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Chapter 6
Systems Biology to Support Nanomaterial 
Grouping

Christian Riebeling, Harald Jungnickel, Andreas Luch, and Andrea Haase

Abstract  The assessment of potential health risks of engineered nanomaterials 
(ENMs) is a challenging task due to the high number and great variety of already 
existing and newly emerging ENMs. Reliable grouping or categorization of ENMs 
with respect to hazards could help to facilitate prioritization and decision making 
for regulatory purposes. The development of grouping criteria, however, requires a 
broad and comprehensive data basis. A promising platform addressing this chal-
lenge is the systems biology approach. The different areas of systems biology, 
most prominently transcriptomics, proteomics and metabolomics, each of which 
provide a wealth of data that can be used to reveal novel biomarkers and biological 
pathways involved in the mode-of-action of ENMs. Combining such data with 
classical toxicological data would enable a more comprehensive understanding 
and hence might lead to more powerful and reliable prediction models. Physico-
chemical data provide crucial information on the ENMs and need to be integrated, 
too. Overall statistical analysis should reveal robust grouping and categorization 
criteria and may ultimately help to identify meaningful biomarkers and biological 
pathways that sufficiently characterize the corresponding ENM subgroups. This 
chapter aims to give an overview on the different systems biology technologies and 
their current applications in the field of nanotoxicology, as well as to identify the 
existing challenges.
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6.1  �Introduction

Engineered nanomaterials (ENMs) are becoming a mainstream technology in mod-
ern product design due to their unique physico-chemical properties. An ever grow-
ing number of ENMs are used worldwide in very diverse products and applications 
such as construction, food packaging, cosmetics, textiles or medicines. ENMs can 
enhance mechanical properties for instance in concrete, facilitate cleaning of sur-
faces in paints, enhance gas barrier capabilities in beverage packaging, block ultra-
violet radiation from human skin in sunscreens, or produce self-healing surfaces. 
With the widespread use of ENMs possible health risks for humans must be 
addressed properly. One of the obvious challenges is how to assess the multitude of 
already existing and newly emerging ENMs in a reasonable time frame in a reliable 
and relevant manner. Thus, in nanotoxicology there is an urgent need of powerful 
prediction tools, which can ultimately support decision making with respect to pri-
oritization and facilitate ENMs grouping or categorization. Systems biology in 
combination with predictive statistical tools may become a central piece of the 
future nanotoxicological toolbox as it will allow for in-depth understanding of 
affected pathways and at the same time support and facilitate grouping on the basis 
of the mode-of-action of ENMs (Fig. 6.1).

A thorough understanding of affected pathways, so called “toxicity pathways”, 
may then lead to the discovery of “adverse outcome pathways” (AOPs). The OECD 
[94] described the concept of AOPs in 2013, which integrate toxicological key 
events and describe in a cascade-like way the main steps from contact of the respec-
tive hazardous chemical to the ultimate adverse outcome. Importantly, AOPs do not 
only describe molecular and cellular events but also integrate data from tissues and 
whole organs [146]. Nowadays, an increasing number of toxicological endpoints 
can be described by AOPs as knowledge on underlying toxicity mechanisms is 
growing. Examples for well-defined AOPs are skin sensitization, cholestasis, liver 
fibrosis or liver steatosis. AOPs are not restricted to environmental chemicals, but 
may also be applied in nanotoxicology. However, so far examples in the field of 
nanotoxicology are still lacking. Thus, the use of systems biology and the descrip-
tion of AOPs for ENMs are of paramount interest in nanotoxicology. This would not 
only support the development of new and highly specific testing methods but also 
would allow grouping of ENMs. In a minimalistic view it would help to identify 
ENMs which require further testing, as well as ENMs where in-depth evaluation 
may not be needed [101]. Thus, the use of systems biology approaches in combina-
tion with modern statistical methods would also significantly reduce the number of 
animals for nanotoxicological testing and therefore implement the 3R paradigm 
(replacement, reduction and refinement) as first introduced in 1959 as a cornerstone 
of modern toxicology [116]. It also should be noted that the predictivity of animal 
models towards human adverse health effects is often limited [134]. It may be 
expected that knowledge on AOPs, however, will facilitate species-to-species 
extrapolation and thus the application of data obtained from animal models to 
humans, and also from animal models to in vitro approaches and vice versa [101].
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The goal in animal based experiments is to determine the highest possible dose 
at which a given substance or ENM does not cause any adverse effect, also referred 
to as “no observed adverse effect level” (NOAEL) together with the lowest dose that 
would cause a pathological effects after a defined treatment period, which is referred 
to as “lowest observed adverse effect level” (LOAEL). By applying empirically 
derived assessment factors to take into account the uncertainty from inter- and intra-
species extrapolation hazard reference values like the “derived no effect level” 
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Fig. 6.1  Schematic work flow of systems toxicology (All images from Wikimedia, authors from 
top to bottom, left to right: Nandiyanto; Mikael Häggström; Dr. Timothy Triche, National Cancer 
Institute; Miguel Andrade; RonBeavis; Yikrazuul; Jheald; Boghog2; Pumbaa80; Nikn)
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(DNEL) can be inferred, which are then employed for human health risk assess-
ments. The use of NOAEL and DNEL values is applicable for toxicological effects 
with a threshold. In general, similar principles apply for ENMs despite the fact that 
some of the established guidelines may require additional adaptations for the assess-
ment of ENMs.

Information about the molecular mechanisms of the observed adverse effects is 
currently considered a nice add-on and is no requirement for risk assessments. 
Traditionally, mechanistic insights are gained by hypothesis-driven research inves-
tigating perturbations after treatment with specific xenobiotics within one pathway 
at a time. Connections within and between pathways are inferred from additional 
experiments and from literature. This targeted approach has unravelled most of the 
vast molecular knowledge of biological systems available today.

