
41© Springer International Publishing AG 2017 
L. Tran et al. (eds.), Modelling the Toxicity of Nanoparticles, Advances in 
Experimental Medicine and Biology, Vol. 947, DOI 10.1007/978-3-319-47754-1_3

Chapter 3
The Life Cycle of Engineered Nanoparticles

David González-Gálvez, Gemma Janer, Gemma Vilar, Alejandro Vílchez, 
and Socorro Vázquez-Campos

Abstract The first years in the twenty-first century have meant the inclusion of 
nanotechnology in most industrial sectors, from very specific sensors to construc-
tion materials. The increasing use of nanomaterials in consumer products has raised 
concerns about their potential risks for workers, consumers and the environment. In 
a comprehensive risk assessment or life cycle assessment, a life cycle schema is the 
starting point necessary to build up the exposure scenarios and study the processes 
and mechanisms driving to safety concerns. This book chapter describes the pro-
cesses that usually occur at all the stages of the life cycle of the nano-enabled prod-
uct, from the nanomaterial synthesis to the end-of-life of the products. Furthermore, 
release studies reported in literature related to these processes are briefly 
discussed.
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3.1  Introduction

The increasing use of nanomaterials in industrial and consumer products results in 
a potential risk for workers, consumers and the environment.

A starting point for any comprehensive risk assessment or life cycle assessment 
is the identification of all relevant life cycle steps, so that all scenarios with a poten-
tial risk can be evaluated. The life cycle is totally product-dependent, as each prod-
uct has its own manufacturing processes, uses and waste treatment and, so, its own 
hotspots for nanomaterial release and associated risks. This chapter presents a brief 
overview of the most common processes that take place at different steps of a prod-
uct life-cycle (Fig. 3.1) and highlights the potential contribution of each step to the 
release of nanomaterials and associated risk.
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It is also important to clearly identify all the processes implied in each life cycle 
stage to know which mechanisms drive to release. Apart from release quantification, 
the form of release (isolated particles, aggregates, embedded in a matrix, surface 
modified by hydration or oxidation, etcetera) may be determinant for the hazard 
evaluation.

3.1.1  Production Levels of Engineered Nanomaterials

Some nanomaterials, such as carbon black and silica, have been industrially used 
for decades. However, during the last decade, new materials and modifications have 
allowed a dramatic expansion of nanotechnology. Despite the multiple materials 
that are being investigated at a research scale, at this moment it is estimated that 
nanomaterials produced at an industrial scale belong to only around 20 chemical 
classes [1]. At the moment, any attempt to determine nanomaterials production has 
to be based on estimations as they do not have to be reported. Only France and 
Denmark have recently regulated nanomaterials in products, so these nano- 
additivated products have to be registered and labelled in order to inform the con-
sumers [2, 3].

Attempts to estimate the production levels and applications of nanomaterials 
have been based on information provided by industry through surveys. Sometimes 
the data collected relates to production capacities and sometimes to actual pro-
duction amounts and the geographical area under scope also differs [4–6]. One of 
the most thorough recent surveys is that of Piccino et al., who send a survey to 
industrial representatives from companies producing or using nanomaterials to 
estimate the worldwide or Europe-wide production of such materials [7]. A con-
siderable large variability among answers by different industrial representatives 
reflects the general uncertainties related to the actual worldwide production vol-
umes. However, there was general agreement that silica, titanium dioxide, zinc 
oxide, carbon nanotubes, iron oxides, aluminium oxides, and cerium oxides are 
the nanomaterial types with highest production volumes. The median production 
quantities for each of these nanomaterials ranged between 55 and 5500 tonnes per 
year worldwide [7],  depending on the material. These values are also consistent 
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with estimated annual production volumes in China in 2012, which ranged from 
200 to around 1300 tonnes for titanium dioxide, zinc oxide, aluminium oxide, 
zirconium oxide, and silver [8].

According to the French registry [9], the quantities produced and imported in 
2014 are around 274,000 and 122,000 tones, respectively. Carbon black and silicon 
dioxide are the category of substances with largest produced or imported quantities, 
both above 100,000 t/year. These are followed by calcium carbonate and titanium 
dioxide, with volumes ranging 10,000–100,000 t/year. Other materials reported to 
be produced or imported in amounts above 1000  t/year are aluminium oxide, 
boehmite (γ-Al(OH)O), calcium 4-[(5-chloro-4-methyl-2-sulphonatophenyl)azo]-
3-hydroxy-2-naphthoate, reaction mixture of cerium dioxide and zirconium diox-
ide, polyvinyl chloride, and magnesium silicate.

3.2  Engineered Nanomaterials Synthesis

The synthesis of ENMs is the step of a nano-enabled product life cycle that has 
received the highest attention in the literature in relation to the potential risks for 
human health [10–13]. By contrast, the potential release of ENMs to the environ-
ment during this step has received little attention and it is commonly assumed to be 
low, though this completely depends on the procedures used during the production, 
cleaning and maintenance [14–17].

Due to the novelty of the field and the continuous research in the development of 
new nanomaterials, multitude of synthetic methodologies can be found in the litera-
ture. Most of these processes are adequate for laboratory scale and even pilot scale 
synthesis, but completely unworkable at industrial scales. Synthetic methods are 
often divided in top-down and bottom-up methods [18].

