
123

Stefan Gruner (Ed.)

45th Annual Conference of the Southern African
Computer Lecturers' Association, SACLA 2016
Cullinan, South Africa, July 5–6, 2016
Revised Selected Papers

ICT Education

Communications in Computer and Information Science 642

Communications
in Computer and Information Science 642

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

Stefan Gruner (Ed.)

ICT Education
45th Annual Conference of the Southern African
Computer Lecturers’ Association, SACLA 2016
Cullinan, South Africa, July 5–6, 2016
Revised Selected Papers

123

Editor
Stefan Gruner
Department of Computer Science
University of Pretoria
Pretoria
South Africa

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-47679-7 ISBN 978-3-319-47680-3 (eBook)
DOI 10.1007/978-3-319-47680-3

Library of Congress Control Number: 2016954931

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

This book is respectfully dedicated to the late
Hartmut EHRIG (*1944 †2016), Professor of
Theoretical Computer Science and Formal
Specifications at the Technische Universität
Berlin (Germany), who was an outstanding
educator of our discipline. He taught and guided
large numbers of students to their academic
informatics degrees.

Preface

This volume of CCIS contains the revised papers of SACLA 2016, the 45th Annual
Conference of the Southern African Computer Lecturers’ Association, held in the old
diamond mining town of Cullinan (Republic of South Africa), July 5–6, 2016, under
the motto: “Achieving Brilliance in ICT Education.”1 This conference was jointly
conducted (in mutually beneficial co-location) with the CSERC 2016, the Computer
Science Education Research Conference,2 and the University of the Witwatersrand’s
JCSE Workshop on ICT Skills Shortage in South Africa.3

Over 45 years, Southern African computing lecturers have been holding annual
meetings to discuss matters and issues in the context of lecturing computing (computer
science, informatics, information technology) in tertiary education. This SACLA series
thus has one of the most long-standing conferencing traditions in our discipline
world-wide, though the series was internationally not widely known in its earlier years.
During the course of its history, the SACLA series evolved from initially very informal
gatherings to increasingly formalized and peer-reviewed conferences — although still
with a rather regional Southern African character until today. With SACLA 2016,
however, the first attempt was made at opening the conference’s doors and windows
much wider, in order to make the SACLA series henceforth attractive for an interna-
tional audience anywhere in the world. This move toward internationalization is a
rational consequence of the notoriously ongoing globalization of our world, which
means that problems —and their solutions— can no longer be contained easily within
national or regional borders and boundaries. For this reason also the conference’s
Programme Committee (PC) was —for the first time— systematically international-
ized, with almost half of its members now residing overseas. The call for papers, too,
was distributed internationally via various widely recognized communication channels,
although the response from overseas was not (yet) as big as (wishfully) expected. What
remained, however, constant also at SACLA 2016 (in spite of the new move toward
internationalization), is the original motivation of the very first SACLA meetings from
more than four decades ago, namely: to provide a forum at which lecturers of computer
science and informatics can thoroughly discuss any contemporary issues of lecturing
these subjects at a tertiary education level.

With this motivation, SACLA 2016 called for original research papers as well as
noteworthy experience reports in all matters concerning the lecturing (teaching) of
informatics or computer science (ICS) at institutions of tertiary education (TE) — i.e.,
classical universities, comprehensive universities, and vocational-technical training
colleges. Relevant contemporary topics mentioned in the call for papers included:

1 http://sacla.cs.up.ac.za
2 https://www.ou.nl/web/cserc/cserc-2016
3 http://www.jcse.org.za/events/sacla16-ict-skills-shortage-workshop

– ICS massive open online courses (MOOCs)
– Didactics and methods for teaching ICS in TE
– ICS curricula development in TE: scientific-theoretical versus industrial-practical

orientation
– Didactic software and educational support tools for ICS in TE
– Program-code plagiarism, ghost-writing, and counter-measurements
– Ethical problems in the teaching of ICS at TE level
– Students’ behavior, self-perceptions, plans, and aspirations within their ICS learning

environment at TE level
– Deficiencies in literacy, numeracy, logical reasoning, and general study-ability

among students of ICS today
– Transition of newly graduated middle-school (secondary school) pupils into their

ICS curricula at TE level: factors of success or failure
– Transition of newly graduated ICS students into their post-TE employment envi-

ronments: factors of success or failure
– Marks/grades inflation and/or assessment standard/quality changes over longer

periods of time in the history of ICS-TE
– International comparability of degrees and levels of knowledge/skill/performance

among ICS students at TE level
– Effects of the still ongoing massification, egalitarization, and commercial com-

modification of TE on the ICS teaching and learning environment
– Humboldt’s question: separation or combination of teaching and research in small

or large ICS departments at TE institutions
– Longitudinal studies in ICS education: past-versus-presence comparisons and

plausible future trends
– Social role problems and/or career issues of ICS academics from junior lecturer to

emeritus professor at TE institutions
– ICS lecturers’ general matters: best/worst practices, success/failure experiences, etc.

Within these themes and topic fields, two types of submissions to SACLA 2016
were possible:

– Full-length research papers or practical experience reports with solid results
– Short papers for interesting and promising work in progress

Submissions in both categories were rigorously reviewed by the Programme
Committee for quality in contents and style of presentation. Each submission was
assessed by three reviewers, of whom at least one had to be from South Africa and at
least one from abroad. All rejection decisions were final, i.e., without any rebuttal
phase for the authors after the reviews. Accepted papers had to be discussed at the
SACLA 2016 conference and thoroughly revised before their inclusion in this CCIS
volume, which is the very first (and hopefully not its last) publication of the SACLA
series with Springer as its highly esteemed publishing house.

By its closing date, SACLA 2016 had received 30 submissions, out of which (after
rigorous review) three (10 %) were accepted as full papers, and another 13 (�43 %) as
8-page-short work-in-progress papers. All of them appear thematically grouped (regardless
of their full- or short-length category) in this CCIS book. The full paper by Serena Coetzee

VIII Preface

and Victoria Rautenbach —see table of contents— received the conference’s Best Paper
Award. In addition to these regular submissions, two invited keynote lectures were given
by Martin Olivier (day 1) and Bob Travica (day 2): The papers that recapitulate these two
lectures are included in this CCIS volume, too. In my role as editor I proposed the invitation
of Martin Olivier to the conference’s committee while PC member Jan Kroeze proposed
the invitation of Bob Travica.

In addition to the “official”members of the conference’s Organizing Committee many
colleagues and friends contributed to the success of SACLA 2016. Thank you to the
regular authors, as well as to the invited speakers, for having chosen SACLA 2016 as the
forum for communicating their noteworthy insights and interesting thoughts. Thank you
to the members of the PC and their additional reviewers, who all provided insightful and
detailed comments well within the stipulated assessment time. Thank you to the repre-
sentatives of Springer German branch (Alfred Hofmann, Aliaksandr Birukou, Leonie
Kunz, Frank Holzwarth) for having provided SACLA 2016 with this CCIS publication
opportunity, as well as to the representatives of Springer British branch (Beverley Ford,
Wayne Wheeler, James Robinson) for having donated a package of relevant ICS text-
books for further use. Thank you to Peter Csaba Ölveczky for his professional LaTeX
advice concerning the structure and the type-setting of this CCIS book. Thank you to the
representatives of our financial sponsors: the Department of Computer Science of the
University of Pretoria (Andries Engelbrecht) and the IITPSA (Tony Parry), as well as to
the organizers of the value-adding co-located events: CSERC 2016 (Marko van Eekelen)
and the JCSEworkshop on South African IT skills (Barry Dwolatzky, Adrian Schofield).
Thank you, last but not least, to Christina Firkins and Joané de Kock for their hands-on
help at the conference’s registration desk.

After the 45th Annual Conference of the Southern African Computer Lecturers’
Association —and at the end of this preface— I express my hope that this CCIS
volume may receive the international recognition that it deserves, and that the
herewith-documented success of SACLA 2016 may lead to the further growth and
internationalization of the long-standing SACLA conferencing tradition in the
not-too-far future.

July 2016 Stefan Gruner

The supporters and sponsors of SACLA 2016 are herewith gratefully acknowledged

Preface IX

Organization

General Chair

Linda Marshall University of Pretoria, South Africa

Local Arrangements and Technical Support

Angela Bekker University of Pretoria, South Africa
Vreda Pieterse University of Pretoria, South Africa
Neels van Rooyen University of Pretoria, South Africa

Programme Chair and Proceedings Editor

Stefan Gruner University of Pretoria, South Africa

International Programme Committee

Aderemi Adewumi University of Kwa Zulu Natal, South Africa
Pieter Blignaut University of the Free State, South Africa
Jürgen Börstler Blekinge Tekniska Högskola, Sweden
Raymond Boute (Professor Emeritus), Belgium
Torsten Brinda Universität Duisburg-Essen, Germany
André Calitz Nelson Mandela Metropolitan University, South Africa
Turgay Celik University of the Witwatersrand, South Africa
Michel Chaudron Chalmers Tekniska Högskola, Sweden
Charmain Cilliers Nelson Mandela Metropolitan University, South Africa
Marijke Coetzee University of Johannesburg, South Africa
Serena Coetzee University of Pretoria, South Africa
Andrea Corradini Università di Pisa, Italy

Carina de Villiers University of Pretoria, South Africa
Jörg Desel Fernuniversität in Hagen, Germany
Elize Ehlers University of Johannesburg, South Africa
Peter Forbrig Universität Rostock, Germany
Ina Fourie University of Pretoria, South Africa
Kurt Geihs Universität Kassel, Germany
Jaco Geldenhuys Stellenbosch University, South Africa
Stefan Gruner (Ed.) University of Pretoria, South Africa
Scott Hazelhurst University of the Witwatersrand, South Africa
Reiko Heckel University of Leicester, UK
Jan Kroeze University of South Africa
Herbert Kuchen Westfälische Wilhelms-Universität Münster, Germany
Michelle Kuttel University of Cape Town, South Africa
Shaoying Liu Hosei University, Japan
Philip Machanick Rhodes University, South Africa
Ernest Mnkandla University of South Africa
Mohamed Mosbah Université de Bordeaux 1, France
Susana Muñoz-Hernández Universidad Politécnica de Madrid, Spain
Sergei Obiedkov National Research University Higher School of

Economics, Russia
Peter Ölveczky Universitetet i Oslo, Norway
Martin Olivier University of Pretoria, South Africa
Niels Pinkwart Humboldt-Universität zu Berlin, Germany
Michael Poppleton University of Southampton, UK
Markus Roggenbach Swansea University, UK
Ian Sanders University of South Africa
Ulrik Schröder Rheinisch-Westfälische Technische Hochschule

Aachen, Germany
Andreas Schwill Universität Potsdam, Germany
Hussein Suleman University of Cape Town, South Africa
Matti Tedre Stockholms Universitet, Sweden
Clint van Alten University of the Witwatersrand, South Africa
Isabella Venter University of the Western Cape, South Africa
Willem Visser Stellenbosch University, South Africa
Gottfried Vossen Westfälische Wilhelms-Universität Münster, Germany
Bruce Watson Stellenbosch University, South Africa
George Wells Rhodes University, South Africa
Janet Wesson Nelson Mandela Metropolitan University, South Africa
Jim Woodcock University of York, UK
Albert Zündorf Universität Kassel, Germany
Olaf Zukunft Hochschule für Angewandte Wissenschaften Hamburg,

Germany

XII Organization

Additional Reviewers

Ade-Ibijola, Abejide
Ajayi, Nurudeen
Chavula, Josiah
Eybers, Sunet
Hagen, Mariele
Huhn, Michaela
Iglezakis, Dorothea
Kapfhammer, Petra

Klein, Richard
Leonard, Awie
Mehner-Heindl,

Katharina
Niemczyk, Stefan
Padberg, Julia
Phiri, Lighton
Ranchod, Pravesh

Reischmann, Tobias
Rieger, Christoph
Travica, Bob
van der Merwe, Alta
van der Poll, John
Vesin, Boban
Voigtländer, Janis

Organization XIII

Contents

Invited Lectures

On the Morality of Teaching Students IT Crime Skills. 3
Martin S. Olivier

Teaching Informatics in North America: Jugglers Wanted 22
Bob Travica

Assessment Methods

A Comparison of E-Assessment Assignment Submission Processes
in Introductory Computing Courses . 35

Melisa Koorsse, Marinda Taljaard, and André P. Calitz

Assessing Programming by Written Examinations . 43
Ken Halland

Criteria for Evaluating Automated Grading Systems to Assess Microsoft
Office Skills . 51

Melisa Koorsse, André P. Calitz, and Jaco Zietsman

Towards a Generic DSL for Automated Marking Systems 59
Fritz Solms and Vreda Pieterse

Instruction Methods

Code Pathfinder: A Stepwise Programming E-Tutor Using Plan Mirroring . . . 69
Mark S. Durrheim, Abejide Ade-Ibijola, and Sigrid Ewert

Flipping a Course on Computer Architecture . 83
Hussein Suleman

Effective Integration of a Student Response System in An Undergraduate
Computer Science Classroom: An Active-Engagement Instructional
Strategy . 95

Fani Moses Radebe and Liezel Nel

Teaching Operating Systems: Just Enough Abstraction 104
Philip Machanick

New Curricula

CS and IS Alumni Post-Graduate Course and Supervision Perceptions. 115
André P. Calitz, Jean Greyling, and Arthur Glaum

Introducing Health Informatics as an Elective Module in an Information
Systems Honours Degree: Experiences from Rhodes University 123

Greg Foster and Jane Nash

Towards an Interdisciplinary Master’s Degree Programme in Big Data
and Data Science: A South African Perspective . 131

Linda Marshall and Jan H.P. Eloff

Social Skills

Reflections on a Community-Based Service Learning Approach
in a Geoinformatics Project Module . 143

Serena Coetzee and Victoria Rautenbach

Which Are Harder? Soft Skills or Hard Skills? . 160
Vreda Pieterse and Marko van Eekelen

Various Experiences

A Case Study in the Use of the Five Step Peer Evaluation Strategy to
Improve a First Year Computer Literacy Course: An Exercise
in Reflective Evaluation Practice . 171

Mosiuoa Tsietsi

Enterprise Resource Planning Teaching Challenges Faced by Lecturers
in African Higher Education Institutions . 179

Khadija M. Mahanga and Lisa F. Seymour

Grit and Growth Mindset Among High School Students in a Computer
Programming Project: A Mixed Methods Study . 187

Delia Kench, Scott Hazelhurst, and Femi Otulaja

Author Index . 195

XVI Contents

Invited Lectures

On the Morality of Teaching Students
IT Crime Skills

Martin S. Olivier(B)

Department of Computer Science, University of Pretoria, Pretoria, South Africa
molivier@cs.up.ac.za

Abstract. A superficial introduction to the world of viruses, worms
and other malware is often sufficient to get students dreaming about the
potential power wielded by those technologies. One needs about a minute
to teach them how to build a powerful Trojan Horse, how to distribute
such a construction as targeted malware and how to monetise the few
minutes they invested in such an effort. Such teaching is rewarding since
it is one of the few examples where many students immediately apply
their new skills to impress friends. Of course the intention is not to make
them criminals, but to gain the deep understanding of issues that would
otherwise require them to spent hours with books that discuss abstract
concepts that often remains abstract.

The question is whether computing educator should ever even con-
sider teaching students skills that may be abused in this manner.

In this paper I argue that knowledge to harm and knowledge to help
overlap in many professional contexts. The lecture argues questions on
the morally of imparting potentially malicious knowledge should differ-
entiate between imparting it to those entering a profession and imparting
it to the masses. While this does not prevent the professional from abus-
ing knowledge, it is argued that the benefit to society will outweigh the
harm. In the non-professional context little benefit is likely to accrue to
society, but opportunistic abuse of knowledge already acquired is sig-
nificantly more probable than the possibility of someone purposefully
acquiring and abusing such knowledge.

However, even more important than professionalism is the sense of
community. It is argued that meaningful professional communities that
are able to use harmful knowledge responsibly are rare in computing.
Hence care should be exercised when potentially harmful information is
to be taught and self-censorship ought to be exercised in general.

Keywords: Ethics of computing · Professional ethics · Professionalism
in IT · Invited keynote lecture

1 Thirty Odd Years Ago . . .

It was in the late 1980 s when I first got the opportunity to break into a bank.
Banks were beginning to realise that some customers required online banking

c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 3–21, 2016.
DOI: 10.1007/978-3-319-47680-3 1

4 M.S. Olivier

facilities. At the time the business sector was the online banking target audience.
Online banking also did not look as we know it today; since the Internet was
not used for commercial services at that time, online banking was not Internet
banking. This predated broadband access and any service offered was through
dial-up facilities. In some cases a ‘portal’ (using a term that was not used at the
time) was used to connect to the bank; in other cases the bank provided its own
modems and select customers could connect to the bank via a direct telephone
call: modem to modem.

For banks this was a new mode of interacting with customers and they were
understandably weary of the security implications of providing customers such
direct access to their systems.

It is in this context that a service provider contacted my employer at the
time and the question eventually arrived at my desk. In essence a physical ‘key’
was created that would uniquely identify the customer and provide access to
authorised accounts. Access by using the ‘key’ would constitute proof that the
customer did indeed access the accounts, and the bank could demand to inspect
the key at any time, and inspection of the key would, amongst others, reveal when
last the key was used. The question that landed on my desk was whether this
mechanism —described in even more vague terms than above— was reliable.
After signing reams of documents preventing me from ever talking to anyone
about the question, I was provided a few more details and a working ‘key’. The
Achilles heel of the system was clearly the possibility of creating a clone of the
‘key’, because a clone would enable a user to access accounts, while the original
key would not have any indication that it was used and the original key would
be indeed be available for inspection at any time.

For me the problem was akin to bypassing copy protection incorporated in
many software packages at the time. Nerds like I ‘knew’ that no copy protection
mechanism was infallible and the task at hand did not seem very challenging.
The usual tools to bypass copy protection did not work. The next avenue of
attack was working through the code that could be accessed on the key. Long
story short: It did not take particularly long before the bank was supplied with
a duplicate key that unlocked access to the relevant accounts. I do not know
whether the bank ever commissioned that particular system; I assumed that the
relative ease with which the system could be breached was valuable information
for them. I certainly learned quite a few interesting lessons from the process; I
gained knowledge that I would have loved to share with others, but those reams
of signed non-disclosure agreements kept me quiet for decades and even today I
hesitate the share all the details of the adventure.

The knowledge I had of bypassing copy protection schemes hopefully con-
tributed in some small way to make online banking for that particular bank
a little safer. Extrapolating from this isolated experience it was obvious that
knowledge of how to perform a few morally questionable actions could bene-
fit society in the long run. But, none of my university courses ever hinted at
how such morally questionable actions could be performed (or that they may be
useful in a positive sense).

On the Morality of Teaching Students IT Crime Skills 5

Why we had knowledge of ways to bypass copy protection schemes, how we
obtained such knowledge and whether we were justified in having such knowledge
will be discussed later in this paper.

A year or two after the bank project one of the first computer viruses arrived
on our desks because someone’s computer occasionally displayed a ‘ball’ bounc-
ing across the screen. At that time there was no World Wide Web to query and
we eventually located the code that displayed this ‘bouncing ball’, and carving
further we eventually realised that we have discovered a computer virus on this
computer. At the time there were some rumours about computer viruses, but
those rumours did not make sense. But here we had the incarnation of a virus
in machine code, and the way that this (then) mythical category of malware
operated suddenly started making sense.

Fig. 1. International knowledge sharing prior to wide-scale use of the Internet

6 M.S. Olivier

We talked about what we discovered and developed software that could
remove this virus from an infected machine. Soon a steady stream of new viruses
started flowing to our desks. In a relatively short time our skills to locate, isolate,
extract and examine such viruses grew to be quite comfortable when confronted
with a new possible virus. In some cases we were able to, with authority, say
that some incidents were wrongly attributed to viruses. Based on prevalence we
discovered why some viruses were ‘more viral’ than others. We discovered how
unintended consequences of viruses were in some instances particularly danger-
ous. We even found examples of beauty in viruses where the style of the virus
writer was just much more elegant than the norm. We gathered a wealth of
knowledge about viruses. This knowledge was used in the fight against viruses
or, blowing our own trumpets, ‘for the good of humankind’. This time there
was no non-disclosure agreement. We could share this knowledge with others;
we could teach them a theory of computer viruses. But we did not.

This time there were moral boundaries that we felt we should not cross,
because somewhere someone would use the skills that we could transfer for evil.
And for many years we talked about viruses in abstract terms —that, almost
like the initial rumours we heard, enabled people to talk about the concept, but
never to really understand the details— unless, like us, they were willing the
acquire the detailed knowledge the hard way.

However, even requests to share copies of viruses were largely ignored. Some-
how a small international community formed who became the ‘custodians’ of
viral code and we were only willing to share viruses (as well as analyses and
sometimes antivirus software) in that community. Figure 1 reminds one of how
information was typically shared in the days before using the Internet became
the universal means of communication. This particular photograph shows virus-
related software that I received from Fridrik Skúlason circa 1989. It serves to
emphasise how this community formed and existed prior to the wide adoption
of the Internet and other global networking technologies.

My (subjective) experience was that the communities that formed as, ulti-
mately, the custodians of malware shared a certain ethic. Similarly, hacking
communities sharing a certain ethic, formed. And the ethic of the community
had a profound impact on what knowledge was shared when with whom. I doubt
that all communities shared the same values, but, rather, that shared values were
at the core of communities that did form.

Many years have passed since the days recalled in the paragraphs above. It
is time to reflect whether those communities that collected guarded knowledge
about malware and hacking acted correctly when they ‘guarded’ rather than
taught such information, and, if they did, whether the same imperatives still
apply. Note that the claim is not that all communities guarded potentially dan-
gerous information; some shared such information from the very beginning and
their decision to share also requires reflection.

On the Morality of Teaching Students IT Crime Skills 7

2 To Teach or Not to Teach

On the one hand knowledge —any knowledge— has value. One only has to look
at outcries that result from the burning of books or almost any form of censorship
that is imposed. Books are a form of transmitting knowledge, which is effectively
a form of teaching. Destruction of books intended to destroy knowledge is an
attempt to prevent the information it contains to be transmitted — that is,
to be taught. Censorship is a restriction on free speech. It is typically imposed
to prevent ideas from spreading; censorship effectively prevents teaching of the
censored information.

Note that there is a small class of information that society in general does
not condone. The best-known example is the depiction of certain forms of child
exploitation. There is general agreement that society should not tolerate such
knowledge. However, beyond these very narrow confines open societies usually
frown upon most forms of censorship. From this it follows that teaching is, in
general, tolerated and the right to teach defended (even when the content of
what is taught is disliked).

However, there is often a wide chasm between what ought to be done and
what is tolerated. Hence the act of teaching may sometimes be tolerated even
when the knowledge taught is deemed inappropriate. At the other extreme,
knowledge that is universally valued may make teaching such knowledge an
imperative. Of course teaching and knowledge may be tolerated and/or valued
anywhere between these two extremes. However, in addition to the freedom to
teach (or otherwise), the act of teaching some skill or knowledge invokes at least
two other factors, namely the context and the nature of the skills transfer. This
triad will be explored in more detail below.

Seen in the abstract, teaching (or education) is deemed valuable. Countries
spend huge amounts on education, and individuals seek education to improve
their prospects in life. The value of education is captured in the age old proverb
“give a man a fish and you feed him for a day; teach a man to fish and you feed
him for a lifetime”.1 While the modern-day reader will frown about the gen-
der bias in this proverb, she will agree with the underlying truth: such teaching
empowers the learner. It helps the learner to satisfy a basic need. This proverb
does not directly impose a moral obligation — it merely compares the utility of
two acts: giving and teaching. Teaching has the greater utility due to its multi-
plicative affect: value for a day compared to value for a lifetime. However, viewed
from a utilitarian perspective, confronted with the choice of helping or teaching,
teaching is the preferred option. Assuming the obvious fact that satisfying a
basic need of a person contributes to the happiness of that person, then teach-
ing may empower many people to help themselves, whereas feeding is limited
to the abilities of the one or few who possess the necessary skills or knowledge.

1 One of the earliest occurrences of this proverb used it somewhat differently from the
canonical form [13, p. 342]: “I suppose the Patron meant that if you give a man a
fish he is hungry again in an hour. If you teach him to catch a fish you do him a
good turn”.

8 M.S. Olivier

In this sense, teaching facilitates a greater happiness for a greater number of
people than feeding would. An overly hasty conclusion at this stage may be that
teaching is the most moral activity possible.

However, food is just one of the basic needs. Maslow [7, p. 372] posits that “it
seems impossible as well as useless to make any list of fundamental physiological
needs for they can come to almost any number one might wish, depending on
the degree of specificity of description”. And the proverb about feeding does not
directly extend to the other physiological needs, such as maternal needs or sleep.
As children grow up, maternal skills may be useless unless used to provide care
for others’ children. In a society the value of such skill is no longer the satisfaction
of one’s own needs, but the fact that skilled labour can be exchanged for goods
or services that satisfy other basic needs. Skilled labour may even be the source
of the highest need that Maslow identifies: self-actualisation. However, in any
society, retaining skills (and knowledge) is essential, which makes teaching an
indispensable part of such a society.

Maslow [7, p. 394], for example, claims that needs form a hierarchy: “when a
need is fairly well satisfied, the next prepotent (‘higher’) need emerges, in turn to
dominate the conscious life and to serve as the center of organization of behavior,
since gratified needs are not active motivators”. This hierarchy is depicted in
Fig. 2. Maslow notes that there are exceptions to the order that he describes,
but claims that a hierchy of needs still applies in those cases. His hierarchy
assigns a conditional value that is assigned to certain skills or knowledge. An
individual whose physiological needs are met, will value knowledge about safety.
However, when physiological needs are not met, meeting those needs trumps
knowledge on how to be safe. From a utilitarian perspective the moral calculus
will assign more weight to actions (or skills) that satisfy basic needs than actions
(or skills) that guarantee safety [9]. A hungry person may risk safety to acquire
food.

In the university context it is not uncommon to assign value to subjects based
on their perceived utility. A subject like computer science may be deemed more
valuable than, say, philosophy, because the market has more work opportunities

Fig. 2. A depiction of Maslow’s hierarchy of needs [7]

On the Morality of Teaching Students IT Crime Skills 9

in the computing field than it has opportunities for philosophers. Of course there
is no generally accepted calculus that weighs all relevant factors to achieve a
single correct assessment of the value of any given skill set or knowledge domain.

Note that the notion of utility is inherently instrumental: the utility of some-
thing refers to its usefulness to achieve some outcome. Above we alluded to
various outcomes, such as career prospects or meeting physiological (or higher-
order) needs in Maslow’s hierarchy. In utilitarian theories of ethics the desired
outcome is the good or happiness and the utility of a given course of action is
the degree to which it achieves such an outcome (for the greatest number of peo-
ple) [1,9]. Note that such instrumental factors are not unique to utilitarianism:
In Aristotelian virtue ethics the virtues are those characteristics that enable a
person to best achieve his or her purpose in life.

While knowledge has a ‘raw’ utility, knowledge does not necessarily have a
moral utility. Let us for the time being assume that the moral utility of knowledge
depends on its application (and reflect on this assumption later). Hence, we
assume here that, for example, nuclear physics is morally value neutral, but
applying such knowledge to manufacture an atomic bomb or to build a nuclear
power station may have vastly different moral utility values.

The title of this paper uses the phrase crime skills. The adjective crime was
selected over the adjective criminal in an attempt to not imbue a moral utility
into the skills to be considered. Criminal skills would attach a negative moral
utility to such skills. By using the phrase crime skills we hope to signify skills
that may be useful to commit a crime, but not skills that only have criminal
applications. A typical example here would be the skills of a penetration tester
employed by a facility to test the security of the facility. These skills will be in
many ways similar to the skills of the malicious cracker who, on own initiative
or as a member of a criminal outfit, attempts to penetrate the facility’s defence
system for personal gain or to cause harm to the facility. We are therefore firmly
positioned in a context where knowledge can be applied for good or evil purposes,
and the manner in which it is applied makes all the difference.

The discussion shifted from knowledge to skills in the previous paragraph.
To be more specific, the focus of the current paper is on ‘how-to’ knowledge —
knowledge that Aristotle refers to as techné [11]. Given that ‘how-to knowledge’
and skills serve the same purpose we will henceforth use the terms knowledge
and skills interchangeably.

Knowledge about harming others seems innate: Hobbes [5] describes the ‘nat-
ural state of mankind’ as one in which all people “are in that condition which is
called warre; and such a warre as is of every man against every man”. If such knowl-
edge is innate (or easy to obtain) teaching it either is of little additional use to
those who want to harm others, or given the general availability of such knowledge
it would be hard to object against anyone’s actions to share (that is, to teach) such
knowledge. Therefore, if any moral objection is to be raised, it can only be raised
about knowledge that is neither innate, nor easy to obtain. However, given the
ubiquity of the Internet, we live in a time where it seems any knowledge is easy to
obtain by anyone. But such an argument is not entirely valid. Consider, say, the

10 M.S. Olivier

theory of general relativity or, as another example, Immanuel Kant’s philosophy
of reason. In both cases the knowledge is indeed very easy to locate, but usually
requires a structured programme of study to acquire. And the guidance provided
by dedicated teachers through the prerequisite knowledge and foundations of the
theory greatly simplifies the process. In many cases ‘pure’ knowledge is insuffi-
cient to apply, and competency and confidence need to be developed. Presumably
not too many people have learned to ride a bicycle from the Internet — training
(and often teaching aids such as training wheels) are required. We will revisit the
argument that not all knowledge (now explicitly including skills) is available to
anyone who wants to master it.

However, the claim that some potentially harmful knowledge may be excep-
tionally hard to master i(unless taught) seems to be a moot point given that
much potentially harmful innate skill (or knowledge that is easy to master) is
readily available. Why would anyone with harmful intentions resort to a more
complex method to inflict harm if simple methods are available? The answer is
arguably that a method becomes attractive when it limits the probability of ret-
ribution. If A wants to harm B, A can hit B with a club. However, A may be seen
engaging in the act, be caught and be punished. Or B may not be debilitated by
the attack and harm A in defence. If A has the option to remotely administer
an untraceable toxic substance to B this provides a much ‘safer’ alternative to
A. It also poses a much greater risk to society: In Hobbes’s discussion of society
the mechanism to avoid a war of each against the other is to “agree amongst
themselves to submit to some man, or assembly of men, voluntarily, on confi-
dence to be protected by him against all others” [5, p. 106] (emphasis added).
Hence this more complex method may not only protect the perpetrator, but also
undermine the essence (and stability) of society. And, while this argument was
constructed using Hobbes’ philosophy, it is rather obvious that it seems to make
common sense.

The realisation that people with specific categories of knowledge can abuse
such knowledge is an old one. The Hippocratic Oath, for example, implores
physicians to use their knowledge to “to help the sick according to my ability and
judgment, but never with a view to injury and wrong-doing”. Bioethics is often
summarised into four precepts, of which non-maleficence is one. This precept
is derived from the maxim first do no harm, which is often expressed in Latin:
Primum non nocere. While there is some debate about the origin (and age) of
the maxim, it has been used for at least a few centuries [12].

One mechanism frequently applied by society is to regulate those who are
entrusted with special responsibilities as professionals. Often it is realised that
the safety of society (and/or of individuals) depends on the assumption that
such professionals execute their duty responsibly. Masses of people cross bridges
on a daily basis with an implied trust that the responsible engineer designed the
bridge such that it is safe to use. People are operated on by surgeons with the
knowledge that the surgeon has the knowledge (and carries the responsibility)
to perform the operation with a very high likelihood of success — an expected
outcome that far exceeds the impact of not undergoing such an operation.

On the Morality of Teaching Students IT Crime Skills 11

In court when one is represented by an advocate or lawyer, that legal professional
has an obligation to proceed in one’s best interest, or may be held accountable.
In fact, responsibility forms the foundation of professional ethics [3]. However,
the word responsibility encompasses a number of meanings — in particular,
obligation-responsibility, blame-responsibility and role-responsibility [3, p. 22].

While such professionals are, in the first place, expected to act in the interest
of their clients and/or society, it is obvious that this very notion enables them
to act contrary to the expectation. Stated differently, knowledge about safety
typically implies knowledge about doing harm. The surgeon’s knowledge of how
to make an incision that avoids a certain artery or nerve (because damage to the
nerve or artery would be catastrophic) implies knowledge about how to precisely
target such a nerve or artery and inflict major harm (and this harmful knowledge
can be applied outside the normal context of an operating theatre). It is often
impossible to teach someone how to avoid harm without, as a consequence, teach
that person to inflict harm.

In the context of professionals, these knowledge is typically of such a nature
that only professionals are entrusted with a ‘licence’ to execute such actions in
the interest of society. To continue the example of the surgeon, the surgeon is not
only provided with the knowledge to perform operations, but also practices such
skills — starting with observing, then assisting and finally becoming the person
responsible for performing the operation. This provides a ‘training ground’ that
is simply not accessible to anyone else, meaning that only the surgeon is able to
perfect his or her technique. Perfect technique provides confidence required to
perform operations, but may also provide confidence to inflict harm if a surgeon
so wishes. While another person may somehow learn a similar technique, the
vast majority of people in society who has such skills, practice them regularly
and are arguably in a position to abuse such skills with the least amount of
collateral damage, have been taught those skills.

Note that the example of the surgeon is not a unique case: An auditor trained
to identify fraudulent entries in a company’s books is in an ideal position to
insert such entries in a manner that is likely to be overlooked by other auditors.
An engineer who knows how, say, the transmission of microwaves ought to be
contained, can use that knowledge to inflict harm through common microwave
devices. The lawyer who has the knowledge to protect the right of his or her
client can draft a contract that denies the other party to a contract any recourse
to enforce that party’s rights.

There are also examples where skills are taught to cause damage. Engineers
may be taught how to implode a building using the least quantity of explosives
positioned on the most ‘vulnerable’ part of buildings. Manufacturers of weapons
use knowledge to inflict the most damage possible (within certain constraints).
As an example of the latter case, consider a neutron bomb designed to extinguish
life, but not damage property, so that it is available for subsequent use by the
user of such a weapon.

In summary, teaching potentially (or actual) harmful skills is a regular part
of professional education — and has been for centuries: see Fig. 3 for comparison.

12 M.S. Olivier

Fig. 3. Teaching of potentially harmful skills as part of a professional education:
German scythe combat instructions, compiled by Paulus Hector Mair (1517–1579) in
the Opus Amplissimum de Arte Athletica (≈ 1540), [codex MSS Dresd. C.93/C.94].
Note that a skythe, in contrast to a sword, was a comparatively cheap and widely
available agricultural tool in those days

Arguably more benefits than harm accrue to the public from the fact that
professionals possess such knowledge (in the vast majority of cases; some cases,
such as the neutron bomb, may be a counterexample). If the benefits outweigh
the costs a utilitarian argument provides a simple way to justify the teaching of
such knowledge.

On the Morality of Teaching Students IT Crime Skills 13

In cases where the benefits do not outweigh the costs the question arises
whether teaching or abuse of such knowledge should be controlled. As an exam-
ple, vendors often use boilerplate contracts to retain all their own rights, but
deny any rights that the customer may have had. One solution in such a case is
to promulgate consumer protection legislation that curtails the extent to which
such contracts can limit customers’ rights.

3 Potentially Harmful IT Skills

An IT skill is potentially harmful if it enables someone to abuse IT in a manner
that causes harm to another party. One common example is skills that would
enable a criminal to masquerade as some user and withdraw that user’s money
from his or her bank accounts. On a larger scale such skills may be used to take
over or crash a computer system that forms part of a country’s critical national
infrastructure. The impact from interfering with the operation of systems may
range from a minor annoyance to full-scale war. Given that IT is used in almost
any modern activity, any such activity may be vulnerable to abuse. For the
typical IT-oriented reader of this paper no further elaboration about the impact
possible abuses in this sphere is required.

The next question then is why there may be a need to teach such skills. In
a nutshell, there are three answers. Penetration testing is an accepted form of
testing the security of an organisation’s systems. Penetration testers criminals
who may want to attack the system need the same (or similar) skills. The digital
forensic examiner also fits into this category. Such an examiner needs to know
what traces are left by (possibly criminal) actions and can abuse this knowledge
to hide his or her own maleficent activities. Secondly, as will be argued below,
computer security professionals need a proper understanding of the threats they
need to protect systems from, and phantoms of such threats rarely provide suffi-
cient insight. Finally, the vulnerabilities that occur in code are placed there (typ-
ically inadvertently) by programmers; they may become more reflective about
their coding if they are more familiar with how what they do can be abused.
Also this will be reflected on in more detail below.

