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Preface

The essays appearing in this volume were presented at the international workshop
entitled “Econophys-2015” held at the Jawaharlal Nehru University and University
of Delhi, New Delhi, from November 27, 2015, to December 1, 2015. The workshop
commemorated two decades of the formal naming of the field called
“Econophysics.” Prof. H.E. Stanley (Boston University, USA) first used the word in
1995 at the Statphys-Kolkata Conference, held at Kolkata, India. Econophysics-
2015 was held in continuation of the “Econophys-Kolkata” series of conferences,
hosted at Kolkata at regular intervals since 2005. This event was organized jointly by
Jawaharlal Nehru University, University of Delhi, Saha Institute of Nuclear Physics,
CentraleSupélec, Boston University, and Kyoto University.

In this rapidly growing interdisciplinary field, the tools of statistical physics that
include extracting the average properties of a macroscopic system from the
microscopic dynamics of the system have proven to be useful for modeling
socioeconomic systems, or analyzing the time series of empirical observations
generated from complex socioeconomic systems. The understanding of the global
behavior of socioeconomic systems seems to need concepts from many disciplines
such as physics, computer science, mathematics, statistics, financial engineering,
and the social sciences. These tools, concepts, and theories have played a significant
role in the study of “complex systems,” which include examples from the natural
and social sciences. The social environment of many complex systems shares the
common characteristics of competition, among heterogeneous interacting agents,
for scarce resources and their adaptation to dynamically changing environments.
Interestingly, very simple models (with a very few parameters and minimal
assumptions) taken from statistical physics have been easily adapted, to gain a
deeper understanding of, and model complex socioeconomic problems. In this
workshop, the main focus was on the modeling and analyses of such complex
socioeconomic systems undertaken by the community working in the fields of
econophysics and sociophysics.

The essays appearing in this volume include the contributions of distinguished
experts and their coauthors from all over the world, largely based on the presen-
tations at the meeting, and subsequently revised in light of referees’ comments. For

v



completeness, a few papers have been included that were accepted for presentation
but were not presented at the meeting since the contributors could not attend due to
unavoidable reasons. The contributions are organized into three parts. The first part
comprises papers on “econophysics.” The papers appearing in the second part
include ongoing studies in “sociophysics.” Finally, an “Epilogue” discusses the
evolution of econophysics research.

We are grateful to all the local organizers and volunteers for their invaluable
roles in organizing the meeting, and all the participants for making the conference a
success. We acknowledge all the experts for their contributions to this volume, and
Shariq Husain, Arun Singh Patel, and Kiran Sharma for their help in the LATEX
compilation of the articles. The editors are also grateful to Mauro Gallegati and the
Editorial Board of the New Economic Windows series of the Springer-Verlag
(Italy) for their continuing support in publishing the Proceedings in their esteemed
series.1 The conveners (editors) also acknowledge the financial support from the
Jawaharlal Nehru University, University of Delhi, CentraleSupélec, Institut Louis
Bachelier, and Indian Council of Social Science Research. Anirban Chakraborti and
Dhruv Raina specially acknowledge the support from the University of Potential
Excellence-II (Project ID-47) of the Jawaharlal Nehru University.

Châtenay-Malabry, France Frédéric Abergel
Kyoto, Japan Hideaki Aoyama
Kolkata, India Bikas K. Chakrabarti
New Delhi, India Anirban Chakraborti
New Delhi, India Nivedita Deo
New Delhi, India Dhruv Raina
Boston, USA Irena Vodenska
August 2016
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Chapter 1
Why Have Asset Price Properties
Changed so Little in 200 Years

Jean-Philippe Bouchaud and Damien Challet

Abstract We first review empirical evidence that asset prices have had episodes
of large fluctuations and been inefficient for at least 200years. We briefly review
recent theoretical results as well as the neurological basis of trend following and
finally argue that these asset price properties can be attributed to two fundamental
mechanisms that have not changed for many centuries: an innate preference for trend
following and the collective tendency to exploit as much as possible detectable price
arbitrage, which leads to destabilizing feedback loops.

1.1 Introduction

According to mainstream economics, financial markets should be both efficient and
stable. Efficiency means that the current asset price is an unbiased estimator of
its fundamental value (aka “right”, “fair” or “true”) price. As a consequence, no
trading strategy may yield statistically abnormal profits based on public information.
Stability implies that all price jumps can only be due to external news.

Real-world price returns have surprisingly regular properties, in particular fat-
tailed price returns and lasting high- and low-volatility periods. The question is
therefore how to conciliate these statistical properties, both non-trivial anduniversally
observed across markets and centuries, with the efficient market hypothesis.

J.-P. Bouchaud
Capital Fund Management, Rue de l’Université, 23, 75007 Paris, France
e-mail: jean-philippe.bouchaud@cfm.fr

J.-P. Bouchaud
Ecole Polytechnique, Palaiseau, France

D. Challet (B)
Laboratoire de Mathématiques et Informatique Pour la Complexité et les Systèmes,
CentraleSupélec, University of Paris Saclay, Paris, France
e-mail: damien.challet@centralesupelec.fr

D. Challet
Encelade Capital SA, Lausanne, Switzerland

© Springer International Publishing AG 2017
F. Abergel et al. (eds.), Econophysics and Sociophysics: Recent Progress
and Future Directions, New Economic Windows,
DOI 10.1007/978-3-319-47705-3_1

3



4 J.-P. Bouchaud and D. Challet

The alternative hypothesis is that financial markets are intrinsically and chroni-
cally unstable. Accordingly, the interactions between traders and prices inevitably
lead to price biases, speculative bubbles and instabilities that originate from feed-
back loops. This would go a long way in explaining market crises, both fast (liquidity
crises, flash crashes) and slow (bubbles and trust crises). This would also explain why
crashes did not wait for the advent of modern HFT to occur: whereas theMay 6 2010
flash crash is well known, the one of May 28 1962, of comparable intensity but with
only human traders, is much less known.

The debate about the real nature of financial market is of fundamental importance.
As recalled above, efficientmarkets provide prices that are unbiased, informative esti-
mators of the value of assets. The efficientmarket hypothesis is not only intellectually
enticing, but also very reassuring for individual investors, who can buy stock shares
without risking being outsmarted by more savvy investors.

This contribution starts by reviewing 200years of stylized facts and price pre-
dictability. Then, gathering evidence from Experimental Psychology, Neuroscience
and agent-based modelling, it outlines a coherent picture of the basic and persis-
tent mechanisms at play in financial markets, which are at the root of destabilizing
feedback loops.

1.2 Market Anomalies

Among the many asset price anomalies documented in the economic literature since
the 1980s (Schwert 2003), two of them stand out:

1. The Momentum Puzzle: price returns are persistent, i.e., past positive (negative)
returns predict future positive (negative) returns.

2. The Excess Volatility Puzzle: asset price volatility is much larger than that of
fundamental quantities.

These two effects are not compatible with the efficient market hypothesis and sug-
gest that financial market dynamics is influenced by other factors than fundamental
quantities. Other puzzles, such as the “low-volatility” and “quality” anomalies, are
also very striking, but we will not discuss them here—see Ang et al. (2009), Baker
et al. (2011), Ciliberti et al. (2016), Bouchaud et al. (2016) for recent reviews.

1.2.1 Trends and Bubbles

In blatant contradiction with the efficient market hypothesis, trend-following strate-
gies have been successful on all asset classes for a very long time. Figure1.1 shows
for example a backtest of such strategy since 1800 (Lempérière et al. 2014). The reg-
ularity of its returns over 200years implies the presence of a permanent mechanism
that makes price returns persistent.
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Fig. 1.1 Aggregate
performance of all sectors of
a trend-following strategy
with the trend computed over
the last six-month moving
window, from year 1800 to
2013. T-statistics of excess
returns is 9.8. From
Lempérière et al. (2014).
Note that the performance in
the last 2years since that
study (2014–2015) has been
strongly positive

1800 1850 1900 1950 2000
0

100

200

300

Indeed, the propensity to follow past trends is a universal effect, which most
likely originates from a behavioural bias: when faced with an uncertain outcome,
one is tempted to reuse a simple strategy that seemed to be successful in the past
(Gigerenzer and Goldstein 1996). The relevance of behavioural biases to financial
dynamics, discussed by many authors, among whom Kahneman and Shiller, has
been confirmed in many experiments on artificial markets (Smith et al. 1988), sur-
veys (Shiller 2000; Menkhoff 2011; Greenwood and Shleifer 2013), etc. which we
summarize in Sect. 1.3.

1.2.2 Short-Term Price Dynamics: Jumps and Endogenous
Dynamics

1.2.2.1 Jump Statistics

Figure1.2 shows the empirical price return distributions of assets from three totally
different assets classes. The distributions are remarkably similar (see also Zumbach
(2015)): the probability of extreme return are all P(x) ∼ |x |−1−μ, where the exponent
μ is close to 3 (Stanley et al. 2008). The same law holds for other markets (raw
materials, currencies, interest rates). This implies that crises of all sizes occur and
result into both positive and negative jumps, from fairly small crises to centennial
crises (Figs. 1.3 and 1.4).

In addition, and quite remarkably, the probability of the occurence of price jumps
is much more stable than volatility (see also Zumbach and Finger (2010)). Figure1.4
illustrates this stability by plotting the 10-σ price jump probability as a function of
time.
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Fig. 1.2 Daily price return
distributions of price,
at-the-money volatility and
CDS of the 283 S&P 500 that
have one, between 2010 and
2013. Once one normalizes
the returns of each asset class
by their respective volatility,
these three distributions are
quite similar, despite the fact
the asset classes are very
different. The dashed lines
correspond to the “inverse
cubic law” P(x) ∼ |x |−1−3

(Source Julius Bonart)

3

Fig. 1.3 Evolution of the Dow-Jones Industrial Average index and its volatility over a century. Sees
Zumbach and Finger (2010)

1.2.2.2 The Endogenous Nature of Price Jumps

What causes these jumps? Far from being rare events, they are part of the daily
routine of markets: every day, at least one 5-σ event occurs for one of the S&P500
components! According the Efficient Market Hypothesis, only some very significant
pieces of information may cause large jumps, i.e., may substantially change the
fundamental value of a given asset. This logical connection is disproved by empirical
studies which match news sources with price returns: only a small fraction of jumps
can be related to news and thus defined as an exogenous shock (Cutler et al. 1998;
Fair 2002; Joulin et al. 2008; Cornell 2013).
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Fig. 1.4 Yearly evolution of the probability of the occurrence of 10-σ price jump for a given day
for assets in the S&P500 since 1992 where σ is computed as a 250 day past average of squared daily
returns. These probabilities do vary statistically fromyear to year, but far less than the volatility itself.
This suggests that probability distributions of returns, normalized by their volatility, is universal,
even in the tails (cf. also Fig. 1.3). Note that the jumps probability has not significantly increased
since 1991, despite the emergence of High Frequency Trading (Source Stefano Ciliberti)

The inevitable conclusion is that most price jumps are self-inflicted, i.e., are
endogenous. From a dynamical point of view, this means that feedback loops are so
important that, at times, the state of market dynamics is near critical: small pertur-
bations may cause very large price changes. Many different modelling frameworks
yield essentially the same conclusion (Wyart et al. 2008; Marsili et al. 2009; Bacry
et al. 2012; Hardiman et al. 2013; Chicheportiche and Bouchaud 2014).

The relative importance of exogenous and endogenous shocks is then linked to
the propensity of the financial markets to hover near critical or unstable points. The
next step is therefore to find mechanisms that systematically tend to bring financial
markets on the brink.

1.3 Fundamental Market Mechanisms: Arbitrage,
Behavioural Biases and Feedback Loops

In short, we argue below that greed and learning are two sufficient ingredients to
explain the above stylized facts. There is no doubt that human traders have always
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tried to outsmart each other, and that the members the homo sapiens sapiens clique
have some learning abilities. Computers and High Frequency Finance then merely
decrease the minimum reaction speed (Hardiman et al. 2013) without modifying
much the essence of the mechanisms at play.

In order to properly understand the nature of the interaction between investors in
financial markets, one needs to keep two essential ingredients

1. Investor heterogeneity: the distribution of theirwealth, trading frequency, comput-
ing power, etc. have heavy tails, which prevents a representative agent approach.

2. Asynchronism: the number of trades per agent in a given period is heavy-tailed,
which implies that they do not trade synchronously. In addition, the continu-
ous double auction mechanism implies sequential trading: only two orders may
interact at any time.

One thus cannot assume that all the investors behave in the sameway, nor that they
can be split into two or three categories, which is nevertheless a common assumption
when modelling or analyzing market behaviour.

1.3.1 Speculation

Although the majority of trades are of algorithmic nature nowadays, most traders
(human or artificial) use the same types of strategies. Algorithmic trading very often
simply implements analysis and extrapolation rules that have been used by human
traders since immemorial times, as they are deeply ingrained in human brains.

1.3.1.1 Trend Following

Trend-following in essence consists in assuming that future price changes will be of
the same sign as last past price changes. It is well-known that this type of strategy
may destabilize prices by increasing the amplitude and duration of price excursions.
Bubbles also last longer because of heavy-tailed trader heterogeneity. Neglecting
new investors for the time being, the heavy-tailed nature of trader reaction times
implies that some traders are much slower than others to take part to a nascent
bubble. This causes a lasting positive volume imbalance that feeds a bubble for a
long time. Finally, a bubble attracts new investors that may be under the impression
that this bubble grow further. The neuronal processes that contribute the emergence
and duration will bubbles are discussed in Sect. 1.3.4.2.

1.3.1.2 Contrarian Behaviour

Contrarian trading consists in betting on mean-reverting behavior: price excursions
are deemed to be only temporary, i.e., the price will return to some reference
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(“fundamental” or other) value. Given the heterogeneity of traders, one may assume
that they do not all have the same reference value in mind. The dynamical effects
of this type of strategies is to stabilize price (with respect to its perceived reference
value).

1.3.1.3 Mixing Trend Followers and Contrarians

In many simplified agent-based models (De Grauwe et al. 1993; Brock and Hommes
1998; Lux and Marchesi 1999) both types of strategies are used by some fractions of
the trader populations. A given trader may either always use the same kind of strategy
(Frankel et al. 1986; Frankel and Froot 1990), may switch depending on some other
process (Kirman 1991) or on the recent trading performance of the strategies (Brock
and Hommes (1998), Wyart and Bouchaud (2007), Lux and Marchesi (1999)). In a
real market, the relative importance of a given type of strategy is not constant, which
influences the price dynamics.

Which type of trading strategy dominates can be measured in principle. Let us
denote the price volatility measured over a single time step by σ1. If trend following
dominates, the volatility of returns measured every T units of time, denoted by σT

will be larger than σ1

√
T . Conversely, if mean-reverting dominates, σT < σ1

√
T .

Variance-ratio tests, based on the quantity σT /(σ1

√
T ), are suitable tools to assess

the state of the market (see Charles and Darné (2009) for a review); see for example
the PUCK concept, proposed by Mizuno et al. (2007).

When trend following dominates, trends and bubbles may last for a long time.
The bursting of a bubble may be seen as mean-reversion taking (belatedly) over. This
view is too simplistic, however, as it implicitly assumes that all the traders have the
same calibration length and the same strategy parameters. In reality, the periods of
calibration used by traders to extrapolate price trends are very heterogeneous. Thus,
strategy heterogeneity and the fact that traders have to close their positions some
time imply that a more complex analysis is needed.

1.3.2 Empirical Studies

In order to study the behaviour of individual investors, the financial literature makes
use of several types of data

1. Surveys about individual strategies and anticipation of the market return over the
coming year (Shiller 2000; Greenwood and Shleifer 2013).

2. The daily investment flows in US securities of the sub-population of individual
traders. The transactions of individual traders are labelled as such, without any
information about the identity of the investor (Kaniel et al. 2008).

3. The daily net investment fluxes of each investor in a given market. For example,
Tumminello et al. (2012) use data about Nokia in the Finish stock exchange.



10 J.-P. Bouchaud and D. Challet

4. Transactions of all individual investors of a given broker (Dorn et al. 2008;
de Lachapelle and Challet 2010). The representativity of such kind of data may
be however uestionned (cf. next item).

5. Transactions of all individual investors of all the brokers accessing a given mar-
ket. Jackson (2004) shows that the behaviour of individual investors is the same
provided that they use an on-line broker.

1.3.2.1 Trend Follower Versus Contrarian

Many surveys show that institutional and individual investors expectation about
future market returns are trend-following (e.g. Greenwood and Shleifer 2013), yet
the analysis of the individual investors’ trading flow at a given frequency (i.e., daily,
weekly, monthly) invariably point out that their actual trading is dominantly contrar-
ian as it is anti-correlated with previous price returns, while institutional trade flow
is mostly uncorrelated with recent price changes on average (Grinblatt and Kelo-
harju (2000), Jackson (2004), Dorn et al. (2008), Lillo et al. (2008), Challet and
de Lachapelle (2013)). In addition, the style of trading of a given investor only rarely
changes (Lillo et al. 2008).

Both findings are not as incompatible as it seems, because the latter behaviour
is consistent with price discount seeking. In this context, the contrarian nature of
investment flows means that individual investors prefer to buy shares of an asset
after a negative price return and to sell it after a positive price return, just to get a
better price for their deal. If they neglect their own impact, i.e., if the current price
is a good approximation of the realized transaction price, this makes sense. If their
impact is not negligible, then the traders buy when their expected transaction price
is smaller than the current price and conversely (Batista et al. 2015).

1.3.2.2 Herding Behaviour

Lakonishok et al. (1992) define a statistical test of global herding. US mutual funds
do not herd, while individual investors significantly do (Dorn et al. 2008). Instead
of defining global herding, Tumminello et al. (2012) define sub-groups of individual
investors defined by the synchronization of their activity and inactivity, the rationale
being that people that use the same way to analyse information are likely to act in
the same fashion. This in fact defines herding at a much more microscopic level.
The persistent presence of many sub-groups sheds a new light on herding. Using
this method, Challet et al. (2016) show that synchronous sub-groups of institutional
investors also exist.
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1.3.2.3 Behavioural Biases

Many behavioural biases have been reported in the literature. Whereas they are only
relevant to human investors, i.e., to individual investors, most institutional funds are
not (yet) fully automated and resort to human decisions. We will mention two of the
most relevant biases.

Human beings react different to gains and to losses (see e.g. Prospect Theory Kah-
neman and Tversky 1979) and prefer positively skewed returns to negatively skewed
returns (aka the “lottery ticket” effect, see Lemperiere et al. 2016). This has been
linked to the disposition bias, which causes investors to close too earlywinning trades
and too late losing ones (Shefrin and Statman 1985; Odean 1998; Boolell-Gunesh
et al. 2009) (see however Ranguelova 2001; Barberis and Xiong 2009; Annaert et al.
2008). An indisputable bias is overconfidence, which leads to an excess of trading
activity, which diminishes the net performance (Barber and Odean 2000, see also
Batista et al. 2015 for a recent experiment eliciting this effect). This explains why
male traders earn less than female trades (Barber and Odean 2001). Excess confi-
dence is also found in individual portfolios, which are not sufficiently diversified. For
example, individual traders trust too much their asset selection abilities (Goetzmann
and Kumar 2005; Calvet et al. 2007).

1.3.3 Learning and Market Instabilities

Financial markets force investors to be adaptive, even if they are not always aware of
it (Farmer 1999; Zhang 1999; Lo 2004). Indeed, strategy selection operates in two
distinct ways

1. Implicit: assume that an investor always uses the same strategy and never recal-
ibrates its parameters. The performance of this strategy modulates the wealth
of the investor, hence its relative importance on markets. In the worst case, this
investor and his strategy effectively disappears. This is the argument attributed to
Milton Friedman according to which only rational investors are able to survive
in the long run because the uninformed investors are weeded out.

2. Explicit: investors possess several strategies and use them in an adaptive way,
according to their recent success. In this case, strategies might die (i.e., not being
used), but investors may survive.

The neo-classical theory assumes the convergence of financial asset prices towards
an equilibrium in which prices are no longer predictable. The rationale is that market
participants are learning optimally such that this outcome is inevitable. A major
problem with this approach is that learning requires a strong enough signal-to-noise
ratio (Sharpe ratio); as the signal fades away, so does the efficiency of any learning
scheme. As a consequence, reaching a perfectly efficient market state is impossible
in finite time.
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This a major cause of market instability. Patzelt and Pawelzik (2011) showed
that optimal signal removal in presence of noise tends to converge to a critical state
characterized by explosive and intermittent fluctuations, which precisely correspond
to the stylized facts described in thefirst part of this paper. This is a completely generic
result and directly applies to financial markets. Signal-to-noise mediated transitions
to explosive volatility is found in agent-based models in which predictability is
measurable, as in the Minority Game (Challet and Marsili 2003; Challet et al. 2005)
and more sophisticated models (Giardina and Bouchaud 2003).

1.3.4 Experiments

1.3.4.1 Artificial Assets

In their famous work, Smith et al. (1988) found that price bubbles emerged in most
experimental sessions, even if only three or four agents were involved. This means
that financial bubble do not need very many investors to appear. Interestingly, the
more experienced the subjects, the less likely the emergence of a bubble.

More recently, Hommes et al. (2005) observed that in such experiments, the
resulting price converges towards the rational price either very rapidly or very slowly
or else with large oscillations. Anufriev andHommes (2009) assume that the subjects
dynamically use very simple linear price extrapolation rules (among which trend-
following and mean-reverting rules),

1.3.4.2 Neurofinance

Neurofinance aims at studying the neuronal process involved in investment decisions
(seeLo2011 for an excellent review).Oneof themost salient result is that, expectedly,
human beings spontaneously prefer to follow perceived past trends.

Various hormones play a central role in the dynamics of risk perception and reward
seeking, which are major sources of positive and negative feedback loops in Finance.
Even better, hormone secretion by the body modifies the strength of feedback loops
dynamically, and feedback loops interact between themselves. Some hormones have
a feel-good effect, while other reinforce to risk aversion.

Coates and Herbert (2008) measured the cortisol (the “stress hormone”) concen-
tration in saliva samples of real traders and found that it depends on the realized
volatility of their portfolio. This means that a high volatility period durable increases
the cortisol level of traders, which increases risk aversion and reduces activity and
liquidity of markets, to the detriment of markets as a whole.

Reward-seeking of male traders is regulated by testosterone. The first winning
round-trip leads to an increase of the level testosterone, which triggers the production
of dopamine, a hormone related to reward-seeking, i.e., of another positive round-
trip in this context. This motivates the trader to repeat or increase his pleasure by



1 Why Have Asset Price Properties Changed so Little in 200 Years 13

taking additional risk. At relatively small doses, this exposure to reward and reward-
seeking has a positive effect. However, quite clearly, it corresponds to a destabilizing
feedback loop and certainly reinforces speculative bubbles. Accordingly, the trading
performance of investors is linked to their dopamine level, which is partly determined
by genes (Lo et al. 2005; Sapra et al. 2012).

Quite remarkably, the way various brain areas are activated during the successive
phases of speculative bubbles has been investigated in detail. Lohrenz et al. (2007)
suggest a neurological mechanism which motivates investors to try to ride a bubble:
they correlate the activity of a brain area with how much gain opportunities a trader
has missed since the start of a bubble. This triggers the production of dopamine,
which in turn triggers risk taking, and therefore generates trades. In other words,
regrets or “fear of missing out” lead to trend following.

After a while, dopamine, i.e., gut feelings, cannot sustain bubbles anymore as its
effect fades. Another cerebral region takes over; quite ironically, it is one of the more
rational ones: DeMartino et al. (2013) find a correlation between the activation level
of an area known to compute a representation of the mental state of other people,
and the propensity to invest in a pre-existing bubble. These authors conclude that
investors make up a rational explanation about the existence of the bubble (“others
cannot be wrong”) which justifies to further invest in the bubble. This is yet another
neurological explanation of our human propensity to trend following.

1.4 Conclusion

Many theoretical arguments suggest that volatility bursts may be intimately related
to the quasi-efficiency of financial markets, in the sense that predicting them is
hard because the signal-to-noise ratio is very small (which does not imply that the
prices are close to their “fundamental” values). Since the adaptive behaviour of
investors tends to remove price predictability, which is the signal that traders try
to learn, price dynamics becomes unstable as they then base their trading decision
on noise only (Challet et al. 2005; Patzelt and Pawelzik 2011). This is a purely
endogenous phenomenonwhose origin is the implicit or explicit learning of the value
of trading strategies, i.e., of the interaction between the strategies that investors use.
This explains why these stylized facts have existed for at least as long as financial
historical data exists. Before computers, traders used their strategies in the best way
they could. Granted, they certainly could exploit less of the signal-to-noise ratio than
we can today. This however does not matter at all: efficiency is only defined with
respect to the set of strategies one has in one’s bag.As timewent on, the computational
power increased tremendously, with the same result: unstable prices and bursts of
volatility. This is why, unless exchange rules are dramatically changed, there is no
reason to expect financial markets will behave any differently in the future.

Similarly, the way human beings learn also explains why speculative bubbles
do not need rumour spreading on internet and social networks in order to exist.
Looking at the chart of an asset price is enough for many investors to reach similar
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(and hasty) conclusions without the need for peer-to-peer communication devices
(phones, emails, etc.). In short, the fear of missing out is a kind of indirect social
contagion.

Human brains have most probably changed very little for the last two thousand
years. This means that the neurological mechanisms responsible for the propensity
to invest in bubbles are likely to influence the behaviour of human investors for as
long as they will be allowed to trade.

From a scientific point of view, the persistence of all the above mechanisms
justifies the quest for the fundamental mechanisms of market dynamics. We believe
that the above summary provides a coherent picture of how financial markets have
worked for at least two centuries (Reinhart and Rogoff 2009) and why they will
probably continue to stutter in the future.
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Chapter 2
Option Pricing and Hedging with Liquidity
Costs and Market Impact

F. Abergel and G. Loeper

Abstract We study the influence of taking liquidity costs and market impact into
account when hedging a contingent claim. In the continuous time setting and under
the assumption of perfect replication, we derive a fully non-linear pricing partial
differential equation, and characterize its parabolic nature according to the value of a
numerical parameter interpreted as a relaxation coefficient formarket impact.We also
investigate the case of stochastic volatility models with pseudo-optimal strategies.

2.1 Introduction

2.1.1 Position of the Problem

There is a long history of studying the effect of transaction costs and liquidity costs in
the context of derivative pricing and hedging. Transaction costs due to the presence
of a Bid-Ask spread are well understood in discrete time, see (Lamberton et al. 1997).
In continuous time, they lead to quasi-variational inequalities, see e.g. (Zakamouline
2006), and to imperfect claim replication due to the infinite cost of hedging contin-
uously over time. In this work, the emphasis is put rather on liquidity costs, that is,
the extra price one has to pay over the theoretical price of a tradable asset, due to the
finiteness of available liquidity at the best possible price. A reference work for the
modelling and mathematical study of liquidity in the context of a dynamic hedging
strategy is (Cetin et al. 2004), see also (Roch 2009), and our results can be seen as
partially building on the same approach.

F. Abergel (B)
Laboratory MICS, CentraleSupélec, 92290 Châtenay-Malabry, France
e-mail: frederic.abergel@centralesupelec.fr

G. Loeper
Mathematical Sciences, Monash University, Clayton, VIC 3800, Australia
e-mail: gregoire.loeper@monash.edu

© Springer International Publishing AG 2017
F. Abergel et al. (eds.), Econophysics and Sociophysics: Recent Progress
and Future Directions, New Economic Windows,
DOI 10.1007/978-3-319-47705-3_2

19



20 F. Abergel and G. Loeper

It is however unfortunate that a major drawback occurs when adding liquidity
costs: as can easily be seen in (Cetin et al. 2004;Millot andAbergel 2011;Roch2009),
the pricing and hedging equation are not unconditionally parabolic anymore. Note
that this sometimesdramatic situation can alreadybe inferred from the early heuristics
in Leland (1985): the formula suggested by Leland makes perfectly good sense for
small perturbation of the initial volatility, but is meaningless when the modified
volatility becomes negative. An answer to this problem is proposed in Çetin et al.
(2010), where the authors introduce super-replicating strategies and show that the
minimal cost of a super-replicating strategy solves a well-posed parabolic equation.
In such a case, a perfectly replicating strategy, provided that it exists, may not be
the optimal strategy, as there may exist a strategy with cheaper initial wealth that
super-replicates the payoff atmaturity. It appears however that such a situation,where
liquidity costs lead to an imperfect replication, is dependent on the assumption one is
making regarding themarket impact of the delta-hedger, as some recent work of one
of the author (Loeper 2013) already shows. In this work, we provide necessary and
sufficient conditions that ensure the parabolicity of the pricing equation and hence,
the existence and uniqueness of a self-financing, perfectly replicating strategy—at
least in the complete market case.

Motivated by the need for quantitative approaches to algorithmic trading, the study
of market impact in order-driven markets has become a very active research subject
in the past decade. In a very elementary way, there always is an instantaneous market
impact—termed virtual impact in Weber and Rosenow (2005)—whenever a trans-
action takes place, in the sense that the best available price immediately following a
transaction may be modified if the size of the transaction is larger than the quantity
available at the best limit in the order book. As many empirical works show, see e.g.
(Almgren et al. 2005; Weber and Rosenow 2005), a relaxation phenomenon then
takes place: after a trade, the instantaneous impact decreases to a smaller value, the
permanent impact. This phenomenon is named resilience in Weber and Rosenow
(2005), it can be interpreted as a rapid, negatively correlated response of the market
to large price changes due to liquidity effects. In the context of derivative hedging, it
is clear that there are realistic situations—e.g., a large option on an illiquid stock—
where the market impact of an option hedging strategy is significant. This situation
has already been addressed by several authors, see in particular (Schönbucher and
Wilmott 2000; Frey and Stremme 1997; Frey 1998; Platen and Schweizer 1998),
where various hypothesis on the dynamics, the market impact and the hedging strat-
egy are proposed and studied. Onemay also refer to (Liu and Yong 2005; Roch 2009)
for more recent related works. It is however noteworthy that in these references,
liquidity costs and market impact are not considered jointly, whereas in fact, the
latter is a rather direct consequence of the former. As we shall demonstrate, the level
of permanent impact plays a fundamental role in the well-posedness of the pricing
and hedging equation, a fact that was overlooked in previous works on liquidity costs
and impact. Also, from a practical point of view, it seems relevant to us to relate the
well-posedness of the modified Black-Scholes equation to a parameter that can be
measured empirically using high frequency data.
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2.1.2 Main Results

This paper aims at contributing to the field by laying the grounds for a reasonable
yet complete model of liquidity costs and market impact for derivative hedging.
Liquidity costs are modelled by a simple, stationary order book, characterized by
its shape around the best price, and the permanent market impact is measured by a
numerical parameter γ , 0 � γ � 1: γ = 0 means no permanent impact, so the order
book goes back to its previous state after the transaction is performed, whereas γ = 1
means no relaxation, the liquidity consumed by the transaction is shifted around the
final transaction price. This simplified representation of market impact rests on the
realistic hypothesis that the characteristic time of the derivative hedger, although
comparable to, may be different from the relaxation time of the order book.

What we consider as our main result is Theorem 2.1, which states that, in the
complete market case, the range of parameter for which the pricing equation is
unconditionally parabolic is 2

3 � γ � 1. This result, which we find quite nice in that
it is explicit in terms of the parameter γ , gives necessary and sufficient conditions for
the perfectly replicating strategy to be optimal. It also sheds some interesting light
on the ill-posedness of the pricing equations in the references (Cetin et al. 2004;
Millot and Abergel 2011) corresponding to the case γ = 0, or (Liu and Yong 2005)
corresponding to the case γ = 1

2 within our formulation. In particular, Theorem 2.1
implies that when re-hedging occurs at the same frequency as that at which liquidity
is provided to the order book—that is, when γ = 1—the pricing equation is well-
posed. Note that there are some recent empirical evidence (Bershova and Rakhlin
2013) as well as a theoretical justification (Farmer et al. 2013) of the fact that the
level of permanent impact should actually be equal to 2

3 , in striking compliance with
the constraints Theorem 2.1 imposes!

It is of course interesting and important to thoroughly address the case where
this condition is violated. If this is the case, see Sect. 2.8.1, one can build an option
portfolio having the following property: there exist two european-style claims with
terminal payoffs φ1, φ2 such that φ1 � φ2 but the perfect replication price of φ1 is
strictly greater than that of φ2. The way out of this paradox should be via an approach
similar to that developed in (Çetin et al. 2010), based on super-replication, but the
situation is mademuchmore complicated by the fact that, in our model, the dynamics
is modified by the strategy, a feature not present in Çetin et al. (2010). We do find it
interesting however that the perfect replication is not optimal, and are intrigued by a
market where the value of γ would lead to imperfect replication.

Another interesting question is the comparison between our approach and that
of (Almgren 2012), where the delta-hedging strategy of a large option trader is
addressed.Wewant to point out that the two problems are tackled under very different
sets of hypotheses: essentially, we consider strategies with infinite variation, whereas
(Almgren 2012) refers on the contrary, to strategies with bounded variation. From
a physical point of view, we deal with re-hedging that occurs at roughly the same
frequency as that of the arrival of liquidity in the book, whereas (Almgren 2012)



22 F. Abergel and G. Loeper

considers two different time scales, a slow one for the change in the optimal delta, and
a fast one for the execution strategy. Hence, our results and models are significantly
different.

The paper is organized as follows: after recalling some classical notations and
concepts, Sect. 2.4 presents the continuous time model under scrutiny. The pricing
and hedging equations are thenworked out and characterized in the case of a complete
market, in the single asset case in Sect. 2.5, and in the multi-asset case in Sect. 2.6.
Section2.7 touches upon the case of stochastic volatility models, for which partial
results are presented. Finally, a short discussion of the two main conditions for
Theorem 2.1, viz market impact level and Gamma-constraint, is presented in the
concluding Sect. 2.8.

2.2 Basic Notations and Definitions

To ease notations, we will assume throughout the paper that the risk-free interest rate
is always 0, and that the assets pay no dividend.

2.2.1 Discrete Time Setting

The tradable asset price is modelled by a positive stochastic process S = (Sk)k=0,...,T

on a probability space (Ω,F , P). The process S is adapted to the filtration
(Fk)k=0,...,T , whereFk denotes the σ−field of events observable up to and including
time k. Moreover, F0 is trivial and FT = F .

A contingent claim is a randomvariable H of the following form H = δH ST + βH

with δH and βH ,FT -measurable random variables.
A trading strategy Φ is given by two stochastic processes δ and β. δk (resp. βk)

is the amount of stock (resp. cash) held during period k, (= [tk, tk+1)) and is fixed
at the beginning of that period, i.e. we assume that δk (resp. βk) is Fk−measurable
(k = 0, . . . , T ).

The theoretical value of the portfolio at time k is given by

Vk = δk Sk + βk , (k = 1, . . . , T ).

In order to avoid dealing with several rather involved cases, we assume that no
transaction on the stock takes place atmaturity: the claimwill be settledwithwhatever
position there is in stock, plus a cash adjustment to match its theoretical value (see
the discussion in Lamberton et al. 1997, Sect. 4).

For the model to be specified, one must specify some integrability conditions
on the various random variables just introduced, see e.g. (Millot 2012; Abergel and
Millot 2011). However, since market impact is considered, the dynamics of S is not
independent from that of the strategy (δ, β), so that this set of assumptions can only
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be verified a posteriori, once a strategy is chosen. Since our purpose is to use the
discrete case as an illustrative example laying the ground for the continuous-time
setting, we will not make such conditions more explicit.

2.2.2 Continuous Time Setting

In the continuous case, (Ω,F , P) is a probability space with a filtration (Ft )0≤t≤T

satisfying the usual conditions of right-continuity and completeness. T ∈ R
∗+

denotes a fixed and finite time horizon. As before, F0 is trivial and FT = F .
The risky asset S = (St )0≤t≤T is a strictly positive, continuousFt -semimartingale,

and a trading strategy Φ is a pair of càdlàg and adapted processes δ = (δt )0≤t≤T ,
β = (βt )0≤t≤T , while a contingent claim is described by a random variable H of the
form H = δH ST + βH , δH and βH being FT−measurable random variables.

As in the discrete case, some further admissibility conditions must be imposed.
One of the important consequences of our main result, Theorem 2.1, will be precisely
to give sufficient conditions ensuring that perfectly replicating trading strategies are
admissible.

2.2.3 Order Book, Liquidity Cost and Impact

Let us first emphasize that we are not pretending to use a realistic order book model
here, but rather, a stylized version which can be considered a much simplified yet
useful approximation of the way liquidity is provided to the market.

A stationary, symmetric order-book profile is considered around the logarithm
of the price Ŝt of the asset S at a given time t before the option position is delta-
hedged—think of Ŝt as a theoretical price in the absence of the option hedger. The
relative density μ(x) � 0 of the order book is the derivative of the function M(x) ≡∫ x
0 μ(t)dt ≡ number of shares one can buy (resp. sell) between the prices Ŝt and

Ŝt ex for positive (resp. negative) x .
This choice of representation in logarithmic scale is intended to avoid inconsis-

tencies for large sell transactions.
The instantaneous—virtual in the terminology of (Weber and Rosenow 2005)—

market impact of a transaction of size ε is then

Ivir tual(ε) = Ŝt (e
M−1(ε) − 1), (2.1)

it is precisely the difference between the price before and immediately after the
transaction is completed.
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The level of permanent impact is then measured via a parameter γ :

Ipermanent (ε) = Ŝt (e
γ M−1(ε) − 1). (2.2)

The actual cost of the same transaction is

C(ε) = Ŝt

∫ ε

0
eM

−1(y)dy. (2.3)

Denote by κ the function M−1. Since some of our results in discrete time depend
on the simplifying assumption that κ is a linear function:

κ(ε) ≡ λε (2.4)

for some λ ∈ R, the computations are worked out explicitly in this setting.

Ivir tual(ε) = Ŝt (e
λε − 1), (2.5)

Ipermanent (ε) = Ŝt (e
γ λε − 1), (2.6)

and

C(ε) = Ŝt

∫ ε

0
eM

−1(y)dy ≡ Ŝt
(eλε − 1)

λ
. (2.7)

This simplifying assumption is necessary for the derivation of the dynamic pro-
gramming principle satisfied by local-risk minimizing strategies, see Sect. 2.3. Note
however that this assumption plays no role in the continuous-time case, where the
infinitesimal market impact becomes linear, see Eq. (2.24), and only the shape of the
order book around 0 is relevant.

2.3 Cost Process with Market Impact in Discrete Time

In this section, we focus on the discrete time case. As said above, the order book is
now assumed to be flat, so that κ is a linear function as in (2.4).

2.3.1 The Observed Price Dynamics

The model for the dynamics of the observed price—that is, the price Sk that the
market can see at every time tk after the re-hedging is complete—is now presented.

A natural modelling assumption is that the price moves according to the following
sequence of events:
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• First, it changes under the action of the “market” according to some (positive)
stochastic dynamics for the theoretical price increment ΔŜk

Ŝk ≡ Sk−1 + ΔŜk ≡ Sk−1e
ΔMk+ΔAk , (2.8)

where ΔMk (resp. ΔAk) is the increment of an F -martingale (resp. an F -
predictable process).

• Then, the hedger applies some extra pressure by re-hedging her position, being
thereby subject to liquidity costs and market impact as introduced in Sect. 2.2. As
a consequence, the dynamics of the observed price is

Sk = Sk−1e
ΔMk+ΔAk eγ λ(δk−δk−1). (2.9)

Since this model is “exponential-linear”—a consequence of the assumption that
κ is linear—this expression can be simplified to give

Sk = S0e
Mk+Ak eγ λδk . (2.10)

with the convention that M, A, δ are equal to 0 for k = 0.

2.3.2 Incremental Cost and Optimal Hedging Strategy

Following the approach developed in Millot and Abergel (2011), the incremental
cost ΔCk of re-hedging at time tk is now studied. The strategy associated to the pair
of processes β, δ consists in buying δk − δk−1 shares of the asset and rebalancing
the cash account from βk−1 to βk at the beginning of each hedging period [tk, tk+1).
With the notations just introduced in Sect. 2.3.1, there holds

ΔCk = Ŝk
(eλ(δk−δk−1) − 1)

λ
+ (βk − βk−1). (2.11)

Upon using a quadratic criterion, and under some assumptions ensuring the convexity
of the quadratic risk, see e.g. (Millot and Abergel 2011), one easily derives the two
(pseudo-)optimality conditions for local risk minimization

E(ΔCk |Fk−1) = 0 (2.12)

and
E((ΔCk)(Ŝk(γ + (1 − γ )eλ(δk−δk−1)))|Fk−1) = 0,

where one must be careful to differentiate Ŝk with respect to δk−1, see (2.10).
This expression is now transformed—using the martingale condition (2.12) and

the observed price (2.10)—into
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E((ΔCk)(Ske
−λγ (δk−δk−1)(γ + (1 − γ )eλ(δk−δk−1)))|Fk−1) = 0 (2.13)

Equation (2.13) can be better understood—especiallywhen passing to the continuous
time limit—by introducing a modified price process accounting for the cumulated
effect of liquidity costs and market impact, as in (Millot and Abergel 2011; Cetin
et al. 2004). To this end, we introduce the

Definition 2.1 The supply price S̄ is the process defined by

S̄0 = S0 (2.14)

and, for k � 1,

S̄k − S̄k−1 = Ske
−λγ (δk−δk−1)(γ + (1 − γ )eλ(δk−δk−1)) − Sk−1. (2.15)

Then, the orthogonality condition (2.13) is equivalent to

E((ΔCk)(S̄k − S̄k−1)|Fk−1) = 0. (2.16)

It is classical—and somewhat more natural—to use the portfolio value process

Vk = βk + δk Sk, (2.17)

so that one can then rewrite the incremental cost in (2.11) as

ΔCk = (Vk − Vk−1) − (δk Sk − δk−1Sk−1) + Ŝk
(eλ(δk−δk−1) − 1)

λ
, (2.18)

or equivalently

ΔCk = (Vk − Vk−1) − δk−1(Sk − Sk−1) + Sk

(
eλ(δk−δk−1) − 1

λeγ λ(δk−δk−1)
− (δk − δk−1)

)

.

(2.19)
To ease the notations, let us define, for x ∈ R,

g(x) ≡ eλx − 1

λeγ λx
− x . (2.20)

The function g is smooth and satisfies

g(0) = g′(0) = 0, g′′(0) = (1 − 2γ )λ. (2.21)

As a consequence, the incremental cost of implementing a hedging strategy at time
tk has the following expression

ΔCk = (Vk − Vk−1) − δk−1(Sk − Sk−1) + Skg(δk − δk−1), (2.22)
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and Eq. (2.13) can be rewritten using the value process V and the supply price process
S̄ as

E((Vk − Vk−1 − δk−1(Sk − Sk−1) + Skg(δk − δk−1))(S̄k − S̄k−1)|Fk−1) = 0.
(2.23)

One can easily notice that Eqs. (2.12) and (2.13) reduce exactly to Eq. (2.1) in (Millot
and Abergel 2011) when market impact is neglected (γ = 0) and the risk function is
quadratic.

2.4 The Continuous-Time Setting

This section is devoted to the characterization of the limiting equation for the value
and the hedge parameterwhen the time step goes to zero. Since the proofs are identical
to those given in (Abergel and Millot 2011; Millot and Abergel 2011), we shall only
provide formal derivations, limiting ourselves to the case of (continuous) Itō semi-
martingales for the driving stochastic equations. However, in the practical situations
considered in this paper, in particular those covered in Theorem 2.1, necessary and
sufficient conditions are given that ensure the well-posedness in the classical sense of
the strategy-dependent stochastic differential equations determining the price, value
and cost processes, so that the limiting arguments can be made perfectly rigourous.

2.4.1 The Observed Price Dynamics

A first result concerns the dynamics of the observed price. Assuming that the under-
lying processes are continuous and taking limits in ucp topology, one shows that the
continuous-time equivalent of (2.10) is

dSt = St (dXt + d At + γ λdδt ) (2.24)

where X is a continuous martingale and A is a continuous, predictable process of
bounded variation.

Equation (2.24) is fundamental in that it contains the information on the
strategy-dependent volatility of the observed price that will lead to fully non-linear
parabolic pricing equation. In fact, the following result holds true:

Lemma 2.1 Consider a hedging strategy δ which is a function of time and the
observed price S at time t: δt ≡ δ(St , t). Then, the observed price dynamics (2.24)
can be rewritten as

(1 − γ λSt
∂δ

∂S
)
dSt
St

= dXt + d A′
t , (2.25)

where A′ is another predictable, continuous process of bounded variation.

Proof Use Itō’s lemma in Eq. (2.24).
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2.4.2 Cost of a Strategy and Optimality Conditions

At this stage, we are not concerned with the actual optimality—with respect to local-
risk minimization—of pseudo-optimal solutions, but rather, with pseudo-optimality
in continuous time. Hence, we shall use Eqs. (2.12) and (2.23) as a starting point
when passing to the continuous time limit.

Thanks to g′(0) = 0, there holds the

Proposition 2.1 The cost process of an admissible hedging strategy (δ, V ) is given
by

Ct ≡
∫ t

0
(dVu − δdSu + 1

2
Sug′′(0)d < δ, δ >u). (2.26)

Moreover, anadmissible strategy is (pseudo-)optimal iff it satisfies the two conditions

• C is a martingale
• C is orthogonal to the supply price process S̄, with

d S̄t = dSt + St ((1 − 2γ )λdδt + μd < δ, δ >t ) (2.27)

and μ = 1
2 (λ

2(γ 3 + (1 − γ )3)).

In particular, if C is pseudo-optimal, there holds that

d < C, S̄ >t≡ d < V, S >t −δd < S, S >t +(1 − 2γ )λSt d < V, δ >t −δSt (1 − 2γ )λd < δ, S >t= 0.
(2.28)

2.5 Complete Market: The Single Asset Case

It is of course interesting and useful to fully characterize the hedging and pricing
strategy in the case of a complete market. Hence, we assume in this section that the
driving factor X is a one-dimensional Wiener process W and that F is its natural
filtration, so that the increment of the observed price is simply

dSt = St (σdWt + γ λdδt + d At ) (2.29)

where the “unperturbed” volatility σ is supposed to be constant. We also make the
Markovian assumption that the strategy is a function of the state variable S and of
time.

Under this set of assumptions, perfect replication is considered: the cost process
C has to be identically 0, and Eq. (2.26) yields the two conditions

∂V

∂S
= δ, (2.30)



2 Option Pricing and Hedging with Liquidity Costs and Market Impact 29

and
∂V

∂t
+ 1

2

(
∂2V

∂S2
+ Stg′′(0)

(
∂2V

∂S2

)2
)
d < S, S >t

dt
= 0. (2.31)

Applying Lemma 2.1 yields

(1 − γ λSt
∂δ

∂S
)
dSt
St

= σdWt + d A′
t (2.32)

leading to
d < S, S >t

dt
= σ 2S2t

(1 − γ λSt
∂δ
∂S )

2
. (2.33)

Hence, taking (2.30) into account, there holds

∂V

∂t
+ 1

2

(
∂2V

∂S2
+ g′′(0)St

(
∂2V

∂S2

)2
)

σ 2S2t
(1 − γ λSt

∂δ
∂S )

2
= 0 (2.34)

or, using (2.30) and the identity g′′(0) = (1 − 2γ )λ:

∂V

∂t
+ 1

2

(
∂2V

∂S2

(

1 + (1 − 2γ )λSt
∂2V

∂S2

))
σ 2S2t

(1 − γ λSt
∂2V
∂S2 )2

= 0. (2.35)

Equation (2.35) can be seen as the pricing equation in our model: any contingent
claim can be perfectly replicated at zero cost, as long as one can exhibit a solution
to (2.35). Consequently, of the utmost importance is the parabolicity of the pricing
equation (2.35).

For instance, the case γ = 1 corresponding to a full market impact (no relaxation)
yields the following equation

∂V

∂t
+ 1

2

∂2V

∂S2
σ 2S2

(1 − γ λS ∂2V
∂S2 )

= 0, (2.36)

which can be shown to be parabolic, see (Loeper 2013). In fact, there holds the sharp
result

Theorem 2.1 Let us assume that 2
3 � γ � 1. Then, there holds:

• The non-linear backward partial differential operator

V → ∂V

∂t
+ 1

2

(

1 + (1 − 2γ )λS
∂2V

∂S2

)
σ 2S2

(1 − γ λS ∂2V
∂S2 )2

∂2V

∂S2
(2.37)

is parabolic.
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• Every European-style contingent claim with payoff Φ satisfying the terminal con-
straint

sup
S∈R+

(

S
∂2Φ

∂S2

)

<
1

γ λ
(2.38)

can be perfectly replicated via a δ-hedging strategy given by the unique, smooth
away from T , solution to Eq. (2.35).

Proof The parabolic nature of the operator is determined by the monotonicity with
respect to p of the function

p → F(p) = p(1 + (1 − 2γ )p)

(1 − γ p)2
. (2.39)

A direct computation shows that F ′(p) has the sign of 1 + (2 − 3γ )p, so that F
is globally monotonic increasing on its domain of definition whenever 2

3 � γ � 1.
Now, given that the payoff satisfies the terminal constraint, some deep results on
the maximum principle for the second derivative of the solution of nonlinear par-
abolic equations, see e.g. (Wang 1992a, b), ensure that the same constraint is satisfied
globally for t � T , and therefore, (2.36) is globally well-posed. As a consequence,
the stochastic differential equation determining the price of the asset has a classical,
strong solution up to time T .

In order to keep this paper self-contained, we provide a straightforward proof of
the maximum principle for the second derivative of V in the more general case where
the volatility can be state- and time-dependent, as follows: differentiating twice (2.36)
with respect to S yields the following equation

∂U

∂t
+ ∂2

∂S2

(
σ 2S

2λ
F(U )

)

= 0, (2.40)

where U ≡ λS ∂2V
∂S2 . Assuming for the moment that this is legitimate, we introduce a

new unknown function Z = σ 2S
2λ F(U ), so that Z is formally the solution to

∂

∂t

(

F−1

(
2λZ

σ 2S

))

+ ∂2Z

∂S2
= 0, (2.41)

rewritten under the form

∂Z

∂t
+ σ 2S

2λ
F ′(F−1(Z))

∂2Z

∂S2
−

∂σ 2

∂t

σ 2
Z = 0. (2.42)

As a final change of unknown function, let us introduce Y ≡ Z
S , a solution to

∂Y

∂t
+ σ 2S

2λ
F ′(F−1(SY ))

∂2Y

∂S2
+ σ 2S

λ
F ′(F−1(SY ))

∂Y

∂S
−

∂σ 2

∂t

σ 2
Y = 0. (2.43)
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At this stage, and under the only natural and trivial assumption that the coefficient
∂σ2

∂t
σ 2 of the 0th term is bounded, one can apply the classical maximum principle for
a smooth solution of (2.43): upon multiplying the unknown function Y by some
exponential time-dependent function eα(T−t), α large enough, one easily shows that
a solution of (2.43) cannot have a local positive maximum or negative minimum;
hence, it is uniformly bounded over any time interval [0, T ] if its terminal condition
is. Once this a priori estimate is proven, the method of continuity allows one to
obtain a unique, smooth classical solution (Ladyzhenskaya et al. 1968; Gilbarg and
Trudinger 1998). Then, applying in reverse order the various changes of unknown
function, one constructs the unique smooth, classical solution to the original equation
(2.35), satisfying by construction the constraint (2.38) everywhere.