• Top-down methods. The successive cutting or slicing of bulk materials into 
nanomaterials play an important role in industrial synthesis of nanostructures 
that need specific shapes/sizes such as nanotransistors. Lithography, milling and 
attrition are the most common top-down processes used at the moment. The prin-
cipal disadvantages of top-down approaches are the internal stress and the imper-
fection introduced in the surface structure due to the use of so energetic 
techniques. Such imperfections may have dramatic effect over surface chemistry 
and physical properties of such prepared nanomaterials.

• Bottom-up methods. Atom by atom chaotic building of nanomaterials com-
prises most of synthetic methods as these are also the most common procedures 
in materials science. The main disadvantage of these methods is that usually a 
distribution of sizes is obtained, but compositions are more homogeneous than in 
top-down approaches.

Synthetic methods are usually divided in dry or wet synthesis; open or enclosed 
reactions; and gas-, solid- or liquid-phase reactions. Moreover, depending on the 
synthetic method and the material, different purification steps may be necessary 
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and, in the case of coated particles, one or more modification steps with extra 
 purification are needed. To facilitate comprehension, this section is organized first 
by nanomaterial group, and then by synthetic methods.

3.2.1  Carbon Based Nanomaterials Production

Sizable quantities of carbon based nanomaterials can be produced using various 
methods; among them, plasma based, thermal and hydrothermal syntheses pro-
cesses are the most used techniques [19–22].

The two most common plasma methods in the literature are Arc Discharge and 
Laser Ablation. Arc Discharge Method consists in passing current between two graph-
ite electrodes under helium, hydrogen or methane at low pressure in presence of tran-
sition metal based catalysts [23–28]. This causes vaporization of graphite that 
condenses over the cathode (and walls of the reactor). Carbon nanotubes (CNT) can 
also be produced by Laser Ablation, which is similar to Arc Discharge but the energy 
is provided by a laser. This laser vaporizes graphite and catalyst, so that nanocatalysts 
are formed and the carbon nanomaterials grow over them [29–35].

Thermal synthesis methods are also very abundant in the literature for the pro-
duction of CNT. Carbon Vapour Deposition (CVD) consists in the decomposition of 
a carbon source (usually a hydrocarbon over a transition metal catalyst). Both type 
of carbon source and catalyst affect in the CNT growth. Carbon based nanomateri-
als can also be produced by sono- or hydrothermal methods, which consist on the 
heating of a hydrocarbon/water mixture under pressure in the presence of a catalyst 
(usually Ni) [36–38].

These methods usually produce low quantities of carbon based nanomaterials 
(fullerenes, SWCNT, MWCNT, etcetera) mixed with other allotropic forms of car-
bon. The conditions used during the synthesis favour one form over the others, but 
purification steps are always necessary.

Graphene, graphene oxide and derivatives are synthesized very differently [39–
43]. The bottom-up approaches used for the rest of carbon based nanomaterials are 
modified to get 2D carbon layers over a support, which has to avoid 3D growth [44]. 
Graphene can be also produced by top-down approaches. The purest and most per-
fect graphene is produced by exfoliation of graphite [45–47], graphite oxide (fol-
lowed by reduction) [48–50] and carbon nanotubes [51].

Carbon based nanomaterials surface can be modified to improve their dispers-
ibility, their compatibility with a matrix or to functionalize them to add chemical 
groups that can later react or bond to any other entity, such as antibodies [52, 53], 
quantum dots [54] or gold nanoparticles [55]. These modifications are usually based 
on the following approach. In a first step, the nanomaterials are oxidized by a hydro-
thermal process (i.e.: sonication in presence of diluted nitric acid) that causes 
defects on the surface. Then, the hydroxyls and carboxylic acids formed are used for 
subsequent functionalization by traditional chemical reactions. Other strategies 
include direct arylation, carbene or nitrene addition or Friedel-Craft acylation.
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Carbon nanotubes and nanofibers have centred most of the attention of hygienists 
and toxicologists due to their fast increase in production volume and observed dustiness 
[16, 56–64]. Most published studies on occupational exposure to CNT show that, as the 
synthesis processes take place in closed reactors, most of the exposure occurs during 
material recovery and during cleaning and maintenance operations [57, 65–67].

3.2.2  Metallic Nanomaterials Production

Metallic nanomaterials (MNM) are traditionally synthesized by the reduction of a pre-
cursor under controlled conditions and in the presence of a stabilizer [68]. The solvent, 
conditions and stabilizers used depend on the element of the NP and on the purpose. Wet 
syntheses have been traditionally considered of lower risk in terms of occupational 
exposure due to lower aerosol formation compared to the work with powders.

Noble and seminoble metallic nanoparticles (Ag [69], Au [70], Pt [71], Pd [72, 
73], Ru [74], Rh [75], Ir [76]) are usually industrially synthesized by reduction of a 
precursor salt in water (such as HAuCl4 or RuCl3). Once the colloids are synthe-
sized, they can be directly functionalized in situ or phase-transferred to an organic 
solvent for further surface functionalization when necessary [77]. The conditions 
and precursors used completely determine the results in terms of size and morphol-
ogy [78]. Although less common, all these materials can be produced by other meth-
ods, such as electrochemical deposition, physical synthesis or sol-gel method.

