
Chapter 7

Emerging Metagenomic Strategies
for Assessing Xenobiotic Contaminated Sites

Srujana Kathi

7.1 Introduction

Soil is a complex dynamic biological system where it is difficult to link specific taxa

to metabolic processes (Burns et al. 2013). Soil metagenomics, which comprises

isolation of soil DNA and the production and screening of clone libraries, can

provide a cultivation-independent assessment of the largely untapped genetic

reservoir of soil microbial communities (Daniel 2005). The term ‘metagenome’
was proposed by Handelsman et al. (1998) to describe the genomes of the total

microbiota found in nature that can be understood as the whole collection of

genomic information of all microorganisms in a given environment (Di Bella

et al. 2013). The increasing availability of genes, genomes and metagenomes as

well as the growing understanding of their functionalities are supported by consid-

erations of microbial physiology, biochemistry, genetic regulation and engineering

in pure strains or defined communities for implementation in bioremediation

(Agathos and Boon 2015).

Metagenomics is a rapidly growing area of genome sciences that seeks to

characterize the composition of microbial communities, their operations and their

dynamically co-evolving relationships with the habitats even in unculturable envi-

ronments (Franzosa et al. 2015; Taupp et al. 2011; Yong and Zhong 2010;

Turnbaugh and Gordon 2008). Metagenomics involves sequencing the total DNA

extracted from environmental samples (Thomas et al. 2015). Metagenomics offers

the possibility to retrieve unknown sequences or functions from the environment, in

contrast to methods relying on PCR amplification which are based on prior knowl-

edge of gene sequences (Stenuit et al. 2008).
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The primary objective of any metagenome sequencing project is the total

characterization of a community, taxonomic breakdown and relative abundance

of the various species and genic composition of each member of the community

including number, functional capacity and intra-species/intra-population heteroge-

neity of the genes (Scholz et al. 2012). Metagenomics can be employed to identify

the functional potential and the taxonomic identity of all organisms in an environ-

mental sample, without leaving any information regarding the active members of

the microbial community involved (El Amrani et al. 2015). In such a case,

metagenomic techniques such as single isotope probing can be applicable for the

identification of active members of the microbial community and associated genes

essential for biodegradative processes (Uhlik et al. 2013).

Functional metagenomics includes screening of environmental-DNA libraries

for enzymatic activities or metabolite synthesis (Tannieres et al. 2013). The appli-

cation of metagenomics might aid in the isolation of novel catabolic pathways for

degradation of xenobiotic compounds, indicating the functional genetic capacity for

contaminant degradation and providing molecular tools useful for identification of

the microbial taxa encoding the biodegradative gene (Kakirde et al. 2010).

Metagenomic approaches enable to identify several novel genes encoding cellulo-

lytic, pectinolytic, proteolytic and lipolytic enzymes and many new enzymes for

screening and identification of unexplored microbial consortia involved in soil

xenobiotic degradation (Bashir et al. 2014).

Xenobiotics are foreign compounds to living organisms whose molecules are not

easily recognized by existing degradative enzymes and tend to accumulate in soil

and water. Xenobiotics include polyaromatic, chlorinated and nitroaromatic com-

pounds, known to be toxic, carcinogenic and mutagenic for living organisms (Eyers

et al. 2004). The toxicity of these compounds for the environment and for biota

results from their resistance to natural degradation owing to their structural com-

plexity (Ufarte et al. 2015). During microbial degradation of xenobiotics, all

changes in the chemical structure are due to the action of enzymes. These enzymes

possess a broad range of specificity to accommodate several molecules of similar

structure. If such enzymes are identified and isolated, they can be engineered by

directed evolution to improve their efficiency with respect to a particular compound

(Theerachat et al. 2012).