As a consequence, there exists a classical, strong solution to the SDE (2.38)—
since the denominator is bounded away from 0—and the cost process introduced in
Proposition 2.1 is well-defined, and identically 0. Hence, the perfect replication is
possible.

Clearly, the constraint on the second derivative is binding, in that it is necessary
to ensure the existence of the asset price itself. See however Sect. 2.8 for a discussion
of other situations.

2.6 Complete Market: The Multi-asset Case

Consider a complete market described by d state variables X = X1, . . . , Xd : one can
think for instance of a stochastic volatility model with X1 = S and X2 = σ when
option-based hedging is available. Using tradable market instruments, one is able
to generate d hedge ratio δ = δ1, . . . , δd with respect to the independent variables
X1, . . . , Xd , that is, one can buy a combination of instruments whose price P(t, X)

satisfies
∂Xi P = δi . (2.44)

We now introduce two matrices, Λ1 and Λ2. Λ1 accounts for the liquidity costs, so
that its entry Λ1

i j measures the virtual impact on Asset i of a transaction on Asset j :
according to the simplified view of the order book model presented in Sect. 2.2.3, it
would be natural to assume that Λ1 is diagonal, but it is not necessary, and we will
not make this assumption in the derivations that follow.

As for Λ2, it measures the permanent impact, and need not be diagonal.
When d = 1, Λ1 and Λ2 are linked to the notations in Sect. 2.4 by

Λ1 = λS,Λ2 = γ λS.

Note that here, we proceed directly in the continuous time case, so that the actual
shape of the order book plays a role only through its Taylor expansion around 0;
hence, the use of the “linearized” impact via the matrices Λi .
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The pricing equation is derived along the same lines as in Sect. 2.4: the dynamics
of the observed price change can be written as

dXt = d X̂t + d At + Λ2dδt , (2.45)

the d-dimensional version of (2.24).
Again, a straightforward application of Itō’s formula in aMarkovian setting yields

the dynamics of the observed price

dXt = (I − Λ2Dδ)−1d X̂t + d A′
t . (2.46)

where Dδ contains the first-order terms in the differential of δ, in matrix form
(Dδ)i j = ∂δi

∂Sj
.

Denote by V the value of the hedging portfolio. The d-dimensional version of
Proposition 2.1 for the incremental cost of hedging is

dCt = dVt −
d∑

i=1

δi d X
i
t + 1

2
Trace((Λ1 − 2Λ2)d < δ, δ >t ). (2.47)

The market being complete, the perfect hedge condition dCt = 0 yields the usual
delta-hedging strategy

∂V

∂Xi
= δi , (2.48)

so that one can now write Dδ = Γ , where Γ is the Hessian of V , and therefore, the
pricing equation is

∂t V + 1

2
Trace

(

Γ
d < X, X >t

dt

)

= Trace

(

Γ

(

Λ2 − 1

2
Λ1

)

Γ
d < X, X >t

dt

)

.

(2.49)
Using (2.46), one obtains

∂t V + 1

2
Trace

[
(Γ (I − (2Λ2 − Λ1)Γ ))(MΣMT)

] = 0. (2.50)

where we have set Σ = d<X̂ ,X̂>t
dt , M = (I − Λ2Γ )−1 and MT is the transpose of the

matrix M .
In the particular case where Λ1 = Λ2 (i.e. no relaxation), the pricing equation

becomes

∂t V + 1

2
Trace(Γ Σ((I − ΛΓ )−1)T) = 0 (2.51)
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or, after a few trivial manipulations using the symmetry of the matrices M and Γ ,

∂t V + 1

2
Trace(Γ (I − ΛΓ )−1Σ) = 0. (2.52)

In particular, the 1-dimensional case yields the equation already derived in Loeper
(2013)

∂t V + 1

2

Γ

1 − λSΓ
S2σ 2 = 0, (2.53)

a particular case of Eq. (2.35) with γ = 1. The assessment of well-posedness in a
general setting is related to the monotonicity of the linearized operator, and it may be
cumbersome—if not theoretically challenging—to seek explicit conditions. In the
case of full market impact Λ1 = Λ2 ≡ Λ, there holds the

Proposition 2.2 Assume that the matrix Λ is symmetric. Then, Eq. (2.51) is par-
abolic on the connected component of {det(I − ΛΓ ) > 0} that contains {Γ = 0}.
Proof Let

F(Γ ) = Trace(Γ (I − ΛΓ )−1Σt ),

and
H(Γ ) = Γ (I − ΛΓ )−1.

Denoting by S
+
d the set of d-dimensional symmetric positive matrices, we need to

show that for all dΓ ∈ S
+
d , for all covariance matrix Σ ∈ S

+
d , there holds

F(Γ + dΓ ) ≥ F(Γ ).

Performing a first order expansion yields

H(Γ + dΓ ) − H(Γ ) = Γ (I − ΛΓ )−1ΛdΓ (I − ΛΓ )−1 + dΓ (I − ΛΓ )−1 (2.54)

= (Γ (I − ΛΓ )−1Λ + I )dΓ (I − ΛΓ )−1. (2.55)

Using the elementary Lemma 2.2—stated below without proof—there immediately
follows that

F(Γ + dΓ ) − F(Γ ) = Trace((I − Γ Λ)−1dΓ (I − ΛΓ )−1Σ) (2.56)

= Trace(dΓ (I − ΛΓ )−1Σ(I − Γ Λ)−1). (2.57)

Then, the symmetry condition on Λ allows to conclude the proof of Proposition 2.2.

Lemma 2.2 The following identity holds true for all matrices Γ,Λ:

Γ (I − ΛΓ )−1Λ + I = (I − Γ Λ)−1.
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2.7 The Case of an Incomplete Market

In this section, stochastic volatility is now considered. Clearly, the results obtained
in Sect. 2.6 could apply in this context whenever the market were assumed to be
completed via an option-based hedging strategy. However, it is well-known that
such an assumption is equivalent to a very demanding hypothesis on the realization
of the options dynamics and their associated risk premia, and it may be more realistic
to assume that the market remains incomplete, and then, study a hedging strategy
based on the underlying asset only. As we shall see below, such a strategy leads to
more involved pricing and hedging equations.

Let then the observed price process be a solution to the following set of SDE’s

dSt = St (σt dW
1
t + γ λdδt + μt dt) (2.58)

dσt = νt dt + Σt dW
2
t (2.59)

where (W 1,W 2) is a two-dimensional Wiener process under P with correlation ρ:

d < W 1,W 2 >t= ρdt,

and the processes μt , νt and Σt are actually functions of the state variables S, σ .
Consider again a Markovian framework, thereby looking for the value process V

and the optimal strategy δ as smooth functions of the state variables

δt = δ(St , σt , t)

Vt = V (St , σt , t).

Then, the dynamics of the observed price becomes

dSt = St
1 − γ λSt

∂δ
∂S

(

σt dW
1
t + γ λ

∂δ

∂σ
dσt + dQt

)

, (2.60)

the orthogonality condition reads

(
∂V

∂S
− δ

)

d < S, S̄ >t +∂V

∂σ
d < σ, S̄ >t= 0 (2.61)

and the pricing equation for the value function V is

∂V

∂t
+ 1

2

(
∂2V

∂S2
− γ λSt

(
∂δ

∂S

)2
)
d < S, S >t

dt
+ 1

2

(
∂2V

∂σ 2 − γ λSt

(
∂δ

∂σ

)2
)
d < σ, σ >t

dt
+

+
(

∂2V

∂σ∂S
− γ λSt

∂δ

∂σ

∂δ

∂S

)
d < S, σ >t

dt
+ L1V = 0, (2.62)

where L1 is a first-order partial differential operator.
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Equations (2.61) and (2.62) are quite complicated. In the next paragraph, we focus
on a particular case that allows one to fully assess their well-posedness.

2.7.1 The Case γ = 1, ρ = 0

When γ = 1, the martingale component of the supply price does not depend on the
strategy anymore. As a matter of fact, the supply price dynamics is given by

d S̄t = dSt + St

(

(1 − 2γ )λdδt + 1

2
μd < δ, δ >t

)

,

see (2.27), and therefore, using (2.58), there holds that

d S̄t = St (σt dW
1
t + λ(1 − γ )dδt + dRt ) ≡ St (σt dW

1
t + dRt ), (2.63)

where R is a process of bounded variation. If, in addition, the Wiener processes
for the asset and the volatility are supposed to be uncorrelated: ρ = 0, the tedious
computations leading to the optimal hedge and value function simplify, and one
can study in full generality the well-posedness of the pricing and hedging equations
(2.61) and (2.62).

First and foremost, the orthogonality condition (2.61) simply reads in this case

δ = ∂V

∂S
, (2.64)

exactly as in the complete market case. This is a standard result in local-risk mini-
mization with stochastic volatility when there is no correlation.

As for the pricing equation (2.62), one first works out using (2.64) the various
brackets in (2.62) and finds that

d < S, S >t

dt
=

(

1 − λSt
∂2V

∂S2

)−2

(σ 2
t S

2
t + λ2S2t

(
∂2V

∂S∂σ
)2Σ2

t

)

, (2.65)

d < σ, σ >t

dt
= Σ2 (2.66)

and
d < S, σ >t

dt
=

(

1 − λSt
∂2V

∂S2

)−1

λStΣ
2
t

∂2V

∂S∂σ
. (2.67)

Plugging these expressions in (2.62) yields the pricing equation for V
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∂V

∂t
+ 1

2

∂2V

∂S2

(

1 − λS

(
∂2V

∂S2

))−1
(

σ 2
t S

2 + λ2S2
(

∂2V

∂S∂σ

)2

Σ2
t

)

+ 1

2

(
∂2V

∂σ 2 − λS

(
∂2V

∂S∂σ

)2
)

Σ2+

λSΣ2
t

(
∂2V

∂S∂σ

)2

+ L1V = 0, (2.68)

or, after a few final rearrangements,

∂V

∂t
+ σ 2

t S
2

2(1 − λS( ∂2V
∂S2

))

∂2V

∂S2
+ 1

2

∂2V

∂σ 2 Σ2 + 1

2

λSΣ2

(1 − λS( ∂2V
∂S2

))

(
∂2V

∂σ∂S

)2

+ L1V = 0.

(2.69)

The main result of this section is the

Proposition 2.3 Equation (2.69) is of parabolic type.

Proof One has to study the monotocity of the operator

L : V → L (V ) ≡ σ 2
t S

2

2(1 − λS( ∂2V
∂S2

))

∂2V

∂S2
+ 1

2

∂2V

∂σ 2 Σ2 + 1

2

λSΣ2

(1 − λS( ∂2V
∂S2

))

(
∂2V

∂σ∂S

)2

.

(2.70)

Introducing the classical notations

p ≡
(
p11 p12
p21 p22

)

(2.71)

with p11 = ∂2V
∂S2 , p12 = p21 = ∂2V

∂S∂σ
and p22 = ∂2V

∂σ 2 and defining

L(S,p) ≡ σ 2
t S

2 p11
(1 − λSp11)

+ Σ2 p22 + λSΣ2

(1 − λSp11)
p212, (2.72)

one is led to study the positivity of the 2 × 2 matrix

⎛

⎝

∂L
∂p11

1
2

∂L
∂p12

1
2

∂L
∂p12

∂L
∂p22

⎞

⎠ . (2.73)

Setting F(p11) = σ 2S2 p11
1−λSp11

and D(p11) = 1 − λSp11, one needs to show that the
matrix H(p) ⎛

⎝
F ′(p11) + (λSΣ)2

p212
D2 λSΣ2 p12

D

λSΣ2 p12
D Σ2

⎞

⎠ (2.74)
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is positive. This result is trivially shown to be true by computing the trace and
determinant of H(p):

Tr(H(p)) = F ′(p11) + Σ2 + (λSΣ)2
p212
D2

(2.75)

and
Det (H(p)) = Σ2F ′(p11) (2.76)

and using the fact that F is a monotonically increasing function.
This ends the proof of Proposition 2.3.

As a final remark, we point out that the condition on the payoff for (2.69) to have a
global, smooth solution, is exactly the same as in the one-dimensional case: stochastic
volatility does not impose further constraints, except the now imperfect replication
strategy.

2.8 Concluding Remarks

In this work, we model the effect of liquidity costs and market impact on the pricing
and hedging of derivatives, using a static order book description and introducing
a numerical parameter measuring the level of asymptotic market impact. In the
complete market case, a structural result characterizing the well-posedness of the
strategy-dependent diffusion is proven. Extensions to incomplete markets and non-
linear hedging strategies are also considered.

We conclude with a discussion of the two conditions that play a fundamental role
in our results.

2.8.1 The Condition γ ∈ [2
3, 1

]

Of interest is the interpretation of the condition on the resilience parameter: 2
3 �

γ � 1.
The case γ > 1 is rather trivial to understand, as one can easily see that it leads

to arbitrage by a simple round-trip trade. The case γ < 2
3 is not so simple. The loss

of monotonicity of the function F(p) = p(1+(1−2γ )p)
(1−γ p)2 for γ < 2

3 yields the existence
of p1, p2 such that p1 < p2 but F(p1) > F(p2), which will lead to an inconsistency
in the perfectly replicating strategies, as we now show.

Recall that the price of the replicating strategy solves the equation

∂V

∂t
+ 1

2
σ 2SF

(

S
∂2V

∂S2

)

= 0, (2.77)
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and assume that there exists p ∈ R with F ′(p) < 0. One can then find two values
p1 < p2 such that F(p1) > F(p2). Consider now two contingent claimsΦ1, Φ2 sat-
isfying S ∂2Φi

∂S2 ≡ pi , i = 1, 2, together with ∂Φ
∂S (S0) = 0, Φi (S0) = 0 for some given

S0 > 0. Under these assumptions,Φ2(S) ≥ Φ1(S) for all S. Then, there exist explicit
solutions Vi (t, S) to (2.77) with terminal conditions Φi , i = 1, 2, given simply by
translations in time of the terminal payoff:

Vi (t, S) = Φi (S) + (T − t)
σ 2

2
SF(pi ). (2.78)

Consider the following strategy: sell the terminal payoffΦ1 at priceV1(0, S0),without
hedging, and hedge Φ2 following the replicating strategy given by (2.77).

The final wealth of such a strategy is given by

Wealth(T ) = (Φ2(ST ) − V2(0, S0))︸ ︷︷ ︸
hedge strategy

+ (V1(0, S0) − Φ1(ST ))
︸ ︷︷ ︸

option sold

. (2.79)

Using (2.78), one obtains

Wealth(T ) = T
σ 2

2
S0(F(p1) − F(p2)) + (Φ2(ST ) − Φ2(S0)) − (Φ1(ST ) − Φ1(S0)) ,

(2.80)

which is always positive, given the conditions onΦ1, Φ2, and thereby generates what
may be interpreted as an arbitrage opportunity.

Note that this arbitrage exists both for γ > 1 and γ < 2/3, since it just requires
that F be locally decreasing. However, in the case γ > 1, round-trip trades generate
money and the price dynamics create actual arbitrage opportunities, whereas in the
case γ < 2/3, it is the option prices generated by exact replication strategies that
lead to a potential arbitrage: in order to make a profit, one should find a counterparty
willing to buy an option at its exact replication price.

It is clear that such a “counterexample” is not an arbitrage opportunity per se, as
one has to find a counterparty to this contract—what this means is simply that the
price of the perfect hedge is not the right price for the option.

2.8.2 The Condition S ∂2V
∂S2

< 1
γλ

Another important question has been left aside so far: the behaviour of the solu-
tion to the pricing equation when the constraint is violated at maturity—after all,
this is bound to be the case for a real-life contingent claim such as a call option!
From a mathematical point of view, see the discussion in Loeper (2013), there
is a solution which amounts to replace the pricing equation P(D)(V ) = 0 by
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Max(P(D)(V ), S ∂2V
∂S2 − 1

γ λ
) = 0, but of course, in this case, the perfect replication

does not exist any longer—one should use a super-replicating strategy as introduced
originally in Soner and Touzi (2000) exactly for this purpose.
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Chapter 3
Dynamic Portfolio Credit Risk and Large
Deviations

Sandeep Juneja

Abstract We consider a multi-time period portfolio credit risk model. The default
probabilities of each obligor in each time period depend upon common as well as
firm specific factors. The time movement of these factors is modelled as a vector
autoregressive process. The conditional default probabilities are modelled using a
general representation that subsumes popular default intensity models, logit-based
models as well as threshold based Gaussian copula models. We develop an asymp-
totic regime where the portfolio size increases to infinity. In this regime, we conduct
large deviations analysis of the portfolio losses. Specifically, we observe that the
associated large deviations rate function is a solution to a quadratic program with
linear constraints. Importantly, this rate function is independent of the specific mod-
elling structure of conditional default probabilities. This rate function may be useful
in identifying and controlling the underlying factors that contribute to large losses,
as well as in designing fast simulation techniques for efficiently measuring portfolio
tail risk.

3.1 Introduction

Financial institutions such as banks have portfolio of assets comprising thousands
of loans, defaultable bonds, credit sensitive instruments and other forms of credit
exposures. Calculating portfolio loss distribution at a fixed time in future as well
as its evolution as a function of time, is crucial to risk management: Of particular
interest are computations of unexpected loss or tail risk in the portfolio. These values
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are important inputs to the amount of capital an institution may be required to hold
for regulatory purposes. There is also interest in how this capital requirement evolves
over time.

In this short note, we develop a discrete time dynamic model that captures the
stochastic evolution of default probabilities of different firms in the portfolio as a
function of time. We then develop an asymptotic regime to facilitate analysis of tail
distribution of losses. We conduct large deviations analysis of losses in this regime
identifying the large deviations rate function associated with large losses. This tail
analysis provides great deal of insight into how large losses evolve over time in a
credit portfolio.

There is a vast literature on modelling credit risk and on modelling a portfolio
of credit risk (see, e.g., Duffie and Singleton 2012; Merton 1974; Giesecke et al.
2011). Glasserman and Li (2005), Dembo et al. (2004), Glasserman et al. (2007),
Bassamboo et al. (2008), Zhang et al. (2015) are some of the works that conduct
large deviations analysis for large portfolio losses in a static single period setting.

Our contributions: As mentioned earlier, wemodel the evolution of the credit portfo-
lio in discrete time. The conditional probabilities of default of surviving firms in any
time period is modelled as a function of a linear combination of stochastic covariates.
This subsumes logit function models for conditional probabilities, default intensity
models (in discrete time) as well as threshold based Gaussian and related copula
models (see Duffie et al. 2007; Duan et al. 2012; Duan and Fulop 2013; Chava and
Jarrow 2004; Sirignano and Giesecke 2015 as examples where similar dependence
on stochastic covariates is considered). We model the stochastic evolution of the
stochastic covariates as a vector AR process, although the essential features of our
analysis are valid more broadly.

As is a common modelling practice, we assume that these stochastic variates are
multivariate Gaussian distributed, and can be classified as:

• Systemic common covariates: These capturemacroeconomic features such asGDP
growth rates, unemployment rates, inflation, etc.

• Class specific covariates: All loans in our portfolio belong to one of a fixed number
of classes. These capture the common exposure to risk to obligors in the same
industry, geographic region, etc.

• Idiosyncratic variates: This captures the idiosyncratic risk corresponding to each
obligor.

We embed the portfolio risk problem in a sequence of problems indexed by the
portfolio size n. We develop an asymptotic regime where the conditional default
probabilities decrease as n increases. In this regime we identify the large deviations
rate function of the probability of large losses at any given time in future. Our key
contribution is to show that the key component to ascertaining this rate function
is a solution to a quadratic program with linear constraints. Further we observe in
specialized settings that the resultant quadratic program can be explicitly solved to
give a simple expression for the large deviations rate function. Our other contribution
is to highlight that in a fairly general framework, the underlying structure of how
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portfolio losses build up is independent of the specific model for conditional default
probabilities—thus whether we use default intensity model, logit based model or a
Gaussian Copula based model for default probabilities, to the first order (that is, on
the large deviations scaling), the portfolio tail risk measurement is unaffected.

Our large deviations analysis may be useful in identifying and controlling para-
meters that govern the probability of large losses. It is also critical to development of
fast simulation techniques for the associated rare large loss probabilities. Develop-
ment of such techniques is part of our ongoing research and not pursued here. In this
paper, we assume that each class has a single class specific covariate and these are
independent of all other covariates. This is a reasonable assumption in practice and
makes the analysis substantially simpler. As we discuss later in Sect. 3.3, relaxing
this and many other assumptions, is part of our ongoing research that will appear
separately.

Roadmap: In Sect. 3.2,we develop themathematical framework including the asymp-
totic regime for our analysis. We end with a small conclusion and a discussion of our
ongoing work in Sect. 3.3. Some of the technical details are kept in Appendix.

3.2 Mathematical Model

Consider a portfolio credit risk model comprising n obligors. These are divided
into K classes {1, 2, . . . , K }, C j denotes the obligors in class j . As mentioned
in the introduction, we model conditional default probabilities using structures that
subsume discrete default intensitymodels considered inDuffie et al. (2007) aswell as
Duan et al. (2012), popular logit models (see, e.g., Chava and Jarrow 2004; Sirignano
and Giesecke 2015), as well as threshold based Gaussian and related copula models
(see, e.g., Glasserman and Li 2005; Glasserman et al. 2007; Bassamboo et al. 2008).

First consider the discrete default intensitymodel and suppose that time horizon of
our analysis is a positive integer τ . We restrict ourselves to discrete default intensities
taking the proportional-hazards form as in Duffie et al. (2007), Duan et al. (2012).
Specifically, suppose that one period conditional default probability for a firm i in
C j , at period t ≤ τ , is given by

pi, j,t = 1 − exp[− exp(Pi, j,t )],

where,
Pi, j,t = −α j + βTFt + γ j G j,t + εi,t ,

where the above variables have the following structure:

• For j ≤ K , α j > 0 and for d ≥ 1, β ∈ �d . (γ j , j ∈ K ) are w.l.o.g. non-negative
constants.

• Random variables ε = (εi,t : i ≤ n, t ≤ τ) are assumed to be i.i.d. (independent,
identically distributed) with standard Gaussian distribution with mean zero and
variance one.
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• (Ft ∈ �d : t = 0, . . . , τ ) denote the common factors that affect default probabili-
ties of each obligor. To keep the analysis simplewe assume that (Ft : t = 0, . . . , τ )

follows the following VAR(1) process.

Ft+1 = AFt + Ẽt+1

where A ∈ �d×d and Ẽ = (Ẽt : t = 1, . . . , τ ) is a sequence of i.i.d. random vec-
tors, assumed to be Multi-variate Gaussian with mean 0 and positive definite vari-
ance covariance matrix Σ . Further let B be a matrix such that BBT = Σ . Then,
we can model

Ft+1 = AFt + BEt+1

where, each Et = (Et, j : j ≤ d) is a vector of independent mean zero, variance
one, Gaussian random variables. Then, it follows that for t ≥ 1,

Ft = AtF0 +
t∑

i=1

At−iBEi .

• The random variables (G j,t : j ≤ K , t ≤ τ) capture the residual class risk (once
the risk due to the common factors is accounted for by Ẽ). These are assumed to
be independent of Ẽ as well as ε. Further, we assume that they follow a simple
autoregressive structure

G j,t = η jG j,t−1 + Λ j,t

where (Λ j,t : j ≤ K , t ≤ τ) are assumed to be i.i.d., mean zero, variance one,
standard Gaussian distributed.

• It follows that

G j,t = ηt
jG j,0 +

t∑

i=1

ηt−i
j Λ j,i . (3.1)

To keep the analysis notationally simple, we assume that exposure ei of each
obligor i ∈ C j equals ex j . This denotes the amount lost if an obligor in C j defaults
net of recoveries made on the loan.

An analogous logit structure for conditional probabilities corresponds to setting

pi, j,t = exp(Pi, j,t )

1 + exp(Pi, j,t )
.

In the remainder of the paper, we assume that

pi, j,t = F(Pi, j,t )

where F : � → [0, 1] is a distribution function that we assume is strictly increasing.
Thus, F(−∞) = 0 and F(∞) = 1. In the setting of Logit function



3 Dynamic Portfolio Credit Risk and Large Deviations 45

F(x) = eθx

1 + eθx
(3.2)

and for default intensity function

F(x) = 1 − exp(−eθx ) (3.3)

for θ > 0.
Another interesting setting to consider is the J.P. Morgan’s threshold based

Gaussian Copula models extensively studied in literature, see, e.g., Glasserman and
Li (2005) and Glasserman et al. (2007). Adapting this approach to our setting, an
obligor i in class j that has survived till time t − 1, defaults at time t if

βTFt + γ jG j,t + εi,t > α j

for large α j . These models are studied in literature for a single time period, but can
be generalized for multiple time periods by having a model for time evolution of
common and class specific factors, as we consider in this paper.

One way to concretely fit this to our outlined framework, express

εi,t = εi,t (1) + εi,t (2)√
2

where εi,t (1) and εi,t (2) are independent Gaussian mean zero, variance one random
variables. Then, set

Pi, j,t = −α j + βTFt + γ j G j,t + 1√
2
εi,t (1)

to get
pi, j,t = F(Pi, j,t ) = Φ̄(−Pi, j,t ) (3.4)

where Φ̄(·) denotes the tail distribution function of a mean zero, variance half,
Gaussian random variable (here F(x) = Φ̄(−x)).

3.2.1 Probability of Large Losses

In this note, our interest is in developing large deviations asymptotic for the prob-
ability of large losses in the portfolio by any specified time τ . It may be useful to
spell out a Monte Carlo algorithm to estimate the probability that portfolio losses L
by time τ exceed a large threshold u.
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Monte Carlo Algorithm: Suppose that the current time is zero and our interest is
in generating via simulation independent samples of portfolio losses by time τ . We
assume that F0 and (G j (0) : j ≤ K ) are available to us.

In the algorithm below, letSt denote the surviving, non-defaulted obligors at (just
after) time t andLt denote the losses incurred at time t .S0 denotes all the obligors.
The algorithm then proceeds as follows

1. Set time t = 1.
2. While t ≤ τ ,

a. Generate independent samples of (εi,t : i ∈ St−1), Et and (Λ j,t : j ≤ K ) and
compute pi, j,t for each (i ∈ St−1, j ≤ K ).

b. Generate independent uniform numbers (Ui,t : i ∈ St−1). Obligor i ∈ St−1

defaults at time t if Ui,t ≤ pi, j,t . Recall that obligor i ∈ C j causes loss e j if it
defaults. Compute St as well as Lt .

3. A sample of total loss by time T is obtained as L = ∑τ
t=1 Lt .

4. Set I (L > u) to one if the loss L exceeds u and zero otherwise. Sample average
of independent samples of I (L > u) then provides an unbiased and consistent
estimator of P(L > u).

As mentioned in the introduction, we analyze the probability of large losses in an
asymptotic regime that we develop in Sect. 3.2.2.

3.2.2 Asymptotic Regime

Let (Pn : n ≥ 1) denote a sequence of portfolios. Pn denotes a portfolio with n
obligors. As before the size of class Ck in Pn equals ckn so that

∑K
k=1 ck = 1. To

avoid unnecessary notational clutter we assume that ckn is an integer for each k and n.
In Pn , for each n, the conditional probability of default pi, j,t (n) at time t for

obligor i ∈ C j that has not defaulted by time t − 1 is denoted by F(Pi, j,t (n)), where

Pi, j,t (n) = −α jmn + m̃nβ
TFt + m̃nγ j G j,t + m̃nεi,t

for each n, i and t . Here, mn and m̃n are positive sequences increasing with n.
The sequence of random vectors (Ft : t ≤ τ) and (G j,t : j ≤ K , t ≤ τ) evolve as
specified in the previous section and notations (Et : t ≤ τ) and (Λ j,t : j ≤ K , t ≤ τ)

remain unchanged. For notations (St ,Lt : t ≤ τ), (Ui,t : i ≤ n, t ≤ τ) we simply
suppress dependence on n for presentation simplicity. Here, (Ui,t : i ≤ n, t ≤ τ) are
used to facilitate Monte Carlo interpretation of defaults.
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The following assumption is needed.

Assumption 1

lim sup
n→∞

rn = mn

m̃n
= ∞. (3.5)

Remark 3.1 There is a great deal of flexibility in selecting {mn} and {m̃n} allowing
us to model various regimes of default probabilities. When rn increases to infinity at
a fast rate, the portfolio comprises obligors with small default probabilities. When it
goes to infinity at a slow rate, the portfolio comprises obligors with relatively higher
default probabilities.

Let Ãi,t denote the event that obligor i defaults at time t inPn , i.e., i ∈ St−1 and
Ui,t ≤ pi, j,t (n). Then,

Ai,t = ∪t
s=1 Ãi,s

denotes the event that obligor i defaults by time t .
The aim of this short note is to develop the large deviations asymptotics for the

probabilities

P

(
n∑

i=1

ei I (Ai,τ ) > na

)

as n → ∞.
Note that obligor i ∈ St−1 ∩ C j defaults at time t if

Ui,t ≤ F(Pi, j,t (n)).

Equivalently, if
Pi, j,t (n) ≥ F−1(Ui,t ).

This in turn corresponds to

−mnα j + m̃nβ
T (AtF0 + ∑t

i=1 A
t−iBEi ) +

m̃n(η
tγ jG j,0 + γ j

∑t
i=1 ηt−iΛ j,i ) + m̃nεi,t ≥ F−1(Ui,t ). (3.6)

Let Ht = βT (
∑t

j=1 A
t− jBE j ). For each i, j , let h j = (h j,k : 1 ≤ k ≤ d) be

defined by
h j = βTA jB.

Recall that Et = (Et,k : k ≤ d) is a vector of independent mean zero variance 1,
Gaussian random variables. Thus, we may re-express

Ht =
t∑

j=1

d∑

k=1

ht− j,k E j,k .
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Then Ht is a mean zero Gaussian random variable with variance

v(Ht ) = βT

⎛

⎝
t∑

j=1

At− jΣ(At− j )T

⎞

⎠ β.

Let Y j,t = γ j
∑t

k=1 ηt−kΛ j,k and for i ∈ C j ,

Zi,t (n) = εi,t − m̃−1
n F−1(Ui,t ) + βTAtF0 + ηtγ j G j,0.

Then, Ãi,t occurs if i ∈ St−1 ∩ C j and

Ht + Y j,t ≥ rnα j − Zi,t (n).

Below we put a mild restriction on mn , m̃n , tail distribution of each εi,t , and the
functional form of F :

Assumption 2 There exists a non-negative, non-decreasing function g such that
g(x) → ∞ as x → ∞, and

lim sup
n

sup
t≤τ, j≤K ,i∈C j

P(Zi,t (n) ≥ x) ≤ e−g(x).

Further, there exists a δ ∈ (0, 1) such that

lim inf
n→∞

g(r δ
n)n

r2n
= +∞. (3.7)

Remark 3.2 Since, for fixed F0 and G j,0, the term βTAtF0 + ηtγ jG j,0 can be uni-
formly bounded by a constant, call it c, and

P(εi,t − m̃−1
n F−1(Ui,t ) ≥ x − c) ≤ P(εi,t ≥ (x − c)/2) + P(−m̃−1

n F−1(Ui,t ) ≥ (x − c)/2),

in Assumption 2, the key restriction is imposed by the tail distribution of −m̃−1
n

F−1(Ui,t ) and we look for a function g and δ ∈ (0, 1) such that

P(−m̃−1
n F−1(Ui,t ) ≥ x) ≤ e−g(x) (3.8)

for all sufficiently large n, and (3.7) holds. Equation (3.8) is equivalent to finding g
so that

log

(
1

F(−m̃nx)

)

≥ g(x), (3.9)

for all sufficiently large n. Consider first the case of F in (3.2) as well as (3.3). In
that case, the LHS is similar to
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θm̃nx

for large m̃nx , and condition (3.7) holds if m̃n, rn and δ ∈ (0, 1) are selected so that

m̃nr δ
nn

r2n
→ ∞.

This is achieved, for instance, if for κ ∈ (0, 1), rn = nκ , and

2 − 1/κ < δ < 1,

for arbitrarily increasing {m̃n}.
Now consider F in (3.4) where F(x) = Φ̄(−x). Then, LHS of (3.9) is similar to

m̃2
nx

2

for large m̃nx , and condition (3.7) holds if m̃n, rn and δ are selected so that

m̃nr δ
nn

r2n
→ ∞.

This is achieved, for instance, if for κ > 0, rn = nκ , and

1 − 1/(2κ) < δ < 1,

for arbitrarily increasing {m̃n}.
Let

N j (t) =
∑

i∈C j

I ( Ãi,t )

denote the number of defaults for class j at time t for each j ≤ K and t ≤ τ .
Let

N = {N1(τ )

n
≥ aτ },

where aτ ∈ (0, c1).
In Theorem3.1 belowwe argue that on the large deviations scaling, the probability

of default of any fraction of total customers in a single class at a particular time equals
the probability that the complete class defaults at that time. It also highlights the fact
that in the single class setting, in our regime, large losses are much more likely to
occur later rather than earlier. This then provides clean insights into how large losses
happen in the proposed regime.



50 S. Juneja

Theorem 3.1 Under Assumptions 1 and 2,

lim
n→∞

1

r2n
log P(N ) = −q∗(τ ),

where q∗(t) is the optimal value of the quadratic program

min
t∑

k=1

d∑

p=1

e2k,p +
t∑

k=1

l2k ,

subject to,
t∑

k=1

d∑

p=1

ht−k,pek,p + γ j

t∑

k=1

ηt−k
1 lk ≥ α1,

and, for 1 ≤ t̃ ≤ t − 1,

t̃∑

k=1

d∑

p=1

ht̃−k,pek,p + γ j

t̃∑

k=1

ηt̃−k
1 lk ≤ α1.

Further, q∗(t) equals

α2
1∑t

k=1

∑d
p=1 h

2
t−k,p + γ 2

j

∑t
k=1 η

2(t−k)
1

. (3.10)

Note that it strictly reduces with t .

Remark 3.3 In Theorem 3.1, its important to note that q∗(τ ) is independent of the
values aτ ∈ (0, c1).

Some notation, and Lemma 3.1 are needed for proving Theorem 3.1. For each
j ≤ K , let

H j,t = {Ht + Y j,t ≥ rnα j + r δ
n}

and
H̃ j,t = {Ht + Y j,t ≤ rnα j − r δ

n}.

Let,
H t

j =
(
H j,t ∩ (∩t−1

t̃=1H̃ j,t̃ )
)

.

Lemma 3.1

lim
n→∞

1

r2n
log P(H t

1 ) = −q∗(t),

where q∗(t) is defined in (3.10).
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3.2.3 Key Result

Recall that our interest is in developing large deviations asymptotics for
P(

∑n
i=1 ei I (Ai,τ ) > na).

Let b denote a sub-collection of indices of {1, 2, . . . , K } such that ∑i∈b ex j c j >

a, while this is not true for any subset of b. We call such a set b a minimal set, and
we let B denote a collection of all such minimal sets (similar definitions arise in
Glasserman et al. 2007). Consider the question that losses from the portfolio exceed
na whenwe count losses only from classes indexed by b. Our analysis fromTheorem
3.1 can be repeated with minor adjustments to conclude that the large deviations rate
for this is the smallest of all solutions to the quadratic programs of the form described
below.

For t = (t j , j ∈ b) such that each t j ≤ τ . Set tmax = max j∈b t j and let q∗(t,b) be
the solution to quadratic program below (call it O2),

min
tmax∑

k=1

d∑

p=1

e2k,p +
∑

j∈b

t j∑

k=1

l2j,k

subject to, for all j ∈ b,

t j∑

k=1

d∑

p=1

ht j−k,pek,p + γ j

t j∑

k=1

η
t j−k
j l j,k ≥ α j ,

and, for 1 ≤ t̃ ≤ t j − 1,

t̃∑

k=1

d∑

p=1

ht̃−k,pek,p + γ j

t̃∑

k=1

ηt̃−k
j lk ≤ α j .

Set
q̃(τ,b) = min

t: j∈b,t j≤τ
q∗(t,b).

It is easy to see that there exists an optimal t∗ such that q̃(τ,b) = q∗(t∗,b) with the
property that the respective constraints for each t̃ < t∗j are not tight. Whenever, there
exists t̃ < t j such that constraint corresponding to t̃ is tight, a better rate function
value is achieved by setting such a t j = t̃ . This then helps complete the proof of
the large deviations result. It is also then easy to see that the most likely way for
{∑n

i=1 ei I (Ai,t ) > na} to happen is that all obligors belonging to class b default by
time t , where b is selected as the most likely amongst all the classes in B. In other
words,

lim
n→∞

1

r2n
log P(

n∑

i=1

ei I (Ai,τ ) > na) = −min
b∈B

q̃(τ,b).
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The proof again is straightforward and relies on the following simple lemma (see,
e.g., Dembo and Zeitouni 2009, Lemma 1.2.15).

Lemma 3.2 Let N be a fixed integer. Then, for every aiε ≥ 0,

lim sup
ε→∞

ε log

(
N∑

i=1

aiε

)

= max
i≤N

lim sup
ε→∞

ε log aiε.

In particular, the lim sup above can be replaced by lim above if maxi≤N

limε→∞ ε log aiε exists.

3.2.4 Single Period Setting

In practice, one is often interested in solving for portfolio credit risk in a single period,
that is, τ = 1. In that case, it is easy to arrive at a simple algorithm to determine
q∗(1,b) and the associated values of the variables.

Note that the optimization problem O2 reduces to

min
d∑

p=1

e21,p +
∑

j∈b
l2j,1,

subject to, for all j ∈ b,
d∑

p=1

h0,pe1,p + γ j l j,1 ≥ α j .

Call this problem O3. The following remark is useful in solving O3.

Remark 3.4 It is easy to see that for the optimization problem—minimize
∑n

k=1 x
2
k

subject to
n∑

k=1

akxk ≥ b, (3.11)

the solution for each k is
x∗
k = b

ak∑n
j=1 a

2
j

and (3.11) is tight. The optimal objective function value is

b2
∑

k a
2
k

.
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To simplify the notation, suppose that b = {1, 2, . . . , k} and that α1 ≥ α2 ≥ αk >

0. In view of Remark 3.4, solvingO3 can be reduced to solving the quadratic program

min cx2 +
∑

j≤k

c j y
2
j

subject to
x + y j ≥ α j (3.12)

for all j ≤ k, where c = 1/(
∑d

p=1 h
2
0,p) and c j = 1/γ 2

j for each j .
It is easily seen using the first order condition that there exists a 1 ≤ j∗ ≤ k

such that under the unique optimal solution, constraints (3.12) hold as equalities for
1 ≤ j ≤ j∗, that optimal x∗ equals

∑
j≤ j∗ c jα j

c + ∑
j≤ j∗ c j

and this is ≤ α j∗ . Then, y j = α j − x∗ for j ≤ j∗, and y j = 0 otherwise.
Further, the optimal objective function equals,

(c +
∑

j≤ j∗
c j )

⎛

⎝
∑

j≤ j∗ c jα
2
j

c + ∑
j≤ j∗ c j

−
( ∑

j≤ j∗ c jα j

c + ∑
j≤ j∗ c j

)2
⎞

⎠ .

The algorithm below to ascertain j∗ is straightforward.
Algorithm

1. If ∑
j≤k c jα j

c + ∑
j≤k c j

≤ αk

then j∗ = k. Else, it is easy to check that

∑
j≤k−1 c jα j

c + ∑
j≤k−1 c j

> αk

2. As an inductive hypothesis, suppose that

∑
j≤r c jα j

c + ∑
j≤r c j

> αr+1.

If the LHS is less than or equal to αr , set j∗ = r , and STOP. Else, set r = r − 1
and repeat induction.
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It is easy to see that this algorithm will stop as,

c1α1

c + c1
< α1.

3.3 Conclusion and Ongoing Work

In this paper we modelled portfolio credit risk as an evolving function of time.
The default probability of any obligor at any time depended on common systemic
covariates, class dependent covariate and idiosyncratic randomvariables -we allowed
a fairly general representation of conditional default probabilities that subsumes
popular logit, default intensity based representations, as well as threshold based
Gaussian and related copulamodels for defaults. The evolution of systemic covariates
was modelled as a VAR(1) process. The evolution of class dependent covariates was
modelled as an independent AR process (independent of systemic and other class co-
variates).We further assumed that these randomvariables had aGaussiandistribution.
In this framework we analyzed occurrence of large losses as a function of time. In
particular, we characterized the large deviations rate function of large losses. We
also observed that this rate function is independent of the representation selected for
conditional default probabilities.

This was a short note meant to highlight some of the essential issues. In our
ongoing effort we build in more realistic and practically relevant features including:

1. We conduct large deviations analysis

a. when the class and the systemic covariates are dependent with additional
relaxations including allowing exposures and recoveries to be random. Fur-
ther, as in Duffie et al. (2007), we also model firms exiting due to other
reasons besides default, e.g., due to merger and acquisitions. We also allow
defaults at any time to explicitly depend upon the level of defaults occurring
in previous time periods (see, e.g., Sirignano and Giesecke 2015).

b. when the covariates are allowed to have more general fatter-tailed distribu-
tions.

c. when the portfolio composition is time varying.

2. Portfolio large loss probabilities tend to be small requiringmassive computational
effort in estimation when estimation is conducted using naive Monte Carlo. Fast
simulation techniques are developed that exploit the large deviations structure of
large losses (see, e.g., Juneja and Shahabuddin 2006; Asmussen and Glynn 2007
for introduction to rare event simulation).
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Appendix: Some Proofs

Let ||x ||2 = ∑n
i=1 x

2
i . Consider the optimization problem

min ||x ||2 (3.13)

s.t.
n∑

j=1

ai, j x j ≥ bi i = 1, . . . ,m, (3.14)

and let x∗ denote the unique optimal solution of this optimization problem. It is
easy to see from first order conditions that if (bi : i ≤ m, bi > 0), is replaced by
(αbi : i ≤ m), α > 0, then the solution changes to αx∗.

Let (Xi : i ≤ n) denote i.i.d. Gaussian mean zero variance 1 random variables
and let d(n) denote any increasing function of n such that d(n) → ∞ as n → ∞.

The following lemma is well known and stated without proof (see, e.g., Glasser-
man et al. 2007).

Lemma 3.3 The following holds:

lim
n→∞

1

d(n)
log P

⎛

⎝
n∑

j=1

ai, j X j ≥ bid(n) + o(d(n)) i = 1, . . . ,m

⎞

⎠ = −||x∗||2.

Proof of Lemma 3.1: Recall that we need to show that

lim
n→∞

1

r2n
log P(H ) = −q∗(t). (3.15)

where P(H ) denotes the probability of the event that

t∑

j=1

d∑

k=1

ht− j,k E j,k +
t∑

k=1

ηt−kΛ1,k ≥ rnα1 + r δ
n

and
t̃∑

j=1

d∑

k=1

ht̃− j,k E j,k +
t̃∑

k=1

ηt̃−kΛ1,k ≤ rnα1 − r δ
n

for 1 ≤ t̃ ≤ t − 1.
From Lemma 3.3, to evaluate (3.15), it suffices to consider the optimization prob-

lem (call it O1),

min
t∑

k=1

d∑

p=1

e2k,p +
t∑

k=1

l2k (3.16)
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s. t.
t∑

k=1

d∑

p=1

ht−k,pek,p +
t∑

k=1

ηt−k
1 lk ≥ α1, (3.17)

and
t̃∑

k=1

d∑

p=1

ht̃−k,pek,p +
t̃∑

k=1

ηt̃−k
1 lk ≤ α1. (3.18)

for 1 ≤ t̃ ≤ t − 1.
We first argue that in O1, under the optimal solution, the constraints (3.18) hold

as strict inequalities.
This is easily seen through a contradiction. Suppose there exists an optimal solu-

tion (êk,p, l̂k, k ≤ t, p ≤ d) such that for t̂ < t ,

t̂∑

k=1

d∑

p=1

ht̂−k,pêk,p +
t̂∑

k=1

ηt̂−k
1 l̂k = α1

and if t̂ > 1, then for all t̃ < t̂ (3.18) are always strict.We can construct a new feasible
solution with objective function at least as small with the property that constraints
(3.18) are always strict.

This is done as follows: Let s = t − t̂ . Set ēk+s,p = êk,p for all k ≤ t̂ and p ≤ d.
Similarly, set l̄k+s = l̂k for all k ≤ t̂ . Set the remaining variables to zero.

Also, since the variables (ēk,p, l̄kk ≤ t, p ≤ d) satisfy constraint (3.18) with vari-
ables (ēk,p, l̄kk ≤ s, p ≤ d) set to zero, the objective function canbe further improved
by allowing these to be positive. This provides the desired contradiction. The specific
form of q∗(t) follows from the straightforward observation in Remark 3.4. �.
Proof of Theorem 3.1:

Now,
P(N ) ≥ P(N |H τ

1 )P(H τ
1 ).

We argue that P(N |H τ
1 ) converges to 1 as n → ∞. This term equals

P

(
N1(τ )

n
≥ aτ ,

∑τ−1
t=1 N1(t)

n
≤ c1 − aτ |H τ

1

)

.

This may be further decomposed as

P

(∑τ−1
t=1 N1(t)

n
≤ c1 − aτ |(∩τ−1

t=1 H̃1,t )

)

(3.19)

times

P

(
N1(τ )

n
≥ aτ |

∑τ−1
t=1 N1(t)

n
≤ c1 − aτ ,H1,τ

)

. (3.20)
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To see that (3.19) converges to 1 as n → ∞, note that it is lower bounded by

1 −
τ−1∑

t=1

P

(
N1(t)

n
≥ ε|(∩τ−1

t=1 H̃1,t )

)

for ε = (c1 − aτ )/(τ − 1). Consider now,

P

(
N1(1)

n
≥ ε|H̃1,1

)

This is bounded from above by

2c1n P(Z1,1(n) ≥ r δ
n)

εn

where 2c1n is a bound on number of ways at least εn obligors of Class 1 can be
selected from c1n obligors. Equation3.19 now easily follows.

To see (3.19), observe that this is bounded from above by

2c1n P(Zi,τ (n) ≤ −r δ
n)

(c1−aτ )n

Since this decays to zero as n → ∞, (3.19) follows.
In view of Lemma 3.1, we then have that

lim
n→∞

1

r2n
log P(N ∩ H τ

1 ) = −q∗(τ ),

and thus large deviations lower bound follows. To achieve the upper bound, we need
to show that

lim sup
n→∞

1

r2n
log P(N ) ≤ −q∗(τ ). (3.21)

Observe that

P(N ) ≤ P(Hτ + Y1,τ ≥ rnα1 − r δ
n) + P

(
N1(τ )

n
≥ aτ , Hτ + Y1,τ ≤ rnα1 − r δ

n

)

.

Now, from Lemma 3.3 and proof of Lemma 3.1,

lim
n→∞

1

r2n
log P(Hτ + Y1,τ ≥ rnα1 − r δ

n) = −q∗(τ ).

Now,

P

(
N1(τ )

n
≥ aτ , Hτ + Y1,τ ≤ rnα1 − r δ

n

)



58 S. Juneja

is bounded from above by
2n P(Zi,τ > r δ

n)
naτ

so that due to Assumption 2,

lim sup
n→∞

1

r2n
log P

(
N1(τ )

n
≥ aτ , Hτ + Y1,τ ≤ rnα1 − r δ

n

)

= −∞,

and (3.21) follows. �
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Chapter 4
Extreme Eigenvector Analysis of Global
Financial Correlation Matrices

Pradeep Bhadola and Nivedita Deo

Abstract The correlation between the 31 global financial indices from American,
European and Asia-Pacific region are studied for a period before, during and after
the 2008 crash. A spectral study of the moving window correlations gives significant
information about the interactions between different financial indices. Eigenvalue
spectra for each window is compared with the random matrix results on Wishart
matrices. The upper side of the spectra outside the random matrix bound consists of
the same number of eigenvalues for all windows where as significant differences can
be seen in the lower side of the spectra. Analysis of the eigenvectors indicates that
the second largest eigenvector clearly gives the sectors indicating the geographical
location of each country i.e. the countries with geographical proximity giving similar
contributions to the second largest eigenvector. The eigenvalues on the lower side of
spectra outside the random matrix bounds changes before during and after the crisis.
A quantitativeway of specifying information based on the eigenvectors is constructed
defined as the “eigenvector entropy” which gives the localization of eigenvectors.
Most of the dynamics is captured by the low eigenvectors. The lowest eigenvector
shows how the financial ties changes before, during and after the 2008 crisis.

4.1 Introduction

The economic and social growth of a country depends on the state of its financial
market (Lin et al. 2012). Financial markets are very complex to understand, having
many unidentified factors and interactions that govern their dynamics. Even with the
enormous growth of the financial data and with the increase in the computational
capabilities by developing the high-throughput methods, to understand the complex
behavior of thefinancialmarket remains a great challenge.The studies on thefinancial
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markets either by analyzing enormous financial data or by modeling the behavior of
the financial market implies that the market shows non-equilibrium properties. The
use of the cross correlations between the financial data have been extensively studied
at different time scales (Conlon et al. 2007, 2008; Podobnik and Stanley 2008; Kenett
et al. 2015). Randommatrix theory (RMT) have been extensively used for filtering of
the spectrum of financial correlation matrix to separate the relevant information from
the noise. The eigenvalues of the correlationmatrixwhich deviated significantly from
the RMT predictions provides crucial information about the interaction and structure
of the financial markets. Studies are mostly concerned about the eigenvalues which
deviates from RMT upper bound of the eigenvalue spectrum. But many systems
such as biological have shown that the low eigenvalues contains useful information
(Cocco et al. 2013) and are very useful in predicting the clusters or sectors (Pradeep
Bhadola and Deo 2016).

This work aims at the use of the eigenvector based method to infer the vital infor-
mation about a system. We have used a method called eigenvector localization to
extract the community structure and interaction among different agents in a system.
Eigenvector localization refers to the condition where most of the weight is associ-
ation with only few eigenvector components. For instance, in case of a large graph,
the eigenvector components of some of the extreme eigenvectors of the Adjacency
matrix (eigenvector corresponding to extreme eigenvalues) will have most of the
weight concentrated on the nodes with very high degree. In this paper we are using
the eigenvector localization of the correlation of world financial indices to derive
meaningful clusters of financial interaction among countries.

4.2 System and Data

For the analysis, we use the daily adjusted closing stock price of the 31 financial
market representing different region of the world from beginning of 2006 to the end
of 2015. The 31 indices follows the European market, Asian market and American
etc. On a particular day if 50% of the indices observed a holiday then we removed
that day from our analysis thus only considering days when 50% or more indices
are active.