More reactive metallic nanoparticles are synthesized by similar approaches 
(which can be also used with noble metals), but under more controlled conditions 
(air-free atmosphere, organic solvents, ionic liquids, etcetera). The most common 
strategy consists on direct reduction or decomposition of organometallic com-
pounds or metallic carbonyls, such as Fe(CO)5, Co2(CO)8 or Ru(cod)(cot). Initially 
these syntheses used to produce polydisperse NP, but their optimization has 
improved the control of size and nowadays they are used for the synthesis of zerova-
lent nanoparticles of several metals: Fe, Co, Ru, Ir, Au, Ni or Rh, and different types 
of mixtures (core-shell, alloys...) [79, 80]. Surface modification of these materials is 
usually done in situ, and the organic modifier is used as stabilizer.

Though most metallic nanoparticles are produced by wet processes, occupa-
tional exposure cannot be neglected [81–86]. Release of metallic nanomaterials to 
the environment has received some attention, particularly Ag-NPs release, but most 
studies use assumptions to estimate the release during the MNP synthesis rather 
than actual measurements [87].

3.2.3  Oxide Based Nanomaterials Production

Several physical and chemical routes for the synthesis of nanometal oxides (NMOx) 
have been reported. Solution routes are the most widely used at laboratory scale, as 
they need more easily accessible set-ups and allow having a better control size and 
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shape. In contrast, at the industrial scale, gas phase methods are the most commonly 
used as they are usually cleaner and better conversions are obtained. Moreover, they 
can be used for the deposition of thin films or nanostructures over a particular sub-
strate. Both solution and gas-phase methods are widely used to produce different 
NMOx such as ZnO [88], TiO2 [89], FexOy [90], CeO2 [91, 92], ZrO2 [93], CuxO 
[94], Al2O3 [95], SiO2 [96–98], CoxOy [99], etcetera.

Solution routes are based on the decomposition of a salt or alkoxide precursor in 
solution, normally by means of a source of energy, to form the nanomaterial. 
Thereafter, this nanomaterial is separated from the solution by centrifugation, nano-
filtration or other nano-appropriate techniques. Some examples of solution routes 
include solvo-/hydrothermal method, precipitation method, electrochemical synthe-
sis, sonochemical method, sol-gel method and microemulsion.

In gas phase methods, metal vapour is produced by thermal, laser ablation, elec-
tron beam, ion beam, molecular beam or by vaporizing and dissociating any metal 
precursor. This metal vapour reacts with oxygen to produce the metal oxide that is 
deposited on the bottom and the internal walls of the reactor.

Different surface modification strategies exist. The most commonly reported 
are: (i) chemical functionalization of the surface by bonding of a silane derivate, 
which renders a very stable modification; (ii) addition of compounds that have 
affinity for NMOx surfaces, such as carboxylates or phosphates; and (iii) polymer 
grafting [100].

Occupational exposure to nanometal oxides in production facilities has not 
received much attention in the literature. In general, the reported studies show that 
the exposure is due to specific operations such as reactor opening, material recovery 
or cleaning and maintenance [86, 101–104].

3.2.4  Quantum Dots Production

Quantum dots (QD) can be produced by several methods, both top-down and bot-
tom- up approaches [105–107]. The advantage of top-down processes is that very 
well-defined QD are produced. This is necessary, for instance, when producing 
nano-transistors for computing. However, these high energy methods usually result 
on physical and chemical damage to the particle surface. On the other hand, bottom-
up approaches produce smaller and purer particles, as necessary in sensing 
applications.

Lithography, reactive-ion etching and wet chemical etching are the most com-
monly used top-down processes. The bottom-up processes are very similar to the 
ones explained for nanometal oxides synthesis.

The surface of most quantum dots is very easy to modify, as several functional 
groups have affinity for them (thiols, amines, carboxylic acids, etcetera). Thus, a 
multitude of papers report QD functionalization with biomolecules (DNA, RNA, 
proteins...) [108, 109], polymers [110] or other nanomaterials [111].
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Despite of the high concern about quantum dots toxicity [106, 112–114] and 
their potential impact over workers and the environment, there is a lack of experi-
mental data on the exposure to quantum dots during synthesis steps. Moreover, the 
only study that was found at the moment focused on a labscale synthesis [104].

3.2.5  Polymeric and Ceramic Nanofibres Production

Nanofibres are usually produced by the electrospinning method [115–119]. This 
method produces non-woven fabrics, in which the fibres are randomly oriented and 
connected by physical entanglements or bonds, without any knitting or stitching. In 
the electrospinning method, polymers are usually dissolved in a proper solvent (or 
molten) and the nanofiber is produced by high voltage. Recently, this technique has 
been extended to ceramic nanofibres synthesis. In this case, polymeric nanofibres 
loaded with ceramic precursors are prepared by electrospinning and, later, com-
busted to render the ceramic nanofiber.

Nanofibres production is usually done in closed conditions and neither occupa-
tional nor environmental exposure have been reported during this life cycle step. All 
the publications have focused on secondary manufacturers [120].

3.3  Nanocomposite Production

The incorporation of the nanomaterial in or on a matrix is a key step in nano-enabled 
products life cycle (except on those cases where nanomaterials are a final product 
by themselves, such as nanocatalysts). Nanotechnology has greatly progressed dur-
ing the last two decades and, nowadays, we can find applications for almost any 
type of nanomaterial in any type of matrix.