Xenobiotics (and also ENMs) usually interact with multiple molecular targets in 
a biological system, often resulting in changes in cellular RNA molecules, proteins, 
lipids or metabolites. Often, affected proteins interact with other proteins and so on, 
creating networks of alterations that may even often overlap starting from different 
primary targets. The surface area of ENMs is large enough to provide the possibility 
for multiple interactions of a single nano-object with several biomolecules at the 
same time. The binding of molecules on the ENM surface may be used by the manu-
facturer to specifically alter the surface or may occur in a less specific and controlled 
way during application as soon as the ENM enters a biological environment [21], 
which results in the latter case in the formation of a biomolecule corona. Thus, dif-
ferent interactions are possible on a single nano-object. Due to interactions with 
ENMs biomolecules such as proteins might be denatured and/or presented out of 
context in the organism [37, 135]. In addition, on some ENMs surface reactions 
occur that generate secondary molecules that may interact with further undirected 
target molecules. For instance, reactive oxygen species may be generated due to 
surface catalysed reactions on ENMs that cause oxidative stress, which may lead to 
metabolite oxidation, DNA damage, and protein carbonylation [117]. Advances in 
life-sciences research in the fields of “omics” technologies provide tools to address 
the complexity of possible perturbations using descriptive approaches that record 
system-wide changes. The “omics” technologies collect very large data sets, often 
in a quantitative manner which mirror molecular responses in the genome, tran-
scriptome, proteome and metabolome after exposure to environmental chemicals in 
living organisms. The four major approaches are genomics, transcriptomics, pro-
teomics, and metabolomics. Examples of other more specialized fields are lipido-
mics and phosphoproteomics. Each of these technologies produces a static snapshot 
in one point of time, which represents only a small part of the whole organism even 
for the specific biomolecule class monitored. This limitation has to be considered in 
experimental design and data assessment such that for instance different time points 
are included. Genomics and transcriptomics are the predominantly used technolo-
gies in toxicological research. Both initiated the field of so-called toxicogenomics 
[90, 91]. Especially high-throughput micro-arrays are a valuable an often applied 
tool for the rapid screening and interpretation of toxicogenomic data, which subse-
quently can be used to define not only multiple modes of actions, but can ultimately 
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in combination with other data be used to define adverse outcome pathways [4, 64, 
109, 150]. Due to obvious similarities and common requirements for data analysis, 
data integration, and interpretation the use of “omics” technologies in toxicological 
research are summarised and commonly referred to as systems toxicology [148]. 
Systems toxicology usually applies methods of systems biology to toxicological 
problems and combines this knowledge with classical toxicological approaches. 
This allows for measurement of large networks of molecular and functional changes 
within one organism. The changes are recorded throughout multiple levels within a 
biological entity [122]. To this end, data from in vivo and in vitro experiments can 
be combined and also the combination of high-throughput data with “omics” proved 
useful [105]. Combining systems biology results with modern statistical approaches 
for data interpretation may support the elucidation of adverse outcome pathways. 
So far, systems biology is only beginning to be applied in nanotoxicology and cur-
rently only a few published studies are available. However, in particular in nanotoxi-
cology the knowledge about affected pathways may help to design new test methods. 
Currently, there is high need of new test methods, which are suitable to screen many 
ENMs and which can support decision-making and prioritization. Furthermore, sys-
tems biology can substantially support the development of ENM grouping 
approaches based on the mode of action. In the next paragraphs we will give an 
overview of the different “omic” approaches and give examples how they have 
already been applied in nanotoxicology.

6.2  �Transcriptomics

Gene-expression profiling, or transcriptomics, determines the changes in expression 
of mRNAs, rRNA, tRNA and other non-coding RNA molecules in a cell population 
[39], tissue/organ [14], or organism [136]. Transcriptomic analysis is arguably the 
best established and most widely used approach to investigate biological network 
responses [74]. Transcriptomics advanced with the development of oligonucleotide 
microarrays and the introduction of high-density array printing by Affymetrix. 
Limited by the known genomic sequence of the organism and using well-established 
bioinformatics tools to identify possible open reading frames, oligomer probe arrays 
can be designed covering the whole transcriptome. Clinical or environmental sam-
ples as well as samples derived from model systems can be investigated in high-
throughput parallel analyses on these microarrays [82]. Current microarrays can 
cover each gene or its exons. Standard exon arrays are available for human, mouse, 
and rat. Especially the analysis of alternatively spliced RNA transcripts as well as 
the accuracy of the overall gene-expression has been greatly improved by the use of 
exon arrays [152]. However, with the establishment of next-generation sequencing 
(NGS) technologies it is now possible to achieve full cDNA sequencing and RNA 
sequencing of a cell or tissue in one analysis in a reasonable time frame. As NGS 
technologies are becoming more powerful and affordable they may replace microar-
ray technologies in the near future [33, 97]. NGS approaches are expected to offer 
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greater accuracy. In particular they provide transcript counts similar to quantitative 
PCR. Moreover, NGS methods are more flexible. They also allow for gene-expres-
sion studies in organisms for which microarrays are not available, such as many 
model systems used in environmental toxicology. NGS also allows for the assess-
ment of the microbiome and its population responses to exposures [158].

6.3  �Transcriptomics in Nanotoxicology

From all “omics” technologies transcriptomics is applied most often to study effects 
of ENMs due to the fact that approaches are well established in many laboratories. 
However, the amount of available transcriptome data for ENMs is still very low. 
Most available studies investigate only one ENM or a very small set of ENMs.

Transcriptomics has been applied in the nematode Caenorhabditis elegans to 
study the effects of gold nanoparticles (NPs), which were shown to induce tran-
scriptional changes in the unfolded protein response [136]. Moreover, a comparison 
to previous data on silver NPs revealed diverse responses to the two ENMs [136].

Another study investigated carbon black Printex 90 NPs applied by instillation in 
mice. The authors found persistent elevated cytokine expression in dams and 
changes in liver mRNA of offspring at high doses [60]. A similar study revealed 
alteration of the hepatic cholesterol synthesis pathway in adult mice [14]. The latter 
study was combined with gene expression data of disease related studies for a sub-
sequent bioinformatics analysis which revealed a similarity of carbon black induced 
effects and pulmonary injury and fibrosis [15].

Two types of multi-walled carbon nanotubes (MWCNTs) were instilled in mice 
showing overall similar transcriptional responses [107]. Larger MWCNTs exhibited 
an earlier stronger inflammatory response and stronger fibrosis [107].

Surface-modified TiO2 NPs induced elevated cytokine transcript levels and also 
of several miRNAs after short term inhalation of mice [51].

No effects were found for coated and aged TiO2 NPs on Caco-2 cells including 
in microarray analysis [36].

Comparing the effects of anatase and rutile NPs and bulk TiO2 NPs in 
Caenorhabditis elegans revealed different expression patterns for the different 
materials [114]. However, nano- and bulk form of the materials exhibited similar 
profiles [114]. It was observed that anatase particles exerted a greater effect on 
metabolic pathways, whereas rutile particles had a greater effect on developmental 
processes [114].

Instilled TiO2 NPs of different sizes and surface modifications in mice led to an 
overall similar inflammatory response by transcriptional analysis [52]. While this 
points to a common mechanism, closer analysis showed that the magnitude of the 
response was dependent on the ENM surface area [52].

Nephrotoxicity of nanoscale and microscale copper particles was addressed by a 
study in rats by gavage, demonstrating that a high dose of nanoscale but not 
microscale copper (by mass) induced strong transcriptional and necrotic responses 
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[75]. A lower dose induced a smaller, partially overlapping, set of transcripts which 
were suggested as possible low dose indicators of toxicity.