If Si (t) is the price of country index i at time t , then the logarithmic returns Ri (t)
is calculated as

Ri (t) = ln(Si (t + Δt)) − ln(Si (t)) (4.1)

where the time lag Δt = 1 day. The normalized returns is given by

ri (t) = Ri (t)− < Ri >

σi
(4.2)

where < Ri > is the time average of the returns over the time period and σi is the
standard deviation of Ri (t) defined as σi =< R2

i > − < Ri >2.
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Pearson’s correlation coefficient is used to estimate the correlations present among
different financial indices. The correlation matrix between the stocks is defined as

Ci, j =< ri (t)r j (t) > . (4.3)

The correlation obtained are such that −1 ≤ Ci, j ≤ 1 where Ci, j = 1 represents
perfect correlation and Ci, j = −1 represents perfect anti-correlation.

The eigenvalue equation Cv̂i = λi v̂i is used to determine the eigenvalues λi and
eigenvectors vi of the correlation matrix C. The eigenvalues are arranged in the
ascending order of magnitude such that λ1 ≤ λ2 ≤ λ3 · · · ≤ λN .

We have studied the financial data with a moving window correlation. The size of
the window is 250days with a shift of 100days. The correlation matrix is calculated
for each window and the properties are studied.

The null model is constructed by randomly shuffling the data for each index so to
remove any existing correlations. Numerically, the correlation for the shuffled system
are equivalent to theWishart matrices. Therefore, the analytical results of theWishart
matrices are used to compare the spectral properties of the financial correlation
matrix. The spectral properties of Wishart matrices are well defined (Bowick and
Brezin 1991) where the eigenvalue density function PW (λ) is given by

PW (λ) = Q

2πσ 2

√
(λ+ − λ)(λ − λ−)

λ
. (4.4)

with Q = W
L ≥ 1 and σ = 1 the standard deviation.

The distribution is known as Marcenko-Pastur distribution where the upper and
lower bounds for the eigenvalue λ are given by

λ± = σ 2

(

1 + 1

Q
± 2

√
1

Q

)

(4.5)

For the current analysis W = 250 is the size of the window and N = 31 is the
number of indices used for the study which gives Q = 8.064. The lower and upper
bounds on the eigenvalues imposed by the random matrix theory is thus λ+ = 1.82
and λ− = 0.419.

Analyzing the eigenvalue distribution for variouswindows Figs. 4.1 and 4.2 shows
the distribution of eigenvalues larger than the random matrix bounds for (λ ≥ λ+)
are nearly identical for all windows. But the distribution of eigenvalues lower than
lower RMT bound (λ ≤ λ−) is different for all windows. The results are shown for
window 2 (25-May-2006 to 15-May-2007, calm period), window 3 (12-Oct-2006
to 02-Oct-2007, Onset of crash), window 7 (06-May-2008 to 23-April-2009, during
crash), window 18 (17-Aug-2012 to 26-Jul-2013, after crash) and window 24 (12-
May-2014 to 25-Nov-2015, after crash).

On an average there are only two eigenvalues outside the RMT bound on the
upper side (λ ≥ λ+) but there are more than 15 eigenvalues lower than the lower
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Fig. 4.1 Eigenvalue distributions. (Left) EV distribution for window 2 (calm period). (Right) EV
distribution for window 3 (onset of crash). Insets show EVs outside the lower bound

Fig. 4.2 Eigenvalue distributions. (Left) EV distribution for window 7 (During Crash). (Right) EV
distribution for window 18 (after Crash). Insets show EVs outside the lower bound

Fig. 4.3 Outside RMT

RMT bound (λ ≤ λ−) see Fig. 4.3. Hence most of the information which is outside
the RMT bound is located on the lower side of the spectrum. Thus the essence of the
interaction among agents is indicated mostly by the eigenvalues which are outside
the lower RMT bound.
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4.3 Eigenvalue Dynamics

The time evolution of the eigenvalues of the correlationmatrix is studied. The Fig. 4.4
shows the time evolution of eigenvalues of the correlation matrix for a sliding win-
dow of 250days. The dynamics of the first few smallest eigenvalues are opposite
to the largest and second largest eigenvalues resulting in eigenvalue repulsion. The
eigenvalue repulsion between the largest and the sum of the smallest 25 eigenvalues
is shown in Fig. 4.5 where the sum of the few eigenvalues is opposite in direction
with time to those of the largest eigenvalues. The eigenvalues which are inside the
RMT bound have very small fluctuations with time. Thus the dynamics indicates that
the information of change is mostly contained in the eigenvalues outside the RMT
bound.

Fig. 4.4 Time evolution of the first four smallest eigenvalues (outside lower bound), the largest,
second largest and some eigenvalues inside the RMT bound are shown

Fig. 4.5 Time evolution of the sum of the smallest 25 eigenvalues and the largest eigenvalues
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4.4 Localization of Eigenvectors

Shannon’s entropy is used to estimate the information content of each eigenvec-
tor. This estimation gives the information about the localization of the eigenvector
components. The entropy of an eigenvector is defined as

Hi = −
L∑

j=1

ui ( j)logL(ui ( j)), (4.6)

where L is the total number of indices (number of eigenvector components) and
ui ( j) = (vi ( j))2 is the square of the j th component of the i th normalized vector vi .

The eigenvector entropy shows that the low eigenvectors are highly localized and
are suitable candidates for the estimation of the strong interactions among different
agents. As, for some biological systems, especially in the spectral analysis of corre-
lations between positions for a protein family, it is found that low eigenmodes are
more informative (Cocoo et al. 2013) and gives useful insight about the interactions,
sectors and the community structure present within the system (Pradeep Bhadola and
Deo 2016). In the literature of financial analysis it is shown, in Markowitzs theory
of optimal portfolios (Elton et al. 1995/1959/1997), that the lowest eigenvalues and
eigenvectors are significant and important for the systemwhich physically represents
the least risky portfolios (Elton and Gruber 1995/1959/1997).

Figure4.6, clearly shows that difference between the eigenvector entropy between
different parts of the spectra. The entropy of the small eigenvectors are low as com-
pared to large eigenvector. The highly localized eigenvectors gives a sector or cluster
by collecting the components with significant contribution in the entropy versus the
eigenvector plot. To extract the indices contributing to the cluster we use the square
of the eigenvector, which is the net contribution from that component towards that
sector. Components with a high contribution forms a group of very close financial
ties.

Fig. 4.6 Entropy of each eigenvectors for different windows
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4.5 Analysis of Eigenvectors

4.5.1 Largest Eigenvector

The eigenvalues on both side of the spectrum shows significant differences from
the RMT predictions. The eigenvectors corresponding to these eigenvalues should
contain non random information present in the system. Analysis of the eigenvectors
corresponding to the largest eigenvalues over the time window shows that the Euro-
pean countries are financially the most active countries by contributing most to the
largest eigenvector. Since largest eigenvector shows the state of the system as awhole
and in the present case represents the global economic conditions, therefore analysis
of components indicates that the European market mainly decides the global eco-
nomic conditions. Some of the Asian countries have small contribution towards the
global economic state. These results are true for all the windows analyzed (Fig. 4.7).

4.5.2 Second Largest Eigenvector

The components of the second largest eigenvectors is shown in Fig. 4.8 for different
windows. The analysis of components indicates that the global market can be divided
broadly into two categories depending on the sign of component. Categorizing the
components into these two categories we find that one group is the European and
Americanmarketwhere as the other groupwith opposite sign comprises the countries
from Asia-Pacific region. These members of the group do not change with time and
is constant across all windows only a flip in sign is observed for some windows.
Thus the second largest eigenvector physically categorizes countries based on their

Fig. 4.7 Components of the largest eigenvectors for different windows
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Fig. 4.8 Components of the second largest eigenvectors for different windows

Table 4.1 Sector based on the second largest eigenvector specifying geographical location of
countries

Sector Geographic location Countries

1 European and American Argentina, Brazil, Mexico, Austria, France, Germany,
Switzerland, UK, US, Hungary, Spain, Netherlands,
Belgium, Canada, Greece and Euro Zone (EURO
STOXX 50 index)

2 Asia Pacific India, Indonesia, Malaysia, South Korea, Taiwan,
Australia, Hong Kong, Israel, Japan, Singapore, China,
New Zealand, Pakistan, Russia, Sri Lanka

geographical locations (showing that geographical proximity corresponds to strong
interactions). Table4.1 gives the sectors and the geographical location of countries
as obtained by analyzing the second largest eigenvector.

4.5.3 Smallest Eigenvector

Eigenvectors on the lower side of the spectra are highly localized and contain useful
information. Analyzing the components of the smallest eigenvector Fig. 4.9 shows a
change inweights of components during the crash. France, Germany, Spain, Belgium
and Euro zone which were dominant during the calm period, window 2 (25-May-
2006 to 15-May-2007) but just before the crash, that is, for window 3 (12-Oct-2006
to 02-Oct-2007) there is amajor shift in contribution and France, UK,Netherland and
Euro zone (EURO STOXX 50 index) now have the dominant contribution. Germany,
Spain and Belgium have almost zero contribution just before the crash, see window
3 (12-Oct-2006 to 02-Oct-2007), where as France and Euro zone (EURO STOXX
50 index) have a reduced effective contribution. UK and Netherland have higher
contribution just before the crash, see window 3 (12-Oct-2006 to 02-Oct-2007).
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Fig. 4.9 Components of the smallest eigenvectors for different windows

Fig. 4.10 Square of the components of the smallest eigenvectors for different windows

During the crash, see window 7 (06-May-2008 to 23-April-2009), France, Germany,
UK, Spain, Belgium and Euro zone (EURO STOXX 50 index) have significant
contributions to the smallest eigenvector.

The sector during the calm period (window 2) consists of France, Germany, Spain,
Belgium and Euro zone which changes to France, UK, Netherland and Euro zone
just before the crisis (window 3). During the crisis there is again a shift in countries
(change in the sector) comprising of France, Germany, Spain, Belgium and Euro
zone. This shift in the financial ties maybe responsible for the global crisis. After the
crash France, Germany, Spain, Belgium and Euro zone remain in the sector for the
rest of the period.

The effective contribution from each country can be clearly seen in Fig. 4.10
where the square of the component is plotted for different windows. The change
in contribution of components towards the smallest eigenvector can be clearly seen
before crisis (window 3), during crisis (window 7) and after the crisis (window 24).
This change in contribution from the countries may be linked to the onset of crisis
as there is significant change in financial ties between the countries.
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This establishes that most of the dynamics is captured by the eigenvectors corre-
sponding to the smallest eigenvalues for financial global indices before, during and
after the 2008 crisis.

4.6 Conclusion

In this manuscript, the global financial market is studied from 2006 to 2015 by
construction a moving window correlations with a window size of 250days and shift
of 100days. The 2008 crash is studied in details and the change in the correlation
between different countries over time is studied. The eigenvalue distribution for all
windows is created and compared with the random matrix results. The eigenvalues
of the financial matrix greater than the upper limit of the RMT bound shows identical
behavior for all windows. The distribution of eigenvalues on the lower side of spectra
outside the RMT lower bound shows significant changes over different windows.
Most of the information is located in the lower side of the spectra. The second largest
eigenvalues is linked to the geographical linking of countries and the structure of the
second largest eigenvector components remains the same for all windows only a flip
in sign of the component is observed. These eigenvalues can be further used to unveil
significant Information. A measure known as eigenvector entropy is introduced to
check the localization of each eigenvalue. Eigenvalues on the lower side of the spectra
are more localized as compared to the eigenvalues on the upper side. Analyzing the
smallest eigenvalues indicates a change in financial ties before, during and after the
crash and hence may throw light on the reason of the crash.
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Chapter 5
Network Theory in Macroeconomics
and Finance

Anindya S. Chakrabarti

Abstract In the last couple of years, a large body of theoretical and empirical work
has been done emphasizing the network structures of economies. Availability of large
data and suitable tools havemade such a transition possible. The implications of such
work is also apparent in settling age-old debates of micro versus macro foundations
and to model and quantify shock propagation mechanisms through the networks.
Here I summarize a number of major topics where significant work has been done in
the recent times using both physics-based and economics-based models of networks
and show that they are complementary in approach.

5.1 Introduction

Economic systems are complex (Krugman 1996). With increasing amount of inter-
dependence among a vast number of entities, earlier paradigms in the prevailing
economic theory often fall short of providing a close approximation of the reality.
Schweitzer et al. (2009) argues that there is a ‘critical need’ for a theoretical tool to
understand and model that complexity and may be network theory provides that tool.
The goal is to understand propagation, diversification and aggregation of shocks and
spill-over effects of economic quantities, which will potentially help us to tackle a
wide range of problems: from assessment of risk embedded in a financial network
to understanding contractions and expansions of global trade flow when a recession
hits one country. In the same vein, Buchanan (2013) argues that the complex network
approach might prove very useful for understanding the financial world.

In this short note, I summarize somebasic tools andmodels in graph (network) the-
ory and describe the findings of an emerging stream of literature in macroeconomics
and finance, that studies economic and financial networks. Let us begin by defining
a number of important concepts and variables in graph theory. Then we can go on
to discuss several features real world graphs and some theoretical underpinnings.
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There are many expositions on graph theory and their relations with real world data
(e.g. Barrat et al. 2008; Jackson 2010; Caldarelli 2007). However, macroeconomic
networks are rarely discussed in those textbooks.

We define a graph as collection of nodes and edges.

Definition 1 A graph G = (N , E) is defined as a set of finite number of nodes N
and edges E .

Intuitively, the number of nodes represents the size of a graph. However, traditionally
the graph theorists have defined size by cardinality of the set E (seeBarrat et al. 2008).
Usually researchers do not differentiate between the terms graph and network. But
at the same time, to describe properties of a comparatively smaller set of nodes,
people use the former whereas for describing connections between a large number
of nodes, the latter term is used. Thus in puremathematics, themost common term for
describing connections is ‘graph’ (where the focus is on very specific properties of
very specific edges and nodes; the aggregate is thought of as a multiplication of such
small units) whereas in the applied sciences like physics or economics, usually such
structures are referred to by the term ‘network’ (where the aggregate properties of
the whole ensemble matter; node-specific properties are less important). Thus graphs
are of essentially abstract mathematical nature whereas networks have a physical
significance representing some type of physical connection between nodes through
trade, information, migration etc. An example of the type of economic problems
that we will discuss below, is as follows. Given that the distribution of degree (a
quantity we will define below) of the input-output network has a fat-tail (fatter than
say, log-normal), how much aggregate volatility can be explained by idiosyncratic
shocks to the nodes in the tail?

Definition 2 The term ‘network’Nwill be used to denote a graph with a statistically
large number of nodes, N .

In some cases, the edges might not be symmetric between two nodes. For exam-
ple, consider a citation network. Researchers are considered nodes and if the i-th
researcher cites the j-th, we add an edge from i to j . However that edge is directed
as the edge from j to i may not materialize.

Definition 3 A graph with directed edges between nodes is called a directed graph.

For the above mentioned citation network, the edges have binary weight, 0 or 1. But
in general we can consider different weights for different edges, e.g. trade network.

Definition 4 A graph with weighted edges is called a weighted graph.

In general, most economic networks are directed andweighted (for example, trade
network). Many social networks could be directed but not weighted (e.g. citation),
weighted but undirected (e.g. correlation graph in stock markets; to be discussed
below) or undirected and unweighted (e.g. Facebook friendship).

Given a network, it is not necessary that all nodes are neighbors to each other. In
other words, we may not have a fully connected network. For any two nodes (i and
j), there might exist a sequence of nodes which if followedwill lead from node i to j .
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Definition 5 A path is a sequence of nodes connecting two separate nodes.

Average path length (as the name suggests, it is the average of all path lengths) is an
important characteristic of networks. For economics, probably the most important
characteristic is connectivity or degree distribution. The degree of a node captures
how many neighbors does one node have.

Definition 6 Degree or connectivity of a node of a networkN is the number of edges
incident to that node.

To see why it is important, consider a banking network. If the i-th bank lends to di
number of other banks, we say that the degree of that node is di . Bigger this number
is, usually the more important is this bank to its downstream partners for lending and
also for the i-th bank itself, it also captures how exposed it is to failure because of
the loans made.

However there are different ways to characterize importance of different nodes in
a given network and degree centrality is one of them. There are The idea of closeness
centrality depends on how far is one node from the rest of the nodes. A natural
measure of it would be the sum of reciprocal of all distances.

Definition 7 Closeness centrality is defined as the sum of reciprocal of all shortest
paths from node i to all other nodes j ∈ N with a standard convention that 1/∞ = 0.

Another related measure is the betweenness centrality which gives a quantitative
measure of how many times a particular node falls on the paths between all other
pairs of nodes.

Definition 8 Betweenness centrality of a node i is defined as the sum over all pos-
sible pairs (i, j) of ratios of total number of shortest paths between (i, j) passing
through the node i and the total number of shortest paths between the same pair of
nodes (i, j).

However, neither of the above two definitions are very useful for economic quantities
although they are very important for social and web networks.

The most used centrality measure in economics goes by the name of ‘eigenvector
centrality’.

Definition 9 Eigenvector centrality of a set of nodes in a network corresponds to
the dominant eigenvector of its adjacency matrix.

Related measures are Bonacich centrality, Katz centrality etc. Very interestingly, this
particular centrality measure is intuitively related to many economic entities. For
example, one can construct a large scale production network by using input-output
data of a country. Then centrality of different sectors can be constructed using the
inflow-outflow matrix. In fact this approach has been found to be extremely useful
for multiple formal economic models. See Acemoglu et al. (2012) for an application.
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5.2 Descriptive Models

There are many excellent books (Barrat et al. 2008; Jackson 2010) and monographs
(Dorogovtsev and Mendes 2003) on network structures and properties from mathe-
matical as well as statistical point of view. Below I describe three types of networks
with different properties. The list is not exhaustive and far from complete. I chose
them because these three presents three important benchmarks for describing a net-
work and the last one has found a lot of applications in economic and financial
networks.

5.2.1 Random Networks

This type of networks have been studied in great details. These have a simple but
mathematically elegant structure (Erdos and Renyi 1959). Not many economic net-
works belong to this class though. A generative model is as follows:

1. Start with N nodes and no edges.
2. Fix a probability p.
3. There are NC2 possible edges.
4. Choose the i-th possible edge and it materializes with probability p. Do it for all

possible edges.

This will generate a random graph with approximately pEmax edges for a large N ,
where Emax is the maximum number of edges possible.

5.2.2 Small World Networks

These are very important for studying social networks and was made famous by the
story of ‘six-degrees of separation’. The basic idea is that in many networks, a large
number of nodes are not neighbors of each other (implying that a lot of edges are
missing) but the average distance between any two nodes is quite small. In particular,
the average path-length is proportional to the log of size of the network,

l ∝ log N . (5.1)

A very well known algorithm for generating a network with small-world property
was proposed by Watts and Strogatz (1998) which can be summarized as follows.

1. Fix a number of nodes N and an integer number of average degree d̄ such that
N � d̄ � log(N ) � 1.

2. Choose a probability parameter p.



5 Network Theory in Macroeconomics and Finance 75

3. Construct a regular circular network with those N nodes each having connection
with d nodes, with d/2 connections on each side.

4. Pick one node ni . Consider all edges with nodes j such that i < j . Rewire those
edges, each with probability p. For rewiring choose any other (other than itself
and nodes with already existing connections with ni ) node with equal probability.

This mechanism generates a network with small-world property. By altering the
parameter p, one can generate a regular network (p = 0) in one extreme and a
random network (p = 1) on the other. Below we discuss scale-free networks and a
generative mechanism.

5.2.3 Networks with Fat Tails

This class of networks have proved useful in describing economic phenomena.
Notably, the input-output network seems to have a fat tail (Acemoglu et al. 2012).
There are multiple mechanisms for generating scale-free networks. A very simple
model in discrete time was proposed by Albert and Barabasi (2002) which uses a
preferential attachment scheme to generate a degree distribution which is scale-free.
The basic algorithm is as follows.

1. Start with some nodes which are connected to each other. Say, we have Nini

number of nodes.
2. At every point of time add n ≤ Nini node.
3. The new node will form a connection with the existing i-th node with probability

pnewi = di/
∑

j d j .
4. This process continues ad infinitum.

This process generates a network with degree distribution

P(di ) ∼ d−3
i . (5.2)

It has several other interesting properties like clustering coefficient that can be pinned
down mathematically and many variants of it have been proposed in the literature
(see Barrat et al. 2008 for details). The most relevant property for our purpose that
can be utilized in the context of economics is the degree distribution.

5.3 Large-Scale Economic Networks

Bak et al. (1993) was an early attempt to understand aggregate economic fluctuations
in terms of idiosyncratic shocks to individual agents. This also asks the question that
should we consider idiosyncratic shocks as a source of volatility? There were several
irrelevance theorems proved which essentially had shown that idiosyncratic shocks



76 A.S. Chakrabarti

tend to cancel each other in a multi-sector set-up, but the debate was not settled
(see e.g. Dupor 1999; Horvath 1998). Newer results, both theoretical and empirical,
came up later which showed that the answer couldwell be positive whichwe describe
below.

5.3.1 Input-Output Structures

One of the first network structures studied in great details is the input-output network
(Leontief 1936, 1947, 1986). The essential postulate is that an economy is made up
of a number of sectors that are distinct in their inputs and outputs. Each sector buys
inputs from every other sector (some may buy zero inputs from some particular
sectors) and sells output to other sectors. The workers provide labor, earn wage and
consume the output net of input supplies.

Thus if one sector receives a negative shock, it can potentially transfer the effects
to all downstream sectors. The question is whether that will so dispersed that none of
it would be seen in the aggregate fluctuations or not. Acemoglu et al. (2012) studied
it directly in the context of an input-output structure and showed that the degree dis-
tribution is sufficiently skewed (fat-tailed; there are some sectors disproportionately
more important than the rest) so that idiosyncratic shocks to those sectors do not die
completely. This provides a theoretical solution to the debate (it also shows that this
channel is empirically relevant).

A simple exposition of the model is as follows (for details see Acemoglu et al.
2012). There is an unit mass of households with utility function defined over a
consumption bundle {ci }i∈N as

u = ξ.
∏

i∈N
(ci )

1/N (5.3)

where ξ is a parameter. The production function for each sector is such that it uses
some inputs from other sectors (or at least zero),

xi = (zi li )
α(

∏

j∈N
x

ωi j

i j )1−α (5.4)

where zi is an idiosyncratic shock to the i-th sector and {ωi } j∈N captures the indegrees
of the production network. To understand how it captures the network structure of
production, take logs on both sides to get

log(xi ) = α log(zi ) + α log(li ) + (1 − α)
∑

j∈N
ωi j log xi j . (5.5)

Since all sectors are profit maximizing, their optimal choice of inputs (how much
would they buy from other sectors) will depend in turn on the prices and how much
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they themselves are producing. The markets clear at the aggregate level. After sub-
stitution, we can rewrite the equation above as (x∗ being the solution to the above
equation)

log(x∗) = F(log(z), log(x∗)) (5.6)

which means that the aggregate output of one sector is a function of all productivity
shocks and optimal outputs of all sectors. Hence, this becomes a recursive system.
Acemoglu et al. (2012) shows that the final GDP can be expressed as

GDP = w log(z) (5.7)

where w is a weight vector. Thus the output of all sectors are functions of the vector
of all idiosyncratic shocks.

Foerster et al. (2011) considered the same question and provided a (neoclassical
multi-sector) model to interpret data. They showed that idiosyncratic shocks explain
about half of the variation in industrial production during the greatmoderation (which
basically refers to two-decades long calm period before the recession in 2007).

5.3.2 Trade Networks

A very simple trade model can be provided on the basis of the input-output model
presented above. Suppose there are N countries and for the households of the i-th
country, the utility function is given by the same simple form:

ui = ξi .
∏

(ci )
1/N (5.8)

Each country gets an endowment of country-specific goods (e.g. Italianwine,German
cars):

yi = zi (5.9)

where zi is a positive random variable. Now we can assume that there is a Walrasian
market (perfectly competitive) across all countries. Each country is small enough so
that it takes the world price as given. The we can solve the trading problem and can
generate a trade flowmatrix where weight of each edge is a function of the preference
and productivity parameters,

ei j = f (ξ, z, N ) (5.10)

where ei j is the weight of the directed edge from country i to j . This is of course,
a very simple model and apart from generating a network, it does not do much.
Many important details are missing. For example, it is well known that trade volume
is directly proportional to the product of GDPs and inversely proportional to the
distance between a pair of countries. This feature is referred to as the gravity equation
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of trade (Barigozzi et al. 2010; Fagiolo 2010). Explaining the first part (trade being
proportional to the product of GDPs) is not that difficult. Even in the model stated
above a similar feature is embedded.Themore difficult part is to understandwhy trade
exactly inversely proportional (in the actual gravity equation, force of attraction is
inversely proportional to the distance squared). Chaney (2014) presents a framework
to understand that type of findings.

5.3.3 Migration Networks

Another important type of network is the migration network. People are moving
across the world form country to country. An important motivation comes from
productivity reasons which is related to wages or job-related reasons. The gravity
equation kind of behavior also seen in migration as well. The network perspective
in less prevalent in this literature even though there are instances of its usage (e.g.
Stark and Jakubek 2013). Fagiolo and Mastrorillo (2014) connects the literature on
trade and migration establishing that the trade network and the migration network
are very correlated.

5.3.4 Financial Networks

A big part of the literature has focused on financial networks which broadly includes
bank-to-bank transfers (Bech et al. 2010), firm-credit network (Bigio and Lao 2013),
asset networks (Allen andGale 2000;Babus andAllen 2009) etc. Jackson et al. (2014)
proposes an extremely simple and abstract way to model interrelations between
such entities. Suppose there are N primitive assets each with value rn . There are
organizations with cross-holding of claims. Thus the value of the i-th organization is

Vi =
∑

k

wikrk +
∑

k

w̃ikVk (5.11)

where w is a matrix containing relative weights of primitive asset holdings and w̃ is
a matrix containing relative weights of cross-holding of claims. One can rewrite it
in vector notations as

V = wr + w̃V (5.12)

which can be rearranged to obtain

V = (I − w̃)−1wr. (5.13)
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One very interesting feature of this model is that

∑

j

Vj ≥
∑

j

r j . (5.14)

The reason is that each unit of valuation held by one such organization contributes
exactly 1 unit to its equity value, but at the same time through cross-holding of claims,
it also increases value of other organizations. The net value is defined as

vi = (1 −
∑

j

w̃ j i )Vi (5.15)

which is simplified as
v = (I − w′)(I − w̃)−1wr (5.16)

withw′ capturing the net valuation terms. Thus eventually this system also reduces to
a recursive structure which we have already encountered in the input-output models.
Finally they also introduce non-linearities and show how failures propagate through
such a network. It is easily seen that any shock (even without any nonlinearities)
to the primitive assets will affect all valuations through the cross-holding of claims
channel. See Jackson et al. (2014) for details.

5.3.5 Dispersion on Networks: Kinetic Exchange Models

A descriptive model of inequality was forwarded by Drăgulescu and Yakovenko
(2000) and Chakraborti and Chakrabarti (2000) (see Chakrabarti et al. 2013 for a
general introduction and description of this class of models). The essential idea is
that just like particles colliding against each other, people meet randomly in market
places where they exchange money (the parallel being energy for particles). Thus
following classical statistical mechanics, the the steady state distribution of money
(energy) has an exponential feature which is also there in real world income and
wealth distribution. Lack of rigorous micro-foundation is still a problem for such
models, but the upside is that this basic model along with some variants of it can very
quickly generate distributions of tradable commodities (money here) that resemble
the actual distribution to a great extent including the power law tail. The equation
describing evolution of assets (w) due to binary collision (between the i-th and the
j-th agents) as

wi (t + 1) = f (wi (t),wj (t), ε)

wj (t + 1) = f (wj (t),wi (t), 1 − ε) (5.17)

ε is a shock and f (.) usually denotes a linear combination of its arguments
Chakrabarti et al. (2013).
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In principle, one can think of it as essentially a network model where agents
are the nodes of the network and links randomly form among those agents and
then destroyed. When the links are forms, they trade with each other and there
is a microscopic transaction. After a sufficient number of transactions, the system
reaches a steady state where the distribution of money does not change. Hence,
inequality appears as a robust feature. An intriguing point is that the basic kinetic
exchange models are presented in such a way that this underlying network structure
is immaterial and does not have any effect on the final distribution. An open question
is under what type of trading rule the topology of the network will have significant
effect on the distribution (Chatterjee 2009). So far this issue has not been studied
much.

5.3.6 Networks and Growth

So far all of the topics discussed are related to the idea of distribution and dispersion.
Traditionally, economists have employed representative agent models to understand
growth. In recent times, one interesting approach to understanding growth prospects
has been proposed through applications of network theory. Hidalgo and Hausman
(2009), suggested that existing complexity of an economy contains information about
possible economic growth and development and they provide a measure of complex-
ity of the production process using the trade network.

One unanswered point of the above approach is that it does not explain how
such complexity is acquired and accumulated. A potential candidate is technology
flow network. Theoretical attempts have mostly been concentrated on symmetric
and linear technology flow networks (see e.g. Acemoglu 2008). An open modeling
question is to incorporate non-trivial asymmetry in the technologynetwork andmodel
its impact on macroeconomic volatility.

5.3.7 Correlation Networks

This stream of literature is fundamentally different in its approach compared to the
above. It is almost exclusively empirical with little theoretical (economic/finance)
foundation. During the last two decades, physicists have shown interests in modeling
stock market movements. The tools are obviously very different from the ones that
economists use. In general, economists include stock market (if at all) in a macro
model by assuming existence of one risky asset which typically corresponds to amar-
ket index. Sometimes multiple assets are considered but usually their interrelations
are not explicitly modeled as the basic goal often is to study the risk-return trade off
(hence one risky asset and one risk-free asset suffices inmost cases). However, physi-
cists took up exactly this problem: how to model joint evolution and interdependence
of a large number of stocks? Plerou et al. (2002) introduced some important tools.
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Later extensions can be found in Bonanno et al. (2003), Tumminello et al. (2010)
and references therein. These studies were done in the context of developed coun-
tries with little attention to less developed financial markets. Pan and Sinha (2007)
extended the study on that frontier.

The basic object of study here is the correlation network between N number of
stocks. Each stock generates a return {rnt } of length T . Given any two stocks i and
j , one can compute the correlation matrix with the i, j-th element

ci j = E(ri · r j ) − E(ri ) · E(r j )

σi · σ j
. (5.18)

Clearly the correlation matrix is symmetric. Then the question is if there is any way
one can divide the correlation matrix into separate modes defining the market (m),
group (g) and idiosyncratic (r ) effects,

C = Cm + Cg + Cr . (5.19)

A very important tool is provided by the random matrix theory which allows us
to pin down the idiosyncratic effects. Through eigenvalue decomposition, one can
construct the random mode by the so-called Wishart matrix which is essentially a
random correlation matrix (Pan and Sinha 2007). This helps to filter the random
component of the correlation matrix (Cr in Eq. 5.19). The market mode is the global
factor that affects all stocks simultaneously in the same direction. The mode in
between these two, is described as the group mode.

Empirically, the group effects in certain cases seems to be very prominent and cor-
respond to actual sector-specific stocks (Plerou et al. 2002), but not always (Kuyya-
mudi et al. 2015; Pan and Sinha 2007). Onnela et al. (2003) also studied contraction
and expansion along with other properties of the correlation network. However, this
field is still not very matured and the applications of such techniques are not wide-
spread.

One can also construct networks basedon the correlationmatrix.A standardway to
construct a network would be to consider only the group correlationmatrix and apply
a threshold to determine if stocks are connected or not. A complementary approach
without using a threshold would be to construct a metric based on the correlation
coefficients. This is very useful to construct a minimum spanning tree and study its
evolution over time, (see Bouchaud and Potters (2009) for related discussions).

5.4 Summary

One recurring theme in all economicmodels of network is that the building blocks are
countries or firms or cities and usually one comes up with an input-output structure
defined over those economic entities, on the variable of interest. The input-output
network is essentially a flow network (of people, commodity or money). Very early
attempts to build these models were based on market clearing by fixing quantities
as if the economy is run by a central planner. The newer versions have explicit
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utility maximization and cost minimization. Thus most of these models use general
equilibrium theory to solve for the final allocation. There are many game-theoretic
problems as well which use network terminology and tools, which we ignore the
present purpose. See Jackson (2010) for a detailed review.

This indicates a possibility that general equilibrium theory on networks can pro-
vide amiddle ground between standardmacroeconomics where granularity of agents
do notmater and agent-basedmodelswhere granularitymatters but is somuch depen-
dent on the model specification that there is no consistent theory. In particular this
might proves useful for explaining economic fluctuations (La’o 2014).

In this short note, a number of applications of network theory have been pre-
sented to understand macroeconomic patterns. Some open and unsettled problems in
the theories have also been discussed. Extensions of the previous work and further
explorations on the deeper relationships between network topology andmacro behav-
ior will be useful, probably more useful than many other well established branches
in modern economics.
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Chapter 6
Power Law Distributions for Share Price
and Financial Indicators: Analysis
at the Regional Level

Michiko Miyano and Taisei Kaizoji

Abstract We investigate whether the distribution of share price follows a power
law distribution at the regional level, using data from companies publicly listed
worldwide. Based on ISO country codes, 7,796 companies are divided into four
regions: America, Asia, Europe, and the rest of the world.We find that, at the regional
level, the distributions of share price follow a power law distribution and that the
power law exponents estimated by region are quite diverse. The power law exponent
for Europe is close to that of the world and indicates a Zipf distribution. We also find
that the theoretical share price and fundamentals estimated using a panel regression
model hold to a power law at the regional level. A panel regression in which share
price is the dependent variable and dividends per share, cash flow per share, and book
value per share are explanatory variables identifies the two-way fixed effects model
as the best model for all regions. The results of this research are consistent with our
previous findings that a power law for share price holds at the world level based on
panel data for the period 2004–2013 as well as cross-sectional data for these 10years.

6.1 Introduction

Since Vilfredo Pareto (1848–1923) found more than 100 years ago that income
distributions follow a power law, numerous studies have attempted to find and explain
this phenomenon using a variety of real world data. Power laws, including Zipf’s
law, appear widely in physics, biology, economics, finance, and the social sciences.
Newman (2005) introduced examples of distributions that appear to follow power
laws in a variety of systems, includingWord frequency, Citations of scientific papers,
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Web hits, Copies of books sold, Telephone calls,Magnitude of earthquakes,Diameter
of moon craters, Intensity of solar flares, Intensity of wars, Wealth of the richest
people, Frequency of family names, and Populations of cities. All have been proposed
to follow power laws by researchers. Examples of Zipf’s law, whose power exponent
is equal to one, are also found in a variety of systems. Gabaix (1999) showed that the
distribution of city sizes follows Zipf’s law. Axtell (2001) showed that distributions
of company sizes follow Zipf’s law. Econophysics focuses on the study of power
laws in economies and financial markets. (For a recent review of the development of
Econophysics, see Chakraborti et al. (2011a, b)).

Using cross-sectional data for the period 2004–2013 from companies publicly
listed worldwide, Kaizoji and Miyano (2016a) showed that share price and financial
indicators per share follow a power law distribution. For each of the 10 years exam-
ined, a power law distribution for share price was verified. Using panel data for the
same period, Kaizoji andMiyano (2016b) developed an econometric model for share
price and showed that a two-way fixed effects model identified from a panel regres-
sion with share price as the dependent variable and dividends per share, cash flow per
share, and book value per share as explanatory variables effectively explains share
price. Based on the same data, Kaizoji and Miyano (2016c) also found that share
price and certain financial indicators per share follow Zipf’s law and verified that
company fundamentals estimated using a two-way fixed effects model also follow
Zipf’s law.

The aim of this current study is to (1) verify that the distributions of share price
and fundamentals follow power laws at the regional level, and (2) investigate the
regional characteristics of share price behavior following previous studies (Kaizoji
and Miyano 2016a, b, c).

For this study, a number of companies listed worldwide were divided into four
regions: America, Asia, Europe, and rest of the world.1

Using this scheme, we found that the distributions of share price and financial
indicators per share follow a power law distribution at the regional level. Further,
we found that the distribution of fundamentals estimated using the two-way fixed
effects model that was selected as the best model for all regions follows a power
law distribution at the regional level and that the estimated power law exponents for
share price are quite diverse by region, in the range 0.98–3.42.

This paper is organized as follows: Section 6.2 gives an overview of the share
price data at the regional level; Section 6.3 describes the econometric model and
presents the estimated results; Section 6.4 examines the estimated distributions of
the fundamentals; Section 6.5 examines the financial indicators per share data used
in the study; Section 6.6 concludes.

1America includes North America, South America, and Central America. Asia includes eastern
Asia, southern Asia, central Asia, and the Middle East. The rest of the world includes Oceania and
Africa.
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6.2 Data

The data source used here is the OSIRIS database provided by Bureau Van Dijk con-
taining financial information on globally listed companies. In this study, we employ
annual data for the period 2004–2013. Stock and financial data for a total of 7,796
companies forwhich datawere available over this 10-year periodwere extracted from
the database. Using this data, we performed a statistical investigation of share price
and dividends per share, cash flow per share, and book value per share, all of which
were obtained by dividing available values by the number of shares outstanding.

For analysis at the regional level, we divided the 7,796 companies selected into
the four regions described above, using the ISO country code appropriate to the
individual companies. The number of companies in each region was as follows:
America, 1,886 companies; Asia, 4,065 companies; Europe, 1,436 companies; the
rest of the world, 409 companies.2

6.2.1 Power Law Distributions of Share Price in Regional
Data

Using the same company data in a previous study, Kaizoji andMiyano (2016c) found
that in the upper tail, which includes approximately 2% of the total observations,
the distributions of share price and financial indicators per share follow a power
law distribution at the worldwide level. In this section, we investigate whether the
distributions of share price follow a power law distribution at the regional level.

Defining a power law distribution is straightforward. Let x represent the quantity
in whose distribution we are interested. (In our research, x represents share price or
various financial indicators per share.)

Observed variable, X follows a power law distribution if its distribution is
described by3:

Pr(X > x) = 1 − F(x) = (
x

k
)−α, x ≥ k > 0 (6.1)

where F(x) denotes the cumulative distribution function, k denotes a scaling para-
meter corresponding to the minimum value of the distribution, and α denotes the
shape parameter. We call α power law exponent.

By taking the logarithm of both sides of Eq. (6.1), the following equation is
obtained:

ln(Pr(X > x)) = αlnk − αlnx (6.2)

2Total observations available in each region were as follows: America, 8935; Asia, 27,407; Europe,
8,791; rest of the world, 2028.
3The probability density function for thePareto distribution is defined as f (x) = αkα

xα+1 , x ≥ k > 0.
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Fig. 6.1 The
complementary cumulative
distribution of share price
(log-log plot)

If the distribution is plotted using logarithmic horizontal and vertical axes and
appears approximately linear in the upper tail, we can surmise that the distribution
follows a power law distribution.

As a first step, we plotted complementary cumulative distributions for the data.
Figure6.1 shows the complementary cumulative distributions of share price by
region, with logarithmic horizontal and vertical axes.4

From Fig. 6.1, the regional complementary cumulative distributions of share price
seem to be roughly linear in their upper tails, although the slopes differ, suggesting
that the distributions of share price follow a power law distribution at the regional
level. In addition, the distribution of share price for Europe appears to be close to
that of the world in the upper tail. This suggests that a power law distribution for the
world mostly originates from the European data.

In the second step, we estimate the power law exponent using theMLE (maximum
likelihood estimator) method. The MLE is given by

α̂ = n[
n∑

i=1

ln(
xi
xmin

)]−1 (6.3)

where α̂ denotes the estimates of α, xi , i = 1, · · · , n are observed values of x , and
xi > xmim .5 The results are presented in Table6.1.

To testwhether the distributions of share price observed at the regional level follow
a power law distribution, we use a Cramér-von Mises test, one of the goodness-of-fit
tests based on a measurement of distance between the distribution of empirical data
and the hypothesized model. The distance is usually measured either by a supremum
or a quadratic norm. The Kolmogorov-Smirnov statistic is a well-known supremum
norm. The Cramér-von Mises family, using a quadratic norm, is given by

4The graph fo the rest of the world is excluded. This is done throughout since the numbers of
companies in this is only 5.2% of the total.
5Details of the derivations are presented (Kaizoji and Miyano 2016c).
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Table 6.1 Estimates of power law exponents and p-values calculated in the test for a power law
distribution

Region Power law
exponents

xmin Cramér-von Mises
test p-value

Tail % Total
observations

World 1.003 133.4 0.132 2.0 47,161

America 3.427 75.1 0.676 3.0 8,935

Asia 2.096 23.1 0.099 6.5 27,407

Europe 0.975 115.5 0.169 11.0 8,791

Rest of the world 1.220 97.9 0.162 2.4 2,028

Q = n
∫ ∞

−∞
[Fn(x) − F(x)]2ψ(x)dF(x) (6.4)

where Fn(x) denotes the empirical distribution function and F(x) denotes the theo-
retical distribution function. When ψ(x) = 1, Q is the Cramér-von Mises statistic,
denoted W 2. When ψ(x) = [F(x)(1 − F(x))]−1, Q is the Anderson and Darling
statistic, denoted A2.

Although a variety of goodness-of-fit statistics have been proposed, we use theW 2

statistic of Cramér-von Mises in our research.6 The test statistic of the Cramér-von
Mises test is given by Eq. (6.4), with ψ(x) = 1.7

The null hypothesis is that the distribution of observed data follows a power law
distribution. Table6.1 presents the estimates of the power law exponents and p-values
for the tests.

As is evident here, the null hypothesis cannot be rejected at the 5% significant
level for all regions. As can be seen, the power law exponents are quite diverse by
region. The power law exponent for Europe is close to that of the world, while the
power law exponents for America and Asia are 3.4 and 2.1, respectively.

6.2.2 Changes in Averages and Variances of Share Price

Figures6.2 and 6.3 show the changes in the averages and variances of share price,
respectively. As indicated, Europe shows a notably high average, while Asia shows
the lowest. All regions appear to show the same pattern of averages, experiencing
an apparent fall in 2008 and slowly recovering after 2009. Regarding the changes
in variance, in contrast with the average, America shows the largest variance and
Europe shows the smallest variance before 2009. Variances tend to decline slightly
after 2007, except for Europe, where they tend to rise slightly.

6According to D’Agostino and Stephans (1986), the Anderson and Darling test is in common use.
However, the test is found to be highly conservative by Clauset et al. (2009)
7The two classes of measurement and computational details for this test are found in Čížek and
Weron (2005, Chap.13)
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Fig. 6.2 Changes in average
of share price
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Fig. 6.3 Changes in
variance of share price
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6.3 Econometric Model for Fundamentals

In our previous research, the model we chose to use was shown to have quite a
high explanatory power with respect to share price. Therefore, we used a similar
econometric model for our regional data in this current study.

6.3.1 Econometric Model

Assuming the relationship between share price and the set of financial indicators,
that includes dividends per share, cash flow per share, and book value per share, to
be logarithmic linear, the econometric model for our study can be written as

lnYit = lna + b1lnX1,i t + b2lnX2,i t + b3lnX3,i t + uit i = 1, · · · , N ; t = 1, · · · , T
(6.5)
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where i denotes cross-section (i.e., individual company), t denotes time point
(year), and

Yit : share price for company i , at year t
a: constant term
X1,i t : dividends per share for company i , at year t
X2,i t : cash flow per share for company i , at year t
X3,i t : book value per share for company i , at year t
uit : error term

We estimate the model in Eq. (6.5) using the Panel Least Squares method. In the
panel regression model, the error term uit can be assumed to be the two-way error
component model. Details of the two-way error component model are described in
Kaizoji andMiyano (2016b). The estimation models examined include the pool OLS
model, the individual fixed effects model, the time fixed effects model, the two-way
fixed effects model, the individual random effects model, and the time random effects
model.8

We perform the estimation by region. That is, we estimate 4×6 models using
the same method as the world model. The model selection tests are as follows: the
likelihood ratio test and F-Test for the selection of the pool OLS model versus the
fixed effects model; and the Hausman test for the selection of the random effects
model versus the fixed effects model. The selection test for the pool OLS model
vs the random effects model is based on the simple test proposed by Woodlridge
(2010).9

For all regions, the two-way fixed effects model is identified as the best model
among the six alternatives. In a two-way fixed effects model, the error term consists
of the following three terms:

uit = μi + γt + εi t (6.6)

μi : unobservable individual fixed effects
γt : unobservable time fixed effects
εi t : pure disturbance

μi is the individual fixed effect and represents the company’s effect on share price
(among other factors). γt is the time fixed effect and is related to the point in time
(year) affecting stock markets, among other factors (for example, factors caused by
financial and economic shocks such as Global financial crisis in 2008).

Table6.2 shows the regional results for the panel regression model described in
Eq. (6.5). The signs of the three coefficients are all positive, consistent with corporate
value theory. The p-values of the coefficients are quite small, indicating statistical
significance for all regions. In addition, the R2 values are in the range 0.95–0.98,
indicating that the estimated models explain the variation in share prices quite well.

8The two-way random effects model cannot be used since we use unbalanced panel observations.
9Woodlridge (2010, p.299) proposes a method that uses residuals from pool OLS and checks the
existence of serial correlations.
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Table 6.2 Regional results of panel regression (two-way fixed effects model). Total observations
presented in the table are unbalanced panel observations

Region lna b1 b2 b3 R2 Total
observations

World Coefficient 1.485 0.137 0.208 0.378 0.969 47,161

Std. error 0.014 0.003 0.004 0.007

p-value 0.000 0.000 0.000 0.000

America Coefficient 1.750 0.119 0.215 0.324 0.977 8,935

Std. error 0.024 0.007 0.009 0.013

p-value 0.000 0.000 0.000 0.000

Asia Coefficient 1.154 0.112 0.218 0.440 0.956 27,404

Std. error 0.020 0.005 0.005 0.011

p-value 0.000 0.000 0.000 0.000

Europe Coefficient 2.160 0.191 0.154 0.318 0.967 8,791

Std. error 0.035 0.007 0.008 0.014

p-value 0.000 0.000 0.000 0.000

Rest of the world Coefficient 1.546 0.189 0.207 0.416 0.953 2,028

Std. error 0.038 0.014 0.019 0.027

p-value 0.000 0.000 0.000 0.000

The econometric model for share price, using dividends per share, cash flow per
share, and book value per share as explanatory variables, fits the actual data quite
well at the regional level as well as at the world level.

Among the three financial indicators, the coefficient of book value per share (b3)
is largest in all regions, while the coefficient of dividends per share (b1) is smallest,
except for Europe. The constant term for Europe is quite large compared to the other
regions.

6.3.2 Theoretical Value and Fundamentals

By multiplying both sides of Eq. (6.5) by the exponent function, Ŷ is obtained as
written:

Ŷ = â(Xb̂1
1 Xb̂2

2 Xb̂3
3 )(eμ̂i )(eγ̂t ) (6.7)

where Ŷ is the estimated value for share price, which we call the theoretical value.
We can remove the time fixed effects term, γt , from the error term described

in (6.6). After subtracting the time effects term from Eq. (6.6), Ỹ is obtained by
multiplying both sides of Eq. (6.5) by the exponent function:

Ỹ = â(Xb̂1
1 Xb̂2

2 Xb̂3
3 )(eμ̂i ) (6.8)
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Table 6.3 The results of two-sample Kolmogorov-Smirnov test and correlation of theoretical value
and fundamentals with share price

Region K-statistic p-value Correlation coefficient

World Theoretical value 0.006 0.287 0.984

Fundamentals 0.007 0.253 0.982

America Theoretical value 0.016 0.228 0.988

Fundamentals 0.018 0.121 0.986

Asia Theoretical value 0.009 0.215 0.987

Fundamentals 0.013 0.023 0.974

Europe Theoretical value 0.010 0.757 0.983

Fundamentals 0.014 0.384 0.977

Rest of the world Theoretical value 0.016 0.950 0.976

Fundamentals 0.016 0.950 0.971

As in our previous studies (Kaizoji and Miyano 2016b, c), we identify Ỹ as the
company fundamentals since the time effect common to all companies has been
removed, leaving only the company fundamentals.

We investigated the distribution of fundamentals in the upper distribution tail by
region. As described in Sect. 6.2, the distribution of share price follows a power law
distribution at the regional level. Before investigating the distribution of fundamen-
tals, we examined whether the distribution of fundamentals coincided with that of
share price. Using a two-sample Kolmogorov-Smirnov test, we tested goodness-of-
fit between company fundamentals and share price. Table6.3 shows the results of the
test as well as the relevant correlation coefficients. Given the test results shown in
Table6.3, the null hypothesis that the two distributions coincide cannot be rejected
at the 5% significant level, except in the case of Asia. With respect to the theoretical
value, the null hypothesis cannot be rejected the 5% significant level for all regions.
Correlation coefficients with share price are in the range 0.97–0.99.

6.4 Power Law Distribution for Fundamentals

The complementary cumulative distributions of theoretical value and company fun-
damentals are shown in Figs. 6.4 and 6.5. As described in the previous section, the
theoretical value is directly estimated using a two-way fixed effects model, while the
fundamentals are computed by removing the time fixed effects term from the the-
oretical value. The two figures are plotted with logarithmic horizontal and vertical
axes. Both figures show that the upper tails of the distributions appear roughly linear,
although there are small differences among the regions. The distributions in Figs. 6.4
and 6.5 are quite similar to those shown in Fig. 6.1 for share price, suggesting that
the regional distributions of theoretical value and company fundamentals also follow
a power law distribution.
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Fig. 6.4 The
complementary cumulative
distribution of theoretical
value (log-log plot)
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Fig. 6.5 The
complementary cumulative
distribution of fundamentals
(log-log plot)
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As described in Sect. 6.2.1, we performed an estimation of the power law expo-
nents using the MLE method, then tested the null hypothesis of a power law distri-
bution using the Cramér-von Mises test. Table6.4 shows the estimated power law
exponents and test results for the power law distribution hypothesis. For easy com-
parison with share price, we show the power law exponents and p-values for share
price that were shown earlier in Table6.1.

The power law exponents for theoretical value are similar to those of the company
fundamentals and are close to share price, except in the case ofAmerica. ForAmerica,
the power law exponents are extremely large for theoretical value and fundamentals,
and differ from that of share price. The Cramér-von Mises test fails to reject the null
hypothesis of a power law distribution for all regions. From these results, it can be
said that the distributions of theoretical value and fundamentals follow a power law
distribution at the regional level.



6 Power Law Distributions for Share Price and Financial Indicators: Analysis … 95

Table 6.4 Estimates of power law exponents and p-values calculated in the test for a power law
distribution

Region Power law
exponents

xmin Cramér-von
Mises test
p-value

Tail % Total
observations

World Share price 1.003 133.4 0.132 2.0 47,161

Theoretical value 1.012 128.5 0.106 2.0

Fundamentals 1.006 119.7 0.128 2.1

America Share price 3.427 75.1 0.676 3.0 8,935

Theoretical value 3.814 72.7 0.119 3.0

Fundamentals 3.993 72.8 0.115 3.1

Asia Share price 2.096 23.1 0.099 6.5 27,407

Theoretical value 2.172 27.4 0.106 4.0

Fundamentals 2.183 25.5 0.089 4.5

Europe Share price 0.975 115.5 0.169 11.0 8,791

Theoretical value 0.975 123.7 0.170 10.0

Fundamentals 0.963 108.5 0.156 11.0

Rest of the
world

Share price 1.220 97.9 0.162 2.4 2,028

Theoretical value 1.238 84.5 0.080 3.0

Fundamentals 1.251 86.4 0.123 3.0

As can be seen here, the power law exponents of theoretical value and company
fundamentals for Europe are close to 1, as are those for the world.