A nanocomposite is a multiphase solid material that has at least one of the phases 
in the nanoscale. The main difference between nanocomposites and traditional com-
posites is the high surface of contact between the phases in the first case. The addi-
tion of nanomaterials to solid matrices produces materials with enhanced, or even 
completely new, attributes, such as conductive polymeric matrices, electrolumines-
cent metals, semiconductor ceramics or photo-luminescent textiles. The properties 
and quality of the resulting nanocomposite depend on the constituents of the com-
posite, but also on the degree of dispersion and homogeneity of the different phases, 
which depend on the compatibilization between the phases and the mixing/addition 
methods.

In addition, nanomaterials can be also added to the surface of a material to obtain 
new or improved surface properties. This surface addition can be done by in situ 
nanocomposite formation, such as surface treatment of ceramic tiles with a solution 
of nanosized titania and a resin that is later dried [121]; by physical or chemical 
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attachment of the nanomaterial to the surface, such as textiles with silver nanopar-
ticles bonded to the fibres [122]; or by direct deposition of a thin layer over the 
surface, such as solar cells of nanosized TiO2 prepared by direct CVD over the cell 
surface [123].

Other types of nano-additivated formulations include nanomaterial dispersion in 
emulsions, such as paints or cosmetics, or mixtures of non-consolidated solids, such 
as catalytic mixtures for gas emission treatment.

The literature on this field is very broad (8,280; 88,000 and 75,000 results in 
Google Books, Google Scholar and Web of Science, respectively, when looking for 
all in title: nanocomposites).1 Due to the scope of this book, this chapter will only 
provide an overview on the production processes for the main types of nanocompos-
ites: polymeric, ceramic, metallic and textiles. If needed, the reader can expand this 
information in some of the existing reviews [124–126].

3.3.1  Polymeric-Matrix Nanocomposites

Research on polymeric nanocomposites has exponentially grown in the last decades 
and this has been reflected in an increase in the number of products launched to the 
market based on such materials, from conductive polymeric materials to artificial 
tissues.

Polymeric matrix nanocomposites can be synthesized by different techniques 
that can be divided in three major groups: solution casting, melt blending and in situ 
polymerization [127–130]. Solution casting consists in the dissolution of the poly-
mer and dispersion of the nanomaterial in a solvent (usually using ultrasonication). 
Then, the nanocomposite is obtained by removing the solvent. In the melt blending 
method, the polymer and the nanomaterial are intensively mixed in an extruder or a 
mixer at a temperature that allows polymer mobility. In situ polymerization consists 
on the mixture of the nanomaterial and monomers (in solution or not) under condi-
tions that favour the polymerization. Polymerization can be catalyzed by the nano-
material itself (i.e. silicate layers promote intercalated monomer polymerization) or 
by the addition of polymerization catalysts. Moreover, the nanomaterial may be 
coated with vinyl moieties where polymerization can start.

The choice of the synthesis method and its conditions completely depend on the 
polymer and on the type of nanomaterial. A good compatibility of the polymer and 
the nanofiller is critical for a homogeneous physical-chemical behaviour of the 
composite and to reduce nanomaterial release in following life cycle phases [131]. 
The most common strategies used to improve such compatibility are the use of addi-
tives that act as a surfactant between the nanomaterial and the polymer [132–135], 
and the surface modification of the nanomaterial to make it more compatible with 
the polymer [135–138].

1 Search done on the 21st January 2015.
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3.3.2  Ceramic-Matrix Nanocomposites

Nano-additivation of ceramic materials has resulted in the development of new 
materials with enhanced properties. The most important disadvantage of ceramic 
materials is their fragility, and the addition of nanomaterials is mainly used for the 
reinforcement of the ceramics that allows their use in new applications (i.e. armours, 
surgery materials or artificial bones). In addition, nanomaterials can also confer 
other properties that make these materials useful in fields such as optical, electronic 
or sensing [128, 139]. Ceramic matrices were traditionally reinforced with metallic 
particles [140–142], but nowadays one can find in the literature ceramics reinforced 
with carbon based nanomaterials [143, 144], nanometal oxides [145, 146] or quan-
tum dots [147].

Three methodologies are basically used in the processing of ceramic matrix 
nanocomposites: powder process, polymer precursor process and sol-gel process 
[128]. Powder process consists of the mixing of the different materials that are thor-
oughly milled together in wet conditions; later the mixture is dried and consoli-
dated, usually by pressure or moulding. This process is simple but results on a 
heterogeneous material. Polymer precursor process is similar, but the nanomaterial 
precursor is added to a polymer that is later pyrolized. Sol-gel process consists in 
the hydrolysis and condensation of molecular precursors dissolved in organic media 
to form a sol-gel, which is later dried and consolidated.

3.3.3  Metal-Matrix Nanocomposites

Particulate reinforced metal-matrix composites have been used for decades [148], 
but the reinforcement with nanomaterials has been developed recently and metal- 
matrix nanocomposites are still in their infancy [149]. The main advantages of 
metal matrices are their inherent thermal stability, resistance to abrasion, and ther-
mal and electrical conductivities. But their development was strained by their cost 
and the difficulties of preparation [128, 149, 150]. The nano-additivation of metal 
matrices confers a combination of ceramic and metal properties to the material. This 
makes the material ideal for multiple applications, such as structural materials in the 
aeronautic industry or in light energy conversion.