It is estimated that soil metagenome accommodates approximately 6000–10,000

Escherichia coli genomes in undisturbed organic soils and 350–1500 genomes in

disturbed of which only 5 % has been cultured and studied in the laboratory (Desai

and Madamwar 2007). Metagenomic analyses have enabled researchers to explore

the previously uncultivable microorganisms and exploit their genetic potential in

the bioremediation of contaminated soil (Martin et al. 2006; Malik et al. 2008;

Simon and Daniel 2011). The metagenomic DNA of polluted environments is a

potential genetic resource from which phylogenetic affiliation of uncultured bacte-

rial species could be determined and their genetic potential can be tapped by

identifying novel biocatalyst, xenobiotic and metal-detoxifying genes with utility

in bioremediation processes (Meier et al. 2015, 2016; Desai and Madamwar 2007).
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Predictive elative metabolic turnover (PRMT) converts metagenomic sequence

data into relative metrics for the consumption or production of specific metabolites

(Larsen et al. 2011).

Metagenomics lacks the tools to determine whether sufficient coverage is avail-

able for the type of analysis planned or whether one can interpret data of a certain

depth for a community of a given complexity. Therefore, the standard low coverage

in metagenomic studies generates a dataset that reflects a random subsampling of

the genomic content of the individual community members (Desai et al. 2012).

7.2 Approaches to Metagenomics

There are different approaches to metagenomics: (1) shotgun metagenomics where

all DNA is sheared and sequenced and functions and taxonomy are derived from

homology search in databases, (2) activity-driven studies that are designed to search

for specific microbial functions, (3) sequence-driven studies that link genome

information with phylogenetic or functional marker genes of interest and (4) direct

determination of the whole collection of genes within an environmental sample

without constructing a metagenomic library (Suenaga 2012; Harismendy et al.

2009; Shendure and Ji 2008; Brulc et al. 2009). The basic steps involved in

metagenomics of soil-bound xenobiotic compounds has been analysed by means

of schematic process workflow (Fig. 7.1).

Fig. 7.1 A schematic workflow of steps involved in soil xenobiotic metagenomics
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The four metagenomic approaches described above based on their random and

directed sequencing strategies can be characterized as unselective (shotgun analysis

and next-generation sequencing) and targeted (activity-driven and sequence-driven

studies) metagenomics, respectively. Unselective metagenomics is a simple and

cost-effective DNA sequencing option (Chen and Pachter 2005). The number of

metagenomic projects has exploded in recent years, and hundreds of environmental

samples have been unravelled by shotgun sequencing (Ivanova et al. 2010). Whole-

metagenome shotgun sequencing and amplicon sequencing have been applied to

study diverse microbiomes, ranging from natural environments to the built envi-

ronment and the human body (Tyson et al. 2004). In addition to enrichment culture

approaches, isolated environmental DNA can be subjected to whole genome ampli-

fication, that is, multiple displacement amplification (MDA) to provide sufficient

genetic substrate for library production (Taupp et al. 2011).

A shotgun metagenomic approach relies on sequencing of total DNA extracted

from a given sample, without prior cloning into a vector (Jansson 2015). The

application of this approach involves the design of PCR primers or hybridization

probes for the target genes that are derived from conserved regions of already

known protein families, which a priori limits the chances for obtaining fundamen-

tally new proteins (Ferrer et al. 2009). The activity-based approach involves

construction of small to large insert expression libraries, especially those made in

lambda phage, cosmid or copy-control fosmid vectors, which are further

implemented for a direct activity screening (Lorenz and Eck 2005). Three different

function-driven approaches have been used to recover novel biomolecules: pheno-

typical detection of the desired activity heterologous complementation of host

strains or mutants and induced gene expression (Simon and Daniel 2011). The

major limitation of this approach to systems microbiology is that metagenomic

libraries have a size limit. After constructing a library, a critical step is to screen for

clones that contain target genes among a large number of clones. Here, dozens of

thousands of clones may be analysed in a single screen. Certainly, owing to the

limitation of efficient expression of the metagenome-derived genes in the selected

host, the numbers of positive clones will not be high. Furthermore, in activity-based

screening, it is necessary to develop specialized screening systems to detect the

activity of the products of the gene of interest (Ferrer et al. 2009). Targeted

metagenomic studies that combine metagenomic library screening and subsequent

sequencing analysis appear to be a more effective means to understand the content

and composition of genes for key ecological processes in microbial communities

(Suenaga 2012).
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7.3 Metagenomics of Xenobiotics

