, which are based on all-atom structures of the corresponding 
molecules and parameterised using experimental data or atomistic simulation 
results. The NPs are modelled by homogeneous spheres that interact with the beads 
of biomolecules via a central force that depends on the NP size. The proposed meth-
odology is used to predict the adsorption energies for human blood plasma proteins 
on NPs of different sizes as well as the preferred orientation of the molecules upon 
adsorption. Our approach allows one to rank the proteins by their binding affinity to 
the NP, which can be used for predicting the composition of the NP-protein corona 
for the corresponding material. We also show how the model can be used for study-
ing NP interaction with a lipid bilayer membrane and thus can provide a mechanis-
tic insight for modelling NP toxicity.

Keywords  Nanoparticle • Toxicity • Coarse-grained molecular dynamics • Protein 
corona • Cell membrane

7.1  �Introduction

Over the last decade, in vitro and in vivo experiments have produced significant 
amount of veritable information that can be integrated into theoretical models with 
the aim of predicting possible health and environmental effects of engineered 
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nanoparticles (NP) [1]. However, even the most systematic studies leave the ques-
tion of precise toxicity mechanisms associated with NPs wide open [2–4]. An 
important finding arising from these studies is that the toxic effects can emerge 
either from membrane damage or from interaction of NPs, once they are inside the 
cell, with the internal cell machinery. Therefore, an evaluation of possible risks 
should include an assessment of NP ability to penetrate, modify, or destroy the cell 
membrane and bind to key biomolecules [4]. Being selectively permeable, mem-
branes participate in control of the transport of vital substances into and out of cells. 
Whereas some biomolecules may penetrate or fuse with cell membranes without 
overt membrane disruption, no synthetic material of comparable size has shown this 
property [5]. Among the factors determining the outcome of NP-membrane interac-
tion the surface properties of nanomaterials play a critical role, which can implicate 
the membrane or plasma proteins in conditioning NP prior to cell penetration.

The detailed understanding of the crucial stages of NP-cell membrane interac-
tion can be achieved with computer simulation. Molecular dynamics is now a well-
recognized tool for studying intermolecular interactions, self-assembly, and 
structure of biomolecules or their complexes. The reliability and predictive charac-
ter of molecular modelling has improved significantly during the last few years, 
with development of new, carefully parameterized force fields, simulation algo-
rithms, and greatly increased computer power [6]. The role of computer simulation 
is now well recognized in many fields including drug design and toxicology [7–9]. 
In the same way, one can attempt to predict the detrimental effect of NPs from 
physical considerations. Establishing a qualitative and quantitative connection 
between physicochemical properties of NPs and their effect on biological function-
ing of membranes can help to identify the possible pathways leading to toxicity 
and give a mechanistic interpretation of toxicological data. To achieve this goal, 
one has to understand the processes occurring at the bionano interface or on the 
initial stages of contact between the foreign nanomaterial and the organism such as 
formation of NP-biomolecule complexes, NP-cell membrane interaction, and NP 
uptake into the cell.

Understanding the corona formation and NP uptake requires one to address the 
lengthscales at the range of up to 100 nanometres, which is currently beyond the 
reach of direct atomistic modelling. Though lipid membranes have been very inten-
sively studied by molecular simulations during last decade [10], in general, model-
ling NP translocation through a lipid membrane is a significant challenge. Depending 
on the size of the NP and any associated proteins (corona) tens of thousands, or 
more, of lipid and other molecules may be needed to model a representative fraction 
of the membrane. For small (under 5 nm) NPs, cytotoxicity effects such as mem-
brane disruption and poration can be addressed at the atomistic scale and at this 
scale significant insights have already been gained using molecular simulation using 
atomistic or coarse-grained (CG) force fields [11–14]. To assess interactions of 
larger NPs with membranes mesoscopic simulations based on greatly reduced num-
ber of degrees of freedom are required. To build a quantitative mesoscale model, 
information on NP-biomolecule association should be transferred from atomistic 
simulations to the larger scale using coarse-graining.
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Many of today’s CG models use empirical parameterization of effective interac-
tion potentials. There exist several basic approaches for systematically constructing 
effective CG potentials from the results of atomistic simulations. One common 
approach is based on reproduction of forces for specific snapshots of the system (the 
force matching approach [15, 16] and the other, is based on fitting of structural 
properties, for which the radial distribution functions are typically used (the inverse 
Monte Carlo (IMC), or Newton Inversion method) [17, 18]. The IMC method was 
previously used to build CG models of various molecular systems including ion-
DNA solutions [19]. In the same spirit, CG models of plasma and membrane pro-
teins have been developed [20–23] using the united-atom scheme, i.e. replacing the 
common groups of atoms by single beads, and thus drastically reducing the number 
of degrees of freedom. The solvent is usually removed from the CG model and is 
integrated into effective interaction potentials between the CG beads, which on 
itself provides a big gain in efficiency. A systematic coarse-graining based on the 
all-atom presentations will preserve the shape and size of the relevant molecules and 
thus molecular specificity. In this approach we sacrifice a number of internal degrees 
of freedom, such as protein conformations, which can be justified a posteriori. 
Although neglecting the protein internal degrees of freedom is a necessarily shaky 
approximation, this could be the most beneficial one as we can get around the 
dynamic bottlenecks related to slow protein unfolding.

Similar to molecules, one can use IMC and other coarse-graining methods to 
model effective interactions between NPs [9, 24, 25]. Thus, the construction of the 
mesoscale modelling tool involves the following steps, with each consecutive stage 
based on a systematic coarse-graining of the more detailed description and vali-
dated by experimental data (Fig. 7.1):

In the following sections, we describe a minimum set of such CG tools that allow 
one to simulate the interaction of the NP-protein corona complex with a lipid 
bilayer. The remainder of the paper is constructed as follows. First, we describe a 
CG model to calculate the adsorption energies and the most favorable adsorption 
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Fig. 7.1  Scheme of the multiscale simulation approach for modelling NP uptake
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orientations of proteins onto a hydrophobic NP. The proposed method is then used 
to calculate the adsorption energies of the two common proteins in human blood 
onto NPs with negative or positive surface charge or neutral surface. We also report 
on the effect of the NP radius on the adsorption energies and validate the proposed 
methodology against full atomistic simulations. Then, in Sect. 7.3 we describe a 
methodology, in which full atomistic simulations of a lipid bilayer and various 
lipid-Cholesterol mixtures are used for the extraction of CG pair potentials. In Sect. 
7.4, we present a CG simulation of the interaction a bare NP and of a NP-protein 
complex with a lipid bilayer. Finally, in Sect. 7.5 we summarise the main results.