Several methods for metal-matrix nanocomposites processing are described in 
the literature, including vapour phase processing, spray pyrolysis, powder metal-
lurgy, solidification, chemical and deformation processes. The most used and cheap-
est method is solidification, which consists on the melting of the metal and the 
nano-reinforcement and rapid solidification of the melt by different processes. 
Liquid infiltration is similar, but in this case only the metal is melt and surrounds the 
nanomaterial. The homogeneity of the mixture can be improved by ultrasounds. The 
other methods are similar to the ones used in nanomaterial synthesis (sol-gel syn-
thesis, CVD, spray pyrolysis, etcetera) (see Sect. 3.2).
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3.3.4  Nano-additivated Textiles

Nanomaterials can be integrated in the textiles in different phases of their fabrica-
tion, which leads to different types of nano-additivated textiles: (i) Nanotextiles, 
when the nanomaterial is added once the fabric is produced, most of the products 
falls in this category; (ii) Nanocomposite textiles, when the material used to make 
the fibres is a nanocomposite; and (iii) Nanofibrous materials, when they are made 
from nanofibres (woven or non-woven) [151]. Nanomaterials are added to textiles 
to provide new or improved properties. The most common ones are antimicrobial 
activity and UV-filtering, but they are also used as flame retardants, water repellent, 
static protection, electrical conductivity, enhanced resistance or strength, photo- or 
electro-luminescent, self-cleaning, etcetera.

Several methods have been used for surface modification of fibre-based materi-
als, such as textiles and membranes [152–155]. Usually they involve small modifi-
cations during the fabric processing; the nanomaterial is added as any other additive 
by methods such as impregnation, roll-to-roll and pad-dry-cure. The main problem 
of these methods is that the nanomaterials are usually not well fixed to the fabric and 
majorly released during the washing process [156–161]. In order to minimize the 
release of nanomaterials, binders and functionalized particles are used to improve 
particle affinity for the textiles. Ultrasounds, UV irradiation, plasma- treatment and 
ion-beam-assisted deposition are very effective for the surface modification of tex-
tiles, but impractical for large scale manufacturing (several preparatory steps, time-
consuming and costly).

Nanocomposite fibres have emerged in the last decade as a very interesting mate-
rial for nano-enabled textiles processing. In this case, nanocomposite material is 
produced as any other polymer-matrix nanocomposite (see Sect. 3.3.2). The main 
challenge is to get nano-reinforced polymers that can be processed as fibres and 
that, later, do not reduce the mechanical properties of the fabric.

Textiles and other non-woven products (such as filtering membranes) can be made 
of nanofibres. Nanofibres are produced by electrospinning (see Sect. 3.2.5) and can 
contain pure polymer(s) or nanocomposites. At the moment, nanofibres are not woven 
at industrial scale and are usually used as additive over other fibres [151]. Non-woven 
nanofibres are used as layer and barrier materials [115, 117, 118, 162, 163].

3.3.5  Occupational and Environmental Exposure 
During Nanocomposite Production

Most of the available studies on occupational exposure to nanomaterials focused on 
the nano-additivated material preparation. Nanomaterial synthesis is usually done in 
close reactors and workers are basically exposed during the nanomaterial recovery 
and during cleaning and maintenance. In contrast, weighting, pouring, and mixing 
of nanomaterial and bulk materials (common steps during nano-additivation of 
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materials) are usually done in open conditions, and can involve big amounts of 
nanomaterials, so that the exposure during this step is potentially high [10, 12, 164–
166]. This has been corroborated by exposure monitoring campaigns in workplaces 
as described in different reviews [167, 168] and other later studies [169–175].

On the other hand, nanomaterial release to the environment during this step is 
usually considered unlikely. Once the process is finished, the nanomaterials are 
embedded in a matrix or a mixture, so their recovery is easier and also the waste 
treatment [16].

3.4  Product Manufacturing

Product manufacturing involves a series of processes to convert the nano- additivated 
material into the final product. Machining is necessary to obtain final products with 
specified dimensions, surface finishing and tolerances. Most of the machining pro-
cesses are physically aggressive and can lead to nanomaterial release. Although 
these processes are carried out by machines, they usually need an operator, some-
times in close and long contact to the material (i.e. sewing). Some examples of 
machining processes include soldering, welding, cutting, sewing, grinding, shred-
ding, sanding, punching and drilling. Moreover, one has to consider than several of 
these processes may be necessary to get the final product, which may mean the 
product manufacturing divided in several phases that can even occur in different 
companies or locations.

Nanomaterial release from nanocomposites during the machining processes has 
received special attention in the literature in comparison to other processes during 
manufacturing and use stages. Indeed, almost half of the papers identified in a 
recent review on nanomaterial release from nanocomposites focused on machining 
processes [176].

Most of these studies are focused on CNT- and NMOx-based nanocomposites, 
with almost no attention to nanometal-based nanocomposites. Regarding the matrix, 
most of the studies focus on polymeric nanocomposites, probably because they are 
the ones with highest production volumes (Fig. 3.2) [176, 177].