It may also be possible to justify the teaching of such skills from an edu-
cational perspective. From experience I know that students are fascinated by
‘hacking’, ‘cracking’ and similar activities. As an example, a lecture about he
operation of the Simple Mail Transfer Protocol can be pretty boring. However,
showing them how easy it is to spoof sender addresses piques their interest.
This also provides an ideal opportunity to bring a discussion of ethics into the
lecture. Invariably students then go and send spoofed emails to their friends
(hopefully within the ethical limits of such an action). Rather than becoming
familiar with the protocol because they have to, they suddenly want to. And
many of them run into situations where simple spoofing does not work and
begin to ask questions about technologies such as Sender Protection Framework
(SPF) and DomainKeys Identified Mail (DKIM) — topics that they may not
have encountered in the curriculum at all. Knowledge of SPF and DKIM limits

14 M.S. Olivier

their confidence about their ability to spoof any email address and imposes some
restraint on full-scale abuse of this new skill. But even here, with the checks and
balances in place, one should reflect on the ethical cost-benefit ratio of inspiring
to learn, given the possibility that they will abuse the skill (discounted by the
fact that many people using SMTP directly will probably realise its ability for
abuse anyway, but then without the benefit of having discussed ethics prior to
their own discoveries).

The first reason for teaching students potential harmful skills based on the
assumption that they may be employed as penetration testers is valid, but does
not scale: An extremely tiny fraction of people will ever work as penetration
testers, so teaching the masses such skills is not justified by the few who need the
skills to be penetration testers. In addition, to be a penetration tester one needs
a natural curiosity and ability to learn from obscure sources; hence acquiring
the necessary skills may be part of the genetic makeup of the ideal penetration
tester and teaching may add very little to skills they can acquire though their
innate curiosity.

The second justification for teaching potential harmful IT skills was the claim
that computer security professionals need to properly understand the threats
they face. Teaching students about the categories of malware, as an example,
gives them a glimpse of that world, but without the ability to construct such
malware. Even talking about a Trojan horse, which is trivial to construct in a
number of forms, does not seem to give the student the feeling that “I can do
that!”. While students often tell me about the fun they had sending spoofed
emails to their friends, nobody has ever told me after a lecture that discussed
Trojan horses about the fun they had building such malware.

How well does a security professional need to know ‘the enemy’? To continue
with the malware theme, students (and, arguably, professionals) tend to know
the categories of malware (viruses, worms, Trojan horses, and so on) and deem
them to be fairly similar threats. However, if they are faced with the tasks of
creating, say, a Trojan horse and a virus, they will hopefully realise that the
first task is trivial and the second not. In terms of a threat assessment it should
then be obvious that custom-built Trojan horses present a credible threat from
any source; a custom-built virus is very unlikely to originate from an unsophis-
ticated attacker. Hence, depending on the type of organisation, virus scanning
may be sufficient mitigation for a virus-based threat, but not for a Trojan horse.
A custom-built Trojan attached to a suitable delivery mechanism (such as email)
becomes a spearphish. Technical mechanisms are not particularly useful to mit-
igate this threat. Hence, the standard response tends to be to externalise the
cost to the user in a policy that instructs the user not to open any attachments
from unknown senders. However, if the pundit of such a policy is able to think
how an attacker would deal with such a policy (and hence, how effective such
a policy would be), one wonders whether the rational security specialist would
still support such a policy. This is a rather simple example, but such policies are
ubiquitous.

On the Morality of Teaching Students IT Crime Skills 15

Many other examples could be provided to show why deep knowledge of
a threat is indeed useful to mitigate it. However, there are many more people
working as security specialists than penetration testers, it is still a special interest
group and arguably insufficient justification to teach the bigger community such
skills.

4 The IT Worker — From Hero to Zero

In the introduction an example was provided that illustrated how the values
of the community determined who was trusted with knowledge. Arguably that
same spirit governs sharing of knowledge amongst penetration testers and many
other communities. In the case of the professions such a value system is institu-
tionalised and enforced by professional bodies.

However, the notion of community (whether information or institutionalised)
is largely absent from the broader IT workforce. Communities certainly do still
exist — see, for example, Himanen’s [4] description of the hacker ethic.

Prior to the 1980 s computers were expensive machines housed in climate
controlled centres to which access was tightly controlled. It was not uncommon
for workers in these centres to wear white coats. This inevitably instilled a sense
of community. The scarcity of computers made it necessary to network (in the
social rather than data sense), and communities —as groups of people— were
linked to one another.

However, over time a culture shift occurred. Many of these older computers
were used for corporate management, such as the monthly printing of payslips.
However, organisations did not, in general, depend on the operation of its com-
puting facilities. In today’s context the organisation often cannot function with-
out its computing facilities.

In a parallel set of events the concept of corporate governance emerged and
became increasingly important. Corporations represented the investments of
society, the workplace of society and the major sources of impact on society.
They no longer were just businesses, but operated at the core of society. And,
in such a core function it developed a fiduciary responsibility towards large
sets of stakeholders. Various codes (in the form of laws or otherwise) appeared
including the Sarbanes-Oxley Act in the US and the King Report on Corporate
Governance in South Africa [6]. Over time it was inevitable, given the increasing
dependency of corporations on its IT infrastructure, that computing would move
from a technical or even scientific context to a management context. The extent
to which this has happened is illustrated by the fact that the King III report
devotes an entire chapter to IT governance.

In another parallel set of events use of computing facilities broadened to
include an ever increasing variety of workers. Initially they used computing
through terminals connected to the mainframe, later through personal com-
puters and eventually through a large variety of devices that are connected to a
range of services. In contrast to the ‘uniformed’ centralised specialist IT worker,
almost everybody now worked using computing.

16 M.S. Olivier

Typically a central IT department still exists in the organisation. However,
rather than the admired masters of the machine, they are now responsible for
maintaining a service where others are the users to be supported. Not only
does this new user base need support, but they also need to be controlled as
part of IT governance. Effectively the IT department becomes invisible when
everything works; users seem self-sufficient. The IT department becomes visible
when the infrastructure fails, when new regulations and policies are introduced
(and enforced) and (often enough) when the computer is blamed for anything
that goes wrong in the organisation. The IT department no longer have a shared
technical expertise. It is a mixed group of management and technical skills, with
managers who —in contrast to the system or database administrator of an earlier
time— may have no technical skills and the technical people living in a foreign
world of management. Where the ‘technical wizard’ was once the person who
could solve complex problems, the help desk has become a faceless entity behind
an email address or ticket system.

In this world technical skill has become extremely mobile. Expertise is often
associated with a project, rather than a system or an organisation [2]. Developers
flow from one project to the next. The CV of the typical IT worker is a list of
completed projects, with a new employer every 18 months. Much of the IT
workforce has become migrant labourers moving to wherever their skills are
required for a new project [10]. Of course a part of the workforce still remains
stable with people who only work at a few employers (or even a single employer)
during their careers. However, in general perpetual motion has become the norm.
In many ways we are seeing labour as a commodity more clearly than ever before.
Arguably this is, in particular, true for developers whose skills are no longer
required once a project has been completed, but where there always seems to be
a new project starting somewhere else.

In the context of such migrant labourers it is arguably hard to establish any
sense of community. There is little reason to become loyal towards any specific
organisation. Project-based work may not be associated with a retirement fund
or pension or medical benefits. And in such a context individuals fall out of
the system once they are no longer useful. This may be a fertile place where
disgruntled insiders (albeit temporary insiders) form. This is a context where an
individual sees no way out. In this context the empowered worker may resort
to crime to satisfy a basic need (such as to afford medical care for children).
There are few social bonds and few professional constraints that prevent such
a person from abusing potentially harmful knowledge. There is little reason to
believe that the benefit to society will exceed the cost to society if the workforce,
in general, has too much potential harmful knowledge.

5 Stratification of Responsibility

Up to this point a sense of community has been posited as one of the major
reasons to believe that potentially harmful information will more often than not
be used for the benefit of society. The lack of community in the IT sector was
raised as the major concern for this sector.

On the Morality of Teaching Students IT Crime Skills 17

However, in most professions community is not a result from almost identical
human beings inhabiting the same space. In the world of medicine, the workforce
may consist of various specialists, general practitioners, registered nurses, other
nursing staff, ambulance drivers, paramedics, porters and workers in many other
roles. In some cases one may encounter mobility, for example, medical students
who rotate through various rounds over time. While some roles may have a
relatively higher or lower status than other roles, this is not necessarily the case.
How does the status of the hospital’s general manager, for example, compare to
the status of, say, its nursing manager? Both are professionals, but the nursing
manager often has a stricter sense of professional responsibility enforced by a
professional board. In contrast, the responsibility of the general manager stems
from a fiduciary duty towards the hospital’s stakeholders. The nursing manager
has to be educated to act as a health care worker. Nursing knowledge is an
essential part of the nursing manager’s duty. The general manager may need
a general business acumen and a diverse (but not) specific set of management
skills. While the nursing manager reports to the general manager, the general
manager cannot make decisions about nursing or patient care, since the general
manager is not empowered to be responsible for such decisions.

In the hospital example, the ‘culture’ or ‘community’ of one medical specialist
may be very different from that of another specialist. These specialists belong to
different professional societies that meet, perhaps annually, and in this context a
certain sense of community is experienced. However, perhaps more importantly,
the responsibilities (and, in particular, accountability) of the roles are clearly
defined. To make this example more specific, consider the roles of the surgeon and
anaesthetist in an operating theatre. Both are skilled medical doctors, but they
have very different responsibilities is each of the three senses of responsibility
mentioned earlier (viz obligation-responsibility, blame-responsibility and role-
responsibility). In such a context, where skills overlap, responsibility and specific
accountability is a major factor that ensures smooth operation of the system.

Knowledge is clearly linked to accountability: to be held accountable one
needs certain knowledge before accountability makes sense. But accountability
also constrains one’s abuse of such knowledge.

It seems obvious that such stratification in the IT sector may be meaningful.
A developer needs certain skills. A system administrator needs certain skills.
This does not imply any hierarchy, but the two roles are clearly accountable in
different ways. If such accountability can be enforced, as it is in the medical
example, it would be inappropriate for the system administrator to act as a
developer (unless the system administrator is indeed also a developer who could
be held accountable as a developer). Under these conditions we suggest that
workers in certain roles and who are held accountable in those roles can be
entrusted with potentially harmful knowledge.

Note that such an enforcement of responsibility does not necessarily reserve
jobs for certain people with a certain level of education. Several attempts to pro-
fessionalise the IT sector have failed; one of the major reasons for such failures is
the difficulty to delineate the nature of IT jobs. As a simple example, what would

18 M.S. Olivier

the minimum education be before a person can be a programmer? The problem
with asking such a question is the diverse set of people working as programmers.
On the one hand someone may be a self-taught programmer who writes simple
programs that are useful in his or her business. Another programmer may write
code that implements autopilot functionality on a wide-body passenger aircraft.
The impact (both positive and negative) of the quality of the work done by each
differs significantly. It is unrealistic to expect that both will be expected to have
the same qualifications and/or skills. Though these two workers share the same
(generic) job title, their professional work is worlds apart. They are most prob-
ably not members of the same community in any sense of the word community.
The programmer working on the autopilot system may be a member of various
professional bodies and subject to their codes of conduct; however, such codes
are rarely enforced. In the end the engineer who includes the autopilot software
into an aircraft is the person who is professionally responsible for its correct
operation. In the case of the small-business owner, he or she is responsible to
some extent for the code used as business owner, and not as programmer.

It is possible to introduce legislation that limits the type of project a pro-
grammer may participate in based on skills and expertise, but the variety of
programming tasks and the pace at which technology evolves makes this route
unlikely. Add to this variety the fact that code is often reused (including open
source code where specific code may not be attributable to a specific program-
mer), and enforcing stratification by law becomes even more complex. Hence,
other options to stratify the IT sector needs to be explored.

One alternative used in a number of professions is the use of insurance to cover
professional liability. To return to the medical example, the professional liability
of a doctor may be carried by the doctor’s employer (such as the state). If not,
such a doctor would be foolish to practice without proper medical insurance (and
may indeed be required by law to be properly insured). The cost of insurance is
typically based on the professional activities the doctor engages in. Even though
all doctors are, in principle, able to assist with child birth, the associated risk
can be extremely high. This is reflected in the cost of medical insurance for
obstetrics. To illustrate, the 2015 cost of insurance for a South African general
practitioner who does not perform procedures in operating theatre was almost
ZAR 9,000 per year [8]. For such a practitioner who does perform procedures in
an operating theatre, insurance almost doubled to ZAR 18,000. The insurance
cost for a general practitioner who carries out basic pregnancy care and planned
deliveries, insurance costs increased to almost ZAR 120,000 — about 13 times
the first premium mentioned above. When the same doctor frequently practices
general obstetrics the insurance increased to almost R190,000 per year. The type
of work clearly determines the nature of the risk and the associated potential
(financial) responsibility in terms of liability. Note that most professionals (who
perform professional work) have some form of professional liability insurance,
including engineers, lawyers and other health care professionals.

We do not suggest that high insurance premiums keep professionals moral. It
may be true that a professional who makes too many mistakes will not be able to

On the Morality of Teaching Students IT Crime Skills 19

find insurance again and thus effectively banned from practicing as a professional,
but it is unlikely that this is a major motivation for most professionals to behave
in a moral manner. It is far more likely that professionals doing a specific type
of work will attend the same conferences, serve on the same committees and
generally bond as a community. In this community values will be shared and the
norms of the community imprinted on the individuals. Even when the amount
of money does not differ, doctors who are interested in treating, say, diabetes
(and become known as doctors who are trusted in that particular subdiscipline)
tend to form such communities.

Of course similar communities form around other shared interests, such as
supporters of a particular football team. In this community values that are shared
may be good or evil. Much has been reported about damage caused by some
football hooligans, for example. Hence, we posit that the community imbues
(and reinforces) certain values. Professional values determine the nature of such
values — in particular, whether the interest of society is served by such values.

It has already been argued that the IT workforce is not (or no longer) a com-
munity. Some communities do form as special interest groups. However, profes-
sional values are hardly ever enforced in such communities. To illustrate, consider
a community of security professionals. If a security breach occurs at the insti-
tution that employs such a security professional, it is extremely unlikely that
the community will reflect or the impact of the personal responsibility of such a
member on the breach and vice versa.

One example where exceptions may occur comes from the penetration test-
ing community. Penetration testers typically sign agreements with the owners of
systems that are to be tested. The boundaries of the test are explicitly spelled
out. As long as the penetration testers operate within those boundaries, the
agreement indemnifies them. However, once they exceed those boundaries (for
example, by disclosing confidential information to others), they expose them-
selves to a significant liability in the form of penalty clauses. A penetration
tester who does not abide by the values of the penetration testing community
will be expelled from the community. Trust of the community is a key element
in the sustainability of any business in that community.

As noted, the IT community is, in general, not properly stratified. Exceptions
in the form of specific communities exist, but the mere fact that communities
exist is not sufficient. Professional responsibility needs to be an inherent part of
such a community before it can be trusted as professional.

Unless one teaches such a specific community, it seems prudent to limit
potentially harmful knowledge taught to students. If necessary, they will have to
acquire such knowledge in the workplace. This does not mean that no such skills
should be taught; however, it suggests that the extent to which such skills are
taught should be limited so that it does not instil a sense of complete competence
in the student. Ideally the student should not be provided with knowledge open
to immediate abuse; teaching should stop at a point where much additional
knowledge needs to be acquired. One cannot prevent anyone from acquiring
knowledge. At best one can ensure that such knowledge is not provided in a

20 M.S. Olivier

sufficiently refined form so that it can be abused to cause harm; if such ‘ready’
knowledge is provided it will simple be too easy to abuse it without restraint
whenever any cause is a sufficient trigger for such abuse.

6 Conclusion

This paper reflected on the extent to which computer crime skills can be taught
to IT students from a moral perspective. In many cases IT workers need such
knowledge to perform activities that are in the interest of society and that are
clearly moral.

It was argued that professionalism is one of the key elements that limits abuse
of such knowledge. However, it was also argued that professionalism is not the
only determinant of moral behaviour — a sense of community was deemed to be
a particularly important part of handling such knowledge with appropriate care.
In fact, the description of professionalism deviated from the usual depiction as
someone who has been admitted to a profession based on skills (and education); a
profession here was rather seen as a context where responsibility is a key concern
when workers are assigned specific tasks.

Given the fragmented nature of the IT workforce it was argued that it is inap-
propriate to trust the general workforce with potentially harmful skills. When
such information is taught it should be sufficiently incomplete that it is not
possibly to apply the knowledge without further studies.

It remains true that anybody is arguably able to acquire any knowledge.
When teaching is limited as argued above, it does not solve the problem of people
having or being able to obtain harmful skills. However, it does limit the number
of people who have such knowledge and are able to apply it without further work
from their side. This limits the abuse of such knowledge in a moment of anger
and without some opportunity to reflect. It also speaks to the complicity of the
teacher who taught knowledge that is eventually abused.

References

1. Bentham, J.: An Introduction to the Principles of Morals and Legislation. Dover
(2007)

2. Fan, Y., Thomas, M., Wang, Y.: Do project managers have organizational career
paths? a study of the current state of career development for IT project man-
agers. In: Proceedings International Conference on IS Management and Evaluation
(ICIME 2015), pp. 40–48 (2015)

3. Harris, C.E., Pritchard, M.S., Rabins, M.J.: Engineering Ethics: Concepts and
Cases. 3rd ed. Thomson Wadsworth (2005)

4. Himanen, P.: Hacker Ethic and the Spirit of the Information Age. Floris Books
(1999)

5. Hobbes, T.: Leviathan, or the Matter, Forme, and Power of a Common-wealth
Ecclesiasticall and Civill. Andrew Crooke, London (1651)

6. IoD: Third report on corporate governance for South Africa. Institute of Directors,
Johannesburg (2009)

On the Morality of Teaching Students IT Crime Skills 21

7. Maslow, A.H.: A theory of human motivation. Psychol. Rev. 50, 370–396 (1943)
8. Medical Protection Society: MPS subscription rates. Technical report, MPS0162:

11/14, South Africa (2015)
9. Mill, J.S.: The Basic Writings of John Stuart Mill: On Liberty, the Subjection of

Women and Utilitarianism. Modern Library (2002)
10. OCarroll, A.: Working Time, Knowledge Work and Post-Industrial Society –

Unpredictable Work. Palgrave Macmillan (2015)
11. Parry, R.: Episteme and techne. In: Zalta, E.N. (ed.) The Stanford Encyclopedia

of Philosophy. Stanford University (2014)
12. Smith, C.M.: Origin and uses of primum non nocere – Above all, do no harm!. J.

Clin. Pharmacol. 45(4), 371–377 (2005)
13. Thackeray-Ritchie, A.: Miss Dymond. Elder & Co., Smith (1886)

Teaching Informatics in North America:
Jugglers Wanted

Bob Travica1,2(B)

1 Asper School of Business, University of Manitoba, Winnipeg, Canada
btravica@ms.umanitoba.ca

2 School of Computing, University of South Africa, Johannesburg, South Africa

Abstract. Teaching informatics (information systems) at the university
level in North America is challenging. The teacher in Canada and the
United States can be compared to a juggler performing before many spec-
tators. The juggler strives to keep in the air multiple balls that cross each
other’s path. A student-learner ball may collide with a student-customer
ball, teacher’s needs for new technology and better technological sup-
port are countered by funding limitations, while attempts for asserting
academic self-identity get confronted by incongruent attributions that
the spectators create. Opposed balls come even from the field colleagues
when the character of the field and teaching prospects are at stake. The
article analyses these tensions and outlines prospects of teaching infor-
mation systems in North America.

Keywords: Management information systems · Informatics ·University
teaching · Canada · United States of America · Invited keynote lecture

1 Introduction

The following discussion will presents my view of teaching issues in the field of
informatics, that is, information systems (IS) in Canada and the Unites States. I
have taught in the U.S. for 13 years (accounting for five years of my assistantship
during my Master’s and Doctoral study) and for 16 years in Canada.

I will use a circus metaphor featuring an IS professor in the role of juggler.
The juggler tries to keep in the air balls that cross the path and may collide.
The balls represent opposed forces challenging the juggler. His/her spectators are
students, administrators, colleagues within and outside the IS field, academia,
business, and government. The show’s theme is teaching and related management
and governance. Teaching involves course selection, execution, and evaluation.

The discussion will first address the organisation of IS programs. Then,
opposed forces will be analysed. Finally, prospects of teaching information sys-
tems will be outlined.

2 Organisation of IS Programs

It is important to understand how IS programs are organised in order to grasp
the context in which IS professors work and the choices they make in the teaching
c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 22–31, 2016.
DOI: 10.1007/978-3-319-47680-3 2

Teaching Informatics in North America 23

process. Different organisational properties set both prospects and limitations
to teaching IS in North America.

A North American IS program of study is typically situated in a business
school (faculty) that is a part of a larger university. While a business school may
give IS teaching a clearer focus, such as managerial decision making, it may also
limit the scope of IS subject matter. The latter usually surfaces with new techno-
social phenomena residing outside the orthodox management agenda (e.g., the
Internet beyond the commercial realm).

An IS program can be organised into a separate department of a business
school, IS-exclusive or IS mixed with other areas (e.g., supply chain or deci-
sion sciences); please refer to Fig. 1. Optionally, when a business school is cen-
tralised and based on study areas rather than departments, an IS program resides
within such an area. An area can again be IS-exclusive or IS mixed with other
disciplines. The departmentalised model exists in both Canada and the U.S.,
while the centralised model is deployed only in Canada. In the U.S., there is
yet another organisational model in which an IS program resides in a separate
school (e.g., Carnegie Mellon University and Syracuse University). A separate
pure department model versus a hybrid area model—which make opposed ends
on the centralisation continuum—are likely to have implications on the subjects
taught.

IS are being taught as a major area of study at the undergraduate level.
The number of required (mandatory) courses range from four to over two dozen,
Canada being on the lower and the U.S. on the higher. IS are also taught at
the graduate level, bestowing the degrees of Master’s of Science and Philosophy
Doctor (PhD). There is a trend toward specialising graduate degrees in the U.S.
(e.g., IS security, or analytics).

Fig. 1. Organisational models for IS programs

24 B. Travica

Table 1. IS programs at Canada’s top 15 research public universities. Source of
ranking: U15 [7].

Characteristic Finding

Departmentalised: IS program pure model 5

Departmentalised: IS program mixed
model

1 (operations, supply chain, innovation,
entrepreneurship, accounting, finance)

Centralised: IS mixed model 3 (same as above)

Centralised: IS pure model 3

No IS program 3

Full time tenure-track faculty 3–18

Standard subjects Databases, systems analysis and design,
data communications, programming,
enterprise systems/analytics, IS strategy

I investigated a sample of top universities from each country and tabulated
results in Tables 1 and 2.

As Table 1 indicates, standard subjects taught in IS programs in Canada
include databases, programming, analytics, and IS strategy. In the U.S., the
list also includes decision support, process management, and analytics (Table 2).
Some IS programs emphasise particular subjects, judging after the course offer-
ings and directions in faculty research. Examples include health informatics,
process management/change/innovation, Web user interface, analytics/Data Sci-
ence, IS security, and more recently social media. In most cases, the U.S. pro-
grams are larger than Canadian, with respect to the number of students and
full-time tenure-track faculty.

The institution of tenure (permanent employment conferred after a five-year
probationary period and a successful evaluation by peers and administrators)
exists in both countries. In the U.S., the tenure is usually bundled with promo-
tion from the Assistant Professor rank to Associate, while this is not the case
in Canada. The tenure institution ceased to be untouchable in the U.S., with
occurrences of laying off tenured full IS professors. This happened when their
departments were closed down upon management decisions that were justified
by insufficient student enrolments in the IS programs. The ‘invisible hand of
market’ has become quite visible and strong in the period of prolonged reces-
sions since the end of the last millennium. The IS job market in the U.S. is
also characterised by a trend of hiring instructors on contract. The hires may
fill so-called ‘clinical’ teaching ranks, contracted for a single academic term or
longer periods.

Both in the U.S. and Canada, online course delivery has picked up the speed.
Online education may meet several goals, such as expanding markets, increasing
convenience for students, filling a gap in a faculty’s competences by contracting
out. From the perspective of teacher-juggler, however, putting a course online
may mean a loss of intellectual property and irreplaceability. An online course

Teaching Informatics in North America 25

Table 2. IS programs at top 13 universities in the U.S. in 2015. Source of ranking:
U.S. News and the World Report [6].

Characteristic Finding

Departmentalised: IS program pure model 5

Departmentalised: IS program mixed
model

5 (decision science, operations, supply
chain, management science)

IS College 1

No IS program 2

Full time tenure-track faculty 9–27; trend of contracting teachers

Standard subjects Databases, systems analysis and design,
decision making support (wide range),
data communications, programming,
enterprise systems, process management,
analytics, IS strategy

may be a sag-way to outsourcing educational services and replacing full-time fac-
ulty by its part-time counterpart. The tenure and hiring dynamics put pressure
on IS professors with regard to what and how to teach.

3 Student-Learner vs. Student-Customer

The drums are beating high, trumpets screaming, the audience’s attention is
sky-high... The juggler throws up a ball inscribed with ‘student-learner’ and
immediately after a ‘student-customer’ ball. The balls are flying toward each
other and collide. The audience is booing the juggler. What has happened indeed
in our metaphorical circus?

An IS teacher faces the situation above every time he/she teaches non-IS
major students. Such students are less likely to be motivated for studying topics
related to information communication technology (ICT, IT) and its manage-
ment. And really, why would they? How many drivers in North America have
ever opened the hood of a car they drive daily? Do people know how a TV net-
work works or what principles underlie the ubiquitous mobile telephony? Masses
of people in North America are consumers interested in using technologies, while
caring little about technology principles and workings. Not incidentally did a
popular model for studying technology acceptance, which features the ease of
use as the key independent variable, come from the U.S. A combination of edu-
cational shortcomings and consumerism precludes interest in technology beyond
its utility for all but the specialists. Accordingly, non-IS major students in com-
monly required IS courses often wonder, why do they have to study IS?

Such displeased students tend to turn their customer face toward IS teachers.
Strongly encouraged by university administrators, the student-customer role is
grounded in notable costs students have to absorb. Study fees in North America
range from $5,000 to $50,000 a year (the figures do not account for lodging and

26 B. Travica

other living expenses). American figures are typically two or more times bigger
than Canadian equivalents. However, the customer stance can lead the students
to a logical impasse: If I am a true customer, why do I have to buy a course I
do not want? And they still have to as long as IS courses exist in the required
common core.

IS teachers face a permanent challenge of motivating the non-major student-
customer. Methods of teaching have to be thought through over and over again.
For example, simplifying complex technology topics and spoon feeding students
with use procedures may help to get more students to complete planned class
activities. Furthermore, teachers may incorporate humor and fun in teaching.
(At some universities, course evaluations ask for such a rating.) Next, a popu-
lar teacher masters techniques of rewards and gratifications. To satisfy student
expectations, everything they do must be scored in some way and built into
students’ marks (grades). This starts with class attendance and involves the
participation in class discussion and other study activities. Applying precisely
quantified marking keys against student assignments is also a way of warding off
customers’ dissatisfaction. These methods make a necessary toolkit for a teacher
of less popular subjects, such as IS.

More flexible students may concede to the learner role and get engaged
beyond consumerist bounds. Still, their customer face surfaces in a request for
‘getting value-for-money’. What more precisely may that value be, remains a
question open to subjective assessments. For example, if a teacher instructs stu-
dents on using some software by the spoon feeding methods cited above, some
students may devalue such education (“why come to class when this is so easy?”).
At a deeper level, the nature of any knowledge is such that a more objective
grasping of its value cannot be assessed up front. New knowledge demonstrates
a value only post factum, when integrated with other knowledge or put at prac-
tical test. These effects can rarely happen within a single semester. Thus, the
request of value-for-money is an empty shell to be filled arbitrarily by each
student.

IS teachers are compelled to get good students’ evaluations of the courses
taught in spite of all these challenges pertinent to teaching technology related
subject matter. At the end of every course, these anonymous evaluations are reg-
ularly performed. They vary in content, from a few general questions to lengthier
surveys with questions grouped and backed by Likert-type scales and possibly
open-ended questions. The teacher gets results of course evaluations without
knowing who stands behind each – the student-learner or the student-customer.
The evaluations have been criticised for subjectivity and even for some statistical
problems. Still, they stick as no feasible alternative is available. Mass processing
of numerical evaluations is a superb time-saver.

To make things worse, administrators (department heads, deans, and study
area directors) take liberty to use these evaluations arbitrarily (e.g., focusing just
on some questions, such as those comparing the given course and instructor with
all other courses and instructors the student know; or taking rating percentages
rather than standard statistical indications of central tendency). Valuing of speed

Teaching Informatics in North America 27

over quality, which characterises North American culture in general, precipitates
such quick and dirty measurement. In effect, students’ voice is essentially filtered,
while teachers may get hurt and left to agonise over achieving what administra-
tors deem good evaluations.

What do students, when planning to take an IS course, look at in course eval-
uations (provided they can access them)? Only students know that, and variation
on the individual basis is plausible. The word of mouth undoubtedly works. The
Website ‘Rate My Professors’1 is a side venue that some students embrace. A
student can log into it, and after submitting some details rate any course and
instructor at a particular university. A quick look at ‘Rate My Professors’ shows
a variety of evaluations from low to high, based on a five point-scale. A pro-
fessor’s name is associated with an average of all evaluations, and individual
student comments and evaluations are displayed. There are images of thumb up
and down, smiling and sad faces, and of chillies for ‘overall hotness’. Clustering
of comments around particular courses may indicate the courses that everybody
loves or that everybody loves to hate. While the validity of these evaluations is
dubious, they can influence the word of mouth. Sometimes, these ratings can
even serve as the exclusive informing source on courses and teachers. In reaction
to these evaluations, some professors have tried to fight back this method by
running Websites for rating students.2

4 Technology Wishes vs. Funding Limitations

The IS field is by definition dynamic and innovative. To remain relevant, IS
teachers need to keep current their technological knowledge and teaching. New
software requires investment and possibly savvy practices of attracting sponsors
from the IT industry. Therefore, the teacher-juggler throws up a ball of technol-
ogy wishes/wants. But its path crosses with a ball of limited funding. Funding for
computer laboratories and individual software needs can be random, on a case-
to-case basis. The path to money allocations is further complicated by competing
software priorities that other business disciplines bring to the table. Altogether,
they compete for attention of the Dean’s Office that could make allocation deci-
sions on criteria favoring business logic (e.g., student enrolments) rather than
technology progress.

Another angle on technology wishes has to do with expert support. It is
needed for teaching labs, using third-party systems deployed in courses, run-
ning course servers as well as course management systems, content management
systems, and communication systems. While efficiency and quality are required,
expert support can be suboptimal.

Technological support at North American universities is usually organised
by combining a central IS department, which serves both business and teaching
needs, and an IS unit internal to a school/faculty. Governance issues are not
always clearly defined between these two. Consequently, it may be unclear who
1 http://www.ratemyprofessors.com/.
2 http://www.rateyourstudent.com/.

http://www.ratemyprofessors.com/
http://www.rateyourstudent.com/

28 B. Travica

is in charge of particular software updates, security, and reliability. In addition,
both these organisational levels are often understaffed and overworked. They
experience specialisation gaps, which may leave an IS teacher with no option but
self-reliance. In the ultimate analysis, deep roots of a sub-optimal technological
support are in budget limitations.

5 Self-identity vs. Attributions

The juggler tosses balls inscribed with ‘Next-big-thing’, ‘Visionary’, and
‘Explorer’. The audience immediately responds by tossing balls that read ‘Pro-
grammers’, ‘Techno-freaks’, ‘Aliens’, and just a ‘?’. This part of the juggling
show involves colleagues from other business disciplines, administrators, and the
business community. It exposes a remarkable gap between the identity assump-
tions held by the insiders to the IS field and the attributions made by outsiders.
Put another way, the identity of IS programs struggles with misunderstandings
that other management disciplines have about it.

Outsiders to the IS field often see the insiders as technology promoters who
know little about organisation and management. IS teachers are branded as nar-
row specialists who can see barely anything beyond computers. It is interesting
that even when IT is directly involved in their preoccupations (e.g., digital mar-
keting, supply chain, high-tech innovation, strategy, and entrepreneurship), the
colleagues from other management disciplines may view IS teachers almost as
some sort of aliens who are unsuitable for collaborative research or graduate
student advising.

Inside the IS field, this misunderstanding is sometimes explained by the field’s
age. But this thesis is rather tenuous. If the IS field is a teenager in comparison
with physics or law, it can hardly claim such a status compared with marketing
or supply chain management. And yet, hardly would anyone question the identity
of these disciplines. Therefore, the problems may be elsewhere, perhaps in the
very foundations of the field.

The IS field descended from several parents. Figure 2 depicts relationships
between the IS field and subject areas that belong to computer science, opera-
tions research, general and special systems theory, and others (the upper left and
the middle box). The field has another strong link to organisational and man-
agement theory, and weaker links to social and behavioral sciences and some
humanities (the upper right box). This complex background enables broad hori-
zons for research and teaching. However, it has some disadvantages, one being
incomplete differentiation.

The IS field has never differentiated itself clearly from computer science. Some
teaching subjects are simply duplicated and tweaked to a management perspec-
tive. Also, the field borrows from the associated disciplines rather arbitrarily
and mechanically (for example, from telecommunications and psychology). The
field has never defined a basic vocabulary. Thus, the agreement on core concepts
stops with their selection (information, data, information system, information
technology), while definitions are formally weak and undifferentiated from the

Teaching Informatics in North America 29

Fig. 2. Relationship between IS field and cognate disciplines (Adapted fromTravica [5])

jargon of the IT industry or even everyday talk. Contrary to the thesis that such
an openness creates opportunity for an open minded inquiry, the fact is that the
field operates with a fuzzy subject of research. This aggravates communication
with and recognition by other disciplines.

The shaky foundations influence a lack of development directions in both
research and teaching. Running after the next-big-thing confines the field to
a stand-by, reactive mode. The field is incapable of marking its targets unless
the IT industry rolls out a new product. Sometimes, a new technological devel-
opment extends an existing subject; an example is Big Data that adds to the
Analytics topic and the broader decision making subject. At other times, such a
smooth transition is missing; an example is the social media topic that initially
appears disconnected from traditional management study, except in the area of
marketing. At any rate, the lack of focus influences prospects of teaching IS in
North America.

The lacking focus may have to do with the evolution of IT role in North
American society. About five decades ago, IT was envisioned as a ‘strategic
weapon’ and a main lever for development and success. Today, IT is increasingly
treated as a commodity that does not necessarily bring strategic advantages. The
trend of expanding rental solutions, such as Cloud Computing and particularly
Software as a Service, reinforces this trend in the business domain. After the glo-
rious start, IT has been tested in the economic and social turmoil, and practi-
tioners treated it consistently just as a cost centre rather than a productivity and
development engine. During a recession, IT spending gets quickly onto the chop-

30 B. Travica

ping board. IT purchases slow down. A decreasing demand for IT professionals
follows the suit. Finally, academia gets hit as well, and student enrolments into IS
programs go down. This is business reality.

From the theoretical perspective, IT ceased to be scarce or prohibitively
expensive any longer, thus resembling any other commodity [2]. According to
theory of competition, these properties define a precious asset whose possession
brings a strategic competitive advantage. Contributions of IT to the macro-
economic productivity in the U.S. have also been questioned in the literature
focused on ‘IT productivity paradox’ [1,4]. All these developments suggest that
IT has lost the capabilities of strategic weapon in a developed economy. However,
this change should not obscure the fact that new IT-related jobs and even larger
scale IT-related economic developments have emerged (think of e-commerce and
electronic supply chains). One should also acknowledge the vitality of IT in
enhancing the management and professional work (think of advances in analyt-
ics for decision making, which currently are expanding into the domain of Big
Data). IT is (and will be) necessary for doing successful and sustainable busi-
ness. This premise creates a realistic platform for prospects of the IS education
in North America.