7.3.1 PAHs

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, persistent and toxic

organic compounds in the environment (Cao et al. 2015; Srujana and Khan

2012). The advent of metagenomic approaches has revealed a higher degree of

diversity in the degradation pathways and enzymes (Suenaga et al. 2007;

Brennerova et al. 2009). Using a function-driven metagenomic approach, Sierra-

Garcia et al. (2014) reported metagenomic fragments comprising of genes belong-

ing to different pathways, showing novel gene arrangements. These results rein-

force the potential of the metagenomic approach for the identification and

elucidation of new genes and pathways in poorly studied environments and con-

tribute to a broader perspective on the hydrocarbon.

Ring-hydroxylating dioxygenases/oxygenases (RHDs) play a crucial role in the

biodegradation of a range of aromatic hydrocarbons found on polluted sites,

including PAHs (Chemerys et al. 2014; Peng et al. 2010). RHDs are

multicomponent metalloenzymes, which catalyse the first step in the bacterial

degradation of various aromatic hydrocarbons (Jouanneau et al. 2011). Hydroxyl-

ation of an aromatic ring is the essential catalytic reaction for aromatic-ring

degradation by bacteria in nature. Mostly, the hydroxylation is catalysed by an

oxygenase family, Rieske oxygenase (RO). ROs catalyse a broad range of aromatic-

ring compounds including mono- and polycyclic aromatic and hetero-aromatic

compounds that are composed of terminal oxygenase and electron transfer compo-

nents. The terminal oxygenase component has a Rieske cluster as a redox compo-

nent that receives electrons from the electron transfer components and mononuclear

iron as a catalytic site for dioxygen activation (Inoue and Nojiri 2014). The nah
genes for PAH catabolism of Pseudomonas strains are highly homologous and

usually organized in two operons: the upper nah1, which control initial oxidation of
naphthalene and subsequent degradation to salicylate, and the nah2 operon for

salicylate oxidation. However, the location of both operons and their relative

expression may vary. New variants of salicylate hydroxylase genes were found.

Also isofunctional genes for salicylate oxidation could be often detected within one

Pseudomonas strain. The unique genetic organization is described for P. putida
AK5 which degrades PAH via salicylate and gentisate, combining ‘classical’ nah1
operon and newly described sgp-operon (Boronin et al. 2010).

In addition to the enzyme-encoding genes involved in aromatic compound

degradation, metagenomic libraries were screened earlier for regulatory elements

that sense aromatic compounds (Suenaga et al. 2009). The implementation of

stable-isotope probing (SIP) to track PAH degraders led to the detection of novel

bacteria with remarkable biodegradation potential. SIP approaches also exposed the

affiliation of uncultured microorganisms with PAH-degrading bacteria identified in

contaminated soils (Chemerys et al. 2014; Uhlik et al. 2012; Singleton et al. 2005).

Fluorescence-based reporter assay system termed as substrate-induced gene
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expression (SIGEX) can be used for identification of transcriptional regulators that

sense benzoate and naphthalene (Uchiyama and Miyazaki 2013).

Using a metagenomic approach, microbial communities were monitored in Alert

biopiles over time to identify microorganisms and functional genes linked to the

high hydrocarbon degradation rates in soils undergoing treatment using an unbi-

ased, culture and PCR-independent method. Pseudomonas sp. expressing

hydrocarbon-degrading genes were most abundant in diesel-contaminated Cana-

dian High Arctic soils. After sequencing the metagenome of soil biopiles through a

time course, the results were compared with uncontaminated soil and then quanti-

fied the expression and the abundance of key functional genes for abundant

microorganisms identified in the metagenomic datasets (Yergeau et al. 2012). A

culture-independent approach to assess the microbial aerobic catabolome for PAH

degradation was used to study the microbial community of a PAH-contaminated

soil subjected to 10 years of in situ bioremediation, basing on Illumina-based deep