CNT

NMOx

Clays

Nanometal

Other

Polymer-matrix
nanocomposites
Ceramic-matrix
nanocomposites

Metal-matrix
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Paints / coatings

Fig. 3.2 Summary of reviewed papers by nano-reinforcement, left, and by base material, right, 
submitted to machining processes (Based on Froggett et al. 2014)
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Nanomaterial release from nanocomposites during the machining processes 
can be studied simulating real operations or using standardized protocols. Non-
standard studies of cutting/sawing [120, 178, 179], grinding [120, 180], shred-
ding [181], sanding [65, 120, 182–186], and drilling [187–190] under different 
conditions (wet/dry, hot/cold, etcetera) are found in the literature. Studies based 
on standard protocols usually focus on abrasion, using a Taber abraser [131, 185, 
191–198]. Regardless on the type of simulation, most studies analyze the released 
material and usually conclude that part of the matrix released contains nanoma-
terials embedded. Only four publications report significant release of isolated 
nanomaterial [120, 131, 186, 192]. It is important to notice that most of these 
sanding/abrasion studies do not clearly distinguish between abrasions due to 
aging or industrial processes.

From the publications mentioned in this section, it can be concluded that the 
matrix play a more important role than the nano-reinforcement on the overall deg-
radation caused by the machining processes. Moreover, good dispersion of the 
nanofillers in the matrix could reduce the release of isolated nanomaterials [131].

3.5  Use Phase

At the moment, the major usage of nanomaterials is considered to be at the indus-
trial level. For example, they are used as catalysts, membranes, and as additives or 
technical components of materials in various application fields. In addition, some 
nano-enabled products are addressed to professionals and consumers. There is no 
doubt that the diversity of applications of ENMs in commercial products has 
grown extensively over the past decade, and continues to grow rapidly [199]. 
However, the actual distribution of nanomaterials over different product catego-
ries is largely unknown. According to the (US) Nanotechnology Consumer 
Products Inventory [200], which has been updated very recently, the number of 
consumer products that are claimed to contain nanomaterials has increased from 
54 products in 2005 to 1628 products in 2013. Although these numbers are likely 
to reflect real trends, their accuracy is questionable because tracking products that 
contain nanomaterials is rather challenging. With a few exceptions, current label-
ling regulations do not require that the nanomaterial be listed specifically as an 
ingredient. On the other hand, some products on the market with the claim of 
“nano” may neither contain nanomaterials nor be produced with nanotechnology. 
Depending on the area of application, interest in reporting the use of nanomateri-
als can differ, which could result on biased estimations on the main area of appli-
cation if based on reported use.

Such lack of information regarding the real use of nanomaterials in consumer 
products may change in the coming years. First, some regulations, such as those 
affecting cosmetics and food ingredients in the EU are currently already request-
ing producers to label nanomaterials in their products [201, 202]. And second, 
some countries established compulsory registries of nano-enabled products. 
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France was the first European country to require the identification of ‘substances 
with nanoparticle status’ that are produced, imported, distributed, or formulated 
from the 1st of January 2013 (Article 185 of the French Environmental Code [3]). 
Since June 2014, the Danish EPA also requests the reporting into the nano-prod-
uct register of mixtures and articles that are intended for sale to the general public 
and which contain nanomaterials. They did, however, limit the type of products 
that should be reported on the basis of their potential to represent a risk to the user 
or the environment. Therefore, reporting is only requested for products where the 
nanomaterial itself is released under normal or reasonably foreseeable use or 
where the nanomaterial itself is not released but substances in soluble form that 
are classified as carcinogen/mutagen/reprotoxic (CMRs) or environmentally dan-
gerous substances are released from the nanomaterial. In addition, some type of 
products (mostly those covered by specific product risk assessments, such as med-
icines or cosmetics) are also exempt [2].

A recent report outlines the results of the two first declaration periods in France 
(up to 1st June 2014) [9, 203]. Table 3.1 includes the sectors of use with more than 
100 declarations in 2014. The sectors with the highest number of declarations were 
agriculture, forestry and fishery, and formulation [mixing] of preparations and/or 
re-packaging (excluding alloys) with 58 and 19 of the declarations, respectively. 
Regarding chemical product categories, the most commonly reported are: (1) coat-
ings and paints, thinners, paint removers, (2) cosmetics and personal care products, 
and (3) plant protection products, altogether accounting for almost 70  % of the 
chemical product categories registered (Table 3.2). Finally, among the registered 
articles, the most frequently reported categories were rubber articles (AC10), 
machinery, mechanical appliances, and electrical/electronic articles (AC2), plastic 
articles (AC13), vehicles (AC1), and other articles with intended release of sub-
stances (AC30).

Future updates of this registry and other registries will provide more realistic 
estimates of the global production of nanomaterials and their main applications.

Table 3.1 Distribution of sectors of use among the total declared in 2014

Code Descriptor Occurrence Percentage

SU1 Agriculture, forestry, fishery 6417 58.28
SU10 Formulation [mixing] of preparations and/or re-packaging 

(excluding alloys)
2131 19.36

SU0 Other 877 7.97
SU17 General manufacturing, e.g. machinery, equipment, 

vehicles, other transport equipment
330 3.00

SU4 Manufacture of food products 233 2.12
SU24 Scientific research and development 227 2.06
SU11 Manufacture of rubber products 161 1.46
SU12 Manufacture of plastics products, including compounding 

and conversion
161 1.46

SU9 Manufacture of fine chemicals 119 1.08

Adapted from Ministère de l’Écologie du Développement durable et de l’Énergie (2014)
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3.5.1  Common Nanomaterial Applications and Potential 
for Release of Nanomaterials

Some applications involve the intended release of NM, either to result on an intended 
human exposure (e.g., application of nano-enabled sunscreen onto the skin), or to 
application on other surfaces (e.g., generation of a nanocoating by spraying into a glass 
surface). In these cases, the estimation of the direct release of NMs is rather straightfor-
ward. However, understanding which fraction of it reaches its target application point, 
and which is the fate of such fraction after application is still largely unknown.