7.2  �Nanoparticle-Protein Interaction

It is now well accepted that foreign surfaces are modified by the adsorption of bio-
molecules such as proteins or lipids in a biological environment, and that cellular 
responses to materials in a biological medium might reflect the adsorbed biomole-
cule layer, rather than the material itself [26]. Recently, the concept of the NP-protein 
corona has been introduced to describe the proteins in association with NPs in bio-
logical fluids [27–30]. The composition of NP corona is flexible and is determined 
by many affinity constants and concentrations of the components of the blood 
plasma. One can speculate that in many practically relevant situations, the protein 
corona is the surface that is exposed to the cell membrane and is the entity the cell 
protective mechanisms have to deal with. Thus, for most cases it is more likely that 
the biologically relevant unit is not the particle itself, but a nanoobject of specified 
size, shape, and with certain protein corona structure. Naked particle surfaces will 
have a much greater (non-specific) affinity for the cell surface than a particle hiding 
behind a corona of “bystander” proteins – that is proteins for which no suitable cel-
lular recognition machinery exists. The evidence suggests that, in comparison to 
typical cell-membrane-biology event timescales, the particle corona is likely to be a 
defining property of the particle in its interactions with the cell surface, whether it 
activates cellular machinery or not. Similar observations and outcomes exist for 
particles inside the cell, in key locations, though we cannot discuss details here 
[27–30]. We assume that the actual content of the corona is determined by (i) the NP 
exposure to the protein solution (blood plasma), (ii) a competition between the 
adsorbed proteins and the glycoproteins/membrane lipids. We will model the pro-
tein and lipid interaction with the NP surface at the CG united-atom level for 
selected set of proteins (see Table 7.1) and lipids. These simulations will provide 
interaction energies and will be used to predict the kinetics of protein/lipid corona 
formation. The data on aminoacid interaction with NP will allow us to compute 
binding affinities of arbitrary proteins of known structure within an additive model 
implying that the total protein-NP interaction energy is computed as a sum of NP 
interactions with aminoacids in contact with NP surface. From the typical protein 
concentrations and adsorption energies one can also predict the average content of 
the corona using ideal adsorbed solution theory [31]. It is important to understand 
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that at this stage we would be able neither to scan all the plasma proteins nor to take 
into account any change of protein conformation or bonding between the adsorbed 
proteins. However, as the effect of the corona is still largely unknown, we can only 
hope to capture the most important contributions of the plasma protein to the NP 
dispersion stability and their interaction with the cell membrane.

Due to complexity of blood plasma, we can only model it at a simplified level. It 
seems reasonable to include the elements, which are more likely to affect the NP 
interactions and aggregation, and mediate their interaction with the membrane. The 
plasma can then be modelled as a solution of biomolecules in an implicit solvent 
with a dielectric constant of water and the Debye length corresponding to physio-
logical ionic strength, van der Waals interactions set to corresponding triplets 
NP-protein-water, or protein-water-protein, and appropriate surface charges on the 
molecules. In this work, we study the adsorption of two of the most abundant pro-
teins in blood plasma, Human Serum Albumin (HSA) and Fibrinogen (Fib). In 
Table 7.1, we summarise their relative content in blood and their molar mass. 
Although this two proteins represent important components of the blood plasma 
because of their abundance, recent observations [27–29, 32] demonstrate that the 
protein corona can include hundreds of different plasma proteins. As of now, it is 
mostly not known what proteins dominate the content of the corona or play the most 
crucial role in the NP coating and uptake, although some progress has been made 
[33] and there is hope that such information will become available in the coming 
years.

7.2.1  �Adsorption of Proteins onto Nanoparticles

The starting point for development of a CG model for the interaction of NPs with 
proteins is to decide how much detail from the molecular structure of the protein 
one needs to keep. There is an active and extensive research activity on the different 
CG models that can be used to simulate proteins under different conditions (for 
more detailed reviews see [20, 22, 34]). The aim of this work is to propose a set of 
tools that could be used to simulate the interaction of one or more proteins (and in 
some cases quite big proteins) with a NP, for relatively long timescales. To meet this 
goal with a reasonable computational effort the number of beads representing the 
protein should be kept as small as possible but the proposed model should also pre-
serve enough structural information about the molecule. For these reasons we 

Table 7.1  Proteins, PDB ID used for the coarse-graining and the abbreviations used in the text, 
and their size and abundance in human blood plasma

Protein PDB ID Abbreviation Weight fraction in plasma, % Molar mass in, kDa

Human Serum 
Albumin

1N5U HSA 5.0 67

Fibrinogen 3GHG Fib 0.4 340
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propose a one-bead-per-residue model and consider the structure of the protein as a 
rigid body. We have studied the predictions of this model in more detail in Ref. [35]. 
The crystal structures of the proteins are obtained from the literature and one bead 
is per amino-acid is placed at the position of the α-carbon. At the end of this section, 
we will test the validity of this first approximation. The second approximation is 
what level of detail will be needed to represent the NP. In this work, we will con-
sider spherical homogeneous NPs so a single-bead representation is justified.

In our model, the total NP surface-protein interaction potential (U) is a function 
of distance from the surface to the centre of mass (COM) of the protein, dCOM and of 
protein orientation. It is given by a sum of two contributions:

	
U U U

i

N

i i= +( )
=
∑

1

VdW el

	
(7.1)

where N is the total number of residues in the protein, Ui
VdW  is the van der Waals 

interaction of residue i with the surface and Ui
el  is the electrostatics interaction of 

residue i with the surface.
For van der Waals contribution to the potential energy we propose a modified 

version of the residue-residue interaction potential as suggested in [21]. The model 
is based on the widely used residue-residue interaction energies proposed by 
Miyazawa and Jernigan [36], but instead of having a 20 × 20 interaction matrix this 
is reduced to a table of normalized hydrophobicities, εi, one for each amino acid 
(see Table 7.2 in [21]). A hydrophobicity index 0 is assigned to the most hydrophilic 
residue (LYS) and an index 1 to the most hydrophobic one (LEU). We should stress 
that any other hydrophobicity scale can also be used, it just has to be transformed 
such that the indices have to be between 0 and 1, where 0 is assigned to the most 
hydrophilic residue while 1 to the most hydrophobic one. In this work, we consider 
a generic surface which chemical reactivity that can be modeled as another residue 
with a hydrophobicity index εs.

Table 7.2  Normalized hydrophobicities εi (taken from Table II in [21]) and σi for each amino acid 
(taken from [38])

Residue LYS GYU ASP ASN SER ARG GLU PRO THR GLY
εi, ε 0.00 0.05 0.06 0.10 0.11 0.13 0.13 0.14 0.16 0.17
σi, nm 0.64 0.59 0.56 0.57 0.52 0.66 0.60 0.56 0.56 0.45
Residue HIS ALA TYR CYS TRP VAL MET ILE PHE LEU
εi, ε 0.25 0.26 0.49 0.54 0.64 0.65 0.67 0.84 0.97 1.00
σi, nm 0.61 0.50 0.65 0.55 0.68 0.59 0.62 0.62 0.64 0.62

The most hydrophilic residue has a εi of 0, while the most hydrophobic has a value of 1. For 
residue-residue interactions, we use the Lorentz-Berthelot mixing rules 

s s si j i j i j i j, ,/ ,= +( ) =2 e e e
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To model interaction of biomolecules with particles of different sizes we use the 
following model for the nanomaterial. We assume that the interaction between a 
residue i and a bead of the NP s being at a distance r from each other is given by a 
modified 12-6 Lennard-Jones potential:
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εe , n is a parameter that scales the interaction energy, εs , i is the combined hydropho-
bicity index of residue i and the nanomaterial and is given by 

i s i s s i, ,,= se e e  is the 
average van der Waals radius of residue i and the nanomaterial bead, σs, i = (σs + σi)/2 , rc, i 
is the position of the minimum of the pair potential.