6.5 Power Law Distribution for Financial Indicators per
Share

In the previous section, we showed that the distribution of fundamentals follows a
power law distribution at the regional level. Kaizoji and Miyano (2016c) suggested
that the reason why the distribution of company fundamentals follows a power law
distribution is due to the fact that the distributions of financial indicators per share,
representing corporate value, follows a power law distribution. In this study, we
examined whether the distributions of financial indicators per share follow a power
law distribution at the regional level.

Figures6.6, 6.7 and 6.8 show the complementary cumulative distributions of div-
idends per share, cash flow per share, and book value per share using logarithmic
horizontal and vertical axes. In these figures, it appears that the regional complemen-
tary cumulative distributions of financial indicators per share are roughly linear in
their upper tails.
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Fig. 6.6 The
complementary cumulative
distribution of dividends per
share (log-log plot)
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Fig. 6.7 The
complementary cumulative
distribution of cash flow per
share (log-log plot)

We show the estimated power law exponents and test results of the power law
hypothesis in Table6.5. Tests for the distributions of dividends per share and cash
flow per share fails to reject the null hypothesis at 5% significant level for America,
Europe, and the rest of the world. However, the null hypothesis is rejected for Asia.
For book value per share, the null hypothesis cannot be rejected at the 5% significant
level for all regions.

Figures6.9, 6.10 and 6.11 show the changes in average of dividends per share,
cash flow per share, and book value per share. The changes in average for dividends
per share and cash flow per share fell slightly in 2009 except Asia. However, changes
in average book value per share do not appear clearly in 2008–2009. As shown in
Fig. 6.2, share prices in all regions seem to have been immediately affected by the
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Fig. 6.8 The
complementary cumulative
distribution of book value
per share (log-log plot)

Table 6.5 Estimates of power law exponents and p-values calculated in the test for a power law
distribution

Region Financial
indicator
per share

Power law
exponents

xmin Cramér-von
Mises test
p-value

Tail % Total obser-
vations

World Dividends 1.015 3.6 0.130 2.6 47,161

Cash flow 1.051 21.9 0.151 2.0

Book value 0.955 98.9 0.221 2.0

America Dividends 2.029 1.6 0.361 10.0 8,935

Cash flow 2.515 5.6 0.798 10.0

Book value 2.918 58.1 0.363 1.1

Asia Dividends 1.757 0.5 0.003 4.0 27,407

Cash flow 2.138 3.6 0.001 4.0

Book value 2.261 22.7 0.082 4.0

Europe Dividends 0.956 2.8 0.123 14.2 8,791

Cash flow 1.017 18.7 0.071 11.2

Book value 0.929 86.6 0.084 11.3

Rest of the
world

Dividends 1.074 4.0 0.063 2.5 2,028

Cash flow 1.106 13.4 0.299 2.5

Book value 1.282 35.3 0.188 3.0

global crisis in 2008, while the impact on the financial indicators per share seems to
appear one year later.

Figures6.12, 6.13 and 6.14 show the changes in the variance of dividends per
share, cash flow per share, and book value per share. In contrast with the average, the
variances of share price and the financial indicators per share are largest for America



98 M. Miyano and T. Kaizoji

Fig. 6.9 Changes in average
of dividends per share
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Fig. 6.10 Changes in
average of cash flow per
share
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Fig. 6.11 Changes in
average of book value per
share
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and relatively small for Europe. In addition, the variances of book value per share for
America show a sharp decline from 2006 to 2008 and a relatively small difference
from the other regions after 2008.
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Fig. 6.12 Changes in
variance of dividends per
share
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Fig. 6.13 Changes in
variance of cash flow per
share
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Fig. 6.14 Changes in
variance of book value per
share
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6.6 Concluding Remarks

In this study, we investigated whether the distribution of share price follows a power
law distribution at the regional level. We found that the distribution of share price
follows a power law distribution for all regions and that the regional power law
exponents are quite diverse over the range 0.98–3.42.

Using a panel regression model for share price in which share price is the depen-
dent variable and dividends per share, cash flow per share, and book value per share
are the explanatory variables, we estimated the theoretical value. A two-way fixed
effects model was identified as the best model for all regions. Since the two-way fixed
effects model includes an individual fixed effects term and a time fixed effects term
in its error term, we were able to produce a measure of company fundamentals by
removing the time fixed effect from the theoretical value. The fact that the two-way
fixed effects model was selected for all regions allowed us to consistently compute
the fundamentals at the regional level in the same way.

The model was found to have quite a high power to explain share price at the
regional level, showing large R2 values in the range of 0.95 to 0.98. As a result,
we were able to show that the distributions of theoretical value coincide with the
distributions of share price for all regions.

Investigating the distribution of company fundamentals at the regional level, we
found that the distribution follows a power lawdistribution for all regions. In addition,
the distribution of fundamentals was found to coincide with the distribution of share
price for most regions.

Furthermore, the distributions of the financial indicators per share that were used
as explanatory variables in the econometric model were shown to follow a power
law distribution. From these results, it can be said that fundamentals consisting of
the financial indicators per share and representing corporate value are the essential
determinants of share price.

We found that the power law exponents were quite diverse by region. However,
the power law exponents for Europe were close to those for the world. We surmised
that the power law distribution for the world was heavily influenced by the European
data. The power law exponents were not extensively examined at the regional level
in this study but will be the theme for future studies.
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2628089.
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Chapter 7
Record Statistics of Equities
and Market Indices

M.S. Santhanam and Aanjaneya Kumar

Abstract Record events in a time series denotes those events whose magnitude is
the largest or smallest amongst all the events until any time N . Record statistics is
emerging as another statistical tool to understand and characterise properties of time
series. The study of records in uncorrelated time series dates back to 60 years while
that for correlated time series is beginning to receive research attention now. Most
of these investigations are aided by the applications in finance and climate related
studies, primarily due to relatively easy availability of long measured time series
data. Record statistics in respect of empirical financial time series data has begun to
attract attention recently. In this work, we first review some of the results related to
record statistics of random walks and its application to stock market data. Finally,
we also show through the analysis of empirical data that for the market indices too
the distribution of intervals between record events follow a power law with exponent
lying the range 1.5–2.0.

7.1 Introduction

Record events have a popular appeal and generally enjoy continuous media attention.
Record breaking events such as the highest or lowest temperature ever reached in a
city, largest magnitude of rainfall ever recorded, accidents with biggest number of
causalities, highest opening weekend collection of movies, biggest fall or rise in stock
market indices, unparalleled sport performances always have curiosity value as seen
by the popularity of Guiness book of world records (Guinness World Records 2016).
For example, India’s fourth largest city Chennai received nearly 1049 mm of rainfall
during November 2015 almost breaking a century old record (Wikipedia entry 2015)
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leading to closure of its busy airport and consequent disruption of economic activity
estimated at billions of dollars. This episode also included the record-breaking 24-h
rainfall in chennai’s over 200-year old history of meteorological observations. In
view of the massive economic impact of such large record events, it is important
to understand their statistical properties and, if possible, predict them. In general,
the idea of record events has proven useful in other domains of physics too. In
physics literature, records statistics is emerging as an important area of research
especially in the context of complex systems and has found applications, for instance,
in understanding magnetization in superconductors and as an indicator of quantum
chaotic effects (Oliveira et al. 2013). In general, understanding the statistics of record
events in complex systems would lead to a better characterization and appreciation
of the extremal properties of real systems. In this work, we present empirical results
for the record statistics of stock market data, both for equities and indices.

7.2 Record Statistics

Let xt , t = 1, 2, 3, . . . T denote a discretely sampled stochastic and univariate time
series. The record events are those that are either larger than all the previous values or
smaller than the previous values. An event at t = τ would constitute an upper record
event if xτ > max(x1, x2, . . . , xτ−1). Similarly, in the case of lower record event at
time t = τ , xτ < min(x1, x2, . . . , xτ−1). In Fig. 7.1a, we display the daily closing
values of NYSE AMEX composite index (XAX) for the years from 1996 to 2015. In
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Fig. 7.1 a Daily closing values of the NYSE AMEX composite index (XAX) shown for the years
from 1996 to 2015. b A part of the figure a indicated by the red box is enlarged. The red (filled)
circles denote the occurrence of upper records
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Fig. 7.1b, we have marked the position of the record events for a short portion of the
data. The time interval between two successive occurrences of record events is called
the record age. The principal results in this paper relate to the statistical properties
and the distribution of record age.

If the time series xt is uncorrelated, many properties of record events are already
known. For instance, the distribution of record age for an uncorrelated time series of
length N can be shown to be (Schmittmann and Zia 1999)

fN (m) = 1/m (7.1)

and remarkably this is independent of N and the distribution P(x) of underlying
time series. Physical content of Eq. 7.1 implies that the probability of a record event
taking place at any instant does not depend on how much of data we have already
measured for that process.

However, most of real-life observations pertaining to data from stock markets, geo-
physical processes (such as temperature, earthquake etc.) and physiological processes
(such as heart beat intervals, electroencephalagram measurements etc.) are correlated
(Doukhan et al. 2003). Often, such variables display 1/ f noise type power spectrum, a
signature of complexity in the system (Turcotte and John Rundle 2002). For instance,
a large body of results show that the heart beat intervals display 1/ f noise (Plamen
Ch. Ivanov 2001). It is then natural to ask as to what happens to record statistics for
such correlated systems? This is currently one of the important questions pursued in
the record statistics literature.

7.3 Record Statistics of Random Walks

In physics, random walk is a fundamental model that forms the basis for our under-
standing of diffusion processes in general (Rudnick and Gaspari 2004). According
to this model, one can imagine a walker choosing next position to hop to through
probabilistic means. This has been widely applied in many areas including in finance
(Fama 1995; Ruppert 2006). A discrete time version of random walk problem is given
by

yi+1 = yi + ξi , i = 0, 1, 2, . . . (7.2)

in which i represents discrete time and ξi is a random number from a suitable distri-
bution φ(ξ). In this, the positions yi of the random walker are correlated and hence
this model being reasonably simple lends itself for analysis from record statistics
point of view.

In the last few years, the record statistics of random walker was studied analytically
(Majumdar and Ziff 2008; Majumdar 2013). The principal result is that for N -step
random walk, if the distribution φ(ξ) is both symmetric and continuous, the mean
number of records and the mean record age for large N are, respectively,
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〈m〉 ∝ √
N , and 〈r〉 ∝ √

N . (7.3)

This result is based on the use of Sparre-Andersen theorem and is independent of the
form of φ(ξ) except for the requirement of independence and continuity (Majumdar
and Ziff 2008; Majumdar 2013). However, unbiased random walk in Eq. 7.2 is not
suitable for stock market data applications since most stock data generally have a net
drift. In order to account for this, earlier results in Majumdar and Ziff (2008) were
extended to describe the model yi+1 = yi + ξi + c, where ξ is a random variable
from a Gaussian distribution G(0, σ ) and c is the constant drift. In this case, in
Wergen et al. (2011), the mean number of records was obtained as

〈mN 〉 ≈ 2
√
N√
π

+
√

2c

πσ

(
N arctan(

√
N ) − √

N
)

, (7.4)

provided c/σ � 1/
√
N . This result was compared with the S&P 500 index data

during the years 1990–2009. As might be expected, the unbiased random walk does
not correctly capture the mean number of records (see Fig. 7.2). The result of biased
model in Eq. 7.4 provides a substantial improvement over that of unbiased random
walk model as seen in the somewhat close agreement (shown in Fig. 7.2) between
the empirical data and the analytical result in Eq. 7.4. Though there is scope for
improvement, it appears reasonable to state that random walk model with a drift
provides a better description of mean number of records than the unbiased random
walk model. Exact or asymptotic results for the mean record number, mean record
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age, shortest and longest record ages have been obtained for the biased random
walk model in Majumdar (2013). A more systematic comparison of the results from
random walk and linear time series models with the S &P 500 stocks and index data
reveals important information about the deviation between the two (Wergen 2014).
In this work, autoregressive GARCH (1,1) model was found to reasonably model
the record breaking daily prices of stocks in addition to obtaining the distribution of
number of records up to some time N .

In the last few years, more variants of random walk problem have been studied.
They include, record statistics with many random walkers (Wergen et al. 2012), ran-
dom walks with measurement error (Edery et al. 2013) and continuous time random
walks (Sabhapandit 2011). We also point out record statistics is being investigated
in the context of climate change and to understand its effect on record temperature
occurrences (Redner and Petersen 2006; Newman et al. 2010). For such geophysi-
cal phenomena, random walk is not the suitable framework. In Redner and Petersen
(2006), analytical estimates for mean number of records and mean time between suc-
cessive records is obtained by making statistical assumptions about the distribution
of temperature values. These estimates differ considerably from the random walk
results but are seen to be reasonably valid for measured temperature data (Redner
and Petersen 2006; Newman et al. 2010).

7.4 Record Age Distribution for Stock Data

The typical record age can be written as, 〈r〉 ∼ N/〈M〉. For the unbiased random
walk, we get 〈r〉 ∼ N/

√
N = √

N . In this work, we are interested in the distribution
of record ages. Analytical results for the distribution of record age is as yet not
known. We briefly review our recent largely numerical work on this problem (Sabir
and Santhanam 2014). The main result obtained from the analysis of time series of
stock data is that the record age distribution is consistent with power-law of the form
(Sabir and Santhanam 2014),

P(r) ∼ A r−α (7.5)

where the exponent 1.5 ≤ α ≤ 1.8. Further, A is the normalization constant that can
be expressed as a harmonic number HN ,α .

For a time series of length N , unity is the lower bound on record age and any
record age longer than the length of the time series cannot be resolved. As shown in
Fig. 7.3a, the record ages for IBM stock displays values spanning about two orders of
magnitude. Its distribution P(r) shown in Fig. 7.3b, for IBM, HPQ and XOM stocks,
displays power-law form with the exponent α ∼ −1.623 ± 0.081. The analysis of 19
stocks reveals that the exponent of the record age distribution α satisfies 1.5 ≤ α ≤
1.8. This is shown in Fig. 7.4 with the exponent α obtained as maximum likelihood
estimate from empirical data. We emphasise that the distribution P(r) in Eq. 7.5 is
independent of the length N of data. Unlike the quantities like the mean number of
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Fig. 7.3 a Record ages (in
days) calculated from IBM
stock data. b The distribution
of record ages for three
stocks. The best fit solid line
in (b) has slope
−1.58 ± 0.15 (Sabir and
Santhanam 2014).
(Reproduced with
permission from American
Physical Society)
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records and typical record age which depend on the length of data (see Eqs. 7.3–7.4),
we can regard record age distribution as characterising the record events in a system
independent of the data length.

As a framework to understand these results, the geometric random walk (GRW)
model is considered, which is suitable as a model for the time evolution of stocks.
The GRW model is given by yi+1 = yi exp(ξi ), in which ξ is Gaussian distributed
G(μ, σ ) with mean μ and standard deviation σ . In the context of stock market
modelling, one of the virtues of GRW model is that the variable yi ≥ 0 as we expect
the stock prices to be positive semi-definite. Secondly, the log-returns log(yi+1/yi )
are normally distributed, a feature seen in many empirical stock returns over a wide
range of time scales (Ruppert 2012). In Sabir and Santhanam (2014), it was shown
that GRW is suitable to model the record statistics of real stock data. Indeed, the
exponent of the record age distribution of GRW time series is seen to be ≈1.61. We
also note that the distribution of interval between two successive record events for
the case of temperature data has been found to be a power law as well (Redner and
Petersen 2006).
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7.5 Record Age Distribution for Market Indices

Index of a stock market is generally calculated as the weighted average market
capitalization of the stocks that make up the index. It serves as a single number
indicator of the evolution of equities in a market. Market surges and crashes are
indicated by the dynamics of market index and in this sense it reflects the overall
direction of the market. In August 2011, S &P 500 index lost nearly 7 % and more
recently Chinese market suffered downfall in 2015–16. Statistical properties of such
record events should be of interest in the context of recurring market surges and
crashes. This motivates the study of record events in the stock market indices.

In the rest of the paper, we use publicly available data of major indices from
http://www.finance.yahoo.com, the details of which are provided in the Appendix.
In Fig. 7.5, we show the record age distribution for three different market indices,
namely, Nasdaq composite index, FTSE and Nikkei. In all the three cases the record
age distribution is a power-law well described by P(r) ∝ r−α . The exponent values,
respectively, are 1.72 ± 0.088, 1.66 ± 0.128 and 1.78 ± 0.185. Similar to the case
of stock data, this result is independent of the length of data considered for analysis.
However, mean record age can be dependent on the length N of data. Given that
P(r) ∝ r−α , it is straightforward to see that 〈r〉 ∝ N 2−α . If α ∼ 1.5, then 〈r〉 ∝ √

r ,
a result indicated by random walk based analysis (Majumdar and Ziff 2008). In
our empirical analysis, the value of the exponent lies in the range 1.5 ≤ α ≤ 2 as
displayed in Fig. 7.6 for a collection of market indices. This is similar to the result
presented in Fig. 7.4 for equities. In practice, this implies that both for the indices
and stocks, the mean waiting time for the next record event depends on N except if
the exponent is α = 2.

Fig. 7.5 Record age
distribution for three market
indices. The solid line is
mean of the best fit lines
with slope −1.72 and is
shown as a guide to the eye
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Fig. 7.6 Exponentα displayed for various market indices shown on x−axis. The error bars represent
the uncertainties computed by the linear regression

7.6 Summary and Conclusions

In summary, we have reviewed some recent results related to the record statistics
of random walks and biased random walks and in particular their application to the
record events in the time series data of equities and market indices. In this context,
main questions that have received attention are the mean number of records until
time N and the mean record age. For stock market applications, mean record age
indicates the average waiting time for the next record event to take place.

In this work, going beyond just the mean record age, we study the record age
distribution. Earlier results had shown that the record age distribution for the record
events in equities is a power of the form P(r) ∼ Ar−α , where 1.5 ≤ α ≤ 1.8. In this
work, we analyse the data of indices from ten major markets for the record events
and show that record age distribution is a power-law with exponent in nearly the
same range as the case for equities. A significant aspect of this result record age
distribution does not depend on the length N of data being considered. This is in
constrast with the mean number of records and mean record age, which explicitly
depend on N . It would be interesting to provide further analytical insight into these
problems.
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Appendix

The details of the indices data used are given here. The data is available in the public
domain and can be accessed from http://finance.yahoo.com.

Index Length of data Years covered
AMEX Composite 5117 1996–2016
BSE 4650 1997–2016
CAC40 6628 1990–2016
DAX 6434 1990–2016
FTSE100 8412 1984–2016
HANGSENG 7291 1987–2016
NASDAQ 100 7706 1985–2016
NASDAQ composite 11404 1971–2016
NIKKEI 7958 1984–2016
SHANGHAI 6465 1990–2016
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Chapter 8
Information Asymmetry
and the Performance of Agents
Competing for Limited Resources

Appilineni Kushal, V. Sasidevan and Sitabhra Sinha

Abstract While mainstream economic theory has been primarily concerned with
the behavior of agents having complete information and perfect rationality, it is
unlikely that either of these assumptions are valid in reality. This has led to the
development of theories that incorporate bounded rationality and also to the study
of the role of information in economic interactions (information economics). In
particular, information asymmetry, where all the agents do not have access to the
same information has aroused much attention, as it has potential to significantly
distort economic outcomes resulting in the failure of the market mechanism. It is
often assumed that having more data than others gives agents a relative advantage in
their interactions. In this paper we consider the situation where agents differ in terms
of the granularity (as well as the quantity) of the information that they can access.We
investigate this in the framework of a model system comprising agents with bounded
rationality competing for limited resources, viz., the minority game. We show that
there is no simple relation between the amount of information available to an agent
and its success as measured by payoffs received by it. In particular, an agent having
access to a much coarser-grained information (that is also quantitatively less) than
the rest of the population can have a relative advantage under certain conditions. Our
work shows that the success of individual agents can depend crucially on the relative
fraction of the population that uses information of a specific type.
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8.1 Introduction

Economic phenomena provide some of the most fascinating examples of non-trivial
collective behavior emerging from the interactions between components of a com-
plex adaptive system (Sinha et al. 2010). In particular, markets provide an ecosystem
for a large number of individuals to exchange goods and/or services for satisfying
their mutual needs in a self-organized manner (Miller and Page 2007). The fact that
markets in the real world operate fairly efficiently most of the time despite being
subject to noise, external shocks and lack of complete information on the part of all
agents, has led to many attempts at explaining the underlying mechanisms. Unlike
mainstream economic models that assume complete information and rationality for
the agents, in reality there is often significant asymmetry among the market partici-
pants in terms of information available to them, as well as, their capacity to analyze
this information (Simon 1955). Information asymmetry, in particular, can lead to
significant distortions in interactions between buyers and sellers, and may result in
failure of the market mechanism (Stiglitz 2000).

Agents can—and often do—have access to information which differ not only in
quantitative terms (“how much data?”) but also qualitatively (“what type of data?”).
For instance, in a financial market, agents can speculate on the price variation of
individual stocks or invest in funds whose values are linked to fluctuations in the
market indices, the latter representing information that is much more coarse-grained
than the former.We can askwhether havingmore detailed information like the former
necessarily translate into an advantage for the corresponding agents when they are
pitted against agents using the latter type of information having a lower resolution. In
general, we can have information at differing levels of granularity which the agents
make use of in their strategies for attaining specific economic goals.

In this paper, we use a formal simplified model of a system in which heteroge-
neous agents with bounded rationality compete for limited resources and who have
access to either of two very distinct types of information about the outcomes of their
previous interactions. These different information, which represent the two extreme
cases of granularity possible for the collective state of the model, are used by the cor-
responding type of agents for the same purpose, viz., predicting the future outcome.
We show that there is no simple relation between the amount of information available
to an agent and its success as measured by payoffs received by it. In particular, an
agent having access to coarse-grained information (that is also quantitatively less)
than the rest of the population can have a relative advantage under certain conditions.
In general, which type of agent will fare better depends upon the exact composition
of the population, as well as, the amount of information available to agents of each
type. Our work shows that the success of individual agents can depend crucially on
the relative fraction of the population that uses information of a specific type. This
is a novel systems-level phenomenon that emerges essentially in a self-organized
manner from interactions between a large number of heterogeneous entities.
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8.2 The Model

Our intention is to investigate the result when agents having access to qualitatively
different information interact with each other in a complex adaptive system. For this
purpose, we shall consider a setting where agents choose actions based on strategies
that use information about past outcomes. One of the simplest models implementing
this paradigm is the Minority Game (MG) (Challet and Zhang 1997) inspired by the
El Farol Bar problem proposed by Arthur (1994). In this game, an odd number N of
agents have to choose between two options (A and B, say) at each round, indepen-
dently and simultaneously, with those on the minority side winning—corresponding
to a payoff 1, say—and those on the majority side losing—corresponding to a pay-
off 0 (for a concise account of MG see, e.g., Moro 2004). We augment the basic
MG model by having two different types of agents distinguished by the type of
information that they use.

The first type of agent is identical to that in the conventional Challet-ZhangMinor-
ityGame (CZMG) (Challet andZhang1997). These agentsmake their selection based
on the common information about the identity of the side (whether A or B) that was
occupied by the minority group on each of the previous m1 rounds. The information
is thus a binary string of lengthm1. A strategy used by an agent is a rule that informs
an agent whether to select A or B the next day for all possible past contingencies.
The total number of such strategies that are possible is thus 22

m1
.

The second type of agent we consider uses detailed (as opposed to binary) infor-
mation about past outcomes (Sasidevan 2016) (also see Dhar et al. 2011; Sasidevan
and Dhar 2014). Such Detailed Information Minority Game (DIMG) agents have
access to information about the exact number of agents who opted for a particular
choice in the previous m2 rounds (Fig. 8.1). The information is therefore a string of
length m2, where each entry is an integer between 0 and N . Like the CZMG agents,
they have strategies that use this detailed information to make predictions about the
choice that will be made by the minority in each round. The total number of such
strategies possible is 2(N+1)m2

.
Once we have decided on the composition of the population, i.e., the relative

numbers of CZMG and DIMG agents, the game evolves according to the following
rules. Each agent initially chooses a small number (typically 2, as in this paper) of
strategies at random from the set of all possible strategies corresponding to their type
(CZMG or DIMG). An agent can measure the performance of each of its strategies
by assigning a score based on how well they predicted the option chosen by the
minority in the past. At each round, an agent uses the strategy with the highest score
that is available to it.

It is known that in the conventional MG, agents having large enough memory
size self-organize into a state where the fluctuation in the number choosing a partic-
ular option about the mean value (N/2 due to the symmetry between A and B) is
minimized. This results in the population as a whole doing better (i.e., it is globally
efficient) than the case in which agents choose randomly between A and B with
equal probability. Global efficiency is maximized for a critical value of memory size
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Fig. 8.1 A schematic representation of the Minority Game involving agents having access to
detailed information (DIMG), i.e., they use the exact number of agents who opted for a particular
choice (say A), to predict the option that will be chosen by the minority at each iteration. In the
figure it is assumed that agents have a memory size of 2, i.e., they have detailed information from
the two preceding rounds, viz., N A

t and N A
t−1. Each of the N agents have two possible strategies

si,1 and si,2 at hand and use the one with the best score in any given round. After each round, their
aggregate action N A

t+1 is added to the history of outcomes and they update their strategy scores
based on the identity of the winning choice (i.e., the option chosen by the minority)

of agents, mc ∼ log2 N (Challet and Zhang 1998; Challet et al. 2000, 2005). When
the memory size is � mc, the agents exhibit herding behavior where most of them
choose the same option in a given round, resulting in very large fluctuations about the
mean. For such a situation, the individual payoffs are extremely low and the system
is also globally inefficient—even compared to simple random choice behavior.

8.3 Results

We now look at the results of interactions between agents having access to qualita-
tively different information, viz., detailed, i.e., exact number opting for a particular
choice, versus binary, i.e., the identity of the winning choice. We first focus on the
simplest cases where a single agent having access to binary information interacts
with a population of agents having detailed information. We then look at the oppo-
site case where an agent using detailed information is pitted against a population of
agents using only binary information. The quality of information available to these
two types of agents represent the two extremes of data granularity. The agents use
this different types of information for the same purpose, i.e., predict the outcome
of the game, viz., the option chosen by the minority, at each iteration. Finally, we
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also look at the general case where the fraction of agents having access to binary or
detailed information is varied over the entire range between 0 and 1.

8.3.1 Single DIMG Agent Interacting with N − 1 CZMG
Agents

We introduce a DIMG agent, i.e., one who has access to information about the
exact number of agents who opted for choice A over the previous m2 iterations, in
a population where the remaining N − 1 agents only know of the identity of the
winning choice over the preceding m1 iterations, i.e., they are CZMG type agents
with memory length m1. Both types of agents use the information available to them
to predict the option that will be chosen by the minority in each round. The resulting
performance of the agents (measured in terms of their average payoff) is shown as a
function of the memory length of the CZMG agents in Fig. 8.2. The behavior is seen
to be almost independent of the memory length of the DIMG agents [compare panels
(a) and (b) of Fig. 8.2]. Furthermore, increasing the size of the population N does
not change the qualitative nature of the payoffs as a function of m1 beyond shifting
the extrema towards higher values of m1.

The single agent having access to detailed information clearly has an advantage
over the other type of players when the memory length m1 of the latter is small
(m1 < log2 N ). The payoff of the DIMG agent decreases with increasing m1 and is
lowest when the emergent coordination among the CZMG agents is highest—which,
according to thewell-known result ofMG, occurs when 2m1 � 0.337N (Challet et al.
2000). The superior performance of the lone agent with detailed information when
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Fig. 8.2 Average payoffs of different types of agents as a function of the memory length m1 of
agents having binary information (CZMG) when N − 1 such agents interact with a single agent
having detailed information (DIMG). Payoffs are averaged over 104 iterations in the steady state
and over 250 different realizations with N = 127. The variation of the payoffs with m1 shows a
similar profile for different memory lengths a m2 = 1 and b m2 = 2 of the DIMG agent
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m1 � log2 N can be understood as related to the predictable collective behavior of
the CZMG agents. As is well known, in this regime, the number of CZMG agents
choosing a particular option (and the resulting minority choice) changes in a periodic
manner, fluctuating between very low and high values (Challet and Zhang 1998). As a
result, the CZMG agents receive relatively lower payoffs. It is perhaps not surprising
that an agent who does not move in synchrony with the large number of CZMG
agents will do better. This is also true for an agent who chooses between the options
at random. We note that the DIMG agent performs somewhat better than random
(figure not shown), presumably because of the adaptive way in which it chooses
between the options.

Asm1 increases, the collective behavior of the CZMG agents loses its predictabil-
ity resulting in a gradual decrease in the payoff of the single DIMG agent. Beyond
the minimum around m1 ∼ log2(0.337N ), we observe that the payoff of the DIMG
agent again starts increasing and approaches the decreasing payoff of the CZMG
agents, eventually converging to the payoff expected for random choice for high
enough m1. The behavior of CZMG agents as a function of m1 is well-understood
theoretically (Challet et al. 2000; Hart et al. 2001; Coolen 2004). We note that the
trend of the payoff of the DIMG agent as a function ofm1 mirrors that of the CZMG
agents.

8.3.2 Single CZMG Agent Interacting with N − 1 DIMG
Agents

One may naively argue that the relative advantage of the DIMG agent in making
predictions when they interact with CZMG agents having small memory sizem1 (as
described above) may be understood as resulting from the former having quantita-
tively more information (e.g., measured in terms of bits) available at their disposal.
However, such an argument will fail to explain the behavior seen in the other extreme
case where a single agent having access to only binary information (i.e., the minority
choice) over the preceding m1 iterations is introduced in a population where the
remaining agents have information about the exact number of agents opting for a
particular choice over the preceding m2 iterations. The resulting performance of the
agents (measured in terms of their average payoff) is shown as a function of themem-
ory length of the CZMG agent in Fig. 8.3 for two different population sizes. Unlike
the other extreme case, we note that the results seem to depend on the memory length
m2 of the DIMG agents (compare between panels (a, c) and (b, d) of Fig. 8.3).

The most striking feature form2 = 1 is that the single CZMG agent withm1 > 1
performs better than the rest of the population for smallm1, i.e., in a regime where it
actually has quantitatively much less information than the other agents. This is true
for different population sizes (shown for N = 127 and 255 in Fig. 8.3) although the
range of m1 for which the CZMG agent has an advantage over the DIMG agents
does depend upon N . The implication of this result is far reaching as it suggests that
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Fig. 8.3 Average payoffs of different types of agents as a function of the memory length m1 of an
agent having binary information (CZMG) when such an agent interacts with N − 1 agents having
detailed information (DIMG). Payoffs are averaged over 104 iterations in the steady state and over
250 different realizations with a–b N = 127 and c–d N = 255. The variation of the payoffs with
m1 shows different profiles for different memory lengths a, cm2 = 1 and b, dm2 = 2 of the DIMG
agents

just having quantitatively more information does not necessarily translate into better
performance in predicting the future outcomes. Instead, the success of an agent in an
ecosystem of agents using different types of information depends on being able to
“stand apart from the crowd” evenwhen thatmeans using less amount of data than the
others, allowing it to take advantage of predictable patterns in the collective behavior
of the rest of the agents. Thus, striving to collect and process ever increasing quantities
of data in the hope of making more accurate predictions in complex adaptive systems
such as financial markets may actually be counter-productive.

We now consider the case where the memory length of the DIMG agents is
increased to m2 = 2 (Fig. 8.3b, d). We observe that in this case the CZMG agent
has no advantage over the rest of the population regardless of its memory length
m1. Just as the CZMG agents achieve maximum emergent coordination when their
memory length is of the order of log2(N ), it is known that the DIMG agents achieve
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the same form2 = 2 independent of N (Sasidevan 2016). Thus, using our arguments
in the other extreme case, we expect that the single CZMG agent will not have any
advantage over the optimally coordinated DIMG agents. If m2 > 2, the behavior
of a group of DIMG agents is indistinguishable from agents who randomly choose
between the options. Note that there is the possibility that if more CZMG agents are
introduced, coordination effects may arise once there is a sufficient number of them,
leading to a higher payoff for such agents compared to the DIMG agents even for
m2 = 2.

8.3.3 Varying the Ratio of CZMG and DIMG Agents
in a Population

We now consider the situation when the composition of a population in terms of
agents having access to binary and detailed information is varied between the two
extreme cases discussed above. It should be intuitively clear that introducingmultiple
CZMG agents in a population of DIMG agents may lead to the few CZMG agents
using the information accessible to them in order to coordinate their actions and
thereby increase their payoff. Conversely, introducing multiple DIMG agents in a
population of CZMG agents could result in a higher payoff for the fewDIMG agents.

Figure8.4 shows the payoff of the different types of agents, as well as, that of
the population as a whole, when the agent composition of the population is altered.
Specifically, the fraction of CZMG agents is varied between 0 and 1 keeping the size
N of the population constant (N = 127 in Fig. 8.4). We observe that CZMG agents
havingmemory lengthm1 = 1 do not have any advantage over the DIMG agents, but
as m1 is increased they show a relatively better performance for an optimal range of
population fraction f 1 (for simplicity, we keep thememory size of the DIMG agents,
m2, fixed to 1). For 2 < m1 ≤ 0.337 log2 N , we find that there is a peak in the payoff
for CZMG agents that occurs for a population fraction between 0 and 1—indicating
that having multiple CZMG agents in a population of DIMG agents result in the
former having an advantage over the latter under certain conditions. A qualitative
argument for the location of this peak in the payoff function can bemade as follows. If
we ignore for themoment theDIMGagentswho are also present in the population,we
can consider it as a population comprising only N f1 CZMG agents. Given a memory
sizem1, we can determine the optimal population size N ′ ∼ 2m1/0.337 at which the
collective behavior of the agents achieve maximum efficiency. Thus, if the DIMG
agents hadnoeffect on theperformanceof theCZMGagents,wewouldhave expected
the peak at f ∗

1 ∼ N ′/N ∼ 2m1/(0.337N ). However, the interference from these other
agents results in the optimal f1 shifting to lower values. Beyondm1 = 0.337 log2 N ,
the payoff for CZMG agents becomes a monotonically increasing function of f 1.
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Fig. 8.4 Average payoffs of different types of agents, as well as that of the entire population
comprising N agents, shown as a function of the fraction of agents having binary information
(CZMG), f 1, with the remaining agents having detailed information (DIMG). Payoffs are averaged
over 104 iterations in the steady state and over 250 different realizationswith N = 127. The different
panels show the result of increasing the memory length m1 of the CZMG agents by unity from a
m1 = 1 to h m1 = 8. The memory length of the DIMG agents is fixed at m2 = 1
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Looking at theDIMGagents,wenote that their payoff increases as their population
fraction is decreased for very lowm1, viz.,m1 = 1 and 2. For larger memory sizes of
the CZMG agents, we note that the optimal population fraction of the DIMG agents
at which they have maximum payoff occurs between 0 and 1. As m1 increases, the
advantage of the DIMG agents extend over almost the entire range of f 1—with
CZMG agents having a relative advantage only if they comprise the bulk of the
population. In other words, one or a few DIMG agents will not perform very well
when facing CZMG agents with sufficiently large memory size m1.

8.4 Discussion and Conclusions

In this paper we have considered the effect of information asymmetry between agents
on their relative performance in a complex adaptive system.We have used the specific
setting of the minority game where agents compete for limited resources, adapting
their behavior based on information about past outcomes. By considering hetero-
geneous composition of agents, who have access to qualitatively different types of
information, we have investigated how the granularity of information can affect the
payoffs of the agents.

Our results suggest that an agent using information of a particular granularity
(i.e., either binary or detailed) may be able to detect any predictable pattern in the
outcomes that is generated by the collective behavior of agents who have access
to another type of information. This confers an advantage to the former who can
then use a strategy which exploits this predictability, providing it with a relatively
better payoff. Such an effect is, of course, also dependent on the composition of the
population in terms of the different types of agents. Thus, when agents are hetero-
geneous in terms of the information that is accessible to them—representing a very
general situation of information asymmetry observable in almost all real-life situa-
tions including markets—it is not the quantity of data, or even the specific nature of
the information, available to an agent but rather the ecology of agents with which it
interacts that is the key determining factor of its success. Our work implies that sim-
ply having access to large volumes of detailed information (“big data”) aboutmarkets
will not translate into higher gains. Indeed, sometimes agents having less data can
be more successful—a seemingly paradoxical outcome in terms of mainstream eco-
nomic thinking about information asymmetry, but which can be understood using
the framework discussed here.

In this paper, we have only considered two extreme cases of information granu-
larity, showing that under certain conditions, the coarse-grained data containing only
the identity of the option that the minority chooses can be more advantageous than
detailed information about how many chose a particular option. However, we can
also ask whether there is an optimal level of coarse-graining of information that will
confer an advantage in a specific circumstance. We plan to address this issue of how
the level of granularity can affect the relative performance of the different types of
agents in a future work.
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Chapter 9
Kolkata Restaurant Problem: Some Further
Research Directions

Priyodorshi Banerjee, Manipushpak Mitra and Conan Mukherjee

Abstract In an earlier work on Kolkata paise restaurant problem, Banerjee et al.
2013, we analyzed the cyclically fair norm. We identified conditions under which
such a fair societal norm can be sustained as an equilibrium. In this chapter we
suggest how the Kolkata restaurant problem can be extended in several directions
from purely an economics based modeling perspective.

9.1 Introduction

In the Kolkata restaurant problem (see Chakrabarti et al. 2009; Ghosh et al. 2010),
there is a finite set of players who in each period choose to go to any one of the
available restaurants. It is assumed that the players have a common ranking of the
restaurants. Each restaurant can serve only one customer in any given period. When
more than one customer arrives at the same restaurant, only one customer is chosen
at random and is served. We can use the tools available in the game theory litera-
ture to model the Kolkata restaurant problem of any given day as a one-shot game.
Let N = {1, . . . , n} be the set of players (n < ∞) and let V = (V1, . . . , Vn) ∈ �n

represent the utility (in terms ofmoney) associatedwith each restaurantwhich is com-
mon to all players. Assume without loss of generality that 0 < Vn ≤ · · · ≤ V1. Let
S = {1, . . . , n} be the (common) strategy space of all players where a typical strategy
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si = k denotes the strategy that the i-th player goes to the k-th restaurant. The vector
Π(s) = (Π1(s), . . . ,Πn(s)) is the expected payoff vector associated with any strat-
egy combination s = (s1, . . . , sn) ∈ Sn where player i’s payoff isΠi (s) = Vsi /Ni (s)
and Ni (s) = 1 + |{ j ∈ N \ {i} | si = s j }| is the number of players selecting the same
restaurant as that of player i under the strategy combination s. To capture the feature
that players prefer getting served in some restaurant to not getting served, we assume
that Vn > V1/2. Let NE(V ) be the set of all pure strategy Nash equilibria of the
one-shot Kolkata restaurant problem. It is easy to check that the set of all pure strat-
egy Nash equilibria of this game, that is, NE(V ) = {s ∈ Sn | Ni (s) = 1 ∀ i ∈ N }.
Let M(S) denote the set of all mixed strategies defined over S. A symmetric mixed
strategy Nash equilibrium p∗ = (p∗, . . . , p∗) ∈ M(S)n where p∗ = (p∗

1, . . . , p
∗
n) ∈

[0, 1]n with
∑n

i=1 p
∗
i = 1 is a solution to the following set of equations: For each

i ∈ N ,
∑n−1

k=0(1 − p∗
i )

k = [nc(n)]/Vi for some constant c(n) which is positive real
(see Banerjee et al. 2013). Specifically, for mixed strategy equilibria, the required

condition is
∑n−1

r=0

{(n−1
r

)
(p∗

i )
r (1 − p∗

i )
n−r−1[Vi/(r + 1)]

}
= c(n) for all i ∈ N and

after simplification we get
∑n−1

k=0(1 − p∗
i )

k = [(nc(n))/Vi ] for all i ∈ N . In general,
for n > 3 such symmetric mixed strategy equilibria always exists (see Becker and
Damianov 2006). A general feature of the symmetric mixed strategy equilibria is
that 0 < p∗

n ≤ . . . ≤ p∗
1 < 1 and p∗

1 �= p∗
n .

An allocation of players to restaurants is said to be Pareto efficient if it is not
possible to improve the utility of one player without reducing the utility of any other
player. The restriction Vn > V1/2 implies that all pure strategy Nash equilibria of
the stage game are Pareto efficient. Hence there are exactly n! pure strategy Nash
equilibria of this version of the stage game of the Kolkata restaurant problem. If
customers are rational, n is small and if customers can mutually interact, then, given
that all pure strategy Nash equilibria are Pareto efficient, one can show that it is
easy to sustain any pure strategy Nash equilibrium of the stage game of the Kolkata
Paise Restaurant problem as a sub-game perfect equilibrium outcome of the Kolkata
PaiseRestaurant problemwithout designing any punishment strategy. This is because
unilateral deviation here means going to a restaurant where there is already another
customer which is payoff reducing. In this context it seems quite unfair to sustain
exactly one pure strategy Nash equilibrium of the stage game repeatedly as a sub-
game perfect Nash equilibrium of the Kolkata Paise Restaurant problem. This is
because in any pure strategy Nash equilibrium of the stage game, the customer going
to the first restaurant derives a strictly higher payoff than the customer going to the last
restaurant. Instead it seems more natural to sustain the cyclically fair norm where n
strategically different Pareto efficient allocations are sequentially sustained in a way
such that each customer gets serviced in all the n restaurants exactly once between
periods 1 and n and then again the same process is repeated from the (n + 1)th period
to period 2n and so on. Under the large player assumption, a variant of the cyclically
fair norm was proposed in Ghosh et al. (2010). However, this type of cyclically
fair norm can also be sustained as a sub-game perfect Nash equilibrium because
unilateral deviation at any stage means going to a restaurant already occupied by
another customer which is always payoff reducing. Therefore, the existing structure
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of the Kolkata Paise Restaurant problem is such that if the number of customers n
is small and if the customers can coordinate their action then the problem becomes
uninteresting as there is no need to design punishment strategies to induce customers
to remain on the equilibrium path.

9.1.1 An Earlier Work

In an earlier work on Kolkata paise restaurant problem, (Banerjee et al. 2013), we
analyzed the cyclically fair norm. We identify conditions under such a fair societal
norm can be sustained as an equilibrium. We find that when V1 ≤ 2Vn , the cyclically
fair norm constitutes a sub-game perfect equilibrium of the repeated game, irrespec-
tive of the discount factor. The case V1 > 2Vn turns out to be far more complex. To
keep our analysis tractable, we focus only on the two and three agent cases under
this restriction.

For the two agents case, we find that cyclically fair norm constitutes a subgame
perfect equilibrium of the repeated game if and only if the agents are sufficiently
patient.1 That is, the social cohesion in providing equal opportunity of having a meal
at the better2 restaurant to both agents requires each agent to have a high acceptance
towards delay in consumption at the better restaurant. The exact equilibrium strategy
profile σ c that generates equilibrium play of the cyclically fair norm, is as follows:

(i) Without loss of generality, if period t is odd, then agent i goes to the i th restau-
rant.

(ii) If period t is even, then for all i �= j ∈ {1, 2}, agent i goes to restaurant j .
(iii) If in any period t , both agents end up at the same restaurant,then both go to

restaurant 1 for all times in future.

Note that the third point in the description of σ c
i is the punishment for deviating from

the cyclically fair norm, and it is crucial in sustenance of the equilibrium.
In the three agents case, this punishment behavior of going to the best restaurant

constitutes a Nash equilibrium of the stage game if and only if V2 < V1/3 or V3 ≤
V2 = V1/3. And hence, if the agents are sufficiently patient, the aforementioned
strategy σ c leads to equilibrium play of the cyclically fair norm. It is easy to verify
that if max {V3, V1/3} < V2 < V1/2, σ c is no longer a sub-game perfect equilibrium.
In this case, the equilibrium strategy profile σ a that generates equilibrium play of
cyclically fair norm, when agents are sufficiently patient, is as follows:

1In particular, the discount factor δ must be in the open interval
(
V1−2V2

V1
, 1

)
.

2Since there are only two agents and two restaurants, notions of better and best are equivalent.
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(i) Without loss of generality, at period 1, each agent i goes to restaurant i .
(ii) If agent i goes to restaurant 1 at period t − 1, then i goes to restaurant 3 at

time t .
(iii) If agent i goes to restaurant k > 1 at time t − 1, then i goes to restaurant k − 1

at time t .
(iv) If any agent i violates either of these conditions (i), (ii) or (iii), leading to a tie

at some restaurant in period t , then for all future periods, the other two agents
go to restaurant 1.

It can easily be seen that the changed parameter restrictions alter the set of Nash
equilibria of the stage game and hence the punishment (upon deviating from the
cyclically fair norm) behavior of agents needed to sustain the cyclically fair norm as
the equilibrium play needs to be changed accordingly.

Finally, when V3 < V1/2 ≤ V2 ≤ V1, the strategy profile σ b, required to sustain
the cyclically fair norm as the equilibrium play, when agents are sufficiently patient,
becomes quite complicated. In fact, σ b retains the first three points of σ a with the
fourth point being replaced by the following:

• If there is tie at any restaurant caused by deviation of agent i , then

– If i = 1, then for all future periods, agent 2 goes to restaurant 2 and agent 3 goes
to restaurant 1.

– If i = 2, then for all future periods, agent 1 goes to restaurant 1 and agent 3 goes
to restaurant 2.

– If i = 3, then for all future periods, agent 1 goes to restaurant 2 and agent 2 goes
to restaurant 1.

9.2 Future Research Directions

The Kolkata restaurant problem is an exciting research project that can be extended
in several directions. We list a few below.

(A) Our analysis of repeated interaction in the Kolkata restaurant setting relies heav-
ily on each agent being completely informed about past history (that is, all
actions taken by all agents at all times in past), in each period. In fact it is
essential to devise an equilibrium punishment behavior based of identity of the
deviating agent in the three agent case under aforementioned parameter restric-
tions. However, in practical settings, it may well be that the identity of the
deviating agent is not observable to all other conforming agents (see Kandori
2002; McLean et al. 2014). Further, it may well be beyond human capacity to
recall all past actions of all agents at all periods of time. Finally, agentsmaymake
mistakes in their play of the game, leading to trembles of strategies (see Sel-
ten 1975). In all these cases, it would be interesting to study the possibility of
sustenance of the cyclically fair norm as equilibrium play.
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(B) The Kolkata restaurant problem becomes a game of coordination when V1 <

2Vn . That is, under this parameter restriction, all agents would ideally want
to coordinate among themselves and avoid arriving at the same restaurant as
another. In fact, the small number of agents may have channels of direct com-
munication through phone or internet connections, and can let each other know
about the restaurant that they have chosen to go. However, such information
would be unverifiable, as the agents are free to go to a restaurant other than their
declared choice. In parlance of game theory, the agents may indulge in cheap
talk (see Farrell and Rabin 1996). It would be interesting to find the equilib-
rium in an extended game that models for such cheap talk, both in one-shot and
repeated interaction settings. The solution concepts used in determining equi-
librium play could vary from the standard subgame perfection to the recherché
forward induction (introduced by Kohlberg and Mertens 1986).

(C) We could conceive of an impartial mediator who addresses the problem coor-
dination using a public randomization device and so, characterize the set of
correlated equilibria of the Kolkata restaurant game (see Aumann 1987). It
would be of interest to specify these equilibria for both one-shot and repeated
interaction cases.

(D) We could also view the Kolkata restaurant problemwithout the prism of rational
(that is, perfectly calculative) humanbehavior. Indeed, rationality, as espoused in
standardgame theory,maywell be beyond the cognitive capacity of humanmind.
One alternative to rationality can be found in the biological theory of evolution
and evolutionary dynamics. Roughly, it suggests that patterns of human behavior
are genetically determined. Each behavioral phenotype in a large population has
a degree of success in its interaction with other phenotypes, quantified by its
fitness. The number of fitter phenotypes must grow over time, according to a
given dynamic of selection, until a stable state is reached. Further, such a stable
set must be immune to invasions by genetic mutations. In fact, any mixture of
phenotypes is evolutionarily stable if it is the limiting outcomeof the dynamics of
selection from any arbitrary mixture of phenotypes in the population (see Taylor
and Jonker 1978). It would be of interest to characterize the set evolutionarily
stable strategies in the Kolkata restaurant problem with large (finite or infinite)
populations.

(E) The basic question of whether the cyclically fair norm can be sustained through
decentralized repeated interaction may be investigable in the laboratory using
volunteer subjects. Such investigations may help address inquiries as to when
the norm is sustainable and what explains failures, if any, of players to achieve
coordination. Many of the directions listed above may also lend themselves
to experimental investigation, which can provide understanding as to how for
instance information on past actions and outcomes, or cheap talk and commu-
nication, or public mediation, or the presence of behavioral types, can impact
tendencies toward norm formation and maintenance. An laboratory experimen-
tal literature has recently emerged studying mainly financial market phenomena
such as excess and coordinated or synchronized trading, herd behavior, volatil-
ity, bubbles and crashes etc. using minority games as an underlying model of
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interaction. It is natural to wonder if available results are robust to generaliza-
tions to the minority game as represented by the KPR problem. Additionally,
existing papers have restricted themselves to anonymous or randomly matched
interaction: a key question in this context is whether results extend when players
interact repeatedly.
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Chapter 10
Reaction-Diffusion Equations with
Applications to Economic Systems

Srinjoy Ganguly, Upasana Neogi, Anindya S. Chakrabarti
and Anirban Chakraborti

Abstract In this article, we discuss reaction-diffusion equations and some potential
applications to economic phenomena. Such equations are useful for capturing non-
linear coupled evolution of multiple quantities and they show endogenous oscillatory
behavior as well as non-convergence to a constant equilibrium state. We model tech-
nological competition and spill-over of productivity shocks across countries using
simple variants of reaction equations of the Lotka-Volterra type. Coupled with stan-
dard real business cycle models for individual countries, this gives rise to non-trivial
lag-lead structure in the time-series properties of themacroeconomic variables across
countries. We show that this simple model captures a number of properties of the
real data.

10.1 Introduction

Macroeconomic time-series often show a clear lag-lead structure. Specifically in
the case of macroeconomic booms and busts, there is clear signature of spill-over
effects from one country to another (a popular catch-phrase is that when one country
catches a cold, its economic partners sneeze) and such spill-over effects are often not
linear. In the present world, nonlinearity arises from a high degree of interconnection
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across multiple economic entities. Delligatti et al. (1998) empirically documents that
country-specific GDP can be described well by nonlinear dynamics. International
business synchronization literature is fairly large. Interested readers are referred to
Bordo and Helbing (2010) (and references therein) for a comprehensive econometric
analysis.