Differential effects of silver ions, citrate-coated, and PVP-coated silver NPs 
were uncovered in an ecotoxicological study in Daphnia magna [108]. Silver ions 
exhibited a clearly different expression profile to the NPs, and PVP-coated NPs 
elicited a response in DNA damage repair genes and an overall stronger response 
than citrate-coated NPs [108].

Similarly, comparing the effects of silver ions to citrate-coated silver NPs in 
Oncorhynchus mykiss showed only a small number of specifically regulated tran-
scripts [40]. However, linear discriminant analysis was able to separate both forms 
of silver [40].

The gender difference in rats exposed to silver NPs was investigated in kidneys, 
showing a higher expression of genes involved in xenobiotic metabolism in males 
and of cellular signalling in females [28].

Different types of polystyrene NPs and carbon nanotubes were compared in a 
human endothelial cell line [39]. Inflammation, oxidative stress, and DNA damage 
were the most regulated processes [39]. The more cytotoxic particles induced more 
transcriptional changes while the presence of serum decreased overall cytotoxicity 
but had little effect on the top regulated transcripts [39].

6.4  �Proteomics

The proteome encompasses the full complement of proteins in a cell [89], bio-
logical liquids [67], tissue/organ [49], or organism [69]. Proteomics is the sys-
tematic approach to characterizing ideally all proteins. However, the broad 
spectrum of physico-chemical properties of proteins dictates that only a part, 
albeit a large part, of all proteins is detected with current technologies. Thus, for 
some purposes a subset of proteins first needs to be selectively enriched. In pro-
teomics an additional complexity arises due to the fact that not only changes in 
overall protein amounts are of interest but also the measurement of posttransla-
tional protein modifications. Proteins are both acceptors and mediators of altered 
biological responses as a consequence of exposure to substances. Changes in 
protein levels may correspond directly to mRNA expression or may be due to 
post-transcriptional regulation such as regulated translation or regulated proteo-
lytic turnover. In addition, altered protein function may be a consequence of 
posttranslational modifications. For instance, protein phosphorylation can be 
addressed by high-throughput phosphoproteomics to characterize molecular 
events proximal to disease-related signalling mechanisms [32, 88]. Moreover, 
oxidation events due to oxidative stress in response to toxic exposures, the most 
discussed possible effect of ENMs, can be described by redox proteomic analysis 
for instance by assessing carbonylated proteins [143].

With its unmatched sensitivity and throughput, mass spectrometry (MS) is the 
key technology of modern proteomics. It allows for the detection of peptides in 
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biological samples in the sub-femtomolar range with a mass accuracy of less than 
10 ppm. Such a high degree of accuracy is requisite to comparisons between sam-
ples of proteins derived from different exposed and control samples. For non-
targeted comparisons of samples usually isotope tagging for relative and absolute 
quantification (iTRAQ) is used. Even higher accuracy can be achieved by comple-
mentation with a targeted method. Typically in such a combination the untargeted 
assessment is used to unravel possible alterations, which are then followed up in a 
targeted, more precise measurement. Often selected reaction monitoring (SRM) is 
used for this purpose, which allows for the precise quantification of predetermined 
proteins. Peptides are generated by a controlled enzymatic digestion of the pro-
teome and quantified by MS.  The selection of proteins and peptides for precise 
quantification is done either by prior, non-targeted approaches (e.g. iTRAQ) or by a 
careful review of available data in the scientific literature. Bioinformatics tools are 
employed to predict the cleavage pattern of the selected protein. From this list at 
least two proteolytic peptides are selected for SRM. Those ideally should be highly 
specific for the protein and distinguish it from all other proteins. SRM transitions 
for each of those peptides are selected and unique identification and accurate quan-
tification have to be verified through optimization and validation. Multiplexed 
approaches are possible where hundreds of proteins are quantified in a single MS 
run [72]. For example, the Nrf2-mediated stress response of macrophages to oxi-
dised LDL was investigated demonstrating up-regulation of a group of antioxidant 
proteins [65].

Often proteomics approaches require the enrichment of a protein subset. 
Most often this is done by cellular sub-fractionation (e.g. by differential cen-
trifugation) or by antibody-based pulldown approaches. In particular, antibody-
based enrichment is used for assessing posttranslational modifications of 
proteins. Posttranslational modifications of proteins are important cellular 
mechanisms for regulating and diversifying the cellular proteome. Identification 
and characterization of this layer of cellular regulation can provide deeper 
insight into the cellular physiology and affected pathways in response to toxic 
insults. Examples of posttranslational modifications include phosphorylation, 
glycosylation, ubiquitination, nitrosylation, methylation, acetylation, lipidation 
and proteolysis [159]. For enrichment, phosphorylation motif specific antibod-
ies [83], di-glycine-lysine-specific antibodies for ubiquitinated peptides [147], 
and other antibodies are employed. To enrich phosphorylated peptides after 
digestion of the protein lysates TiO2 resins are commonly used [131]. Another 
strategy is chemical labelling of proteins and immuno-detection after 2D gel 
electrophoresis. This approach is used in redox proteomics to detect protein 
carbonylation. In oxidative stress proteins become directly and indirectly oxi-
dised generating various carbonyl groups. These protein carbonyl groups are 
conjugated to 2,4-dinitrophenylhydrazine and subsequently detected using anti-
2,4-dinitrophenyl antibodies [153].

Proteomics and subsequent targeted proteomics yield important mechanistic 
details of toxicology pathways that were based on transcriptomic data.
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6.5  �Proteomics in Nanotoxicology

There are several studies using proteomics techniques to investigate toxicological 
effects of ENMs. However, similar to transcriptomics studies described above, most 
employ only one specific ENM and often they furthermore assess only a single 
concentration and/or one time point. While these studies provide important insights 
into ENM effects, the difference in ENM characteristics and in experimental set-
tings makes it difficult or impossible to compare them in order to draw more general 
conclusions on ENM influences on the proteome and to understand how ENM prop-
erties influence toxicity.