An integration of the 12-6 potential over the volume of the nanomaterial as 
defined in [21] gives a 9-3 Lennard-Jones-type potential. For a flat surface, the inter-
action can be expressed in terms of d, the distance between the residue centre of 
mass the closest element of the surface. An integration over a semi-space gives:
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where es e n= 4p 45 , ,re e  is the number density of beads in the nanomaterial, d is the 
distance from the residue i to the surface, dc , i = (2/5)1/6σs , i. Although the density ρ 
seems to be an important parameter scaling the interaction, it is not independent and 
therefore is not crucial for our method. From fitting the adsorption energy to experi-
mental or MD simulation data, we can find the composite quantity εesρ, which is 
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sufficient for further calculations. For a NP of radius R, a similar integration over 
the particle volume gives:
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where r is the distance from residue i to the centre of the NP. The distance rc,i cor-
responds to the minimum of the potential and Uc

vdW  is the value of the function 
Us i,

vdW (rc,i) as defined in the range rc,i ≤ r ≤ rcut. We do not show the general expres-
sion for the position of the minimum as it is too bulky. The minimum is located at 
rc,i − R ≈ (2/5)1/6 σs,i at R ≫ σs , i and is displaced to shorter distances at smaller R. The 
variation, however, is not very large, at R → ∞, rc,i − R ≈ 0.858374σs,i, at R = 200σs,i 
it is 0.858375σs,i, at R = 20σs,i it is 0.858469σs,i, at R=2σs,i it is 0.865242σs,i.

Note that the potential in Eq. (7.2) will only give a repulsive interaction between 
a highly hydrophilic surface and any residue (i.e. defining εs = 0, gives εs,i = 0 for all 
residues). On the other hand, assigning a non-zero value for εs will only change the 
magnitude of the interaction between any residue and the surface but not the shape 
of the potential. In this way, the proposed potential is limited to model only hydro-
phobic surfaces. Because of this limitation, we set the value of εs = 1 for all simula-
tions. Alternatively, a potential that includes desolvatation penalties, as the 12-10-6 
Lennard-Jones potential proposed in [37, 38] for residue-residue interactions or the 
modified version proposed in [23] used to model residue-surface interactions, can 
be used to generate a more general interaction potential. The main drawback of the 
use of these more refine formulas for the potential is that the parameterization is 
more challenging, and the applicability of a set of parameters could be very 
narrow.

The electrostatic interactions in Eq. (7.1) is modeled by adding point charges on 
the NP surface. This charges interact with the charged residues via a Debye-Hückel 
potential. The electrostatic interaction energy between a residue i and all the charges 
on the surface is given by:

	

U k Tq q
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(7.5)

where rij is the distance between the residue i and the point charge on the surface j, 
λB = e2/(4πε0εrkBT) is the Bjerrum length, kB is the Boltzmann constant, T the 
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temperature, ε0 the dielectric permittivity of vacuum, εr the relative dielectric per-
mittivity of water, qi the charge of residue i, qj the charge of the point charge j on the 
surface, Ne the total number of point charges on the surface and λD is the Debye 
length (defined through lD Bc

- =2
08pl  , with c0 is the background electrolyte concen-

tration). In practice, the points charges are evenly distributed on the spherical sur-
face of the NP using a Golden Section spiral algorithm and all points will have the 
same charge qj given by qj = 4πσR2/Ne, where σ is the surface charge density of the 
NP and R is the radius of the NP.

7.2.2  �Orientational Sampling and the Calculation 
of the Adsorption Energy

In this work, we are not considering conformational changes during the adsorption 
process and assume that proteins are rigid. Although the adsorption process might 
conduce to conformational changes, this events happen at longer times than orien-
tational changes on the surface [39]. Taking this into account, the adsorption ener-
gies calculated here will give a valuable insight into the long-time evolution of the 
of the NP-protein corona content.

In our CG model, each residue of a protein is represented by a single bead located 
at the α-carbon position. The native structures are obtained from the Protein Data 
Bank, and in Table 7.1 we report the proteins studied in this work, the PDB ID from 
which the CG model were built and the abbreviation that will be used in the rest of 
the text. The chosen proteins are some of the most abundant in human blood and 
will have a major influence in the formation of the NP protein-corona.

To identify the most favourable orientation of adsorbed protein globule (the one 
with the minimum adsorption enthalpy) we will follow the method suggested in 
[40], which is not as efficient as e.g. a genetic algorithm, but can provide additional 
information about the adsorption process. Briefly, a configuration space search is 
performed, where a systematic rotation of the protein allows us to build an adsorp-
tion map. There are three degrees of freedom (DOF) that have to be scanned. Figure 
7.2 shows that any point on the surface of the protein can be defined by a position 
vector from the COM of the protein. This vector is characterised by two angles: ϕ 
and θ and by rotating the molecule an angle −ϕ around the z direction and then by 
an angle −θ + 180° around the y axes will make the position vector point towards 
the surface. The third DOF is the distance from the COM to the closest point of the 
surface, dCOM. Here, we sample ϕ from 0 to 350° in steps of 10° and θ from 0 to 170° 
in steps of 10° (note that ϕ = 0° is equivalent to ϕ = 360°, and that θ = 0° is equiva-
lent to θ = 180°). Instead of obtaining the “real” adsorption free energy by calculat-
ing the potential of mean force for all orientations, we only calculate the potential 
energy U (given by Eq. (7.1)), which is the sum of all the interactions between the 
surface and the protein. As the adsorption energies are expected to be at least five 
times kBT and as the proteins are assumed to be rigid, neglecting thermal fluctuations 
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is clearly justified. For each configuration (ϕi, θj), the total potential energy is calcu-
lated as a function of distance of the COM, U (dCOM, ϕi, θj), to the surface for the 
case of a slab (Fig. 7.2b) or to the center of the NP for the case of a NP (Fig. 7.2c). 
Following a similar approach as in [41], and denoting the reaction coordinate dCOM 
= z, the adsorption energy for any particular configuration in the case of a protein 
adsorbing on a flat surface is given by:
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Fig. 7.2  Definition of the protein orientation. (a): Any point on the surface of the protein can be 
defined by a position vector from the COM to that point and depends on two angles ϕ and θ. The 
remaining degree of freedom is the distance of the COM, dcom to (b) the surface for a slab or (c) 
to the center of the NP
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where a(ϕi, θj) is the maximum interaction distance from the COM of the protein to 
the surface for the given orientation. For the case of a NP-protein interaction, the 
mean interaction energy for any particular orientation is given by:
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Then the total mean adsorption energy of the system for both cases (slab and NP), 
Ead, can be estimated by averaging over all adsorbed states with Boltzmann weight-
ing [40]:
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where Pij = sin(θj) exp[−E(ϕi, θj)/kBT] is the Boltzmann weighting factor.

7.2.3  �Details of the Simulations, Parameterisation 
and Validation

All simulation were performed using ESPResSo MD package [42] and the cutoff for 
the interaction potential in Eq. (7.2) was set to rcut = 6 nm. For all calculations the simu-
lation box was taken big enough to fit the NP and the protein. The method described 
here only involves the calculation of the total energy of the system given by Eq. 7.1, 
therefore a coupling to a thermostat is not required. After the CG model were built from 
the PDB files, the obtained structures were shifted so the COM of the molecules was in 
the origin of the frame of reference and this structure was defined as the (ϕ = 0°, θ = 0°) 
orientation. With this definition the first residue in the sequence of each protein will 
have the following (ϕ, θ) angles: (21.4°, 85.2°) for HSA and (132.1°, 46.4°) for Fib.