In this paper, our goal is to present a very simple idea to capture such nonlinear
dependence of macroeconomic quantities. Broadly, the idea is that in an economy
with multiple constituent countries, each country can be described by a standard
business cycle model and the only linkage across these countries are given by tech-
nology flows which evolve jointly following a set of coupled nonlinear equations.
Under certain conditions imposed on the parameter values, technology flow shows
limit cycles which in turn causes fluctuations in the macroeconomic variables that
captures a clear lag-lead structure in time-series behavior as well as endogenous
business cycles. Even though the present framework is arguably mechanical in its
approach to generate the co-evolution of business cycles, it is useful for a parsimo-
nious description.

In the following, we first describe the mathematical properties of the reaction-
diffusion systems that forms the basis of description of the linkages. Then we discuss
a particular instance of it, which maps directly into Lotka-Volterra type interactive
systems and characterize its phase-diagram. Thenwe describe an application to study
spill-over effects on economic entities.

10.2 Mathematical Description

Reaction-diffusion equations are mathematical models applied in a wide variety of
subjects. The general mathematical formalism has been applied to biological, phys-
ical and economic systems among others. These systems are expressed by partial
differential equation that are semi-linear and parabolic in nature. The most com-
mon application of reaction-diffusion equation is in chemical reaction in which the
constituents are transformed locally into each other and transported over a surface
in space through diffusion (see e.g. Reaction-diffusion system 2016 for a general
description).

The standard form of reaction-diffusion equation is given by

∂u

∂t
= D∇2u + R(u), (10.1)

where u(x, t) represents the vector function to be calculated, D is the diagonal matrix
representing the diffusion coefficients and R is the function that describes the local
reaction. The reaction-diffusion equations are specified by the differential equations,
initial conditions and boundary conditions. But there will be some special conditions
at the boundary where the differential equation does not apply. For example, in
chemical systems, the walls of a container are impermeable to the chemicals. Hence,
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a certain condition is appliedwhich defines that the chemicals cannot leak through the
walls (Marc Roussel 2005). Such boundary conditions are called no-flux boundary
conditions and mathematically represented as

J̄ .n̂ = 0, (10.2)

where J̄ is the flux and n̂ is a normal vector to the boundary.

10.2.1 Reaction-Diffusion Equation (One Dimension)

The simplest form of reaction-diffusion equation for one component (i.e. one dimen-
sional) is

∂u

∂t
= D

∂2u

∂2t
+ R(u), (10.3)

Equation10.3 is also referred as the Kolmogorov-Petrovsky-Piskounov equation
(KPP equation). KPP equations are mainly used in the case of spatial evolution of a
statewhile propagation in a homogeneousmedium. If the reaction term is omitted, the
equation represents the law for diffusion which is the Fick’s second law (Reaction-
diffusion system 2016; Reardon and Novikov 2016).

10.2.2 Reaction-Diffusion Equation (Two Dimensions)

Two-component or two-dimensional systems are largely used in the ecological prob-
lems for prey-predator interaction and in chemistry where new substances are pro-
duced from reaction of different substances (Junping Shi 2004). If u(x, t)and v(x,
t) are assumed as the density functions of two populations, then we can write the
corresponding equations as,

∂u

∂t
= Du

∂2u

∂2t
+ F(u, v),

∂v

∂t
= Dv

∂2v

∂2t
+ G(u, v), (10.4)

where the coefficients (Du , Dv) are the diffusion constants and the additive terms
(F(u, v), G(u, v)) represent the reaction functions (Junping Shi 2004).

In 1937, Fisher introduced the idea of reaction-diffusion models for the spatial
dispersion of a particular gene. In 1952, Alan Turing first proposed an idea that
in presence of diffusion, a stable state can potentially become unstable. He sug-
gested that the linearly stable uniform steady state with two or more components can
destabilize in presence of diffusion and formation of spatial inhomogeneous patterns
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take place through bifurcation (Reaction-diffusion system 2016; Junping Shi 2004;
Robert Stephen Cantrell and Chris Cosner 2003).

For example, a spatio-temporal interacting species model can self-organize and
show different kinds of patterns, both stationary and non-stationary. The former
types are associated with spatial distribution of the species in a non-constant steady-
state. These can be of multiple types: examples include cold-spots and hot-spots,
stripe/labyrinthine or a mix of the two. Turing (or Turing-Hopf)-domain in the para-
meter space is typically the domain where such patterns materialize. On the other
hand, non-stationary patterns do not reach a steady-state which is non-constant and
continuously evolve over time. Such patterns can take the form of wave-like periodic,
spiral or even chaotic patterns.

For a much more detailed discussion on this topic, interested readers are referred
to Sirohi et al. (2015). We do not pursue this discussion further as it lies outside the
scope of the present article.

10.3 Lotka-Volterra (LV) Model: Predator-Prey
Interactions

For a very long time, researchers have investigated the famous prey-predator model,
i.e., Lotka-Volterra system of equations for analyzing endogenous oscillatory behav-
ior of coupled nonlinear equations. Sirohi et al. (2015) recently introduced environ-
mental noise in such amodel and studied the corresponding effects on spatio-temporal
pattern formation. Due to the addition of environmental noise, random fluctuations
have been observed for the fundamental variables characterizing the predator-prey
system, viz. carrying capacity, intensity of intra- and inter-species competition rates,
birth and death rates, and predation rates. In particular, they study a simple predator-
prey model with “ratio-dependent functional response, density dependent death rate
of predator, self-diffusion terms corresponding to the random movement of the indi-
viduals within two dimension, in addition with the influence of small amplitude
heterogeneous perturbations to the linear intrinsic growth rates”.

Below we summarize the formulation in Sirohi et al. (2015) following their nota-
tions, in order to show that the LV mechanism can be augmented by stochastic noise
terms, still retaining non-trivial nonlinear behavior.Wewill use amodification of such
a model while setting up the economic application in the next section. The nonlinear
coupled partial differential equations representing the prey-predator interaction, are
given as

∂u

∂t
= u(1 − u) − αuv

u + v
+ ∇2u ≡ f (u, v) + ∇2u,

∂v

∂t
= βuv

u + v
− γ v − δv2 + d∇2v ≡ g(u, v) + ∇2v (10.5)
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where u ≡ u(x, y, t) and v ≡ v(x, y, t) denote the population densities of prey and
predator respectively at a generic time point (t) and within Ω ⊂ R2 with boundary
∂Ω in the real space. Initial conditions have been set to

u(x, y, 0) > 0, v(x, y, 0) > 0 ∀(x, y) ∈ Ω (10.6)

The no-flux boundary conditions are represented in the following way,

∂u

∂ν
= ∂v

∂ν
= 0 (10.7)

∀(x, y) ∈ ∂Ω and positive time points, where ν is the unit normal vector drawn
outward on ∂Ω , with scaler parameters α, β, γ and δ.

Themagnitude of the parameters used in this model determine whether the Turing
patternswill exist or not. In Sirohi et al. (2015), authors have consideredα and d as the
bifurcation parameters for constructing the Turing bifurcation diagram. The Turing
bifurcation diagram has been presented in αd-parametric plane (Fig. 10.1; Sirohi
et al. 2015). Value of the parameters in the given bifurcation diagram are β = 1,
γ = 0.6 and δ = 0.1. In the present formulation,α and d can be controlled to produce
spatio-temporal patterns of different kinds. The curves shown in the figure are the
Turing-bifurcation curve, temporal Hopf-bifurcation curve and temporal homoclinic
bifurcation curve which have been marked as blue curve, red-dashed line and black-
dotted line respectively. The equilibrium point E∗ destabilize at αh = 2.01 which
gives the Hopf-bifurcation curve. The condition for stability of the equilibrium point
isα < αh . The region lying above theTuringbifurcation curve is theTuring instability
region which is divided into two parts by the Hopf-bifurcation curve. Turing-Hopf
domain with unstable temporal and spatio-temporal patterns lie in the region where
α > αh . See Sirohi et al. (2015) for further numerical details.

Equation10.5 produces multiple interesting patterns which can be seen from
Fig. 10.1. Within the Turing domain, cold-spots and a mix of spots and stripes mate-
rialize. Within the Turing-Hopf domain, a mix of spot-stripe, labyrinthine as well
as chaotic patterns materialize. The patterns obtained in Fig. 10.1 have been marked
with four different symbols depending on values of α and d with the details in the
caption.

The previous model (described in Eq.10.5) can be augmented by introducing
uncorrelated multiplicative white noise terms. The new model is described as

∂u

∂t
= u (1 − u) − αuv

u+v
+ ∇2u + σ1uξ1(t, x, y), (10.8)

∂v

∂t
= βuv

u+v
− γ v − δv2 + ∇2v + σ2uξ2(t, x, y), (10.9)

where ξ1(t, x, y) and ξ2(t, x, y) are i.i.d. noise (a less strict definition would be
temporally as well as spatially uncorrelated noise terms with normal distribution)
with mean 0,
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Fig. 10.1 Multiple types of spatial patterns can be observed for different parameter values within
theTuring instability region in the parameter space. Four different colored symbolsmark the relevant
regions in the following way: ◦ cold-spot, � mixture of spot-stripe, 	 labyrinthine, ∗ chaotic and
+ interacting spiral. Turing bifurcation curve is shown by blue curve, Hopf-bifurcation curve by
red dashed line and temporal homoclinic bifurcation curve by black dotted curve. Adapted from
Anuj Kumar Sirohi Malay Banerjee and Anirban Chakraborti (2015)

E (ξ1 (t, x, y)) = E (ξ2 (t, x, y)) = 0, (10.10)

and σ1 and σ2 parameterizes the environmental effects.
Sirohi et al. (2015) conducts simulations of the system describes above and doc-

uments that small magnitudes of noise intensities do not have any substantial effect
on the spatiotemporal pattern formation apart from the fact that the time taken to
reach the stationary pattern increases, which is expected. On the other hand, addition
of small noise increases the irregularity within the non-stationary zone. They con-
cluded noise and statistical interaction have vital roles in determining the distribution
of species, even when environmental conditions are unfavourable.

To summarize the material discussed above, we have seen that simple LV systems
generate many intricate patterns. In general not everything would be useful for eco-
nomic applications. We borrow two well known insights from this literature. One,
nonlinear dependence may lead to endogenous dynamics in the form of perpetual
oscillation. That can, at least in principle, be useful to describe evolution of fluctuat-
ing macroeconomic variables. Second, it is related to the idea that a dynamic system
may not reach a constant equilibrium after all. This has been a point of discussion
in multiple occasions among physicists and economists (Sinha et al. 2010). Most of



10 Reaction-Diffusion Equations with Applications to Economic Systems 137

the standard macroeconomic theory is driven by dynamical theories built around a
constant equilibrium implying unless a shock hits the economy (productivity, mon-
etary, fiscal policy etc.) it will not show any adjustment. However, it may seem to be
somewhat unrealistic feature of such models.

Belowwe describe amodel which is partly borrowed from the economic literature
and partly depends on the LV type mechanisms described above. The idea is that
given a shock process, an economic model describes evolution of macroeconomic
quantities reasonably well. However, where that shock is coming from typically
remains unanswered.Weopine that in amulti-country context, there can a be a leader-
follower relationship across countries thatmimics the dynamics described above. The
value addition of that approach is that the dynamics of the shock process can be totally
endogenous and non-convergent to a constant equilibrium. Correspondingly, macro
variables will also show a lag-lead structure as we describe below.

10.4 LV Equations: Modeling Diffusion of Technology

Themost commonplace instance of a complex adaptive systemwould be a decentral-
ized market economy (Sinha et al. 2010). Characterized by adaptive agents regularly
partaking in multi-level interactions, such dynamic systems essentially bear witness
to macroeconomic regularities, which persist in the form of recurrent causal chains
binding individual entities. Furthermore, such a system posits a nuanced symmet-
ric feedback between its micro-structure and macro-structure components, thereby
obfuscating the quantitative modeling of the same. Econophysics (Sinha et al. 2010)
has traditionally attempted to provide a fundamental framework to understand emer-
gence of patterns in presence of feedback. However, both of the aforementioned
problems are indeed challenging because whenever an empirical regularity is estab-
lished, further work leverages upon the same, thereby undoing its efficacy. In fact,
this phenomenon becomes especially pronounced in the realm of economics at the
macro level. Given the wide acceptance of the idea that economies cannot exist in
silos, it is quite evident that the growth prediction for each country in the current
globalized world would have a non-linear dependence upon the situation prevalent in
the rest of theworld. In this regard, the global recession of the last decade has affected
a paradigmatic shift in the modeling of international interactions, which goes beyond
linear cause-effect relationships. The said change is predominantly inclined towards
the analysis of the complex network of interactions occurring between the heteroge-
neous economic entities (viz. countries) involved in a trade/capital/technology flow.
This non-linear dependence captures the basic property of spill-over effects.

In this part of the paper, we would apply the previously discussed tools to model
the complex interdependence exhibited bymacroeconomic variables across countries
in terms of inter-temporal technological diffusions across countries. It is assumed
that, upon considering the international technological frontier as the background,
few countries emerge as predators while the others as preys. This means that while
the countries belonging to the latter category invest their resources to develop newer
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technology, those belonging to the latter simply copy the same without undertaking
original innovation. This phenomenon, by diminishing the advantage of usage, ulti-
mately results in an adverse impact upon the relative productivity of prey countries.
In this regard, one ought to note that the followers (predators) may copy/borrow the
technological innovations referenced herein from the leaders (prey) only after the
technological boom has occurred in the former, i.e. the predators are separated from
the prey by a time lag. As can be evinced from the problem characteristics discussed
thus far, it is quite evident that the required model is one which should be able to
not only account for the non-linear interdependence of macroeconomic variables
but also model predator-prey interactions. This report relies upon the famous Lotka-
Volterra model (referred to as the LVmodel, henceforth), derived from the discipline
of theoretical ecology, to achieve the stated objectives. In the past, the LV model has
found extensive application in the modeling of financial markets (Solomon 2000),
i.e. primarily heterogeneous entities, which is in perfect resonance with the theme
of the proposed work. Furthermore, the LV models advantage lies in two avenues.
First, it posits an endogenous source of non-linearity thereby nullifying the need for
any external non-linearity which might not be analytic. Secondly, the model posits a
time lag between the predator and the prey populations which, as discussed earlier,
is reminiscent of economic phenomena.

For an empirical motivation of the model discussed below, see Fig. 10.2. We have
detrended the yearly per capita GDP series with HP filter for two countries (USA and
Italy; data obtained from OECD database). The cyclical components roughly show
a lagged behavior. This is precisely the feature we want to model.

10.4.1 A Two-Country Example

Much of the discussion on the model set-up depends on the materials described in
Chakrabarti (2016). A miniature two-country example has been used to show how
one may derive cross-correlation and auto-correlation patterns from the same. In
essence, while the small scale real business cycle model has been used to relate the

Fig. 10.2 Cyclical
components of the yearly per
capita GDP series for Italy
and USA from 1970–2015.
Data has been detrended
with HP filter
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major variables, the LV model serves to describe the evolution of the technology
frontier. In order to leverage upon the leader-follower model, we may adopt a rather
simplistic way for gauging a countries technological prowess, viz. the number of
blue-prints generated by that nation. Quite intuitively, a country generating more
number of blue-prints (a leader/prey) would also enable its inhabitants to wield
a higher rate of productivity. On the contrary, while a leader invests resources to
generate novel blue-prints, another country (a follower/predator) may simply exhibit
parasitic behavior in merely copying/reverse- engineering those blue-prints, thereby
following the leader on the technology frontier. Variants of the real business cycle
model have been employed extensively in the past, both in continuous and discrete
forms. The basic assumptions underlying the formulation of such a miniature model
may be summarized as:

• Two distinct economies are considered wherein the leader and the follower are
referred to by L and F respectively, wherein ceteris paribus both the economies
are endowed with an equal potential to innovate.

• Both the economies are populated by a unitmass of households.Output is produced
using a combination of labor and capital. The output so produced may either be
immediately consumed or saved and invested.

• We assume single good economies. Furthermore, at the micro as well as the macro
level, the fundamental aim of each entity in the system is to maximize his/her/their
objective (profit/utility) function.

10.4.1.1 Description of the Economy

The economies have textbookdescriptions.Utility function in the j-th country (where
j ∈ {L , F}):

U j =
∞∑

t=0

β t
(
lnC j

t + αln(1 − L j
t )

)
, (10.11)

where C j
t and L j

t denotes consumption and labor respectively. The production func-
tion is defined by

Y j
t = z jt (K

j
t )θ (L j

t )
1−θ , (10.12)

where capital is denoted by K j
t , labor by L j

t and technology by z jt . Capital accumu-
lation occurs following the standard description,

K j
t+1 = (1 − δ)K j

t + I j
t , (10.13)

where δ is the rate of depreciation and It is the investment. There is a resource
constraint that

C j
t + I j

t ≤ Y j
t . (10.14)
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The evolution of the technology term z jt introduces the linkage across economies.
For this type of models, z jt represents a technological shock process orthogonal to the
other macroeconomic fundamentals of the economy. Here, we impose a nonlinear
coupling of evolution of technology to study the impacts on other variables.

10.4.1.2 Linkages Across Countries

The evolution of the technology is given by a general form (see Chakrabarti 2016
for details)

Z(t + 1) = Γ (Z(t)), (10.15)

where Γ () defines the interaction terms. A specific description would be:

dZ L

dt
= aZ L − bZ L Z F ,

dZ F

dt
= −cZ L + dZ L Z F . (10.16)

10.4.1.3 Discretization

Since we are attempting to model the economy in discrete time, we cannot directly
work with the continuous time-path of technology. Instead, we will focus on a sto-
chastically sampled sequence of the time-path generated by the set of equations. Let
us assume that the observed discrete sequence is denoted by {Sτ } = {Z L(τ ), Z F (τ )}
where τ = 1, 2, 3, . . . Since the variance of the actual economic fluctuations can be
found from the data, we need the technology process to possess tunable variance.
Therefore, we transform the original series in the followingway: the shock process as

z j (t) = 1

1 + e−κS j (t)
j ∈ {L , F}, (10.17)

where κ is a constant.
Figure10.3 describes the essential dynamic behavior of the system. Under stan-

dard parameter values (we assume 1, −1, 1 and −1 in Eq.10.16 for a, b, c, d resp.),
the limit cycles are evident. Then we carry out the transformation to tune volatility
of the series with Eq.10.17. Upon random sampling, the resultant time-series has
non-trivial properties. See Chakrabarti (2016) for further details.

10.4.1.4 Mechanism

Note that the model economy is fully described by Eqs. 10.11, 10.12, 10.13 and
10.14. In particular, Eq. 10.12 contains the only exogenous variable z. The rest of
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Fig. 10.3 Description of the time-series behavior Lotka-Volterra model: a time-domain description
of a two species LVmodel,b phase diagram for the same, c phase diagram after applying the required
transformation (Eq.10.17), d cross-correlation of the time-series constructed by randomly sampling
of the predator and prey series, e–f autocorrelation functions of the same

the variables can be determined upon description of z. We posit that the evolution of
this variable is given by the transformed version of the LV equations viz. Eq. 10.17.

Because of the underlying LV mechanism, the technology variable z would show
endogenous oscillatory behavior. Couple with the description of the evolution of the
macro variables, we can solve for each of the variables, all of which in turn would
show endogenous dynamics along with coupling behavior.

10.4.2 A Generalized Framework

The system of two-country LV equations may be extended to a general form for an
N -country scenario (with each country indexed by i ∈ {1, 2, ..., N }):

dzi

dt
= μi i z

i +
∑

j �=i

μi j z
i z j ∀ i ∈ N . (10.18)

This set of equations represent the most fundamental form of the LV model, which
has a number of variants depending on the specific modeling requirements. The
following equation represents a very generalized form of the interaction equations
along with a squared term:



142 S. Ganguly et al.

dzi

dt
=

∑

j

μi j1 z̄
j + μi i2(z̄

i )2 +
∑

j

μi j z̄
i z̄ j ∀ i ∈ N . (10.19)

As proposed inWu andWang 2011, the LVmodels in-sample predictions offer dif-
fer significantly from the actual time-series owing to the lack of any implicit/explicit
time-smoothening per se in the model. In order to alleviate this bottleneck, one may
leverage upon Grey modeling (Wu andWang 2011) to obtain several variants of grey
Lotka-Volterra (GLV) models.

In order to move towards a method for estimating the parameters, we need to
discretize the process. A simple way to do that is to assume an approximation that
the left hand side of Eq.10.19 is zi (t + 1) − zi (t) (Wu and Wang 2011). For the
proposed methodology, one can construct a backward-looking weighted average of
the past values as the basis for predicting the future,

z̄i (τ ) =
∑w

n=0 k
nzi (τ − k)∑w
n=0 k

n
. (10.20)

10.4.2.1 Estimation Techniques

One of the aims of the given exercise is to estimate the parameters in Eq. 10.19 using
multiple time-series data for macroeconomic quantities. Thus, the next step would
essentially entail arriving at appropriate equation parameter values so as to ensure
that the in-sample error factor (ηi ) is minimized.

After estimation, the model should essentially predict the future behavior of the
time-series. Below, we first describe one possible way to estimate the parameters.
Numerically, we see that prediction for the next time instant (ẑ(t + 1)) by leveraging
upon immediate past data has a good in-sample fit. Unfortunately, the out-of-sample
fits are very bad for reasons described towards the end of this section.

The proposed scheme adopts a convex optimization approach to achieve the said
objective, i.e. it leverages upon first-order conditions to solve the set of parameter
values. The in-sample error is given by

ηi =
∑

t

(
ẑi (t) − zi (t)

)2
(10.21)

where zi (t) is the actual observed series. The first order conditions will be given by

δηi

δμk
= 0, (10.22)

whereμk are the parameters describing the generalized LV system. Required second-
order condition would be that the matrix of the second derivative would be negative
definite. These are fairly standard conditions formulti-valued optimization and hence
we skip elaborating on the same.
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10.4.3 Lack of Parsimony for Prediction

The present approach has good in-sample fit (see Ganguly 2016 for some prelim-
inary results). However, the out-of-sample fit has a number of problems. One, the
generalized version given by Eq.10.19 is not guaranteed to converge and in fact, in
most of the cases checked numerically, it actually diverges. Thus predictions beyond
a couple of time-points are not particularly reliable. One potential problem is the
approximation that the time derivative is given by zi (t + 1) − zi (t) although it is
not clear what else can be used instead. Second, much of the goodness of fit even
with the in-sample data is driven by overfitting as there are N × (2N + 1) number
of parameters that can be calibrated. Hence, the generalized version, even though it
nests many dynamical systems upon careful selection of parameters, is not the best
candidate for prediction purpose.

10.4.4 Characterizing the Spill-Over Effects

The basic LV framework cannot describe the spill-over effects. The basic problem is
that if we define the zi term to be the deviations from the steady state, then the spill-
over effect is always zero starting from any z j = 0. Note that in the basic LV model,
the interaction terms are multiplicative, so even if the deviation for the i-th country
can be non-zero by a stochastic shock, due to the multiplicative characteristics, the
product necessarily has to be zero. Hence, LV mechanism by itself is not capable of
generating spill-over effects in terms of, for example, cross-country impulse response
functions. However, the augmented version Eq.10.19 contains autoregression terms
(
∑

j μi j1 z̄ j ) in levels without any multiplicative factors and hence, this will allow
characterization of spill-over effects.

10.5 Summary and Outlook

We have presented a general model for reaction-diffusion equations and discussed
some specific applications to generate lag-lead structure of competing economic enti-
ties. Further developments on usage of nonlinear interactive systems to characterize
economic time-series properties would be interesting additions to the literature.

Finally, one important issue regarding nomenclature is that we are using the words
predator and prey only for descriptive purpose. Such usage should not be taken to
be implying anything other than the specific technical meaning assigned to them by
the standard LV mechanism. An economic interpretation can be immediately given
by considering a leader-follower duo competing on the technology frontier.
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Chapter 11
Kinetic Exchange Models as D Dimensional
Systems: A Comparison of Different
Approaches

Marco Patriarca, Els Heinsalu, Amrita Singh
and Anirban Chakraborti

Abstract The Kinetic Exchange Models represent a charming topic in both interdis-
ciplinary physics, e.g. in the study of economy models and opinion dynamics, as well
as in condensed matter physics, where they represent a simple but effective kinetic
model of perfect gas, with the peculiar feature that the dimension D of the system
is a real variable which can be tuned continuously. Here we study kinetic models of
energy exchange between particles of a perfect gas in D dimensions and discuss their
relaxation toward the canonical equilibrium characterized by the energy distribution
in D dimensions (D ∈ R), comparing various theoretical approaches with results
from numerical simulations.

11.1 Introduction

Kinetic Exchange Models (KEMs) have attracted considerable attention not only
in the interdisciplinary physics, whether opinion dynamics or the studies of wealth
exchange models, but also in condensed matter physics as in the case of prototypical
and general systems of units exchanging energy (Patriarca and Chakraborti 2013).
A noteworthy feature of KEMs is that a suitable tuning of some parameters regulating
the energy exchange in the basic homogeneous versions leads to a situation where
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the system relaxes toward a Boltzmann canonical energy distribution characterized
by an arbitrary dimension D. It is not that D can assume only a positive integer
value. In fact, it is a real variable that can assume any value greater than or equal
to 1. In this contribution we discuss a basic version of KEM in D dimensions using
different theoretical approaches, including numerical simulations of a perfect gas
in D dimensions. This provides a historical overview of KEMs from the statistical
mechanical point of view, a snapshot of the current status of research, as well as an
educational presentation of the different ways to look at the same problem.

11.2 KEMs with No Saving: A Micro-canonical Ensemble
Approach (Exponential Distribution)

In the basic versions of KEMs, N agents exchange a quantity x which represents
the wealth. The state of the system is characterized by the set of variables {xi }, (i =
1, 2, . . . , N ). The total wealth is conserved (here set conventionally equal to one),

X = x1 + x2 + · · · + xN−1 + xN = 1, (11.1)

The evolution of the system is carried out according to a prescription, which defines
the trading rule between agents. Dragulescu and Yakovenko introduced the following
simple model (Dragulescu and Yakovenko 2000): at every time step two agents i
and j , with wealths xi and x j respectively, are extracted randomly and a random
redistribution of the sum of the wealths of the two agents takes place, according to

x ′
i = ε(xi + x j ),

x ′
j = (1 − ε)(xi + x j ), (11.2)

where ε is a uniform random number ε ∈ (0, 1), while x ′
i and x ′

j are the agent wealths
after the “transaction”. This rule is equivalent to a random reshuffling of the total
wealth of the two interacting agents. After a large number of iterations, the system
relaxes toward an equilibrium state characterized by a wealth distribution f (x) which
numerical experiments show to be perfectly fitted by an exponential function,

f (x) = 1

〈x〉 exp(−x/〈x〉) , (11.3)

where 〈x〉 is the average wealth of the system. The exponential function (see below for
a demonstration) represents the distribution of kinetic energy in a two-dimensional
gas, D = 2, with an effective temperature T defined by T = 2〈x〉/D ≡ 〈x〉. This
result can be demonstrated analytically using different methods, such as the Boltz-
mann equation, entropy maximization, etc., as discussed in the following sections.
Here we start with a geometrical derivation of the exponential distribution based on
the micro-canonical hypothesis.
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Since the total amount of wealth X = ∑
i xi is conserved, the system is isolated

and its state evolves on the positive part of the hyperplane defined by Eq. (11.1) in
the configuration space. The surface area SN (X) of an equilateral N -hyperplane of
side X is given by

SN (X) =
√

N

(N − 1)! X N−1. (11.4)

If the ergodic hypothesis is assumed, each point on the N -hyperplane is equiprobable.
The probability density f (xi ) of finding agent i with value xi is proportional to the
(N − 1)- dimensional area formed by all the points on the N -hyperplane having the
i th coordinate equal to xi . If the i th agent has coordinate xi , the N − 1 remaining
agents share the wealth X − xi on the (N − 1)-hyperplane defined by

x1 + x2 · · · + xi−1 + xi+1 · · · + xN = X − xi , (11.5)

whose surface area is SN−1(X − xi ). Defining the coordinate θN as

sin θN =
√

N − 1

N
, (11.6)

then it can be shown that

SN (X) =
∫ N

0
SN−1(X − xi )

dxi

sin θN
. (11.7)

Hence, the surface area of the N -hyperplane for which the i th coordinate is between
xi and xi + dxi is proportional to SN−1(X − xi )dxi/ sin θN . Taking into account the
normalization condition, one obtains

f (xi ) = 1

SN (E)

SN−1(E − xi )

sin θN
= (N − 1)E−1

(
1 − xi

E

)N−2 → 1

〈x〉 exp (−xi/〈x〉) ,

(11.8)

where the last term was obtained in the limit of large N introducing the mean
wealth per agent 〈x〉 = X/N . From a rigorous point of view the Boltzmann fac-
tor exp(−xi/〈x〉) is recovered only in the limit N 	 1 but in practice it is a good
approximation also for small values of N . This exponential distribution has been
shown to agree well with real data in the intermediate wealth range (Dragulescu and
Yakovenko 2001a, b) but in general it does not fit real distributions, neither at very
low nor at very high values of wealth. Thus, some improvements of this minimal
model are required.
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11.3 KEMs with Saving: The Maxwell Velocity
Distribution Approach (Γ -Distribution)

We now turn to a more general version of kinetic exchange model. In this model, a
saving propensity parameterλ, with 0 ≤ λ < 1, is assigned to agents, representing the
minimum fraction of wealth saved during a trade. Models of this type have also been
proposed in the social science by Angle in the 80s (Angle 1983, 1986, 1993, 2002)
and were rediscovered as an extension of the model considered above in Chakraborti
and Chakrabarti (2000), Chakraborti (2002), Chakraborti and Patriarca (2008). As
a working example, for clarity here we consider a simple model (Chakraborti and
Chakrabarti 2000) in which the evolution law is defined by the trading rule

x ′
i = λxi + ε(1 − λ)(xi + x j ) ,

x ′
j = λx j + ε̄(1 − λ)(xi + x j ) , (11.9)

where ε and ε̄ = 1 − ε are two random numbers from a uniform distribution in (0, 1).
In this model, while the wealth is still conserved during each trade, x ′

i + x ′
j = xi + x j ,

only a fraction (1 − λ) of the wealth of the two agents is reshuffled between them
during the trade. The system now relaxes toward an equilibrium state in which the
exponential distribution is replaced by a Γ -distribution (Abramowitz and Stegun
1970)—or at least it is well fitted by it (this was also noted in Angle 1986). The
Γ -distributionγα,θ (ξ)has two parameters, a scale-parameter θ and a shape-parameter
α, and it can be written as

γα,θ (x) = 1

θΓ (α)

( x

θ

)α−1
exp(−x/θ) , (11.10)

where Γ (α) is the Γ -function. Notice that the Γ -distribution only depends on the
ratio x/θ ; namely, θγα,θ (x) is a dimensionless function of the rescaled variable
ξ = x/θ . In the numerical simulations of the model, in which one assigns the initial
average wealth 〈x〉 which is constant in time, the equilibrium distribution f (x) is
just the Γ -distribution with the λ-dependent parameters

α(λ) = 1 + 3λ

1 − λ
= 1 + 2λ

1 − λ
, (11.11)

θ(λ) = 〈x〉
α

= 1 − λ

1 + 2λ
〈x〉 . (11.12)

As the saving propensity λ varies from λ = 0 toward λ = 1, the parameter α contin-
uously assumes all the values between α = 1 and α = ∞. Notice that for λ = 0 the
model and correspondingly the equilibrium distribution reduce to those of the model
considered in the previous section.

At first sight it may seem that, in going from the exponential shape wealth distri-
bution (obtained for λ = 0) to the Γ -distribution (corresponding to a λ > 0) the link
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between wealth-exchange models and kinetic theory is in a way lost, but, in fact, the
Γ -distribution γα,θ (x)/θ represents just the canonical Boltzmann equilibrium distri-
bution for a perfect gas in D = 2α dimensions and a temperature (in energy units)
θ = kBT , where T is the absolute temperature. This can be easily shown—in the
case of an (integer) number of dimensions D—also from the Maxwell velocity dis-
tribution of a gas in d dimensions. Setting in the following θ = kBT , the normalized
Maxwell probability distribution of a gas in D dimensions is

f (v1, . . . , vD) =
( m

2πθ

)D/2
exp

(

−
D∑

i=1

mv2
i

2θ

)

, (11.13)

where vi is the velocity of the i th particle. The distribution (11.13) depends only
on the velocity modulus v, defined by mv2/2 = ∑D

i=1 mv2
i /2, and one can then

integrate the distribution over the D − 1 angular variables to obtain the velocity
modulus distribution function f (v). With the help of the expression for the surface
σD(r) of a hypersphere of radius r in D dimensions,

σD(r) ≡ σ 1
D r D−1 = 2π D/2

Γ (D/2)
r D−1 , (11.14)

where σ 1
D is the expression for a unit-radius sphere, one obtains

f (v) = 2

Γ (D/2)

( m

2θ

)D/2
vD−1 exp

(

−mv2

2θ

)

, (11.15)

and then, by changing variable from the velocity v to the kinetic energy x = mv2/2,

f (x) = 1

Γ (D/2)θ

( x

T

)D/2−1
exp

(
− x

T

)
, (11.16)

which is just the distribution in Eq. (11.10) if one sets α = D/2.
Notice that in order to construct a KEM with a given effective temperature θ and

dimension D, it is not sufficient to fix the saving parameter λ. Following Eqs. (11.11)–
(11.12), one has to assign both λ and the average energy 〈x〉. Using the relation
α = D/2, Eqs. (11.11)–(11.12) can be rewritten as

D(λ) = 2

(

1 + 3λ

1 − λ

)

= 2(1 + 2λ)

1 − λ
, (11.17)

θ(λ) = 2〈x〉
D

. (11.18)

Inverting these equations, one has a simple recipe for finding the suitable values of
λ and 〈x〉 that set the system dimension D and temperature θ to the required values,
e.g. first fixing λ from D and then 〈x〉 using D and θ ,
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λ = D − 2

D + 4
, (11.19)

〈x〉 = Dθ

2
. (11.20)

Here the second equation can be recognized as an expression of the equipartition
theorem.

It can be noticed that if λ is fixed (depending on the corresponding D) while
the value of 〈x〉 is kept constant in all the simulations with different λ’s, then from
Eq. (11.18) a system with larger dimension D will have lower temperature θ (and
therefore a shape of the probability distribution function with smaller width). From
these equations one can also notice the existence of a minimum value for the system
dimension, Dmin = 2, corresponding to the minimum value λ = 0. As λ increases
in the interval λ ∈ (0, 1), D also increases monotonously diverging eventually for
λ → 1. This is the specific result of the model considered in this section and the
minimum value Dmin is different in different KEMs.

11.4 KEMs in D Dimensions: A Variational Approach

As an alternative, equivalent, and powerful approach, one can use the Boltzmann
approach based on the minimization of the system entropy in order to obtain the
equilibrium distribution (Chakraborti and Patriarca 2009). The method can provide
both the exponential distribution as well as the Γ -distribution obtained in the frame-
work of wealth-exchange models with a saving parameter λ > 0, a natural effective
dimension D > 2 being associated to systems with λ > 0.

The representative system is assumed to have D degrees of freedom, q1, . . . , qD

(e.g. the particle momenta in a gas), and a homogeneous quadratic Hamiltonian X ,

X (q1, . . . , qD) ≡ X (q2) = 1

2
(q2

1 + · · · + q2
D) = 1

2
q2 , (11.21)

where q = (q2
1 + · · · + q2

D)1/ 2 is the distance from the origin in the D-dimensional
q-space. As an example, the D coordinates qi can represent suitably rescaled values of
the velocities so that Eq. (11.21) provides the corresponding kinetic energy function.
The expression of the Boltzmann entropy of a system described by D continuous
variables q1, . . . , qD , is

SD[q1, . . . , qD] = −
∫

dq1 . . .

∫
dqD fD(q1, . . . , qD) ln[ fD(q1, . . . , qD)] .

(11.22)
The system is subjected to the constraints on the conservation of the total number
of systems (i.e. normalizing to one for a probability distribution function) and of the
total wealth (implying a constant average energy x̄), expressed by
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∫
dq1 . . .

∫
dqD fD(q1, . . . , qD) = 1 , (11.23)

∫
dq1 . . .

∫
dqD fD(q1, . . . , qD)X (q1, . . . , qD) = x̄ , (11.24)

They can be taken into account using the Lagrange method, i.e. by a variation (with
respect to the distribution fD(q1, . . . , qD)) of the functional

Seff [ fD] =
∫

dq1 . . .

∫
dqD fN (q1, . . . , qD){ln[ fD(q1, . . . , qD)] + μ + β X (q2)}, (11.25)

where μ and β are two Lagrange multipliers. The invariance of the Hamiltonian,
depending only on the modulus q, allows the transformation from Cartesian to polar
coordinates. Integrating over the (D − 1) coordinates spanning the solid angle with
the help of the expression (11.14) for the surface of the hyper sphere, one obtains

Seff [ f1] =
∫ +∞

0
dq f1(q)

[

ln

(
f1(q)

σ 1
D q D−1

)

+ μ + β X (q)

]

(11.26)

where the probability density fD(q1, . . . , qD) in the D-dimensional space was
expressed with the reduced probability density f1(q) in the one-dimensional q-space,

f1(q) = σ 1
D q D−1 fD(q) . (11.27)

Finally, transforming from q to the energy variable x = q2/ 2, one obtains the prob-
ability distribution function

f (x) = dq(x)

dx
f1(q)|q=q(x) = f1(q)|q=q(x)√

2x
, (11.28)

where q(x) = √
2x from Eq. (11.21). In terms of the new variable x and distribution

f (x), from Eq. (11.26) one obtains the functional

Seff [ f ] =
∫ +∞

0
dx f (x)

[

ln

(
f (x)

σ 1
D x D/ 2−1

)

+ μ + βx

]

, (11.29)

Varying this functional with respect to f (x), δSeff [ f ]/δ f (x) = 0, leads to the equi-
librium Γ -distribution in Eq. (11.10) with rate parameter β = 1/θ and the same
shape parameter α = D/ 2.
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11.5 Kinetic Theory Approach to a D-Dimensional Gas

The deep analogy between kinetic wealth-exchange models of closed economy
systems, where agents exchange wealth at each trade, and kinetic gas models, in
which energy exchanges take place at each particle collisions, was clearly noticed in
Mandelbrot (1960). The analogy can be justified further by studying the microscopic
dynamics of interacting particles in the framework of standard kinetic theory.

In one dimension, particles undergo head-on collisions, in which they can
exchange the total amount of energy they have, i.e. a fraction ω = 1 of it. Alter-
natively, one can say that the minimum fraction of energy that a particle saves in a
collision is in this case λ ≡ 1 − ω = 0. In the framework of wealth-exchange mod-
els, this case corresponds to the model of Dragulescu and Yakovenko mentioned
above (Dragulescu and Yakovenko 2000), in which the total wealth of the two agents
is reshuffled during a trade.

In an arbitrary (larger) number of dimensions, however, this does not take place,
unless the two particles are travelling exactly along the same line in opposite verses.
On average, only a fraction ω = (1 − λ) < 1 of the total energy will be lost or gained
by a particle during a collision, that is most of the collisions will be practically
characterized by an energy saving parameter λ > 0. This corresponds to the model
of Chakraborti and Chakrabarti (2000), in which there is a fixed maximum fraction
(1 − λ) > 0 of wealth which can be reshuffled.

Consider a collision between two particles in an N -dimensional space, with
initial velocities represented by the vectors v(1) = (v(1)1, . . . , v(1)N ) and v(2) =
(v(2)1, . . . , v(2)N ). For the sake of simplicity, the masses of the all the particles are
assumed to be equal to each other and will be set equal to 1, so that momentum
conservation implies that

v′
(1) = v(1) + Δv ,

v′
(2) = v(2) − Δv , (11.30)

where v′
(1) and v′

(2) are the velocities after the collisions and Δv is the momentum
transferred. Conservation of energy implies that v′ 2

(1) + v′ 2
(2) = v2

(1) + v2
(2) which, by

using Eq. (11.30), leads to

Δv2 + (v(1) − v(2)) · Δv = 0 . (11.31)

Introducing the cosines ri of the angles αi between the momentum transferred Δv
and the initial velocity v(i) of the i th particle (i = 1, 2),

ri = cos αi = v(i) · Δv
v(i) Δv

, (11.32)

where v(i) = |v(i)| and Δv = |Δv|, and using Eq. (11.31), one obtains that the mod-
ulus of momentum transferred is
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Δv = −r1v(1) + r2v(2) . (11.33)

From this expression one can now compute explicitly the differences in particle
energies xi due to a collision, that are the quantities x ′

i − xi ≡ (v′ 2
(i) − v2

(i))/ 2. With
the help of the relation (11.31) one obtains

x ′
1 = x1 + r2

2 x2 − r2
1 x1 ,

x ′
2 = x2 − r2

2 x2 + r2
1 x1 . (11.34)

The equivalence to KEMS should now appear clearly. First, the number ri ’s are
squared cosines and therefore they are in the interval r ∈ (0, 1). Furthermore, they
define the initial directions of the two particles entering the collision, so that they can
be considered as random variables if the hypothesis of molecular chaos is assumed.
In this way, they are completely analogous to the random coefficients ε(1 − λ) [or
(1 − ε)(1 − λ)] appearing in the formulation of KEMs, with the difference that they
cannot assume all values in (0, 1), but are limited in the interval (0, 1 − λ). However,
in general the r2

i ’s are not uniformly distributed in (0, 1) and the most probable values
〈r2

i 〉 drastically depend on the space dimension, which is at the base of their effective
equivalence with the KEMs: the greater the dimension D, the smaller the 〈r2

i 〉, since
the more unlikely it becomes that the corresponding values 〈ri 〉 assume values close
to 1 and the more probable that instead they assume a small value close to 1/D. This
can be seen by computing their average—over the incoming directions of the two
particles or, equivalently, on the orientation of the initial velocity v(i) of one of the
two particles and of the momentum transferred Δv, which is of the order of 1/D.

The 1/D dependence of 〈r2
i 〉 well compares with the wealth-exchange model

with λ > 0, in which a similar relation is found between the average value of the
corresponding coefficients ε(1 − λ) and ε̄(1 − λ) in the evolution equations (11.9)
for the wealth exchange and the effective dimensions D(λ), Eq. (11.17): since ε

is a uniform random number in (0, 1), then 〈ε〉 = 1/ 2 and inverting D = D(λ),
Eq. (11.17), one finds 〈(1 − ε)(1 − λ)〉 = 〈ε(1 − λ)〉 = (1 − λ)/ 2 = 3/(D + 4).

11.6 Numerical Simulations of a D-Dimensional Gas

Besides the various analytical considerations discussed above, the close analogy with
kinetic theory allows one to resort to molecular dynamics simulations also to study
a D-dimensional system. It is instructive to obtain the very same Boltzmann energy
distributions discussed above from molecular dynamics (MD) simulations. For the
sake of simplicity we consider the distribution of kinetic energy of a gas, since it is
known that at equilibrium it relaxes to the Boltzmann distribution with the proper
number D of dimensions of the gas independently of the inter-particle potential.

For clarity we start with the case D = 2. In fact, as discussed above when con-
sidering the model defined in Eq. (11.9), the case of the minimum dimension D = 2
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is characterized by an equilibrium distribution which is a perfect exponential. We
have performed some numerical simulation of a Lennard-Jones gas in D = 2 dimen-
sions using the leapfrog algorithm (Frenkel and Smit 1996), with a small system
of N = 20 particles in a square box of rescaled size L = 10, for a simulation time
ttot = 104, using an integration time step δt = 10−4 and averaging the energy distri-
bution over 105 snapshots equidistant in time. Reflecting boundary conditions were
used and a “repulsive Lennard-Jones” U (r) interaction potential between particles
was assumed,

U (r) = ε
[
(R/r)6 − 1

]2
for r < R , (11.35)

= 0 , for r ≥ R , (11.36)

representing a purely repulsive potential decreasing monotonously as the interparticle
distance r increases, as far as R = 1, where the potential becomes (and remains) zero
for all larger values of r .

As examples, the results of the kinetic energy distribution in D = 2 dimensions
are shown in Fig. 11.1. The corresponding results for a gas in a cubic box in D = 1
and D = 3 dimensions, with the same parameters are shown in Figs. 11.2 and 11.3.
Notice that in all figures the “MD” curve represents the result of the molecular
simulation, while the “D = …” curve is the corresponding Γ -distribution with shape
parameter α = D/2 and scale parameter θ = T = 1.

In D = 1 dimensions, Newtonian dynamics predicts that the velocity distribution
does not change with time in a homogeneous gas, since at each collision the two
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√
x exp(−βx)

colliding particles simply exchange their momenta. Therefore, only in the case
D = 1, we have added a Langevin thermostat at T = 1 (damping coefficient γ = 0.5)
in order to induce a thermalization of the system.

11.7 Conclusions

KEMs represent one more approach to the study of prototypical statistical systems
in which N units exchange energy and for this reason they certainly have a relevant
educational dimension (Patriarca and Chakraborti 2013). This dimension is empha-
sized in this contribution by presenting different approaches to the same model and
to obtain the corresponding canonical Boltzmann distribution in D dimensions.
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There are other reasons for their relevance and for the interest they have attracted:

(a) KEMs have the peculiarity that the system dimension D can be easily tuned
continuously. Letting it assume real values by changing the parameters regulating
the energy exchanges, makes them interesting to study various other statistical
systems.

(b) KEMs have by now been used in interdisciplinary physics in various topics such
as modeling of wealth exchange and opinion dynamics;

(c) but they also appear in condensed matter problems such as fragmentation dynam-
ics.
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Chapter 12
The Microscopic Origin of the Pareto Law
and Other Power-Law Distributions

Marco Patriarca, Els Heinsalu, Anirban Chakraborti and Kimmo Kaski

Abstract Many complex systems are characterized by power-law distributions,
beginning with the first historical example of the Pareto law for the wealth dis-
tribution in economic systems. In the case of the Pareto law and other instances
of power-law distributions, the power-law tail can be explained in the framework
of canonical statistical mechanics as a statistical mixture of canonical equilibrium
probability densities of heterogeneous subsystems at equilibrium. In this picture,
each subsystem interacts (weakly) with the others and is characterized at equilib-
rium by a canonical distribution, but the distribution associated to the whole set of
interacting subsystems can in principle be very different. This phenomenon, which
is an example of the possible constructive role of the interplay between heterogene-
ity and noise, was observed in numerical experiments of Kinetic Exchange Models
and presented in the conference “Econophys-Kolkata-I”, hold in Kolkata in 2005.
The 2015 edition, taking place ten years later and coinciding with the twentieth
anniversary of the 1995 conference hold in Kolkata where the term “Econophysics”
was introduced, represents an opportunity for an overview in a historical perspec-
tive of this mechanism within the framework of heterogeneous kinetic exchange
models (see alsoKinetic exchange models as D-dimensional systems in this volume).
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We also propose a generalized framework, in which both quenched heterogeneity
and time dependent parameters can comply constructively leading the system toward
a more robust and extended power-law distribution.

12.1 Introduction

The scaling properties of the power-law tails encountered in the distributions asso-
ciated to many complex systems are a signature of some underlying processes of
self-organization. A goal of Complex Systems Theory is to understand what are
these processes and how they produce the observed distributions. The first example
of power-law distribution, found in a field far from the targets of traditional physics,
is related to the Pareto power-law of wealth distribution (Chatterjee et al. 2005).

Currently, the origin of power-law tails and their microscopic interpretation are
still open problems, as shown by various proposals of mechanisms responsible for
their appearance. For instance, Tsallis has suggested an extensive generalization of
theBoltzmann entropy (Tsallis 1988), leading to a power-lawprobability distribution,
while an alternative form of the Gibbs distribution was suggested in Treumann and
Jaroschek (2008).

The first goal of this contribution is to provide a detailed discussion of how power-
law distributions can be explained as due to the diversity of the components of the
system under study within the framework of canonical statistical mechanics. In such
systems the equilibrium distribution f (x) of the relevant variable x is the statistical
mixture of the different equilibrium distributions of the heterogeneous subsystems,
each one with the shape of a Boltzmann-Gibbs-type canonical equilibrium distri-
butions. A power-law tail can appear in the distribution f (x) as the outcome of
the superposition of the heterogeneous distributions of the subsystems. The gen-
eral mechanism is formalized in Sect. 12.2. This mechanism was first suggested
in the 2004 paper by Chatterjee, Chakrabarti, and Manna Pareto law in a kinetic
model of market with random saving propensity” (Chatterjee et al. 2004), in which
a power-law tail was first obtained from numerical experiments on heterogeneous
Kinetic ExchangeModels (KEMs). It was then described in detail through additional
numerical experiments of KEMs and shown to represent a possible explanation of the
Pareto power-law in economics by various groups (Bhattacharya et al. 2005; Chat-
terjee and Chakrabarti 2005; Patriarca et al. 2005) in the “Econophys-Kolkata-I”
Conference, hold in Kolkata in 2005 [see Chatterjee et al. (2005) for the full list
of contributions]. In the tenth anniversary of that conference and in the twentieth
anniversary of the 1995 conference hold in Kolkata where the term “Econophysics”
was introduced, the new 2015 edition represents an appropriate place for an overview
of the topic. For this reason, KEMs are here reviewed from a historical perspective in
Sect. 12.3—see also the contribution on Kinetic exchange models as D-dimensional
systems in this volume. The same mechanism was later recognized as a possible
general framework for describing power-laws as a collective effect taking place in
heterogeneous complex systems not only of economical nature, see Patriarca et al.
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(2016), but also in e.g. heterogeneous molecular assemblies, considered below in
Sect. 12.5 with a simple exactly solvable kinetic model. The interpretation of power-
law tails illustrated in this paper as a diversity-induced phenomenonmay clarify and
unify different instances of power-law tails appearing in the statistical distributions
of many complex systems.

Furthermore, we discuss and merge in a generalized framework the diversity-
based mechanism and the superstatistics, suggested in Beck and Cohen (2003) to
describe the appearance of power-law distributions within non-equilibrium statistical
mechanics.

12.2 A General Formulation of the Mechanism
of Diversity-Induced Power-Laws

The mechanism producing a power-law distribution starting from the heterogeneous
character of the units composing the system can be given a very simple and general
probabilistic formulation. We consider a system S composed of N heterogeneous
units, with K (K ≤ N) different types of units, in which each unit n (n = 1, . . . ,N)
can be of one type k among the K possible types. The system can then be partitioned
in K homogeneous subsystems, S = ∪K

k=1Sk , where Sk ∩ Sk′ = 0 if k �= k′, by
assigning each unit n to the corresponding subsystem Sk depending on its type k.
One can introduce a statistical weight pk = Nk/N measuring the relative size of each
subsystem Sk , where Nk is the number of units of type k in the global system. For
clarity the partition of the system S is kept fixed, i.e., the populations Nk of the
homogeneous subsystems are constant in time.