In other many applications, NM are part of the product matrix and are not 
intended to become released during use. Nevertheless, some of the normal use pro-
cesses for some products may result on such unintended release. These can be 
mechanical processes, such as washing, wearing, tearing, breaking, and drilling, or 
physical-chemical degradation processes, such as weathering and chemical  abrasion. 
The amount of the NM released from the matrix during the use stage will depend on 
several factors: the amount of NM in the product, the product lifetime, the way the 
NM are incorporated in the material (surface applications or in matrix), the surface 
contact area of the product that is affected by the process inducing release, the trans-
fer factor of the NM within the matrix, the thickness of the product, and the fre-
quency and duration of use.

During the last years, an increasing interest has resulted on research on the 
release of NM during the use phase of nano-enabled products. Indeed, it is 
assumed that unintended emissions from diffuse sources are one of the most 
important sources of NM releases to the environment [14]. Nevertheless, the num-
ber of studies evaluating release of NM from solid nanocomposites is still very 
low (Table 3.3) [176].

In general, weathering studies with polymeric nanocomposites have shown the 
degradation of the polymeric matrices due to photo- and chemical degradation. As 
a consequence, the nanoparticles tend to accumulate in the degraded zone, at the 
surface of the nanocomposite. However, free released NM are barely detected and 
rarely freed from the matrix in which they were included, even when weathering 
experiments have been combined with secondary mechanical forces [204, 205].

The release of nanomaterials (embedded in organic binder, as aggregates, or as 
single particles) from conventional paints during run-off events has been reported 
[195, 206–209]. However, the amounts released greatly differ among studies.

Table 3.2 Distribution of chemical product categories among the total declared in 2014

Code Descriptor Occurrence Percentage

PC9a Coatings and paints, thinners, paint removers 631 24.0
PC39 Cosmetics, personal care products 605 23.0
PC27 Plant protection products 575 21.9
PC13 Fuels 216 8.2
PC32 Polymer preparations and compounds 160 6.1

Adapted from Ministère de l’Écologie du Développement durable et de l’Énergie (2014)
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A considerable number of studies have also focused on the release of nanomate-
rials (mostly silver) from textiles during washing processes [157, 160, 161, 210–
212]. High releases have often been reported during the first washing event [211]. 
All these studies suggest that the silver particles in the textile dissolve to silver ions 
in the water and form secondary particles. A similar process seems to occur when 
textiles containing silver nanoparticles are immersed in artificial sweat [213–215].

The available research still provides a rather partial view of the potential release 
of nanomaterials or dissolved ions from consumer products. And further research is 
needed to understand and model which factors and how determine release under 
different processes.

3.6  End of Life

Products containing nanomaterials will eventually reach the end of their useful lives 
and, unless recycled, be discarded. In addition, waste materials containing nanoma-
terials are being generated during the manufacture of nanotechnology products. 
These waste streams generated during the life cycle of products containing nanoma-
terials are potential sources of nanomaterials into the environment. The handling, 
treatment and disposal of such wastes will determine the resulting environmental 
releases of nanomaterials. Therefore, the development of appropriate end-of-life 
management strategies for waste streams containing nanomaterials is critical.

This section provides an overview of the most common recycling and end-of-life 
processes for products and waste streams containing nanomaterials.

3.6.1  Recycling

Two categories of waste can be considered in terms of recycling processes. First, waste 
streams that are treated as broad waste categories, such as plastics or paper. These are 
typically highly heterogeneous mixtures of different products that could include multi-
tude of different nanomaterials. And second, narrower categories, such as PET bottles, 

Table 3.3 Summary of the current literature on release of nanomaterials from solid nanocomposites

Weathering Washing Contact

Textiles/Fabrics 0 7 2
Thermoset 8 0 0
Termoplastic 6 0 2
Paints/Coatings 9 0 1
Cement 2 0 0
Dental glass 0 0 1
Ceramic 0 2 0
Total 25 9 6

Adapted from Froggett et al. [176]
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tyres, and Li-ion batteries, that are comparatively much more homogeneous. Regardless 
of the category, current recycling processes will handle products with and without 
nanomaterials in unknown proportions. Research is needed to estimate the type and 
quantity of nanomaterials in different material flows entering recycling systems, and on 
how the presence of nanomaterials alters the quality of the recycled material. Indeed 
some research has been published on the performance of recycled composites contain-
ing nanomaterials, and results show that the presence of nanomaterials may negatively 
affect the quality of the recycled composites [216, 217]. Such information could result 
on changes in the optimal applications for the recycled materials or on changes in the 
recycling processes per se. In addition, information is also needed on the potential 
release of nanomaterials during these processes and on technical measures that could 
be used for minimizing them [218]. The generation of such information is necessary to 
evaluate potential negative impacts on workers or the environment [219].