The units of the simulations are: lengths (L) in nm, energy (ε) in kBT ≈ 4.15 × 
10−21 J taking a temperature of T = 300 K, for the mass unit (M) we selected the 
average mass of the 20 residues (ca. 110 Da) hence in our simulations all residues 
have a mass of 1. The values of εi and σi can be found in Table 7.2 and as mentioned 
in Sect. 7.2.1 we will only consider hydrophobic NPs with εs = 1 and σs = 0.35 nm.

NPs with negative surface charges as well as neutral NPs were considered. For 
the negatively charged ones, a surface charge density of −0.02 C/m2 was used. As 
explained in Sect. 7.2.1, the charged surfaces are modelled by individual point 
charges. The surface density of these charged beads (σc = Ne/R2) was set to 4 nm–2 
for all the simulations, which gives e.g. a Ne = 100 for a NP of R = 5 nm. Then, we 
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assumed that each bead carries a charge of −0.39e, where e is the elementary charge. 
As we are considering physiological conditions, we use λB = 0.73 nm and λD = 1 nm. 
Residue charges at this condition are +e for LYS and ARG, −e for ASP and GLU, 
and +0.5e for HIS. The rest of the residues are neutral.

The only free parameters of the model are ρεes in Eq. (7.2), and the parameterisa-
tion was done by systematically changing its value to match experimental data of 
adsorption of Lysozyme on hydrophobic surfaces reported by Chen et al. [43]. The 
native structure for our CG model of Lysozyme was obtained from the PDB  
ID: 2LYZ. With ρεes = 1.972kBT/nm3 we obtain a value of −7.6kBT for the adsorption 
energy (very close to the experimental reported value of −7.9kBT).

To validate the parameterization, the adsorption energy of Myoglobin (PDB ID: 
1MBN used for the CG model) was calculated using the same value of ρεes obtained 
from the parameterisation. In this way, a value of −6.1kBT was found for the adsorp-
tion energy of Myoglobin. This value is slightly lower that the experimental value 
of −7.6kBT also reported by Chen et al. [43] but reproduces the trend that Myoglobin 
adsorbs slightly weaker than Lysozyme to a hydrophobic surface.

7.2.4  �Protein Adsorption Energies

Results for the adsorption energies calculated using Eq. (7.8) as a function of NP 
radius are shown in Fig. 7.3. The results show that HSA adsorbs stronger as the 
radius of the NP increases until the energy reaches a minimum value (Fig. 7.3a). For 
small NPs, the combination of the size effect (increasing R increases the van der 
Waals interactions) with the availability of residues to interact with the surface 
ensures that the proteins adsorb stronger (more negative values) as the radius is 
increased. Then, after a value of radius around 50 nm, the Ead starts to converge to 
the value corresponding to a flat surface as the van der Waals interactions and the 
number of residues close to surfaces do not change significantly by increasing R. 
We performed calculations for NPs of R up to 500 nm and confirmed that the adsorp-
tion energy indeed converges to the slab values. For the Fib molecule the situation 
is different (Fig. 7.3b). In this case the adsorption energy decreases as a function of 
R at least until the biggest radius studied here (R = 100 nm) and it is lower than for 
the adsorption onto a flat surface. The big size of the Fib molecule (ca. 45 nm on its 
longest axes) makes that for at least until R = 100 nm the combined effects of cur-
vature and number of residues that interact with the surface are still noticeable. The 
effect of the charge is more important for the HSA that for the Fib. HSA charge is 
overall negative, so the electrostatic interactions contribution is mainly repulsive 
increasing the values of the Ead. On the other hand, the Fib molecule’s charge is 
positive and the electrostatic interactions tend to increase the adsorption of the Fib 
onto a negative surface. In neither of the proteins the maximum contribution of 
electrostatic interactions was more than 3kBT.

The systematic sampling employed for the calculation of the adsorption energies 
can also be used to identify the most favourable orientations for adsorption and to 
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study how the charge and/or the radius of the NP influence the protein orientation. 
Figure 7.4 shows a surface map of the adsorption energy as a function of the angles 
θ and ϕ for HSA. Each panel is for a radius of 5 or 100 nm and for a neutral or a 
negatively charged surface. The surfaces are complex in structure showing an 
energy landscape with several local minima with differences less than 1kBT. It is also 
important to notice that the maps have large areas with adsorption energies of −6kBT 
or lower. Our results show that HSA will strongly adsorb at physiological condi-
tions and room temperature and that orientational changes after adsorption are ener-
getically favourable. Comparison of different panels in Fig. 7.4 shows that radius 
has only a small effect on the preferred orientations, while the NP surface charge 
density has a minor impact on the preferred orientations.

A different scenario is observed for Fib. Figure 7.5 shows colour maps of Fib 
adsorption energy for two radii for neutral and charged surfaces. In this case, the maps 
depend on the radius of the NP (compare Fig. 7.5a with Fig. 7.5b or Fig. 7.5c with Fig. 
7.5d) but change very little between the charged and uncharged surface (compare Fig. 
7.5a with Fig. 7.5c or Fig. 7.5b with Fig. 7.5d). As we already noticed for HSA, the 
charge has a small effect on the total adsorption energy so we do not expect that it 
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would dramatically change the energy maps. The radius and the surface curvature 
seem to be more important as for big proteins (like Fib) a larger NP allows a more 
extensive contact and thus influences the preference for protein orientations (or NP 
binding pockets). In Fig. 7.6, we show the most favorable orientations for Fib on a 
neutral surface for two different NP radii. For the small NP (Fig. 7.6a), Fib has its 
adsorption energy minimum in a configuration where the NP interacts with a rela-
tively small segment of the molecule. Meanwhile, for a large NP, Fib tends to bind in 
a completely different orientation (Fig. 7.6b). Now the most favourable orientation is 
the one with the longest axis of the Fib molecule along the surface.

A straightforward conclusion from the above data is that the bigger the protein, 
the stronger it will bind to a NP. This result agrees with the experimental observa-
tion reported by De Paoli et al. [44], which shows that the binding association con-
stant on citrate-coated gold NPs (which can be considered as moderately negative 
hydrophobic NP) depends mainly on the size of the protein (they studied HSA, Fib 
and other blood proteins). It is interesting also to compare our results with the simu-
lations of NP corona formation reported by Vilaseca et al. [45]. Using CG MD sim-
ulations, they found that for a flat surface at long times the most abundant protein 
adsorbed was Fib, then Immunoglobulin-γ (of intermediate size between HSA and 
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Fib) and at last HSA. We should note that the adsorption energies calculated in this 
work will be a good predictor of the equilibrium composition of the NP-protein 
corona while at short times other factors such as the protein sizes and their concen-
trations have to be considered to predict the corona composition.