Units are assumed to be described by some quantity (e.g. energy or wealth) mea-
sured by the variable x. The corresponding (global) probability distribution function
f (x) that the variable of a subsystem assumes the value x can be operatively con-
structed by measuring the frequency of occurrence of the value x of a randomly
chosen subsystem in the limit of a large number of measurements. The partial prob-
ability densities fk(x) that the variable of a system of a given type k has the value x,
can be operatively constructed in a similar way, recording in each measurement the
value of x and the type of the unit k. Units of the same subsystem are assumed to
follow the same dynamics and relax toward the same equilibrium distribution.

The relation between the global distribution f (x) and the partial distributions fi(x)
is given in probability theory by the law of total probability (Feller 1966), which
provides an expression for the global distribution f (x) as a statistical mixture—i.e.
as a weighted sum—of the partial distributions fi(x),

f (x) =
∑

k

fk(x) pk ≡
∑

k

P(x|k)P(k) , (12.1)
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where the last equality reminds that pk coincideswithP(k), the probability to extract a
unit of the kth type (independently of its variable value) belonging to the subsystem
Sk , while fk(x) coincides with the conditional probability P(x|k) that, if the unit
extracted is of the kth type, the variable has the value x. In Eq. (12.1) both the global
probability distribution f (x) and each partial probability density fk(x) are assumed to
be normalized, i.e.,

∫
dx f (x) = 1 and

∫
dx fk(x) = 1, implying that also the statistical

weights are normalized according to
∑

k pk = 1.
The set of weights {pk} characterizes the level and type of heterogeneity of the

system S . Therefore Eq. (12.1) expresses the global probability distribution f (x)
directly in terms of the diversity of the system, defined by {pk}. Notice that in general
the global equilibrium distribution f (x) of a heterogeneous composite system may
have a very different shape with respect to those of the subsystems and that no
prediction about f (x) can be done without detailed information about the subsystems
Sk . Therefore it is possible that the statistical mixture in Eq. (12.1) will produce a
distribution with a power-law tail even if none of the fk(x) has a power-law tail,
depending on the details of the system considered, namely on (a) the form of the
equilibrium partial distributions fk(x) and (b) the heterogeneity of the system as
defined by the statistical weights pk’s.

Here below we illustrate some examples of heterogeneous systems presenting an
equilibrium distribution with a diversity-induced power-law distribution. The cases
of exactly solvable models are particularly instructive in that the shapes of the partial
distributions fk(x) are known and an arbitrary weight distribution {pk} can be given
as input parameter, while the other examples discussed are more phenomenological
in nature but for this reason they are interesting from the point of view of complex
systems theory.

12.3 An Introduction to KEMs

The Pareto law of wealth distribution is probably the first example of power-law
distribution ever reported, see Fig. 12.1 for a real example. Even if an experimentally-
based verification of its nature in terms of a statistical mixture of distributions of
heterogeneous economic units—e.g. suitably defined categories of companies—as
described in the previous section and as predicted in the framework of KEMs (see
below) is still missing, there are various reasons to study KEMs in this respect.

First, KEMs have been proposed and rediscovered various times and in this way
justified andmotivated as basicmodels ofwealth exchangeusingdifferent approaches
and from different points of view. This gives us enough confidence to state that at
least the basic idea at the heart of KEMs (see below) must play a relevant role not
only as a paradigm for the explanation of the appearance of power-law tails in general
as a diversity-induced effect, which is a main topic discussed in the present paper,
but also as an explanation for the specific and economically interesting case of the
Pareto power-law characterizing wealth distributions.
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Fig. 12.1 Cumulative probability distribution of the net wealth, composed of assets (including
cash, stocks, property, and household goods) and liabilities (including mortgages and other debts)
in the United Kingdom shown on log-log (main panel) and log-linear (inset) scales. Points represent
the data from the Inland Revenue, and solid lines are fits to the Boltzmann-Gibbs (exponential) and
Pareto (power) distributions (Silva and Yakovenko 2005)

Furthermore, KEMs deserve a detailed discussion for their relevance from the
historical point of view. In fact, it was just 10 years ago, during the 2005 edition of
this same Econophys Conference Series hold in Kolkata (Chatterjee et al. 2005) that
some groups reported for the first time about the possibility that in a heterogeneous
economic systems modeled according to a KEM the various subsystems—i.e. the
economic agents of the model—could relax toward standard equilibrium states char-
acterized by canonical equilibrium distributions of wealth, while the corresponding
marginal wealth distribution can result in a particularly realistic shape of wealth dis-
tribution exhibiting both a power-law at large values of wealth (with a realistic value
of the power exponent) and an exponential shape at intermediate values, in agreement
with real data of wealth and money distributions (Bhattacharya et al. 2005; Chatter-
jee and Chakrabarti 2005; Patriarca et al. 2005). These contributions were in turn
stimulated by previous papers by A. Chatterjee, B.K. Chakrabarti, and S.S. Manna,
who showed for the first time how in a KEM with a diversified set of economic
agents a power-law would replace the exponential shape of the Boltzmann-Gibbs
distribution.

Finally, some versions of KEMs turn out to be exactly solvable while for others
we know what is very probably the exact solution (despite it has not been shown yet
rigorously to be such), thus making them a particularly clear and detailed example
of power-law formation.
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The models known today as KEMs represent simple archetypal models of statis-
tical mechanics that have been re-appearing from time to time in different fields
and problems starting from the first studies of probability theory and statistical
mechanics—in fact they can be considered to be related to the urn models. Currently
kinetic exchange models have been applied also to other problems in molecular
theory and opinion dynamics.

The specific versions of kinetic exchange models considered in the present paper
were introduced with a precise economical problem in mind, namely that of describ-
ing and predicting the shape of the wealth distributions observed. The first quantita-
tive modeling in this direction was put forward in the framework of social sciences
more than 30 years ago inAngle (1983, 1986). Themodels of Anglewere inspired by
the Surplus Theory in Economics and introduced important novelties in themodeling
of wealth exchanges, such as a pair-wise exchange dynamics with random fluctua-
tions. The shape of the final equilibrium distribution obtained by Angle was surpris-
ingly close to the Γ -distributions found in the analysis of real data. A related model
was introduced in finance in Bennati (1988a, b, 1993), and was studied numerically
through Monte Carlo simulations. Also that model leads to an equilibrium wealth
distribution coinciding with the Boltzmann distribution (the Γ -distribution can be
considered as a particular case of Boltzmann distribution).

In the physics community—more precisely in the framework of the field now
known as Econophysics—different versions of kinetic exchange models were intro-
duced, by S. Ispolatov, P.L. Krapivsky, and S. Redner (1998), by A. Chakraborti
and B.K. Chakrabarti (2000), and by A. Dragulescu and V. Yakovenko (2000). In
particular, the latter two papers were developed along a close and intriguing anal-
ogy between KEMs of economical systems and the physics of molecular fluids that
stimulated in turn a long series of related works—KEMs had finally translated into
a quantitative model an analogy already noticed many years before in Mandelbrot
(1960). In principle the same effect could have been produced by Bennati (1988a, b,
1993) but unfortunately the papers were published in journals unaccessible to the
physics community. Among the results obtained in the works which followed, it is of
particular interest here that related to the explanation of the Pareto power-law as an
“overlap of exponentials” (Patriarca et al. 2005) eventually formalized as a general
mechanism of diversity-induced formation of power-laws (Patriarca et al. 2016) in
terms of a statistical mixture of canonical equilibrium distributions. The concept
of statistical mixture is well known in probability theory and in the present case is
directly linked to the heterogeneous character of the economic agents—see previous
section.

Further recent developments described below show that KEMs are a still active
and stimulating research field, which will certainly provide new insights in many
different disciplines (Patriarca and Chakraborti 2013).
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12.3.1 The Homogeneous KEMs

We introduce the general structure of a KEM by a simple example. It is assumed
that the N (minimally) interacting units {i}, with i = 1, 2, . . . ,N , are molecules of a
gas with no interaction energy and the variables {xi} represent their kinetic energies,
such that xi ≥ 0. The time evolution of the system proceeds by a discrete stochastic
dynamics. A series of updates of the kinetic energies xi(t) are made at the discrete
times t = 0, 1, . . . . Each update takes into account the effect of a collision between
two molecules. The time step, which can be set to Δt = 1 without loss of generality,
represents the average time interval between two consecutive molecular collisions;
that is, on average, after each time stepΔt, twomolecules i and j undergo a scattering
process and an update of their kinetic energies xi and xj is made. The evolution of
the system is accomplished as follows at each time t:

1. Randomly choose a pair ofmolecules i, j, with kinetic energies xi, xj, respectively;
they represent the molecules undergoing a collision.

2. Compute the amount Δxij of kinetic energy exchanged, from the initial kinetic
energies xi, xj and model parameters.

3. Perform the energy exchange between i and j by updating their kinetic energies,

xi → xi − Δxij, xj → xj + Δxij , (12.2)

(the total kinetic energy is conserved during an interaction).
4. Set t → t + 1 and go to step 1.

The form of the function Δxij depends on the specific model. Kinetic exchange
models describe the dynamics at amicroscopic level, based on singlemolecular colli-
sions. Such a representation can be optimal in terms of simplicity and computational
efficiency when the focus is on the energy dynamics, because particles are described
by their energy degree of freedom w only, rather than by the entire set of their 2D
position and momentum coordinates, for a D-dimensional system (Fig. 12.2).

As a first simple example, consider the reshuffling rule

xi → ε(xi + xj), (12.3)

xj → (1 − ε)(xi + xj), (12.4)

where ε is a stochastic variable drawn as a uniform random number between 0 and
1. This rule corresponds to a Δxij = (1 − ε)xi − εxj in Eq. (12.2). In this case, the
algorithm we have outlined leads from arbitrary initial conditions to the Boltzmann-
Gibbs energy distribution at equilibrium f (x) = β exp(−βx), where β = 1/〈x〉 and
〈x〉 represents themean energyof a singlemolecule. The theoretical derivations of this
result using the Boltzmann transport equation, or entropy maximization principle,
or simple probabilistic arguments, can be found in standard textbooks of statistical
mechanics.
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Fig. 12.2 Equilibrium wealth distributions in linear (left) and semi-log (right) scale for different
values of the saving parameter λ and corresponding �-distribution fitting functions

As a more general example, consider the relaxation in energy space of a gas
in D-dimensions. We assume that D > 1 because the momentum and energy
distributions of a one-dimensional gas (where only head-on collisions occur) do not
change with time. For a gas in D dimensions Δxij can be derived from energy and
momentum conservation during a collision between particles i and j. If the respec-
tive D-dimensional vectors of the particle initial momenta are pi and pj, we find
(Chakraborti and Patriarca 2008)

Δxij = rixi − rjxj (12.5)

rk = cos2 αk (k = i, j) (12.6)

cosαk = pk · Δpij
|pk| |Δpij| , (12.7)

where cosαk is the direction cosine of momentum pk (k = i, j) with respect to
the direction of the transferred momentum Δpij = pi − pj. The numbers rk can be
assumed to be random variables in the hypothesis of molecular chaos.

We can now study the time evolution by randomly choosing at each time step
two new values for rk in Eq. (12.5) instead of maintaining a list of momentum
coordinates, as is done in a molecular dynamics simulation. Then we use Eq. (12.2)
to compute the new particle energies xi and xj. Note that the rk’s are not uniformly
distributed in (0, 1), and thus some care has to be used in choosing the form of
their probability distribution function. In fact, their distribution strongly depends on
the spatial dimension D, their average value being 〈rk〉 = 1/D (see Chakraborti and
Patriarca (2008) for further details). The dependence of 〈rk〉 on D can be understood
from kinetic theory: the greater the value of D, the more unlikely it becomes that
rk assumes values close to rk = 1 (corresponding to a one-dimensional-like head on
collision). A possibility is to choose a uniform random distribution f (rk) limited in
the interval (0, rmax), with a suitable value of rmax yielding the same average value
1/D, as in the model with a finite saving propensity illustrated below.
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Simulations of this model system using random numbers in place of the rk’s in
Eq. (12.5), for D = 2, give the equilibrium Boltzmann-Gibbs distribution: f (x) =
β exp(−βx), where β = 1/〈x〉. ForD > 2, we obtain theD-dimensional generaliza-
tion of the standard Boltzmann distribution (Patriarca et al. 2004a, b; Chakraborti and
Patriarca 2008), namely theΓ - distribution (Abramowitz and Stegun 1970;Weisstein
2016) characterized by a shape parameter α equal to half spatial dimension,

f (w, α, θ) = wα−1e−w/θ

θαΓ (α)
(12.8)

α = D/2 (12.9)

θ = 〈w〉/α . (12.10)

The scale parameter θ of the Γ -distribution is fixed, by definition, by Eq. (12.10)
(Abramowitz and Stegun 1970; Weisstein 2016). From the equipartition theorem in
classical statistical mechanics, w = D kBT/2. Hence, we see that Eq. (12.10) iden-
tifies the scale parameter θ as the absolute temperature (in energy units) given by
θ ≡ kBT = 1/β. Therefore, the sameBoltzmann factor, exp(−w/θ), is present in the
equilibrium distribution independently of the dimension D, and the prefactor wα−1

depends on D, because it takes into account the phase-space volume proportional
to pd ∝ wd/2, where p is the momentum modulus. In KEMs, one finds a relation
between the effective dimensionD(λ) and the “saving parameter” λ, with 0≤ λ ≤ 1.
In general, the larger Δ, the closer to 1 is λ. In the case of some particular variants
of KEMs it has been finally demonstrated rigorously in Katriel (2015) that the equi-
librium distribution is a Γ -function. By inverting Δ(λ), one obtains that the average
fraction of wealth exchanged during a trade is 1−λ∝1/D forD1, similarly to the
energy exchanges during molecular collisions in a D-dimensional gas, where two
molecules exchange on average a fraction of energy inversely proportional to the
space dimension (Chakraborti and Patriarca 2008).

12.3.2 The Heterogeneous KEMs

An interesting generalization of the homogeneous kinetic exchangemodels discussed
so far is the introduction of heterogeneity. Probably the most relevant applications
of heterogeneous kinetic exchange models in the social sciences is the prediction of
a realistic shape for the wealth distribution, including the Pareto power-law at the
largest wealth values, compare Figs. 12.1 and 12.4. At a general level, heterogeneous
KEMs are composed of agents with different saving parameters λi and have interest-
ing physics analogues of dimensionally heterogeneous systems. For instance, in the
case of a uniform distribution for the saving parameters, φ(λ) = 1 if λ ∈ (0, 1) and
φ(λ) = 0otherwise, settingn = D/2, the dimensiondensity has a power-law∼ 1/n2,
P(n) = φ(λ)dλ/dn = 3/(n + 2)2 (n≥1).
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Considering again the model put forward in Chakraborti and Chakrabarti (2000),
heterogeneity is introduced by diversifying the saving parameterλ, meaning that each
λxi is to be replaced by the corresponding term λixi, thus obtaining an exchanged
wealth

Δxij = (1 − ε)(1 − λi)xi − ε(1 − λj)xj . (12.11)

As a simple example, one can consider a set of heterogeneous agents with parame-
ters λk uniformly distributed in the interval (0, 1). By repeating the simulations using
Eq. (12.11), it is found that the shape of the separate equilibrium wealth distributions
fk(x) of each agent k still retains a Γ -distribution form. However, the wealth distri-
bution of the system f (x), given by the sum of the wealth distributions of the single
agents, f (x) = ∑

i fi(x), has an exponential form until intermediate x-values while a
Pareto power-law develops at the largest values of x, see Fig. 12.3. Such a shape is
in fact prototypical of real wealth distributions, compare Fig. 12.1. This shape of the
equilibriumwealth distribution f (x) is robust with respect to the details of the system
and the other parameters, as long as the values of the λk are sufficiently spread over
the whole interval λ = (0, 1). In fact, it is the group of agents with λ ≈ 1 that are
crucial for the appearance of a power-law. This is well illustrated by the fact that
a similar distribution shape is obtained from a quite different set of λ-parameters,
namely from an agent population in which 99% have a homogeneous λ = 0.2, while
only 1% of the population has a saving propensity spread in λ = (0, 1), see Fig. 12.4.
The way in which the single Γ -distributions of the subsystems comply to generate
a power-law distribution is illustrated in Fig. 12.3, taken from Patriarca et al. (2005,
2006). The heterogeneous model necessarily uses a finite upper cutoff λmax < 1,
when considering the saving parameter distribution, which directly determines the
cutoff xmax of the wealth distribution, analogous to the cutoff observed in real

Fig. 12.3 Wealth distribution f (x), from Patriarca et al. (2006), for uniformly distributed λk in
the interval (0,1); f (x) is here resolved into partial distributions fi(x), where each fi(x) is obtained
counting the statistics of those agents with parameter λi in a specific sub-interval. Left: Resolution
of f (x) into ten partial distributions in the ten λ-subintervals (0, 0.1), (0.1, 0.2)…(0.9, 1). Right: The
last distribution of the left figure in the λ-interval (0.9, 1) is in turn resolved into partial distributions
obtained counting the statistics of agents with λ-subintervals (0.9, 0.91), (0.91, 0.92) …(0.99, 1).
Notice how the power-law appears as a consequence of the superposition of the partial distributions
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Fig. 12.4 Example of a realistic wealth distribution, from Patriarca et al. (2006). Red (continuous)
curve: Wealth distribution obtained by numerical simulation of an agent population with 1% of uni-
formly distributed saving propensities λi ∈ (0, 1) and the rest of homogeneous saving propensities
λi = 0.2. Magenta (dotted) curve: Exponential wealth distribution with the same average wealth,
plotted for comparison with the distribution in the intermediate-wealth region. Green (dashed)
curve: Power-law ∝ x−2 plotted for comparison with the large-income part of the distribution

distributions: the closer λmax is to one, the larger xmax and the wider the interval
in which the power-law is observed (Patriarca et al. 2006).

Also, theλ-cutoff is closely related to the relaxation process, whose time scales for
a single agent i is proportional to 1/(1 − λi) (Patriarca et al. 2007). Thus, the slowest
convergence rate is determined by 1 − λmax. The finiteλ-cutoff used in simulations of
heterogeneous kinetic exchange models is not a limitation of the model, but reflects
an important feature of real wealth distributions.

We notice that a derivation of the dynamics of the kinetic exchange models from
microeconomics theory was proposed in Chakrabarti and Chakrabarti (2009), in
terms of the utility maximization principle used in standard economic theory. The
picture described here is instead that of agents as particles exchanging “money” in
the place of energy in conserving two-body scattering, as in entropy maximization
based on the kinetic theory of gases (Chakraborti and Patriarca 2009).

12.4 Power-Laws in Complex Networks

A type of power-law distribution which has not been mentioned so far is that asso-
ciated to an underlying complex topology.

As a first examplewe compare a free diffusion process on a homogeneous network
and that on a scale-free network. We first consider a homogeneous lattice ofM sites,
in which each site i (i = 1, . . . ,M) is connected to the same number ki = k of first
neighbors. Such a lattice is an example of a dimensionally homogeneous network
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providing a discrete representation of aD-dimensional space. In the case of the square
lattice structure, the dimension D is related to the degree k as D = k/2. An unbiased
uniform diffusion process of X walkers hopping between the M sites of the lattice
relaxes toward a uniform load distribution f (x) = const, with the same average load
at each node i given by xi = X/M.

On the other hand, a heterogeneous network with degree distribution g(k) cannot
be given a straightforwardgeometrical interpretation and in general represents a space
with a highly complex topology. In particular, no unique dimension can be assigned,
so that it can be regarded as a dimensionally heterogeneous space. One can estimate a
local dimensionality from the connectivity, in analogy with the homogeneous square
lattice, by introducing for each node i the local dimensionDi = ki/2. At equilibrium,
free diffusion of X walkers on such a network produces a stationary state with an
average load xi proportional to the degree, xi = x̄ki, where the average flux per link
and direction x̄ is fixed by normalization, x̄ = X/K , with X = ∑

i xi and K = ∑
j kj.

It follows from probability conservation that the load distribution at equilibrium f (x)
is directly determined by the degree distribution g(x),

f (x) = g(k)dk/dx = g(x/x̄)/x̄ . (12.12)

In the important case of a scale-free network with g(k1) ∼ 1/kp, one has a power-
law tail in the load distribution, f (x) ∼ 1/xp, with the same exponent p. A close rela-
tion between degree distribution and equilibrium density, analogous to Eq. (12.12)
valid for the case of free diffusion, can be expected for any quantity x diffusing
through a network. For instance, in the case of the Zipf law, such a relations is known
to hold, if written language is regarded as a randomwalk across the complex network
with nodes given by words and links between words which are neighbors in a text.

12.5 A Heterogeneous Polymeric Fluid

As an example of a standard system presenting a diversity-induced power-law distri-
bution, we consider a theoretical model made up of an assembly of harmonic poly-
mers. This is a simple and exactly solvable model, yet it is general in the sense that
the inter-particle harmonic potentials can be thought to describe the small displace-
ments of the normal modes with respect to the equilibrium configuration of a more
general nonlinear system. We assume that polymers consist of different numbers of
monomers, i.e., they have different numbers of degrees of freedom, see Fig. 12.5,
and study the potential energy distribution (similar considerations hold also for the
distribution of kinetic energy or velocity). Notice that such a model can also be
used to study a general system composed of subsystems with different dimensions
or numbers of degrees of freedom. The hypothesis of non-interacting polymers is
made, in the same spirit of the statistical mechanical treatment of a perfect gas, even
if a weak interaction is understood to be present in order to bring the system toward
thermal equilibrium, implying that each polymer undergoes independent statistical
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Fig. 12.5 A prototypical
model of system presenting a
diversity-induced power-law
tail in the (kinetic as well as
potential) energy distribution
is an assembly of harmonic
polymers with different
numbers of monomers, see
text for details

fluctuations. It is convenient to start from the homogeneous system, composed of
identical subsystems with D harmonic degrees of freedom. Using suitably rescaled
coordinates q = {qi} = {q1, q2, . . . , qD}, the energy function can be written in the
form x(q) = (q21 + · · · + q2D)/2. The equilibrium energy distribution coincides with
the standard Gibbs energy distribution of aD-dimensional harmonic oscillator. After
integrating out the angular variables in the space q, it reduces to a Γ -function of
order n = D/2 (Patriarca et al. 2004b),

fn(x) = β γn(βx) ≡ β

Γ (n)
(βx)n−1 exp(−βx) , n = D/2 . (12.13)

Here β is the inverse temperature. The same result is obtained through a variational
principle from the Boltzmann entropy, see the contribution on the KEMs inD dimen-
sions in this volume. The result presented there for the entropy Sn[fn] and the use of
the method of the Lagrange multipliers can be directly generalized for the analogous
problem of a heterogeneous system with different dimensions, i.e.,

S[{fn}]=
∫
dn P(n)

∫ +∞

0
dx fn(x)

{

ln

[
fn(x)

σ2n xn−1

]

+μn+βx

}

, (12.14)

where the fractions P(n) of units with dimension D = 2n have been introduced,
with

∑
n P(n) = 1 and �2n is the hypersurface in Δ dimensions. Different Lagrange

multipliersμn have been used since the fractionsP(n) are conserved separately, while
a single temperature parameter β means that only the total energy is conserved.
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The resulting average energy is 〈x〉〈D〉/2β, where 〈D〉 = 2〈n〉 = 2
∫
dnP(n)n is

the average dimension. The probability of measuring a value x of energy (indepen-
dently of the unit type) is a statistical mixture (Feller 1966),

f (x) =
∫
dn P(n)fn(x) =

∫
dn

P(n)β

Γ (n)
(βx)n−1 exp(−βx). (12.15)

While the distributions fn(x) have exponential tails, the asymptotic shape of the
function f (x) can be in general very different. It is possible to show that

f (xβ−1) ≈ βP(βx) , (12.16)

if P(n) decreases fast enough with increasing n. Thus, if P(n) has a power-law tail
in n then f (x) has a power-law tail in x with the same exponent. Some examples
are shown in Fig. 12.6, taken from Chakraborti and Patriarca (2009), to which the
reader is referred for a detailed discussion. This result can be obtained considering
values βx  1 in Eq. (12.15), since the main contributions to the integral come from
n ≈ βx  1 (γn(βx) has its maximum at x ≈ n/β and γn(βx) → 0 for small as well
as larger x). Introducing the variable m = n − 1, Eq. (12.15) can be rewritten as

f (x)=β exp(−βx)
∫

dm exp[−φ(m)] , (12.17)

φ(m)=−ln[P(m+1)] − m ln(βx) + ln[ Γ (m+1)] . (12.18)

This integral can be estimated through the saddle-point approximation expanding
φ(m) to the second order in ε = m − m0, where m0 = m0(x) locates the maximum
of φ(m), defined by φ′(m0) = 0 and φ′′(m0) > 0, and integrating:

f (x) ≈ β
√
2π/φ′′(m0) exp[−βx − φ(m0)] . (12.19)

Fig. 12.6 Distribution f (x)
in Eq. (12.15) with
P(n) = α/n1+α (n ≥ 1),
P(n) = 0 otherwise, for
α = 1 (red), α = 2 (green).
Continuous lines: Numerical
integration of Eq. (12.15).
Triangles: Saddle point
approximation. Circles:
Small-x limit. See text for
details
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Using the Stirling approximation in Eq. (12.18) one finds

φ(m) ≈ − ln[P(m+1)] − m ln(βx) + ln(
√
2π) + (m+1/2)ln(m) − m, (12.20)

φ′(n) ≈ −P′(m+1)/P(m+1) − ln(βx) + 1/2m + ln(m), (12.21)

φ′′(n) ≈ P′2(m+1)/P2(m+1) − P′′(m+1)/P(m+1) − 1/2m2 + 1/m. (12.22)

For general shapes of P(n) which decrease fast enough one can neglect the terms
containing P respect to 1/m as well as P′/P and 1/m respect to ln(m). Then the
approximate solution of φ′(m0) = 0 is m0(x) ≈ βx and using Eqs. (12.20)–(12.22)
in Eq. (12.19) one has

f (xβ−1) ≡ f2(x) = βP(1 + βx) , (12.23)

providing the asymptotic form of the density f (x) in terms of the dimension density
P(n).

For the opposite limit of f (x) at x�β−1 one can set φ(n)≈φ(1) + φ′(1)(n − 1)
in (12.17) and (12.18), to obtain

f (x � β−1) ≡ f1(x) = −[βP(1) exp(−βx)]/[ln(βx) + γ + P′(1)/P(1)], (12.24)

where, from Eq. (12.18), we set φ(0) = ln[P(1)], φ′(0) = − γ − ln(βx) − P′(1)/
P(1),withγ = ψ(1) ≡ (d ln[Γ (m)]/dm)m=1 ≈ 0.57721being theEulerγ -constant.

In Fig. 12.6 the function f2(x) (triangles), given byEq. (12.23), is compared at large
x with the exact distribution f (x) obtained by numerical integration of Eq. (12.15)
(continuous lines) for the values α = 1, 2 for the power-law density Pα(n). Also the
corresponding density f1(x) (circles), given by Eq. (12.24), is shown at small βx.

12.6 A Generalized Framework for Power-Law Formation

As a concluding discussion and proposal for future research in this field, we compare
on one side the diversity-related mechanism discussed above, describing power-law
distributions as a heterogeneity-induced effect, and, on the other side, the mecha-
nism referred to as superstatistics, introduced in the framework of non-equilibrium
statistical mechanics (Beck and Cohen 2003; Beck 2006) to explain the appearance
of power-laws as due to the long-time or large-space fluctuation of some parameter
of the system, such as temperature: “The basic idea underlying this approach is that
there is an intensive parameter, for example the inverse temperature β or the energy
dissipation in turbulent systems, that exhibits fluctuations on a large time scale (large
as compared to internal relaxation times of the system under consideration)” (Beck
2009).
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The key mechanism that in superstatistics can lead to the appearance of a power-
law is the interplay between the fast dynamics (describing e.g. the local Brownian
motion) and the slow dynamics (associated e.g. to slow global variations of temper-
ature). From the technical point of view, one can describe the effective probability
distribution of the relevant variable as obtained through a marginalization proce-
dure (Feller 1966) with respect to the possible values of the random parameter (from
the physics point of view this means to integrate out the stochastic parameter) or
as a randomization procedure (Feller 1966), i.e., an average of the probability dis-
tribution function of a (single) system over the values of some system parameter(s)
varying slowly in time or space. In this way, without any further (exotic) assumptions
beyond canonical statistical mechanics, superstatistics can lead to the appearance of
a power-law tail in the distributions associated to different phenomena.

The twomentionedmechanisms are basically different in their physical interpreta-
tions and are in fact complementary to each other: in the diversity-induced power-law
mechanism a quenched disorder is assumed and the system can in principle be in
thermal equilibrium. Instead, superstatistics considers just the temperature (or the
energy) fluctuations of the system as responsible for the power-law appearance.

However, both the diversity-based mechanism and superstatistics describe power-
laws formation in terms of a superposition of otherwise canonical distribution, despite
they are deeply different in their physical interpretation—marginal distributions due
to the interplay of a set of heterogeneous constituent units in the first case and
compound distributions resulting from random variation in time or space of some
system parameters in the second case. At a methodological level, the justifications
behind the two mechanisms share the intention to remain within the limits of canon-
ical statistical mechanics. This suggests the interesting possibility that a generalized
framework, in which the underlying ideas of the two methods are merged, i.e. taking
into account both slow stochastic fluctuations of some parameters as well as internal
heterogeneity, could provide a better description of fat-tailed distributions.

It is worth noting that such an approach was implicitly explored in Chatterjee
et al. (2004) when a power-law tail was first observed in a numerical experiment
with KEMs. In fact, besides diversifying the agents, the authors also introduced a
random resetting at fixed periods of time of all the (different) saving parameters of
the agents, which could be interpreted at a statistical level as a long time average over
different values of the saving parameters, e.g. due to random fluctuations, in the spirit
of superstatistics. As discussed already in the Kolkata conference of 2005 (Patriarca
et al. 2005), the combination of these two different ways of averaging the wealth
distribution over different values of the saving parameters turns out to be an effective
procedure to extend the range of the power-law tail and to speed up its formation.
More work is needed to clarify further the mutual advantage that diversity and long-
time noise in the system parameters can have in producing fat-tailed distributions.
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12.7 Conclusions

Wehave discussed the origin of power-lawdistributions in complex systems, i.e., how
the heterogeneity of their constituent units lets a power-law tailed distribution emerge
as a collective diversity-induced effect. A general formulation based on probability
theorywas given and a few examples of power-law tailed distributionswere discussed
in detail, together with the proposal of some further research. Much remains to be
done for a deeper understanding of the results obtained so far and to fully explore
their consequences.
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Chapter 13
The Many-Agent Limit of the Extreme
Introvert-Extrovert Model

Deepak Dhar, Kevin E. Bassler and R.K.P. Zia

Abstract We consider a toy model of interacting extrovert and introvert agents
introduced earlier by Liu et al. (Europhys. Lett. 100 (2012) 66007). The number of
extroverts, and introverts is N each. At each time step, we select an agent at random,
and allow her to modify her state. If an extrovert is selected, she adds a link at random
to an unconnected introvert. If an introvert is selected, she removes one of her links.
The set of N 2 links evolves in time, and may be considered as a set of Ising spins
on an N × N square-grid with single-spin-flip dynamics. This dynamics satisfies
detailed balance condition, and the probability of different spin configurations in
the steady state can be determined exactly. The effective hamiltonian has long-range
multi-spin couplings that depend on the row and column sums of spins. If the relative
bias of choosing an extrovert over anF introvert is varied, this system undergoes a
phase transition from a state with very few links to one in which most links are
occupied. We show that the behavior of the system can be determined exactly in the
limit of large N . The behavior of large fluctuations in the total number of links near
the phase transition is determined. We also discuss two variations, called egalitarian
and elitist agents, when the agents preferentially add or delete links to their least/
most-connected neighbor. These shows interesting cooperative behavior.
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13.1 Introduction

In recent years, there has been a lot of interest in the study of networks.Many different
types of networks have been studied: transportation networks like the railways or
airlines networks (Sen et al. 2003), chemical reaction networks in a cell (Tyson
et al. 2003), power grids etc. (Albert et al. 2004). A good review of the general
theory may be found in Dorogovetsev et al. (2008), Barabasi (2009). In studies of
networks in social sciences, some examples are the citation network of scientific
publications (Chen and Redner 2010), small-world networks (Newman 2000). An
important question that has attracted a lot of attention is the time evolution of social
networks, in which the number of friends a particular agent interacts with evolves
in time. In this context, a very interesting toy model was introduced by Liu et al.
(2012), called the extreme introvert extrovert model. Numerical studies of this model
revealed a phase transition, where the fractional number of links present undergoes
a jump from a value near 0 to a value near 1, as a parameter in the model is varied
continuously (Liu et al. 2013, 2014; Bassler et al. 2015). Recently, we have shown
that this model can be solved exactly in the limit of large number of agents (Bassler
et al. 2015). This article is a brief pedagogical account of these results. For details,
the reader is referred to the original publication.

13.2 Definition of the Model

We consider a group consisting of N introvert and N extrovert agents. The agents
can add or delete links connecting them to other agents. In so doing, in our model,
they do not have to get permission from the agent to whom the link is being added or
from whom the link is being removed. The introverts are assumed to be comfortable
with only a few links, and extroverts like many. In a general model, the member of
links an introvert likes to have is kI , and an extrovert likes kE , with kI < kE . We
will consider the extreme case where kI = 0, and kE = ∞. Thus, and introvert does
not like any links, and will delete a link, given an opportunity. On the other hand,
an extrovert will try to add a link whenever possible. This model has been called the
eXtreme Introvert-Extrovert model (XIE) (Liu et al. 2012, 2013, 2014).

A configuration of the system at any time is specified completely by an N ×
N matrix A whose entries are Ai j , with Ai j = 1, if there is link between the i-
th introvert, and the j-th extrovert, and Ai j = 0 otherwise. The total number of
configurations is 2N 2

. The model undergoes a discrete-time Markovian evolution
defined by the following rules: At each time step, select an agent at random, and
allow her to change the number of links connecting her to other agents. Any introvert
has a probability 1

(1+z)N , of being selected, and an extrovert has a probability z
(1+z)N

of being selected. Then, z < 1 corresponds to a bias favoring introverts, and z > 1
favors extroverts. If an introvert is selected, and has at least one link to an extrovert,
she deletes one of the links connecting her to other agents at random. If she has no
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links, she does nothing, and the configuration remains unchanged. If an extrovert
is selected, she will add a link to one of introverts not already linked to her. If she
already has all links present, she does nothing.

13.3 Steady State of the XIE Model

We may think of the N 2 binary variables Ai j as Ising variables placed on an N × N
square grid, and then the update rule corresponds to single-spin-flip dynamics of the
model.Note that our rules have the symmetry of changing introverts to extroverts, and
Ai j ↔ 1 − Ai j , z ↔ 1/z. This corresponds to the Ising model having spin-reversal
symmetry with z ↔ 1/z.

In general, given some such set of update rules, it is very difficult to determine the
probabilities of different configurations in the steady state exactly. The remarkable
result about the XIE model is that in this case, the probabilities of transition between
configurations C and C ′ satisfy the detailed balance condition, and one can write
down the probability of different configurations in the steady state exactly. For the
configuration C , in which the i-th introvert has degree pi , and the j-th extrovert has
degree q j , the steady-state probability Prob∗(C ) has a very pleasing form (Liu et al.
2012)

P∗(C ) = 1

Ω(z)
z
∑

i pi

N∏

i=1

(pi !)
N∏

j=1

(
N − q j

)! (13.1)

Fwhere Ω(z) is a normalization constant.
We may define the negative logarithm of this probability as the ‘energy’ of the

configuration C , giving

Hef f (C ) = −
N∑

i=1

log pi ! −
N∑

j=1

log(N − q j )! − log(z)
∑

i

pi (13.2)

We see that the effective hamiltonian has long-range couplings, and the energy
of a configuration depends only on the row- and column- sums of the square array
A. Also, the energy function is non-extensive: the energy of the configuration with
all links absent varies as −N 2 log N . This non-extensivity causes no real problems,
as all probabilities are well-defined, and averages of observables in steady state are
well-behaved.

Monte Carlo simulations of the XIE model have shown that, for large N , the
system seems to undergo a transition from a few-links phase for z < 1 to a phase in
which almost all links present for z > 1. In the few-links phase, the average number
of links per agent remains finite, of order 1, even as N tends to infinity, with fixed
z < 1. Conversely, in the link-rich phase for z > 1, the average number of links per
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agent is nearly N , and the difference of this number from N remains finite, as N is
increased to infinity.

The fact that energy depends only on the row- and column- sums, and thus only
on 2N variables, instead of the N 2 variable Ai j explicitly, suggests that some kind
of mean-field treatment may be exact for this problem. This turns out to be true, as
we proceed to show, but the treatment needs some care, as the number of variables,
and hence also their conjugate fields, tends to infinity, in the thermodynamic limit.
If the energy of the system depended only on the total number of links in the system,
a single mean-field variable conjugate to the net magnetization would have been
sufficient.

13.4 Asymptotically Exact Perturbation Theory

We consider the low-density phase (z < 1) first. The case z > 1 is equivalent to this
by the Ising symmetry discussed above. In the low density phase, the typical degree
q j of the j-th extrovert is much less than N . Then we have (N − q j )! ≈ N !N−q j .
This suggests that we write for all q ≥ 0

(N − q)!/N ! = N−q F(q, N ) (13.3)

with

F(q, N ) =
q∏

r=1

(

1 − r − 1

N

)

(13.4)

For q � N , F(q, N ) is nearly equal to 1. Then, since
∑

j q j = ∑
i pi , we can write

the effective Hamiltonian for the random XIE model as

He f f = H0 + Hint (13.5)

where
H0 = −

∑

i

[
ln (pi !) + pi ln

z

N

]
− N ln(N !) (13.6)

and
Hint = −

∑

j

ln F(q j , N ) (13.7)

If we ignore the effect of the “perturbation term” He f f , different introverts are
independent, and one can sum over states of each introvert separately. This gives

Ω0 = (N !)N [ω0]N
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with
ω0 =

∑

k

zk F(k, NE )

For large N , F tends to 1, and we get

ω0 = 1 + z + z2 + z3 + ... = 1

1 − z
, (13.8)

which gives

logΩ(z) = N log(N !) + N log (
1

1 − z
) + . . . . (13.9)

In a systematic perturbation theory, we need to determine the behavior of the
steady state of the system underH0. This is easily done. In particular, we can deter-
mine the degree distribution of introverts and extroverts. It is easily seen that for
large N , the probability that an introvert has degree r has an exponential distribu-
tion: Prob (introvert has degree r) = (1 − z)zr . Here, the pi ! factor in the weight of
a configuration makes the usually expected Poisson form into a simple exponential.
However, the degree distribution of the j-th extrovert is a sumof N mutually indepen-
dent variables Ai j , hence it remains a Poisson distribution. Clearly the mean degree
of extroverts is same as the mean degree of introverts, so the Poisson distribution has
mean z

(1−z) , which determines it completely.
To lowest order in (1/N ), log F(q, N ) = −q(q − 1)/(2N ). Thus, while the inter-

action hamilonian has different values for different configurations, and thus not a
trivial c-number term, it is a sum of N different weakly correlated terms, and its
mean is O(1), and fluctuations about the mean are smaller. It is easily seen that they
are O(N−1/2), giving

logΩ(z) = N log(N !) + N log (
1

1 − z
) + O(1), for z < 1. (13.10)

For z > 1, similar analysis, or the introvert-extrovert flip symmtery can be used
to deduce that

logΩ(z) = N log(N !) + N 2 log z + N log (
1

1 − 1/z
) + O(1), for z > 1.

(13.11)
This is a remarkable result. Clearly,we get asymptotically exact result for logΩ(z)

up to the linear order in N using the hamiltonian H0. The effect of Hint is only a
term of O(1) in Ω(z). In particular, in the large-N limit, the density of links is 0 for
z < 1, and 1 for z > 1.

We note that these results are consistent with a scaling ansatz

[Ω(z)]1/N

N ! = N a f (εN b) (13.12)
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where z = exp(−ε), a = b = 1/2, and f (0) = a finite constant, and f (x) is con-
tinuous at x = 0. For large positive x , f (x) ∼ 1/x . For z > 1, a similar form is
obtained by the inversion symmetry, but the scaling functions for ε > 0 and ε < 0
are different, reflecting the ‘first-order nature’ of the transition.

13.5 Variants of XIE with Preferential Attachment

It is interesting to consider some variations on this general theme. We consider the
case when the agent does not choose which link to add (or delete) at random, as done
in the XIE model in Sect. 13.2, but decides on the basis of knowledge of degrees of
the other nodes. We consider two variations.

Egalitarian agents: Here extrovert agents realize that the introverts regard links
as burden, and attempts to distribute this burden as evenly as possible, and would
add a link to the least connected introvert. Similarly, an introvert would cut a link to
the most connected extrovert, as this action would make the other extroverts more
equal.

Elitist agents: Here, we consider the opposite extreme. In this case, an extrovert
prefers the most ‘sociable’ introvert, and adds a link to the most connected of the
available introverts. Similarly, an introvert cuts a link to the least connected available
extrovert.

These variations have a strong effect on the degree distribution in the steady state.
Let us discuss egalitarians first. Then, at any time, the degree distribution of an agent
will have only two possible values: k or (k + 1), for some possibly time-dependent
k. In the low density regime of this egalitarian XIE model, there are only a small
number of contacts. It is easy to see that in the large-N limit, in the steady state, we
have k = 0, and fractional number of introverts with exactly 1 contact is z. For the
degree distribution of extroverts, it is easy to see that degree distribution is Poisson,
with a mean value that increases with z. For z > 1, the only possible values of degree
of an introvert are N − 1 and N .

The behavior of the degree distribution at the phase transition point z = 1 is
particularly interesting. Here the fractional number of links can vary from 0 to 1, and
the degree of an agent vary from 0 to N . However, the agents, by their cooperative
behavior ensure that the inequality in the society always remains low. This is shown
in Fig. 13.1, where we plot the time-dependent degree of two introverts, and two
extroverts. While the actual degree varies in an unpredictable way, the four curves
fall on top of each other, and are not distinguishable in the plot.

We now discuss the elitists case. To recall, here the extrovert agents prefer to
link to one most sociable of the introverts (most connected), and introverts, to keep
inversion symmetry, are assumed to delete their link to the least connected extrovert.
This generates an interesting instability: Say, start with all links absent. Then, an
extrovert will add a link to some randomly chosen introvert. Then all later extroverts
selected at subsequent times will choose to link to the same agent. Her degree will
tend to become N . Then the extroverts will choose a new “star” to link to. The degree
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Fig. 13.1 Time trace of the
degrees of two introvert k
(black, blue), and of two
extroverts, q (red, green) in a
critical egalitarian XIE with
N = 100. The graphs fall on
top of each other, and are not
distinguishable. Here the
unit of t is a sweep. Taken
from (Bassler et al. 2015)
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Fig. 13.2 The incidence
matrix after reordering. The
1’s and zeroes are separated
by a single staircase-like
interface. Here green=1,
yellow=0
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distribution of introverts becomes very unequal. The question what happens in the
steady state?

Interestingly, it turns out that in this case, for all z, the degree distribution is
rather wide. Let us try to understand this. Clearly, argument sketched above needs
elaboration. When a ‘star’ introvert’s degree becomes comparable to N , often an
updating extrovert would be already connected to this introvert, and the time between
changes of degree increases if the degree is closer to N . Meanwhile, other new stars
are already in themaking. This produces a broad distribution of degrees. If we inspect
the incidence matrix A at different times during the evolution of the system, we do
not see much pattern in it directly. However, if we look at the same matrix after
permuting the rows and columns to matrix so that both introverts and extroverts are
arranged according to their degrees in ascending order, we see much more structure.
It is found, and easy to prove a posteriori, that in the sorted matrix, all 1’s come in
a single block with no holes, and similarly with zeroes (Fig. 13.2). There is a single
staircase-shaped interface that separates 1’s and zeros, and this fluctuates with time.
Clearly, if we have this property at one time, it will be preserved by the dynamical
rules.
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Fig. 13.3 Evolution rules for the interface: height can change at the maxima (pink diamond), or
the minima (blue diamond), at a rateproportional to length of side on the right

The total number of accessible matrices in steady state is ≤ (2N
N

)
(N !)2, which

is much less than the number of possible 2N 2
. Thus, the configurations are much

simpler to describe, when the permutation symmetry between agents is factored out,
and one works with the equivalence classes of configurations under the symmetry
group. As time evolves, the interface describing the configuration will evolve (we
have to reorder the agents according to their degree distribution at each time). One
can write the evolution rules in terms of the interface model. It can be seen that the
interface will evolve by flipping at corners: height can change at the maxima, or
the minima, at a rate proportional to length of side on the right (Fig. 13.3). But this
model seems difficult to solve exactly. On general grounds, since it is an interface
fluctuation model where height can increase or decrease with equal probability, it
may be expected to be in the universality class of Edwards-Wilkinson model, where
the dynamical exponent is 2, i.e. relaxation time for an interface of length L varies
as L2. For the elitists case, this corresponds to relaxation time being approximately
O(1) sweeps (where one sweep of the system is L2 attempts which updates each link
on the average once), for large N .

For different values of the z, the slope of the interface changes, but qualitative
behavior of relaxation remains the same. Hence, we find that the elitists self-organize
into a critical state, where the degree distribution of agents is wide, for all z.

13.6 Summary and Concluding Remarks

In this article, we discuss a simple toymodel of a dynamical networks, where the state
of different links keeps changing with time, but the system has a non-trivial steady
state. As a function of the bias parameter z, the system undergoes a phase transition
from a state with few links to a state with most links occupied. We showed that one
can develop a perturbation theory, which becomes asymptotically exact for large
N , at first order of perturbation. The corresponding state has non-trivial many-body
correlations. We also discussed variations of the basic XIE model where the agents
attach to one of the most- or least- connected agents, and showed that the steady
state can have a wide degree distribution of degrees of agents. An interesting open
problem is a theory to calculate the scaling function f (x) in Eq. (13.12) exactly. It
is hoped that future research will lead to a better understanding of this model.
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Chapter 14
Social Physics: Understanding Human
Sociality in Communication Networks

Asim Ghosh, Daniel Monsivais, Kunal Bhattacharya
and Kimmo Kaski

Abstract In this brief review, we discuss some recent findings of human sociality
in contemporary techno-social networks of interacting individuals. Here we will
focus on a few important observations obtained by analysing mobile communication
data of millions of users in a European country participating in billions of calls
and text messages over a period of one year. In addition to the description of the
basic structure of the network in terms of its topological characteristics like the
degree distribution or the clustering coefficient, the demographic information of
the users have been utilized to get deeper insight into the various facets of human
sociality related to age and gender as reflected in the communication patterns of
users. One of the observations suggests that the grandmothering effect is clearly
visible in these communication patterns. In addition it is found that the number of
friends or connections of a user show a clear decaying trend as a function of the user’s
age for both genders. Furthermore, an analysis of the most common location of the
users shows the effect of distance on close relationships. As computational analysis
and modelling are the two key approaches or tools of modern ‘Social Physics’ we
will very briefly discuss the construction of a social network model to get insight
into how plausible microscopic social interaction processes translate to meso- and
macroscopic socially weighted network structures between individuals.
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14.1 Introduction

Recently, large amount of research on social communication has been done by using
Big Data or records of “digital footprints” available from modes of modern-day com-
munication such as mobile phone calls and text messages as well as social media
like Twitter and Facebook. The reason for this is that it offers a complementary,
easily measurable and quantifiable way to investigate social interactions between
large number of people forming a network, in which people and social interactions
correspond to its nodes and weighted links, respectively. The mobile phone commu-
nication data has turned out to be the first and most prominent so far in helping us
to understand the microscopic details of social networks, human mobility and their
behavioural patterns (Blondel et al. 2015) as well as how these microscopic proper-
ties convert to macroscopic features. Many interesting observations were found by
analysing mobile communication, for example, we now have quite a bit of under-
standing of a number of structural properties of human social networks, such as
the degree distribution, distribution of tie strengths, clustering coefficient, commu-
nity structure, motif statistics, etc. (Onnela et al. 2007a, b; Kovanen et al. 2011;
Tibély et al. 2011). A natural follow-up of data analysis or reality mining approach
is modelling, to explore plausible mechanisms that reproduce observed structures
and properties of the network (Kumpula et al. 2007; Toivonen et al. 2009). The com-
bination of these two approaches, namely analysis and modelling, constitutes the
modern empirical research approach of Social Physics, which is a concept coined by
philosopher August Comte during the era of Industrial Revolution in the early 19th
century while considering that the behaviour and functions of human societies could
be explained in terms of underlying laws like in Physics.

Apart from the static structural properties influencing the functioning of social
networks, the fact is that the dynamics therein and on them constitute another inter-
esting area of network properties, i.e. social networks are temporal in nature. For
example, there has been studies investigating inhomogeneous temporal sequences
of communication events by looking at the distribution of the number of events in
a bursty period that follows a universal power-law (Karsai et al. 2012). As a conse-
quence, it was found that the spreading processes like rumour propagation become
slow due to temporal inhomogeneity in event sequences or large inter-event times
separating events, even though the networks have the small-world property (Karsai
et al. 2011). It was also observed that such a heavy tail does not originate from cir-
cadian and weekly patterns of communicating users, rather it is a consequence of
burstiness in temporal mobile phone communication patterns (Jo et al. 2012).

Apart from investigations of the basic properties of networks there has been quite a
few studies using demographic data, by measuring gender differences in egocentric
networks. The latter studies showed shifting patterns of communication from the
reproductive age to the age of parental care (Palchykov et al. 2012; Karsai et al.
2012; Palchykov et al. 2013; David-Barrett et al. 2015). In addition, using most
common location of the users in the data we have learned that the tie strength is
related to the geographical distance (Onnela et al. 2011; Jo et al. 2014). Moreover,
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a universal pattern of time allocation to differently ranked alters has been found
(Saramäki et al. 2014). By studying temporal motifs, homophily and gender specific
communication patters were observed (Kovanen et al. 2013). A recent study also
indicates variation of number of friends with the age and gender (Bhattacharya et al.
2015).

In this review, we will discuss a few important observations obtained by analysing
a mobile communication data of millions of users participating in billions of calls
and text messages in a year. Next we will provide detailed information of the data and
methodologies used for the analysis. Following that we will mention fundamental
observations from this data. First, we will discuss the relevance of the age distribu-
tion of the most frequently contacted person and its connection to the well known
‘grandmothering hypothesis’ (Hawkes et al. 1998). Second we will discuss a recent
observation of the variation in the number of connections with the age and gender
of the users. This is followed by a brief discussion of the effect of geographical dis-
tance on close relationships by considering the most common locations of the users.
Then we will briefly discuss the construction of a social network model for exploring
the mechanisms that produce the observed structures and properties of the network.
Finally, we will end the review with a brief general discussion and some concluding
remarks.

14.2 Data and Methods

The studied dataset contains anonymised mobile phone call detail records (CDRs)
from a particular operator in a European country during 2007. The dataset contains
full calling histories for the users of this service provider, whom are termed ‘company
users’ and the users of other service providers are called ‘non-company users’. There
are more than six million company users and more than 25 million non-company users
appearing in the full one year period records (Palchykov et al. 2012; Bhattacharya
et al. 2015).