6 Teaching Prospects

The discord among IS scholars regarding the subject of study has a complement
in differing development visions. From time to time, these surface in discussions
within the field [3]. In my own phrasing, there is a next-big-thing approach that is
a legacy of independent IS departments in the U.S. It still has a strong following.
As noted above, this in fact is a reactive rather than proactive approach. The
IS field is not more than a wagon attached to the locomotive of IT industry. In
other words, it does not have its own research agenda but depends on the IT
industry for it. Although this approach carries benefits of autonomous building
of a teaching (and research) agenda, it deepens the gap between IS and academia.

The alternative is an integrationist approach that looks for multiple and
stronger relationships with cognate disciplines. This approach also has a fol-
lowing in the IS field and it is encouraged by university administrators who
expect bigger student enrolments. If properly based on a lasting interest fit and
methodological congruence, the integrationist approach may engender durable
partnerships, and expand the teaching subject and proactive capability.

Although there may always be a ‘next-big-thing ’, this does not mean that
the survival of an academic field is assured by claiming allegiance to this notion.
Theoretical and practical relevance of an academic field matter. If the integra-
tionist approach has a better chance of achieving these, this thesis brings us
back to the question of appropriate organisational models. It stands the reason
that models that mix IS with other disciplines offer more nurturing conditions
for development than pure IS department models. This model does not imply
that juggling disappears. It just introduces new balls.

Teaching Informatics in North America 31

7 Conclusion

I argued that teaching IS in Canada and the U.S. resembles juggling with mul-
tiple balls that move along collision paths. The balls symbolise opposed forces
related to students, technology and support for teaching, identify of the IS field,
and development directions. Different organisational models for IS programs pro-
vide the context, opportunities and limitations to the subject matter taught. The
models are evolving. Prospects of teaching IS will also depend on the interplay
between market forces and resolutions in the IS field’s search for self-identity
and development directions.

References

1. Attewell, P.: Information technology and the productivity paradox. In: Organiza-
tional Linkages: Understanding the Productivity Paradox, pp. 13–53 (1994)

2. Carr, N.G.: IT doesn’t matter. Educause Rev. 38, 24–38 (2003)
3. Looney, C.A., Firth, D., Koch, H., Cecez-Kecmanovic, D., Hsieh, J.P.A., Soh, C.,

Valacich, J.S., Whitley, E.A.: The credibility crisis in IS: a global stakeholder per-
spective. Commun. Assoc. Inf. Syst. 34(1), 1175–1189 (2014)

4. Roach, S.: No productivity boom for workers. Issues Sci. Technol. 14(4), 49–56
(1998)

5. Travica, B.: Examining the Informing View of Organization: Applying Theoretical
and Managerial Approaches. IGI Global, Hershey (2014)

6. U.S. News, the World Report: Management information systems rankings
(2016). http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/
business-management-information-systems

7. U15: Group of Canadian research universities (2016). http://u15.ca/

http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/business-management-information-systems
http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/business-management-information-systems
http://u15.ca/

Assessment Methods

A Comparison of E-Assessment Assignment
Submission Processes in Introductory

Computing Courses

Melisa Koorsse(B), Marinda Taljaard, and André P. Calitz

Department of Computing Sciences, Nelson Mandela Metropolitan University,
Port Elizabeth, South Africa

{melisa.koorsse,marinda.taljaard,andre.calitz}@nmmu.ac.za

Abstract. Students completing university education programs are gen-
erally required to complete an Introductory Computing Course (ICC)
in their first year of study. Introductory Computing, also referred to
as Computer Fundamentals or End User Computing, are theoretical
and practical in nature. Due to the large number of students complet-
ing the ICCs, institutions are introducing and increasingly utilising e-
learning systems and e-assessment systems. Research generally focuses
on e-assessment from an educator or instructor’s perspective. In this
study, the students’ perceptions of e-assessment were evaluated, explor-
ing different options with regards to the submission and assessment of
MS-Office documents as part of the ICC. The study identified the best
method of submission from a students’ perspective considering various
factors and comparing three different submission methods. The results
highlighted suggestions for improving the on-line submission system. The
results could assist educators and instructors utilising e-assessment sys-
tems in improving the submission and marking processes, in any course
where files are required for submission.

Keywords: Introductory computing courses · E-assessment systems ·
Automated grading system · Assignment submission

1 Introduction

Presenting Introductory Computing Courses (ICCs) to a large number of stu-
dents requires educators to utilise effective educational practices in today’s mod-
ern classrooms [6–8]. Tertiary institutions presently are experiencing large enrol-
ment numbers for ICC. An increase in the number of students also means a linear
increase in the number of assignments and tests that need to be graded [9].

Introductory Computing Courses, also referred to as Computer Fundamentals
or End User Computing, present their own challenges with students from different
backgrounds and a vast difference in skill levels, from complete novices to experi-
enced students. Student content retention can be positively reinforced by increas-
ing the number of exercises, problems and assignments completed by the students
c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 35–42, 2016.
DOI: 10.1007/978-3-319-47680-3 3

36 M. Koorsse et al.

in an ICC [9]. However, increased assignments result in increased workloads for
instructors as the amount of work to grade assignments increases [6].

E-assessment and the use of Automated Grading Systems (AGSs) can assist
with the grading and feedback provided to students. These systems are gener-
ally researched from the perspective of instructors, e-learning experts and edu-
cational technologists, however there is limited research that focuses on the stu-
dents’ perception of e-assessment [5]. The Department of Computing Sciences
at the Nelson Mandela Metropolitan University (NMMU) is exploring different
options with regards to the submission and marking of MS-Office documents
as part of the ICC, called the Computing Fundamentals Module (CFM). The
need was identified to determine the best method of submission from a student’s
perspective.

The research problem investigated in this research study was that educa-
tors are not aware of the issues that need to be addressed when considering an
assignment submission method, from a student’s perspective. The main research
objective of this study was to compare three different submission procedures for
submitting MS-Office assignments in the CFM. The focus was thus on student
perceptions of the method used to submit assignments assessing their MS-Office
skills and to provide feedback on the effectiveness and efficiency of the different
methods.

The research context and research methodology for the study is presented
(Sect. 2) and followed by the discussion of the research results (Sect. 3). The
paper concludes with findings, recommendations and future work (Sect. 4).

2 Research Study

The research was carried out with students enrolled in the Computing Funda-
mentals Module (CFM) presented by the Department of Computing Sciences
at NMMU in February 2016. This section first describes the current method
of practical submission (Sect. 2.1). This was one of the three methods included
in the study (Sect. 2.3). The research methods used to conduct the study are
explained (Sect. 2.2) as a prelude to the results presentation (Sect. 3).

2.1 Current Situation

Students enrolled in the CFM are required to submit weekly practical assign-
ments requiring students to format and/or adapt a document, spreadsheet or
powerpoint file based on a set of instructions. Students need to submit the
assignment file by saving it in a special network folder for the purpose of module
submissions.

There are over 1000 students enrolled in the module, with the result being
that the task of marking the assignments that may be required for submission
weekly, is impossible for lecturers. Students receive assistance and feedback from
student assistants in practical sessions or if they approach the lecturers. However,
they do not receive any feedback about the accuracy of their documents after

Comparison of E-Assessment Assignment Submission Processes 37

submission. Feedback on whether or not the method of saving documents in the
submission folder is preferred by students, would be useful.

2.2 Research Methods

The research study used the survey research approach. The use of surveys incor-
porating Likert scale questions, attitudes and feelings can be quantified [5] in
order to make generalisations and inform decision making [4].

The research aimed to compare three different systems. A survey specifically
designed for the evaluation of system usability is the System Usability Scale
(SUS). SUS enables a researcher to get a measure of the perceived usability of a
system [1]. The SUS questionnaire consists of 10 Likert scale items or statements
related to system usability in terms of effectiveness, efficiency and satisfaction
[2]. In this study, the 5-point Likert Scale was used, where one was Strongly
Disagree and five Strongly Agree.

It was decided to use an assignment that was due for submission. Participa-
tion was voluntary. In total, 45 students agreed to participate in the study. The
participants were required to submit the assignment using the first method, then
complete the SUS survey for that method before moving to the next method and
doing the same. Once all three methods were completed the participants were
also asked to directly compare methods with each with regards to the following
statements:

1. More likely to use in future,
2. Easier to use,
3. Learn more quickly,
4. More confident using,
5. Allows to work efficiently,
6. Allows to work effectively,
7. Marks more accurately,
8. More confident that submitted,
9. More satisfied that submitted, and

10. Provides better marking feedback.

For each of the statements, participants were asked to choose between Method
1 and Method 2, Method 2 and Method 3, and Method 1 and Method 3. Partic-
ipants could also indicate no difference. The order of the methods were changed
to avoid bias in the results due to learnability.

2.3 Methods of Submission

Three methods of submission and grading were evaluated in this study, namely
the submissions folder method, the use of Moodle, and an online system. Essen-
tially the only difference between each was the method of submission. All three
used the same AGS to grade the assignments and provide participants with a
mark report.

38 M. Koorsse et al.

The submissions folder method was the method currently used by students.
Each student is allocated a folder on the network for assignment submissions.
They simply have to save their assignment files in this folder for submission
purposes. For the purposes of the study, participants were required to indicate
once this task had been completed so that the submitted file could be graded
immediately. Once the marking process was completed an email was sent to the
participant with the mark report as an attachment.

The Moodle submission method required participants to sign into the NMMU
Learn site (a Moodle learning site) and submit their assignment. Participants
were familiar with using the Moodle site for module quizzes and to download
module information. Participants were provided with instructions on how to
upload and submit their assignment files. Participants had to indicate once the
file was submitted so that the marking process could be initiated manually. A
mark report was emailed to the participant as an attachment.

The online submission method required participants to navigate to an online
site where they could upload the file they wished to submit. The online system
was able to check that files are named correctly, informing participants if the file
name was not correct. The online system initiates the marking of the assignment
file and, once complete, indicates to participants that the file was successfully
submitted and provides a link to download the mark report.

The same marking system was used to grade the assignments submitted in
all three methods. Originally the study planned to also evaluate the marking
system by comparing the new system to the system used previously, namely the
SAM assessment system [3]. However, the timeline for the study was delayed
and SAM was no longer licensed for use at the time of the surveys.

3 Data Analysis and Results

The SUS surveys for the three methods were analysed by looking at the overall
mean score for each method as well as considering the mean response for each
statement. Table 1 indicates that the submission folder method obtained the
highest SUS score. Both the submission folder method and the online system
method scores were above average, where average is a score of 68 [2]. The Moodle
submission method scored just below average.

Considering the different statements individually and comparing the
responses for the three methods (Fig. 1), it can be seen that participants rated
the submission folder method more highly. The difference between the online sys-
tem and the Moodle system was small, however, participant responses indicated

Table 1. Mean SUS scores for each method (n = 45)

Submission Online Moodle

78.7 70.6 66.5

Comparison of E-Assessment Assignment Submission Processes 39

Fig. 1. SUS responses

that the online system was less complex to use, quicker to learn and they would
use it more frequently.

The participants’ selection of which method was preferred in response to
the 10 statements listed in Sect. 2.2, was analysed by calculating the amount
of times each method was selected overall for each item (Fig. 2). An interesting
trend to note in the graph of the items is the high percentage of selection of
the submission folder method for items two to six. Participants indicated that
they found it easier to use and learn and indicated that it was more efficient and
effective for submitting assignments, supporting the results of the SUS survey
items. However, participants also indicated that they were more confident using
the Moodle system than the online system. This contradicts the responses from
the SUS survey, where the means were the same (µ = 3.75).

The results indicate that participants would be more likely to use the online
method in future. This differs from the results of the SUS survey to use the
system more frequently. The submission system mean score (µ = 4.00) was
higher than that of the online system (µ = 3.72).

The results of the last four items indicate that participants preferred the
online submission method. The online system was the only method providing
feedback to participants that the file had been successfully submitted. Most of
the participants did not indicate completion of the submission folder and Moodle
tasks during the study, thus not receiving emailed marked reports. Not receiving
the emailed mark reports may be the reason for the low ratings for marking
accuracy and feedback responses for the Moodle and submission folder methods.

40 M. Koorsse et al.

Fig. 2. Comparison of the methods

Participants were also encouraged to provide comments related to their expe-
rience of the system. Only nine of the participants provide any comments. Two
participants commented on the difficulty of the URL for the online system. No
link was provided for participants to click on and participants had to type the
URL in after reading it on the instruction sheet (paper-based).

Participants (n = 2) also commented that the Moodle system was “long
and complicated”. Participants had to sign in to the Learn site, navigate to
the module page, navigate to the link for the survey, select to upload a file,
provide details for the file and then save the information, in order to upload
the file. One of the participants commented that it was “easier to save in the
submissions folder as you can see that it is saved”. This also alludes to the need
for some form of confirmation that the file has been submitted. One participant
commented on the feedback provided in the mark report. In particular that the
report only indicates that a task was done incorrectly but not how to correct it.

4 Conclusions and Future Work

The aim of the study was to identify students’ attitudes towards the different
methods of submitting assignment documents. Although the assignments were
specifically for the CFM as part of an ICC at NMMU, the results are useful for
any course where files are required for submission.

The overall results indicated a preference towards the submission folder
method. This method, according to participants, is easy to use, effective and
efficient. However, the online submission system provided participants with a

Comparison of E-Assessment Assignment Submission Processes 41

greater level of satisfaction that the file had been submitted successfully. Over-
all, participants preferred the simplicity of the submission folder method, while
wanting feedback that the file had been submitted (online system). A process
that requires too many steps in order to submit the file (Moodle method) is not
efficient or desirable for participants to use.

The immediate feedback provided by the online submission system resulted
in participants being more satisfied with the marking accuracy and feedback of
the online system. The only difference between the mark reports provided by the
three submission methods is that, for the Moodle and submission folder methods,
the marking was manually initiated, which many participants failed to do.

The study also revealed that an AGS would be beneficial if feedback could be
provided to students regarding weekly assignments. Many students participating
in the study enquired whether other assignments, not part of the study, could be
submitted for assessment so that feedback can be received. In addition, if assign-
ments are assessed on a weekly basis, the scores could be used for summative
assessment and instructors would have feedback on whether or not students were
achieving the learning outcomes or lacking in certain skills. Feedback provided
to students on how to correct errors or at least more detail regarding what the
problem may be, would also be beneficial.

It is acknowledged that it would be expected that students would prefer
the submission folder method as they have used it more often, and that the
results could be anticipated. This would be from an educator/researcher perspec-
tive. The purpose of the study was to determine student views on the preferred
submission method. Additional information regarding the different submission
methods was revealed from the study which will be beneficial for future work.

The study was unable to evaluate the accuracy of different marking systems
and was restricted to feedback provided by participants attending a weekly lab
session. Future work would further investigate which methods are more effective
and efficient when working off-campus, especially when considering the use of vir-
tual private networks to use the submission folder method. In addition, it would
be beneficial to determine if students prefer downloading the mark reports them-
selves or if they would like to receive an email with the mark report as an attach-
ment. The detail provided by the mark report could also be investigated further.

There is also scope in the future to evaluate improvements to the online
submission and marking system, including sign in screens, user accounts keeping
track of assignments and allowing students to submit assignments on a weekly
basis for assessment. Results from this study have indicated that the system
should be kept as simple and easy as possible, while providing useful feedback.

References

1. Brooke, J.: SUS: a ‘quick and dirty’ usability scale. In: Jordan, P., Thomas, B.,
Weerdmeester, B., McClelland, A. (eds.) Usability Evaluation in Industry. Taylor
and Francis, London (1996)

2. Brooke, J.: SUS: a retrospective. J. Usability Stud. 8(2), 29–40 (2013)

42 M. Koorsse et al.

3. Learning, C.: SAM: Skills Assessment Manager (2016). http://www.cengage.com/
sam/

4. Cohen, L., Manion, L., Morrison, K.: Research Methods in Education. Routledge
(2007)

5. Dermo, J.: E-assement and the student learning experience: a survey of student
perceptions of e-assessment. Brit. J. Educ. Technol. 40(2), 203–214 (2009)

6. Kay, D.G.: Large introductory computer science classes: strategies for effective
course management. ACM SIGCSE Bull. 30(1), 131–134 (1998)

7. Kovačić, Z.J., Green, J.S.: Automatic grading of spreadsheet and database skills. J.
Inf. Technol. Educ. 11, 53–70 (2012)

8. Murphy, M., Sharma, A., Rosso, M.: Measuring assurance of learning goals: effec-
tiveness of computer training and assessment tools. Inf. Syst. Educ. J. 10(5), 87–94
(2012)

9. Murray, T.: Authoring knowledge based tutors: tools for content, instructional strat-
egy, student model and interface design. J. Learn. Sci. 7(1), 5–64 (1998)

http://www.cengage.com/sam/
http://www.cengage.com/sam/

Assessing Programming by Written
Examinations

Ken Halland(B)

School of Computing, University of South Africa, Johannesburg, South Africa
hallakj@unisa.ac.za

Abstract. This position paper discusses the assessment of programming
courses by means of written examinations. It describes the various learn-
ing outcomes of programming that should be covered, and then discusses
how well they can be covered in a written examination.

Keywords: Learning outcomes · Assessment methods · Assessment of
programming

1 Introduction

This paper discusses the use of written examinations for the assessment of pro-
gramming courses. It is a position paper [7], so no data has been collected or
analysed. Rather, experiences are described and arguments provided in support
of the position that the valid assessment of many learning outcomes of program-
ming can be achieved by means of written exams. The intention is to encourage
discussion of this issue.

As lecturers, we feel increasingly under pressure to exclusively use practical
forms of assessment such as projects and practical exams to assess program-
ming. This pressure comes from students, university administrators, and even
colleagues who are not involved in teaching programming. A common argument
is that “Programming is a practical skill, so it must be assessed practically”. At
my institution, we are also under pressure to use so-called “non-venue-based”
assessment, i.e. not administered in exam halls. Unmanageable student numbers
seem to be the main reason for this policy.

The purpose of this paper is therefore to show that written exams still have
a place in the assessment of programming and that in certain respects they have
an advantage over other forms of assessment.

This paper is structured as follows: Sect. 2 provides a literature review of
aspects of assessment. Section 3 describes various learning outcomes for pro-
gramming and the methods that are commonly used for assessing them. Section 4
discusses the suitability of the methods for assessing the learning outcomes, and
the suitability of written exams in particular detail. Section 5 states our posi-
tion about the suitability and necessity of written exams and provides some
concluding remarks.

c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 43–50, 2016.
DOI: 10.1007/978-3-319-47680-3 4

44 K. Halland

2 Literature Review

Assessment: This is the attempt to certify and measure the extent to which
learning has taken place [6]. It includes reflection or self-assessment [3].

Learning Outcomes: These are the knowledge, understanding, skills, attitudes
and habits of mind which form the objectives of a learning unit (or course) [6].

Quality of Assessment: Three characteristics of good assessment are iden-
tified internationally [2] and endorsed by the South African Qualifications
Authority [5].

Validity: Are all and only the stated learning outcomes of the learning
unit assessed?
Reliability: Is the assessment repeatable or replicable?
Fairness: Are all individuals being assessed, treated equally?

Security of Assessment: Breaches of security can be in the form of leaked
exam papers, as well as cheating and plagiarism. This affects the integrity
of the assessment since the individual who gets the mark is not the same
individual whose work is being assessed [8].

Formative and Summative Assessment: Assessment that occurs during the
learning period is formative, whereas assessment at the end is summative.
Formative assessment often includes detailed feedback to enable students to
gauge their progress and so that corrective action can be taken. Summative
assessment however is merely intended to evaluate whether learning has taken
place [6].

Assessment Methods: The most common methods for assessing the attain-
ment of learning outcomes are assignments, projects, portfolios, quizzes, tests
and exams [9]. Exams generally test all the learning outcomes of a course and
are used for summative assessment.

3 Assessment of Programming

In order to discuss the suitability of written exams for the assessment of pro-
gramming, we need to specify the learning outcomes of programming, and the
various methods that can be used to assess programming.

3.1 Learning Outcomes of Programming

Each institution (or Computing department) probably has its own list of learning
outcomes for its programming courses. The most definitive is provided in the
ACM Computer Science Curricula 2013 (CS2013) [1]. We have adapted and
unpacked the outcomes specified for Software Development Fundamentals in
CS2013 as follows.

Basic Constructs: Ability to form working programs by combining
Variables, values and types: data types, literal values, variable decla-
rations, scope of variables, operators and expressions, memory allocation,
stack and dynamic memory access;

Assessing Programming by Written Examinations 45

Statements: declarations, assignments, control structures and subpro-
gram calls;
Subprograms: functions or procedures, parameter passing mechanisms
Standard data structures: strings and arrays, standard classes and
objects.

Syntax: Knowledge of the syntax of the basic constructs of the programming
language to be able to use the construct correctly; able to look up the correct
usage of functions, classes and methods in a language reference.

Operational Semantics: Understanding of the meaning of expressions, state-
ments and constructs, i.e. how they work; their effect on variables and other
objects.

Problem Solving: Ability to understand a problem and conceive of a solution
in terms of the constructs available in the language; able to apply standard
techniques for solving similar problems.

Algorithms: Ability to think and plan algorithmically, i.e. come up with a gen-
eral plan to solve a larger class of problems; awareness of standard algorithms
of Computer Science and be able to adapt and apply them appropriately.

Data Structures, ADTs and Classes: Ability to use appropriate complex
data structures (like linked lists, trees, etc.) for the purposes of a program-
ming problem; able to define appropriate ADTs, or in the case of an object-
oriented programming language, to define appropriate classes, and use them
correctly to solve a problem.

Principles: Understanding and ability to apply various programming principles
appropriately in code, e.g. robustness, reusability, extensibility, separation of
concerns, etc.

Design: Ability to come up with a sensible design in terms of the programming
constructs, algorithms, data structures and principles mentioned above.

Style: Appreciation of good style, and use such consistently in programs.
Precision: Understand the precision required by the syntax of the language and

the semantics of the constructs.
Paradigms: Understanding of different programming paradigms, i.e. proce-

dural, object-oriented, declarative or functional, and use them correctly and
appropriately.

Testing: Ability to test code thoroughly, and do so for their programs.
Debugging: Ability to identify and fix errors in code, including simple syntax

errors, errors that cause a program to crash, and complex errors that are
only apparent in special circumstances.

Documentation: Ability to document code sensibly, both in the form of com-
ments within the code and as a separate document.

Comprehension: Ability to read and understand code to debug it, or to main-
tain or add features to it; ability to explain what the purpose of code is, or
what code achieves or does not achieve.

Cooperation: Ability to work with others, either in pairs or in bigger teams.

46 K. Halland

3.2 Assessment Methods for Programming

This section lists and briefly describes the various mechanisms that can be used
for assessing the learning outcomes of programming.

Assignment: This involves writing a program ranging in difficulty from simple
to complex. Students may be allowed to solve the problem whichever way
they can, or they may be given hints, guidelines or requirements about how
it should be solved. Students may also be given a partial solution which they
have to complete.

Project: A project is really a large assignment, except that it is often more
open-ended in that the problem to be solved may be negotiable or broadly
defined. A project also generally tests a wider range of learning outcomes.
A project often requires the student to provide some sort of documentation
with the software artefact in the form of a user guide, or a description of the
process that was followed, or problems that were experienced, etc.

Portfolio: This is a loose conglomeration of evidence that a student compiles
to show that they have attained the learning outcomes of a course. For pro-
gramming, this will most likely consist of a number of software programs
that the student has developed.

Test: This can range from a quiz, to a set of multiple choice questions (MCQs) to
a longer set of questions. However, it is not as comprehensive as an exam. It
only covers a limited number of learning outcomes, and may require students
to perform short programming tasks.

Practical Exam: Students are given programming tasks which they have to
complete in a limited amount of time. The programs have to be implemented
on a computer, and students must have access to compiler or interpreter
software to develop and test their programs.

Oral Exam: This is where a student is interviewed personally. The student may
be required to make a presentation of software that they have developed,
followed by questions that need to be answered about it. The student may
also be required to answer questions about other code, or about various
aspects of coding.

Written Exam: This is an examination written by hand, or typed on a com-
puter using word-processing software. For the purposes of this paper, we
particularly exclude the use of compiler or interpreter software to compile,
run or test program code during a written examination.

3.3 Other Issues

Orthogonal to the different methods of assessing programming listed above, other
decisions need to be made about how to organize such assessments.

Choices of who does the marking include expert assessment (lecturer, tutor
or marker), peer assessment, self-assessment or automated assessment. Then
there is the issue of individual versus team-work. Finally, there is the issue of
controlled conditions: When students are in an examination hall or in a computer

Assessing Programming by Written Examinations 47

laboratory, there is a measure of control that can be exercised on what sources
of assistance they can and do make use of. For example, one can control the
access to physical or online documents, including language references, example
code, etc., as well as assistance from friends or other experts. Working at home
or in an unmonitored environment are considered as uncontrolled conditions.

4 Suitability of Assessment Methods

4.1 Suitability Matrix

Table 1 represents an attempt to evaluate the suitability of the various assess-
ment methods identified in Sect. 3.2 for assessing the various learning outcomes
identified in Sect. 3.1.

Table 1. Suitability of assessment of programming outcomes

Topic Assignment Project Portfolio Test Practical

exam

Oral

exam

Written

exam

Basic constructs 4 2 2 3 3 3 4

Syntax 4 3 3 3 2 2 3

Operational

semantics

3 2 2 3 2 3 3

Problem solving 3 4 4 3 4 3 3

Algorithms 4 4 4 3 3 2 3

Data structures,

ADTs, Classes

4 3 3 3 3 3 3

Principles 4 4 4 3 4 3 4

Design 4 4 4 3 3 3 3

Style 4 4 4 4 4 2 4

Precision 3 3 3 3 3 2 4

Paradigms 3 2 2 3 2 4 4

Testing 4 3 3 3 4 3 3

Debugging 4 4 4 3 3 2 3

Documentation 4 4 4 3 4 2 3

Comprehension 4 2 2 4 3 4 4

Cooperation 4 4 4 2 3 2 2

The values in Table 1 represent the following levels: (1) unsuitable, (2) par-
tially suitable, (3) suitable, and (4) extremely suitable. These values should not
be taken particularly seriously. They were determined by a few moments reflec-
tion on the author’s experience. The reader might find it an interesting exercise
to think what values he/she would fill in various positions in the table.

What should be taken seriously are the values in the final column, since they
are pertinent to our position.

48 K. Halland

4.2 Suitability of Written Exams

We now discuss how each of the learning outcomes identified in Sect. 3.1 can be
assessed by means of a written exam in particular:

Basic Constructs (4): Questions requiring students to write code in the form
of short programs or fragments of programs that require the use of a small
number of the basic constructs, can test students’ understanding and mastery
of them. The fact that students do not have access to a compiler and reference
material means that one can more effectively assess whether these constructs
and concepts have truly been internalized by students.

Syntax (3): Since students do not have access to a compiler to check and correct
their syntax, a written exam can better test whether students really know
and understand the syntax of the language.

Operational Semantics (3): Without being able to run the program to test
whether it does what it should, students have to have a better grasp of the
meaning and effect of the expressions, statements and constructs that they
use. It forces them to have a mental model of what is happening in the
memory and to the state of the program. They cannot hack the code until it
works.

Problem Solving (3): Access to a compiler gives no advantage for demonstrat-
ing this higher-level, cognitive skill, so this outcome can be tested well using
a written exam. In fact, access to a compiler is often a disadvantage since
the necessity to get the program to compile correctly and produce the cor-
rect answers distracts the student from concentrating on the more conceptual
level of problem solving. A disadvantage is that the limited time available in
an exam often means that only simple problems can be realistically solved.

Algorithms (3): Students can be required to explain an algorithm, or write
one in pseudo code. This can test their understanding and ability to think
algorithmically, without having to implement a program and get it to run on
a computer.

Data Structures, ADTs, and Classes (3): Once again, questions that involve
the writing of short programs, or the implementation of ADTs or classes that
have a particular purpose, can effectively test these outcomes.

Principles (4): Students can be required to answer questions about principles,
or to write code that applies the principles.

Design (3): In a written exam, students can be required to explain a design
without attempting to implement it. With a practical assessment method,
good design can only be inferred from its implementation.

Style (4): The code that students write in a practical exam can easily be
assessed for good style. In addition, questions can be set about why good
style is important.

Precision (4): The fact that students do not have access to compiler software
to check and fix their syntax errors, writing code by hand demonstrates
students’ understanding of the need for precision more clearly.

Paradigms (4): Theory questions about paradigms, and which would be the
most appropriate for a given problem, can be posed in a written exam.

Assessing Programming by Written Examinations 49

Testing (3): Although students can’t practically test their programs during a
written exam, they can be asked about the importance of testing, and be
required to explain how they would test a piece of code.

Debugging (3): Since students are unable to compile or run their programs, it
makes it difficult to assess the use of a debugger by means of a written exam.
However, faulty code can be presented to students in a written exam, where
they may be required to identify and/or fix the bugs.

Documentation (3): Students can be required to add comments to code, or
to write part of the documentation for some code during a written exam.

Comprehension (4): Students can be given code that they have to change or
complete. To be able to do this successfully, they need to be able to read
and understand the code properly. Written exams are particularly suitable
for getting students to explain their own code, or code that is provided to
them. This is more effective than a practical assignment, test or exam.

Cooperation (2): Written exams are not suitable for assessing teamwork. At
best, students can be required to write about their experiences, or about
aspects of teamwork that are important.

5 Our Position

If you agree with the explanations of how the learning outcomes of programming
can be assessed by means of a written exam as provided in Sect. 4.2 above,
then you should agree that written exams can be used to assess some learning
outcomes of programming well, and others less well.

However from Table 1, it would appear that there is no advantage to using
written exams over other assessment methods. In fact, some other methods are
better suited to assessing certain outcomes. Some authors have even argued that
there are drawbacks to the exclusive use of written exams [4].

As stated in Sect. 2, for assessment to be fair, all individuals being assessed
must be treated equally. Fairness is related to security, because if students are
allowed to cheat, then they are being allowed to get marks that they don’t
deserve.

Plagiarism and other forms of cheating are perennial problems in assessing
programming. We are aware of people who advertise to do the assignments,
portfolios and projects for students for payment. Software that is designed to
detect plagiarism in program code cannot detect this form of cheating. Even if it
is possible to implement measures to detect and punish some forms of cheating,
a far more effective way is to prevent it from happening in the first place. And
the only way to do that is in controlled conditions, as described in Sect. 3.3.

A related issue is whether students should be required to work individually
or as a team. Teamwork is important if one wants students to learn the outcome
of cooperation properly. But it is problematic if all assessment is via teamwork,
because one can never be sure that the mark that each member receives correctly
reflects their individual mastery of the learning outcomes. Again, this is unfair.
At best, teamwork should be used with at least one of the other assessment
methods.

50 K. Halland

The only other summative assessment methods that manage to avoid these
problems are practical exams and, to a certain extent, oral exams. We believe
that practical exams work well except when the numbers of students make it
practically impossible.

An oral exam can be problematic when part of the evidence is produced in
uncontrolled conditions. However, in most cases it is not difficult to determine
whether a student was the actual (and sole) programmer who produced some
software. Probing questions about details of the code often reveal whether the
student really understands the code. A disadvantage is that oral exams cannot
be administered effectively when student numbers run into the hundreds.

The following issues flowing from this paper could be investigated in future:
Gather qualitative and quantitative data on the effectiveness of written exams
for assessing the various learning outcomes of programming. Do a study on what
mix of methods can be used to assess all the learning outcomes of programming
reliably, validly and fairly, while maintaining an acceptable measure of security.

It is hoped that this position paper will generate reflection and discussion.

References

1. ACM: CS2013 Computer Science Curriculum 2013: Final Report. Technical report
(2013)

2. AERA, Apa, NCME: Standards for educational and psychological testing. AERA
Publications, Washington, DC (2014)

3. Desjarlais, M., Smith, P.: A comparative analysis of reflection and self-assessment.
Int. J. Process Educ. 3(1), 3–18 (2011)

4. Haghighi, P., Sheard, J.: Summative computer programming assessment using both
paper and computer. In: Proceedings ICCE 2005, pp. 67–75. Singapore (2005)

5. SAQA: National policy and criteria for designing and implementing assessment for
NQF qualifications and part-qualifications and professional designations in South
Africa (2015). http://www.saqa.org.za/list.php?e=Policy

6. Suskie, L.: Assessing Student Learning: A Common Sense Guide, 2nd edn. Jossey
Bass, San Francisco (2009)

7. Tucker, K., Derelian, D., Rouner, D.: Building the case: Position papers, back-
grounders, fact sheets, and biographical sketches. In: Public Relations Writing: An
Issue-driven Behavioral Approach, pp. 79–85. Prentice Hall, Upper Saddle River
(1997)

8. U.S. Department of Education: Testing Integrity Symposium: Issues and Recom-
mendations for Best Practice (2013). http://nces.ed.gov/pubs2013/2013454.pdf

9. Western Carolina University: Handbook for program assessment in adminis-
trative/educational support units (2007). http://www.wcu.edu/WebFiles/PDFs/
AssessmentHandbook AES.pdf

http://www.saqa.org.za/list.php?e=Policy
http://nces.ed.gov/pubs2013/2013454.pdf
http://www.wcu.edu/WebFiles/PDFs/AssessmentHandbook_AES.pdf
http://www.wcu.edu/WebFiles/PDFs/AssessmentHandbook_AES.pdf

Criteria for Evaluating Automated Grading
Systems to Assess Microsoft Office Skills

Melisa Koorsse(B), André P. Calitz, and Jaco Zietsman

Department of Computing Sciences, Nelson Mandela Metropolitan University,
Port Elizabeth, South Africa

{melisa.koorsse,andre.calitz,jaco.zietsman}@nmmu.ac.za

Abstract. Higher Education Institutions (HEIs) generally require first
year students to attend and complete an Introductory Computing Course
(ICC). The topics covered include basic skills in word-processing, spread
sheets, power-point presentations and database management systems.
Initially ICCs were presented by means of lectures, practicals and tuto-
rials. Increasingly HEIs are utilising e-learning environments to facil-
itate teaching and learning in ICCs due to the large number of stu-
dents required to complete the courses and acquire the required IT skill
sets. The use of an Automated Grading System (AGS) can significantly
enhance the learning process of computer literacy skills in ICCs and make
the grading process manageable and provide more thorough assessment.
Criteria for the development and selection of an AGS have been provided
in literature studies. This paper builds on previous research and provides
a detailed set of criteria that was utilised to evaluate the features, ben-
efits and limitations of three commercially available AGSs.

Keywords: E-assessment · Automated grading systems · Introductory
computing courses

1 Introduction

Students at Higher Education Institutions (HEIs) are required to complete an
Introductory Computer Course (ICC) to provide them with the required IT skills
for use in other courses as well as to equip them with IT skills needed in the
workplace after graduating [6]. Productivity in the workplace can be negatively
impacted if staff do not have the computing skills required to effectively perform
their jobs [1,6].

HEIs require computer literacy training for STEM (Science, Technology, Engi-
neering and Mathematics) majors. ICCs focus mainly on the use of productivity
software applications such as word processors, spreadsheets, presentation software
and database applications. Some institutions require an assessment of the basic
skills, whilst others require the assessment of more advanced IT skills [12,14].

The enrolment numbers at many institutions for ICCs can be large where the
ICC is a pre-requisite to other courses and programmes [9]. The increase in the

c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 51–58, 2016.
DOI: 10.1007/978-3-319-47680-3 5

52 M. Koorsse et al.

number of student enrolments implies an increase in the number of assignments
and tests to be graded [15].

E-assessment and Automated Grading Systems (AGSs) can significantly
enhance the learning process [12] and are being used to make the grading process
more manageable and provide a more thorough assessment [9]. E-assessment is
defined as the process whereby technology is used for the presentation of the
assessment activity and the recording of responses, which includes the assess-
ment process [11].

There is a difference between assessment and grading. Grading simply eval-
uates the learning and performance of students [3,10]. Assessment provides
detailed feedback for every question and can provide reasons for any incor-
rect solutions or answers, thus helping to improve student learning. Automated
assessment systems is as a subset of AGSs and in this paper, referring to AGSs
will also include automated assessment systems.