We should note that the approach presented here is justified for small NPs but may 
be difficult to use with large NPs for two main reasons. First of all, the interaction 
potential resulting from integration of the van der Waals forces over the volume of the 
NP will become long-range in that case. Here, we explicitly assumed that the particle 
is hydrophobic, so that there a non-negligible attraction will be felt by the protein far 
away from the NP (up to tens of nanometers), well beyond the typical range of the 
interactions of individual molecules. In our example, the prefactor εs,i scales the inter-
actions, so that the attraction is strongest between the hydrophobic NP and the hydro-
phobic residues. We performed the energy calculation without any cut-off but had to 
limit the interaction radius in the MD simulation below to 6 nm. Second, it is not a 
priori clear whether the same hydrophobicity coefficient εs,i can be used to describe 
the interaction of the bulk material of the NP with the protein as we determined for the 
surface beads. While the interaction at small distances is modified by water structur-
ing at the surface, the long-range van der Waals force should not be affected by the 
local effects. Therefore, the coefficients for hydrophilic materials may underestimate 
the attraction between the NP and biomolecules. To overcome this limitation, one 
needs to treat the bulk of the NP differently from the surface layer. From this point of 
view, it would be reasonable to introduce a two-layer model of a NP, where the surface 
layer takes into account hydration and the attraction of biomolecules to the NP is not 
underestimated due to the short cut-off. To include the attraction in full, one must use 
cut-off distances of at least particle diameter, i.e. 5 nm for 2.5 nm NP, 10 nm for 5 nm 
NP, etc. The main issue to be solved in future modelling is how to increase the cut-off 
of the NP bulk material interaction with the biomolecule beads in common simulation 
codes without affecting dramatically the computational cost.

7.2.5  �Validation of the Methodology

We now test our CG methodology with predictions of full-atomistic MD simulation. 
We model adsorption of small plasma protein Ubiquitin (Ubi) to a flat TiO2 surface. 
The reasons for choosing Ubi for the validation was due to the its small size (only 
76 residues) and known folded structure, which allows us to perform full atomistic 
simulations in a reasonable amount of time.

The Ubi crystal structure was obtained from the PDB (PDB ID file 1Ubi [46]) 
and was coarse-grained as explained above (see Fig. 7.7). To be able to directly 
compare against full atomistic simulations, in this case the interactions potentials 
between the 20 different residues and the surface were obtained by performing full 
atomistic simulations of the adsorption of each of the 20 aminoacids and then per-
forming an inverse Monte Carlo calculation.
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Fig. 7.7  CG model of Ubi 
(PDB ID: 1Ubi [46]). In 
our model each residue in 
the protein is represented 
by one bead
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With the CG methodology we obtained the total adsorption energy of −10.7kBT 
for Ubi and the adsorption map is shown in Fig. 7.8. The surface obtained shows 
two major minima and a number of local minima. It also predicts that orientational 
changes are favorable after adsorption as some of the minima are connected by an 
energy landscapes with rather small barriers (less than 3kBT).

To analyse the validity of our model and to understand the dynamical behavior of 
the adsorption process we performed a series of full atomistic simulations. We used the 
VESTA program [47] to construct a 5 × 20 × 32-supercell of the TiO2 rutile unit cell. 
The coordinates were rotated so that the normal of the TiO2 slab, corresponding to the 
(100) surface, was oriented along the z-direction. The box was elongated in the z-direc-
tion and periodicity was assumed in all directions. The final size of the simulation box 
was then 9.466 × 9.184 × 12 nm. Covalent bonds were added to all Ti-O pairs within 
a 2 Å-cutoff. We used force field parameters for the TiO2 slab from a recent parameteri-
sation study [48]. The same force field was use to calculate the CG potential interac-
tions between the surface and the 20 amino acids. The same folded Ubi structure as for 
the CG model was used and inserted above the TiO2 slab. The TiO2-Ubi system was 
solvated by insertion of 25,817 water molecules around the protein and the slab, and 
the final system contained 99,802 atoms. The system was energy minimized for 1000 
steps and then equilibrated at constant temperature (300 K) and pressure (1 bar) for 
100 ps using Berendsen’s weak scaling algorithms [49], with relaxation constant τ = 
1 ps in both cases. The temperature coupling was applied independently to the TiO2 
slab and to the rest of the system. The pressure tensor must be kept anisotropic due to 
the solid TiO2 slab, but the off-diagonal components of the compressibility tensor (and 
the reference pressure tensor) were set to zero to enforce a rectangular simulation box. 
The diagonal elements of the compressibility tensor were set to 5 × 10–7 bar–1 in the 
lateral directions (bulk TiO2) and 5 × 10–5 bar–1 in the normal direction (bulk water). 
The box vectors relaxed 2–4 % during equilibration.

In a first simulation, we placed the protein in the (ϕ = 0°, θ = 0°) orientation close 
to the surface and followed the dynamics for 440 ns at constant volume and 300 K. The 
Nose-Hoover thermostat [50, 51] with the coupling constant τ = 5 ps was used to 
ensure proper sampling of the ensemble when controlling the temperature. The simu-
lation was run in parallel using 512 cores and frames were kept every 5 ps.

The trajectory obtained showed that the protein motion was diffusive in the bulk 
water for about 25 ns until making contact with the TiO2 slab. Then the Ubi mole-
cule attached to the surface and remained adsorbed for the rest of the simulation. To 
study the stability of the structure of the protein during adsorption we calculated the 
root-mean-square-deviation (RMSD) as a function of time and the results are shown 
in Fig. 7.9. The RMSD remained at a low constant value of ca. 0.2 nm2 during the 
simulation, i.e. no unfolding occurred in the adsorbed state. This results clearly 
confirms that for the adsorption of Ubi on TiO2 a rigid body model for the protein 
structure is well justified.

A detailed study of the simulation trajectory revealed that the protein motion 
could be characterized by four states, and that adsorption occurs through a two-step 
mechanism (Fig. 7.10). First, the protein diffuses freely in the bulk water. Second, 
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the C-terminus of Ubi the protein contacts the TiO2 surface and provides a lock for 
the protein to the first solvation layer. Third, Ubi rotates and locks into position on 
the surface. Fourth, the protein diffuses on the surface in the locked orientation.

The adsorption process is relatively fast once the first surface contact is initiated. 
The anchoring of the C-terminus to the first solvation layer occurs in about 5 ns and 
the locking is completed after 10 additional nanoseconds. The residues at the 
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Fig. 7.9  The root-mean-square deviation (RMSD) of Ubi during the simulation with respect to the 
PDB reference structure. No unfolding occurs and the RMSD is 0.15 nm2 throughout the simula-
tion, which is the same as found in simulations of the folded structure in bulk water
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Fig. 7.10  Four distinct stages were identified during adsorption. (a) The protein diffuses in the 
bulk water. (b) The N-terminus of Ubi anchors to the solvation layer of the TiO2 slab. (c) The pro-
tein rotates and locks to the solvation layer through GLN40 and GLN31. (d) The protein diffuses 
on the solvation layer in the locked conformation
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C-terminus are ARG 74, GLY 75 and GLY 76. The anchoring is initiated when the 
charged end of ARG74 contacts the surface perpendicularly. The contact is not with 
the bare surface, but with the first solvation layer, which is strongly bound directly 
to the surface. At this point the rest of the protein diffuses in the bulk until (ca. 5 ns) 
GLU 40 can contact the surface, which leads to the protein being locked into an 
adsorbed orientation after 10 ns. The locking procedure consists of Ubi first con-
necting GLN40 to the surface, followed by a second connection through GLN31. 
The two glutamines (GLN31 and GLN40) form a bridge that stabilizes the orienta-
tion of the protein and no more changes in orientation occur for the rest of the 
simulation.