Carbon nanotubes are one of the most investigated ENM. By comparing as-
grown MWCNTs with thermally treated MWCNTs it was demonstrated that impu-
rities were in large part responsible for the observed cytotoxicity [53]. However, 
stress response proteins were induced also by thermally treated MWCNTs [53]. A 
comparison of SWCNTs with graphene showed SWCNTs inducing proteins related 
to oxidative stress while graphene had little effect [156]. Lung tissue was investi-
gated after a repeat-dose instillation of mice with SWCNTs, asbestos, and carbon 
black [130]. SWCNTs elicited the strongest response in regulated proteins with a 
similar profile to asbestos [130]. In a renal cell model, fullerenes, SWCNTs, and 
MWCNTs induced the most proteins in the lowest dose, suggesting that aggregation 
reduces the effect on cells [11]. Oxidized SWCNTs induced oxidative stress and 
interfered with intracellular metabolic routes, protein synthesis, and cytoskeletal 
systems in HepG2 cells [155]. Graphene oxide as a comparison had little effect on 
protein expression and was less cytotoxic [155]. Serum-free and surfactant-treated 
MWCNTs were compared for their effect on human aortic endothelial cells [144]. 
Different protein expression patterns were observed between the two suspensions 
with the eIF2 pathway as the only common pathway [144]. Lung tissue was inves-
tigated after repeat-dose instillation of rats with three different ENMs, Fe3O4, SiO2, 
and SWCNTs [77]. Seventeen commonly regulated proteins were identified and the 
authors suggest all three ENMs induce lung damage [77]. The secreted proteins by 
a macrophage model in response to MWCNTs and asbestos were investigated by 
proteomics [98]. Long rigid MWCNTs and asbestos showed similarities while 
tangled MWCNTs exhibited only limited overlap with rigid MWCNTs. All materi-
als showed release of lysosomal proteins while only for rigid MWCNTs apoptosis-
related proteins were secreted [98]. Levels of proteins in lung bronchoalveolar 
lavage fluid of mice treated by oropharyngeal aspiration with uncoated or alumin-
ium oxide coated MWCNTs were determined to uncover their effect on lung tissue 
[54]. Uncoated MWCNTs elicited a stronger response but in similar pathways to 
coated MWCNTs [54].

Another heavily researched ENM is nanosilver. A comparison of PVP-coated 
silver NPs versus AgNO3 on plants revealed differing protein expression profiles, 
while redox regulation and sulphur metabolism were affected by both [142]. 
Similarly, silver NPs and AgNO3 were tested in mussels showing different protein 
expression profiles yet similar affected pathways [45]. The authors suggest that 
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toxicity of NPs was mediated by oxidative stress-induced cell signalling cascades 
[45]. Citrate capped 20 and 100 nm silver NPs were compared on a colon cell line 
[143]. While overall the same pathways were affected (e.g. DNA damage repair), 
more proteins were affected by the 20 nm NPs [143]. Reanalysis of the proteomic 
data revealed that proteins involved in cell death and mitochondrial activity were 
more affected by 20 nm NPs than by 100 nm NPs, while proteins involved in cell 
growth were affected similarly by both particle sizes [84]. Carbonylated proteins as 
a marker for oxidative stress were investigated in Daphnia magna after treatment 
with silver NPs or AgNO3 [110]. Different profiles were found for the two treat-
ments [110].

Recently, a large redoxproteomics study was published, which assessed protein 
carbonylation for a panel of 24 different ENMs [30]. The results reaffirmed that 
oxidative stress is a major affected pathway in response to cellular ENM exposure, 
and that protein carbonylation is a promising readout for this pathway.

6.6  �Metabolomics

Metabolomics is the latest “omics” technology in the “omics” toolbox. Changes in 
metabolome are generally regarded to give an as-close-as-possible picture of the 
actual phenotype changes of the organism. The metabolome represents the ultimate 
change in the levels of chemical species usually resulting from molecular perturba-
tions at the genomic and proteomic levels. Thereby, the metabolome ultimately rep-
resents the functional status of a cell.

This approach tries to quantify as many metabolites within the target organism as 
possible, e.g. sugars, lipids, steroids, amino acids, carnitines, nucleotides etc. To 
that end, hyphenated analytical techniques are applied, especially the combination 
of mass spectrometry with quantitative NMR is very common. The investigated 
metabolites encompass mostly products or substrates of enzyme-mediated pro-
cesses [13]. It is also possible to detect and quantify internalized xenobiotics and 
their biotransformation products concomitant to the perturbed endogenous 
metabolome if the molecular size of the xenobiotic chemical is low enough. 
However, the latter requires some understanding of the kinetics of the xenobiotic 
toxicants and their metabolites as well as of related biomolecular adducts [111]. In 
a conventional approach, as many as possible metabolites are identified and changes 
in their abundance are quantified.

The biological matrix for metabolomics experiments can be very different and 
also highly complex. Generally a broad variety of different biological systems like 
cell cultures [12], 3D cell cultures, tissue samples [96] and whole organ cultures 
[76] including the emerging application area of microfluidic organ model systems 
[7] can be investigated for the assessment of the metabolome. Metabolomics experi-
ments can also be performed with different body fluids like bronchoalveolar lavage 
fluid (BALF) [23] or serum. Even whole organisms can be assessed [112]. Due to 
the fact that the metabolome is very complex as it covers very different biomole-
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cules it is not possible to use a single analytical technique to cover all metabolites 
within one biological system in one analysis. A variety of mass spectrometry meth-
ods (GC-MS, GCxGC-MS, LC-MS, Ion-mobility-MS) or quantitative NMR are 
used so far to assess quantitative changes in the metabolome after exposure to envi-
ronmental chemicals. All these methods can also be used for the assessment of the 
metabolome in exposure assays to ENMs in nanotoxicology. Metabolomics has 
been also successfully used for the assessment of no observed adverse effect levels 
(NOAEL) in toxicology with similar or even higher sensitivity than common toxi-
cological methods commonly used [140]. However, there are also pitfalls in the 
system, where metabolomics data show lower sensitivity than commonly used toxi-
cological approaches. An overarching analysis found that 18 % of all investigated 
cases showed lower sensitivity than common toxicological approaches [140], indi-
cating the need to combine not only results from other “omics” technologies, but 
also to combine “omics” approaches with established toxicological approaches in 
an integrated manner.

Of particular interest in toxicology are the assessment of metabolomic changes 
in animals and humans. This is closely linked to the identification of biomarker 
sets correlated with certain diseases like diabetes [123] or kidney disease [31]. 
For biomarker identification it is a paramount requisite that the sampling should 
be as easy as possible. Therefore, either metabolic profiles from blood [19], urine 
samples or breath samples, e.g. for the assessment of bronchoalveolar infections, 
[38] are investigated. In addition, tissue samples [29] or organ biopsy samples 
[44] are studied for the assessment of quantitative metabolite changes associated 
with various diseases or disease states. In particular, this is used for cancer diag-
nosis to distinguish non-malignant from malignant tissue samples or for stage 
determination of cancer.

6.7  �Metabolomics in Nanotoxicology

So far, only a limited number of metabolomics studies investigated the influence of 
ENMs. Again, similarly to the situation in transcriptome or proteome research in 
most of the studies only one ENM is investigated.