Various research studies have been dedicated to developing AGSs for evalu-
ating programming assignments [8]. There has, however, been limited research
focusing on automated grading for MS-Office applications [8,10]. A review of
existing systems has shown that current AGSs have advantages as well as short-
comings.

More research is needed to identify the requirements of AGSs for the grading
of MS-Office application documents. This research evaluates existing systems to
identify common features and compare the functionality provided by commercial
systems using, and extending, the criteria identified by Matthews et al. [12].
The research objective is to identify features and functionality that should be
considered when developing or selecting an AGS for ICCs.

A summary is provided indicating whether the evaluated commercial systems
(Sect. 3) meet each of the features, techniques and limitations identified. An
overview of the popular approaches used and the trade-offs between different
features is provided. Conclusions and future research are discussed in Sect. 4.

2 Literature Survey

AGSs should support specific learning and/or teaching goals (Sect. 2.1). Thus,
there are different types of AGSs (Sect. 2.2) using different approaches that can
be positive, but also have shortcomings.

2.1 E-Assessment

Different techniques are used in classrooms, labs and online to effectively present
large introductory courses [9,10,14]. The challenge of ICCs is having students
from different backgrounds with a vast difference in skill levels from experi-
enced students to complete novices. Student learning can be positively reinforced
by increasing the number of problems, assignments and exercises completed by
students [15].

Criteria for Evaluating Automated Grading Systems 53

Research has shown that students’ learning can be increased where students
are able to identify where they have made an error [7,12]. Feedback on student
assignments is beneficial for students. However, it is difficult to provide timely
feedback to students, specifically in modules with large student numbers [9].
There is a need to find a balance between assignments that can challenge students
but that would also be easy to grade and provide feedback.

Distributing the work could reduce the workload [12]. However, it may lead to
inconsistencies in student performance and what they are learning. The grading
task may also be shared between multiple people, but this may lead to inconsis-
tencies in the grade and feedback provided [9,12]. Grading rubrics are faster to
grade, consistent and lead to increased student satisfaction.

Instructors are choosing to use learning management systems and AGSs [10]
to handle the increase in student numbers. Learning management systems, such
as Moodle and Blackboard [11] are improving the student learning experience.

Reasons for the adoption of AGSs and e-assessment systems in particular,
include a cost-effective means of grading [18], rapid feedback in the form of
marks and comments and being able to provide quality feedback to the stu-
dent [19]. AGSs makes it easier for instructors to handle large student numbers
and improve objectivity and consistency in marking.

Students also believe that e-assessment adds value to learning [5]. E-
assessment supports e-learning and feedback provided can add value to the
learning experience. If a system is constantly available to assess work, students
would be able to check their understanding of topics more frequently [19]. Qual-
ity feedback would encourage reflection and allow them to take control of their
own learning.

2.2 Types of Automated Grading Systems

Electronic program submission and automated testing of correctness can make the
grading process more manageable and provide a more thorough assessment [9].
There are grading systems currently available that can support increased assign-
ments to improve learning but each has its own advantages and limitations [12].

AGSs are categorised into three different types by Matthews et al. [12]. The
first two types are also identified by Zhu and Shen [20]. The first type is a project-
based auto grader where the system provides a set of cases or projects that are
challenging and realistic that the student completes in the application package.
The grading system will thus analyse the resulting document [20]. This type is
easier to develop, maintain and extend than the second type. A disadvantage
of this method is that there may be partial analysis of some of the MS-Office
objects resulting in restrictions on what may be examined.

Instructions are provided on how to format and change the original doc-
ument, which may be blank. Once complete, students upload the file and the
document is graded. Feedback is instantaneous and based on incorrect responses.
Instructors generally do not create their own cases. These systems are usually
commercial systems associated with textbooks to complement the ICCs. Exam-
ples are CaseGrader (for Office 2007) which seems to have been replaced with

54 M. Koorsse et al.

projects within SAM [2]. SNAP [16] allows students to work in the applica-
tion while the instructions are visible together with helpful tips as they work.
MyITLab [17] allows the instructors to select projects or create their own.

The second type of grading system is procedural-based grading. These appli-
cations use simulators and respond to the procedure followed by students in
terms of their responses (key strokes and mouse-clicks) to complete a task [12,14].
Simulation tools have proven to be an effective means of training and assessing
large numbers of students. The system can either be an actual simulator program
or simply record the operating steps of the users while working in the document
using a macro recording function [20].

The drawbacks are that constructing a simulation system is time-consuming
and difficult to update resulting in poor adaptability. Macro recording functions
have low accuracy as certain steps might be missed. Simulation environments
may not completely prepare students to apply the skills learned to other tasks
and projects [14]. These programs do not always include all methods of answering
a problem and they do not allow instant changes or customised tests by the
instructor.

Tools that provide simulation functionality include SAM [2], MyITLab [17]
and SimNet [13]. Training using project-based systems, where students work in
the actual software package, can be time-consuming to assess, particularly where
there are large numbers of students. A combination of simulation training and
in-application training is thus recommended [14].

The third type of system is a multiple choice system, but may also include
fill-in-the-blank and paragraph or open-ended questions. This type of automated
grader does not allow skill-based assignments or assessments. Many of the com-
mercial systems, such as SAM [2], SNAP [16] and MyITLab [17], also include
multiple-choice assessments.

2.3 Summary of Requirements

Different systems identified in literature were reviewed and each indicate the dif-
ferent methods and techniques that can be used to develop an AGS for MS-Office
application documents. The different systems also highlighted certain aspects
that needed to be taken into consideration during the grading process, such as
catering for incorrectly named worksheets and formulae that are equivalent but
not an exact string match. The different systems also vary with regard to user
involvement. Some systems require users to indicate what to grade where others
may automatically determine differences by comparing two documents.

Matthews et al. [12], when developing their system, identified several features
(Table 1) and limitations (Table 2) used to evaluate their system and compare
their system to project-based, procedural and test-bank AGSs. In addition, the
review of different systems identified several additional features and limitations,
thus extending the list of Matthews et al. [12]. The additional features are pre-
fixed with an asterisk (∗) in the respective tables.

Three features were added to the list of Matthew et al. [12], namely, in-
document feedback or comments, allowing the instructor to specify the marks

Criteria for Evaluating Automated Grading Systems 55

Table 1. System benefits and features

Benefits and features Commercial

Challenging, real-world problems ALL

Automated grading ALL

Consistent grading ALL

Instant feedback ALL

Customized feedback MyITLab, SAM

Web interface/portal ALL

Multiple skills assessed concurrently ALL

Hands-on experience ALL

Smaller one-skill problems ALL

Question/assignment library ALL

Reduced preparation time ALL

Availability of student reporting ALL

Expandable answer banks MyITLab

Repository for file submissions ALL

Plagiarism detection MyITLab

Provide rubric/instructions ∗ MyITLab

In-document feedback ∗ MyITLab

Specify mark weightings ∗ ALL

Security (sign in) ∗ ALL

allocated to items being assessed and providing a rubric or instruction list of
what to mark. Indicating what to mark allows the instructor to customise the
questions and feedback. However, setting up this rubric could be time-consuming
depending on how the particular grading system has implemented this process.
Instructors may need to spend additional time setting up the paper or assignment
for assessment. Other limitations include the system only being able to assess
a small set of skills or Office application document types. AGSs should further
aim to minimise instructor intervention.

Other system issues are also included in the list of features and limitations.
Matthews et al. [12] included consistent grading, web interface/portal and pla-
giarism detection in their list of features, while installation of additional soft-
ware was included in the list of limitations. Security, in terms of authentication,
is added to the list of features. The next section (Sect. 3) combines all the fea-
tures, limitations and techniques (Sect. 2.2) and summarises the different systems
reviewed to determine trends with regard to how AGSs are developed.

56 M. Koorsse et al.

3 Recommended Features

This section summarises the discussion from the previous sections, identifying
the features and/or benefits supported by commercial systems, as well as the
limitations. The commercial systems that were included are only the three sys-
tems that are capable of project-based grading, namely, SAM [2], MyITLab [17]
and SNAP [16]. All these systems also support simulation or procedural-based
assessment.

All the systems allow students to work in the application package, thus allow-
ing students to work on real-world problems and providing a hands-on expe-
rience. Multiple skills can be assessed concurrently or students can work on
smaller one-skill problems, depending on the project assignment. All systems
provide automated grading that is consistent. It was decided that if instruc-
tors were required to provide rubrics or instructions for the system to use in
assessment, then preparation time would not be reduced. Thus only systems
comparing the document structures or that provided a test bank of projects to
use, would reduce the preparation time. MyITLab is the only commercial system
that meets all criteria, including the facility to allow instructors to create their
own assignments.

Limitations of AGSs (Table 2) were also identified by Matthews et al. [12].
Exact match answers is difficult to evaluate as there may be certain skills
that will match exactly, especially where string matching is performed on text,
whereas, alternatives may be allowed with regards to formulae. Cases or projects
are limited where the instructor is not able to create their own assignments. The
commercial systems provide simulation environments but only SNAP does not
also project-based grading. Limited skills or functionality are evaluated by many
AGS systems when considering that the applications are capable of much more.

MyITLab is the only commercial system allowing customisation of assign-
ments or projects, requiring instructors to set up a rubric or list of skills to be
assessed on the system as part of the grading process. The commercial systems

Table 2. System limitations

Limitations Commercial

Answers must be exact matches ALL

Limited number of cases SAM, SNAP

Textbook/supplemental required ALL

Software must be installed

‘Simulated’ environment ALL

Other purchases required

Limited number of criteria to assess ∗
Instructor intervention required ∗
Setting up marking rubric/system ∗ MyITLab

Criteria for Evaluating Automated Grading Systems 57

all have textbooks that are very closely aligned to the systems. However, the
systems can be used without the textbooks.

4 Conclusions

Criteria for the development and selection of AGSs have been provided in liter-
ature studies. This research study identified common features and compared the
functionality provided by these AGSs using and extending the criteria identified
by Matthews et al. [12]. The study provided an extended set of criteria that
was utilised to evaluate three commercially available AGSs, namely SAM [2],
MyITLab [17] and SNAP [16].

HEIs can utilise the research findings to assess and evaluate current and new
AGSs. Commercial AGSs are expensive. An affordable option may be to consider
local (SA) AGS systems, such as SMARK [4], which includes support for Word,
Excel, PowerPoint and Access.

Future research will further investigate if there are other techniques that
could be used to improve the marking accuracy while reducing educator work-
load. The use of intelligent techniques in the development of an AGS will also
be investigated further.

References

1. Bunker, B.: A summary of international reports, research and case studies of digital
literacy including implications for New Zealand of adopting a globally-recognised
digital literacy standard. Technical report, Knowledge Weavers NZ (2010)

2. Cengage Learning: SAM: Skills Assessment Manager (2016). http://www.cengage.
com/sam/

3. Chorana, A., Lakhdari, A., Cherroun, H., Oulad-Naoui, S.: XML-based e-
assessment system for Office skills in open learning environments. Res. Pract.
Technol. Enhanced Learn. 10(1), 1–17 (2015)

4. Convert.ToCode: SMARK (2016). http://www.converttocode.com
5. Dermo, J.: E-assement and the student learning experience: a survey of student

perceptions of e-assessment. Br. J. Educ. Technol. 40(2), 203–214 (2009)
6. Gibbs, S., Steel, G., McKinnon, A.: Are workplace end-user computing skills at a

desirable level? A New Zealand perspective. End-User Information Systems, Inno-
vation and Organizational Change (2015)

7. Heinrich, E., Milne, J., Moore, M.: An investigation into E-Tool use for formative
assignment assessment – Status and recommendations. Educ. Technol. Soc. 12(4),
176–192 (2009)

8. Hill, T.: Excel grader and Access grader. ACM SIGCSE Bull. 36(2), 101–105 (2004)
9. Kay, D.G.: Large introductory computer science classes: strategies for effective

course management. ACM SIGCSE Bull. 30(1), 131–134 (1998)
10. Kovačić, Z.J., Green, J.S.: Automatic grading of spreadsheet and database skills.

J. Inf. Technol. Educ. 11, 53–70 (2012)
11. Malmi, L., Korhonen, A., Saikkonen, R.: Experiences in automatic assessment on

mass courses and issues for designing virtual courses. In: Proceedings of the 7th
Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE 2002), vol. 34, pp. 55–59 (2002)

http://www.cengage.com/sam/
http://www.cengage.com/sam/
http://www.converttocode.com

58 M. Koorsse et al.

12. Matthews, K., Janicki, T., He, L., Patterson, L.: Implementation of an automated
grading system with an adaptive learning component to affect student feedback
and response time. J. Inf. Syst. Educ. 23(1), 71–83 (2012)

13. McGraw Hill Education: SIMnet (2016). http://successinhighered.com/cit/
simnet/

14. Murphy, M., Sharma, A., Rosso, M.: Measuring assurance of learning goals: effec-
tiveness of computer training and assessment tools. Inf. Syst. Educ. J. 10(5), 87–94
(2012)

15. Murray, T.: Authoring knowledge based tutors: tools for content, instructional
strategy, student model and interface design. J. Learn. Sci. 7(1), 5–64 (1998)

16. Paradigm Education Solutions: SNAP (2016). http://www.snap.2016.com/
17. Pearson: MyITLab (2016). http://www.pearsonmylabandmastering.com/north

america/myitlab/index.html
18. Swithenby, S.: E-assessment for open learning. In: The 6th International Conference

on Education and Information Systems, Technologies and Applications: EISTA
2008, Orlando, FL, USA (2008). http://oro.open.ac.uk/27481/

19. Whitelock, D., Brasher, A.: Developing a roadmap for e-assessment: which way
now?. In: Danson, M. (ed.) Proceedings 10th CAA International Computer
Assisted Assessment Conference, pp. 487–501. Professional Development, Lough-
borough University, Loughborough, UK (2006)

20. Zhu, Y., Shen, F.: An Office automatic marking system research and implementa-
tion. J. Theor. Appl. Inf. Technol. 47(1), 242–245 (2013)

http://successinhighered.com/cit/simnet/
http://successinhighered.com/cit/simnet/
http://www.snap.2016.com/
http://www.pearsonmylabandmastering.com/northamerica/myitlab/index.html
http://www.pearsonmylabandmastering.com/northamerica/myitlab/index.html
http://oro.open.ac.uk/27481/

Towards a Generic DSL for Automated
Marking Systems

Fritz Solms(B) and Vreda Pieterse

Department of Computer Science, University of Pretoria, Pretoria, South Africa
fritz@solms.co.za, vpieterse@cs.up.ac.za

Abstract. The automated static and dynamic assessment of programs
makes it practical to increase the learning opportunities of large stu-
dent classes through the regular assessment of programming assignments.
Automatic assessments are traditionally specified in tool-specific lan-
guages which are closely linked to the functionality and implementation
of a particular tool. This paper considers existing specification languages
for assessments and proposes a generic and extensible domain-specific
language for the specification of programming assignment assessments.

Keywords: DSL · Syntax · Automated assessment · Software testing

1 Introduction

In undergraduate programming courses it is particularly important to request
students to regularly complete programming assignments so that they can be
graded and be given meaningful feedback. At institutions such as the University
of Pretoria, many of these undergraduate courses have many hundreds of stu-
dents and manual assessment by teaching assistants is resource intensive, time-
consuming, tedious and bound to be inconsistent. Consequently there has been a
quest to develop automated grading systems and to evolve them so as to provide
more meaningful assessments and improved feedback to students [1,14–16].

The computer science department at the University of Pretoria uses an in-
house developed automatic marking system, Fitchfork, to mark C and C++
programming assignments for first-year computer science students [14]. The
instructor specifies a set of test cases beforehand. Students then upload their
source code and any supporting artefacts onto a Linux server where the source
is unpacked into a sandbox where it is compiled and executed. The output of
a students’ program is matched against the expected output for each given test
case.

One critical aspect of such systems is the assessment specification which
the instructors must develop. The specification includes information on how the
programming assignment will be processed (e.g. compiled and executed), how it
will be assessed, how marks are aggregated and the feedback that will be given
to the students. It is vital that the specification of such assessment should be
intuitive, efficient and not prone to errors.
c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 59–66, 2016.
DOI: 10.1007/978-3-319-47680-3 6

60 F. Solms and V. Pieterse

It has been found that informally specified languages tend to become exces-
sively complex and error prone as systems evolve so as to perform more complex
assessments [17]. For this reason, researchers have been exploring the possibility
of developing more robust specification languages for assessments, which can be
formally verified and for which one can easily develop supporting tools.

Domain-specific languages (DSLs) are commonly introduced to provide sim-
ple, consistent domain-centric languages which are easy to use and easy to
process [8]. The availability of DSL work-benches [9] simplifies the task of devel-
oping and verifying a domain-specific language and of enriching the language
with tools such as language-aware editors, and transformation tools.

We are currently developing an assessment-specification language (ASL) for
the specification of a generic and extensible assessment process. What differen-
tiates our language from the languages developed for other tools is (a) a semi-
formal specification of the semantics using a metamodel. This model can be
transformed into an ontology for verifying language qualities. Other features are
(b) the ability to support different textual and diagrammatic concrete syntaxes;
(c) extensive tool support for generating syntax-aware textual and diagram-
matic editors, model validation, model transformation and code generation, and
(d) the language is tool-independent so that its scope is constrained to the spec-
ification of what is required to be done, not how a particular tool would perform
the assessment. The final feature is (e) one can write an adapter layer which
aggregates the assessment across different assessment tools, i.e. by transforming
aspects of an assessment specification which can be handled by a particular tool
to the specification that can be processed by that tool.

In principle, the use of such an ASL will enable memoranda which were
specified for one tool to transported to another tool, contributing to simplifying
the sharing of assessments across platforms and tools.

Section 2 discusses a few existing automatic assessment systems in terms of
their contribution to the types of assessments that should be specifiable using
the ASL we propose in this paper. We also refer to other authors who have
proposed DSLs similar to the ASL we propose. Section 3 lists the objects that
may be used by an automatic assessment tool—these constitute the semantic
scope for the proposed ASL. We also discuss its quality requirements. In Sect. 4
we describe how we developed our ASL. We justify the tools we used, show the
abstract syntax we developed using a UML class diagram and discuss our design
decisions. Methods to transform this abstract syntax to concrete syntaxes are
briefly mentioned. In the final two sections, we summarise what we have achieved,
highlight the benefits of having our ASL and discuss future work to improve this
ASL and promote its use.

2 Related Work

Wilcox provides a survey of the testing strategies used to grade programming
assignments [19]. He discusses (a) textual output comparison, (b) output analysis
which performs further processing of the output to, for example, assess whether

Towards a Generic DSL for Automated Marking Systems 61

the output is internally consistent, (c) stream control which is used to interleave
input and output in order to drive a particular program flow, (d) testing against
an API in a way similar to unit testing, (e) source code analysis, (f) issue detec-
tion used to observe the issues encountered during the assessment process and
the occurrence of compilation or execution issues (e.g. non-termination).

A tool for automatically analysing and assessing the programming style of
C++ programs was implemented by Ala-Mutka et al. [3]. They claim that its
use improved the quality of their coursework and that students learned to pay
better attention to their coding practices. Ponẑenel et al. [15] acknowledge that
the addition of white-box testing (i.e. structural evaluation) to the predominant
black-box testing (i.e. functional testing) applied by most systems is essential for
the pedagogically sound and fair evaluation of student programs. For example,
the AutoLEP system [18] combines static analysis with dynamic testing when
evaluating student programs. Static analysis includes syntactic and structural
checking. Similarly, eGrader [2] uses JUnit for dynamic analysis and a static
evaluation based on a graph representation of the program.

Fonte et al. [7] illustrate the need to allow the identification of partially
correct programs with semantic errors. Fitchfork [14] achieves this by comparing
the output of a program with the known output that a program would produce
if it contained an anticipated semantic error. The detection of such expected
wrong output enables us to give the student feedback about the semantic error
in the program.

Lately there has been a move toward developing DSLs to describe assessments
[7,17]. Fonte et al. [7] propose a DSL they call OSSL which supports the semantic
specification of expected program output. They use extension modules to specify
the integration between the Oto grading system and external tools such as a
compiler, and JUnit. Insa and Silva [12] developed an assessment Java library
with abstraction methods for verifying the properties of code and a DSL built
on top of it for assessment templates.

The manual specification of assessments for automatic assessment tools is
likely to be tedious. The specification can be simplified when using an ASL.
The reduced complexity will probably contribute to improving the quality of the
assignments that are specified in this manner.

3 Requirements for the Proposed DSL

This section discusses the requirements of the generic ASL we intend to specify.
Firstly, we identify the semantic scope of the ASL in terms of the essential
elements one should be able to specify when using the proposed ASL. We then
discuss the critical quality requirements for the ASL.

3.1 Semantic Scope

The ASL needs to be an open language whose scope can be extended with add-
on modules. The language core should contain the essential elements needed by

62 F. Solms and V. Pieterse

all assessment tools. We have identified that such core should include: (a) the
specification of process steps and the dependencies between process steps, (b) the
concept of an assessment which can be extended with specific assessment types,
(c) the basic infrastructure for specifying mark allocation and aggregation and
(d) the infrastructure to identify error scenarios in the assessed code in order to
give the students insightful feedback on ways of improving their programs.

Many existing assessment tools assess the output of program execution. To
accommodate these, we decided that this type of assessment should be included
in the core language specification. Therefore the ASL should have means to
specify simple text output assessments which can be used to assess the output
of a program’s execution. This type of assessment can be employed to assess the
output of other kinds of processing steps, for example the compilation process. It
can even be utilised to perform a static assessment of the code by assessing the
output of a file search evaluating the presence of some constructs in the code.

3.2 Quality Requirements for the ASL

The ASL can only be expected to be widely adopted if it meets standard usability
requirements such as learnability, efficiency, effectiveness, reliability and satis-
faction. Dumas and Reddish [6] emphasise that the people who use a product
should be able to accomplish their tasks quickly and easily. These must accom-
modate users who may have different levels of technical skills varying language
backgrounds. It is important for users to be able to extend the language in order
to specify more specialised processing, assessment and mark aggregation require-
ments. Assessment specifications must be verifiable against the semantic rules
of the language. The ASL should be portable across platforms (e.g. operating
systems) as well as across assessment systems. It is expected that one can trans-
form the subset of an assessment to a tool-specific assessment specification for
a tool which can be used for that aspect of the assessment. The language must
be published as an open public standard so that it is accessible and usable by
different assessment tool developers and the users of these tools.

4 The Domain-Specific Language

Domain-specific languages can be developed in a variety of technologies. One of
the options is that of using the technology support specified by OMG’s Model-
Driven Architecture standard. The advantages of using these standards are that
(a) the standard is reasonably mature and it evolves in a controlled way, (b) there
are multiple concrete tool implementations for the standard and (c) there are
extensive auxiliary tools such as transformation tools and tools for generating
language editors [9].

In particular, we separated the abstract syntax (introducing the semantics)
from the concrete syntax (used by instructors to specify assessments). This sep-
aration facilitates (a) concrete syntax-independent verification of a specification
against the semantics of the language, (b) the development of different concrete

Towards a Generic DSL for Automated Marking Systems 63

syntaxes for users with different levels of technical skills and different home lan-
guages and (c) the transformation of an assessment specified in any of the con-
crete syntaxes to an abstract representation which is independent of the concrete
syntax used, hence allowing the uniform processing of assessment specifications
across different concrete syntaxes.

4.1 Abstract Syntax

Here we introduce the ASL. It is specified using Ecore which is an implementa-
tion of EMOF provided by the Eclipse foundation [9].

Figure 1 shows a diagram of the abstract syntax of the core language. The
language allows for the specification of a process of multiple processing steps. The
order in which the steps are to be executed is specified only indirectly through
the dependencies between steps. This simplifies the specification of assessment
processes, makes them more maintainable and allows for the concurrent execu-
tion of steps which do not have dependencies on one another.

Each processing step optionally specifies a command which is executed as
well as zero or more assessments. The commands for example may be to extract
an archive, compile the source code, execute the program with specified test data
sets, or to execute a unit test. The resources (memory, time/CPU, networking,
etc.) which a command can consume may be constrained via one or more resource
constraints.

Fig. 1. The abstract syntax of the DSL for programming assessments.

64 F. Solms and V. Pieterse

The central concept of the language is the abstract concept of an assessment.
Assessments can be recursively aggregated into aggregate assessments using dif-
ferent ways to aggregate the marks of the assessment components by selecting
appropriate mark aggregators. The language is extensible, allowing additional
assessors to be specified in extension modules. Figure 1 illustrates how a JUnit
extension module is added to the language.

The core language includes the specification of TextOutputAssessors. It is
crucial for students to receive insightful feedback on the errors they make. For
this reason, TextOutputAssessors allow for the assessment of different output
scenarios resembling several variations of correct, partially correct and incorrect
solutions, each with their own mark and their own feedback message. Scenar-
ios are identified by matching the output text selection to a particular output
pattern. The feedback message associated with a scenario is meant to give the
students insights into solution deficiencies and improvement options. To further
enrich the assessment, the language allows for multiple scenarios to contribute
toward the mark for the assessment. Though one can simply use a “BestOfAg-
gregator” to select the scenario with the highest mark, one can also specify more
complex aggregators which reward or penalise certain aspects of a solution, i.e.
the same mark aggregators used to aggregate marks across assessments can
be used to aggregate the marks accumulated across scenario assessments. The
default for aggregating across aggregate assessments is simple-sum aggregation.
The default for scenario aggregation is to select the best scenario mark.

4.2 Concrete Syntaxes

A domain-specific language allows for the specification of multiple concrete syn-
taxes. It is largely the specification of different concrete syntaxes of the language
that determines the language usability characteristics discussed in Sect. 3.2.
A significant amount of work has been done to design DSLs guided by usability
metrics [4,5]. The rigorous development of a concrete syntax guided by usability
metrics is work which is currently in progress. This will enable us to illustrate the
abstract language we have developed so far with a simple English-based syntax.

An example text syntax can be developed in EMFText [11] which is a tool
which gets as input the syntax specification as a mapping between concrete syn-
tax and abstract syntax elements in a BNF-like notation. EMFText can be used
to generate a syntax-aware editor and to do the mapping between an assess-
ment specification specified in the concrete syntax and its representation in the
abstract syntax.

5 Summary

The ASL was designed while keeping in mind the quality requirements for the
language. In particular, the language supports the specification of extension
modules within which it is possible to provide the semantics required to spec-
ify different types of processing commands, assessments and marks aggregation
algorithms.

Towards a Generic DSL for Automated Marking Systems 65

When new elements are being developed, our generic ASL assessment spec-
ification must be mapped onto tool-specific assessment specifications for such
element to ensure the portability of the language across assessment tools.

Since this is an ecore-based DSL, a wide variety of declarative and imperative
model-to-model [10,13] and model-to-text [9] transformation tools are available.
Furthermore, transformation can also be specified implicitly by specifying the
tool language as a concrete syntax for our ASL. In cases where the assessment
specification requires concepts not covered by our ASL, the ASL needs to be
extended. Such an extension should only be required to increase the scope of the
language, not for technical reasons such as to allow mapping to a tool-specific
assessment specification. Any technical enrichment should be made during the
mapping transformation.

We have generated a language-aware editor which verifies a concrete assess-
ment specification against the language rules. Further qualities of the language
can be specified as static constraints against the language metamodel. This can
be done using the Object Constraint Language and the Eclipse OCL libraries [9].

The usability of the language will be determined by the development of con-
crete syntaxes for the language and will therefore be the subject of future work.

6 Conclusions and Future Work

We have introduced an extensible domain-specific language for the specification
of program assessments. The specification of such a language as a domain-specific
language has the advantages of being able to specify a variety of concrete syn-
taxes for different user groups and of having a rich tool set available for gen-
erating language-aware editors, assessment validators and transformations for
transporting onto tool-specific assessment formats. The focus of our work will
now shift to specifying a concrete syntax based on usability guidelines and on
assessing such languages by measuring their usability metrics and by perform-
ing in-field user testing. We will then specify transformations onto tool-specific
assessment specification formats, which will include that of our in-house devel-
oped system. Different aspects of assessment (e.g. assessment of source code and
dynamic metrics) are expected to be covered and specified in extension modules.

References

1. Ahoniemi, T., Reinikainen, T.: Aloha: a grading tool for semi-automatic assessment
of mass programming courses. In: Proceedings of the 6th Baltic Sea Conference on
Computing Education Research: Koli Calling 2006, Baltic Sea 2006, pp. 139–140.
ACM, New York (2006)

2. Al Shamsi, F., Elnagar, A.: An intelligent assessment tool for students’ Java sub-
missions in introductory programming courses. J. Intell. Learn. Syst. Appl. 4(1),
59–69 (2012)

3. Ala-Mutka, K., Uimonen, T., Järvinen, H.M., Knight, L.: Supporting students
in C++ programming courses with automatic program style assessment. J. Inf.
Technol. Educ. 3, 245–262 (2004)

66 F. Solms and V. Pieterse

4. Albuquerque, D., Cafeo, B., Garcia, A., Barbosa, S., Abrahão, S., Ribeiro, A.:
Quantifying usability of domain-specific languages: an empirical study on software
maintenance. J. Syst. Softw. 101, 245–259 (2015)

5. Bariic, A., Amaral, V., Goulão, M.: Usability evaluation of domain-specific lan-
guages. In: Eighth International Conference on the Quality of Information and
Communications Technology (QUATIC), pp. 342–347, September 2012

6. Dumas, J.S., Redish, J.C.: A Practical Guide to Usability Testing. Intellect Bks,
Portland (1999)

7. Fonte, D., da Cruz, D.C., Gançarski, A.L., Henriques, P.R.: A flexible dynamic
system for automatic grading of programming exercises. In: 2nd Symposium on
Languages, Applications and Technologies, SLATE 2013, Porto, Portugal, pp. 129–
144, June 2013

8. Fowler, M.: Domain Specific Languages, 1st edn. Addison-Wesley Professional,
Boston (2010)

9. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit, 1st edn. Addison-Wesley Professional, Boston (2009)

10. Guduric, P., Puder, A., Todtenhoefer, R.: A comparison between relational and
operational QVT mappings. In: Sixth International Conference on Information
Technology: New Generations, ITNG 2009, pp. 266–271, April 2009

11. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Model-based lan-
guage engineering with EMFText. In: Lämmel, R., Saraiva, J., Visser, J. (eds.)
GTTSE 2011. LNCS, vol. 7680, pp. 322–345. Springer, Heidelberg (2013)

12. Insa, D., Silva, J.: Semi-automatic assessment of unrestrained Java code: a library,
a DSL, and a workbench to assess exams and exercises. In: Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer Science Education,
ITiCSE 2015, pp. 39–44. ACM, New York (2015)

13. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation
tool. Sci. Comput. Program. 72(1–2), 31–39 (2008). http://dx.doi.org/10.1016/
j.scico.2007.08.002

14. Pieterse, V.: Automated assessment of programming assignments. In: Proceedings
of the 3rd Computer Science Education Research Conference on Computer Sci-
ence Education Research, CSERC 2013, pp. 4:45–4:56. Open Universiteit, Heerlen,
Open Univ., Heerlen, The Netherlands (2013). http://0-dl.acm.org.innopac.up.ac.
za/citation.cfm?id=2541917.2541921

15. Poženel, M., Fürst, L., Mahnič, V.: Introduction of the automated assessment of
homework assignments in a university-level programming course. In: 38th Inter-
national Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), pp. 761–766, May 2015

16. Tremblay, G., Guérin, F., Pons, A., Salah, A.: Oto, a generic and extensible tool for
marking programming assignments. Softw. Pract. Exper. 38(3), 307–333 (2008)

17. Tremblay, G., Lessard, P.: A marking language for the Oto assignment marking
tool. In: Proceedings of the 16th Annual Joint Conference on Innovation and Tech-
nology in Computer Science Education, ITiCSE 2011, pp. 148–152. ACM, New
York (2011). http://0-doi.acm.org.innopac.up.ac.za/10.1145/1999747.1999791

18. Wang, T., Su, X., Ma, P., Wang, Y., Wang, K.: Ability-training-oriented automated
assessment in introductory programming course. Comput. Educ. 56(1), 220–226
(2011)

19. Wilcox, C.: Testing strategies for the automated grading of student programs.
In: Proceedings of the 47th ACM Technical Symposium on Computing Science
Education, SIGCSE 2016, pp. 437–442. ACM, New York (2016)

http://dx.doi.org/10.1016/j.scico.2007.08.002
http://dx.doi.org/10.1016/j.scico.2007.08.002
http://0-dl.acm.org.innopac.up.ac.za/citation.cfm?id=2541917.2541921
http://0-dl.acm.org.innopac.up.ac.za/citation.cfm?id=2541917.2541921
http://0-doi.acm.org.innopac.up.ac.za/10.1145/1999747.1999791

Instruction Methods

Code Pathfinder: A Stepwise Programming
E-Tutor Using Plan Mirroring

Mark S. Durrheim(B), Abejide Ade-Ibijola, and Sigrid Ewert

Department of Computer Science and Applied Mathematics,
University of the Witwatersrand, Johannesburg, South Africa
570169@students.wits.ac.za, researcher@abejide.com,

sigrid.ewert@wits.ac.za

Abstract. A significant problem in Computer Science Education is
introducing students to programming. Many novice programmers show
difficulties in mastering the basics of writing programs. Many students
may abandon their study of Computer Science due to these problems.
Intelligent Tutoring Systems have been developed to provide guidance
and feedback to students. Previous systems require the instructor to
prepare extra documentation for the software to function. This creates
more work for lecturers who wish to implement such a system. We have
developed an Intelligent Tutoring System that will guide a student step-
by-step through the writing of simple programs in the language of C++.
It will also provide feedback on any mistakes they make. This system will
require only a correct version of the code for it to develop its feedback
scheme.

Keywords: Automatic tutoring · Narrations · Plan mirroring

1 Introduction

In Computer Science Education, teaching novice programmers to code has been
a challenge for many years [8]. Intelligent Tutoring Systems have been developed
to assist in teaching novices basic programming skills. These often give feedback
and instructions in syntax-free forms [8,10]. This makes it easier for students
who are not well versed in programming to understand the instructions.

We have developed an Intelligent Tutoring System that uses a correctly writ-
ten program to create all of the instructions and feedback for the student. The
students are guided to reproduce the instructor’s program line by line.

The rest of the paper is structured as follows. Section 2 presents the back-
ground to the project. It provides definitions of terminology used in the document
as well as a review of previous work related to this project. Section 3 outlines
the problem which we wish to address with our system. Section 4 describes the
methods used to achieve the system’s key functions. Section 5 details the imple-
mentation of the system and our results. Section 6 discusses the limitation of our
program. Section 7 summarises the results and contributions of the project.
c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 69–82, 2016.
DOI: 10.1007/978-3-319-47680-3 7

70 M.S. Durrheim et al.

2 Background

2.1 Definitions

Below are definitions of terminology used in this paper.

Intelligent Tutoring Systems: Software designed to emulate the impact of
human tutors on a student. They engage students in sustained reasoning
activity. Interactions with the student are based on a deep understanding of
the students behaviour [4].

Novice programmers: Students who are being exposed to programming for
the first time [6].

Novice programs: The sort of programs that a student will encounter when
they start learning to program [1,3].

Plan: An abstracted form of a procedure in an algorithm that represents the
intended function of a piece of code [7]. Plans can consist of a single operation
or a composition of multiple plans [6].

Program narrations: Detailed, syntax-free representations of an algorithm.
They are presented in natural language and describe the steps taken by the
program [1,3].

Program alphabet:The collection of all semantic tokens used in a program [1,2].
Plan similarity: Two distinct plans x and y are similar if these conditions are

met:

1. both plans contain exactly the same characters, or
2. the following three conditions are true:

(a) the number of tokens in x is the same as in y and
(b) every token in plan x is of the same literal category as the token in the

same position in plan y, e.g.: both are identifiers, keywords, or numeric
values.

(c) if there is a numeric literal in the same position in both plans, the floating
value of both literals must be the same, i.e.: 6 = 6.0, but 6.2 �= 6.0.

Conditions 2a, 2b and 2c must be satisfied for plans to be similar, except when
Condition 1 is true [1].

Plan equivalence: Two plans x and y are equivalent if:

1. both plans contain the same number of tokens.
2. all tokens, except for identifiers, are exactly the same.
3. for each identifier a in plan x there is the identifier b in the same position

of plan y, where b is the equivalent identifier to a between the two program
alphabets [1].