The residues involved in the anchor-lock mechanism are arginine and glutamine. 
These have been identified by potential of mean force calculations [48] of isolated 
side chain fragments (together with aromatic side chains) to be the strongest binders 
to TiO2. In both cases, the NH2-group of the end of the amino acid approaches the 
surface in a perpendicular orientation but can then rotate to maximize the interac-
tions with the solvation layer.

The “upright” position of the protein in the adsorbed state suggests that it does 
not correspond to a free energy minimum. Since the orientation does not change 
over 400 ns, it is likely that there are high free energy barriers associated with the 
orientation changing into another free energy basin. To map all values of ϕ and θ, 
more sampling of the protein adsorption is needed. This could either be done in a 
repetitive fashion from different starting configurations or with enhanced sampling 
techniques such as metadynamics.

As for Ubiquitin we do not observe any unfolding within several hundreds of nano-
seconds, we can conclude that our rigid protein model for studying adsorption is justi-
fied at least for some conditions: small NPs, non-metallic particles and small and 
compact proteins such that the adsorption energies are within few tens of kBT. For 
other situations, one should evaluate the energy to decide whether the model is suffi-
cient. In general, conformational changes can be an important factor for the adsorp-
tion dynamics process [44]. This assumption can be relaxed by e.g. using a Gō–Type 
model (see [34] for a review on CG models of proteins). Furthermore, as the method-
ology we presented is computationally very efficient and can provide information 
about the structure of NP-protein complexes, it can be used as an exploring tool to 
perform more sophisticated and computationally demanding calculations.

7.3  �Coarse-Grained Model of a Lipid Bilayer

Any attempt to simulate with some molecular details but at length and time scale 
involve in the uptake of NPs through a cell membrane must rely on a CG model of 
the main constituents of the biological membranes. In this section we describe a 
methodology to systematically CG a lipid bilayer and lipid bilayer containing 
Cholesterol from the results of full atomistic simulations.
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7.3.1  �Molecular Simulations of Various Lipid-Cholesterol 
Mixtures

We started the CG procedure by performing all-atom molecular dynamics simula-
tions for three lipid mixtures: (i) 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine 
with Cholesterol (DMPC + CHOL); (ii) 1,2-dioleoyl-sn-glycero-3-phosphatidylserine 
with Cholesterol (DOPS + CHOL); (iii) 1,2-dimyristoyl-sn-glycero-3-
phosphatidylcholine with 1,2-dioleoyl-sn-glycero-3-phosphatidylserine (DMPC + 
DOPS). The composition of this systems are reported in the Table 7.3. In each simu-
lation, the starting state was generated randomly and energy was minimized after-
wards. Then a short 1 ns NVT simulation at density 1 g/cm3 was carried out, which 
was followed by a 100 ns equilibration simulation in NPT-ensemble and a production 
stage of 400 ns. The Slipids force field was used [52, 53]. Other simulation parame-
ters: time step 2 fs; Nose-Hoover isotropic thermo/barostat with temperature 303 K, 
pressure 1 bar, relaxation times 0.1 and 1 ps for thermostat and barostat respectively; 
all bonds were constrained by Links algorithm; particle-mesh Ewald with Fourier 
spacing 1 Å and tolerance parameter 10−5. The configurations were saved in the tra-
jectory each 10 ps. The atomistic simulations were performed using the Gromacs 
simulation engine (v. 4.5) and a rigid TIP3P water model.

7.3.2  �Mapping of Atomistic to Coarse-Grained Trajectories: 
From Residue to Beads

The atomistic trajectories obtained in the simulations were mapped onto CG trajec-
tories, and radial distribution functions between sites of the CG models have been 
determined. As shown in Fig. 7.11, 10 beads for representation of DMPC molecule 
were used at the CG level (3 beads instead of each of the two hydrocarbon tails, 4 
beads instead of the head group including esters), 14 beads for DOPS molecule (5 
beads instead of each hydrocarbon tail with specific distinguishing of the beads with 
double bond and beads uniting 3 or 4 methylene groups, and 4 beads instead of the 
head group), 5 beads for CHOL molecule, and Na+ ions as a single bead were used. 
Water was not included into CG model but its effect was included into 

Table 7.3  Composition of the simulations used for the CG of lipids mixtures

System I. DMPC-Cholesterol II. DMPC-DOPS III. DOPS-Cholesterol

Number of DMPC 30 30 –
Number of DPPS – 30 30
Number of Cholesterol 30 – 30
Number of water 2000 2000 2000
Number of Na+ – 30 30
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solvent-mediated potentials. Figure 7.12 shows a snapshot of CG DMPC bilayer, 
which is spontaneously formed in a CG lipid system.

The radial distribution functions (RDF) between CG sites obtained after coarse-
graining of the atomistic trajectories were used to compute effective potentials 
defining interactions in the CG models using the inverse Monte Carlo method. The 
RDF were computed for each pair of different CG sites and were used as an input to 
compute effective CG potentials which reproduce the RDFs. Computations of effec-
tive potentials were done for the same compositions of the systems I, II, and III as 

Fig. 7.11  Mapping of systems at an atomistic level to a CG level where each residue of the atom-
istic system is replaced by a bead for DMPC, Cholesterol and DOPS (1,2-dioleoyl-sn-glycero-3-
phosphatidylserin) molecules. CG sites of the same type are given by the same color

a b

Fig. 7.12  Simulation snapshot of a single CG DMPC lipid molecule (left) and of self-assembled 
DMPC bilayer 15 × 15 nm containing 762 lipids (right)
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the respective atomistic simulations listed in Table 7.3. The software package 
MagiC [54] was used. In the inversion process, the first 20 iterations have been 
carried out using iterative Boltzmann inversion, followed by 30–40 iterations using 
the inverse Monte Carlo algorithm.

More specifically, the RDF’s have been determined between beads involved in 
“non-bonded” interactions, that is between CG sites belonging different molecules 
or the same molecule but separated by more than two bonds. Also, reference distri-
bution functions for the bond lengths and bending angle distribution functions were 
determined for the all CG sites relevant for the three types of considered molecules. 
Then the calculated RDFs and bonded reference distribution functions were used to 
calculate parameters of the corresponding CG potentials. This is a multistage pro-
cess, from a high resolution system description to a low resolution one. Monte Carlo 
computer simulations of the CG system DMPC + CHOL using Metropolis method 
(MagiC package) were carried out. The parameters were calculated using a two-step 
iteration technique: first, the iterative Boltzmann inversion method was performed 
to calculate a set of intermediate parameters; second, the inverse Monte Carlo algo-
rithm was used to calculate the final set of parameters. The final parameters of the 
CG potentials for DMPC + CHOL mixture have been calculated (see Fig. 7.13).

7.3.3  �Validation of the Lipid Coarse-Grained Model

The interaction potentials obtained for the CG models using the inverse Monte 
Carlo technique were validated by comparison with atomistic simulations. Figure 
7.14 shows radial distribution functions between some selected sites of DMPC lipid 
and Cholesterol computed in CG and atomistic simulations of a mixture of 30 
DMPC lipids, 30 Cholesterol molecules and 1800 waters. The result shows a perfect 
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coincidence of the RDFs, which justifies the approximations made and the quality 
of the CG model.