sequencing of amplicons targeting the V5–V6 region of 16S rRNA gene. A

metagenomic library was prepared in pCCFos and 425,000 clones subjected to

activity-based screening for key catabolic ring-cleavage activities using

2,3-dihydroxybiphenyl as a substrate. Since most of the genes encoding extradiol

ring-cleavage enzymes on 672 fosmids could not be identified using primers based

on currently available sequence information, 200 fosmid inserts were sequenced

using the Illumina technology. Manually curated databases for catabolic key gene

families involved in degradation of aromatics were developed named as AromaDeg

to overcome the misannotations in databases. Sequence information of the fosmid

inserts revealed not only the presence of novel extradiol dioxygenase genes but also

additional key genes of aromatic metabolic pathways only distantly related to

previously described variants (Duarte 2014).

An et al. (2013) reported that 160 microbial community compositions were

compared in ten hydrocarbon resource environments (HREs) and sequenced

12 metagenomes to characterize their metabolic potential. In addition to common

anaerobic communities, cores from oil sands and coal beds had unexpectedly high

proportions of aerobic hydrocarbon-degrading bacteria. Likewise, most

metagenomes had high proportions of genes for enzymes involved in aerobic

hydrocarbon metabolism. Time-course analysis of microbial communities using a

combination of metagenomics with metatranscriptomics and metaproteomics and

stable-isotope probing technique will greatly contribute to the evaluation of the

ecological functions of microbial genes at the community level (Muller et al. 2014;

Kato et al. 2015). Loviso et al. (2015) investigated the potential to degrade PAHs of

yet-to-be-cultured bacterial populations from chronically polluted intertidal sedi-

ments. They identified uncultured micro-organism having the potential to degrade

aromatic hydrocarbons with various chemical structures thereby providing valuable

information for the design of environmental molecular diagnostic tools for biotech-

nological application of RHO enzymes. When spatial and temporal variations of

microbial communities and reconstructed metagenomes along the rice rhizosphere

gradient during PAHs degradation were investigated, distance from root surface

and PAH concentrations were found to affect the microbial communities and
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metagenomes in rice rhizosphere. The abundance of dioxygenase genes relating to

PAH degradation in metagenomes mirrored the PAH degradation potential in rice

rhizosphere (Ma et al. 2015).

7.3.2 Organochlorinated Compounds

Biphenyl dioxygenase (BphA) is a key enzyme in the aerobic catabolism of PCBs

which carries out the initial attack on the inert aromatic nucleus. It belongs to class

II of aryl-hydroxylating dioxygenases (ARHDOs) that typically hydroxylate

substituted benzenes, like toluenes and biphenyls. This enzyme represents a cata-

bolic bottleneck, as its substrate range is typically narrower than that of subsequent

pathway enzymes. Metagenomic approaches can be applied to demonstrate the

feasibility of the applied approach to functionally characterize dioxygenase activ-

ities of soil metagenomes via amplification of incomplete genes (Standfuß-Gabisch

et al. 2012).

γ -Hexachlorocyclohexane also known as lindane (γ-HCH/γ-BHC) is a xeno-

biotic halogenated insecticide that was previously used worldwide, and this com-

pound still remains in the environment and causes serious environmental concern

(Vijgen et al. 2011). Activity-based screening techniques were applied to clone a

gene-encoding γHCH dehydrochlorinase with its flanking regions from a cosmid-

based library of DNA that was extracted from a γHCH-added suspension of

HCH-contaminated soil. A total of 11 cosmid clones showing the γHCH
dehydrochlorinase activity were obtained through the screenings. All the clones

had a linA gene identical to known one, but its flanking regions showed some

structural variations with known ones, suggesting high likelihood of genetic diver-

gence in the linA flanking regions (Ito et al. 2012).