Code Pathfinder: A Stepwise Programming E-Tutor 71

2.2 Plan-Oriented Teaching

There have been studies on the effectiveness of how content in an introductory
programming course is presented. It has been investigated which areas of knowl-
edge are the most problematic, as well as which areas are foundational to others,
and hence the order in which they should be presented. The concepts present in
the understanding of programming can be classified into two broad categories:
language constructs and plan composition [5]. Language constructs refer to the
knowledge of how to use the syntax of the language to produce correct code.
Plan composition refers to the ability to construct algorithms that will perform
a task. Studies have been conducted to investigate how these two concepts should
be taught in relation to each other.

One study found that students struggle with understanding the syntax of
the language and that they tend to focus on the implementation rather than
problem solving [6]. It was suggested that focussing first on abstract plan com-
position and then teaching how to implement plans would be effective. A second
study found that the order in which concepts are taught does not significantly
change the amount a student learns [8]. It was found that teaching syntax before
program planning is more efficient in that it places less strain on the students.
Yet another study found there to be a strong link between the aptitude in both
language constructs and plan composition [5]. This suggested that skills in lan-
guage constructs and plan composition reinforce each other, thus showing the
importance of developing both. While it is not conclusive which area should be
taught first, it is clear that a good understanding of both language constructs,
plan composition, and the relation between the two is important in teaching
novice programmers.

2.3 Intelligent Tutoring Systems

Intelligent Tutoring Systems are software that aid students in the mastery of
skills and concepts. These programs provide this by responding to the actions of
the student. They identify problems in the student’s work and give feedback to
help correct the misunderstandings that caused that error.

Students who can interact one-on-one with human tutors often score signif-
icantly higher in tests than students who do not [10]. An Intelligent Tutoring
System can provide natural language feedback to a student which should hope-
fully provide a level of improvement as well. This could prove highly useful in
institutions where there are not the resources to provide one-on-one attention
to all students.

A tutoring system called ProPL [10] emulated the interactions with a human
tutor through the use of natural language in a text-based chat system. The
system interacts with the student as they work through a set of problems. The
system tries to encourage the student to think through their problems, rather
than explain how to correct their mistakes. The results of the study of ProPL
suggest that interacting with a tutoring system in this manner resulted in the
students engaging with problems at a higher level of abstraction. ProPL requires

72 M.S. Durrheim et al.

the structure of Knowledge Construction Dialogues to be manually specified
for each problem [10]. These are scripted conversations designed to guide the
student’s reasoning to solve the problem.

Another tutoring system (PROUST [7]) is able to detect bugs in Pascal code
and provide natural language explanations of errors. PROUST requires a brief
describing the goals of the program to be written for each problem [7].

Automatic Feedback Generator [11] is a tutoring system for the Python pro-
gramming language. It is suggests corrections to a student’s code so that it
satisfies the requirements of the exercise. For each task the lecturer provides a
template solution and possible corrections in the form of an Error Modelling
Language. This requires the lecturer to predict specific errors that the students
are likely to make and how those will make their code differ from the template.

An unnamed system uses a Model-Based Reasoning approach [9]. Approaches
the problem in a very different manner to the other tutoring systems mentioned
here. It does not look for mistakes in the student’s code. It creates C++ code
with bugs and tests whether the student can identify the errors. This is done by
taking a template piece of code and creating variations of it. The system knows
which errors will be created with each variation, so the questions for the student
can be generated by the system as well.

Almost all of the systems mentioned here require the instructor to provide
some documentation. The content and format varies greatly, but all are for
providing guidance to the system about what to teach.

2.4 Program Narration

A system called NOPRON [3] processes C++ code and provides a detailed,
syntax-free explanation of the algorithm followed. The system does this by
decomposing the program into its most basic operations and identifying the
plans that are represented by those operations. These plans are stored in an
abstract manner and are later expressed using natural language with pre-defined
templates.

2.5 Basis for a New Intelligent Tutoring System

Many students fail their first programming course [8]. While there are systems
designed to assist novice programmers [10], there is no system that specifically
guides a student in translating tasks to their syntax.

Using natural language descriptions of the algorithm, as seen in NOPRON [3],
could provide simple step-by-step sets of instructions to students for writing a
novice program. The abstracted structure representing these plans could also
function as the template for error checking that a system such as PROUST [7]
requires. This reduces the work that an instructor needs to do to set up a pro-
gramming exercise with the tutoring system.

Code Pathfinder: A Stepwise Programming E-Tutor 73

3 Problem Statement

For novice programmers, two basic skills are language constructs (i.e., writing
valid code) and plan composition (i.e., designing algorithms) [5]. These skills are
considered key to novices learning to program [5,6,8]. Can we develop a system
that helps students learn the syntax of C++ as well as reinforce the connection
between its plan and implementation?

Natural language instruction shows promise as an effective technique for
interacting with the student [10]. Many Intelligent Tutoring Systems require
instructors to write the documentation for these applications to produce instruc-
tions and feedback to students [7,10]. However, the technique of narration allows
natural language explanations for a program to be produced exclusively from its
source code. It is possible for us to create an Intelligent Tutoring System that
provides natural language instruction and feedback based entirely on the pro-
vided code?

We require that the student write code that achieves the same result as the
instructor’s solution i.e. follows the same plan. We, however, do not require that
they produce the exact same code. The name of a variable for instance has no
bearing on its function. Can we then create a system that evaluates whether the
code written by a student is equivalent to that of the instructor?

4 The Tutoring System

In this section we discuss the structure of our Intelligent Tutoring System. We
will refer to our program as Code Pathfinder. This name refers to how the
student is guided through the writing of programs. Figure 1 provides an outline
of the flow of Code Pathfinder.

4.1 Role of Narrations

The method for producing narrations from source code is the same as was done
in NOPRON [3]. Some pre-processing is done first before the actual narration
process.

We require that each line of code to perform only one action. Multiple tasks
on one line can happen when declaring variables or sending values to the standard
output. We can identify cases where the lecturer has done this and split those
into multiple lines.

We also strip all leading and trailing white space, as well as comments from
the code.

We have written regular expressions that can identify the various tokens of
the C++ language. Combinations of these tokens are used to define regular
expressions that are used to identify lines of code that match a particular plan.
These regular expressions can also be used to extract information from a line of
code, such as the variable names used.

74 M.S. Durrheim et al.

Fig. 1. Structure of Code Pathfinder

Code Pathfinder: A Stepwise Programming E-Tutor 75

4.2 Plan Mirroring

Code Pathfinder gives the student instructions for individual lines of code.
The student must give an equivalent line of code before they can proceed. If the
line that they write is not correct then feedback is provided to them based on
their mistakes. The instructions use the variable names that the students have
declared.

4.3 Equivalent Variables

We do not specify to the student what to name the variable that we ask them to
declare. We do this to provide some element of choice to the student. Since the
system works on line-by-line plan mirroring, variables declared on the same line
of the student’s code and the lecturer’s code will be equivalent. We keep track
of which variable names are equivalent between the student and instructor’s
programs. This is essential for the creation of instructions and feedback, both
are discussed below.

4.4 Creating Instructions

We wish to give instructions that use the variable names that the student
declared. This is done by determining the code that the student is required
to write. The narration of this line of code is used as our instruction to the stu-
dent. To determine the required line of code we replace all the variable names
from the lecturer’s line with the equivalent variables from the student’s code.
This is not needed for variable declarations, as explained above. The narration
of this line is used as the instruction given to the student. The system uses
regular expressions to identify the plan for that line as well as other relevant
information, such as variable names, to incorporate in the instruction. For each
line plan we have written a function that describes the action of that plan as a
task for the student to perform.

4.5 Checking the Line

To check whether the student’s line of code is correct we run several checks.
First we check for syntax errors. This is done by checking if a plan is recognised
by one of our regular expressions. All valid lines of code with structures within
the scope of our system are recognised. We then check if the student’s and
instructor’s codes have similar plans. By our definition, this means that the
two lines of code are using the same plan, but possibly have different tokens.
We substitute all variable name tokens in the instructor’s line of code with the
equivalent ones from the student’s program. We then normalise the lines of code
to have the same spacing. These lines should match character-to-character for
the student’s code to be equivalent to the instructor’s.

76 M.S. Durrheim et al.

4.6 Producing Feedback

Feedback for the student is generated based on which of the above checks succeed.
Failure to identify a matching plan indicates a syntax error; while being similar to
the instructor’s code, but not equivalent, suggests the use of the wrong variable
name. Using regular expressions we can check specific parts of the lines of code
to identify the location of the mismatch. For example, we can check the type of
variable declared and whether it is the same between the student and instructor.
We have functions written for each type of error that will inform the student of
what they have done wrongs.

4.7 Available Problems

We have included the following problems for demonstration: next integer, aver-
age problem, factorial problem, and Fahrenheit to Celsius conversion. Some of
these programming problems have been used to demonstrate functionality of
Intelligent Tutoring Systems in the past [3,5,7].

5 Implementation and Results

Code Pathfinder has been implemented as a Windows application using reg-
ular expression and text-to-speech libraries of the .Net Framework provided by
Microsoft Corporation. We have also used the Fast Colored TextBox compo-
nent [12] to display the instructions and provide the student’s code editing space.

For each problem below we display two listings: one which contains the source
code for a problem, and the other which contains the complete set of instructions
provided to the student to produce the associated code.

5.1 User Interface

A screenshot of Code Pathfinder can be seen in Fig. 2. The left text box pro-
vides instructions and feedback to the student. The right text box is the space
where the student writes their code. The code editor provides syntax highlighting
and auto-indentation. Feedback on errors is provided in bars below the instruc-
tion for the current action. All feedback is available in audio form using text-to-
speech. This can be disabled by the user if they want to do so. The user cannot
go back to change already written code.

5.2 Next Integer

Code Pathfinder has successfully provided instructions and feedback for the
next integer problem. The program should take in an integer and output the
next number. Listing 7.1 shows the instructions given by Code Pathfinder.
Listing 7.2 gives the complete code written to satisfy the program. Note that
the instructions use the variable name chosen by the student.

Code Pathfinder: A Stepwise Programming E-Tutor 77

Fig. 2. Screenshot of Code Pathfinder

1 import the iostream library

2 declare the main function (or main program)

3 begin main method

4 declare a variable of type integer

5 read value for k

6 increment k by 1

7 display the value of k

8 terminate the main function

9 end main method

10 Program complete. Good job!

Listing 7.1. Instructions for next integer problem [3]

1 #include<iostream>
2 int main ()
3 {
4 int k ;
5 c in >> k ;
6 k += 1 ;
7 cout << k ;
8 return 0 ;
9 }

Listing 7.2. Code for next integer problem [3]

5.3 Average of Two Numbers

In Listings 7.3 and 7.4 we can see similar functionality to that in the next integer
problem. What is clear as well is that the instructions for declare a variable

78 M.S. Durrheim et al.

get repetitive and give no indication of what the variable does. It is possible that
future variations of this system could suggest variable names or even specify what
the variable is for. This possibility is discussed in Sect. 7.2.

1 import the iostream library

2 use the standard class

3 declare the main function (or main program)

4 begin main method

5 declare a variable of type real

6 declare a variable of type real

7 declare a variable of type real

8 declare a variable of type real

9 read value for x

10 read value for y

11 add x to y and store in sum

12 divide sum by 2.0 and store in average

13 display the value of average

14 terminate the main function

15 end main method

16 Program complete. Good job!

Listing 7.3. Instructions for average of two numbers [3]

1 #include <iostream>
2 using namespace std ;
3 int main ()
4 {
5 double x ;
6 double y ;
7 double sum ;
8 double average ;
9 c in >> x ;

10 c in >> y ;
11 sum = x + y ;
12 average = sum / 2 . 0 ;
13 cout << average ;
14 return 0 ;
15 }

Listing 7.4. Code for average of two numbers [3]

5.4 Factorial Problem

The factorial problem requires the program to calculate the factorial of a given
positive integer. The factorial is the product of all integers from one to the
number. There are many ways in which this could be programmed. Our example
uses a while loop.

Code Pathfinder: A Stepwise Programming E-Tutor 79

1 import the iostream library

2 use the standard class

3 declare the main function (or main program)

4 begin main method

5 declare a variable of type integer

6 read value for maxVal

7 declare a variable of type integer

8 set factorial equals 1

9 declare a variable of type integer

10 set i equals 2

11 make a loop that repeats while i is less than or equal

to maxVal

12 begin while loop

13 multiply factorial by i and store in factorial

14 increment i by 1 after this line has been executed

15 end while loop

16 display the value of factorial

17 terminate the main function

18 end main method

19 Program complete. Good job!

Listing 7.5. Instructions for factorial problem

1 #include<iostream>
2 using namespace std ;
3 int main ()
4 {
5 int maxVal ;
6 c in >> maxVal ;
7 int f a c t o r i a l ;
8 f a c t o r i a l =1;
9 int i ;

10 i = 2 ;
11 while (i <=maxVal)
12 {
13 f a c t o r i a l = f a c t o r i a l ∗ i ;
14 i++;
15 }
16 cout << f a c t o r i a l ;
17 return 0 ;
18 }

Listing 7.6. Code for factorial problem

5.5 Fahrenheit to Celsius Conversion

Converting between units of temperature is a classic task for students taking
their first course in programming. The program is given a temperature in degrees
Fahrenheit and must return the equivalent value measured in degrees Celsius.

80 M.S. Durrheim et al.

1 import the iostream library

2 use the standard class

3 declare the main function (or main program)

4 begin main method

5 declare a variable of type real

6 read value for temp

7 subtract 32 from temp and store in temp

8 divide temp by 1.8 and store in temp

9 display the value of temp

10 terminate the main function

11 end main method

12 Program complete. Good job!

Listing 7.7. Instructions for Fahrenheit to Celsius conversion

1 #include<iostream>
2 using namespace std ;
3 int main ()
4 {
5 double temp ;
6 c in >> temp ;
7 temp = temp − 32 ;
8 temp = temp / 1 . 8 ;
9 cout << temp ;

10 return 0 ;
11 }

Listing 7.8. Code for Fahrenheit to Celsius conversion

5.6 Feedback Examples

If the student is given the instruction declare a variable of type real,
then the following lines of code from the student will elicit their correspond-
ing responses as seen in Table 1. Similarly, if the student is given the instruction
read value for b, then their answers will be given responses as per Table 2.

Table 1. Examples of feedback for declare a variable of type real

Code Response

int a; Wrong variable type

double while; That name is a reserved word in C++, please use a different name

double a Syntax error, check your code

a = 2; That’s not what you should be doing

double x; Correct, well done

Code Pathfinder: A Stepwise Programming E-Tutor 81

Table 2. Examples of feedback for read value for b

Code Response

cin >> a; Almost, check which variable you are using

cin > b; Syntax error, check your code

cin >> b; Correct, well done

6 Limitations

In this section we discuss what Code Pathfinder cannot do. In the previous
section we demonstrated that Code Pathfinder can handle the basic structures
of the C++ language. Code Pathfinder does not handle all structures provided
by C++. For example, Code Pathfinder cannot handle multiple operations on
one line, nor can it process definitions of new data structures. There are many
cases where the order of tokens in a line of code would not change its result,
adding two values for example. Code Pathfinder does not allow for this type
of line equivalence. Code Pathfinder requires that only one thing is done per
line of code. Common practices like declaring multiple variables on one line or
initialising a variable on its declaration line cannot be done by the user. The
instructor’s code may use these methods, but our preprocessing breaks these
into multiple lines. Code Pathfinder provides no explanation as to the purpose
of a variable. This means that the student does not know what the variable will
be used for, so they cannot give it a descriptive variable name.

7 Conclusion and Future Work

We have demonstrated that our system, Code Pathfinder, is capable of provid-
ing instructions and feedback to novice programmers for simple C++ program-
ming problems.

7.1 Key Contributions

Feedback generation: We have developed a method where we can use the
source code of a problem to generate feedback for a tutoring system.

Plan mirroring: We have developed a system that can convert the variable
names of one program to those of another program that follows the same
plan.

7.2 Future Work

Multi-line instruction: We have demonstrated that we can provide line-by-line
instructions for novice programs. Can we generate instructions and feedback
for code segments spanning multiple lines? Could this handle variations of the

82 M.S. Durrheim et al.

order of lines and the number of operations done on a line? Could variations of
high-level plans be handled? For example, different sorting algorithms being
accepted as a sort plan.

Variable name guidance: Can we provide a description of what a variable
is used for by analysing the instructor’s code? This could be done by using
the lecturer’s variable name as a suggestion, or using comments from the
instructor’s code. Alternatively, could Program Comprehension be used to
identify the purpose of the variable? Counter variables and flags could possibly
be identified by the operations used on them.

References

1. Ade-Ibijola, A.: Automatic novice program comprehension for semantic bug detec-
tion. PhD Thesis, University of the Witwatersrand, Johannesburg (2016)

2. Ade-Ibijola, A.: Definitions of plan similarity. In: Personal Communication (2015)
3. Ade-Ibijola, A., Ewert, S., Sanders, I.: Abstracting and narrating novice programs

using regular expressions. In: Proceedings of the Annual Conference of the South
African Institute for Computer Scientists and Information Technologists (SAICSIT
2014), pp. 19–28 (2014)

4. Corbett, A.T., Koedinger, K.R., Anderson, J.R.: Intelligent tutoring systems.
Handbook of Human-Computer Interaction, pp. 849–850 (1997)

5. Ebrahimi, A.: Novice programmer errors: language constructs and plan composi-
tion. Int. J. Hum. Comput. Stud. 41(4), 457–480 (1994)

6. Ebrahimi, A., Schweikert, C.: Empirical study of novice programming with plans
and objects. ACM SIGCSE Bulletin 38(4), 52–54 (2006)

7. Johnson, W.L., Soloway, E.: PROUST: knowledge-based program understanding.
IEEE Trans. Softw. Eng. 3, 267–275 (1985)

8. Kranch, D.A.: Teaching the novice programmer: a study of instructional sequences
and perception. Educ. Inf. Technol. 17(3), 291–313 (2012)

9. Kumar, A.N.: Model-based reasoning for domain modeling in a web-based intel-
ligent tutoring system to help students learn to debug C++ programs. In: Cerri,
S.A., Gouardères, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 792–801.
Springer, Heidelberg (2002)

10. Lane, H.C., VanLehn, K.: Teaching the tacit knowledge of programming to novices
with natural language tutoring. Comput. Sci. Educ. 15(3), 183–201 (2005)

11. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for intro-
ductory programming assignments. ACM SIGPLAN Notices 48(6), 15–26 (2013)

12. Torgashov, P.: Fast colored textbox for syntax highlighting. http://www.
codeproject.com/Articles/161871/Fast-Colored-TextBox-for-syntaxhighlighting

http://www.codeproject.com/Articles/161871/Fast-Colored-TextBox-for-syntaxhighlighting
http://www.codeproject.com/Articles/161871/Fast-Colored-TextBox-for-syntaxhighlighting

Flipping a Course on Computer Architecture

Hussein Suleman(B)

Department of Computer Science, University of Cape Town,
Rondebosch, South Africa
hussein@cs.uct.ac.za

Abstract. This paper reports on an experiment with a flipped class-
room for a Computer Architecture course. In a flipped classroom, stu-
dents access content out of the classroom and then engage in a discus-
sion in-class, rather than the other way around. This seemed like an
ideal strategy for a course that can easily focus on the minutiae of archi-
tectural details and computer history. The results showed that students
liked the interactive and practical aspects of the course but were par-
ticularly negative about pre-lecture readings. These results suggest that
students need to learn how to learn in different ways, and move away
from the exclusive strategy of in-classroom, content-centric lectures.

Keywords: Flipped classroom · Computer architecture · Low resource
environments

1 Introduction

In traditional lectures, a lecturer will stand before a class and recite a paper that
contains all that is considered important for the class to know, maybe resorting
to use of the chalkboard [2]. As technology evolved, this model changed to use
presentation cues in Microsoft Powerpoint slides visible to all rather than in
notes used only by the lecturer. However, the predominant mode of verbally
exposing information to the students remained. This model has been criticized
because of its assumption that dissemination of content is the primary purpose
of a classroom. It has been argued that, instead, such content is better learnt on
an individual basis and the classroom is better utilized as a space for discussion
and active engagement with the content [10]. This could lead to higher levels of
understanding than if classrooms are used purely for presentation of the content
to students.

These arguments are part of the motivation for flipped or inverted class-
rooms. A flipped classroom is one where students acquire content knowledge
outside the classroom, and use the classroom as a space for discussion instead
of lectures [10]. This has been used extensively in teaching and learning in vari-
ous disciplines, including Computer Science. The traditional format of a flipped
classroom includes out-of-classroom video instruction and in-classroom discus-
sions. Students are expected to watch the videos before coming to class to gain

c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 83–94, 2016.
DOI: 10.1007/978-3-319-47680-3 8

84 H. Suleman

the content knowledge and be prepared to engage in discussion about the topics
of the videos.

The flipped classroom approach is arguably a good technique because of the
following reasons:

– Each student is able to learn at his or her own pace.
– Students are able to learn without explicitly being taught.
– Lectures are more engaging when there is discussion rather than exposition

of content.
– Higher levels of understanding are possible if there is greater discussion and

interrogation of the content.

This paper reports on an experiment to use the flipped classroom technique
in a Computer Architecture course. This course is typically dense in factual
content, often leading to traditional forms of lectures. There is little problem-
solving and large amounts of technical and historical information. While there
is opportunity for debate and discussion, this requires an in-depth knowledge
of the content first. Thus, it appeared that this course would be ideal for the
flipped classroom approach and this experiment was conceived.

The rest of the paper presents related work, then the design of the course
and its various elements, followed finally by an evaluation of the experiment and
conclusions.

2 Literature Review

The core idea of an inverted or flipped classroom is presented by Lage et al.
[10], where it is defined as the inversion of activities conducted within the class-
room and outside the classroom. Specifically, the format of multimedia or video
lectures is presented as a vehicle for the content, with the aim of providing
learners with flexibility in their approaches to learning. This simple inversion is
often accompanied by an expansion of the range of activities, to supplement the
inversion model [3].

In Computer Science, various experiments have been conducted with flip-
ping of courses on different topics, with many recent studies on introductory
programming courses.

Campbell et al. [4] compared a flipped classroom approach to a first year
programming course against a traditional version of the same course and demon-
strated improvements in the experience of students. They did not mandate
compulsory attendance but suggested using in-class quizzes in future years.
Latulipe et al. [11] extended the flipped programming course model for a lab-
based course, by adding elements of lightweight teamwork and gamification.
Their results showed positive feedback from students, although they did not
individually test the effect of each intervention as Campbell et al. did. Lacher
and Lewis [9] tested the effect of pre-class video quizzes on student performance
in a controlled study and discovered no significant effect. They postulate that
while these quizzes before the class make students engage with the content, there

Flipping a Course on Computer Architecture 85

is no deep learning taking place for most students, especially those with lower
marks.

Computer Architecture was taught using a flipped classroom approach by
Gehringer [7]. He taught both a graduate and undergraduate version of the same
course and recorded the lectures in one for use in the other, to maximize reuse of
content. In comparisons of student performance, the flipped class students fared
worse. However, there were only 8 students and there were many differences
between the classes so these results are unlikely to have much significance.

In this paper, an alternative approach to a Computer Architecture flipped
class is presented, based on the positive lessons learnt, and with adaptations for
a specific environment and cohort of students.

3 Outline of Computer Architecture Course

Computer Architecture is the study of computer hardware and the design deci-
sions and choices that affect computer hardware. This course is studied either
from the perspective of designers of hardware or designers of software. The for-
mer study architecture to understand how to design hardware while the latter
study architecture to build better software systems.

This course was aimed at the latter group of students, in the second year of
their degree, but included a mixture of Computer Science and Computer Engi-
neering students in the classroom as the course was required for both degrees.

The content of the course followed the popular textbook by Patterson and
Hennessy [12], with some contemporary modifications, such as the inclusion of
an Open Hardware topic for relevance. The topics included in the course in 2015
were as follows:

– Introduction to computer architecture,
– RISC and CISC CPU architectures,
– MIPS assembly language,
– Pipelining,
– Multicore CPUs,
– Cache architectures,
– Virtualization,
– Performance and benchmarks,
– Memory / SDRAM,
– Secondary storage: hard drives, solid-state drives and RAID,
– USB,
– General purpose GPUs,
– Open Source Hardware: Arduino,
– Summary and concluding remarks.

There were 14 classroom sessions in total. This is a very short course compared
to offerings elsewhere so the focus of the course was on carefully selected high-
level design concepts rather than the intricate details of any one section. Each
topic in the list above was the subject of a single classroom session in the course.

86 H. Suleman

175 Students were enrolled in 2014 and 179 students were enrolled in 2015.
The course was run in 2014 and 2015, with similar content and structure in
both years. The following section describes the various elements of teaching and
learning used in the classroom sessions.

4 Learning Design

4.1 Flipping on the Cheap

At the beginning of the course it was decided that this new approach would
have to be low-cost. The flipped classroom approach, in general, requires a large
financial and time investment, especially for the creation of lecture videos. In
addition, any interactive experiential learning in class may require additional
staff, such as tutors and teaching assistants where groupwork is needed.

Many universities simply do not have the resources available to conduct such
experiments. There are typically no funds for producing pre-recorded videos.
Also, students would be required to have access to written content such as a
textbook and, realistically, not all students purchase these books. Further, it
is not clear that such an approach will work for any given course so the risk
factor is high and many universities cannot afford such risks. Finally, costs are
divided into fixed costs, such as producing videos once for an entire group, and
proportional costs, such as additional tutors to mark more assessments. For a
course to be scalable, proportional costs must be managed so that flipping a
classroom does not increase the cost of offering a particular course.

For the reasons above, it was decided that the cost of converting and running
the course as a flipped classroom course needed to be minimal. Each element
discussed below takes this cost reality into account in its design.

4.2 Content Videos

Every classroom session had an associated video clip that students were required
to watch before the session. Each video clip was approximately 10 min in length.
The videos were made available through a Youtube playlist [5], with links created
on the Learning Management System (LMS) used at the university (see Fig. 1).
In addition, all videos were downloaded and made available for download via
the LMS so students would not need external Internet bandwidth to access the
videos.

In the particular case of Computer Architecture, there is a large number of
videos from primary sources available online, such as an interview with John
Hennessey on RISC. It was decided that these would be appropriate as primary
sources of information. The first lecture was an overview of the course and this
was recorded and put online.

The purpose of the videos was to create excitement about topics that
might otherwise be considered dull. All of the videos were chosen because they
focused on very specific and fundamental ideas students should be familiar with.

Flipping a Course on Computer Architecture 87

Fig. 1. Youtube playlist for class videos

For example, the video for the Performance topic was of a hardware reviewer
demonstrating side-by-side timing of mobile phones running a popular bench-
mark suite. Students ought to identify with such examples more so than the
theoretical benchmarking of hardware they do not have access to.

4.3 Readings

Videos by themselves do not contain sufficient technical information on which
to base a discussion on Computer Architecture. Thus, it was decided that there
would be accompanying readings. Some of the readings came from popular arti-
cles and extracts from the textbook [12] — the entire RISC/MIPS section had
been made available for free by the publisher as the definitive guide to this topic.
Most of the readings, however, were selected sections of articles from Wikipedia.
Popular wisdom is that Wikipedia articles have poor quality, but some formal
studies [8] have shown that the quality of Wikipedia articles is comparable to,
for example, the carefully curated Enclopaedia Brittanica.

Wikipedia was selected in many instances because of many reasons, as out-
lined below:

– It is free and easily accessible on all devices.
– It is arguably the most current source of formal information in a rapidly-

changing field like computer architecture.
– It is carefully checked and cross-referenced by the authors.
– Information can be either in-depth or span a breadth of subtopics.
– Links are provided to navigate to related topics (this is simply not possible in

traditional textbooks).

88 H. Suleman

4.4 Discussion

Each classroom session included a general discussion, facilitated by the lecturer.
A number of questions were presented to the students and each was discussed
in turn. Some questions were designed to highlight important concepts, others
were to raise questions about the application of concepts while the final questions
were often about a critical analysis of concepts.

Discussions were open-ended and could veer off into directions chosen by the
students or lecturer. The lecturer served as more of a chair than a commentator.
Some students were confused by this role, expecting the lecturer to provide the
answers to all questions but, if that were to happen, there would be no real
discussion within the class any longer. Figure 2 shows a typical set of discussion
questions.

Fig. 2. Discussion questions for a session

4.5 Quizzes

Every classroom session included a quiz on the assigned reading and video. These
were to ensure that all students did in fact read and view the assigned work before
participating in the discussion. Students were given 5 multiple-choice questions
on key facts from the assigned work. These were flashed on the screen in a timed
manner such that each question and its options were only visible for 30 seconds.

The answers were filled in on a computer-readable form that could be scanned
and automatically graded afterwards. This system was adapted for this course
from one built for a previous course. No special equipment was needed — a
common photocopier was used to scan the documents. The answer sheets (see
Fig. 3) were also produced on a photocopier or printing press, with varying skew
and scale. Image processing automatically compensated for these issues, auto-
matically generated a mark for each student, uploaded these marks to the LMS
and made the answer sheets available to students as downloadable PDF files.

Most approaches used for in-class quizzes use mobile devices or laptops.
However, those approaches require that the wireless network is operational and
this cannot always be guaranteed. In addition, students could easily search for
answers online if they are using a laptop. The integration of paper answer sheets
into an otherwise digital workflow makes the system both scalable and robust,
without increasing the technology requirements for students in the classroom.

Flipping a Course on Computer Architecture 89

Fig. 3. Quiz answer sheet

90 H. Suleman

4.6 Demonstrations

Demonstrations were included in almost all classroom sessions to create a
stronger link between theoretical concepts and practical implementations. This
was not, however, always possible because of some topics did not naturally lend
themselves to realistic demonstrations e.g., pipelining. Many topics could easily
be demonstrated, such as benchmarking software, virtualization (using Virtu-
alBox) and open source hardware (using a Google Cardboard VR device). The
remaining demonstrations were on current topics that were deemed useful to
students at this level, such as the use of a Raspberry Pi computer.

Fig. 4. Demonstration using laptop webcam

Cost is always a factor in designing appropriate and feasible demonstrations.
In order to demonstrate the Raspberry Pi in-class, a USB video frame grabber
was used along with frame grabber preview software to simulate a display for
the device and have this reflect on the screen students were looking at. Figure 4
shows a mobile device being demonstrated to students using the lecturer’s laptop
webcam. These techniques allow for demonstrations with small devices to be
used in a classroom without the need for additional staff — as long as the data
projector’s screen is viewable by all students, these demonstrations are scalable
to the size of the class.

Finally, some demonstrations used software emulation of hardware devices.
For example, a robotic arm that connected via USB would only work on an
older computer so this was simulated using virtualization. This allowed for a
wide range of hardware experiments to be conducted in class without having to
haul additional equipment to the classroom.

5 Evaluation and Analysis

In all classes, students provide feedback as a matter of course. In this course,
students were asked for additional feedback on elements of the flipped classroom
model used. These, as well as the regular feedback, are discussed next.

Flipping a Course on Computer Architecture 91

5.1 Quantitative Feedback

In 2014, students were asked to indicate either a positive, negative or neutral
reaction to each of the elements introduced in the course. Feedback was kept to
a minimum because students were also providing feedback on the lecturer in a
separate exercise. Table 1 displays the summary of student responses.

Table 1. Student perceptions of aspects of flipped classroom experiment

Feedback Readings Videos Quizzes Demos Discussions

Positive 19 46 31 58 49

Neutral 25 21 30 15 22

Negative 32 9 15 3 5

Videos, demonstrations and discussions were considered to be mostly positive
by students. It was expected that students would prefer to watch videos, given
that students consume more video than ever before. Discussions were previously
well received by students in 4th year, so students confirmed that even earlier in
their degree they appreciate in-class discussions. Demonstrations got the most
positive response, possibly because students were presented with a more practical
view of the course than they would get in other courses.

Readings and quizzes were, as expected, not well received by students. Stu-
dents were more negative about readings than positive, suggesting that the
majority of students did not want to read before class. While many students
were negative about quizzes, the results lean towards the positive. It may be
that some students disliked the constant assessment (and the fact that quizzes
were conducted at the beginning of the lecture) while others appreciated being
forced to do the readings diligently.

This quantitative evaluation exercise was not repeated in 2015 because lec-
tures were disrupted by student protests precisely as the course came to an end.

5.2 Qualitative Feedback

When asked for feedback on the experimental elements of the course, students
were also asked for general comments. Some of the comments are listed below:

– “the theory was too much and it is difficult to understand without having done
the things practically”,

– “some pre lecture readings took quite a long time to go through the day before
a lecture”,

– “needs to give better notes and not just wikipedia pages”,
– “I feel like no effort was put in with making our readings wikipedia pages ...

And the fact that it was wikipedia was slightly off-putting”.

Students made similar comments in the lecturer evaluations in 2014 and 2015.

92 H. Suleman

A major focus of the comments was the readings. Students made every con-
ceivable argument against reading anything before class. The only argument that
could be considered valid is that students have difficulty if English is not their
first language. However, at an English-medium university, students more than
halfway through a Bachelors degree ought to be able to read technical literature.

The elements of the course with positive quantitative feedback were not com-
mented on by students.

5.3 Lecturer Evaluation

Students in both years submitted lecturer evaluations for the course. In both
cases, the numerical scores indicated that the lecturer was considered ‘above
average’ for effectiveness. This is in stark contrast to the written comments
on how the readings were ‘horrible’ or deemed completely inappropriate. When
asked about the overall experience, students appeared to assess the overall expe-
rience but, when asked to provide general feedback, they only honed in on their
issues with the readings.

This was an unexpected disconnect between evaluating the complete experi-
ence and evaluating a single aspect that had a profound impact on the students.

5.4 Analysis

From the various forms of evaluation and discussions with students, it is clear
that students have an expectation that courses will be taught in a manner they
are familiar with. In this case, students voiced strong opinions on how they think
the course should be taught, what they think the content should be and how the
content should be presented. They were asked if any of them had ever looked at
any textbooks on the subject, and none of them ever had. These expectations
are a cause for some concern, as it is clear that students are in a comfort zone
from which they do not wish to be disturbed. The flipped classroom presentation
of this course was more of a disruption than they had expected.

Reading is the biggest challenge for the future. Students made it clear that
they do not read and do not wish to read. This is not a new challenge but
Computer Science is changing and students cannot simply get a degree on the
basis of mathematical skills — they now need soft skills like reading, writing and
speaking or presenting. If students have difficulty in reading at second year level,
maybe it is a sign that they need to do more reading from the beginning of the
degree. Traditionally, the early part of the degree is focused on programming
skills but maybe that needs to change.

Feedback from students also makes it clear that they have learnt particular
ways of learning. A flipped classroom expects students to learn in a different way
and students appear to have difficult in learning how to learn differently. This
too may need to be addressed by exposing students to different ways of learning
earlier rather than later in their studies.

Finally, students were given original unsolved problems to address in their
final examinations. The vast majority of students were able to provide cogent

Flipping a Course on Computer Architecture 93

arguments to support design decisions they would make in designing original
computer hardware. Their specific answers, and a high level of achievement in
general, suggest that students learnt not only the content that was expected but
the critical thinking skills they were expected to learn. Thus, the goal of the
course was achieved — students learnt precisely the skills they were supposed to
learn. The only downside is they did not all enjoy the process of this learning.
This outcome correlates with the study by Amresh, et al. [1], who also found
that student performance in such a course improved but possibly at the expense
of the student experience.

6 Conclusions and Future Work

This paper has reported on an experiment to use the flipped classroom metaphor
in teaching a second year course in Computer Architecture. Many different ele-
ments of the course were changed to support this mode of teaching and do it
without incurring additional costs. Some aspects were specifically chosen because
of the nature of the specific course. The flipped classroom metaphor was mostly
successful and addressed all the needs of the course, without increased cost. In
future, this approach could be applied to various similar content-heavy courses
or replicated to verify the outcomes and allow for deeper analyses.