Figure 7.12 shows a snapshot of CG DMPC bilayer, which is spontaneously 
formed in a CG lipid system. We have carried out a number of simulations of flat 
lipid bilayers composed of CG lipid models representing other lipids which can be 
built from the CG sites presented in Fig. 7.11. These simulations were carried out at 
zero-tension conditions within the atomistic and CG models. Table 7.4 shows com-
parison of some properties not related to the RDFs obtained within atomistic and 
CG simulations of a piece of bilayer composed of 128 DMPC lipids. Very good 
agreement is observed for the average area per lipid (which is one of the most 
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Fig. 7.14  RDFs between different sites of DMPC (top graph) and Cholesterol (bottom graph) 
molecules, see site definitions to the right of the graph. Atomistic (points) and CG (lines) simula-
tions were carried out for a mixture of 30 DMPC, 30 Cholesterol, and 1800 water molecules (CG 
simulation were without explicit water but in a box of the same size as atomistic simulations 
including water)
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important parameters for a lipid bilayer) and for the tail order parameter, and a rea-
sonably good agreement for the bilayer compressibility. Especially important is the 
agreement for the order parameter, which shows that orientational fluctuations of 
the lipid tails are the same in atomistic and CG models.

Table 7.5 shows average areas per lipid obtained in CG simulations carried out in 
conditions of zero tension and experiment for a number of lipids. Except DMPC, other 
lipids included in this table were not used in the parameterization of the CG potentials. 
The models for these lipids were built from appropriate sites of DMPC and DOPS lipids 
shown in Fig. 7.11, and the CG interaction potentials were taken as determined in IMC 
computations for DMPC and DOPS lipids (some of them shown in Fig. 7.13). One can 
see generally good agreement with experiment, though simulations show a tendency for 
some underestimation of the lipid area. The bilayer composed of DSPC lipids was found 
in the gel phase which again is in agreement with experiment (the temperature of gel 
phase transition for DSPC is 55 °C). We are not aware on an experimental value of the 
average lipid area for the gel phase of DSPC, but it is generally accepted that average 
area per lipid in the gel phase is in the range 43–48 Å2 for phosphatidylcholine lipids. 
Also, atomistic simulations of DSPC bilayer in a gel phase [55] reports the average lipid 
area of 44.5 Å2, which is in good agreement with the result of our CG model.

7.4  �NP and Bilayer Simulation

Using the methodologies described in Sects. 7.2 and 7.3, we now can construct a 
model to simulate the interaction of a DPMC lipid bilayer with a small hydrophobic 
NP and a hydrophobic NP associated with one molecule of HSA. Following is the 
description of the simulations and the main results.

Table 7.4  Comparison of the properties of the DMPC bilayer obtained from the full atomistic 
simulations and the CG model

Area per lipid Compressibility Tail order parameters
(Å) (1014 N/nm) (1) (2)

Atomistic 60 1.9 0.57 0.52
CG 59 2.5 0.56 0.52

Table 7.5  Average areas per lipid. Comparison of simulation results computed in CG simulations 
and experiments at T = 303 K

Lipid
Area per lipid (Å2)
Sim Exp

DMPC (14:0/14:0 PC) 59.0 60.5 [56]
SOPC (18:0/18:1n9 PC) 60.4 61.1 [57]
DOPC (18:1n9/18:1n9 PC) 62.0 67.4 [58]
DSPC (18:0/18:0) 43.5a 44.5a,b [55]

aBilayer in gel phase
bEvaluated in atomistic MD simulations
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7.4.1  �Interaction Potentials and Parameters of the Simulations

The simulated systems are composed of the NP, the lipids that form the bilayer, the 
amino acids of the HSA, and monovalent ions that are used to resemble physiologi-
cal conditions. For all interactions we assume two contributions: electrostatic and 
van der Waals interactions. For the electrostatic contribution, all charged beads 
interact through a Coulomb potential between given by:
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(7.9)

where rij is the distance between the bead i and the bead j, λB is the Bjerrum length 
and qi and qj are the charges of the beads i and j respectively. The calculation of this 
long-range interaction was implemented through an Ewald summation P3M algo-
rithm [42]. The Bjerrum length is set to 0.71 nm in all cases. Note that in the MD 
simulation, the background salt ions are explicitly present, so we do not need to 
employ the screened Coulomb potential Eq. (7.5).

For the van der Waals interactions we use the following model:

•	 Aminoacid − aminoacid van der Waals interactions: we do not explicitly con-
sider interaction between any pair of aminoacids within the single protein mol-
ecule as the protein is not allowed to change conformation from the PDB crystal 
structure. To improve the computational efficiency instead of simulating the 
HSA molecule as a rigid body, we connect all residues which are separated less 
than 10 nm by harmonics bonds with a spring constant of 100kBT. Figure 7.15a 
shows the resulting CG model for the HSA (build according to PDB ID:1N5U), 
while Fig. 7.15b shows the resulting network of bonds (8059 in total).

a b

Fig. 7.15  (a) CG model of HSA protein used in this study. Each residue is represented by a single 
bead located at the position of the α-carbon. Each color represents one of the three domains of the 
HSA molecule. (b) All beads separated by less than 10 nm are connected by stiff harmonic bonds

H. Lopez et al.



199

•	 NP − aminoacid van der Waals interactions: we used the interaction potential 
defined in Eq. (7.2) and the same parameters for the aminoacids and the NP 
obtained by the parameterization described in Sect. 7.2.3.

•	 Lipid-lipid interactions: the CG models of the lipids in the bilayer and the inter-
actions between the four different types of beads were obtained as described in 
Sect. 7.3.

•	 Lipid-NP interactions: we used the same interaction potentials as in the case of 
NP-aminoacid interaction Eq. (7.2) and assumed that lipid beads interact with 
the surface according to their hydrophobicity. We classify the lipid beads into 
one of two groups: head or tail. The head beads are NCL, PCL and COL (see Fig. 
7.11), and they are considered to be hydrophilic with a value of εi = 0.1. The tail 
beads (labeled CH4 in Fig. 7.11) are hydrophobic and a value of εi = 0.75 is used 
for these groups. The van der Walls radius of all the lipids beads is set to σi = 
0.6 nm.

•	 Lipid-aminoacid interactions: for these interactions we use the same approach as 
for the NP-residues and NP-lipid. The potential interaction is also based on the 
hydrophobicity of the beads given by the following modified 12-6 Lennard-Jones 
potential:
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where r is the distance from the lipid bead l to the residue i, εla is a free parameter 
that scales the interaction energy, εl , i is the combined hydrophobicity index of 
lipid l and the residue i and is given by i s i s s i, ,,= se e e  is the average van der 
Waals radius of residue i and the lipid l, σl , i = (σl + σi)/2 , rc = 21/6σl , i and rcut is the 
cut-off for the van der Waals interaction. As in this work we only study the appli-
cability of the proposed methodology we do not systematically parameterize the 
value of εla, instead we set this scaling parameter to 0.5kBT for all simulations. 
This values gives interactions between the lipids and the residues in the same 
order of magnitude as the ones reported in [59].

•	 Ion-ion and ion-molecule interactions: in addition to the Coulomb forces, we 
include excluded volume interactions by means of a WCA potential. The van der 
Waals radii of the ions are set to 0.2 nm.