The dataset also contains demographic information of the company users about
their gender, age, zip code and most common location. The zip code is extracted from
the billing address of the user and the most common location (in terms of latitude
and longitude) is the location of the cell tower most used by the user. However,
the most common location does not necessarily correspond to the zip code. By
using the latitude and longitude, the geographic distance between two locations
can be calculated. In the dataset, the number of users with complete demographic
information is around three million (Jo et al. 2014).

In the data set, it was found some company users have multiple subscriptions
under the same contract numbers. For such users determination of their real age and
gender is difficult. The gender and age of such users were not considered. The age of
each company user was recorded when the contract was signed. Therefore, the age
of each user was increased by the number of years between user’s contract year and
2007 (Palchykov et al. 2012; Bhattacharya et al. 2015).
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14.3 Observations

To study the dynamics of closest relationships between each ego (the individual in
focus) and his/her alters (the contacts of the individual), the alters are ranked in terms
of total number of calls (or total amount of calling time) with the ego. In order to
interpret the findings, we have assumed that top ranked alters around the same age
and opposite sex of those of the egos’ are considered to be the egos’ partners or
spouses. We have also assumed that when the age of the top ranked alters is about
one generation apart from the egos’ age, they are considered to be egos’ children or
parents, irrespective of sex. To illustrate these relationships a small sample portion
of mobile communication based social network is shown in Fig. 14.1. Here the blue
circles represent male and red circles female users, with numbers within the circles
denoting the age of the user and the size of the circle being linearly dependent on the
user’s age, while grey circles denote missing age and gender information, and the
frequencies of contacts are denoted by the thickness of the links (and by the number
on the links) (Palchykov et al. 2012).

Fig. 14.1 A part of the network is shown. Blue and red circles represent male and female users,
respectively. Also users’ ages are denoted by circle sizes (older the age, bigger the circle) as well
as numbers. Individuals for whom the age and the gender is not known are denoted by grey circles.
Taken from (Palchykov et al. 2012)
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14.3.1 Alter Age Distribution

The top ranked alter of a given ego is the one that the ego is most frequently in contact
with, counting both the number of calls and text messages. Figure 14.2 shows the age
distributions of the top ranked alters for both male and female egos aged 25 and 50
years. A bimodal distribution is observed for both genders peaking at around ego’s
own age and another peak appears at an age-difference of around 25 years, i.e. one
generation apart. We have already mentioned that opposite-gender biased maxima at
ego’s own age correspond to the partners or spouses of the egos. On the other hand,

Fig. 14.2 The distributions of the highest ranked alters by age for 25 years old a male and b
female egos. Figures (c) and (d) show similar distributions for 50 years old male and female egos,
respectively. Red and blue circles represent female and male highest ranked alters, respectively.
Each data point displays the probability that the highest ranked alters is of specified age and gender.
Taken from (Palchykov et al. 2012)
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the peaks at 25 year age difference from the ego’s age could correspond children and
parents, respectively, for 50 and 25 year old egos.

From Fig. 14.2, it has been observed that females are more focused on their part-
ners during their reproductive period. Interestingly, when females are reaching the
grandmothering age, they start to give more attention to their daughters than to their
partners. The frequent connections between the mother and the daughter is a reflec-
tion of the grandmothering effect (Hawkes et al. 1998). Indeed, these observations
point to the fact that females play an important role at their reproductive age as well
as at the grandmothering age.

14.3.2 Variation in the Number of Alters with Egos’ Age

In Fig. 14.3 we show the variation of the average number of egos’ monthly contacts
with alters as a function of the egos’ age. In Fig. 14.3a we see that the number of alters
reaches a maximum when egos are around 25 years old (Bhattacharya et al. 2015).
Then the average number of alters decreases monotonically till the age of around 45
years for both male and female egos. From the age of 45 years onwards the average
number of alters seems to stabilize for about 10 years for both male and female egos,
but then again we see monotonous decrease after the egos’ age of 55 years. The same
behaviour is seen when we consider male and female egos separately, as depicted in

20 30 40 50 60 70 80 90

Ego age

5

10

15

20

N
um

be
r 

of
 a

lte
rs

All egos

20 30 40 50 60 70 80 90

Ego age

5

10

15

20
Female egos

Male egos

(a) (b)

Fig. 14.3 The variation of the average number of egos’ monthly contacts with alters as a function of
the egos’ age (years) for a all egos irrespective of their sexes, and b both sexes separately. Blue and
red squares denote for male and female egos, respectively. The error bars span the 95 % confidence
interval. Taken from (Bhattacharya et al. 2015)
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Fig. 14.4 The variations of the average number of alters as a function of egos age for different
time windows of January-April, May-August and September-December are shown in (a), (b) and
(c) respectively. The figure (d) is the result of time window of the whole year. The same figure
legend is used as in Fig. 14.3b. The figures in the inset are used to focus crossover region. Taken
from (Bhattacharya et al. 2015)

Fig. 14.3b. Also we would like to point out that the average number of alters for male
egos is greater than that for female egos for egos’ ages below 39 years and after that
the number of alters for female egos turns out to be greater than that for male egos.
The robustness of this finding is checked by taking different time windows as shown
in Fig. 14.4. A consistent pattern is observed with the same crossover age at around
39 years, irrespective of the time window used.

14.3.3 Geographical Distance and Tie-Strength

In this section we discuss the correlations between the calling pattern and geograph-
ical separations by using the most common location of the egos and alters (Jo et al.
2014). The ego-alter pairs are split into four possible groups based on gender where
M stands for male and F for female, namely F:F, M:M, F:M, and M:F. We have
observed that the age distribution of the top-ranked alters is bimodal, with one peak
around the ego’s own age and another being one generation apart i.e., approximately
25 years apart. The current analysis is done by dividing all the ego-alter pairs into
two categories where the age difference between egos and alters is ≤10 years and
>10 years. In Fig. 14.5 the average fraction of alters living in a location different
from that of the ego, termed geographic difference index (=1 if different and =0 if
not), is shown as a function of the ego’s age for the different gender and age groups.

The geographic difference indices for female and male egos turn out to be mostly
identical for top-ranked alters of the opposite sex (F:M, M:F) as depicted in Fig. 14.5a.
It is observed that the fraction of alters in a location different from that of the ego
increases up to 0.7 for 20 years old egos, then it decreases to 0.45 by the mid-40’s,
and after that it remains approximately constant. A possible reason is that young cou-
ples live in the same neighbourhood before going to work or college, which would
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Fig. 14.5 The average fraction of alters living in a different location (municipality) of top-ranked
alters (top panels) and 2nd-ranked alters to the ego (bottom panels). Ego-alter pairs with age
difference less than 10 years is shown in left panels, while the age difference is larger than 10 years
is shown in the right panels. “M:F” denotes male ego and female alter and so on. Error bars show
the confidence interval with significance level α = 0.05. Taken from (Jo et al. 2014)

suggest a larger distance. At older age, they eventually settle down together. How-
ever the geographic difference indices of ego-alter pairs with age difference ≤ 10
years behave differently and show gender dependence. The index slowly reaches the
maximum around late 20s (M:M) or around 30 years (F:F), after which it decreases
and fluctuates (M:M) or slightly decreases and increases again (F:F). After the max-
imum, the M:M curve remains lower than the F:F curve for all ages, an indication
that the top-ranked male alters of male egos tend to live geographically closer.

For top-ranked alters with age difference >10 years, no significant change is
observed based on the gender of egos and alters as shown in Fig. 14.5b. For all cases,
at young age the egos and their top-ranked alters live in the same location, with
probability ≈65 %. The fraction of alters in a different location peaks in the 30s and
after showing a local minimum at around mid-40s, it increases again. The minimum
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can be because of children living with their parents until leaving home in their young
age. For older egos, their children would have already left their parental homes to
live elsewhere contributing to an increase in the value of the index.

The index when measured with respect to the 2nd-ranked alters appears to be
similar to that for the top-ranked alters, as is reflected in Fig. 14.5c–d. However, the
peaks seem to appear at later ages. For age difference ≤10 years, the F:M and M:F
curves are not overlapping and it appears that the index value is greater for the M:F
curve compared to that of the F:M. This behaviour might appear from the partners
of female egos being ranked 2nd more often than the partners or spouses of male
egos. In particular females shift their interest from their partners to their children as
they become older. For younger females, they are more likely to have a same-gender
intimate friends than males are. For ego-alter pairs with age difference >10 years,
the gender does not matter, except for females in their 30–40s whose 2nd-ranked
alters are slightly more often located in the same place, compared to corresponding
males. These 2nd rank alters of the older female egos could be their children (on the
basis of the age difference between them) and the effect also lends support to the
grandmothering hypothesis (Palchykov et al. 2012; Hawkes et al. 1998).

14.4 Related Modelling

We have so far been considering human sociality and structural features of social
networks from the perspective of reality mining using data or making data-driven
discoveries. However, in the toolbox of modern Social Physics we have also another
key and complementary approach, namely computational modelling, which we will
use here to get insight into how microscopic social interaction processes translate to
meso- and macroscopic socially weighted network structures between individuals.
As one of the first examples of this type of approach we refer to a rather simple
model by Kumpula et al. (2007), which describes the processes for individuals getting
acquainted with each others leading in turn to the formation of locally and globally
complex weighted social network structures.

In this model one consider a network with a fixed number of N nodes, where links
can be created in two ways: First, in a time interval Δt each node having at least one
neighbour starts a weighted local search for new friends, see Fig. 14.6a, b. Then the
node i chooses one of its neighbouring node j with probability wi j/si , where wi j

represents the weight of the link connecting i with j and si = ∑
j wi j is the strength

of node i . If the chosen node j has other neighbours k (apart from i), it chooses one of
them with probability w jk/(s j − wi j ) implying that the search favours strong links.
If there is no connection between i and k, it will be established with probability pΔΔt
such that wik = w0. If the link exists, then its weight will be increased by a certain
amount δ. In addition, both wi j and w jk are increased by δ. This kind of cyclic closure
mechanism of “friend of a friend will also be friend” corresponds to local attachment
(LA). On the other hand if a node has no links, it will create a link of weight w0 with
probability prΔt to a random node, as depicted in Fig. 14.6c. This mechanism is to
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Fig. 14.6 Schematic diagram of the model algorithm. a: a weighted local search starts from i and
proceeds to j and then to k, which is a neighbour of i also. b: the local search from i ends to k′,
which is not a neighbour of i . In this case link wik′ is set with probability pΔ. c: node i creates a link
randomly to a random node l with probability pr . In cases (a) and (b) the involved links weights
are increased by δ. Taken from (Kumpula et al. 2007)

establish a new link outside the immediate neighbourhood of the chosen node, like
in focal closure mechanism, corresponding to global attachment (GA). In addition
to these two basic link formation mechanisms the model introduces with probability
pdΔt a node deletion (ND), in which all the links of a node are removed while the
node itself is kept to maintain fixed system size.

The simulation runs are started with N nodes without any links, such that LA and
GA mechanisms are updated in parallel followed by the ND step (assuming Δt = 1,
w0 = 1, pd = 10−3 and pr = 5 × 10−4). The parameter δ is responsible for the time-
dependent development of the weights of the network. In this study to observe the
behaviour of the network for different δ values the simulation runs were performed
such that the average degree was kept fixed (〈k〉 ≈ 10). For each δ, the parameter
pΔ was adjusted to keep 〈k〉 constant. These simulations were performed for four
values of δ = 0, 0.1, 0.5, 1 as shown in Fig. 14.7. Here δ = 0 implies the unweighted
networks. On the other hand for higher values of δ the obtained network structures
show clearly the formation of communities, due to favouring the LA mechanism.
This helps to follow same links simultaneously which in turn leads to the increased
link weights and associated triangles. So in the steady state, any triangle starts to
rapidly accumulate weight and contribute to the formation of weighted network.

The results in Fig. 14.7, with increasing δ values show the emergence of commu-
nities and specifically for larger δ values one sees a community structure very similar
to that observed in reality mining studies of a mobile phone dataset by Onnela et al.
(2007a, b). In further analysis it becomes evident that this rather simple model is
able to reproduce a number of stylised facts of social network found in these empir-
ical studies. Most importantly this model is able to show the same local and global
structure giving further verification of the Grannovetter’s “strength of weak ties”
hypothesis stating that “The stronger the tie between A and B, the larger the pro-
portion of individuals S to whom both are tied” (Granovetter 1973). This in turn
indicated that the triadic and focal closure mechanisms, as proposed by Kossinets
and Watts (2006), are at least plausible if not the most important mechanisms playing
role in the formation of a social network.
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Fig. 14.7 Networks with a δ = 0, b δ = 0.1, c δ = 0.5, and d δ = 1. Link colours change from
green (weak links) to yellow and red (strong links). Taken from (Kumpula et al. 2007)

14.5 Discussion and Conclusions

Apart from the face to face communication, other communication modalities espe-
cially those based on mobile devices have become increasingly important in our
social lives, yet serving as means of expressing emotional closeness between two
individuals, which is generally reflected as the strength or frequency of communi-
cation between them. This is well exemplified in Fig. 14.1 where a small portion
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of mobile communication based proxy of a social network is shown. In studies of
mobile communication patterns, we assume based on demographic information of
the service subscribers that top ranked alters close to the same age group and opposite
genders can be considered as the egos’ partners or spouses. We further assume that
when the age of the top ranked alters is one generation apart from the egos’ age, they
are egos’ children or parents, irrespective of their gender.

By measuring the age distribution of top ranked, i.e. most frequently contacted
alters for given age group of the egos, we have observed that females are more focused
on their partners during their reproductive period (Fig. 14.2). Interestingly we also
observe that when females are reaching the grandmothering age, they start to give
more attention to their children with emphasis on daughters than to their partners.
Such frequent contacts between the mother and daughter reflect the grandmothering
effect. Hence all these observations tells us that females play an important role in
our society not only at their reproduction age but also at their grandmothering age.

From Fig. 14.3, we have observed that the maximum number of connections for
both males and females occur at the age of around 25 (Bhattacharya et al. 2015).
During this younger age, males are first found to be more connected than females.
After the age of 25 years, the number of alters decreases steadily for both males
and females, although the decay is faster for the males than for the females. These
different decay rates result in a crossover around the age of 39 years when females
become more connected than males. Note, that for the age from 45 to 55, the number
of alters stabilizes for both males and females. This age cohort is the one in which
the egos’ children typically marry and begin to reproduce. Therefore, one likely
explanation for this plateau from age 45 to 55 is that it reflects the case that parents
are maintaining regular interaction with their children at a time when some of these
might otherwise be lost. The gap between the sexes seems to be primarily due to the
more frequent interactions by the mothers with their adult children and the children’s
spouses. Also it was found that females interact with their own close family members
and the new in-laws formed by their children’s marriages more than males do.

By using the most common geographical location of the users available in mobile
communication dataset, one gets insight into their age and gender dependent life-
course migration patterns (Jo et al. 2014). The analysis suggests that young couples
tend to live further apart from each other than old couples (Fig. 14.5). Also it was
found using the post code information in the dataset that emotionally closer pairs are
living geographically closer to each other.

In the end of this brief report we have discussed a simple model for a social
network formation, where the link weights between a pair of individuals and their
dynamics were considered to be the essential ingredients to give us insight how
these microscopics translate to meso- and macroscopic structural properties of the
societal scale network (Kumpula et al. 2007). In the model, the coupling between
network structure and social interaction strengths is established by the link weights
between individuals. A new link is added or strengthened depending on the existing
weights. In this process, the communities will emerge when nodes are sufficiently
strong to connecting new ones. This rather simple model turned out to reproduce
many of the stylised facts found in empirical studies of weighted social networks,
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e.g. by verifying Granovetter’s “strength of weak ties” hypothesis and giving further
evidence that triadic and focal closure are the two key mechanisms in explaining the
formation of communities in social networks.
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Chapter 15
Methods for Reconstructing Interbank
Networks from Limited Information:
A Comparison

Piero Mazzarisi and Fabrizio Lillo

Abstract In this chapter, we review and compare some methods for the reconstruc-
tion of an interbank network from limited information. By exploiting the theory of
complex networks and some ideas from statistical physics, we mainly focus on three
different methods based on the maximum entropy principle, the relative entropy
minimization, and the fitness model. We apply our analysis to the credit network of
electronicMarket for InterbankDeposit (e-MID) in 2011. In comparing the goodness
of fit of the proposed methods, we look at the topological network properties and
how reliably each method reproduces the real-world network.

15.1 Introduction

Starting from the subprime mortgages crisis of 2007–2009, a growing interest is
focused on the problem of assessing the systemic risk of a financial system. Among
the many different aspects of systemic risk studied by the recent literature, the study
of financial networks is widely recognized as one of the most important. Indeed,
between financial agents operating in a financial system, there are typically a large
number of different reciprocal ties, e.g. credit relations, equity investments, securi-
ties, exposures, to name but a few, which create a highly connected structure with
the features of a complex network (Bonanno et al. 2003; Billio et al. 2012; Gai and
Kapadia 2010) or a multiplex (Bargigli et al. 2015). In this contest, systemic risk
refers to the propagation of financial distresses as a consequence of the connections
between financial agents. Regarding the specific case of interbank markets, banks
are represented as the nodes of the financial network and credit relations are repre-
sented by links. Liquidity shocks may propagate among the interconnected banks.
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Several new and old measures of systemic risk try to capture this phenomenon (Cont
et al. 2010; Battiston et al. 2012; Caccioli et al. 2014). However, the analysis of
systemic risk for the banking system might be restricted due to the unavailability
of full information on the network structure which causes the data to be limited.
Network theory and statistical physics may provide a solution by making possible
to reconstruct details of the financial network from partial sets of information.

In this paper we review and apply some of the recently proposed methodologies
to the case of the electronic market for Italian overnight interbank lending (e-MID).
Before starting our review, we note that the objective of network reconstruction
can be twofold. The first approach to network reconstruction aims at reproducing
the topological features of real-world credit network with limited information about
banks’ balance sheet. This means predicting the presence of an interbank relation,
the number of counterparts of a bank, etc. In network jargon, this approach studies
the problem of inferring the probability of a link from limited information on the
network. The second approach does not necessarily consider as an objective the
faithful reconstruction of the network, but rather of the systemic risk of each bank
(Mastromatteo et al. 2012; Di Gangi et al. 2015). In this sense a good reconstruction
could alsogive relatively biasedor incorrect topological reconstruction if the systemic
risk metrics of the nodes of the reconstructed network are close to those of the real
network. In this review, we focus on the first type of approach.

15.2 Interbank Lending and the E-MID Market

The interbank lending market is a market in which banks extend loans to one another
for a specified term and/or collateral. A significant fraction of interbank loans are for
maturities of one week or less, the majority being overnight.

In inferring systemic risk of a credit network, there is a major problem: lack
of complete information about network structure of the market. Depending on the
requirements imposed by central banks and other regulatory bodies, all banks in
the interbank market must declare the total lending volume and the total borrowing
volume, but the information about the presence of a deposit between two banks
is often unavailable. In mathematical words, given the weighted adjacency matrix1

representing the credit network, see the left top panel of Fig. 15.1, one has access to
the marginals {ai }, {l j }, representing the total interbank exposures in the asset side
and in the liability side, but there is no information about the value of the generic
weight ωi j , that represents the amount of loan from bank i to bank j . This is the
starting point of every method of credit network reconstruction and from now on we
assume to know at least themarginals of the weight matrix representing the interbank
lending market. Other information can be available and used for the reconstruction.

1The weighted adjacency matrix or weights matrix is the generalization of the adjacency matrix in
the case of weighted (directed) graphs.
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Fig. 15.1 Left top panel weight matrix of interbank lending exposure for a credit market. Right top
panel scatter plot of the weights reconstructed with the relative entropy and the real non vanishing
ones.Bottompanel density estimation of theweights reconstructedwith the relative entropymethod,
considering separately the real weights equal to zero and different from zero

As testing dataset we adopt the e-MID credit network. The e-MID is an electronic
market for Interbank Deposits in the Euro Area and it was founded in Italy in 1990
for Italian Lira transactions and denominated in Euros in 1999. The ever-increasing
number of international counterparts joining e-MID confirms its leading role in liq-
uidity pooling. According to the “Euro Money Market Study 2006 published by
the European Central Bank in February 2007, e-MID accounted for 17% of total
turnover in unsecured money market in the Euro Area. More recently the amount
of overnight lending in e-MID has significantly declined, especially around the sov-
ereign debt crisis (Barucca and Lillo 2015). In this paper, we focus on the overnight
deposits including both Italian and foreign banks. For further information about the
network features of the Italian overnight money market see (Iori et al. 2008). The
dataset contains the edge list of all credit transactions in each day of the year 2011.
Throughout the paper, weights are expressed in millions of Euro.

15.3 Relative Entropy Minimization with Prior

In this Section, we analyze a classical method of network reconstruction introduced
for the first time in 1991 by (Blien and Graef 1991) and widely adopted in estimating
systemic risk for interbank markets before the subprime mortgage crisis, see for
example (Sheldon et al. 1998; Upper and Worms 2004; Wells 2004). Also after the
crisis, it represents the common approach in financial industry and is usually adopted
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in financial literature as null model in order to have a well-known benchmark, see
(Mistrulli 2011; Silvestri and Cont 2015).

The method we present in this Section is based on the assumption that banks
maximize the dispersion of their interbank exposures. Mathematically it consists
in the minimization of relative entropy2 with respect to a prior. This approach is
theoretically supported by the work of Allen and Gale (Allen and Gale 2000) ac-
cording to which a complete network structure makes the credit market more robust
than an incomplete structure in the case of distress propagation. In fact, the typical
output of relative entropy minimization is a complete network structure, that is a
fully-connected network where each bank-node is connected to all the others.

However, real-world credit network are sparse and sparsity is recognized as one
of the crucial features which characterize the phenomenon of financial contagion
(Gai and Kapadia 2010). In the next Section, we will compare the present method
with others which are not affected by this problem.

The method of reconstructing a credit network via relative entropy minimization
is faced by solving the problem of adjusting the entries of a large matrix to satisfy
prior consistency requirements. This problem is called Matrix Balancing Problem
and can be solved by several matrix scaling algorithms. A widely used algorithm
is the one called RAS. It was proposed for the first time by the Leningrad architect
G.V. Sheleikhovskii for calculating passenger flow. Bregman (1967) proved that if
an allowable solution of the (following) problem exists, then the RAS algorithm
converges to the optimal solution.

The problem can be stated in the following way: the interbank linkages are
represented by a n × n matrix W = {ωi j }, where ai = ∑

j �=i ωi j ≡ souti and l j =
∑

i �= j ωi j ≡ sinj are, respectively, the total amount of money bank i lends to other
banks and bank j borrows from other banks. In network jargon they are known as
out- and in-strength respectively. By removing the possibility of self-loops (i.e. set-
ting ωi i = 0, ∀i , we have to estimate n2 − n unknowns. The main goal is to estimate
the entries of the matrix W which minimizes the relative entropy

min
ωi j

∑

i, j �=i

ωi j log
ωi j

pi j

s.t.
∑

j �=i

ωi j = ai ,
∑

i �= j

ωi j = l j , ωi j ≥ 0 ∀i, j , ωi i = 0
(15.1)

where pi j is a matrix representing a prior bias based on the assumption that banks
maximize the dispersion of their interbank exposures. This implies that the prior is

pi j = ai l j
stot

∀i �= j (15.2)

2Relative entropy is also known as cross-entropy or Kullback-Leibler divergence.
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where s∗
tot = ∑

i ai = ∑
j l j is the total strength. To avoid self-loops, we set pi j = 0

∀i = j . By construction, the priormatrix does not fulfil the constraints on the strength
sequences but allows a priori to set some entries of the network W equal to zero.

The RAS algorithm (Bacharach 1965) is a iterative proportional fitting procedure
based on the rescaling of the prior’s entries and is formally defined as follows:

Inizialization At t = 0 −→ ω
(t)
i j = pi j ∀i, j .

row scaling Let us define ρ
(t)
i = ai∑

j ω
(t)
i j

∀i
and update ω

(t)
i j ← ρ

(t)
i ω

(t)
i j ∀i, j .

column scaling Let us define σ
(t)
j = l j

∑
i ω

(t)
i j

∀ j

and update ω
(t)
i j ← σ

(t)
j ω

(t)
i j ∀ j, i .

Iteration Let us set t ← t + 1 until the desired precision.

This approach is computationally efficient and the solution describes a fully-
connected network according to the idea of fully-diversified interbank exposures.
Since a credit market like e-MID is represented by a sparse network, we can expect
that this approach does not reproduce well the characteristics of the real world.

In the right top panel and in the bottom panel of Fig. 15.1, we compare the weights
reconstructed by the relative entropy with those in the real network. The right top
panel focuses on the weights different from zero in the real network and shows that
(i) a significant dispersion is observed for intermediate values of the real weights and
(ii) the reconstructed weights are generically underestimated for large real weights.
The bottom panel compares the probability distribution of reconstructed weights
considering separately the case when the real weights are zero (i.e. no link) and
different from zero. Correctly the former distribution is peaked close to zero, however
the latter is very broad and it might be problematic to choose which reconstructed
values should be set to zero.

Finally in order to compare this approach with the ones presented below, let us
notice that the posterior solution can be also obtained by the method of Lagrange
multipliers applied to Eq. (15.1):

∂

∂ωi j

⎧
⎨

⎩

∑

i, j �=i

ωi j log
ωi j

pi j
−

∑

i

μout
i

⎛

⎝ai −
∑

j �=i

ωi j

⎞

⎠ −
∑

j

μin
j

⎛

⎝l j −
∑

i �= j

ωi j

⎞

⎠

⎫
⎬

⎭
= 0.

(15.3)
By solving ad defining

φout
i ≡ ai√

s∗
tot

e−(μout
i + 1

2 ), ψ in
j ≡ l j√

s∗
tot

e−(μin
j + 1

2 ), (15.4)

the entries of the posterior are simply equal to

ω∗
i j = φout

i ψ in
j . (15.5)

Below we will compare the solution of Eq. (15.5) with exponential random graphs.
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15.4 Reconstructing via Exponential Random Graphs

In this Section, we review the problem of network reconstruction by exploiting
statistical network models. In the previous case, the output was the posterior which
represents the closer network to the real one according to the relative entropy. Here
the aim is to obtain a probability distribution over the weight matrix which describes
an ensemble of networks having specific characteristics we want to take fixed on
average, (i.e. canonical ensemble). In other words, we know some marginals, e.g.
total interbank exposures, and we ask for the probability of a link and the weight
associated with it.

This objective is achieved by choosing the probability distribution for the network
ensemble according to the principle of maximum entropy (ME) (Park and Newman
2004), that is the probability distribution maximizing the Shannon-Gibbs entropy.
Once the specific marginals are chosen and the probability distribution formally
specified, the maximum-likelihood (ML) method (Garlaschelli and Loffredo 2008)
can be successfully applied for estimating the network model. The class of network
models obtained through this approach is called exponential random graphs.

In this Section, we study the so-called bosonic graphs3 obtained by fixing the
strength sequences, i.e. banks’ assets and liabilities. Similarly to the previousmethod,
the bosonic model is not able to capture the sparsity of the real networks. Therefore,
we present a generalization (Bargigli 2014) which in addition considers the total
number of links as known. In principle, this quantitymight not be available. However,
looking at the data, the total number of links is quite constant in time, especially at
the daily and weekly aggregated timescale. In other words we do not address the
problem of estimating the number of links (L) of the real-world network but in our
analysis we assume that this information is known. We want to test how much this
additional information improves the network reconstruction,

Let us define the indicator function Θ ≡ Θ(ω) as the function taking value
equal to one if ω > 0, otherwise being zero. The degree of a node is the number
of counterparts for a bank in the considered time window, specifically the out-degree
kouti = ∑

j �=i Θ(ωi j ) is the number of counterparties bank i is lending to, while the
in-degree kinj = ∑

i �= j Θ(ωi j ) is the number of counterparties bank j is borrowing
from. Finally, the total number of links is simply L = ∑

i

∑
j �=i Θ(ωi j ).

15.4.1 Maximum Entropy Probability Distribution

In this Subsection, we briefly review the general framework of exponential random
graphs. Further information can be found in (Park and Newman 2004). The main
goal is obtaining the generic probability distribution for the ensemble of graphs
reproducing on average the marginals. Let G ∈ G be a graph in the ensemble with

3The word bosonic is used for the analogy with the Bose gas in Physics since the probability
distribution for the considered model turns out to be the Bose-Einstein statistics.
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N nodes and let P(G) be the probability associated with the same graph within
the ensemble. We choose P(G) such that the expectation values of the observables,
{< Ci (G) >G∈G }4 are equal to their observed values {C∗

i }.
P(G) is chosen by maximizing the Shannon-Gibbs entropy

S = −
∑

G∈G
P(G) ln P(G) s.t.

∑

G∈G
P(G)Ci (G) = C∗

i ,
∑

G∈G
P(G) = 1.

(15.6)
The quantity S defined in Eq. (15.6) is the one that best represents the lack of infor-
mation beyond the known observables. By solving this problem, we obtain a network
probability distribution in which no redundant information is considered.

By introducing the Lagrangemultipliersα, {θi }, themaximum entropy probability
distribution is the one solving the following functional equation

∂

∂P(G)

{

S + α

(

1 −
∑

G∈G
P(G)

)

+
∑

i

θi

(

C∗
i −

∑

G∈G
P(G)Ci (G)

)}

= 0.

(15.7)
Formally, the solution is

P(G, θ) = e−H(G,θ)

Z(θ)
, with H(G, θ) =

∑

i

θiCi (G), Z(θ) = eα+1 =
∑

G∈G
e−H(G,θ).

(15.8)
where H(G) is the graph Hamiltonian and Z(θ) is the partition function. Eq. (15.8)
define the exponential random graphs ensemble.

The estimation of the network model requires to find the values of the parameters
θi which satisfy

〈Ci 〉θ∗ = Ci (G
∗) ∀i (15.9)

Garlaschelli and Loffredo (Garlaschelli and Loffredo 2008) proved that this method
is statistically rigorous, in the sense that leads to unbiased information, for exponen-
tial random graphs. Furthermore, they proved that the solution of the Eq. (15.9) is
equivalent to the solution of themaximum likelihoodproblem,which consists inmax-
imizing the likelihood associated with the real-world network G∗, that is P(G∗|θ).
By maximizing the likelihood, the optimal choice for θ ≡ θ∗ yields a (unique5) para-
meters estimation. A deeper explanation ofMaximumLikelihood Estimation (MLE)
for exponential random graphs and extensive applications can be found in (Squartini
and Garlaschelli 2011; Squartini et al. 2015). Another widespread method for esti-
mating exponential family models was introduced in (Geyer and Thompson 1992)
by adoptingMarkov ChainMonte Carlo (MCMC)methods and successively applied

4Ci (G) is the value of the observable Ci associated with graph G of the ensemble. In the micro-
canonical ensemble, we choose Ci (G) equal to the observed quantity C∗

i for each graph G in the
ensemble. In the canonical ensemble, this equality holds only in average.
5In the grand canonical ensemble, the solution is unique except for a specific shift of the Lagrange
multipliers (symmetry of the Hamiltonian of the network models).
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to the specific case of exponential random graphs (Snijders 2002). For a comparison
of the two estimation methods, MLE and MCMC, see (Van Duijn et al. 2009). In our
analysis, we adopt MLE.

15.4.2 Bosonic Configuration Model and Sparse
Generalization

Bosonic exponential random graphs are obtained by imposing as constraints the in-
and out- strength sequence of nodes. Thus the ensemble is specified by the graph
Hamiltonian

Hbosonic(W, θ) =
∑

i

{θout
i souti + θ in

i sini } =
∑

i

∑

j �=i

(θout
i + θ in

j )ωi j . (15.10)

Since the Hamiltonian is linearly proportional to the sum of the weights ωi j , the
partition function in Eq. (15.8) can be analytically computed for the model and as
a consequence the probability distribution in Eq. (15.8) of the network ensemble is
obtained. Specifically, the probability for a graph is simply the product of N (N − 1)
independent geometric distributions with parameters related to the Lagrange multi-
pliers θ . See (Garlaschelli andLoffredo 2009) for further specifications of the bosonic
network model, also known as bosonic configuration model.6 In the following, we
indicate this model also as Directed Weighted Network model with fixed Strength
sequence (DWNS).

The sparse generalization of the DWNS is obtained by imposing also the total
number of links as constraint. The network Hamiltonian is

Hsparse bosonic(W,λ) =
∑

i

{λout
i souti + λin

i s
in
i } + λL =

=
∑

i

∑

j �=i

{(λout
i + λin

j )ωi j + λΘ(ωi j )}
(15.11)

Also in this case the partition function of Eq. (15.8) can be analytically computed and,
as a consequence, the probability distribution for the network ensemble is obtained.
See (Bargigli 2014) for further information about the model. We indicate this model
as Directed Weighted Network model with fixed Strength sequence and Number of
Links (DWNSNL).

It is well known (Caldarelli et al. 2013) that the bosonic configuration model
does not capture the fact that real credit networks are sparse. On the contrary, by
imposing in average the number of interbank exposures, we obtain a model describ-
ing sparse networks by definition. The main question is how well other real-world

6The standard configuration model is the network model obtained by imposing the degree sequence
rather than the strength sequence.
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Fig. 15.2 Complementary Cumulative Distribution Function (CCDF) for the real in-degrees (red
dots) and for the in-degrees of each network in the ensemble (blue dots). Left panel comparison
with bosonic configuration model. Right panel comparison with the sparse generalization

characteristics, e.g. the degree distribution, are explained only as a consequence of
sparsity.

The results of the fit of e-MID data with these two ensembles are shown in
Fig. 15.2. It shows the Complementary Cumulative Density Function (CCDF) of
the in-degree distribution7 of the real network and of the fitted bosonic network
without (left) or with (right) the sparsity constraint. The in-degree distribution for
the bosonic configuration model is flat before a sharp drop. This is naively due to
the fact that the network is fully connected and to the finite number of nodes. On
the contrary, the e-MID network (red point) is sparse. Its in-degree distribution is
well described by the sparse generalization of bosonic model. We test this result
by applying the two-sample Kolmogorov-Smirnov test to the real data and each of
the two models. The test rejects the bosonic configuration model but not the sparse
generalization.8

In order to further investigate the capability of sparse bosonic network to reproduce
the topology of the interbank network, in the left top panel of Fig. 15.3 we compare
the scatter plot between the real degree and the degree from the simulations of the
sparse bosonicmodel.Weobserve that large degrees are underestimatedby themodel,
although there is a significant positive correlation between the real sequence and the
reconstructed one. Thus the sparse bosonic network shows that the knowledge of the
number of links of the network greatly improves the reconstruction when compared
with the pure bosonic ensemble.

We compare the bosonic configuration model with the previously introduced
method based on relative entropy minimization. In the top right panel of Fig. 15.3
we show the logarithmic difference between the posterior solution of Eq. (15.5) and
the mean of the bosonic ensemble as a function of the real weights when these are
non vanishing. We notice that for large real weights the two methods agree while a

7Similar results are obtained for the out-degree distribution.
8We applied the statistical analysis for different aggregation time scales and for different periods in
the year 2011 and we obtained always the same results. In this sense, the analyzed properties are
stationary for the e-MID market, at least in the year 2011.



210 P. Mazzarisi and F. Lillo

k
i
out,in

0 5 10 15 20 25 30 35

 k
iou

t,i
n

D
W

N
S

N
L

0

5

10

15

20

25

30

100 101 102 103 104 105
-3
-2
-1
0
1
2
3
4

10-2 100 102 104

10-5

100

105

Fig. 15.3 Left top panel scatter plot for the real degrees of the aggregate e-MID network in the
business period from the 12-20-2011 to the 12-30-2011 and for the average values of the in-degrees
on 10 graphs of the sparse bosonic ensemble. The red dotted line represents the case of the Erdős-
Rényi model according to which each node has in average the same degree set equal to L

N ≈ 8.Right
top panels scatter plot of the logarithmic difference of the entries of the weights matrix between
the posterior and the mean of the bosonic ensemble as a function of the (non zero) real weights.
Bottom panel scatter plot of the reconstructed weights with the two methods for zero real weights

significant dispersion is observed for small weights. The bottom panel is the scatter
plot of the weights reconstructed by the two methods when the real weights are zero.
In this case the correlation is very strong.

15.5 Fitness Model for Network Reconstruction

In this Section we present a third approach for network reconstruction based on the
so-called fitness model, firstly introduced in (Caldarelli et al. 2002). The approach
with the fitnessmodel addresses all the situations inwhich there is a strong correlation
between the degree and the fitness of a node in the network. The fitness xi for a node
i , xouti and xini in the directed case, can be any non-topological feature determining
the probability of creating a link in the network.

In a very general framework, fitnesses are random numbers taken from a given
probability distribution ρ(x). An edge from node i to node j is drawn by a Bernoulli
trial with success probability equal to f (xouti , xinj ). The linking function f is a
symmetric function of its arguments and 0 ≤ f (xouti , xinj ) ≤ 1. A fitness model is
completely defined once that the function f and the probability distribution ρ are
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specified. The topological properties of this network model depend on the distri-
bution of fitnesses (or hidden variables) and on the linking function (Boguná and
Pastor-Satorras 2003). It has also been proved that by making specific choices for
the probability distribution ρ and for the linking function f , the scale-free behaviour
appears (Servedio et al. 2004).

The main intuition of the fitness model as a network model is related to the so-
called good-get-richer mechanism. According to this mechanism, nodes with larger
fitness are more likely to become hubs in the network (i.e. to be highly connected).

Different recent works face the problem of network reconstruction via fitness
model: (Garlaschelli and Loffredo 2004; Almog et al. 2015) study the case of World
TradeWeb by associating the fitness with the GDP of a country, (DeMasi et al. 2006;
Musmeci et al. 2013; Cimini et al. 2015a, b) focus on reconstruction of the e-MID
interbank network.

15.5.1 Reconstructing via Fitness Model

According to the original idea of (De Masi et al. 2006), we assume the size of a bank
as the fitness of the node representing the bank. In turn, the volume of the interbank
exposures represents a measure of the size. Specifically, let us define xouti ≡ (souti )∗∑

i (s
out
i )∗

and xinj ≡ (sinj )∗
∑

j (s
in
j )∗ , where with stars wemean the observed values for interbank assets

and liabilities. As linking function f , we choose the following, as in (Garlaschelli
and Loffredo 2004),

f (xouti , xinj ) = qxouti x inj
1 + qxouti x inj

(15.12)

where q is the free parameter of the fitness model.
The reason why the fitness model can be usefully applied for network recon-

struction refers to the disassortative mixing shown by credit networks, especially by
e-MID (De Masi et al. 2006). Furthermore, as recently highlighted in (Barucca and
Lillo 2016), the e-MID interbank market is better described as bipartite instead of
showing a core-periphery structure. These two aspects suggest that small borrowers
tend to interact to large lenders and viceversa. The linking function f tries to capture
this phenomenon.

The expected values for the degrees and the total number of links are simply

∑

j �=i

f (xouti , xinj ) = 〈kouti 〉q ,
∑

i �= j

f (xouti , xinj ) = 〈kinj 〉q ,
∑

i

∑

j �=i

f (xouti , xinj ) = 〈L〉q .

(15.13)
Similarly to the sparse bosonic configuration model, we choose the total number of
links as known constraint to estimate the free parameter q by last Equation in (15.13).



212 P. Mazzarisi and F. Lillo

k
in

10-2 100 102

C
C

D
F

(k
in

)

10-2

10-1

100

k
out

10-1 100 101 102

C
C

D
F

(k
ou

t)

10-2

10-1

100

k
in
eMID

0 10 20 30 40 50 60

<
k in

>
q

*

0

10

20

30

40

50

60

Fig. 15.4 Top panelsComplementaryCumulativeDistribution Function (CCDF) of the real degrees
(red dots) and of the mean degrees, 〈kin〉q (left) and 〈kout 〉q (right), obtained by the fitness model
(black dots). We consider the aggregate e-MID network in the business period from the 12-20-2011
to the 12-30-2011. Bottom panel scatter plot of the real in-degree sequence of themonthly aggregate
e-MID network for all the months of the year 2011 versus the reconstructed degree sequence 〈kin〉q
for each of the considered month. Each color is associated with a different month

Once the model is estimated, the linking probability between nodes is fixed and we
simply obtain the mean out-(in-)degree of a node as in Eq. (15.13). By reconstructing
the mean degree 〈kout (in)〉q for all nodes, we can test, like we did in theME approach,
the null hypothesis that the CCDF of the real degrees and the one of the reconstructed
degrees come from the same probability distribution, see the top panels in Fig. 15.4.
The two-sample Kolmogorov-Smirnov test does not reject the null hypothesis. As
before, the result remains qualitatively the same by changing aggregation time scale
or period for the year 2011.

Fitnessmodel well reconstructs the hubs of real worldwhile it does not explain the
small connectivity of some large banks,9 see the bottom panel in Fig. 15.4. However,

9In the Italian Overnight Money Market, some links are very persistent in time, that is some banks
tend to create credit relations with the same counterparts. By looking at the data aggregates in time,
total exposure of a bank may be large but all credit transactions occur with the same counterpart.
The persistence of credit relations is not capture by fitness model.
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relative errors for network reconstruction are on average smaller than those of the
sparse bosonic configuration model.

Once the reconstructed degree sequence is obtained, the main question is how to
assign the weight representing the credit exposure between two linked banks.

Consistently with the lack of information beyond the sequence of interbank ex-
posures and the reconstructed degree sequence via fitness model, we can exploit
the approach based on maximization of Shannon-Gibbs entropy. In Literature, the
model is known as enhanced configuration model (ECM) (Cimini et al. 2015a) and
an application to the case of World Trade Web is presented in (Cimini et al. 2015b).
The method is totally similar to the one introduced in the previous Section but using
as marginals the known strength sequence and the degree sequence reconstructed via
fitness model.

The most interesting aspect refers to the capability of the enhanced configuration
model in reproducing some of the second-order metrics of the real-world e-MID net-
work. The enhanced configuration model describes quite well disassortative mixing
of the real-world credit network, see (Newman 2002, 2003) for definition of these
concepts. In our analysis applied to the aggregate e-MID data in the business period
from the 12-20-2011 to the 12-30-2011, the ECM estimated on the data, displays
an assortative coefficient equal to −0.19(3) while real world shows −0.16 ± 0.11.
Moreover the sparse bosonic configuration model does not reproduce the disassor-
tative mixing of real world but it shows a measure that is essentially consistent with
zero, 0.01 ± 0.01. Finally, enhanced configuration model is also able to reproduce
the clustering coefficient of the e-MID credit network, see (Cimini et al. 2015a).

15.6 Conclusions

In this review,we presented and analyzed three different approaches to the problemof
reconstructing a credit network from partial information. We applied our analysis to
the data of the Italian overnight interbankmarket.We show how dense reconstruction
methods completely fails in reproducing the topological features of the real world.
On the contrary, taking into account that banks have few credit relations is a very
important input. In second instance, large banks are more likely to become hubs in
the credit network. Fitness model for network formation captures quite well the phe-
nomenon. According to our analysis, reconstructing via fitness model outperforms
the other methods when the same input information is used.
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Chapter 16
Topology of the International Trade Network:
Disentangling Size, Asymmetry and Volatility

Anindya S. Chakrabarti

Abstract The international trade network is a complex outcome of numerous
purchasing decisions made at the micro level, containing aggregate information
about the production technologies and consumers’ preferences across countries con-
nected through trade. Thus it acts as a vehicle of spill-over of domestic produc-
tivity/preference shocks to the trading partners. The degree is asymmetry in the
empirical network indicates different network-wide repercussions of idiosyncratic
shocks to individual economies. The structure of the network is shown to be related
to the size of the countries and macroeconomic volatility.

16.1 Introduction

The degree of fluctuations of economic entities have been under study for long. High
volatility is often representative of risk for example in case of stock prices. Sim-
ilarly, volatility of GDP of a country represents risk to the consumption decision
of the households. GDP is not only the production, but is also the income of the
country. The topic of fluctuations in that aggregate income process has received a
huge importance in the standard economic literature. However, the sources of such
fluctuations are still debated. The candidate explanations range from changing pref-
erences to technological shocks to incorrect expectations. However, after the recent
global melt-down that originated in one country and then subsequently propagated
to the rest of the world, it is difficult to imagine that the volatility of the countries
are purely intrinsic. In fact, given the current degree of openness of the countries in
terms of trade flow and capital flow, it seems more realistic that the volatility of the
countries are determined jointly, dependent on each other simultaneously.

The international trade network (ITN hereafter) is a rapidly evolving economic
entity arising out of millions of small interactions between consumers and producers
in different countries (Chaney 2014; Fagiolo et al. 2013; Squirtini and Garlaschelli
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2013; Squartini 2011; Squartini et al. 2011). An interesting feature of the ITN is
that it shows considerable heterogeneity across its nodes as is evident from Fig.16.1.
Countries vary widely in terms of the degree of strength of their trade relationships
with other countries, making some countries substantially more influential in the
network than others. During the course of economic globalization, countries have
reduced barriers allowing free flow of goods and services across borders which
introduces two opposing forces on the partner countries. On one hand, countries
have become more vulnerable to the shocks originated in other countries, increasing
their own volatility (Easterly et al. 2000). On the other hand, countries can diversify
the risks better if they have more trading partners (Haddad et al. 2013). The eventual
effect of trade openness is therefore, unclear.

Here, we study the nexus between size, centrality and variance across countries.
The relationship between size and variance has been found and studied in the con-
text of firm dynamics (for example, see Riccaboni et al. (2008), Stanley et al. (1996),
Amaral et al. (1997)). In case of dynamics of GDP, Canning et al. (1998) showed
that size and variance are inversely related. An interesting finding is that the scaling
exponent seems to be remarkably close in case of individual business entities and
large aggregate entities like countries (Lee et al. 1998). Gabaix (2011) proposed a
framework to address this issue. However, our focus is different from the above refer-
ences in that we consider the network as a whole and show that it is the asymmetry in
the trade network that links volatility and size of the countries. Taking this approach
further Acemoglu et al. (2012, 2013) showed the possibility of spill-over effects of
micro-shocks across the whole economic network. An alternate route (but related to
Gabaix (2011)) was taken by di Giovanni and Levchenko (2012) that showed coun-
tries with skewed distribution of firm-sizes would show the size-volatility trade-off.
However, the effects of the network structure was ignored.

16.2 Properties of the Network and Its Relative Stability

Consider a graph G = 〈N , A〉 where G is a couplet of the a set of nodes/countries
N and the adjacency matrix A that captures the information of the node-to-node
connections. In the present case, Ai j ( j �= i∀i, j) is the relative weight of import of
country i from j . The diagonal entries are the size of the domestic economies. Hence,
the trade network is both directed and weighted (Fig. 16.1). A noteworthy point is
that in the present data set G is found to be fully connected in the sense that each
economy is connected to every other economy by imports and exports. Thus the only
reasonable choice of studying relative influence would be eigenvector centrality C
which is defined as the solution to the equation

Ax = x . (16.1)

Note that by construction of the adjacency matrix A, it is column-stochastic (see
Appendix) with all elements positive. Thus by Perron-Frobenius theorem we know
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Fig. 16.1 A visual representation of the intra-Europe trade network normalized with respect to
the size of the respective economies. The directions of the arrows capture the flow of goods and
services from source to destination countries with the width indicating the relative strength of the
trade connections

that the maximum eigenvalue would be 1. The corresponding eigenvector is taken to
be the centrality index (Jackson 2008). This index is self-referential in the sense that
if a node is connected to another node with high prestige, then the original node’s
prestige increases. In the current context, the interpretation is if a country has stronger
trade relationship with a country which has a well diversified portfolio (and hence
lower volatility) then the original country’s volatility also decreases because of the
connections.

To measure volatility of an economy i , the logged per-capita GDP time series
{log(Yit )} is first decomposed into a trend and a cyclical component with an HP
filter,

Yit = T Y
it + CY

it . (16.2)

The second component gives the business cycle fluctuations. The standard deviation
of the cyclical component CY

it is taken to be the appropriate measure of macroeco-
nomic volatility. Empirically we find that the volatility of output is negatively related
to the centrality of the corresponding country in the trade network. It is important
to note that a similar finding has been made in Gray and Potter (2012) albeit with a
different interpretation of fluctuations. It considered the volatility of growth rate of
GDP in line of Canning et al. (1998) without any particular attention of the cycli-
cal component. Here, I consider detrended series only; hence we are considering
business cycle volatility rather than growth volatility.
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Fig. 16.2 Panel (a): Relationship between eigenvector centralities of countries in the international
trade network and their corresponding sizes (GDP). Panel (b): Relationship between degree of
fluctuations and standard trade openness defined as (Export+Import)/GDP. Panel (c): A negative
relationship between volatility and size. Panel (d): Bilateral trade flows between the countries (for
years 2001 (+), 2003 (o), 2005 (+), 2007 (�)). It shows that high imports (M) is usually associated
with high exports (X) from a given country to another

In the next step, we show that the eigenvector centrality is intimately related to the
size of the country. Panel (a) in Fig. 16.2 shows a clear positive relationship between
them. The panel (b) shows that volatility mildly increases as the countries become
more open in an aggregate sense. This is in accordance with Easterly et al. (2000).
However, it is not a reliable indicator of stability as opposed to a more nuanced view
that takes into account not only the amount of trade but also the characteristics of the
trading partners. Panel (c) shows a negative relationship between size andvolatility, as
expected (Canning et al. (1998) found a similar pattern; but it used a different metric
for volatility). Finally, panel (d) shows that between any two countries high trade
flow in one direction is associated with a flow of similar magnitude in the opposite
direction. This observation shows that the centrality vector could be derived from
the import table (showing the relative strength in the export baskets; as is done here)
as well as export table (showing the opposite). Both would give similar results.

As mentioned earlier, the international trade is rapidly expanding both in vol-
ume and in scope. In the trade network itself, the ranking of the countries changed
appreciably during the period under study. Panel (a) in Fig. 16.3 shows the changes
in ranks of the countries. See also panel (c) for the fraction of countries that had
different ranks in relative influence. During the whole period the network expanded
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Fig. 16.3 Panel (a): A visual representation of changes in relative positions of countries in terms
of centrality over the years (2001 to 2009). The colorbar shows the list of countries in alphabetical
order. Panel (b): Probability distribution function of relative weights (w) assigned by countries to
other countries in their respective export baskets. Panel (c): The fraction of countries that changed
their relative ranking in terms of centrality. Panel (d): Evolution of aggregate (intra-Europe) exports
relative to the starting year

as a whole as is evident in the increase in volume of trade (panel (d)) relative to the
base year. A rapid drop in trade volume is also evident in the after-crash period.