Many studies focused on the effects of TiO2 NPs. One study analysed metabolo-
mics changes in human skin cells (HaCaT cells) after exposure to TiO2 NPs and 
metabolite changes could be associated with oxidative stress and influenced mito-
chondrial activity [137]. Another study also tested TiO2 NPs (anatase, 18 nm) in 
HGF cells [42], and subsequent metabolomics studies revealed an increase in pros-
taglandin levels within these cells after exposure together with an reduction of 
amino acid, urea cycle, polyamine, S- adenosylmethionine and glutathione biosyn-
thesis. Metabolomics studies of mouse fibroblasts [12] showed a significant distur-
bance of the amino acid signature after exposure to colloidal nano-TiO2 solutions 
and that these disturbances could be correlated to the observed cytotoxicity of the 
ENM. Urine and serum were investigated by metabonomics in rats exposed orally 
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to TiO2 NPs [18]. Disturbances in energy and amino acid metabolism and the gut 
microflora environment were found [18]. Intratracheally instilled TiO2 in rats 
induced metabolite changes in serum that indicated slight liver and kidney injury 
which was corroborated by clinical chemistry [124].

Other intensely studied ENMs are nanosilver and nanosilica. Metabolomics was 
already used to assess metabolic profile changes in rats after oral gavage of silver 
ions and silver NPs [50]. The results showed that nanosilver increased not only uric 
acid levels, but also allantoin levels in rat urine.

Metabonomics was highlighted as a potential and robust non-destructive tool 
for monitoring the temporal effect of NPs in cell culture media [59]. The meta-
bonomic assay revealed pronounced effects of SiO2 NPs in lung alveolar A549 
cells on glucose, lactate, histidine, phenylalanine, and tyrosine at early time 
points when cell viability was not impaired. Moreover, the data suggest that the 
different sizes of NPs induced different dose-dependent effects with different 
time courses [59]. The study also showed a dose-dependent increase of ROS 
formation. Different sizes of SiO2 particles were intravenously injected in mice 
and liver tissues and serum analysed by integrated metabonomics analysis [80]. 
Disturbances in energy metabolism, amino acid metabolism, lipid metabolism, 
and nucleotide metabolism were reported that may be attributable to the observed 
hepatotoxicity. No major differences were found by the different NP sizes among 
the metabolite profiles. Surface area had a greater effect than particle number on 
toxicity [80]. Metabolite perturbations after intranasal SiO2 NP application in 
rats implicated impairment in the tricarboxylic acid cycle and liver metabolism 
[99]. The authors suggested from their data that SiO2 NPs may have a potential 
to induce hepatotoxicity in rats [99].

Other ENMs are less often studied. Metabolic responses to MnO NPs in bioflu-
ids (plasma and urine) and tissues (liver, spleen, kidney, lung and brain) from rats 
could be divided into four classes: MnO biodistribution-dependent, time-depen-
dent, dose-dependent and complicated metabolic variations [73]. Particle size and 
surface chemistry of NPs were correlated to changes in the metabolic profile [73]. 
Single-walled carbon nanotubes after intratracheal instillation in rats induced 
changes in blood plasma and liver tissues indicating liver injury [76]. Changes in 
lipids and lipid associated molecules suggested a mechanism involving oxidative 
stress [76]. Iron oxide NPs were intravenously injected in rats, and metabonomics 
analysis performed on urine and plasma [35]. Subtle metabolic changes in response 
to NPs were found in a number of metabolic pathways including energy, lipid, 
glucose and amino acid metabolism [35]. The authors followed up their investiga-
tion by analysing tissues, including kidney, liver and spleen [34]. The metabonom-
ics analysis demonstrated correlations between biofluids and tissues in their 
response to NPs [34]. Size and surface chemistry of the NPs affected their biologi-
cal effects [34, 35]. Another study investigated the metabolic changes caused by 
antimicrobial effects of carboxyl-capped bismuth NPs in Heliobacter pylori colo-
nies [86]. The results showed an increased release of acetate, formic acid, gluta-
mate, valine, glycine, and uracil into the culture medium after NP treatment, 
indicating perturbations of various metabolic pathways like the Krebs cycle and 
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nucleotide and amino acid metabolism. Thus, metabolomics in combination with 
other “omics” technologies could also give insights for new ENM applications, 
e.g. by discovering antimicrobial effects.

A few studies only investigate several ENMs at the same time. One study 
describes metabolic changes within 265 cellular metabolites after exposure of liver 
HepG2 cells to four TiO2 and two CeO2 materials [66]. The results showed that five 
out of the six investigated ENMs significantly reduced glutathione concentrations 
and associated metabolite levels within HepG2 cells. The study showed that 8 nm 
CeO2 NPs significantly increased lipid levels including fatty acid concentrations 
within HepG2 cells, whilst all other investigated NPs did not show a similar effect. 
CeO2, but not TiO2, increased asymmetric dimethylarginine concentration and thus 
possible decreased iNOS activity and NO concentrations.

6.8  �Lipidomics

The lipidome is an example of a specialized subset of the metabolome. It comprises 
the complete known lipid profile of a biological system [17]. Lipidomics is the sys-
tematic approach to characterize and quantify lipids in biological samples using 
analytical methods mostly based on MS.

Lipids are the fundamental constituents of all cellular membranes [47, 56], 
provide an important energy reserve [102], and exhibit intracellular as well as 
systemic signalling functions [141]. Exposure to environmental chemicals often 
induces considerable changes in the cellular and tissue lipid composition. Levels 
of specific lipids such as certain sphingolipids that are involved in lipid signal-
ling can be indicative of a cells stress status [48]. Therefore, lipidomics as a 
powerful method to describe the overall lipid composition of biological matrices 
has great potential to identify and detect candidate biomarker signatures indica-
tive of toxicity. Recent advances in MS-based techniques enable the identifica-
tion and quantification of hundreds of molecular lipid species in a high throughput 
manner [145, 149]. It is possible to analyse large sample collections by auto-
mated methods in a 96-well format [61]. Multiple MS platforms can be employed 
to characterize the extracted lipid such as detecting the lipids by shotgun lipido-
mics or after separation by liquid chromatography to detect and quantify lipids 
of lower abundance.