Student feedback in various forms has indicated that students appreciated
most aspects of the course, but were strongly opposed to reading. This is where
the next level of intervention may need to take place. Writing across the cur-
riculum [6], and indeed reading as well, may need to be adopted as a general
strategy to train Computer Science graduates with new age skills that go beyond
algorithms and logic. This will have the dual effect of creating graduates with
broader skills and creating a student cohort that is able to learn effectively using
a wider range of teaching and learning modalities. While it may be argued that
these skills ought to already be in place by the time students arrive at university,
it is clearly still a problem that needs to be addressed.

Acknowledgments. This research was partially funded by the National Research
Foundation (NRF) of South Africa (Grant numbers: 85470 and 88209) and University
of Cape Town. The author acknowledges that opinions, findings and conclusions or
recommendations expressed in this publication are that of the author, and that the
NRF accepts no liability whatsoever in this regard.

References

1. Amresh, A., Carberry, A.R., Femiani, J.: Evaluating the effectiveness of flipped
classrooms for teaching CS1. In: Frontiers in Education Conference, pp. 733–735.
IEEE (2013). http://dx.doi.org/10.1109/FIE.2013.6684923

2. Becker, W.E., Watts, M.: Chalk and talk: A national survey on teaching under-
graduate economics. Am. Econ. Rev. 86(2), 448–453 (1996). http://www.jstor.
org/stable/2118168

http://dx.doi.org/10.1109/FIE.2013.6684923
http://www.jstor.org/stable/2118168
http://www.jstor.org/stable/2118168

94 H. Suleman

3. Bishop, J.L., Verleger, M.A.: The flipped classroom: A survey of the research. In:
Proceedings of 120th ASEE Annual Conference and Exposition, ASEE (2013)

4. Campbell, J., Horton, D., Craig, M., Gries, P.: Evaluating an inverted CS1. In: Pro-
ceedings of the 45th ACM Technical Symposium on Computer Science Education
(SIGCSE 2014), pp. 307–312. ACM (2014). http://dx.doi.org/10.1145/2538862.
2538943

5. Suleman, H.: Computer Science 2002S 2015 : Computer Architecture (2015).
https://www.youtube.com/playlist?list=PLElBQiaE5ZyFj2RLERYwH-vsF3lz
EaM h

6. Fell, H.J., Proulx, V.K., Casey, J.: Writing across the computer science curricu-
lum. In: Proceedings of the Twenty-Seventh SIGCSE Technical Symposium on
Computer Science Education (SIGCSE 1996), pp. 204–209, ACM (1996). http://
dx.doi.org/10.1145/236452.236540

7. Gehringer, E.F., Peddycord III., B.W.: The inverted-lecture model: a case study in
computer architecture. In: Proceeding of the 44th ACM Technical Symposium on
Computer Science Education (SIGCSE 2013), pp. 489–494, ACM (2013). http://
dx.doi.org/10.1145/2445196.2445343

8. Giles, J.: Internet encyclopaedias go head to head. Nature 428, 900–901 (2005).
http://dx.doi.org/10.1038/438900a

9. Lacher, L.L., Lewis, M.C.: The effectiveness of video quizzes in a flipped class.
In: Proceedings of the 46th ACM Technical Symposium on Computer Science
Education (SIGCSE 2015), pp. 224–228. ACM (2015). http://dx.doi.org/10.1145/
2676723.2677302

10. Lage, M.J., Platt, G.J., Treglia, M.: Inverting the classroom: A gateway to cre-
ating an inclusive learning environment. J. Econ. Educ. 31(1), 30–43 (2000).
http://doi.org/10.2307/1183338

11. Latulipe, C., Long, N.B., Seminario, C.E.: Structuring flipped classes with light-
weight teams and gamification. In: Proceedings of the 46th ACM Technical Sympo-
sium on Computer Science Education (SIGCSE 2015), pp. 392–397. ACM (2015).
http://dx.doi.org/10.1145/2676723.2677240

12. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design: The Hard-
ware/Software Interface, 5th edn. Morgan Kaufmann, Prentice Hall (2014)

http://dx.doi.org/10.1145/2538862.2538943
http://dx.doi.org/10.1145/2538862.2538943
https://www.youtube.com/playlist?list=PLElBQiaE5ZyFj2RLERYwH-vsF3lzEaM_h
https://www.youtube.com/playlist?list=PLElBQiaE5ZyFj2RLERYwH-vsF3lzEaM_h
http://dx.doi.org/10.1145/236452.236540
http://dx.doi.org/10.1145/236452.236540
http://dx.doi.org/10.1145/2445196.2445343
http://dx.doi.org/10.1145/2445196.2445343
http://dx.doi.org/10.1038/438900a
http://dx.doi.org/10.1145/2676723.2677302
http://dx.doi.org/10.1145/2676723.2677302
http://doi.org/10.2307/1183338
http://dx.doi.org/10.1145/2676723.2677240

Effective Integration of a Student Response
System in An Undergraduate Computer

Science Classroom: An Active-Engagement
Instructional Strategy

Fani Moses Radebe1(B) and Liezel Nel2

1 Department of Computer Science and Informatics, University of the Free State,
Phuthaditjhaba, South Africa

2 Department of Computer Science and Informatics, University of the Free State,
Bloemfontein, South Africa
{radebefm,nell}@ufs.ac.za

Abstract. Classroom learning experiences are often hindered by a lack
of student participation and superficial interactions with the course con-
tent. Student engagement is essential in ensuring that students take an
active role in their own learning experiences. A student response system
(SRS) is an educational technology that has proven valuable in increasing
student engagement. In this study, an active-engagement instructional
strategy was devised to guide the effective integration of an SRS as part
of classroom activities. A case study was then conducted to investigate
the impact of the instructional strategy on student engagement in an
undergraduate Computer Science classroom. Analysis of the collected
data indicates that the integration of the SRS supported active learning
and increased students’ motivation to participate in classroom activities.
The instructional strategy served as an effective guide for instructional
activities and helped to identify instances that could sabotage the facil-
itation of student engagement.

Keywords: Student engagement · Student response system · Teaching
practices · Active learning · Motivation

1 Introduction

Classroom learning is often hampered by passive, unmotivated students and low
attendance rates [22]. Student engagement is a popular catalyst of teaching and
learning that has the potential to ensure equal involvement of all students in
learning processes [15]. In order to enhance student engagement, educators can
employ motivational and active learning strategies to cultivate positive behavior
and meaningful participation in learning processes [2]. Additionally, the integra-
tion of educational technologies into the learning environment has the potential
to facilitate pedagogical goals and stimulate interest in learning [24]. However,

c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 95–103, 2016.
DOI: 10.1007/978-3-319-47680-3 9

96 F.M. Radebe and L. Nel

the challenge remains to devise instructional strategies that will enable the effec-
tive use of educational technologies inside classrooms. A student response system
(SRS) is an educational technology that has proven valuable in increasing stu-
dents’ engagement, attention and attendance [5,6]. SRSs, also known as clickers,
enable the polling of students’ understanding through classroom quizzes [4].
Although numerous studies identify best practices for the integration of SRS
questions as part of face-to-face lectures [4,6], there are no definite directives
guiding the overall restructuring of such class sessions to ensure the effective
use of SRSs in a student-centered classroom environment aimed at enhancing
student engagement.

The aim of this paper is to evaluate the effectiveness of a tailor-made active-
engagement instructional strategy that was devised to facilitate the integration
of an SRS in an undergraduate Computer Science (CS) classroom. Specific atten-
tion will be given to the manner in which an SRS can be integrated as part of
an overall instructional strategy.

2 Perspectives from Literature

2.1 Student Engagement

Student engagement is defined as involvement in educationally effective prac-
tices in the classroom that result in desired learning outcomes [16], and the
quality of efforts that students devote while they participate in these education-
ally meaningful activities [2]. Kolb and Kolb [15] state that learning is a process
of constructing knowledge, which can be improved by focusing on engaging stu-
dents in processes that enhance learning. Students learn more by being engaged
in learning activities that allow for the creation of connections between current
knowledge and experience [21]. This way of learning enables students to think
critically about learning content. Instructors and students have a joint respon-
sibility to invest quality time and effort in order to achieve these goals.

The distinctive part of student engagement is that it helps all students, espe-
cially underserved students, to learn actively [3]. Underserved students are those
who do not have adequate access to learning facilities such as computer labora-
tories; their only hope for learning is through engaging lectures. In such learning
environments, instructors are tasked with devising innovative teaching and learn-
ing strategies that borrow essential parts from other learning modes in order to
enhance student engagement.

2.2 Active Learning and Motivation

Active learning is an essential ingredient of student engagement. Allen and Tan-
ner [1] define active learning as the acquisition of new information, construct-
ing meaning thereof, and having the opportunity to reiterate it to others. This
form of instruction emphasizes interaction between students, their peers and the
instructor. Instead of passively listening to a lecture, students have numerous

An Active-Engagement Instructional Strategy 97

opportunities to participate in classroom activities and receive immediate feed-
back [9]. A learning activity can only be classified as ‘active’ when each student
is actively engaged in the learning activity and applies constructed knowledge,
skill, and attitude in order to make meaning of the learning content [18]. This
type of learning environment enables students to relate new facts to the infor-
mation and skills that they already possess.

One of the most important psychological concepts in education is
motivation [2]. According to Williams and Burden [23], motivation consists of
various facets involving arousal of interest, sustaining that interest, and invest-
ing time and effort to achieve a specific goal. Motivated students are more likely
to engage in learning and complete learning activities [10]. Motivation, there-
fore, helps to sustain students’ interest and enjoyment of learning [2]. However,
students will not automatically be motivated to learn. Instructors need to pro-
vide students with learning activities that support motivation. Motivation to
learn is therefore closely tied to student engagement — as a driver for sustaining
students’ devotion and effort to learn through active learning activities.

2.3 Student Response Systems

Low levels of student participation during face-to-face classes remain one of the
major concerns of higher education instructors [11]. This lack of participation
can often be attributed to a lack of student engagement and motivation. Cain,
Black and Rohr [4] found that the integration of educational technologies, such
as SRSs, increased participation and motivated students to attend class. Further,
the interactive natures of such technologies enable students to learn actively.

SRSs typically consist of hand-held keypads and a receiver. Students respond
to in-class quizzes by keying in their responses on the hand-held keypads, which
relay the information to the receiver that aggregates the question responses.
The instructor can then, through a data projector connected to the receiver,
display the results of the student responses (typically in the form of graphs) on
a presentation screen [13]. Although SRSs are typically used to collect individual
responses from students, it can also be used in a collaborative learning environ-
ment, where students have the opportunity to discuss the quiz questions with
their peers before they submit their individual answers [14]. Such a collabora-
tive strategy could assist in further enhancing reported SRS benefits related to
increased participation and engagement; increased quantity and quality of class
discussions; and improved feedback [5].

In one of the few research studies focusing on effective teaching practices for
the integration of SRSs, Lee and Shih [17] identify “four crucial SRS teaching
practices”, of which three are relevant to the context of this study:

1. The inclusion of ungraded pre- and post-lecture SRS questions to evaluate
students’ prior knowledge and level of comprehension of the lecture content;

2. The use of SRS questions to guide student classroom discussions in order to
enhance active and participatory learning; and

3. The use of SRS activities to link theory and practice in order to improve
students’ understanding of theoretical concepts.

98 F.M. Radebe and L. Nel

An instructional strategy that incorporates these SRS practices is more likely to
result in an interactive classroom atmosphere [17] that promotes active learning
and student motivation.

3 Instructional Strategy

As part of this study, the researcher (the first author) identified SRSs as a
promising educational technology that could potentially assist in enhancing stu-
dent engagement in his classrooms. Due to a lack of institutional resources,
the researcher was, however, forced to consider more affordable SRS options.
He therefor developed a custom mobile phone-based SRS that uses Bluetooth R©

communication technology to enable students to respond to classroom quizzes
via mobile devices, such as mobile phones and laptops. This section presents the
design of a tailor-made active-engagement instructional strategy (see Table 1)
that the researcher followed in an attempt to effectively integrate the SRS as
part of classroom activities.

In line with Lee and Shih’s [17] “SRS teaching practices”, this instructional
strategy made provision for the asking of pre- and post-lecture SRS questions
as well as the creation of a collaborative learning environment where students
could work in groups to discuss possible answers to the SRS quiz questions.
Where applicable, SRS activities also focused on establishing links between the-
ory and practice. In devising this new instructional strategy, Gagné’s [8] nine
events of instruction were used as a guide to construct a six step lesson struc-
ture — including descriptions of the activities, activity rationale and media. The
summary of the proposed instructional strategy is presented in Table 1.

Step 1 ran for five minutes in an attempt to capture students’ attention
with pre-lecture questions. In Step 2, the instructor used 15 min to explain the
topics and concepts with Microsoft c© PowerPoint slides. The slides were made
available on the institutional learning management system (LMS) prior to the
lectures so that students could focus on the lesson without being concerned
about taking notes. Step 3 allowed the instructor to pose questions that probed
the students’ understanding of the lecture content. The students were first asked
to discuss the questions with their peers and then respond individually via the
SRS. Step 4 allowed the instructor to explain/re-explain topics and concepts if
any misunderstandings were identified during Step 3. Alternatively, the lecture
continued to new topics. If time was up, the questions were postponed to the next
lecture to serve as a prior knowledge probe. In Step 5, the closure of the lecture,
slides containing the topics to be covered in the next session were presented to the
students. Students also had access to these slides on the LMS after the conclusion
of the lecture (as part of Step 6) so that they could use it, in conjunction with
their textbooks, to prepare for the next lecture.

4 Methodology

A case study research design was used to evaluate the effectiveness of the pro-
posed instructional strategy in facilitating the integration of the SRS to support

An Active-Engagement Instructional Strategy 99

Table 1. Active-engagement instructional strategy for effective SRS integration

Timeline Activities Activity rationale Media

Step 1 (5 min) Instructor

Ask reading
questions

Draw attention SRS

Probe prior learning Probe prior knowledge SRS

Students

Answer reading
questions

Focus into the
lecture.

SRS

Recall prior
knowledge

Step 2 (15 min) Instructor

Display picture or
video

Visualize
concepts

Picture
Video

Explain new
concepts

Clarify topics
and concepts

Slides

Step 3 (5 min) Instructor

Ask new skill
questions

Confirm learning SRS

Facilitate group
discussions

Reinforce
learning

SRS

Clarify concepts Clarify topics
and concepts

Slides

Students

Participate in group
discussions

Students learn
from one another

SRS

Answer questions
individually

Confirm
understanding

SRS

Step 4 Repeat Steps 1 to 3 (if time available), or conclude with Step 5

Step 5 Instructor

Review topic(s) for
next lecture

Conclude lecture Slides

Step 6 Students

Complete homework Prepare for next
lecture

Textbook
Slides

student engagement. Case studies are deemed suitable to describe the interven-
tion as well as the real-life context in which the intervention took place [25].
The population for this study included all 23 students enrolled for a 13-week
undergraduate CS course at the rural campus of a South African university.
This course had three 50-min lecture sessions per week. The sampling strategy
can be regarded as convenient [11] since the researcher was also responsible for

100 F.M. Radebe and L. Nel

teaching this particular course. Of the 23 students who participated in the study,
19 (83 %) were male and four (17 %) were female. This paper shares information
from a larger study (conducted over a 13-week semester) and will only focus on
the 5-week period directly related to the initial implementation and evaluation
of the proposed active-engagement instructional strategy.

The data was collected by means of participant observations and a group
interview. The researcher recorded his observation notes in a journal at the end
of each class session. The notes contained information about the effectiveness of
the instructional strategy, students’ interaction with the SRS, and interactions
between students during the in-class group discussions in order to find answers to
the quiz questions. At the end of the study, students were invited to participate
in a group interview to reveal more insights regarding their experiences. Six
students volunteered to participate in the group interview. Content analysis was
employed on the narrative data collected from the group interview to condense
responses to a series of canonical quotes so that each quote represented a phrase
[12]. The observation notes were used to supplement the group interview data.

5 Reflection on Instructional Strategy

The main objective of the instructional strategy as set out in Table 1 was to
provide an overall structure for the effective integration of an SRS in a class-
room environment aimed at enhancing student engagement. The inclusion of
pre-lecture SRS questions not only provided the students with an opportunity
to evaluate their prior knowledge [17] but also gave the instructor a better
idea of the problematic concepts he should focus on during the mini-lecture to
follow [19]. This strategy also allowed the instructor to dedicate more time to
helping students develop their understanding with less time spent lecturing.
After the mini-lectures, students were given opportunities to apply and demon-
strate what they had learnt by answering post-lecture SRS questions. Students
received immediate feedback on their responses and, where necessary, more clar-
ification was provided if some students gave an incorrect answer to a specific
question. The strategy also provided students with some structure for their
homework as they knew exactly what content to prepare for the next class.
By making the lecture slides available on the LMS prior to the lecture session,
students could pay more attention during the mini-lectures since they did not
have to take detailed notes in class.

As Morice et al. [20] noted, students are more engaged when they can interact
with one another to exchange ideas and solutions for their answers to quiz ques-
tions. Students were therefore encouraged to discuss the SRS questions before
submitting their individual responses — enhancing both active and participa-
tory learning. The strategy also allowed for a balanced time allocation between
discussing and answering SRS questions and conducting other lecture activities.

The incorporation of a variety of timed learning activities (SRS quizzes, dis-
cussions and mini-lectures) during one class session helped to keep the students
motivated and engaged, enabling them to learn more during each lecture [7]. The

An Active-Engagement Instructional Strategy 101

inclusion of pictures and videos as part of the mini-lectures and as introductions
to some of the SRS questions also helped the students to form a link between
theory and practice — improving students’ understanding of theoretical con-
cepts. This variation of learning activities also made learning possible for both
verbally adept students and those who are more comfortable with anonymous
participation [6].

The implementation of the proposed instructional strategy was not without
challenges. In setting up the SRS quizzes the instructor had to make sure that
the individual quiz questions were properly aligned with the focus of the lecture.
He also had to anticipate which concepts students were more likely to struggle
with so that these could be covered in the questions. The instant feedback he
received regarding students’ understanding of concepts (through their responses
to the SRS questions) also required him to change the instruction focus on the
fly [4].

Overall, the instructional strategy helped to segment each lecture session into
manageable sub-sections and supported the easy facilitation of student engage-
ment activities. Students were regularly motivated to pay attention and partic-
ipate in active learning by discussing and finding answers to quiz questions.

6 Conclusions

This paper reports on how a tailor-made active-engagement instructional strat-
egy was used to facilitate the effective integration of an SRS in an undergraduate
CS classroom. The instructional strategy helped to segment lecture sessions into
manageable chunks of activities aimed at enhancing student engagement. The
SRS served as an effective stimulus to support student engagement, particularly,
by motivating students to participate in active learning activities and answer quiz
questions. For future research, similar studies can be conducted to validate these
findings and refine the proposed instructional strategy, in particular studies that
include large class sizes and/or populations from different academic disciplines
and course levels. Although specific details regarding the custom mobile phone-
based SRS used in this study falls outside the scope of this paper, it proved to be
an invaluable tool in supporting the enhancement of student engagement during
face-to-face class sessions. However, further research is needed to investigate the
impact that the ‘mobile’ nature of the SRS used in this study could have on the
proposed instructional strategy.

References

1. Allen, D., Tanner, K.: Infusing active learning into the large-enrollment Biology
class: seven strategies, from the simple to complex. Cell Biol. Educ. 4(4), 262–268
(2005)

2. Barkley, E.: Student Engagement Techniques. Jossey-Bass, San Francisco (2010)
3. Bergtrom, G.: Content vs. learning: an old dichotomy in science courses. J. Asyn-

chronous Learn. Netw. 15(1), 33–44 (2011)

102 F.M. Radebe and L. Nel

4. Cain, J., Black, E.P., Rohr, J.: An audience response system strategy to improve
student motivation, attention, and feedback. Am. J. Pharm. Educ. 73(2), 21 (2009)

5. Cubric, M., Jefferies, A.: The benefits and challenges of large-scale deployment of
electronic voting systems: University student views from across different subject
groups. Comput. Educ. 87, 98–111 (2015)

6. Efstathiou, N., Bailey, C.: Promoting active learning using audience response sys-
tem in large bioscience classes. Nurse Educ. Today 32(1), 91–95 (2012)

7. Freeman, S., Eddy, S.L., McDonough, M., Smith, M.K., Okoroafor, N., Jordt, H.,
Wenderoth, M.P.: Active learning increases student performance in science, engi-
neering, and mathematics. Proc. Natl. Acad. Sci. 111(23), 8410–8415 (2014)

8. Gagné, R.: The Conditions of Learning and the Theory of Instruction, 4th edn.
Holt, Rinehart and Winston, New York (1985)

9. Gleason, B.L., Peeters, M.J., Resman-Targoff, B.H., Karr, S., McBane, S., Kelley, K.,
Thomas, T., Denetclaw, T.H.: An active-learning strategies primer for achieving
ability-based educational outcomes. Am. J. Pharm. Educ. 75(9), 186 (2011)

10. Green, M., Sulbaran, T.: Motivation assessment instrument for virtual reality
scheduling simulator. In: Reeves, T., Yamashita, S. (eds.) Proceedings of E-Learn:
World Conference on E-Learning in Corporate, Government, Healthcare, and
Higher Education, pp. 45–50. Association for the Advancement of Computing in
Education (AACE), Chesapeake (2006)

11. Greenstein, T.N.: Methods of Family Research. Sage Publications, Thousand Oaks
(2006)

12. Hall, R.H., Collier, H.L., Thomas, M.L., Hilgers, M.G.: A student response sys-
tem for increasing engagement, motivation, and learning in high enrollment lec-
tures. In: Proceedings of the Eleventh Americas Conference on Information Sys-
tems (AMCIS), p. 255. Curran Associates Inc., Omaha (2005)

13. Han, J.H.: Closing the missing links and opening the relationships among the
factors: a Literature review on the use of clicker technology using the 3P model.
Educ. Technol. Soc. 17(4), 150–168 (2014)

14. Hwang, I., Wong, K., Lam, S.L., Lam, P.: Student response (clicker) systems:
Preferences of Biomedical Physiology students in Asian classes. Electron. J. e-
Learn. 13(5), 347–356 (2015)

15. Kolb, A.Y., Kolb, D.: The Kolb learning style inventory – version 3.1 (2005) Techni-
cal Specifications. http://learningfromexperience.com/media/2010/08/tech spec
lsi.pdf

16. Kuh, G.D., Kinzie, J., Buckley, J.A., Bridges, B.K., Hayek, J.C.: Piecing Together
the Student Success Puzzle. Wiley Subscription Services at Jossey-Bass, San Fran-
cisco (2007)

17. Lee, J.W., Shih, M.: Teaching practices for the student response system at National
Taiwan University. Int. J. Autom. Smart Technol. 5(3), 145–150 (2015)

18. Linnenbrink, E.A., Pintrich, P.R.: Role of affect in cognitive processing in academic
contexts. In: Dai, D., Sternburg, R. (eds.) Motivation, Emotion, and Cognition, pp.
57–87. Lawrence Erlbaum Associates, Mahwah (2004)

19. LoPresto, M.C., Slater, T.F.: A new comparison of active learning strategies to
traditional lectures for teaching college Astronomy. J. Astronom. Earth Sci. Educ.
3(1), 59–76 (2016)

20. Morice, J., Michinov, N., Delaval, M., Sideridou, A., Ferrières, V.: Comparing the
effectiveness of peer instruction to individual learning during a chromatography
course. J. Comput. Assist. Learn. 31(6), 722–733 (2015)

21. Stefani, L.: Engaging our students in the learning process: some points for consid-
eration. Int. J. Scholarsh. Teach. Learn. 2(1), 1–6 (2008)

http://learningfromexperience.com/media/2010/08/tech_spec_lsi.pdf
http://learningfromexperience.com/media/2010/08/tech_spec_lsi.pdf

An Active-Engagement Instructional Strategy 103

22. Ulbig, S.: Engaging the unengaged: using visual images to enhance students’ “Poli
Sci 101” experience. Polit. Sci. Polit. 42(2), 385–391 (2009)

23. Williams, M., Burden, R.L.: Psychology for Language Teachers. Cambridge Uni-
versity Press, Cambridge (1997)

24. Wodi, S.W.: The concept of educational technology: problems and prospects of
information and communication technology (ICT) in Nigeria. Int. J. Afr. Stud.
2009(1), 4–10 (2009)

25. Yin, R.: Case Study Research: Design and Methods. Sage Publishing, Beverly Hills
(1994)

Teaching Operating Systems:
Just Enough Abstraction

Philip Machanick(B)

Department of Computer Science, Rhodes University, Grahamstown, South Africa
p.machanick@ru.ac.za

Abstract. There are two major approaches to teaching operating sys-
tems: conceptual and detailed. I explore the middle ground with an app-
roach designed to equip students with the tools to explore detail later as
the need arises, without requiring the time and grasp of detail needed
to understand a full OS implementation. To meet those goals, I apply
various strategies to different concepts, for example, faking the detail
and using techniques from computer architecture simulation. The course
aims to give students a better sense of how things work than a concep-
tual approach without the time required for a full implementation-based
course.

Keywords: Computer science education · Action learning

1 Introduction

Operating systems (OS) courses divide roughly into a general survey of OS
features and variations — a conceptual approach — and those that dive into
detail. The latter category includes use of a real OS (usually these days one with
free source such as the Linux kernel), or an OS designed specifically for teaching
and research such as MINIX [23].

At Rhodes University (South Africa’s smallest research-intensive university),
the third year OS module in a Computer Science major takes 4 weeks each with
5 lectures and one practical (of 3 h), and students usually take two third-year
subjects, allowing 20 hours per subject per week. Timetabled contact time of 8
hours leaves 12 hours a week for independent work. That is insufficient time to
go into much detail of a full-scale or even cut-back OS such as MINIX.

Since most programming courses at Rhodes are taught using higher-level
languages that manage memory and abstract away all the details of the machine,
one of my goals in the OS module is to reinforce exposure to the machine layer
and notions like machine addresses, only seen in a small part of our curriculum.
Finally, learning really requires some exposure to how professionals in the real
world work [11] — so some aspect of developing code typical of OS internals is
necessary for a real understanding of the area.

The approach I describe here attempts to achieve some of the benefits of
a full-scale implementation-oriented OS course without the time commitment
required to do so. Strategies used include:
c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 104–111, 2016.
DOI: 10.1007/978-3-319-47680-3 10

Teaching Operating Systems: Just Enough Abstraction 105

Faking part of the system: e.g., to illustrate file system variations like a file
allocation table (FAT) [5] or inodes [13], I implement RAM-based structures
illustrating how the disk-based pointers would be organized;

Architecture simulation techniques: trace-driven simulation [24] allows a
small part of a system to be simulated provided a trace of memory accesses
is available to drive the simulation.

In the remainder of this paper, I provide background to relevant educational
theory and other approaches to teaching operating systems. I go on to explain
the design of my course followed by more detail. I share experience from running
the course this way and wrap up with conclusions.

2 Background

Earlier theories of learning focused on cognition. The constructivist model, for
example, inspired by the work of Piaget [18], was based on different levels of
sophistication of building mental models [3], similarly to Bloom’s Taxonomy,
which ranks different levels of problem solving in terms of sophistication [10].
Social constructivism adds to constructivism the notion that there is a social
aspect in learning — that construction of knowledge, while a cognitive process,
is influenced by interactions with others [7]. The social construction model goes
a step further and divorces learning from cognitive models, focusing instead on
how knowledge is created by social interaction [4,11].

Whether we accept a cognitive view of learning or change our focus to a purely
social model, the consensus is that learning requires doing — a strong argument
against a pure survey approach. Understanding an OS requires overcoming a
number of misconceptions [16]; it is hard to see how such misconceptions can be
overcome without a strongly practical component to an OS course.

In the early 2000 s, instructional operating systems such as Nachos, Topsy and
Yalnix were designed to abstract key concepts to simplify teaching [2]; Pintos
is more recent [17]. Some teach the Linux kernel [6,8,15] and others Windows
internals [21]. All these whole-system approaches require significant time to learn
the basics before getting into detail.

3 Course Design

For the Rhodes OS course, the approach I take is to cover major ideas in lectures
and drill down to implementation in practicals. I provide detailed notes [12] and
work through examples and concepts in class, interspersed with C programming
techniques with the aim of preparing the class for the next practical exercise.

Main headings follow a typical OS course outline:

The Kernel
– system calls and interprocess communication (IPC)
– what goes in kernel vs. user space

106 P. Machanick

– microkernels vs. monolithic kernels
– what the kernel does

Schedulers
– theoretical approaches
– practical approaches
– examples: Windows and Linux schedulers

IO and Files (including inodes and FAT file organiation)
– device interface
– files and devices
– performance (including speed as well as reliability and fault tolerance)
– protection and security
– other device types

Memory (mostly virtual memory (VM) using pages)
– history and rationale for memory management
– key concepts of VM
– more advanced concepts
– examples including real machines and translation lookaside buffers

(TLBs)
Parallel Programming (including Pthreads, UNIX-style processes and
IPC)

– concepts
– launching
– sharing and communication
– synchronization
– distributed systems and the cloud
– parallel programming hazards

All of this can relatively easily be covered with a survey approach; there are good
OS texts that do just that [22,23]. The challenge is how to approach these topics
in more depth without a full implementation of an OS — or more specifically,
in a relatively short time.

The approach I take is to implement small fragments of an OS that can be
designed, implemented and tested independently so that a whole OS does not
need to exist or be understood to do practical work. I describe here two major
approaches: implementing a small, simplified subset of functionality in a way
that can be tested in isolation and using trace-driven simulation to implement
functionality that would normally be driven by execution of user-level code.

I also illustrate user-level functionality by showing how to use system calls
and standard libraries that implement functionality that illustrates core concepts
like synchronization and parallel programming.

3.1 Small Subset

File system concepts can be implemented at least to some extent without the
whole OS. The key concepts I want to illustrate in the course are the way the file
system can be layered (as in a UNIX-style file system with a virtual file system
on top of which the actual file system is implemented) and the pointer structure
of an inode or FAT file system.

Teaching Operating Systems: Just Enough Abstraction 107

3.2 Trace-Driven Simulation

To implement trace-driven simulation, I generate traces using Pin [9], which I
use to generate a trace file out of a user-level executable containing a record
of instructions fetched (as their address) and addresses read and written. To
approximate the effect of interrupts, I add into the trace files artificially-
generated records of interrupts, each with the latency of handling the interrupt.

3.3 User-Level Examples

Synchronization, process launching and threads, while good to understand at
the kernel level, are hard enough at the user level that I consider it adequate to
use user-level coding for these examples. Areas covered include Pthreads [14],
UNIX-style fork and various modes of IPC (shared memory, memory maps
and pipes). I also review various synchronization primitives including mutexes,
spinlocks and barriers — including efficiency and implementation issues. The
class does practical work to implement examples that are designed to illuminate
principles.

4 Course Detail

To illustrate how all this works in practice, I provide examples of practical prob-
lems set, covering the various techniques. For a simplified subset that can be
tested in isolation, I use the example of implementation of a file system. For
trace-driven simulation, I use two examples: scheduling and VM. Finally, I illus-
trate the use of user-level examples with parallel programming.

4.1 Small Subset: File System

To illustrate how a file system is implemented, I provide code that crudely
approximates to the split between a virtual and actual file system. A virtual
file system (VFS) was originally designed to hide implementation details such
as whether the file system is local or remote [20]; in my approximation to this, a
low-level file system implements block operations on a device simulated in RAM
that can be used without needing to know where blocks are stored, capturing
the essence of a VFS without the complexity. This simplified VFS (Fig. 1) allows
implementing operations on an inode-based system to create, remove or extend
a file — or doing the same using FAT. A bitmap representing free or allocated
blocks provides exercises in bitwise operations. Conceptual challenges students
must deal with include understanding that file system pointers are not the same
as memory pointers (they refer to device blocks, not bytes in main memory) and
that data structures used to represent files can be complex to navigate.

Figure 2 illustrates my minimalist inode structure. It contains a pointer to
a data structure defining the VFS in which it is contained; all other “pointers”
are disk block numbers, as determined by the VFS. The VFS knows that a file
system contains certain overheads — directories, top-level file pointers — and
the actual file system initializes it with sizes of these overheads.

108 P. Machanick

typedef struct FS attributes {
char fstype[FSTYPEN]; // type of FS

blocksize t blocksize;

blockpointer t numblocks;

blockpointer t maxfiles;

blockpointer t bitmapSize; // in blocks

blockpointer t directory; // must be followed by first fileptr

blockpointer t first fileptr; // must be followed by freespacelist

blockpointer t freespacelist; // must be followed by first data block

blockpointer t first data block;

blockpointer t mappedblocks; // minus attributes, directories, etc.

} FS attributes;

Fig. 1. Highly simplified VFS structure. It includes just enough detail to find blocks
that are either system overheads such as directories or file blocks.

struct Inode {
// attributes: permissions and path

char path[NAMELENGTH]; // byte 0 nonzero if a valid inode

unsigned int permissions;

unsigned int size;

FS t ∗filesystem;
blocksize t blocksize; // property of file system but fixed once set

blockpointer t direct pointers[NUMBERDIRECT]; // size must be constant

blockpointer t single indirect pointers; // points to FS pointer block

};

Fig. 2. Simplified inode. I omit many details (e.g., timestamps, link count).

4.2 Trace-Driven Simulation: Scheduling and Virtual Memory

Pin allows me to produce trace files that mark memory addresses as one of read
(“R”), write (“W”) or instruction fetch (“I”). I add in fake interrupts at regular
intervals, each of fixed latency (“X”; the number in the file in this case is the
latency, not an address). Here is an example of an extract from a trace file:

I 0xb78882a0

W 0xbfd913d4

X 0x3E8

R 0xbfd91564

In this example, there is an interrupt with latency (in clock ticks) 0x3E8
= 100010. Each instruction fetch is assumed to add 1 clock tick. If I am not sim-
ulating memory hierarchy, reads and writes are fully pipelined (add no latency).

To create a workload, my simulator reads in a list of trace file names that
represent a process per trace file.

Scheduling To keep things simple I assume that all interrupts are only processed
once a waiting process reaches the head of a single wait queue. To simulate

Teaching Operating Systems: Just Enough Abstraction 109

scheduling, it is only necessary to process instruction fetches and interrupts from
the trace file; memory reads and writes are ignored. If a process is interrupted,
it goes to the wait queue until it reaches the head of the wait queue and after
than becomes ready only after its latency has expired. This framework allows
comparison of variations, e.g., round-robin scheduling and multilevel feedback
queues (as in Windows [19] and some versions of Linux [1]). While avoiding
the true complexity of a scheduler, in the spirit of “just enough abstraction”,
students see the main issues.

Virtual Memory VM is even harder to code at the true hardware level than
scheduling, since implementation has to match hardware functionality closely.
Trace-driven simulation simplifies exploring variations like alternative page table
structures and the functioning of a TLB. By including reasonable numbers for
latency of operations, even if the detail is not fully simulated, it is possible to
illustrate the performance impact of design choices. In addition, giving the stu-
dents an example and asking them to implement a variation makes it possible
for them to get a sense of how a real system is implemented. Given a single-level
page table, implementing a two-level page table provides a reasonably challeng-
ing programming example. Another example of similar levels of difficulty and
insights is evaluating the effect of a TLB.

4.3 User-Level: Parallel Programming

Finally, to illustrate concepts related to processes, threads and IPC, user-level
programming can provide good insights. Examples I use include:

– Threads vs. processes: given an example of one, recode using the other;
– Shared memory vs. memory maps: again, recode in the other type;
– Synchronization: focus on a subset of types of options (barrier, mutex, etc.);
– IPC primitives: coding using pipes adds another dimension.

To fit the limited time, I vary what is covered in lectures vs. in practicals.

5 Experience

My experience of explaining concepts like multilevel page tables and TLBs in
lectures is that they are very difficult concepts to grasp in the abstract. Parallel
programming is another area where doing is really required to learn. Some areas
like scheduling are easier to learn conceptually, though conceptual texts present
scheduling in a theoretical way unrelated to real OS design [22]. A case study of
Linux scheduler evolution is more interesting and also exposes students to the
debate about free versus proprietary software (why did Linux evolve so fast, while
the Windows scheduler has not changed much in overall design since Windows
NT?). It is difficult to make this sort of debate come to life without the students
having a feel for how things are actually implemented.