7.3.3 Nitroaromatics

Nitroaromatic compounds such as nitrobenzene or nitrotoluene are widely used as

pesticides, dyes, polymers or explosives and are considered as priority pollutants

(Kulkarni and Chaudhari 2007). The two main explosives, 2,4,6-trinitrotoluene

(TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine [Royal Demolition Explosive

(RDX)], are major nitroaromatic environmental pollutants and present distinct

problems for bioremediation (Rylott et al. 2011). Rational design of enzymatic

activity has been used to improve the degradation of nitroaromatic compounds.

Nitrobenzene 1,2-dioxygenase catalyses the conversion of nitrobenzene to catechol

and nitrite. The residues near the active site of this enzyme were modified for

controlling substrate specificity. The substitution of amino acid at the position

293 (F293Q) expanded substrate specificity, resulting in 2.5-fold faster oxidization

rate against 2,6-dinitrotoluene (Singh et al. 2008). Lee et al. (2005) reported that the
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residues of 2,6-dinitrotoluene near active sites chosen for site-directed mutagenesis

and the replacement at the position 258 significantly changed the enantiospecificity.

Biodegradation of para-nitrophenol (PNP) proceeds via two distinct pathways in

Burkholderia sp. strain SJ98, having 1,2,3-benzenetriol (BT) and hydroquinone

(HQ) as their respective terminal aromatic intermediates. A ~41 kb fragment from

the genomic library of Burkholderia sp. strain SJ98 has been sequenced and

analysed. This DNA fragment was found to harbour all the lower pathway genes.

Later the whole genome of strain SJ98 was sequenced and annotated and found two

ORFs (viz. pnpA and pnpB) showing maximum identity at amino acid level with p-
nitrophenol 4-monooxygenase (PnpM) and p-benzoquinone reductase. This is the

first report for studying the genes for PNP degradation in strain SJ98 which are

found to be arranged differentially in the form of non-contiguous gene clusters

(Vikram et al. 2013).

7.4 Challenges and Future Prospects

Although metagenomics is revealing new information about phylogenetic and

functional genes in some soils, it is not possible to adopt the information available

to date to all soils (Jansson 2015). Owing to the complexity and heterogeneity of the

biotic and abiotic components of soil ecosystems, the construction and screening of

soil-based libraries is difficult and challenging (Daniel 2005). Soil metagenomics is

susceptible to limitations that are common to all molecular techniques. Soil DNA

extraction procedures are not fully efficient, where adsorption of cells and the

adherence of DNA onto soil components cause losses of genetic information, and

the DNA exploitation techniques currently in use provide access mainly to

populations that dominate in soil (Lombard et al. 2011). Metagenomics provides

little information on quantitative physiological characteristics such as maximum

specific growth rate, saturation constant, pH, temperature for growth, susceptibility

to predation and the speed of recovery after starvation. It is also difficult to draw

meaningful information from correlations between the physicochemical character-

istics of soil and metagenomic data (Prosser 2015).

Data analysis is the key limiting factor in metagenomic studies as increased data

volumes are posing significant challenges to the existing analysis tools and indeed

to the community providing analysis systems. This growth in dataset size, along

with computational complexity of analysis, has left the metagenomics community

in an unsustainable position, in terms of both financial cost and feasibility of

analysis itself (Desai et al. 2012). While metagenome sequencing can provide

useful estimates of the relative change in abundance of specific genes and taxa

between environments or over time, this does not investigate the relative changes in

the production or consumption of different metabolites (Larsen et al. 2011).

Adapted sampling strategies and the combination of DNA extraction methods can

help to recover these minority populations, which are normally masked by the

dominant ones. Pyrosequencing and Illumina/Solexa technologies also offers a
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chance to access the rare biosphere, but is still concerned by the overriding effect of

the dominant biota. Methods such as prior separation of particular minority cells via

flow cytometry, or separation/fractionation of DNA by GþC % or in a SIP-based

approach, will certainly help to tease out specific minority populations (Lombard

et al. 2011).
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