Moreover, alterations of lipid homeostasis contribute to several pathophysio-
logical conditions like diabetes, cardiovascular disease, Parkinson’s disease, 
Alzheimer’s disease or nonalcoholic fatty liver disease (NAFLD) to distinguish 
between the different disease states steatosis, nonalcoholic steatohepatitis 
(NASH), and cirrhosis [55, 106, 125]. Lipidomic studies, combined with other 
“omics” technologies in an integrated approach have the potential not only to get 
better understanding of the up- and downregulation of cellular signalling path-
ways [62] but may ultimately be one of the tools to assess adverse outcome path-
ways also for nanotoxicology.
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6.9  �Lipidomics in Nanotoxicology

Lipidomic studies were also already used to evaluate the nanotoxicity of single 
walled carbon nanotubes after inhalation and showed selective pulmonary peroxida-
tion profiles [138]. Lipidomics in combination with proteomics was used to assess 
the influence of metal (silver) and metal oxide (CuO, TiO2 and ZnO) NPs to primary 
mouse hepatocytes [128], thereby revealing particle specific effects. While silver 
NPs increased triacylglycerol levels and decreased sphingomyelin levels, CuO NPs 
decreased phosphatidylethanolamines and phosphatidylinositols and caused down-
regulation of electron transferring protein subunit beta. TiO2 caused the upregula-
tion of ATP-synthase and electron transferring protein alpha. These investigations 
show the diversity of regulation mechanisms for a small subset of NPs and clearly 
indicate that a more general integrated “omics” approach is needed to fully assess 
nanotoxicity and possible involved adverse outcome pathways by combining result-
ing information from several “omics” technologies. Testing strategies for relevant 
“reference” subsets of nanoparticles are needed to establish and evaluate possible 
adverse outcome pathways and their subsequent “omics” perturbations not only 
when fully established but in a time-dependent manner [63]. That is how “omics” 
pattern gradually change from the time of exposure until adverse outcome effects 
like apoptosis are finally manifested. In that way, “omics” perturbations observed 
by exposure to newly emerging ENMs can not only be assessed against adverse 
outcome effects like apoptosis, but also against various intermitting time-dependent 
“omic” pattern changes. This would also ultimately give a tool to assess “positive” 
“omics” pattern changes after exposure to evaluate long-term effects caused by 
exposure to ENMs without acute manifestation of nanotoxicological effects.

6.10  �High-Content Screening

Data of molecular changes gathered from “omics” technologies should ideally be 
corroborated by cellular or tissue-level observations measured under the same con-
ditions. Histopathology is performed for the standard guidelines for regulatory 
assessment while “omics” technologies are employed to provide additional data. On 
the other hand, for small organisms and cells in culture, high-content screening 
(HCS) methods are available [85, 92]. These methods are based on the automated 
computer-aided visual detection of a panel of functional biomarkers in either a fixed 
specimen labelled with fluorescent reagents or directly on a living specimen during 
the time of the exposure. Mostly digital microscopy and flow cytometry are 
employed in HCS, which may provide precise temporal, spatial, and contextual 
information defining the biological status of the cells or organs and structure of 
small organisms. It should be noted that in terms of ENMs their possible interfer-
ence with especially optical/visual techniques demands extra scrutiny for HCS 
methods [26]. A broad panel of biomarkers is available to quantify key cellular 
events such as apoptosis, autophagy, cell proliferation, cell viability, cytotoxicity, 
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DNA damage, mitochondrial health, mitotic index, oxidative stress, nascent protein 
synthesis, and phospholipidosis and steatosis. Some of these biomarkers can be 
used in multiplexed approaches and allow quantitative measurements of the abun-
dance and localization of proteins and/or changes in the morphology of the cell.

6.11  �Combinatorial Omics and Integrated Data Analysis

A small number of studies concerning ENMs have integrated more than one omics 
technique.

Cunningham et al. [22] combined high throughput omics biotechnologies with 
systems biology to screen for toxicity of single walled carbon nanotubes (SWCNTs) 
compared to nanosize TiO2, quartzous SiO2, carbon black (Printex 90), and carbonyl 
iron on human primary epidermal keratinocytes and bronchial epithelial cells. 
Expression arrays for mRNA and microRNA were used together with 2D protein 
gel electrophoresis and mass spectrometry detection. Expression profile compari-
son revealed similar profiles of SWCNTs and carbonyl iron at non-cytotoxic doses 
and of SWCNTs and quartzous SiO2 at cytotoxic doses [22].

Silica-coated magnetic NPs containing Rhodamine B isothiocyanate MNPs@
SiO2(RITC) were investigated for gene expression and metabolic changes in human 
embryo kidney 293 cells [120]. Based on microarray gene chip and gas chromatog-
raphy mass spectrometry analysis, glutamic acid was increased and expression of 
genes related to the glutamic acid metabolic pathway as well as organic acids related 
to the Krebs cycle were disturbed at a high dose of particles. Furthermore, a 
decreased capacity of ATP synthesis, increases in ROS concentration, and mito-
chondrial damage were observed in functional assays [120].

Proteomics and miRNA sequencing technologies were utilized to investigate 
effects of silver NPs on human dermal fibroblasts [58]. Of the 57 pathways found 
regulated in response to the ENM, four pathways were concurrently affected by dif-
ferentially expressed miRNA, target mRNAs and target proteins: “Regulation of actin 
cytoskeleton”, “Signalling of hepatocyte growth factor receptor”, “Insulin signalling”, 
and “MAPK signalling pathway”. The results indicated that silver NPs might induce 
toxicity by affecting the cytoskeleton, ATP synthesis and apoptosis [58].

Exposure of three human cell lines to two high aspect ratio ENM types, TiO2 
nanobelts and multiwalled carbon nanotubes (MWCNT) was investigated by global 
transcriptome and proteome analyses [132]. Macrophage-like THP-1 cells, small 
airway epithelial HT29, and intestinal Caco-2 cells exhibited unique patterns of 
gene and protein expressions, with no differentially expressed genes or proteins 
overlapping across all three cell types. Exposure of 1 h induced similar expression 
patterns in response to both TiO2 and MWCNT while being different for each cell 
type. This apparent general response to insult stood in contrast to the response after 
24 h, which was unique to each ENM. In THP-1 cells TiO2 exposure affected regu-
lation of pathways associated with inflammation, apoptosis, cell cycle arrest, DNA 
replication stress and genomic instability, whereas MWCNTs elicited increased cell 
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proliferation, DNA repair and anti-apoptotic pathways. The authors suggest that the 
differential regulation of the biological pathways might represent cellular responses 
to high (TiO2) and low (MWCNT) ENM toxicity, respectively [132].

The mode of action of TiO2 in the dark on Escherichia coli was investigated 
using transcriptomic and proteomic analysis [121]. Pathway enrichment was 
observed for the lipid A synthesis pathway, gluconeogenesis, the fatty acid 
β-oxidation pathway, and importantly for trehalose biosynthesis and several specific 
membrane transporters indicating osmotic stress. The study revealed that the bacte-
ricidal mechanism of TiO2 in the dark comprises depolarization and loss of mem-
brane integrity, resulting in cellular ion imbalance and depletion of the intracellular 
ATP content. At the molecular level it manifests as an osmotic stress response [121].

PVP-coated CeO2 NPs were investigated in the alga Chlamydomonas reinhardtii 
[127]. While growth was unaffected, metabolomic and transcriptomic analysis 
revealed down-regulation of photosynthesis associated pathways at high concentra-
tions. This response was ENM-specific as neither CeNO3 nor PVP showed such an 
effect [127].