110 P. Machanick

That students battle with low-level concepts like pointers is not a reason to
avoid them. If they must learn them somewhere, an OS course — at the interface
between hardware and software — is a logical place to introduce them. An OS
course also illustrates how pointers can differ in different layers of the system
(file system pointers refer to disk blocks not bytes in memory).

6 Conclusion

The real test of any course is whether it helps the students grow — and that can
be hard to measure in the short term particularly with a final-year course. The
class generally finds the course challenging, as we move rapidly to new concepts
and they are drawing on a very limited prior exposure to low-level coding in C
(one 3-week module in second year). However it would be a lot more challenging
were the course to be based on a real fully-implemented OS.

Students who have taken the course and return after a few years with reports
on its usefulness will be the real test of the value of the approach; the course
has not been running long enough in its current form for such an evaluation.
My own experience is that students taught using this just enough abstraction
approach have a better appreciation of implementation and design issues than
those taught using a purely theoretical approach.

As the course evolves, I plan on varying the detail — changing for example
where I use the three strategies (small subset, trace-driven simulations) and user-
level coding — to find the right mix. In the meantime I invite others grappling
with finding the right balance between abstraction and detail to share ideas.

References

1. Aas, J.: Understanding the Linux 2.6. 8.1 CPU scheduler. Technical report, Sili-
con Graphics Inc. (2005). https://github.com/bdaehlie/linux-cpu-scheduler-docs/
blob/master/linux cpu scheduler.pdf

2. Anderson, C.L., Nguyen, M.: A survey of contemporary instructional operating
systems for use in undergraduate courses. J. Comput. Sci. Coll. 21(1), 183–190
(2005). http://dl.acm.org/citation.cfm?id=1088791.1088822

3. Ben-Ari, M.: Constructivism in computer science education. In: Proceedings 29th
SIGCSE Technical Symposium on Computer Science Education, pp. 257–261.
SIGCSE 1998. ACM, New York (1998)

4. Bijker, W.E., Hughes, T.P., Pinch, T., Douglas, D.G.: The Social Construction of
Technological Systems: New Directions in the Sociology and History of Technology.
MIT Press, Cambridge (2012)

5. Chen, J.B., Endo, Y., Chan, K., Mazières, D., Dias, A., Seltzer, M., Smith, M.D.:
The measured performance of personal computer operating systems. ACM Trans.
Comput. Syst. 14(1), 3–40 (1996)

6. Dall, C., Nieh, J.: Teaching operating systems using code review. In: Proceeding
45th ACM Technical Symposium on Computer Science Education, pp. 549–554.
SIGCSE 2014, ACM (2014)

7. Kim, B.: Social constructivism. Emerg. Perspect. Learn. Teach. Technol. 1(1), 16
(2001)

https://github.com/bdaehlie/linux-cpu-scheduler-docs/blob/master/linux_cpu_scheduler.pdf
https://github.com/bdaehlie/linux-cpu-scheduler-docs/blob/master/linux_cpu_scheduler.pdf
http://dl.acm.org/citation.cfm?id=1088791.1088822

Teaching Operating Systems: Just Enough Abstraction 111

8. Laadan, O., Nieh, J., Viennot, N.: Structured Linux kernel projects for teaching
operating systems concepts. In: Proceedings of the 42nd ACM Technical Sympo-
sium on Computer Science Education, pp. 287–292. SIGCSE 2011 (2011)

9. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building customized program analysis tools with
dynamic instrumentation. In: Proceedings 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 190–200. PLDI 2005
(2005)

10. Machanick, P.: Experience of applying Blooms Taxonomy in three courses. In:
Proceedings Southern African Computer Lecturers Association Conference, pp.
135–144 (2000)

11. Machanick, P.: A social construction approach to computer science education.
Comput. Sci. Educ. 17(1), 1–20 (2007)

12. Machanick, P.: 2OS: more programming from the machine up. Rhodes Uni-
versity, Grahamstown (2016). http://homes.cs.ru.ac.za/philip/Courses/CS3-OS/
Cs3ToOS.pdf

13. McKusick, M.K., Joy, W.N., Leffler, S.J., Fabry, R.S.: A fast file system for UNIX.
ACM Trans. Comput. Syst. 2(3), 181–197 (1984)

14. Nichols, B., Buttlar, D., Farrell, J.: Pthreads programming: A POSIX standard for
better multiprocessing. OReilly, Sebastopol (1996)

15. Nieh, J., Vaill, C.: Experiences teaching operating systems using virtual platforms
and Linux. In: Proceedings 36th SIGCSE Technical Symposium on Computer Sci-
ence Education, pp. 520–524. SIGCSE 2005 (2005)

16. Pamplona, S., Medinilla, N., Flores, P.: Exploring misconceptions of operating
systems in an online course. In: Proceedings 13th Koli Calling International Con-
ference on Computing Education Research, pp. 77–86. Koli Calling 2013 (2013)

17. Pfaff, B., Romano, A., Back, G.: The Pintos instructional operating system kernel.
In: Proceedings 40th ACM Technical Symposium on Computer Science Education,
pp. 453–457. SIGCSE 2009 (2009)

18. Piaget, J.: The Construction of Reality in the Child. Routledge, Milton Park (1954)
19. Pietrek, M.: Inside the windows scheduler. Dr. Dobbs J. 17(8), 64–71 (1992).

http://dl.acm.org/citation.cfm?id=134643.134652
20. Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon, B.: Design and imple-

mentation of the Sun network filesystem. In: Proceedings Summer USENIX Con-
ference, pp. 119–130 (1985)

21. Schmidt, A., Polze, A., Probert, D.: Teaching operating systems: Windows kernel
projects. In: Proceedings of the 41st ACM Technical Symposium on Computer
Science Education, pp. 490–494. SIGCSE 2010 (2010)

22. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts, 9th edn.
Wiley, Harlow (2012)

23. Tanenbaum, A.: Modern Operating Systems, 4th edn. Pearson, Harlow (2014)
24. Uhlig, R.A., Mudge, T.N.: Trace-driven memory simulation: A survey. ACM Com-

put. Surv. 29(2), 128–170 (1997)

http://homes.cs.ru.ac.za/philip/Courses/CS3-OS/Cs3ToOS.pdf
http://homes.cs.ru.ac.za/philip/Courses/CS3-OS/Cs3ToOS.pdf
http://dl.acm.org/citation.cfm?id=134643.134652

New Curricula

CS and IS Alumni Post-Graduate Course
and Supervision Perceptions

André P. Calitz(B), Jean Greyling, and Arthur Glaum

Department of Computing Sciences, Nelson Mandela Metropolitan University,
Port Elizabeth, South Africa

{andre.calitz,jean.greyling,arthur.glaum}@nmmu.ac.za

Abstract. Stakeholders in academic departments at higher education
institutions include faculty, alumni, advisory board members, current
students and employers. Stakeholder analysis provides information that
academic departments can utilise to evaluate their programme offer-
ings, post-graduate supervision quality and programme relevance. This
exploratory study focuses on CS&IS post-graduates’ (alumni) percep-
tions of their education experience in a CS&IS department. The study
further focuses on post-graduate courses they studied, their relevance
in industry and if the academic programme adequately prepared them
for a career in the ICT industry. The supervision of their post-graduate
research was further investigated as well as their overall university expe-
rience. The results of the study indicate that the Department of CS&IS
provided the relevant courses for employment in the ICT industry at the
specific time they completed their studies. This research could assist aca-
demic departments in acquiring alumni feedback on their academic expe-
rience at an institution and improve post-graduate supervision practices.

Keywords: Post-graduate courses · Post-graduate supervision · Alumni
study experience

1 Introduction

Academic departments at Higher Education Institutions (HEIs) are increasingly
engaging with various stakeholders. The external stakeholders include alumni,
employers, advisory board members and professional accreditation bodies. Stake-
holder engagement ensures closer university and alumni/industry collaboration
and liaison and is required for academic programme quality assurance. Stake-
holder analysis refers to feedback obtained in various forms from stakeholders,
specifically for programme quality evaluation and improvement.

A number of ICT related departments, such as Computer Science, Informat-
ics, Information Systems (etc.) at academic institutions have established closer
collaboration with industry. Industry advisory boards have been established at
the academic institutions in order to address the industry ICT graduate skills
requirements and establish closer collaboration [5]. The stakeholder engagement

c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 115–122, 2016.
DOI: 10.1007/978-3-319-47680-3 11

116 A.P. Calitz et al.

has further influenced computing curricula and the introduction of specific new
courses, specifically at the post-graduate level.

Academic departments have used surveys, mailing lists, web-sites and social
media, such as Facebook and LinkedIn, to maintain contact and acquire informa-
tion specifically from graduates (alumni) working in industry [6,7,15]. Alumni
tracking for programme quality assurance using web-based systems have become
an important activity at HEIs [11]. Studies have also utilised alumni to meaning-
fully connect alumni to currently registered students [17]. Alumni further pro-
vide an important perspective and valuable contribution for the assessment of a
department’s academic programmes. Academic programmes have been restruc-
tured in response to international curricula [2,3] as well as recommendations by
professional advisory boards and alumni [11,14].

Academic departments perform research, specifically at the post-graduate
level and research supervision is an important academic process and practice.
Successful and quality post-graduate research supervision is linked to study com-
pletion times and pass rates [9]. Post-graduate alumni feedback on their research
supervision experiences are further important for academic departments and
supervisors. Studies investigating the satisfaction ratings by alumni of research
supervision emphasise the importance of continuous training and education of
supervisors [9].

2 The Research Problem and Research Design

South Africa (SA) presently has 26 universities which have departments offering
Information Technology (IT) related study programmes. Departments of Com-
puter Science (CS) and Information Systems (IS) should utilise the information
provided by stakeholders, such as advisory boards, employers and alumni, to
evaluate their programme offerings. The research problem investigated in this
study is based on the realisation that CS&IS departments in SA generally do not
regularly survey post-graduate alumni to determine their post-graduate experi-
ence during their studies at the academic institution. Additionally the content of
the CS&IS programme may not satisfy the requirements of industry and post-
graduates (alumni) could identify additional courses and knowledge required
by industry [6,12]. Further, CS&IS departments do not regularly ascertain the
effectiveness of their post-graduate supervision by faculty.

The Nelson Mandela Metropolitan University (NMMU)’s Department of
Computing Sciences offers CS and IS programmes. Post-graduate alumni are
graduates who have completed either a BCom Honours, BSc Honours, MCom,
MSc or PhD in Computer Science and Information Systems at NMMU. Post-
graduate alumni would have had a supervisor(s) for their Honours treatise, Mas-
ter’s dissertation or PhD thesis. This exploratory study focused only on post-
graduate alumni in the Department of Computing Sciences at NMMU.

The research question addressed in this study is:

– What are the CS/IS alumni perceptions of their post-graduate studies?

CS and IS Alumni Post-Graduate Perceptions 117

An alumni post-graduate questionnaire was compiled using a number of existing
alumni questionnaires utilised in similar studies [4,12,16]. The NMMU post-
graduate questionnaire consists of the following sections.

1. Degree details: Highest CS or IS degree, starting position, current position,
years in industry;

2. Departmental post-graduate courses: Relevance of courses, suggested new
courses;

3. Post-graduate experience: Positive and negative experiences, preparation for
a career in ICT, supervision experience, suggestions for improvement; and

4. University experience: Positive and negative experiences, suggestions for
improvement.

Sections 1 to 4 were all open-ended questions and qualitative in nature. A number
of faculty in the Department of Computing Sciences and NMMU Business School
evaluated the questionnaire and suggested changes and improvements. A pilot
study was conducted among three alumni working at NMMU to validate the
questionnaire initially.

The questionnaire was captured using the NMMU on-line survey tool. The
next step in the research process was contacting post-graduate alumni who grad-
uated and worked in industry. Social networks are increasingly being used and a
large number of graduates are on social networks such as Facebook and LinkedIn.
The Department of Computing Sciences created a profile on Facebook. The first
call for participation was distributed via Facebook (n = 1800), LinkedIn and
a departmental alumni e-mail address list (n = 600). The snowball sampling
technique was utilised, requesting participants, through a referral network, to
forward the survey request to other possible respondents. A total of 39 alumni
completed the survey over a three week period and two requests for participation.
The qualitative results were thematically analysed.

3 Alumni Surveys

Alumni surveys assess whether graduates feel that the academic programme ade-
quately prepared them for their IT careers. McGourty et al. [12] conducted two
surveys to establish alumni perceptions on the quality of their education. The
surveys focused on undergraduate experience and employment. The results indi-
cated surveying alumni is an effective method for gathering information regard-
ing their perceptions of job preparation, employment, skills development and
programme effectiveness.

Academic departments must continuously monitor the employability of their
graduates in order to evaluate the effectiveness of their academic programme
offerings. Lending and Mathieu [11] conducted a web survey amongst IS gradu-
ates (n = 173) and found that the programme prepared them well for software
implementation, business process modelling and database solutions. The gaps
identified in the programme were IT project management, analysis of technical
solutions and non-technical writing skills. The value of the academic programmes

118 A.P. Calitz et al.

to graduates, career placement (employability) and continued educational needs
are areas departments must continuously investigate [19].

It is important that departments manage the information of their alumni,
gathering information on alumni perceptions of programme offerings and employ-
ability of the graduates. Responses to alumni surveys have varied and researchers
are increasingly investigating additional methods of acquiring the relevant
information, utilising social media platforms such as Facebook and LinkedIn.
Researchers have further implemented web-crawling algorithms, specifically
focused crawlers to search for alumni information on the web [7]. Mijic [13]
implemented a web-based system that was used as an efficient tool for com-
munication between a HEI and its alumni. The system collected and analysed
alumni related data that were used for different purposes, including improvement
of academic programmes.

On-line surveys however still remain the most popular method of obtaining
relevant information from alumni [4]. The surveys focus on obtaining information
regarding programme quality and relevance, employability of the graduates and
alumni departmental and university experiences. Generally alumni addresses are
obtained from the university’s Alumni Office, departmental Facebook pages and
LinkedIn. Bulk e-mails are sent to the alumni requesting them to complete the
surveys [4,12]. Various departments have established alumni groups on Facebook
and LinkedIn to maintain contact with ICT graduates, track graduate destina-
tions and engage with graduates in industry [18].

Limited studies focused on post-graduate surveys specifically. The majority
focused on general alumni surveys [4,7,12,14]. Post-graduate course offerings
and research topics are important factors influencing the employability of the
post-graduates. Research supervision is specific to research projects conducted
in post-graduate studies. Supervision research is an extensive specialised research
area and will be discussed in more detail.

4 CS&IS Post-Graduate Courses and Supervision

Universities nationally and internationally generally follow the ACM and IEEE
international CS&IS curricula — Computer Science departments follow the ACM
CS2013 [2] and Information Systems departments the ACM IS2010 [3]. The cur-
riculum guidelines suggest core and elective courses, credit values and possible
career opportunities linked with specific subject combinations [3]. The CS2013
and IS2010 curricula guidelines specify specific core and elective courses. Depart-
ments of CS&IS in SA offer a variety of post-graduate (Honours/4th year)
courses depending on the institution. A detailed comparison of individual depart-
mental course offerings in comparison to the recommended curricula guidelines
of the CS2013 [2] and IS2010 [3] is beyond the scope of this paper.

Good supervisory practices assist students to complete their research suc-
cessfully and obtain their qualifications timeously [1]. The quality of research
supervision is linked to study completion times and rates [9]. Supervisors and
students must both have a clear understanding of their roles, expectations and

CS and IS Alumni Post-Graduate Perceptions 119

responsibilities. Supervision is an established practice and research area and
numerous studies have identified best practices in research student supervision,
describing the responsibilities of both supervisor and student [1,9]. The responsi-
bilities of an effective supervisor include providing advice on the research topic,
the methodology, progress and timeous and constructive feedback on written
work [1].

Kiley [9] reported on studies investigating the satisfaction ratings by students
of research supervision and emphasized the importance of continuous training
and education of supervisors. Research studies conducted on alumni’s supervi-
sion experience have further indicated that students who completed their studies
timeously generally felt satisfied with their supervision and that they appreciated
regular meetings [8,12]. Keeping a graduate student log [1] or an e-Portfolio [10]
has also been identified as a practice that contributes to successful supervision.

5 Alumni Post-Graduate Survey Results

The Alumni Post-graduate survey (n = 39) was completed by NMMU CS and
IS post-graduates working in the ICT industry. Open-ended questions were used
and thematically analysed. Standard biographical data such as gender and race
were not included in the survey and the provision of names and personal infor-
mation were optional in order to encourage reliable and honest feedback. The
survey was completed by Honours (n = 28), Masters (n = 9) and Doctoral
(n = 2) students.

Generally the respondents experienced their post-graduate studies in a very
positive light, with some describing it as the highlight of their study careers. The
most important themes that were identified are the following.

Challenging: As expected, most graduates remember the big effort they had to
put in and acknowledge that this was an important part of their preparation
for industry. Only one graduate said that the challenge was not big enough.

Beneficial: The general feedback is positive towards the content of what was
taught, preparing graduates well for industry.

Enjoyable and interesting: It is interesting to note how often the fun aspect
of the learning experience was highlighted. This could be attributed to the
fact that the students have their own laboratory, a positive working environ-
ment as well as the fact that many tasks are done with peers. The aspect
of interaction with fellow students is definitely a contributory factor to the
enjoyment of postgraduate studies.

Team spirit: Amongst students as well as with academics. This includes a pos-
itive energetic atmosphere in the post-graduate laboratory that encourages
learning; new friendships being formed during the year; the value of team
work, whether formal or informal; and a more ‘mature’ interaction with aca-
demics in the department, including regular social interaction.

Supportive academic staff: A very strong thread throughout the responses is
the positive impact academic, technical and administrative staff had on their
experience as post-graduate students. Respondents specifically appreciate the

120 A.P. Calitz et al.

high level of interaction with staff as well as the quality inputs they were
getting from staff during their studies; and

Research activities: For specifically Masters and PhD students, the aspects
linked to research such as travelling and presenting papers at conferences is
highlighted as an important preparation for industry.

Although the negative feedback was limited, one student described post-
graduate studies as “the worst experience of my life”, however no explanation is
provided. One respondent indicated that a more flexible inter-discipline choice of
honours modules would have been appreciated and a few respondents mentioned
that they did not enjoy the ‘free’ hours they had to work in the department (3–5
h per week) mainly as student assistants. However others saw this as a positive
aspect.

An interesting recommendation regarding the improvement of the postgradu-
ate programme is related to interaction with industry. This includes more indus-
try guest lectures, industry related research projects and internships. An inter-
esting issue was raised by one respondent regarding the research topics available
to students. A tension was identified between topics that are beneficial to the
careers of a students versus topics related to areas that were driven by research
funding.

This emphasis on industry interaction highlights the fact that students are
aware that their ultimate goal would be employment after their studies. In a
question related to how postgraduate studies prepared them for their career, a
very important aspect of postgraduate studies is highlighted. In addition to pos-
itive feedback regarding the academic foundation provided by certain modules
and the training in technical skills, a big emphasis was put on the soft skills
acquired.

The following findings relate to post-graduate modules. The module that
clearly stand out as generally valuable is Project Management (n = 15), with
others including Human Computer Interaction (n = 7), Research Methodology
and Project (n = 6), Data Warehousing (n = 5), Databases (n = 5) and Advanced
Programming (n = 7). Four respondents were positive about all their modules.
The two modules that were highlighted by most respondents as not valuable are
Computer Graphics (n = 8) and Machine Learning (n = 7).

The supervision process is a complex task and requires substantial commit-
ment from both the supervisor and student. The supervision process is open
to negotiation and change depending on the supervisor and student involved,
ensuring that the student makes good progress towards completion.

In this study, the alumni were generally positive and indicated that they were
satisfied with the supervision process and the commitment of their supervisors.
An aspect of supervision that was highlighted by many respondents was the
‘personality match’ between student and supervisor. It was stated that a healthy
working relationship made a big contribution towards a successful outcome.

Although limited, the problems highlighted were that supervisors being too
busy and therefore not involved enough with the research and one respondent felt
that the pressure from the supervisor could have been more for better prepara-

CS and IS Alumni Post-Graduate Perceptions 121

tion for industry. One respondent had a very traumatic experience which nearly
resulted in a ‘mental breakdown’. Students also valued supervisors who had an
understanding for their personal challenges and showed a caring attitude while
maintaining a professional relationship.

Limited feedback was received from respondents regarding their general expe-
riences at the university. A few suggestions included more access to bursaries as
well as interdisciplinary interaction on a formal and social level.

6 Conclusions

Alumni are a rich source of information about programme quality and indus-
try trends [4]. Departments should gather information from all key stakeholders
regarding the effectiveness and quality of their academic programme and services
[5,6]. Alumni surveys can provide information relating to academic programme
quality and relevance, experiences, participation in institutional activities and
specifically employment success, i.e. finding work [12]. Maintaining contact with
alumni is essential for obtaining information on course relevance, graduate des-
tinations and industry requirements [18]. Departments are utilising social media
platforms such as Facebook to establish alumni groups, maintaining contact with
graduates and position of employment [18].

This exploratory study provides additional supporting evidence regarding
post-graduate perceptions and experiences. The results highlight the importance
of relevant post-graduate courses and quality supervision. An important finding
is that most alumni participating in this survey indicated that they were sat-
isfied with the course offerings and the quality of supervision. Future research
will include extending this exploratory study to include more recently grad-
uated alumni, investigating continuous supervisor training and education and
researching future ICT skills requirements.

References

1. Abiddin, N.Z., Hassan, A., Ahmad, A.R.: Research student supervision: an app-
roach to good supervisory practice. Open Educ. J. 2, 11–16 (2009)

2. ACM: CS2013 Computer Science Curriculum 2013: Final Report. Tech. rep. (2013)
3. ACM: IS2010 curriculum guidelines for undergraduate degree programs in infor-

mation systems. Tech. rep. (2010)
4. Beidler, J.: Assessment: an alumni survey. In: Proceedings ASEE/IEEE Frontiers

in Education Conference, Boston, USA, November 2002
5. Calitz, A.P., Greyling, J.H., Cullen, M.D.M.: S.A. industry ICT graduate skills

requirements. In: Proceedings SACLA 2014, Port Elizabeth, SA (2014)
6. Calitz, A.P., Greyling, J.H., Cullen, M.D.M.: S.A. ICT graduate skills require-

ments. In: Proceedings SACLA 2015, Johannesburg, SA (2015)
7. Gonçalves, G.R., Ferreira, A.A., Tavares de Assis, G.T., Tavares, A.I.: Gathering

alumni information from a web social network. In: IEEE 9th Latin American Web
Congress (LA-WEB), pp. 100–108 (2014)

122 A.P. Calitz et al.

8. Guppy, N., Trew, M.: Graduate student experience at UBC – an assessment: Final
report. Tech. rep. University of British Columbia (1995)

9. Kiley, M.: Developments in research supervisor training: causes and responses.
Stud. High. Educ. 36(5), 585–599 (2011)

10. Le, Q.: E-portfolio for enhancing graduate research supervision. Qual. Assur. Educ.
20(1), 54–65 (2012)

11. Lending, D., Mathieu, R.G.: Workforce preparation and ABET assessment. In:
Proceedings 2010 ACM Special Interest Group on Management Information Sys-
tems, Vancouver, Canada, May 2010

12. McGourty, J., Besterfield, M., Shuman, L., Wolfe, H.: Improving academic pro-
grams by capitalizing on alumni’s perceptions and experiences. In: Proceedings
29th ASEE/IEEE Frontiers in Education Conference, San Juan, Puerto Rico,
November 1999

13. Mijic, D.: Design, implementation, and evaluation of a web-based system for alumni
data collection. E Soc. J. Res. Appl. 3(2), 25–32 (2012)

14. Mijic, D., Jankovic, D.: Towards improvement of the study programme quality:
alumni tracking information system. In: Kocarev, L. (ed.) ICT Innovations 2011.
Advances in Intelligent and Soft Computing, vol. 150, pp. 291–300. Springer, Hei-
delberg (2012)

15. Schlesinger, W., Cervera, A., Pérez-Cabañero, C.: Sticking with your university:
the importance of satisfaction, trust, image and shared values. Stud. High. Educ.
1–17 (2016)

16. Schneider, S.C., Niederjohn, R.J.: Assessing student learning outcomes using grad-
uating senior exit surveys and alumni surveys. In: Proceedings IEEE Frontiers of
Education Conference, vol. 1 (1995)

17. Shannon, C.A., Kiper, J., Rebelsky, S.A., Davis, J.: Engaging CS alumni from afar.
In: Proceedings 47th ACM Technical Symposium on Computing Science Educa-
tion, pp. 78–79 (2016)

18. Steele, A., Cleland, S.: Staying LinkedIn with ICT graduates and industry. In:
Proceedings ITX 2014, pp. 8-10, Auckland, New Zealand (2014)

19. Thompson, C.A., Senseney, M., Baker, K.S., Varvel, V.E., Palmer, C.L.: Special-
ization in data curation: preliminary results from an alumni survey, 2008–2012.
Proc. Am. Soc. Inf. Sci. Technol. 50(1), 1–4 (2013)

Introducing Health Informatics as an Elective
Module in an Information Systems Honours
Degree: Experiences from Rhodes University

Greg Foster(B) and Jane Nash

Department of Information Systems, Rhodes University, Grahamstown, South Africa
{g.foster,j.nash}@ru.ac.za

Abstract. A priority within South Africa’s eHealth strategy is the
development of skills needed to implement and support health infor-
mation systems. In view of the time frames involved in creating and
delivering new undergraduate curricula, a feasible short-term approach
to capacity building is to equip Information Systems (IS) graduates with
relevant knowledge of healthcare systems and eHealth technologies. The
IS Department at Rhodes University introduced an elective module in
Health Informatics within their one-year Honours program, aimed at
preparing IS students for careers in eHealth. This paper outlines the
module content and in-sights gained from student feedback.

Keywords: Health informatics · Education · Information systems ·
Student experience · Curriculum development

1 Introduction

In 2012, South Africa released its eHealth strategy, which aims to improve the
country’s health information system [5]. The strategy articulates ten key priori-
ties, one of which is the need to build “a workforce that can innovate, develop,
deploy, maintain and support all eHealth interventions, especially health infor-
mation systems and health management information systems” [5]. While the
establishment of this national eHealth strategy is a significant milestone for
national health system reform, its successful implementation will depend on the
existence of a highly skilled work-force that can design, build, implement and
maintain effective eHealth systems [6,17].

Health Informatics (HI) can be defined as “a science that defines how health
information is technically captured, transmitted, and utilized” [1]. HI thus focuses
on how the principles of informatics, information technology and information
systems can be applied within the continuum of healthcare delivery, placing HI
firmly at the core of eHealth systems. Graduates qualified in Information Systems
(IS) and who have an understanding of the healthcare domain and the vital role
that technology can play in eHealth will be uniquely positioned to contribute
to the design and development of high-quality and efficient healthcare solutions
intended to improve patient outcomes and reduce costs [7].
c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 123–130, 2016.
DOI: 10.1007/978-3-319-47680-3 12

124 G. Foster and J. Nash

In response to the need for eHealth capacity building, an elective module in HI
was introduced into the IS Honours degree program at Rhodes University. It was
hoped that the module would appeal to IS students with an interest in healthcare
who wanted to explore technology-related aspects of health informatics, in order
to prepare them for potential careers in eHealth. In this paper we report on the
initiative by first outlining the module content and then presenting students’
feedback regarding their experience of the module.

2 Health Informatics Education

Global demand for HI professionals is expected to increase substantially in the
foreseeable future [9]. A variety of educational programs have been established
in an attempt to meet this demand, ranging from specialist postgraduate degree
programs [18] and HI streams within existing academic programs [11] to short
HI courses [13] and professional certification programs [10]. However, such initia-
tives tend to focus either on developing the ICT knowledge and skills of students
who are already familiar with the healthcare domain; or else on providing exist-
ing ICT practitioners with the do-main-specific knowledge needed for working
in healthcare [16]. The well-rounded graduate with comprehensive knowledge
of healthcare, information systems and health informatics remains an elusive
ideal [3].

The International Medical Informatics Association (IMIA) encourages and
develops HI education globally [12] and has provided guidelines to assist insti-
tutions in defining the content of their HI curricula. Dedicated HI bachelor’s
degrees are currently being created [3,19] in some cases by replacing the pro-
gramming modules in existing IS degrees with HI modules and changing the
business focus to a clinical focus [15]. These new HI degree programs adhere
to the IS 2010 curriculum guidelines [20] and support the IS requirements of
the IMIA guidelines [15]. However, they are not yet producing HI graduates in
sufficient numbers to meet the demand for practitioners with both technical and
clinical skills [3].

The HI module described in this paper represents the first step towards devel-
oping an integrated Health Informatics program at Rhodes University, which
would combine knowledge of health systems, health data and health technolo-
gies with content from our existing information systems courses.

3 Curriculum Development

In designing our Honours HI module we considered the recommendations of
IMIA’s undergraduate bachelor’s program [12] and included the three core
knowledge do-mains as recommended by IMIA for HI professionals with an Infor-
matics/Computer Science background, i.e. HI core knowledge and skills; health
system organization; and technologies relevant to HI. These knowledge domains
were in turn mapped to COACH’s core competencies for health informatics
professionals [4]. Since our IS graduates are already familiar with Information

Introducing Health Informatics as an Elective Module 125

Management, Information Technology, Organizational Management and Project
Management, we extended this prior knowledge to include aspects of informa-
tion, technology and information systems that are specific to the health domain.
Other topics which were covered in some detail include clinical processes and ter-
minology; health data formats, structures and standards; determinants of health
and the role of technology in improving healthcare including the use of data
analytics; and challenges faced in developing and adopting IT-based healthcare
systems. We also sought expert practical advice from a well-established academic
working in the HI domain.

Table 1. Health Informatics module: Lesson topics and content

Lesson topic Content

Introduction to HI Overview of South Africa’s healthcare system; Introduction to
Health Informatics; South Africa’s eHealth strategy

Clinical Information
Systems and EHRs

Clinical Information Systems; Electronic Health Records
(EHRs); The role of EHRs in managing healthcare data; EHR
implementation benefits; Meaningful use of EHRs

Health Data
Fundamentals

The need for coding in eHealth systems; Overview of coding
systems; Classification systems (ICD-10) versus terminologies
(SNOMED-CT); How coding systems are used in practice

Clinical Decision
Support Systems
(CDSS)

Overview of CDSS and their role in clinical decision-making;
Evidence-Based Medicine in clinical practice; CDSS
acceptance and outcomes

Interoperability Achieving interoperability in health systems; Messaging
standards e.g. HL7, RIM, CDA, CCD, CCR, DICOM

Telehealth and
mHealth

The value of telehealth in healthcare; Telehealth models and
types of telehealth; Telehealth in South Africa; The role of
mHealth and mobile health apps in healthcare

Developing and
Implementing
eHealth Systems

Success and failure of eHealth systems; Development
approaches for eHealth systems; Potential barriers to
successful eHealth implementation in South Africa

Population Health
and Data Science

Epidemiology and surveillance; Determinants of health; Data
analytics in healthcare and the impact of big data; The role of
data science in healthcare

Guest Lecture Insight into the role of Health Informatics in SA healthcare

Case Study
Assignment

Student presentations and written reports on healthcare
project management cases (successes and failures)

The HI module was delivered over a two-week period and comprised 20
seminar-style contact hours with accompanying readings, as well as a case
study assignment (10 h) for which students were required to prepare a class
presentation and submit a written report. A final guest lecture was given by

126 G. Foster and J. Nash

a representative of the South African healthcare industry. Table 1 outlines the
structure of the curriculum and the topics that were covered.

At Rhodes University, IS Honours students are required to select two elective
modules from three possible choices. Of the 35 students enrolled in the Honours
program, 26 (74 %) opted to take HI as an elective. Their final module result was
based on the case study project (20 %) and a three-hour written examination
(80 %), with the module as a whole contributing 10 % to the students’ overall
Honours result. All 26 students passed the module, with marks ranging from
52 % to 81 % and a class average of 66 %.

4 Course Evaluation

To assess student opinions of the new HI module, students were asked to pro-
vide feedback via an anonymous evaluation at the end of the course. Fourteen
completed questionnaires were returned.

Table 2. Student rating of HI lesson topics (1 = disliked, 10 = enjoyed)

Rank Lesson topic Mean ± S.D

1 Introduction to HI 8.43 ± 1.09

2 Guest Lecture 8.21 ± 1.85

3 Telehealth and mHealth 8.18 ± 1.75

4 Health Data Fundamentals 7.92 ± 1.41

5 Clinical Information Systems and EHRs 7.89 ± 1.47

6 Developing and Implementing eHealth Systems 7.64 ± 1.86

7 Clinical Decision Support Systems 7.57 ± 1.50

8 Case Study Assignment 7.50 ± 2.38

9 Population Health and Data Science 7.39 ± 1.52

10 Interoperability 7.21 ± 1.58

The module evaluation questionnaire was divided into two parts. The first
part of the questionnaire assessed students’ enjoyment of each lesson topic cov-
ered, the guest lecture presentation, and the self-study assignment. The results
for this section of the questionnaire are summarised in Table 2.

The first part of the questionnaire also assessed students rating of the diffi-
culty, level of detail, and pace of the module. The results for this section of the
questionnaire are summarised in Table 3.

The second part of the questionnaire consisted of open-ended questions
intended to elicit feedback about students’ personal experience and suggested
improvements for the module. In addition, students were asked if they would
choose this module again as an elective. A selection of representative comments
is given in Table 4.

Introducing Health Informatics as an Elective Module 127

Table 3. Student rating of HI module delivery

Module aspect Mean ± S.D

Difficulty (1 = too simplistic, 5 = too complicated) 3.14 ± 0.36

Level of detail (1 = too general, 5 = too specific) 3.29 ± 0.83

Pace of delivery (1 = too slow, 5 = too fast) 3.29 ± 0.91

Table 4. Student remarks about the HI module

What was your experience of the HI module?

–“Very eye-opening and gave me insight into an emerging industry”

–“Interesting, gives insight into the complexity of systems”

–“Very enjoyable. Nice change from the things we normally learn”

–“Interesting course, good variation from typical IS business-type modules”

–“The Health Informatics module was interesting and a well put together look
into an industry I never knew existed”

–“It was a very informative module, had a good experience learning it”

What aspects would you suggest need improvement?

– “Seems like there may be a bit of parrot learning which isn’t ideal”

–“Decrease the scope”

–“More in-class exercises to keep us engaged”

–“A visit to Settlers Hospital and actually see how the health sector operates”

–“Practical use of some eHealth systems could be useful”

–“Perhaps touch on cloud computing in mHealth and eHealth”

–“Could relate the content to more South African specific examples and the
challenges SA health systems face”

If you were able to go back in time and choose your electives again, would you
still want to do Health Informatics?

–“Yes” from all students

5 Discussion

The results indicate that students responded positively to the introductory HI
module and were happy that they had chosen it as one of their electives.

Table 2 shows the mean rating awarded for each lesson topic. All lesson topics
received favourable ratings (above 7 out of 10) with the highest rated topics being
the introductory lesson; telehealth and mhealth; and health data fundamentals.
Lesson topics that included a greater level of complexity (interoperability; pop-
ulation health and data science; and clinical decision support systems) received
lower enjoyment ratings. This is in line with Jaspers et al. [13] who also found
that students experienced difficulty with decision support and image process-
ing. The guest lecture was particularly well received, while the assignment case
studies were regarded less favourably.

128 G. Foster and J. Nash

Table 3 provides the mean rating for various aspects of the module delivery,
all of which scored about 3 out of 5. It is encouraging to see that the module
was not deemed too difficult and that the level of detail was appropriately set
for this module. In addition, students were comfortable with the pace at which
these topics needed to be presented in order to be accommodated within the
scheduled two-week time-frame.

Table 4 presents a selection of typical responses given by student to the open
questions. These indicate that students enjoyed the module and found it infor-
mative. A clear recommendation was made to include more practical aspects,
particularly around setting up and using eHealth systems. Practical skills have
been highlighted as an essential skill set in HI programs [8]. It was pleasing to
see that all students indicated they would do the module again if they could,
and again confirmed that the students found the module worthwhile.

6 Concluding Remarks

In light of the positive reception that the Health Informatics module received
from the initial student cohort, we expect to retain it as an elective in future
Honours curricula. Before doing so, we intend to carefully review and revise the
module objectives, content and structure, and teaching and assessment methods,
based on relevant literature together with our own experience reported here. This
review process and its outcomes will be the subject of a future paper.