For all simulations a NP of radius 2 nm is used with a surface charge of −0.02 C/m2. 
We use NVT ensemble with the box size was 15 × 15 × 20 nm and we assume physi-
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ological conditions with monovalent salt concentration of 0.1 M (270 negative and 
positive ions are placed in the simulation box). For a larger NP, NPT simulation would 
be necessary. To keep charge neutrality, further 16 positive ions are added. The bilayer 
is composed of a total of 762 lipids (381 lipids in each layer). A Langevin thermostat 
with a friction coefficient of γ = 0.05 is used and the units of mass, energy and charge 
are the same as described in Sect. 7.2.3. The time unit (τ) is obtained by performing a 
simulation of the bilayer with ions (no NP or proteins are added) and measuring the 
lateral diffusion constant. We obtained a value of 8 × 10–5 nm2/τ, which compared with 
the experimental value of 5 μm2/s gives τ = 16 ps.

35 ns 360 ns0 ns

Fig. 7.16  Time sequence of simulation snapshots illustrating the interaction of a DMPC lipid bilayer 
with a negatively charged hydrophobic NP. The radius of the NP is 2 nm. The ions are not shown
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Fig. 7.17  Distance of the surface of the bare NP to the center of the bilayer as a function of time. 
The dashed line shows the average position of the bilayer surface
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7.4.2  �Simulation of a Nanoparticle in Contact with a Lipid 
Bilayer

To study the interaction of a bare NP with the lipid bilayer we initially position the 
NP close to the bilayer surface and follow the time dynamics of the system. Three 
snapshots are shown Fig. 7.16. From the initial state the NP adsorbs quickly to the 
surface of the bilayer and then penetrates to around 1 nm inside the membrane and 
stays strongly attached until the end of the simulation (see snapshots at 35 and 
360 ns). To explore the adsorption process in more detail, the distance of the surface 
of the NP to the center of the bilayer was recorded and the results are shown in Fig. 
7.17. The NP reaches the bilayer in a few nanoseconds and then attaches to the sur-
face for around 50 ns (the dashed line in Fig. 7.17 marks the average position of the 
surface of the lipid bilayer, as defined by the position of the maximum of density of 
the lipid headgroups). After that, the NP starts penetrating the membrane (in a few 
nanoseconds). Then a slow internalization is observed until the NP reaches its final 
position at approximately 300 ns. The internalization of the NP is mediated by the 
attractions between both type of lipids and the NP. The penetration then stops (or 
becomes much slower) because any further displacement requires a substantial 
change in the membrane structure. To study long-time dynamics of the system, NP 
lipid wrapping and uptake one needs a bigger bilayer or/and NPT ensemble [60]. 
Despite of this limitation, the results obtained with our methodology agree with a 
recent report [61] for the absorption of a hydrophobic NP with a membrane com-
posed of lipids and specialized receptors.

7.4.3  �Simulation of a Nanoparticle-Protein Complex 
in Contact with a Lipid Bilayer

As we discussed above, the NP gets coated by proteins before it reaches the cell 
membrane, and this NP-protein complex is responsible for the final fate of the NP 
[62]. Considering this, we now simulate the interaction of a NP-protein complex, 
where protein corona is represented by a single HSA molecule. As shown in Sect. 
7.2, not all orientations in which protein adsorbs onto a surface are equally probable 
and for our simulation of the interaction of a hydrophobic NP with a DPMC lipid 
membrane we first calculate the adsorption energy map of HSA onto a 2 nm of 
radius hydrophobic NP. The adsorption map is shown in Fig. 7.18a. We can see that, 
as in the cases discussed above, the energy landscape contains more than one mini-
mum. We found the average adsorption energy of −1.7kBT and as the initial orienta-
tion for the simulation we selected the orientation (θ, ϕ) = (145°, 110°), which 
corresponds to adsorption energy of −2.7kBT and the corresponding complex 
NP-HSA is shown in Fig. 7.18b.

Figure 7.19 shows a sequence of snapshots from simulation of the NP-HSA com-
plex with the lipid bilayer. In the initial state, the protein is facing the bilayer. In the 
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simulation, the HSA at first moves in front of the membrane and prevents a direct 
contact between the NP and the lipids. Then, the NP-HSA complex rotates so that 
the NP faces the bilayer and starts penetrating the membrane. Figure 7.20 shows the 
distance of the NP surface to the center of the membrane. The rotation is reflected 
in the sudden change of the position of COM of the HSA. After this quick rear-
rangement the NP starts the penetration while the protein stays attached to the NP 
for the whole simulation but moves around the surface of the NP as can be seen in 
the snapshot for the times 140 and 300 ns in Fig. 7.19. This movement of the HSA 
molecule can also be observed from the curve of the COM of the HSA curves as a 
function of time (Fig. 7.20).

Comparing the two simulations we see that the presence of the HSA dramatically 
changes the interaction of the NP with the membrane. We can envision that a NP, 
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Fig. 7.18  (a) Initial state of the NP-HSA complex. (b) Surface map of the adsorption orientations 
of HSA onto a 2 nm negatively charged hydrophobic NP
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Fig. 7.19  Time sequence of the snapshots of the interaction of a DMPC lipid bilayer with a nega-
tively charged hydrophobic NP complex with one HSA molecule. The radius of the NP is 2 nm. 
The ions are not shown
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fully coated NP with HSA, will not be able to penetrate into the membrane, so the 
coating is changing completely its biological reactivity.

7.5  �Conclusions

In this work, we presented a multiscale methodology for modelling interactions at 
bionano interface, which is central for understanding uptake and toxicity of nano-
materials. We used systematic coarse-graining techniques to reduce the complexity 
of the problem by removing some degrees of freedom and focussing on the proper-
ties of interest. Since the CG models consists of about ten times less interaction 
centres than the atomistic model, and the solvent (water) is not modeled explicitly, 
simulations of the CG model take two to three orders of magnitude less CPU time 
compared with atomistic simulations for equal system size, or, alternatively, CG 
model can be used for simulations of whole proteins, small NPs and sufficiently 
large cell membrane fragments at the scale of tens of nanometers. We have param-
eterised and validated the model against experiments and all-atom MD 
simulations.

The technique for coarse-graining NP-protein interaction, which we presented 
in Sect. 7.2 can be used to calculate the binding energies for arbitrary plasma, 
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Fig. 7.20  Distance of the surface of the complex of NP with one HSA to the center of the bilayer 
and the COM of the HSA as a function of time. The dashed line shows the average position of the 
bilayer surface
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cytosol, or membrane proteins, rank them by binding affinity to the NP and predict 
the content of NP protein corona. Our calculations show that the NP surface charge 
has a small effect on the adsorption energies in comparison to van der Waals inter-
actions between the residues and the surface. We also find that the charge of the NP 
does not influence much the orientation, in which the protein prefers to adsorb. On 
the other hand, we have shown the size of the NP has a big effect on the adsorption 
energy maps, due to the amount of material involved and because the curvature of 
the NP determine the sections of the protein that can interact with the surface. 
Based on our simulations results, we can predict bigger proteins adsorb stronger on 
the inorganic surfaces, even for small NPs, in agreement with the Vroman effect. 
We have also demonstrated that a rigid protein model is justified at least for small 
globular proteins. In Sect. 7.3, we have parameterised a CG lipid and Cholesterol 
model, which reproduces the key bilayer properties of atomistic model of the same 
system. Finally, in Sect. 7.4, we have shown how the CG lipid and NP-protein 
models can be combined to model NP-cell membrane interactions and NP attach-
ment and uptake.
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