Overall, system toxicology attempts to combine all available data to reveal AOPs. 
AOPs are defined as a sequence of key events starting with a molecular initiating 
point and culminating in an adverse outcome of interest to risk assessment [6]. This 
provides a framework, which is different from the toxicant and species-specific 
mode of action concept. An AOP knowledge base (https://aopkb.org/) is made avail-
able by the OECD together with the US-EPA, the European commission, and the 
ERDC. The platform provides public access to a peer-reviewed wiki-based tool to 
develop AOPs (https://aopkb.org/aopwiki/). The OECD has also developed a hand-
book to guide in the development of AOPs (https://aopkb.org/common/AOP_
Handbook.pdf). Not every technique is used for every toxicant, and it is believed 
that the wealth of data provided by “omics” technology allows for some extrapola-
tion. However, the massive amounts of data also pose major challenges. Many of the 
techniques are in early development which means that data generation has the 
potential to still increase in large part because costs are decreasing.

Genomics, transcriptomics, proteomics, and metabolomics are involved in dif-
ferent ways in the definition of the phenotype. While the genome is rather static, 
epigenetics is a recent research field that involves regulation by DNA modifications 
as well as post-translational protein modification that has yet to acquire AOP rele-
vant information. The transcriptome is much more dynamic and largely responsible 
for the regulation [74]. Proteomics and metabolomics have an even higher variabil-
ity and therefore more directly participate in an observed change in phenotype. 
More immediate responses and rapid regulation of signalling pathways are for 
example mediated by post-translational modifications such as phosphorylation [95]. 
In addition, there are numerous examples for the regulatory influence of endoge-
nous metabolites [2, 154]. The integration of data from the different “omics” tech-
niques still represents a challenge as the techniques based on the measurement 
principles and molecular classes have different scales in terms of abundance, data 
accuracy and variance [5]. Methods and tools that manage, integrate, and process 
data are being developed [151]. Software tools are being developed that store and 
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manage data and also provide details about the experimental setup, such as EMMA 
[27], and MIMAS [43]. A standard based on minimum information about microar-
ray experiments (MIAME) [16], MAGE-TAB [113], has been adopted by public 
databases such as ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) and Gene 
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/). Similarly, for proteomics 
minimum information about proteomics experiments (MIAPE) has been developed 
as a standard [126]. Ideally, data would also be standardised so that exchange 
between platforms and techniques is facilitated. To this end, scoring methods are 
available that allow the direct combination of data, e.g. from proteomics and metab-
olomics [93]. With the development of genome-wide visualization and modelling 
platforms such as Cytoscape the situation has improved, and commercial vendors 
now provide the built-in inspection and analysis of data from different omics tech-
niques, e.g. the Ingenuity Pathway Analysis (IPA) software [41]. The IPA software 
also provides analysis with respect to known molecular toxicological reactions [41]. 
Analysis starts with the identification of significantly modified individual genes, 
proteins or metabolites, and enrichments in certain pathways leads to the identifica-
tion of affected signal transduction or other biosynthetic and metabolic pathways. 
The biologically relevant integration of many different marker molecules of multi-
ple “omics” techniques in this higher level analysis makes it less susceptible to 
fluctuations in individual genes / proteins / metabolites. An increasing number of 
transcriptomics (e.g. [1, 3, 107], proteomics [70] and metabolomics studies [119] 
have been performed. Key to successful classification/grouping strategies is the 
identification of adverse outcome pathways, which needs to be as detailed and accu-
rate as possible by integrating various omics data. These can then add to the 
definition of AOPs [146]. Definition of AOPs for ENMs is seen as an important step 
towards the classification of their effects and grouping of ENMs.

Different algorithms are required for the bioinformatics data analysis of signalling 
pathways [24, 139]. The various algorithms allow for different perspectives on the 
data for their evaluation. Statistical analyses are highly susceptible to the quality of 
the underlying data and this still presents a challenge for increasing the reliability of 
the conclusions reached [104]. Data integration over the different platforms still rep-
resents a formidable challenge [46]. The more so as for ENMs additionally physico-
chemical parameters must be brought together with classical toxicity data, 
transcriptome, proteome, metabolome and possibly heterogeneous data from other 
sources (publications, other projects) of which the structure varies widely. Tools for 
data integration are being developed, but even more work is needed for heteroge-
neous data sets [151]. Once a data matrix is created, the data can be examined for 
correlations by means of principal component analysis (principal component analy-
sis, PCA), hierarchical cluster analysis (Hierarchical Cluster Analysis, HCA) and 
other statistical analysis methods such as partial-least-squares (PLS), and orthogonal 
projection to latent structures discriminant analysis (OPLS-DA), or Random Forest.

For instance, it was possible to correlate oxidative stress to the conduction band 
energy levels of metal oxide NPs in a large data set of physico-chemical conditions 
and in vitro experiments [157]. Twenty four metal oxide NPs were investigated by 
different in  vitro cytotoxicity assays not addressing specific mechanisms, and in 
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addition using an automated multi-parametric HTS assay. Changes in ROS produc-
tion (DCF and MitoSox red fluorescence), intracellular calcium flux (Fluo-4 fluo-
rescence), mitochondrial membrane potential (JC-1 fluorescence), and surface 
membrane permeability (PI uptake) were quantitatively assesses in two cell lines 
cells. A selection of materials was also tested for acute pro-inflammatory effects by 
oropharyngeally instillation in mice.

Induction of ROS production and pro-inflammatory effects were strongly corre-
lated to overlap conduction band energy levels with the cellular redox potential. 
Both cellular assays exhibited good correlation with the generation of acute neutro-
philic inflammation and cytokine responses in vivo. This analysis is based primarily 
on the use of high-throughput methods and the interpretation of the resulting large 
amounts of data [87].

Another type of data can be obtained from reporter gene library expression data 
and select panel quantitative PCR. A comparative study investigated the genotoxic 
effects of anatase TiO2, carbon black, single wall carbon nanotube (SWCNT) and 
fullerene in Escherichia coli, Saccharomyces cerevisiae, and human A549 cells 
[71]. Through integration of data from the different assays, it was demonstrated that 
anatase TiO2 and carbon black induce oxidative stress which contributes to DNA 
damage in eukaryotic cells [71]. On the other hand, single wall carbon nanotube 
(SWCNT) and fullerene appear to induce DNA double strand breaks in a different 
way [71]. Gene expression profiles also indicate different types of DNA repair 
mechanisms involved for the different materials [71].

Supervised machine learning can also be used, as demonstrated by a decision 
tree developed on the toxicity of cobalt ferrite NPs [57]. In addition to the grouping 
based on the aforementioned band gap of metal oxide NPs, the size of the particle 
surface has been associated with oxidative stress responses to ENM [115]. Due to 
the huge variety of possible nano-objects it may be necessary to additionally per-
form an expert-assisted weight of evidence analysis in most cases [78, 160].