3.6.2  Incineration

Incineration is a thermal treatment, through which waste is combusted in an oxidiz-
ing ambient at temperatures in the range of 850–1200 °C [220]. There are different 
types of plants, which mostly differ in the off-gas treatment section. Materials 
(including nanomaterials) that enter an incineration plant can be totally or partially 
combusted or remain unaltered, depending on the local conditions in the combus-
tion chamber, the melting point and reactivity of the materials, and additional matrix 
materials in which they are present. Unaltered or partly combusted materials can 
end up in the slag/bottom ash, retained in the particle control filters and becoming 
part of the fly ash, or go through such filters and be released to the environment.

Nanomaterials in the waste streams entering an incinerator may exist as free parti-
cles (i.e. a powder) or dispersed in a liquid or solid material. Based on theoretical 
thermodynamic considerations and on some experimental data, it is generally assumed 
that most nanomaterials in waste would end up in bottom ash. This would be the case 
for particle aggregates or particles that do not totally combust. A smaller fraction, 
mainly free particles and some partly combusted materials, would reach the air filtra-
tion systems, where a proportion of those would be retained [17, 220–225]. Some 
experimental data suggest that state-of-the-art flue gas cleaning systems (such as elec-
trostatic precipitators and wet scrubbers) would effectively retain nanomaterials, but 
the efficiency of current filter techniques is still controversial [221, 222]. Further exper-
iments are needed to fully substantiate these assumptions on the fate of nanomaterials 
in an incineration plant, and quantify efficiency of filter techniques for different type of 
nanomaterials. In addition, it remains unclear in what form the NM are present in the 
bottom ash. Treatment of the bottom ash depends on regional legislation, but it is usu-
ally disposed in landfills, unless originated from special waste streams that justify its 
further confinement. It is assumed that most of the waste streams containing nanoma-
terials will be considered domestic wastes, resulting in less strict regulations on the fate 
of resulting bottom ashes. Therefore, understanding in which form the nanomaterials 
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are usually present in the bottom ash (i.e. whether or not enclosed in vitrified frag-
ments) is important to understand their possible later mobility [225]. This information 
could be used to evaluate if current treatments are appropriate for the resulting ashes.

3.6.3  Landfilling

Landfill is a system of waste disposal that is based on burial of municipal solid 
waste (MSW) in specifically designed sites. Although landfill is one of the most 
exploited treatments for MSW end of life, it is not yet clear how NM behave during 
disposal. If NM are able to be transported through waste, then the potential for 
release from landfills to the surrounding environment increases. Existing studies 
show some degree of mobility for different NM, which depends on the NM and the 
composition of the leachate (organic composition, ionic strength, pH) [226, 227]. 
Another concern about the presence of NM in landfills is related to their capacity to 
influence biological activity. Very few data is available on this issue, and so far this 
indicates no effects on the overall biological activity [228, 229], although bacterial 
community structure has been shown to be sensitive to some nanomaterials [229].

3.6.4  Waste Water Treatment

Domestic (and some industrial) waste water containing nanomaterials will end up in 
sewage treatment plants and industrial waste water treatment plants.

Concerns are related to the impact of nanomaterials on the biological systems 
within such treatments, and on their fate. Several studies have investigated such 
processes (see recent review by Neale et al. [230]), but available information is still 
rather partial. Part of the sewage sludge, when metal concentrations are below 
established maximum limits, is applied on land as supplemental fertilizer of landfill 
cover. Current regulations establish metal content limits without consideration of 
particle size. Yang et al. estimated the proportion of nano-TiO2 present in a landfill 
and concluded that it represented around 0.1–0.2 % of the total Ti [231]. However, 
these values could vary regionally and with changing trends in the production of 
nano-TiO2. Further knowledge on the mechanisms of metal transport in soils and 
effects of environmental conditions and particle size are needed to evaluate the 
potential impact of applying sewage sludge containing nanomaterials on soils.

3.6.5  Current Practise and Regulations

Altogether, there is very limited information on the possible risks associated to the 
presence of nanomaterials in wastes. In the lack of specific evidence for concern, no 
specific processes are required for wastes containing nanomaterials in neither 
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Europe nor the United States [232, 233]. In Europe, wastes are classified as hazard-
ous or non-hazardous based on Regulation No. 1272/2008 on Classification, 
Labelling and Packaging of Substances and Mixtures [234]. This regulation does 
not include specific requirements for nanomaterials. Therefore, it is likely that 
nanomaterials will be classified in the same categories as their bulk form, and nano- 
specific hazards may be overlooked. The classification of waste as hazardous or 
non-hazardous is a key step as it leads to different requirements under the Waste 
Framework Directive. For example, mixing restrictions, labelling, and record keep-
ing do not apply to wastes containing nanomaterials, unless they have been classi-
fied as hazardous [235].

Even when nanomaterials would be classified as hazardous, they may still be 
appropriate for use in some consumer products. In those cases, it is unlikely that 
their classification would result on specific end-of-life treatments for consumer 
products containing them. However, this is an issue that also applies to other type of 
hazardous substances.

More details on how current regulations affect wastes containing nanomaterials 
(and associated gaps) can be found in previous review reports [232, 233, 236].
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