To study the joint evolution of the countries, we also found the cross-correlation
matrix of (detrended and logged) quarterly per capita GDP across the countries. The
i j-th element of the cross-correlation matrix Mρ is defined as

Mρ

i j = 〈(Cy
i − C̄ y

i )(Cy
j − C̄ y

j )〉
σiσ j

. (16.3)

Evidently, the series show substantial correlation in their growth path (see Fig. 16.4).
A standard tool to analyze the correlation pattern in multiple time-series in case of
finance is eigenvalue decomposition (Plerou et al. 2002) and to use the dominant
eigenvalue to find a common global driver of the series (e.g. see Pan and Sinha
(2007)). The eigenvalue decomposition shows that the bulk belong to the part gener-
ated by random time-series. The existence of outlier shows the interactions between
the countries.



222 A.S. Chakrabarti

Fig. 16.4 Joint evolution of
the GDP series: The
probability density function
of the correlation coefficients
(ρ) between the cyclical
components of GDP of the
countries. Inset: The
distribution of the
eigenvalues of the
cross-correlation matrix
juxtaposed with the
corresponding theoretical
distribution for a random
matrix

16.3 A Prototype Model

Consider the following set of equations describing the evolution of the trade network
(with node-specific shocks Fit ),

Yit =
N∏

j

F
βi j

j t Y
αi j

j,t−1 (16.4)

which shows an prototype input-output formalism applied to the trade scenario.
Similar approach has been taken to model sectoral interactions (e.g. see Acemoglu
et al. (2012)) or firm-firm interaction (see Kelly et al. (2013), Bigio and Lao (2013)).
Taking log on both sides, the equation boils down to

yit =
N∑

j

βi j f j t +
N∑

j

αi j y j,t−1, (16.5)

where lowercase letter x denotes logarithm of the original variable X . In matrix
notation, we can rewrite it as

yt = A.yt−1 + B. ft (16.6)

where the matrices An×n and Bn×n contains the linkages between the countries. Note
that the elements of the matrix A captures the strength of the edges existing between
countries in terms of flow of goods and services. The second matrix gives the direct,
contemporaneous spill-over effects of exogenous shocks. In principle, it captures the
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effects of common exogenous shocks (say, oil price) or shocks specific to groups of
countries (say, a common fiscal policy).

16.3.1 Size-Centrality Relationship

Consider the case B = [0]n×n or Ft = [1]1×n i.e. there is no effect of idiosyncratic
shocks.Then thedynamical system is convergent, if the Amatrix is column-stochastic
that is ∑

j

Ai j = 1. (16.7)

However, this is true by construction.When solving for the eigenvector centrality, we
used the vector of export weights of each country assigned by the importing country.
Since the sum of all weights must add up 1, Eq. 16.7 will be satisfied for all country
i ∈ N . This in turn makes the trade-matrix A column-stochastic.

Therefore, Eq. 16.6 effectively becomes equivalent to a Markov chain. From the
theory of dynamical systems, it can also be shown that a Markov chain converges
to its dominant eigenvector (Chakrabarti 2015). In particular, the solution (if exists)
would satisfy

y∗ = Ay∗. (16.8)

Comparing Eqs. 16.1 and 16.8, we see that they are identical with respect to any
scaling factor. That is the equilibrium size of the countries is identical to the centrality
vector of the same up to any scaling factor since if any y∗ is a solution to Eq. 16.8
then so is θy∗ for any constant θ . In this proof, the crucial link is provided by the
following observation. The equilibrium distribution of a Markov chain is identical to
the eigenvector centrality of the network generated by the chain. Therefore we can
tie together two different components of the model, one concerning the trade matrix
and the other concerning the evolution of size.

16.3.2 Effects of Centrality on Volatility

Solving the basic dynamic equation, we get (assuming Det (I − A) �= 0)

yt = (I − AL)−1B. ft . (16.9)

Given the normalization used above, we cannot assume that Det (I − A) �= 0. How-
ever, we can still solve for the growth rate near the steady state and find out volatility
of the same. Around the steady state, the growth rate of GDP of the i-th country is
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git = yit − yi,t−1

yi,t−1

= yit
yi,t−1

− 1

≈ y∗
i + ∑N

j βi j f j t

y∗
i

− 1

=
∑N

j βi j f j t

y∗
i

. (16.10)

Thus we can express the growth rate as a function of the edge weights, idiosyncratic
shocks and the steady state output,

git ≈
∑N

j βi j f j t

y∗
i

. (16.11)

Therefore, the volatility of growth rate

σ
y
i ≈

√∑N
j β2

i j (σ
f
j )2

y∗
i

. (16.12)

With i.i.d. shocks on an absolutely symmetric fully connected network βi j = 1/N ,
we have

σ
y
i ≈ √

N

(
βσ f

y∗
i

)

. (16.13)

16.4 Summary

In the current work, we present some evidence in line of Riccaboni et al. (2008)
that there exists a robust relationship between size and volatility of countries. The
novel feature is that we establish the connection by the missing link that is centrality
of a country in the trade network that it is embedded in. We show that following a
simple input-output structure we can reconcile the fact that bigger countries are more
central. Such economies tend to havemore diversified export portfolio allowing them
better hedging against idiosyncratic risks (Chakrabarti 2015). Thus they fluctuate
less. Hence we establish the connection that bigger economies do fluctuate less, not
because of their sheer size but because of the way the trading relationship evolves.
In principle, one can provide a demand side explanation featuring the roles played
by expansionary monetary/fiscal policies across region and incomplete pass-through
of demand shocks through stickyness in nominal variables (Midrigan and Philippon
2011). Chakrabarti (2015) provides a framework to embed full-fledgedmedium-scale
DSGEmodels in the trade network and contains simulation results showing thematch
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of the model with data. The supply side mechanism presented here in the form of
Leontief-type input-output structure provides a complementary description of the
system. Further explorations linking the network structure with the macroeconomic
factors can be potentially useful.

Acknowledgements Part of this paper is based on the second chapter of my thesis at Boston
University (Chakrabarti 2015). I thank Alisdair McKay, Adam Zawadowski, Michael Manove,
Bikas K. Chakrabarti, Sitabhra Sinha and Arnab Chatterjee for useful discussions.

Appendix

Description of data

The network is constructed based on the data set for European countries. The reason
for choosing European countries is twofold: (1) their relative homogeneity compared
to any other countries and (2) availability of data. Since it is known that country-
level volatility depends on several country-specific factors like own fiscal/monetary
policies, level of development of financial markets (Easterly et al. 2000) apart from
global factors like oil-price fluctuations, a relatively homogenous set of countries
are chosen which differ in their trade pattern but not in any other dimension (or at
least the differences are comparatively small). The yearly time-series data of GDP
(1993–2013) is collected from the OECD data base. Country-to-country trade data
(complete bilateral flow from 2001 to 2010) is published by Eurostat (2012). For
performing the eigenvector decomposition, quarterly GDP data (2000–2012) is used
to increase the sample size.
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Chapter 17
Patterns of Linguistic Diffusion in Space
and Time: The Case of Mazatec

Jean Léo Léonard, Els Heinsalu, Marco Patriarca, Kiran Sharma
and Anirban Chakraborti

Abstract In the framework of complexity theory, which provides a unified frame-
work for natural and social sciences, we study the complex and interesting problem
of the internal structure, similarities, and differences between the Mazatec dialects,
an endangered Otomanguean language spoken in south-east Mexico. The analysis
is based on some databases which are used to compute linguistic distances between
the dialects. The results are interpreted in the light of linguistics as well as statisti-
cal considerations and used to infer the history of the development of the observed
pattern of diversity.

17.1 Introduction

Complexity theory is a major interdisciplinary paradigm which provides a unified
framework for natural and social sciences. At an operative level, it is based on a
combined application of quantitative and qualitative methods at various phases of
research, from observations tomodeling and simulation, to the interpretation of com-
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plex phenomena (Anderson 1972; Ross and Arkin 2009). Among the many applica-
tions, ranging from physics to biology and the social sciences, the study of language
through the methods of complexity theory has become an attractive and promising
field of research. In this contribution we consider the complex and interesting case
of the Mazatec dialects, an endangered Otomanguean language spoken in south-
east Mexico by about 220,000 speakers (SSDSH 2011–16 2016; Gudschinsky 1955,
1958).

17.1.1 General Method

Language dynamics represents a relevant branch of complexity theory which inves-
tigates the classical problems arising in the study of language through novel
approaches. Several methods have been imported directly from various scientific
disciplines and used to model language from different points of view and at different
levels of detail, which complete each other providing, all together, a new informative
picture. Among these models and methods, one finds for instance:

(a) simple models addressing the language dynamics of population sizes at a
macro- or meso-scopic scale, as in the ecological modeling à la Lotka-Volterra
(Heinsalu 2014), which are able to tackle delicate issues such as the perceived
status of languages (which directly affect the one-to-one language interaction
between individuals) and describe other social features;

(b) nonlinear and stochastic dynamical models, reaction-diffusion equations, etc.,
which allowone to investigate at ameso-scopic level themost different issues and
effects, related, e.g. to population dynamics, the spreading in space of linguistic
feature on theunderlyingphysical, economical andpolitical geography (Patriarca
and Heinsalu 2009);

(c) individual-basedmodels at themicroscopic level, which are used tomake numer-
ical experiments to study languages along the perspective of language evolution
(Steels 2011) and language competition, i.e., the dynamics of language use in
multilingual communities (Solé et al. 2010; Stauffer and Schulze 2005; Wich-
mann 2008; San Miguel et al. 2005). The latter topic is deeply linked to social
interactions, thus the models used have direct connections with social sciences
and social dynamics. In fact, linguistic features can be considered as cultural
traits of a specific nature and their propagation can be modeled similarly to
cultural spreading and opinion dynamics processes (Castellano et al. 2009; San
Miguel et al. 2005).

17.1.2 Plan of the Work—Application to Mazatec Dialects

The Mazatec dialects are localized in south-east Mexico. The approximate popu-
lation of 220,000 speakers is characterized by a highly heterogeneous culture and
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a locally diversified economic production landscape. The Mazatec dialects have
become a classical topic in dialectology, due to the fact that they offer the typi-
cal highly complex panorama usually observed when studying cultural landscapes,
in particular those characterizing endangered languages (SSDSH 2011–16 2016;
Gudschinsky 1955, 1958, 1959; Kirk 1966; Jamieson 1988; Jamieson Carole 1996;
Léonard et al. 2012; Léonard and dell’Aquila 2014). This paper consists in the analy-
sis of the Mazatec dialects and in particular their mutual linguistic distances, relying
on previous and more recent databases and data analyses by various field-linguists.
Such results will be reanalyzed and visualized using the tools of Complex Network
Theory, providing us with a measure and a picture of their homogeneity and het-
erogeneity. Different types of data will be considered, such as those related to the
average linguistic Levenshtein distance between dialects (Heeringa and Gooskens
2003; Bolognesi and Heeringa 2002; Beijering et al. 2008) or those extracted by
a direct comparison between speakers, i.e., based on the mutual intelligibility of
dialects (Kirk 1970; Balev et al. 2016). In Sect. 17.2, relying on the knowledge of
the system (and in particular of the values of its main parameters) gained by the
work carried out thus far (Kirk’s comparative phonological database for interdialec-
tal surveys and fieldwork), we will take into account external constraints such as
the ecology of the settlement settings throughout the threefold layered system of
Lowlands, Midlands and Highlands, as well as the more recently superposed social
and economic impact of postcolonial agro-industrial systems, such as coffee, cat-
tle breeding and sugar-cane (all related, e.g., to the agricultural use of the land). In
Sect. 17.3, the comparison between the picture suggested by the complex network
analysis of the various data sets (overall sample of lexical categories versus a noun
data base, restricted to phonological analysis) and other relevant aspects of the system
under study will be carried out. This includes comparison of the linguistic networks
with the underlying road networks, physical geography, and economical geography.
We will oppose materiality, such as ecological settings, to constructs, such as dialect
areas, to account for the evolution of a very intricate diasystem, ending with a set
of proposals for diasystemic geometry as a component of language dynamics as a
promising field for Complexity Theory.

17.2 Language Ecology

17.2.1 Ecological Settings

Mazatec has resisted assimilation in the long term, thanks to its demographic weight
(more than 200 000 speakers) and to emerging language engineering for literature
and education through modern spelling conventions but it is still a very vulnerable
language. The data collected in the ALMaz (A Linguistic Atlas of Mazatec; see
Léonard et al. 2012) support a pessimistic impression, also considering the collapse
of the more recent agrarian systems of coffee crops and cooperatives, the conse-
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quences of the Miguel Alemán’s dam in the 1950s, still to be seen (see Meneses
Moreno 2004; Schwartz and Diana 2016), and a constant drive of migration to urban
centres such as Tuxtepec, Tehuacán, Oaxaca, Puebla, México DF, or the USA. The
Mazatec area stands in the very centre of the Papaloapam Basin, benefiting from a
smooth transition between the plain (e.g., Jalapa de Diaz) and the mountains, West
of the Miguel Alemán dam. This ecologically strategic position turned out to be fatal
to the Mazatec Lowlands, partly drowned by the Miguel Alemán dam in the mid-
50s, when the Rio Tonto, a powerful river connected to the Papaloapam mainstream,
was controlled for the benefit of beverage and hydroelectric companies. Sugar cane
also demands much water for crops. Patterns of cross-regional integration which had
quietly evolved since Olmec times (Killion and Urcid 2001) were disrupted in one
of the few regions where native peasants (Mazatec and Chinantec mostly) worked
their own microfundio. Maps in Figs. 17.1, 17.2 and 17.3 enumerate the Mazatec
municipalities from Baja to Alta Mazateca (Lowlands and Highlands), providing
an explicit view of the landscape: to the east, a plain half drowned by the dam
(the Lowlands), to the west, a high Sierra mountain chain divided in the south by
a canyon—the Cuicatlán Canyon, with the Mazatec small town of Chiquihuitlán,
famous for Jamieson’s grammar and dictionary, published by the SIL in the late
80s and mid-90s (Jamieson 1988; Jamieson Carole 1996). Figure17.1 provides an
orographic and hydrographic map of the Mazateca area. Figure17.2 shows the dis-
tribution of Municipios over theMazatec area—the shape of the spots on the maps in

Fig. 17.1 The Mazatec dialect network (localities surveyed in Kirk 1966). Maps: CELE (Vittorio
dell’Aquila)
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Fig. 17.2 The Mazatec dialect network (localities surveyed in Kirk 1966). Maps: CELE (Vittorio
dell’Aquila)

Fig. 17.3 Communal aggregates in the Mazatec area. Map: CELE (Vittorio dell’Aquila). Official
census data (2002)
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Figs. 17.1 and 17.3 hints at demographic size for each town, whereas Fig. 17.3 points
out the municipios visited for the ALMaz since 2010 (in this map, only localities
already surveyed by Paul Livingston Kirk are mentioned, showing how the ALMaz
network is intended to be much larger than in previous dialectological studies, as
Kirk 1966; Gudschinsky 1958, 1959). The Mazatec diasystem (Popolocan, Eastern
Otomanguean) can be divided into twomain zones: the Highlands and the Lowlands.
Other subzones can be further distinguished, such as the Midlands (Jalapa de Diaz,
Santo Domingo, San Pedro Ixcatlán) within the Lowlands, the Cuicatlán Canyon
(Chiquihuitlán) and the Puebla area (see San Lorenzo data below). In short, main
dialect subdivisions read as follows, slightly modified from Léonard & Fulcrand
2016:

(1) The Mazatec diasystem: dialects and subdialects

Highland complex: Central Highlands (Huautla de Jiménez, Santa Maria Jiotes,
San Miguel Huehuetlán)

Northwestern Highlands: Central Northwestern Highlands (San Pedro
Ocopetatillo, San Jeronimo Tecoatl, San Lucas Zoquiapam, Santa Cruz Acatepec,
San Antonio Eloxochitlán)

Peripheral Northwestern Highlands (San Lorenzo Cuaunecuiltitla, Santa Ana
Ateixtlahuaca, San Francisco Huehuetlán)

Lowland complex: Eastern Lowlands (SanMiguel Soyaltepec) Central Lowlands
(San Pedro Ixcatlán)

Piedmont or Midlands (Ayautla, San Felipe Jalapa de Diaz, Santo Domingo)
Periphery: South-Western Highlands: Mazatlán Villa de Flores
Cuicatlán Canyon: Chiquihuitlán.
It should be kept in mind that such a classification is not exhaustive but provides

only a heuristic framework to observe variation.
The spots on the map in Fig. 17.3 cluster into significant subareas. Behind the dam

stands San Miguel Soyaltepec, a very important centre from ancient times, which
was probably connected through the plains to the coastal zone of the Papaloapam
Basin. From the size of the spots in Fig. 17.3, revealing the demographic weight, we
can state that it is still the biggest urban centre in the Mazatec lands.

The town of Acatlán, north of Soyaltepec, is more Spanish speaking than Soyal-
tepec. Inhabitants of the archipelago inside the artificial lake—within the huge pool
created by the dam—use the same variety as in SanMiguel Soyaltepec, as do the new
settlements, such as Nuevo Pescadito de Abajo Segundo, in the South. A dialect net-
work probably as intricate as that of the North-West Highlands (around San Jernimo
Tecoatl) probably existed before the flooding of the microfundio agrarian society of
theLowlands.Most of these dialectsmerged intomixed dialects, apparently under the
strong influence of the Soyaltepec koinè (we use this term as “local speech standard”,
i.e. pointing at an oral, more than a written koinè, though nowadays a Soyaltepec
written koin does exist, strongly supported by local poets and school teachers). This
first segment of the Mazatec world makes up the San Miguel Soyaltepec Lowlands
segment: a resilient area, with a strong urban constellation going from the newly built
Temascal to the industrial town of Tuxtepec, with strong local dialect intercourse and
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mingling, in a region whose agrarian structure has been drowned by a pharaonic dam
project sixty years ago. The consequences of this dramatic redistribution of agrarian
resources and property, and of the displacement of over 22 000 peasants, are still to
be seen. Linguistically, this event partially enhanced acculturation and assimilation
to Spanish under the influence of urban centres such as SM Soyaltepec, but most
of all, Temascal, Acatlán, and Tuxtepec. The second area, going from Lowlands
to Highlands, covers the western shores of the Miguel Alemán lake, as a twofold
stripe, from S. M. Chilchotla and San José Independencia (Midlands) to San Pedro
Ixcatlán (Western Lowlands), in the continuity of the plain or the valley, where the
important urban centre of Jalapa de Diaz is located. This Midland-Lowland region
displays a whole range of small urban centres, dominated by sugar-cane and herding
(the agrarian couple caña y ganado). Though we should consider Jalapa de Diaz as
a subarea of its own, because of its size and its links with other regions, such as
the Highlands (Huautla) and the so called Cañada or Canyon (Chiquihuitlán and
beyond), we may lump both subareas as theWestern Plain. The Highlands qualify as
the third main area, after the subdivisions of the Lowlands into the SM LL and the
Western Plain. In turns, it divides into two subareas: central, with Huautla, and the
Western Highlands—a dense network of small urban centres such as San Lucas, San
Jernimo Tecoatl, San Lorenzo, San Francisco Huhuetlán, and San Pedro. We will
call the fourth complex “the Cañada Connection”, where themost conspicuous urban
centre isMazatlán de Flores, on the periphery of the Canyon, and Chiquihuitlán. This
is a region of intense language contacts: from Chiquihuitlán downhill through the
Canyon, Cuicateco, a Mixtecan language is spoken. Nowadays, the zone seems to
have fallen into the hands of the Narcos, and the road to Chiquihuitlán is no longer
an easy to trip from Jalapa de Diaz, as the ALMaz staff has experienced in recent
years. The dialect of a spot such as Santa Maria Tecomavaca, on the western plateau,
has scarcely been documented up to now, though it is not so far from neighbouring
centres such as Mazatlán or Teotitlán del Camino. Though, it forms a subarea on
its own in the Canyon region, because of the low rate of Mazatec speakers as com-
pared to the central area of the Mazatec world, and its location on the plateau, with a
tropism outward of theMazatec area (towards Teotitlán del Camino, Tehuacán, etc.).
Strikingly enough, the variety spoken in this peripheral area has more to do with the
Northwestern Highlands dialects than with the neighboring Mazatlán area, pointing
at strong resettlement dynamics throughout the Mazatec area, far beyond the state
of the art knowledge of these phenomena. To us, the main reason lies in the way
the coffee economy drained people from the poorest regions of the Midland Outer
Belt (Santa Maria Chilchotla, San Mateo Yoloxochitlán), towards the Teotitlán del
Camino urban centre, where coffee used to be sold to merchants. Though, the San
Juan de los Cùes/Santa Maria Tecomavaca still makes up an original dialect of its
own, as several varieties apparently migrated there, from the early 19th to the end of
the 20th Century.

The agrarian ecology of these subzones appears in Fig. 17.4. Next, we will deal
with sociolinguistic ecology, giving a few hints about linguistic vitality.
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Fig. 17.4 Urban centers and degrees of vitality of Mazatec (Léonard and dell’Aquila 2014)

17.2.2 Sociolinguistics: Vitality Zones

Areas and subareas can also be defined by the sole criterion of the rate of speakers,
as in Fig. 17.4: H = High rate of Mazatec speakers (over 75%), mh =mid-high value,
i.e. 50–75% of the population speaking Mazatec, ml = mid-low density of speakers,
i.e. 25–50%, L = low density, i.e. 0–25%, in territories considered as traditionally
Mazatec. At first sight we can see that the core of the Mazatec area still uses the
language intensively (H index), whereas the periphery does not (L on the Eastern
shore of the dam and in the Canyon. Two pockets have medium scores: ml at San
Juan de los Ces and mh at Chiquihuitlán.

17.3 Dialect Dynamics: A Study in Miniature

The title of this section takes over the subtitle of a seminal paper on Mazatec ethno-
history (SarahGudschinsky 1958), inwhichGudschinsky claimed that geolinguistics
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Fig. 17.5 Ecological and agrarian zones in the Mazatec area CELE (Vittorio dell’Aquila)

provided reliable clues to theProto-Mazatec evolution intofivemain dialects, through
seven periods (Fig. 17.5):

(2) Gudschinsky’s 1958 dialect dynamics model:

(A) homogeneity;
(B) slip according to alternating *a and *u;
(C) emergence of a Lowlands dialect, to which Mazatlán (MZ) and San Miguel

Huautepec (MG) still belonged—whereas the former is nowadays a peripheral
Highlands dialect, the latter strongly clusters with Huautla (HU), in the Central
Highlands area;

(D) the Valley dialect emerges (Jalapa, i.e. JA) and differs fromMG, then the South-
ernValley dialects split fromaNorthern one,while foreign domination’ (Mixtec)
takes hold of the region;

(E) the Highlands dialect emerges, and attracts MZ to its circle of influence, roughly
during the period 1300 to 1456; two kingdoms compete, in the Highlands and
the Lowlands respectively, (F) Western Highlands, MG and Norther Lowlands
dialects differ, and Aztec rule takes hold.

A more cautious model without so many details on the Mixtec and Aztec hege-
monies was proposed previously by the same author (Gudschinsky 1955) and
describes five differentiation periods (or phases):

(3) Gudschinsky’s 1955 dialect dynamics model:
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(I) Homogeneity, followed by the rise of HU and JA.
(II) Emergence of a transitional buffer zone between HU & JU.

(IIIa) The lowland zone splits in two, with the emerging variety of IX.
(IIIb) Both HU and IX areas diversify: SMt (San Mateo) emerges in the highlands,

whereas SO splits from IX. In the buffer zone, MG also emerges. Flows of
lexicon and variables still pass from the Lowlands to the Highlands.

(IV) Further andmore clear-cut differentiationbetween IXandSO, in theLowlands.
(V) Consolidation of the six dialects: sharper frontiers.

In the next section, where the Levenshtein Distance (LD) is applied to Kirk’s
data on twelve varieties (Kirk 1966) for surveying dialect dynamics, Gudschinsky’s
models as summarized in (2) and (3) above are very useful to interpret the results
and suggest a better overall agreement with Gudschinsky’s model (3)—rather than
with (2).

17.3.1 Levenshtein Distances

TheLD is used to estimate an average linguistic distance between each pair of dialects
from the set of the LDs between variants of the same nouns. The LD L(a, b) is a
basic measure of the level of difference between two strings a and b, defined as the
minimum number of operations (represented by insertions, deletions, or editions)
needed to turn a into b or vice versa. For instance, given a = “thia” (“arm”, AY) and
b = “tşha” (“arm”, JI), the Levenshtein distance between these two variants of “arm”
is L(a, b) = 2, corresponding to the two changes h → ş and i → h needed to turn
one string into the other. The LD L(a, b) has the merit to be simple in definition and
use. Its simplicity, however, also represents its limit, due to its independence of the
type of the actual operations (whether insertions, deletions, or editions), the number
and type of characters changed (e.g. vowels or consonants), and of the order in which
they are changed.

We represent two noun variants in dialect i and dialect j of the same semantic
meaning, labeled k, as ai,k and a j,k . Namely, the locations of dialects are labelled
by the index i (or j), running from i = 1 ( j = 1) to the total number of locations
i = N L ( j = N L), while the label k runs over all the Mi, j pairs of nouns ai,k and a j,k

in dialects i and j with a common semantic meaning, k = 1, . . . , Mi, j . For a fixed
pair of dialects i and j the corresponding LDs Lk

i, j = L(ai,k, a j,k) are computed for
all the variants k available. The set of LDs thus obtained are then used to compute
the average (final) LD Li, j between dialects i and j ,

Li, j = 1

Mi, j

Mi, j∑

k=1

Lk
i, j (17.1)

Notice that this represents a simple arithmetic average, meaning that all the dis-
tances are considered to have equivalent statisticalweights.Repeating this calculation
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Fig. 17.6 A Matrix of LDs for 12 Maztec dialects, 117 cognates. (source data from Kirk 1966,
data processing: CELE, Vittorio dell’Aquila 2014)

for all pairs of dialects (i , j) allows to construct the “Levenshtein matrix”, whose
elements are all the average LDs Li, j defined above. The Levenshtein matrix for the
twelve Mazatec dialects studied is visualized in the table in Fig. 17.6 (for N L = 12
locations, there are N L(N L − 1)/2 = 60 such distances).

17.3.2 An Overall Sample for LD

In this section, dialectological data from Kirk (1966) will be measured according
to LD (see the chapter on Basque geolinguistics for methodological details). As
this algorithm measures and ponders distance between dialects synchronically, most
of the results rely upon phonological and morphological patterns. Etyma are not
used, contrary to a phylogenetic approach. We will thus consider these results as
highlighting ontological distances and complexity between dialects (e.g. the most
complex dialect here is LO, in the Poblano area, in the NW outskirts of the Mazatec
dialect network.

It is useful to study the network as a function of a threshold T . To this aim, we
first normalize all the LDs by dividing them by the largest LD found in the system,
so that all the LD values are in the interval (0,1). Then the value T = 0 corresponds
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to prefectly equivalent dialects, while the value T = 1 to the farthest couple(s) of
dialects. The method consists in setting a threshold on the LDs, i.e., plotting two
dialect nodes i and j only if their LD is such that

Li, j < T , (17.2)

At T = 0, no link is shown because no dialect is perfectly equal to another dialect.
When gradually increasing T , then some dialect nodes become connected producing
a linguistic network. At the maximum value T = 1 all the dialect nodes appear and
are connected to each other. However, not all link strengths are equal. A useful way
to plot the network is to make links between nodes thicker if the corresponding LD
is smaller, so that they provide an intuitive visual idea of the strength of the linguistic
link.

Thus, the threshold T = 0.20 shows a choreme (a kernel area, see Goebl 1998:
555). The bolder line uniting JA and DO points at a dialect of its own, whereas the
finer line, between DO and IX, resorts to a less organic structural relation, yet rather
strong—i.e. a chain, between this basic choreme [JA-DO]with themore autonomous
and powerful Lowlands dialect of San Pedro Icxatlán (Fig. 17.7).

With the threshold T = 0.22, another choreme shows up, in the Highlands: HU
and JI, whereas the inner cohesion within the [IX[DO-JA]] chain is confirmed. This
[HU-JI] choremewill soon be connected to themost peripheral dialect, in the Eastern
Lowlands (SO), and remains yet unconnected to close neighbors like MG or TE.

Fig. 17.7 Dialect network with thresholf T = 0.2
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Fig. 17.8 Dialect network with thresholf T = 0.22

Fig. 17.9 Dialect network with thresholf T = 0.24

As we soon shall see, these two choremes now available will soon raise their inter-
connectivity in the dialect network, enhancing patterns of resilience of a previous
feature pool (see Mufwene 2001, 2012, 2013) consistency in the valley (Fig. 17.8).

With the threshold value T = 0.24, a complex communal aggregate [[MZ-SO],
[HU-JI], [[IX[DO-JA]]] emerges. The pattern now points at two clusters [HU-JI],
[[IX[DO-JA]] and one far distant chain [MZ-SO]. As a matter of fact, all these pat-
terns confirmGudschinsky’s model (1955), initially elaborated out of lexicostatistics
(Fig. 17.9).
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Fig. 17.10 Dialect network with thresholf T = 0.27

With T = 0.27, though, the overall picture becomes clearer, and goes far beyond
Gudschinsky’s expectations, in terms of fine-grained representation of the intricacy
of the diasystem; namely, we have a whole complex network with clear-cut com-
munal aggregates: a [TE[SO[IX]] chain, a [HU-JI-MG[SO]] chain, a macro-chain
connecting in a most intricate way MZ with the [IX-DO-JA] chain, through AY and
MG,working as areal pivots in theMidland and the Highlands respectively. Themost
peripheral varieties are LO in the Northwestern fringe, and CQ, in the Southwest-
ern border of the Mazatec area. Interestingly enough, these spots are not connected
yet in this phase, forming what we can call “default areas” or “default spots”, i.e.
strongly divergent varieties, which do not correlate tightly enough with the rest of the
network to highlight deep geolinguistic structures. Of course, one can cluster these
erratic varieties, when elevating the threshold of divergence (Fig. 17.10).

The threshold T = 0.29 shows how CQ does correlate with already available
clusters—namely, with AY. Nevertheless, AY and CQ strongly differ in all respects,
as our own fieldwork gave us evidence recently. The reason why CQ converges
somewhat to AY is more due to the transitional status of AY, between the Highlands
and the Lowlands, rather than to structural heritage, although indeed, these two
variants can be seen as geographical neighbors (Fig. 17.11).

The same could be said of LO, as compared to TE: the former finally connects
to the latter in a nearest-neighbor graph, as shown in Fig. 17.12 below (obtained by
joining each dialect node only to the one from which it has the shortes LD) although
the structural discrepancy is conspicuous. Indeed, LO proceeds from the same his-
torical matrix as TE: the San Antonio Eloxochitlán dialect—not surveyed by Paul
Livingston Kirk, but from where we were able to elicit phonological and morpho-
logical data in 2011. This nearest-neighbor graph below provides a handy overall
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Fig. 17.11 Dialect network with thresholf T = 0.29

Fig. 17.12 Nearest neighbor network based on the LD distances of 117 cognates, based on the data
of (Kirk 1966)

picture of the Mazatec dialect network, on the basis of the LD processing of our 117
cognates: it clearly highlights the far reaching interconnection of Highlands dialects
with Lowlands dialects, with macro-chains [TE[IX]], [MZ[SO]] and the intricate
cross-areal (i.e. Highlands/Lowlands) cluster [HU-JI-MG[SO]]. Lower range clus-
ters, such as [AY[CQ[DO]]], and choremes, such as [DO-JA] and [HU-JI], as seen
previously at stage T = 0.20 and 0.22 are also available in this map (Fig. 17.12).

Considering Gudschinsky’s model of dialect dynamics (3) above, one can now
check to what extent its predictions were right. As a matter of fact, her claim (I)
(homogeneity, followed by the rise of Hu and JA) is confirmed by phase T = 0.22,
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which clearly enhances the emergence of two choremes–high and low: [HU-JI] versus
[DO-JA].

Gudschinsky’s period (II) entails the emergence of a transitional buffer zone
between HU & JU. This claim is strongly supported, but also enriched by phases
T = 0.24 and T = 0.27: not only does HU cluster with JI and MG, but AY also
clusters with the IX and JA-DO chain. In turn, all these aggregates connect with
Lowlands varieties, pointing at the formation of Highlands varieties as a by-product
of Lowlands dialect diversification. The ambivalent structural status of MZ, standing
far west in the Highlands, though connecting far into the East with SO, and even to
IX, through the buffer area of AY, hypothesized by Gudschinsky in both models (2)
and (3), is strongly confirmed too. Gudschinsky’s Periods (IIIa-b), implying the split
of the Lowlands dialect in two (JA vs. IX) on the one hand (IIIa), and on other hand
the inner split of the Highlands (i.e. IIIb: HU versus TE, standing for Gudschinsky’s
SMt, in this dialect network according to Kirk’s data) are also confirmed by steps
T = 0.29 and T = 0.30 respectively, as these slots in the graph becomemore densely
interactive with the rest of the dialect network. Though, results here display much
more detail on general connectivity than in models in (2) and (3). Last, but not least,
period (VI), with further andmore clear-cut differentiation between IX and SO, in the
Lowlands, is also confirmed by far reaching patterns of connectivity of SO with TE,
HU, MZ in the highlands and AY in the Midlands. Results from these 117 cognates
(see Léonard 2016: 77–79 for a complete list of items) are not simply congruent with
Gudschinsky’s hypothesis on dialect dynamics, as summed up in (2) and (3): they
provide much more information about the hierarchization and intricacy of differen-
tiation within the Mazatec dialect network. Moreover, they enhance the status and
interplay of such (dia)systemic categories as choremes, chains, macro-chains and
pivots or buffer zones. They also clearly point at a level of diasystemic organization
which supersedes the Stammbaum and the chain level of organization: distant ties,
either out of retention, or as an endemic effect of a feature pool (Mufwene 2001,
2012, 2013) of traits inherited from the Lowlands dialects, which carried on min-
gling together long after the splitting of the main Highlands and Lowlands dialects.
For example, many morphological facts point at an inherited stock of inflectional
mechanisms in the Lowland dialects and peripheral Northwestern dialects such as
LO (in Kirk’s data) and San Antonio Eloxochitán (ALMaz data). The link between
TE and IX in Fig. 17.12 confirms this trend—whereas the link between HU and SO
or MZ and SO may rely more on mere retention, and to an older layer of structural
continuity. The sample processed here covered all lexical classes of the Mazatec lex-
icon, for a set of 117 cognates, from Kirk 1966: verbs, nouns, pronouns, adjectives,
adverbs, etc. The results do provide a useful overall picture, but we still suspect this
sample to be too heterogeneous, and to blur finer grained patterns of differentiation
within the lexicon and grammar. Verbs are especially tricky inMazatec (Léonard and
Kihm 2014; Léonard and Fulcrand 2016) and bias may be induced by elicitation,
for instance when the linguist asks for a verb in neutral aspect (equivalent to present
tense) and may get an answer in the incompletive (future tense) or completive (past
tense), or the progressive aspect, according to pragmatic factors (e.g. verbs such as’
die’ can hardly be conjugated in the present, as’ he dies’, and informants are prone
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to provide completive or incompletive forms, as’ he died (recently)’ or’ he’ll (soon)
die’). Nouns in Mazatec are far less inflected than verbs—only inalienable nouns,
such as body parts and some kinship terms have fusional inflection (see Pike 1948:
103–106). The subset of nouns in the Kirk data base therefore is more likely to pro-
vide abundant and much more reliable forms to implement the LD than a sample of
all lexical categories.

17.3.3 A Restricted Sample for LD

Although this paper aims at modeling dialect dynamics rather than at providing a
description of the language, some data may be useful at this point of the argumen-
tation, in order to get a glimpse at word structure in Mazatec, and related processes
on which the LD distance may apply.

All networks emerging from this wider and more consistent sample confirm pre-
vious results: at T = 0.45, we find again two choremes—one located in the Southern
Lowlands, i.e. [JA-IX], and another located in the Central Highlands, i.e. [HU-JI-
MG]. The latter choreme, though makes up a chain with a very interesting dialect,
which was already viewed as ambivalent by Gudschinsky: MZ clusters with [HU-
JI-MG] in a [MZ[HU-JI-MG]] chain.

The main difference with previous clusters at this stage lays in the boldness of
aggregates:MZwould be expected to cluster at a later stage of structural identification
with the Highlands choreme, and JA should rather cluster first with DO, instead of
telescoping IX. This behavior of the diasystem is due to the lesser complexity of
the data, as suggested above when analyzing phonological variables in the table
in Fig. 17.13: the simpler the morphological patterns, the more straightforward the
results. Bolder chains in Fig. 17.14 give therefore more clear-cut hints at the deep
structure of the diasystem. At I = 0.59, an overt extensive rhombus appears, crossing
the whole area from west to the east, strongly rooted in MZ in the West and SO
in the East, with two lateral extensions: TE in the Northwest and AY in the East.
One couldn’t dream of a better resume’ of most of our previous observations: TE
and AY are outstanding actors as pivots, or transitional spots, while MZ, HU and
SO had already been noted as crucial innovative dialects, since he early phases of
Gudschinsk’s models of differentiation—stages (C) and (D) in (2) and stage (IIIa)
in (3). At 0.72, a trapezoid resorting more to a parallelogram than to an isosceles
shows up, confirming the far reaching links between TE and IX, going all the way
down towards AY and CQ to climb up toward MZ and reaching TE in a loop—this
geometry actually comprehends the periphery of the diasystem, and may point at a
deeper level of structuration.

The Minimum spanning Tree (MST) diagram in Fig. 17.15 endows the Central
Highlands dialect JI with enhanced centrality. The fact that the transitional variety of
AY in the Midlands is intertwined with another “buffer zone” dialect, according to
Gudschinsky’s model, confirms details of the deep structure of the dialect network.
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Fig. 17.13 LD data from Kirk 1966: 311 nouns

A minimum spanning tree is a spanning tree of a connected, undirected graph
such that all the N (here N = 12) dialects are connected together with the minimal
total weighting for its N − 1 edges (total distance is minimum). The distance matrix
defined by the LDs among the dialects was used as an input to the inbuilt MST
function inMATLAB (SeeMatlab documentation for details). Here we state Kruskal
and Prim algorithms for the sake of completeness of the present article.

Description of the two algorithms:

• Kruskal—This algorithm extends the minimum spanning tree by one edge at every
discrete time interval by finding an edge which links two separate trees in a spread-
ing forest of growing minimum spanning trees.

• Prim—This algorithm extends the minimum spanning tree by one edge at every
discrete time interval by adding a minimal edge which links a node in the growing
minimum spanning tree with one other remaining node.
Here, we have used Prim’s algorithm to generate a minimum spanning tree.

Thedendrogram inFig. 17.16does not only provide anoverall picture of the dialect
network: it tells us more about the intricacy of communal aggregates and layers of
differentiation. It also solves a few problems raised by discrepancies between model
(2) and (3) and our results. In this Stammbaum, Highlands dialects actually cluster
with Lowlands dialects, while Southern Midlands dialects cluster together with a
“default” variety—CQ, a near neighbor in the South. In the inner cluster of the
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Fig. 17.14 LD applied to nouns in Kirk’s data. Three thresholds of normalized mean distance

Fig. 17.15 Minimum spanning tree based on the LD applied to nouns in Kirk’s data
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Fig. 17.16 LD applied to
nouns in Kirk’s data:
Dendrogram

dendrogram including Highlands dialects, we come across the [MZ[HU-JI-MG]]
chain we are already familiar with, on the one hand, and, on the other hand, a quite
heterogeneous subcluster made up of a [IX-SO] chain, associated to the far distant
TE Northwestern Highlands dialect, usually classified within the Highland dialects.
Last, but not least, the LO dialect, though we can consider it as a byproduct of a
recent Northwestern dialect overdifferentiation (i.e. from TE), stands on its own,
as if it would classify as a totally different language—which it is not, although its
differences are indeed phonologically conspicuous, because of recent vowel shifts i
→ e, e → a, a → o, u → ï.

A dendrogram is basically a tree diagram. This is often used to depict the arrange-
ment of multiple nodes through hierarchical clustering. We have used the inbuilt
function in MATLAB (see MATLAB documentation) to generate the hierarchical
binary cluster tree (dendrogram) of 12 dialects connected by many U-shaped lines
(as shown in Fig. 17.16), such that the height of each U represents the distance (given
by LD) between the two dialects being connected. Thus, the vertical axis of the tree
captures the similarity between different clusters whereas the horizontal axis repre-
sents the identity of the objects and clusters. Each joining (fusion) of two clusters
is represented on the graph by the splitting of a vertical line into two vertical lines.
The vertical position of the split, shown by the short horizontal bar, gives the dis-
tance (similarity) between the two clusters. We set the property “Linkage Type"as
“Ward’s Minimum Variance", which requires the Distance Method to be Euclidean
which results in group formation such that the pooled within-group sum of squares
would be minimized. In other words, at every iteration, two clusters in the tree are
connected such that it results in the least possible increment in the relevant quantity,
i.e., pooled within-group sum of squares.

In spite of these discrepancies with expected taxon, themain lesson of this dendro-
gram lays in the tripartition [Midlands[Highlands-Lowlands]], and the confirmation
of the [MZ[HU-JI-MG]] chain. In Fig. 17.17, the two-dimensional projection from
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Fig. 17.17 Two-dimensional
projection from
multi-dimensional scaling
analysis (in linguistic space).
Nouns in Kirk’s data

Multi-Dimensional Scaling (MDS) analysis mends up the formal oddities we already
mentioned, i.e. TE clustering so far from HU, and CQ so close to AY. This represen-
tation, obtained with the same data, is far more congruent with standard taxonomy of
Mazatec dialects, as in (1) above: it displays a constellation of choremes as [DO-JA]
and [JI-HU], and more loosely tightened chains such as [AY[IX]], [MZ[MG[TE]]]
and a fairly distant chain [CQ[SO]]. LO, again, stands far apart, as a strongly inno-
vative dialect as far as phonology is concerned—with strong consequences on mor-
phology too.

MDS is amethod to analyze large scale data that displays the structure of similarity
in terms of distances, obtained using the LD algorithm, as a geometrical picture or
map, where each dialect corresponds to a set of coordinates in a multidimensional
space. MDS arranges different dialects in this space according to the strength of the
pairwise distances between dialects—two similar dialects are represented by two set
of coordinates that are close to each other, and two dialects behaving differently are
placed far apart in space (see Borg 2005). We construct a distance matrix consisting
of N × N entries from the N time series available, defined the using LD. Given D,
the aim of MDS is to generate N vectors x1, . . . , xN ∈ �D , such that

‖xi − x j‖ ≈ di j ∀i, j ∈ N , (17.3)

where ‖.‖ represents vector norm. We can use the Euclidean distance metric as is
done in the classical MDS. Effectively, through MDS we try to find a mathematical
embedding of the N objects into �D by preserving distances. In general, we choose
the embedding dimension D to be 2, so that we are able to plot the vectors xi in the
form of a map representing N dialects. It may be noted that xi are not necessarily
unique under the assumption of the Euclidean metric, as we can arbitrarily translate
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and rotate them, as long as such transformations leave the distances ‖xi − x j‖ unaf-
fected. Generally, MDS can be obtained through an optimization procedure, where
(x1, . . . , xN ) is the solution of the problem of minimization of a cost function, such
as

min
x1,...,xN

∑

i< j

(‖xi − x j‖ − di j )
2. (17.4)

In order to capture the similarity among the dialects visually, we have generated
the MDS plot of 12 dialects. As before, using the International Phonetic Alphabets
from the database as an input, we computed the distance matrix using the LD algo-
rithm. The distance matrix was then used as an input to the inbuilt MDS function in
MATLAB. The output of the MDS were the sets of coordinates, which were plotted
as the MDS map as shown in Fig. 17.17. The coordinates are plotted in a manner
such that the centroid of the map coincides with the origin (0, 0).

17.4 Conclusion and Prospects

As Nicolaï and Ploog put it (Nicolaï and Ploog 2013: 278), one has to consider two
types of categories, when tackling anythingwhich looks like—or is supposed towork
as—frontiers: on the one hand, matter or materiality, on the other hand constructs.
Matters or materialities rank as follows: geography, geology, biology, ecology, and
they partly shape the world we live in, as we are indeed a very adaptive species.
Constructs, instead, should be clearly divided in two: compelling patterns on the
one hand, elaborations on the other hand. The former range from social constraints
or norms, laws, beliefs and habits to economic systems; the latter from models to
reforms, according to the activities developed in communal aggregates, in reaction
to the environment and its contradictions.

In this case, matters do matter a lot, as the Mazatec diasystem is vertically struc-
tured, from the Lowlands to theHighlands, and some bigger and older centers or town
dialects, as JA, HU, MZ, IX indeed weight more than mere villages or hamlets (as
JI, MG, AY, CQ, LO). The fact that SO was so peripheral, and ended up as a village
nested on the top of a resilient hill above theMiguel Aleman dam, as the village called
Viejo Soyaltepec, has consequences on the evolution of certain components of the
Mazatec diasystem. The intrusion and the violent reshaping of the whole ecological
and socioeconomic settings since the end of the XIXth century, though mercantile
activities, instead, have resorted to elaborative constructs, and these have played a
strong role too, in smashing previous compelling patterns of intercommunal solidar-
ity or, on the contrary, enmity. Matter and materialities constantly change in nature,
indeed, as biology and geology teach us. But cultural constructs change even faster,
and they may even loop, recede and proceed, in a nonlinear way—as do diasystems
throughout history, and so does the Mazatec diasystem in the first place.
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But the higher plateau or level in the realm of constructivism and elaboration
has to be sought in our models and methods to gather and proceed data, as we did
here, handling Kirk’s cognate sets, initially collected in order to make a sketch of
comparative phonology. We turned it into something quite unexpected, as alchemists
used to dream of turning stones or dust into gold. We saw how quantitative tools
designed to measure dialect distance, as the Levenshtein algorithm, can provide
clues from a Complexity Theory standpoint. Various data sets and a variegated array
of computational methods (multilayered normalizedmeans, minimum spanning tree,
multi-dimensional scaling analysis, etc.) applied on these raw sets of data opened the
way to a labyrinth of constructs and representations, which teach us a lot about what
mattered, in the past, and what matters and will, today and for the future, in such
a strongly diversified communal aggregates that makeup the Mazatec small world
(Léonard and dell’Aquila 2014).

A world full of complexity, whose survey with the help of Complexity Theory
methods suggest that tree-models (Stammbaum), chain models, choremes and buffer
zones or transitional areas are not sufficient to grasp geolinguistic complexity. We
also have to resort to concepts as pivots, default varieties, and a few more. Neither
is the punctuated equilibrium (Dixon 1997) concept enough, as the Mazatec dialect
network geometry shows an intricate web of constant interactions. The valley lead-
ing from the Lowlands to the Highlands has not only once in a while served as a
bottleneck: it seems to be a highway for diffusion and linguistic change which never
rests. Corridors from the Northern Midlands, as Santa Maria Chilchotla, and the San
José enango area, between HU and San José Independencia, may also account for
this multisource and multidirectional percolation of change and metatypes between
communal aggregates. The intricate geometry of diasystems has still to be disen-
tangled, and this Mazatec case study provides but a glimpse at how to tackle this
issue. Complexity Theory undoubtedly should be at the forefront of such a crucial
endeavor, for the understanding of how complex adaptive and cooperative systems
such as language and society work and mingle together.

17.5 Abbreviations

AY = Ayautla, CQ = Chiquihuitlán, DO = Santo Domingo, IX = San Pedro Ixcatlán,
JI = Jiotes (or, HU = Huautla, JA = Jalapa, LO = San Lorenzo, MG = San Miguel
Huautla, SMt = San Mateo Yoloxochitlán, SO = San Miguel Soyaltepec, TE = San
Jernimo Tecoatl (abbreviations as in Kirk 1966).
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Epilogue

Dhruv Raina and Anirban Chakraborti

Between the Econophys-Kolkata conference organized in 2005 and Econophys-
2015, we reckon that there has indeed been a widening of the agenda of the net-
work of researchers and the themes being researched in the areas of econophysics
and sociophysics. The participants at the last conference, the contributions to which
appear in this volume, included economists, financial mathematicians, bankers and
researchers located at different research institutions, computer scientists, mathemat-
ical physicists and mathematicians. And while economists and sociologists attended
the meeting, their participation in the dialogue is still wanting. As just pointed out,
thematically this conference resolved to widen the agenda of the network by moving
from econophysics to econophysics and sociophysics. While earlier conferences too
did engage with sociophysics, the research problematics were restricted to the socio-
physics of markets and networks. The focus of research of econophysics over the past
twenty years has thus been wealth distribution, stock markets and minority games,
markets and networks, games and social choices, order driven markets, systematic
risk and network dynamics, agent based models, and finally data driven models of
market dynamics.

This conference extended some of the concerns of sociophysics to address com-
plex social systems and phenomena that extended beyond market dynamics and net-
works, e.g., this involved examining the interaction and cooperative behavior among
the extrovert and introvert agents and how the interaction evolves in time and deter-
mines the behaviour of the system [see the work of Dhar et al. in Sect. 13.1]. Sen
presented in the conference her work based on the constrained Schelling model of
social segregation [see Ref. Phys. Rev. E. 93, 022310 (2016)]. Santhanam presented
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the mathematical modeling of seemingly complex phenomena like financial bubbles
and crashes, based on the time series analyses of extreme events and record statistics
in respect of empirical financial time series data [see Sect. 7.1].

Here, it was interesting to observe the frequent use of terminology from the social
sciences such as “elitist”model or “egalitarian”model deployedwithin the formalism
of network theory and not necessarily in ways that these terms are used as concepts
in the social sciences. But this multiplicity is itself a reflection of the serious attempts
to forge an interdisciplinarity driven by the compulsion of understanding complex
social and socio-economic phenomena. In the 2010 Special volume on “Fifteen
Years of Econophysics Research” [see Eds. B.K. Chakrabarti and A. Chakraborti,
Science and Culture (Kolkata, India) 76 (9–10) (2010)], there was an article written
by Bertrand Roehner, where he had reviewed the evolution of the field in his address
‘Fifteen years of Econophysics: Worries, Hopes and Prospects. There he highlighted
the need to engage with social interactions and extend the methods of econophysics
to demographic problems. He explained that the physicists’ usual way of working
has been to reduce complex phenomena into simpler phenomena. But he raised a
question that while studying econophysics why should one make the effort of trying
to break up complicated phenomena, when it is possible to handle them globally?

It appears that since then some headway has been made, and we will never know
how much, unless bridges with the social sciences are forged. At stake are differ-
ent ways of looking at theories, of the nature of models being developed, and how
the models are to be interpreted. The sociologist Dipankar Gupta raised a number
of interesting points about this divide in his inaugural address in the conference on
‘Borders, Transgressions and Disciplinary Dynamics’. Interestingly enough the con-
cept of borders and its ‘twin concept’ boundaries has in the recent past been the core
theme of research in the social sciences posing problems for research on social and
collective identity, demographic or census categories, immigration, cultural capital
and membership, etc. But as Michèle Lamont and Virág Molnár point out in their
piece on ‘The Study of Boundaries in the Social Sciences’, synthetic effects are
still absent. In any case, it is evident that the engagement with boundaries is likely
to illuminate a number of social processes that characterize apparently unrelated
phenomena—and it is in this realm, perhaps that econophysics and sociophysics
have much to offer in the near future.
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