Direct interpretation of results obtained from in vitro studies in the context of 
potential in vivo exposures is not possible in most cases. To date, most in vitro 
models do not yield information on pharmacokinetics, i.e. the processes regarding 
absorption, distribution, metabolism and excretion. However, these processes 
govern the exposure of the target tissue in the intact organism, making it a crucial 
difference between the situation in vitro and in vivo. Moreover, this issue is not 
limited to the in vivo-in vitro comparison, many differences in toxicity from test 
animals to humans originate in differences in pharmacokinetics [59]. For this rea-
son, data on the mechanisms of action as well as data on pharmacokinetic behav-
iour are required for a comprehensive prediction of the biological activity of 
compounds [8, 9].

Quantitative in vitro to in vivo extrapolation (QIVIVE) models the environ-
mental exposures to a chemical that could produce target tissue exposures in 
humans equivalent to those associated with effects in an in vitro toxicity test. 
Typically, in vitro toxicity tests yield an EC50, a Benchmark concentration, or 
an interaction threshold identified by a biologically based dose-response model 
for the toxicity pathway of concern that can be used in such calculations. 
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Cellular assays can reveal specific molecular and cellular perturbations, and can 
be used to characterize dose-dependent transitions that may result in organ/sys-
tem insult. Using these data together with in  vitro and in silico approaches 
including quantitative structure activity relationship (QSAR) modelling, physi-
ologically based pharmacokinetic (PBPK) modelling, and information on 
metabolism, transport, binding, and other model parameters from cell- and/or 
cell derived material-based assays, QIVIVE can provide an estimate of the like-
lihood of harmful effects in  vivo from expected environmental exposures. 
Blaauboer et al. recommended a scheme for the incorporation of in vitro assay 
data, QSAR and QSPR information, in vitro metabolism data, and pharmacoki-
netic modelling in the estimation of human toxicity [10]. In this scheme, a 
chemical-specific pharmacokinetic model is parameterised using the available 
in vitro data on the absorption, tissue distribution, metabolism, and excretion of 
a chemical. While this scheme holds true also for ENMs, much less data are 
available and novel parameters concerning physico-chemical properties have to 
be taken into account. For chemicals, currently available quantitative structure-
property relationship (QSPR) techniques can be used in many cases to estimate 
chemical properties and kinetics when the specific data for that chemical are 
lacking. For example, tissue partitioning of a chemical can be estimated using 
simple empirical correlations from its water solubility, vapour pressure, and 
octanol/water partitioning co-efficient [25, 100, 118]. QSPR techniques are cur-
rently being developed for ENMs, and require the input of systematic and high 
quality data [20, 81, 133]. The complexity of the possible changes to ENMs in 
the body, such as (partial) solubility, protein corona formation and evolution, 
and aggregation has to be reflected in a pharmacokinetic model. Pharmacokinetic 
models are not only useful in estimating expected equivalent doses associated 
with toxicity by in  vivo exposure from concentrations at which toxicity is 
observed in an in vitro toxicity assay. Modelling of the in vitro toxicity assay 
can also provide important information on the temporal profile of cellular expo-
sure to free chemical that can be used in the design of the most appropriate 
in vitro experimental protocol [129].

Estimation of the metabolic clearance is arguably the greatest challenge in 
parameterizing even the simplest pharmacokinetic model. Currently, the most 
extensive data in this respect are on drug pharmacokinetics. ENMs pose an extra 
challenge in that they are often composed of more than one material, might 
release chemicals depending on the different compartments, or even dissolve and 
reform in the body [103]. For soluble chemicals, e.g. released by an ENM, it 
would be necessary to perform in vitro assays of the dose-response (capacity and 
affinity) for metabolic clearance [79]. A qualitative classification system has 
been developed based on physico-chemical properties to predict whether a chem-
ical was likely to be cleared by metabolism (including the CYP isozyme involved) 
or by urinary excretion [68]. As data accumulates for a greater number of chemi-
cals across a wider range of chemical classes, it may be possible to predict both 
qualitative and quantitative clearance using QSAR approaches over a broader 
domain of applicability.
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6.12  �Conclusion

Systems biology is increasingly used in toxicology as we currently observe a 
paradigm change and there is increasing interest in understanding underlying 
toxicity mechanisms and defining AOPs. It is advisable to combine “omics” tech-
nology with classical toxicological endpoints. If possible, different “omics” 
techniques should be used to assess the full complexity of changes and also to 
derive more reliable information on affected pathways. However, data integra-
tion over the different platforms still represents a formidable challenge as the 
techniques are based on different measurement principles and different molecu-
lar classes have different scales in terms of abundance, data accuracy and vari-
ance. The more so this holds true for ENMs, where additional factors account for 
an even larger variability. Currently, knowledge is only beginning to emerge how 
different physico-chemical parameters truly affect toxicity and which influence 
batch-to-batch variations play. Thus, the material characterization and the sam-
ple preparation (e.g. preparation of ENM dispersions or also mode of ENM pre-
sentation to the cells) deserve much more attention when assessing ENMs.

Additionally one should take into account different possible uptake routes for 
ENMs (ingestion, dermal, inhalation or injection). Another important issue is the 
choice of the cell model for in vitro studies or the strain & species for animal studies. 
Large differences in responses may be expected in different cell lines as well as in 
different strains of a given species.

Ultimately only the combination of “omics” technologies with high power 
statistical integrative data interpretation methodologies will unravel important 
and relevant information with respect to toxicity. In part, concepts already exist 
how omics data can be used for risk assessment, e.g. for quantitative assessment 
of the metabolome. Thus systems biology is getting more and more established. 
It may be expected that current limitations, e.g. in data integration and data 
analysis, might be overcome soon. Systems biology, by providing very large 
data sets offers the unique advantage of getting information on underlying 
molecular mechanisms and identifying affected signalling pathways, often 
referred to as toxicity pathways. This in turn may allow the development of 
AOPs. For ENMs such mechanistic based knowledge is highly needed in order 
to develop grouping approaches. It is well accepted that traditional risk assess-
ment paradigms, e.g. assessing each ENM variant in a case-by-case basis, will 
not be sufficient to deal with the large amount of ENMs in a reasonable time 
frame. Systems biology can support the development of grouping approaches. 
However, prerequisite is the development of better standardized approaches 
starting for instance with the definition of benchmark materials which allow for 
comparison between different studies. The largest bottleneck is that currently 
most studies assess only one ENM at a time or a very limited number of ENMs 
only. This renders it very difficult to compare outcomes of different studies.
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However, intensive research efforts are ongoing. Many large currently funded 
European projects focus on the use of systems biology for a larger set of ENMs. 
First possible grouping approaches for ENMs are already discussed in scientific 
literature. By integrating omics based data one may expect a huge progress.
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