In future iterations of the module we will also increase the practical skills com-
ponent to support and reinforce the theory taught in the various lesson topics; for
example, using a tool such as Tableau (www.tableau.com) to perform analytics
on population health data. Given recent increases in health data breaches [14],
it would also be pertinent going forward to introduce a topic on security and pri-
vacy of health information. The ability to apply knowledge of health information
security and privacy to eHealth systems is regarded as crucial [2].

Many higher education institutions offering HI programmes are constrained
by a lack of specialised resources and limited access to real-world settings [21].
Strategic partnerships between academic institutions and relevant government
departments (in particular Health and Education) would be invaluable in facili-
tating the skills development needed to support South Africa’s eHealth strategy.
Without such alignment it is probably unrealistic to expect individual tertiary
institutions to build HI capacity across all dimensions of the eHealth strategy;
however, closer collaboration between institutions, each building on their own
strengths, could go a long way towards ad-dressing South Africa’s HI training
needs.

Until such time as dedicated HI degrees are offered in South Africa, it is
highly recommended that IS Departments at South African universities con-
sider including Health Informatics modules within their curricula to help create
awareness of the role ICTs plays in modern healthcare. In so doing, IS students
will be better prepared for an exciting career in healthcare and will be able to
contribute to the country’s eHealth strategy.

www.tableau.com

Introducing Health Informatics as an Elective Module 129

Acknowledgement. The authors wish to thank Prof Anthony Maeder (University
of Western Sydney) for his many hours of valuable discussion on health informatics
curricula.

References

1. AHIMA: What is health information? (2016). http://www.ahima.org/careers/
healthinfo

2. Blumenthal, D., McGraw, D.: Keeping personal health information safe: the impor-
tance of good data hygiene. JAMA 313(14), 1424–1424 (2015)

3. Campbell, M., Pardue, J.H., Longenecker, B., Barnett, L., Landry, J.: Treating the
healthcare workforce crisis: a prescription for a health informatics curriculum. Inf.
Syst. Educ. J. 10(3), 35 (2012)

4. COACH: Health Informatics Professional: Core Competencies
v3.0 (2012). https://www.coachorg.com/en/resourcecentre/resources/
Health-Informatics-Core-Competencies.pdf

5. DoH: eHealth Strategy South Africa 2012–2017 (2016). https://www.health-e.org.
za/wp-content/uploads/2014/08/South-Africa-eHealth-Strategy-2012-2017.pdf

6. Franzke, L., Tolentino, H.: Strengthening health systems through interprofessional
education. In: 2015 CSTE Annual Conference (2015)

7. Haluza, D., Jungwirth, D.: ICT and the future of health care: aspects of health-
promotion. Int. J. Med. Inform. 84(1), 48-57 (2015)

8. Haux, R.: Biomedical and health informatics education at UMIT: approaches and
strategies at a newly founded university. Int. J. Med. Inform. 73(2), 127–138 (2004)

9. Hersh, W.: The health information technology workforce: estimations of demands
and a framework for requirements. Appl. Clin. Inform. 1(2), 197–212 (2010)

10. HISA: Certified Health Informatician Australasia (2016). http://www.
healthinformaticscertification.com/

11. Hovenga, E.J.: Globalisation of health and medical informatics education: what
are the issues? Int. J. Med. Inform. 73(2), 101–109 (2004)

12. IMIA: International Medical Informatics Association (2016). http://www.
imia-medinfo.org/

13. Jaspers, M.W., Gardner, R.M., Gatewood, L.C., Haux, R., Evans, R.S.: An inter-
national summer school on health informatics: a collaborative effort of the Ams-
terdam Medical Informatics Program and IφE: the international partnership for
health informatics education. Int. J. Med. Inform. 76(7), 538–546 (2007)

14. Liu, V., Musen, M.A., Chou, T.: Data breaches of protected health information in
the United States. JAMA 313(14), 1471–1473 (2015)

15. Longenecker, H., Campbell, S.M., Landry, J.P., Pardue, J., Daigle, R.J.: A health
informatics curriculum compatible with IS 2010 and IMIA recommendations for
an undergraduate degree. In: Information Systems Education Conference, ISECON
2011 (2011)

16. Mantas, J., Ammenwerth, E., Demiris, G., Hasman, A., Haux, R., Hersh, W., Hov-
enga, E., Lun, K., Marin, H., Martin-Sanchez, F., Wright, G.: Recommendations
of the International Medical Informatics Association (IMIA) on education in bio-
medical and health informatics: first revision. Acta Informatica Medica 18(1), 4
(2010)

17. Mars, M.: Building the capacity to build capacity in e-health in sub-Saharan Africa:
the KwaZulu-Natal experience. Telemedicine e-Health 18(1), 32–37 (2012)

http://www.ahima.org/careers/healthinfo
http://www.ahima.org/careers/healthinfo
https://www.coachorg.com/en/resourcecentre/resources/Health-Informatics-Core-Competencies.pdf
https://www.coachorg.com/en/resourcecentre/resources/Health-Informatics-Core-Competencies.pdf
https://www.health-e.org.za/wp-content/uploads/2014/08/South-Africa-eHealth-Strategy-2012-2017.pdf
https://www.health-e.org.za/wp-content/uploads/2014/08/South-Africa-eHealth-Strategy-2012-2017.pdf
http://www.healthinformaticscertification.com/
http://www.healthinformaticscertification.com/
http://www.imia-medinfo.org/
http://www.imia-medinfo.org/

130 G. Foster and J. Nash

18. Murray, P., Betts, H., Wright, G., Tshayingca-Mashiya, N.: Health informatics
education and capacity building in Eastern Cape Province, South Africa. Yearbook
of Medical Informatics, pp. 158–163 (2008)

19. Tilahun, B., Zeleke, A., Fritz, F., Zegeye, D.: New bachelors degree program in
health informatics in Ethiopia: curriculum content and development approaches.
Stud. Health Technol. Inform. 205, 798–802 (2014)

20. Topi, H., Valacich, J.S., Wright, R.T., Kaiser, K., Nunamaker Jr., J.F., Sipior, J.C.,
de Vreede, G.J.: IS 2010: Curriculum guidelines for undergraduate degree programs
in information systems. Commun. Assoc. Inf. Syst. 26(18), 359–428 (2010)

21. Were, M.C., Siika, A., Ayuo, P.O., Atwoli, L., Esamai, F.: Building comprehen-
sive and sustainable health informatics institutions in developing countries: Moi
university experience. Stud. Health Technol. Inform. 216, 520–524 (2015)

Towards an Interdisciplinary Master’s Degree
Programme in Big Data and Data Science:

A South African Perspective

Linda Marshall(B) and Jan H.P. Eloff

Department of Computer Science, University of Pretoria, Pretoria, South Africa
{lmarshall,eloff}@cs.up.ac.za

Abstract. Many businesses see Big Data and Data Science as a catalyst
for innovation. The problem is that many of these businesses are hesi-
tant to embrace these new technologies mainly because of a shortage in
skilled manpower. On a global level, higher education institutions are in
the process of developing curricula for graduate degree programs relating
to Big Data and Data Science. Developing such curriculum has its own
challenges. For example: What level of knowledge is required from disci-
plines such as Computing and Statistics? What underlying foundations
in Mathematics are required? This paper presents a framework for the
design of an interdisciplinary Big Data and Data Science curriculum on
the Master’s level.

Keywords: Big Data · Data Science · Interdisciplinary · Curriculum
design

1 Introduction

Big data has emerged from the growth in data volumes and the fact that data
nowadays is available in multiple formats. Many businesses in South Africa see
Big Data and Data Science as catalysts for innovation enabling them to, amongst
others, improve product delivery and customer experience. However, many of
these businesses are hesitant to embrace these new technologies mainly because
of a shortage in skilled manpower.

A recent Data Science salary survey [10] conducted with respondents from 53
countries reported on two important aspects. Firstly, employees with graduate
degrees such as a Master’s or a Doctorate in Data Science earn significantly
more than their counterparts. Secondly, a high premium is placed on tool usage
indicating that employees need to embrace new technologies such as Hadoop
and cloud based services. This indicates that there is not only a need for Data
Science education on the graduate level but also that the graduates should have
the correct skills to manipulate Big Data sets in an intelligent manner.

It is for the above mentioned reasons that many higher education institutions
are in the process of developing curricula [15] for graduate degree programs in

c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 131–139, 2016.
DOI: 10.1007/978-3-319-47680-3 13

132 L. Marshall and J.H.P. Eloff

Big Data and Data Science. Developing such curricula have their own chal-
lenges, such as depth versus breadth of content, which need to be overcome. For
example: What level of detailed knowledge is required from disciplines such as
Computing (to which Computer Science and Information Systems belong), Sta-
tistics and Mathematics? To distinguish between the extent to which a graduate
curriculum in Big Data and Data Science should be of multidisciplinary [14],
interdisciplinary or transdisciplinary nature is a complex task [11].

The goal of this paper is to address the challenges discussed above. It presents
a conceptual framework that can be employed for the design of a Data Science
curriculum with the focus on managing and manipulating Big Data on the Mas-
ter’s level.

As a starting point, a combination of industry expectations from a Data Sci-
entist and interdisciplinary curriculum design principles are used to identify skills
and knowledge domains that will be needed by successful Data Scientists with
the focus on the manipulation of Big Data sets. Concluding from the existing lit-
erature, previously referenced, it is suggested that an interdisciplinary approach
towards the design of a curriculum shows potential. In short, multiple disciplines
are providing resources and expertise. Furthermore, within a module of such a
degree programme, where multiple departments take ownership of the content
and the presentation thereof, the research at hand will refer to such a module
as being of transdisciplinary nature. The resulting framework presented in this
paper can serve as an input to the design of a Master’s Big Data and Data
Science curriculum.

2 What Is Big Data and Data Science?

The concept of data has been around for a very long time. The well-known Oxford
Dictionary defines data as “facts or statistics collected together for reference
or analysis”. Data was mostly of a singular type and therefore homogeneous
in nature. The search for new and novel ways in managing data gave rise to
the concept of Data Science as “the extraction of knowledge from data that are
structured or unstructured” [4].

The term ‘Big Data’ has emerged from the growth in data volumes and the
fact that data nowadays is available in multiple formats. Data Science requires
sorting and filtering through big volumes of data. Conventional ways of data
processing have been shown to be ineffective, especially with regard to the extrac-
tion of knowledge from Big Data. Furthermore, over the past few years it also
became clear that the world could benefit from the behavioural aspects of data,
which, in most cases, is hidden and therefore requires complex and intelligent
algorithms to be discovered.

2.1 Requirements for a Data Scientist

To call oneself a Data Scientist requires specific knowledge and skills. In this
paper, knowledge is defined as information acquired by visual, auditory, reading

Master’s Degree Programme in Big Data and Data Science 133

and kinesthetic (learning by doing) means. Graduates are required to be able to
transfer the knowledge, for example: the Data Scientist should know about the
various machine learning algorithms available for detecting hidden features in a
Big Data set. Skills on the other hand relate to the ability to apply knowledge
and can be developed through practice [2]. With reference to machine learning
algorithms it will be expected of the Data Scientist to choose for example the
Apriori algorithm [18], as an appropriate algorithm for building association rules
between the attributes of a Big Data set and then apply a genetic algorithm to
cluster these associations.

Table 1. Knowledge and Skills required by Data Scientists

Knowledge Skills

R
ef

er
en

ce

C
o
m

p
u
te

r

sc
ie

n
ce

D
a
ta

m
u
n
g
in

g

a
n
d

cl
ea

n
in

g

D
a
ta

v
is

u
a
li
sa

ti
o
n

D
o
m

a
in

ex
p
er

t
in

a
p
p
li
ca

ti
o
n

a
re

a

M
a
ch

in
e

le
a
rn

in
g

M
a
th

em
a
ti

cs

P
ro

b
a
b
il
it
y

S
ta

ti
st

ic
s

S
o
ft

w
a
re

E
n
g
in

ee
ri

n
g

B
u
si

n
es

s
a
cu

m
en

C
o
d
in

g

C
o
m

m
u
n
ic

a
ti

o
n

D
a
ta

v
is

u
a
li
sa

ti
o
n

E
x
p
er

im
en

t

d
es

ig
n

P
ro

b
le

m
so

lv
in

g

T
o
o
ls

[14] × × × × × × × × ×
[8] × × × × × × × × ×
[7] × × × × × × ×
[12] × × × × × × × ×
[17] × × × × × × × ×

Table 1 summarises literature on the knowledge and skill requirements for
Data Scientists.1 Statistical knowledge is high on the list of knowledge require-
ments. Furthermore, [12] points out that traditional statistics taught to stu-
dents does not cover the knowledge required by a Data Scientist. Knowledge of
machine learning is only specifically mentioned in [8,14,17], however [7,12] do
mention knowledge of computational techniques to manipulate Big Data as being
important. Furthermore, it is important that the Data Scientist is an excellent
communicator and more specifically in terms of the technical aspects of the field
[14]. It is interesting that [14,17] see data visualisation in terms of knowledge
while [7,8] refer to it in terms of a skill, whilst [12] views data visualisation as a
component of tool usage. Embracing new technologies is mentioned by [10] as a
requirement for the Data Scientist.

Some authors value coding as a skill, others see the Data Scientist as a user of
software rather than a builder thereof [6]. Nonetheless, the authors of this paper
refer to programming as it encapsulates coding as well as problem solving to
some extent. This may explain the fact that not all authors agree on the extent

1 ‘Data munging’ refers to mapping data from one form to another.

134 L. Marshall and J.H.P. Eloff

to which Computer Science knowledge should be a requirement for the Data
Scientist. Last-mentioned can also be explained by thinking of Data Science as
the new discipline which is emerging from a foundation in Mathematics and
Computer Science as was mentioned by [17].

2.2 The Data Science Lifecycle

[5] states that data should only be collected and processed if there is a need for
it and went on to define a so-called USGS (United States Geological Survey)
Science Data Life Cycle Model. This model consists of 9 phases, namely: Plan,
Acquire, Process, Analyse, Preserve, Publish, Describe, Manage and Backup. It
is argued that the data component of Data Science also contains these 9 data life
cycle phases and furthermore that the Acquire phase is of special importance.
This is because of the fact that getting access to Big Data (terabytes) is one of
the most difficult and time consuming tasks in any Data Science exercise.

Data scientists need to be skilled in all the above mentioned aspects of data
handling and it is suggested that curricula are designed to ensure a detailed
practical knowledge of all data life cycle phases but with special emphasis on
data streaming.

3 Interdisciplinary Curriculum Design

The term interdisciplinary is defined in the Oxford Dictionary as “Relating to
more than one branch of knowledge”. Designing a curriculum which crosses
disciplinary boundaries fosters interdisciplinary thinking skills. Graduates are
required to bring knowledge from multiple disciplines together, thereby advanc-
ing the combined learning in a direction which the individual disciplines would
not do [16]. An interdisciplinary curriculum therefore needs to be designed to
facilitate this combined learning and research experience for Data Science. The
work presented in [9] proposes a continuum of options for interdisciplinary cur-
riculum design, beginning with independent modules focussing on a single dis-
cipline to a fully integrated programme. It has been shown that by combining
these options, a curriculum with an increased success rate can be developed.

Designing a Big Data and Data Science curriculum can benefit from focussing
the design of Complementary Discipline and Interdisciplinary modules [9]. For
example, a module which introduces machine learning and statistical learn-
ing requires machine learning knowledge from Computer Science discipline and
statistical learning knowledge from Statistics. By bringing these two aspects
together, the module no longer presents the knowledge independently, but syn-
ergistically. This synergy may lead to new developments in regression and intelli-
gent classification. Defining a curriculum and saying it is interdisciplinary, does
not guarantee that the programme will be successful. Specific problems must
be designed which highlight the interdisciplinary nature of the learning mater-
ial. The challenge is to provide both breadth and depth within the program [15].

Master’s Degree Programme in Big Data and Data Science 135

For example, machine learning relates to Artificial Intelligence (AI) within Com-
puter Science. It is not necessary for the curriculum to provide a foundation in
all aspects of AI, it is however important for the curriculum to provide sufficient
underpinnings in AI to be able to understand and apply machine learning within
the Data Science and Big Data context.

3.1 Considerations for Developing an Interdisciplinary Curriculum

When developing a curriculum in Big Data and Data Science, consideration
should be given to, the knowledge and skills (summarised in Table 1) within and
between the dominant disciplines (Computing, Mathematics and Statistics) and
the life cycle described in Sect. 2.2. Additionally, consideration should be given
to outcomes, stakeholders from the respective disciplines and the regulatory
requirements placed on the curriculum. Once the curriculum has been developed,
an in-depth assessment of the curriculum should be conducted to determine the
coverage of the curriculum and the level of prior knowledge required.

Outcomes of a Big Data and Data Science Curriculum. The outcomes of the
Data Science degree programme are linked to the core disciplines. Students can
either focus on a broad education or focus their studies on one of the multiple
tracks, e.g. business analytics or computational intelligence, as was explained
in the work reported on in [1]. Outcomes for the Master’s qualification in Data
Science should be viewed on both the macro as well as the micro level.

Considering the outcomes on a macro level it is expected that such a degree
program delivers individuals who embrace fast changing environments, both
technological as well as organisational. This can be achieved through a combi-
nation of interdisciplinary knowledge, extensive exposure to different tool usage
and a fundamental understanding of the various phases in the life cycle.

On the micro level, the expected outcomes of a graduate are well documented
in existing literature. Consider for example the work done by [14] where the focus
is on ‘data intensive computing’ with outcomes categorised amongst others as:
Data analytics (machine learning as well as predictive modelling), and Data
visualisation.

Stakeholders. Stakeholders fall into two categories, those who provide the tech-
nical expertise needed for the application of the life cycle; and those who pro-
vide the expertise of the domain to which the life cycle is to be applied. It is
not necessary for these two groupings to be mutually exclusive, it is however
required that the former category of stakeholders provide a solid technical foun-
dation in Computing, Mathematics and Statistics, onto which the application
domain stakeholders build [1]. Consultation with the stakeholders is of utmost
importance. Stakeholders providing technical expertise need to agree on how the
interdisciplinary aspects of their respective disciplines are to be designed so the
content of modules are both Complementary and Interdisciplinary.

136 L. Marshall and J.H.P. Eloff

Regulatory Requirements. Curricula are not the only concern when develop-
ing degree programmes. Both governmental and institutional requirements are
placed on curricula particularly for accreditation purposes. Governments define
frameworks for primary, secondary and tertiary education to ensure seamless
progression through the education system. In South Africa, the National Qual-
ifications Framework (NQF) defines three categories of certificates in education
and training, beginning in primary school and ending with Doctoral studies.
NQF exit levels 5, 6 and 7 are considered undergraduate study. Graduate study
occupies levels 8 (Honours), 9 (Master’s) and 10 (Doctorate). The minimum
credit requirements for a level 9 qualification is 180 over 1 or 2 years. One credit
equates to 10 hours of study, referred to as notional hours. At least 90 credits
must be dedicated to a research project [13]. Institutions, other than needing
to comply to the governmental frameworks, may add additional requirements
which differentiate them from other institutions. These requirements need to be
taken into account during the development of the curriculum.

Prior Knowledge. Following on from regulatory requirements, it is assumed that
qualifications within qualification frameworks build on knowledge gained after
successful completion of previous levels within the framework. It is therefore
important to consider what the expected prior knowledge should be in terms
of the qualifications framework when designing a degree programme. For the
Master’s programme in Big Data and Data Science, foundational prior knowledge
in the disciplines of Computing, Mathematics and Statistics would be required.
For example, undergraduate knowledge of databases, programming, calculus,
linear algebra and probability.

3.2 Existing Curricula in Big Data and/or Data Science

The international trend is to introduce Data Science focussed degree programmes
on the graduate level and modules with a data-centric focus on the undergrad-
uate level. According to [1], in 2013 there were 61 Knowledge Discovery and
Data Mining related degree programmes on offer in the US and Canada, of
which only 4 were undergraduate degree programmes. In April of 2016, 513 pro-
grammes were listed on the Data Science community website [3] from countries
across the world. Of these, 124 were certificate programmes — the majority of
which are online, 43 Bachelor programmes, 323 Master’s programmes with most
being solely course-driven and 23 Doctoral programmes. Currently none of the
programmes listed are from South Africa.

4 Recommendations for a Big Data and Data Science
Master’s Curriculum

The main contribution of this paper is a framework, given in Fig. 1, that can be
employed for the design of a Master’s level Big Data and Data Science curricu-
lum. Aspects already discussed are: Disciplines (branch of knowledge), Knowl-

Master’s Degree Programme in Big Data and Data Science 137

Fig. 1. A Framework for an interdisciplinary Big Data and Data Science Master’s

edge (acquired information that can be transferred), and Skills (ability to apply
knowledge and can be practiced).

Interdisciplinary collaboration is the most important aspect for such a degree
programme. The disciplines identified in Sect. 3.1 all relate in their own way to
different and in some cases the same knowledge domains. It is argued that the
following knowledge domains are relevant for this Big Data and Data Science
curriculum: machine learning, data visualisation, modelling, statistical learning,
large distributed data sets and application domains. Knowledge and skills are
interrelated. Skills development of the curriculum should focus on: tool usage,
communication, research, programming and problem solving.

5 Conclusion

An overview of a framework that can be employed for the design of a Mas-
ter’s curriculum on Big Data and Data Science, was presented in this paper.
A combination of industry requirements and interdisciplinary curriculum design
principles were employed to identify skills and knowledge domains that serve as
building blocks for becoming a successful Data Scientist working with Big Data.

6 Future Work

An in-depth study of the Master’s degree programme curricula listed on the
Data Science community website [3] is to be conducted. This study will con-
sider whether the degree programmes listed on the website cover all aspects

138 L. Marshall and J.H.P. Eloff

considered to be necessary for a Master’s in Big Data and Data Science. A com-
parison between the listed programmes and the recommendations as defined by
the framework presented in Fig. 1 will need to be completed. Immediate future
work will present modules and the topics related to the modules highlighting the
interdisciplinary nature of the modules.

References

1. Anderson, P., Bowring, J., McCauley, R., Pothering, G., Starr, C.: An undergradu-
ate degree in data science: curriculum and a decade of implementation experience.
In: Proceedings 45th ACM Technical Symposium on Computer Science Education
(SIGCSE 2014), pp. 145–150 (2014)

2. Bollet, G.: Identifying the difference between knowledge and skills (2015).
http://elearningindustry.com/difference-between-knowledge-and-skills-knowing-
not-make-skilled

3. Data Science Community. http://datascience.community/colleges
4. Dhar, V.: Data science and prediction. Commun. ACM 56(12), 64–73 (2013)
5. Faundeen, J., Burley, T., Carlino, J., Govoni, D., Henkel, H., Holl, S., Hutchison,

V.B., Martn, E., Montgomery, E., Ladino, C., Tessler, S., Zolly, L.: The United
States geological survey science data lifecycle model: U.S. geological survey open-
file Report 2013–1265, Techn. rep., U.S. Geological Survey, (2013). doi:10.3133/
ofr20131265

6. Hall-Holt, O.A., Sanft, K.R.: Statistics-infused introduction to computer science.
In: Proceedings 46th ACM Technical Symposium on Computer Science Education
(SIGCSE 2015), pp. 138–143 (2015)

7. Harris, J.G., Shetterley, N., Alter, A.E., Schnell, K.: The team solution to the data
scientist shortage. Techn. rep, Accenture Institute for High Performance (2013)

8. Holtz, D.: 8 skills you need to be a data scientist (2014). http://blog.udacity.com/
2014/11/data-science-job-skills.html

9. Jacobs, R., Hayes, H. (eds.): Interdisciplinary Curriculum: Design and Implemen-
tation. Association for Supervision and Curriculum Development (1989)

10. King, J., Magoulas, R.: 2014 Data Science Salary Survey. O’Reilly, San Diego
(2015)

11. Kroeze, J.H.: Transdisciplinarity in IS: The Next Frontier in Computing Disci-
plines. All Sprouts Content. Paper 489 (2012). http://aisel.aisnet.org/sprouts all/
489

12. McAfee, A., Brynjolfsson, E.: Big data: the management revolution. Harv. Bus.
Rev. 90(10), 60–66, 68, 128 (2012)

13. Pandor, G.N.M.: The Higher Education Qualifications Framework. Government
Gazette, South Africa, October 2007

14. Ramamurthy, B.: A practical and sustainable model for learning and teaching data
science. In: Proceedings 47th ACM Technical Symposium on Computing Science
Education (SIGCSE 2016), pp. 169–174 (2016)

15. Sosa, R., Connor, A.M.: !orthodoxies in multidisciplinary design-oriented degree
programmes. In: Proceedings of 2015 IASDR Conference: Interplay, November 2015

16. Spelt, E.J.H., Biemans, H.J.A., Tobi, H., Luning, P.A., Mulder, M.: Teaching and
learning in interdisciplinary higher education: a systematic review. Educ. Psychol.
Rev. 21(4), 365–378 (2009)

http://elearningindustry.com/difference-between-knowledge-and-skills-knowing-not-make-skilled
http://elearningindustry.com/difference-between-knowledge-and-skills-knowing-not-make-skilled
http://datascience.community/colleges
http://dx.doi.org/10.3133/ofr20131265
http://dx.doi.org/10.3133/ofr20131265
http://blog.udacity.com/2014/11/data-science-job-skills.html
http://blog.udacity.com/2014/11/data-science-job-skills.html
http://aisel.aisnet.org/sprouts_all/489
http://aisel.aisnet.org/sprouts_all/489

Master’s Degree Programme in Big Data and Data Science 139

17. van der Aalst, W.M.P.: Data scientist: the engineer of the future. In: Mertins,
K., Bénaben, F., Poler, R., Bourriéres, J.P. (eds.) Enterprise Interoperability VI:
Interoperability for Agility, Resilience and Plasticity of Collaborations. Proceedings
of the I-ESA Conferences, vol. 7, pp. 13–26. Springer, Heidelberg (2014)

18. Wu, X., Kumar, V., Ross-Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan,
G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg,
D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2007)

Social Skills

Reflections on a Community-Based
Service Learning Approach

in a Geoinformatics Project Module

Serena Coetzee and Victoria Rautenbach(B)

Department of Geography, Geoinformatics and Meteorology, University of Pretoria,
Pretoria, South Africa

{serena.coetzee,victoria.rautenbach}@up.ac.za

Abstract. Geoinformatics (also known as geographic information
science) is the science and technology that underpins the collection,
representation, processing, analysis, visualisation and dissemination of
geographic information. Such information is hugely valuable in solving
environmental and social problems in society. In this paper we reflect
on a community-based service learning approach in a third year geoin-
formatics module. Students mapped an informal settlement, captured
information about dwellings and conducted a number of studies in sup-
port of environmental and social problem solving. The aim was to raise
awareness of social issues, to understand students’ sense of social respon-
sibility and their understanding of the role of geoinformatics in solving
community problems. After completion of the module, we conducted
in-depth interviews with ten students. The results confirm the value of
community-based service learning in enhancing understanding of theo-
retical concepts and contributing to local communities. Further work is
needed to better understand how South African geoinformatics students
can be made aware of the role of geoinformatics in solving problems in
society.

Keywords: Social responsibility · Community-based service
learning ·Geoinformatics ·Geographic information science · Informatics ·
Education

1 Introduction

Humanity is currently facing many global challenges, such as climate change,
global health problems, extreme poverty and rising wealth inequality [18]. Many
of these challenges can be linked to egoism, i.e. acting in the interest of one’s
self without consideration for others. For example, by not considering the carbon
footprint when buying imported fruits. Geoinformatics professionals, through the
use of geographic information, have enormous potential to contribute towards
addressing these challenges. However, one needs to have a sense of social respon-
sibility to want to contribute to solving such challenges that are not of direct
interest to oneself.
c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 143–159, 2016.
DOI: 10.1007/978-3-319-47680-3 14

144 S. Coetzee and V. Rautenbach

Social responsibility is the obligation that an individual or organisation feels
to society and specifically the disadvantaged [1,4,8]. Social responsibility com-
bines the values and actions rooted in the obligation to contribute to society
[2], i.e. one should act in accordance with care, objectivity, and considering oth-
ers’ perspectives and the impact of one’s actions [3]. Canney and Bielefeldt [4]
argue that engineers need a well-developed sense of social responsibility in order
to contribute to social and development problems of undeserved populations.
The same can be said about many other professions, including geoinformatics
professionals.

Social responsibility education is of interest in many disciplines, but we could
not find any that focus on geoinformatics. Canney and Bielefeldt [3] suggested
that an understanding of professional social responsibility would nurture the
required skills and attitude in engineering students, and encourage them to use
their skills to address global challenges. They developed an integrated model to
help understand the development of personal and professional social responsibil-
ity in engineers. The model has been used to evaluate engineering students’ views
on social responsibility [1,3,16,17]. According to Leveson and Joiner [12], his-
torically, business education has focused on the procedural, organization-centric,
geared towards the ethics of personal advantage. In contrast, teaching social
responsibility requires appreciation for the views and values of students [12].
Harvey [9] proposes that the education of GIScience and technology profession-
als should go beyond abstract scholarly ethics to applied approaches based on
practical wisdom.

Service learning is an experiential pedagogy in which community service is
integrated into academic activities [15]. The aim is to enhance understanding
of theoretical concepts and to facilitate contributions to local communities [19].
Dorsey [5] highlights that community-based learning provides unique opportuni-
ties for students to implement theoretical knowledge and gain hands-on experi-
ence while trying to address a real-world issue. The focus of service learning is on
the student: the student learns from and contributes to the community, while the
community benefits and contributes to the student’s learning [15]. Warren [19]
reports that many studies have shown service learning to have positive effects
on students’ cultural awareness and social responsibility, and that it encourages
students to act as responsible citizens. In the United States, the integration of
service learning into academic curricula is increasing [15] and in some South
African engineering and information technology faculties, a community-based
project is compulsory [11]. Community-based service learning has been applied
in various fields, including architecture, education, engineering, health science
and geography [5–7,10,13,14], but to our knowledge, studies in geoinformatics,
which combines geography with technology, have not been done.

In this paper we conducted qualitative research that reflects on a community-
based service learning approach in a third year geoinformatics module. This
was the students’ first opportunity to apply geoinformatics knowledge and skills
acquired through their undergraduate studies in a single project from conception
to completion. Students mapped an informal settlement, captured information

Community-Based Service Learning in a Geoinformatics Project 145

about dwellings and conducted a number of studies in support of environmen-
tal and social problem solving. The aim was to raise awareness of social issues.
We also wanted to understand students’ sense of social responsibility and their
perception of the role of geoinformatics in solving community problems. After
completion of the module, we conducted in-depth interviews with ten students.
The remainder of the paper is structured as follows. Section 2 provides back-
ground about the community project. Section 3 explains how the interviews were
conducted. In Sect. 4, the results of the interviews are presented and discussed,
followed by a conclusion in Sect. 5.

2 Community-Based Service Learning: Mapping the
Informal Settlement of ‘Alaska’ in Mamelodi (ZA)

The University of Pretoria has a long-standing partnership with the Viva Foun-
dation, in the ‘Alaska’1 informal settlement in the City of Tshwane, to improve
the safety of the informal settlement dwellers. The Viva Foundation aims to
transform informal settlements and other high-priority poverty areas into stable
and economically viable communities.2 Amongst others, the Viva Foundation
coordinates the South African People’s Response Initiative (SAPRI) project,
which provides the settlement dwellers with panic buttons that can be used to
call for assistance in case of emergencies. In 2015, the final year geoinformat-
ics students worked on improving the SAPRI project that is currently paper
based, by mapping the most southern part of ‘Alaska’ immediately surround-
ing the Viva centre. Viva community care workers accompanied the students to
introduce them to the community members and to provide them with additional
information about the community and its history.

Over the course of three days, seventeen final year students captured the loca-
tions of 1350 dwellings in ‘Alaska’, as well as information about each dwelling,
such as the address and the use of the dwelling (e.g. home, tuck shop or
shebeen). This digital information was handed to the SAPRI project. In addi-
tion, the students investigated the following:

1. optimal distribution of the panic buttons;
2. identifying areas that are potentially at risk of damage during thunderstorms

(based on terrain and slopes);
3. planning emergency response routes to dwellings during fires; and
4. identifying a suitable location for a health post in ‘Alaska’.

Each of these investigations addresses a specific need in the community. A num-
ber of maps (hardcopy and interactive) of these investigations were given to the
Viva Foundation.

This community project was integrated into the academic activities of the
semester module, GMT320 (Geoinformatics project). The module provides a
1 Locals have named this settlement ‘Alaska’ because of its remote location from the

city centre.
2 http://www.viva-sa.co.za.

http://www.viva-sa.co.za

146 S. Coetzee and V. Rautenbach

unique first learning opportunity for the students to be involved in a real-life
project with a client. Up until then, students work with hypothetical scenarios
where ‘perfect’ data and a breakdown of the solution are provided to them. For
GMT320, students have to implement the entire project management process,
capture their own data, and then implement an innovative solution with the data
they have captured. During GMT320 students get a first opportunity to work
with handheld and differential global positioning system (GPS) devices, and to
gain fieldwork experience. This experience is invaluable to the students who will
plan projects and capture data in the field during their professional careers.

3 Methodology

The final year geoinformatics students completed the community project in the
second semester of 2015. In March 2016, these students were invited to partici-
pate in an in-depth interview on their experience and thoughts on social respon-
sibility. Due to the small number of participants and the type of interview, this
research is of a qualitative nature.

Before the interview was conducted, the participants were asked to complete
an adapted version of the Engineering Professional Responsibility Assessment
(EPRA)3 survey. The only adaptation was replacing engineering with ‘GISc’ in
the text. We used the assessment from the engineering discipline because a ques-
tionnaire for geoinformatics does not exist. Similar to engineers, geoinformatics
professionals are sometimes involved in solutions designed to solve problems of
underserved populations. A social responsibility score (SR score) between 8 and
56 was calculated based on the description by Canney [2] as well as Rulifson
and Bielefeldt [16] who designed the EPRA survey. The SR score provides an
indication of a participant’s degree of social responsibility; a higher SR score
indicates a participant who is more aware of social responsibility.

The interviews were conducted in March 2016. They consisted of eighteen
questions and were 30 to 60 min long. The questions covered a variety of topics,
such as undergraduate experience, general opinion on social issues and how the
community-based service learning module influenced their views. The interview
questions are presented in Table 1. The questions are adapted from Rulifson and
Bielefeldt [16,17]. The sessions were voice-recorded and the interviewers also
took notes during the session.

4 Results and Discussion

4.1 Overview of Participants, SR Scores and EPRA Survey Results

Ten geoinformatics students accepted the invitation to participate in the inter-
views. All of them completed the GMT320 module with the community-based
service learning approach in 2015. Table 2 provides an overview of the partici-
pants. The group consisted of six male and four female participants from various
ethnicities (African, Indian and European). The ages ranged from 21 to 29 years.
3 http://bit.ly/2al9F0u.

http://bit.ly/2al9F0u

Community-Based Service Learning in a Geoinformatics Project 147

Table 1. Interview questions

148 S. Coetzee and V. Rautenbach

Table 2. Overview of the participants

Six participants indicated that they are religious (i.e. affiliated with an orga-
nized religion), and two participants specified that they are spiritual. Six par-
ticipants indicated that they have been in an informal settlement prior to the
community project, and nine have been in a township. Only three participants
had previous work experience in the form of a part-time job or internship. An SR
score was calculated for each participant. Two male participants had the highest
SR score (above 50), followed by most of the remaining participants with a SR
score between 42 and 45. The lowest score was ≈39.

In the EPRA survey, participants were asked to indicate which job qualities
are important to them in a future job. Figure 1 shows how participants rated
these job qualities. Community development is rated as important by all partic-
ipants, but only three participants rated it above 10 % (at 20 %). Helping people
is rated above 10 % by all participants, except two who rated it 10 % and one did
not consider it as important at all. Most participants (except one) rate salary
as an important job quality (20 % or above). This can probably be explained by
the fact that most participants are in their fourth year of study and will have
accumulated some study debt.

The EPRA survey also covered the reasons for volunteering currently or in
the past (see Fig. 2). 60 % of the participants indicated that the main motivation
for volunteering is/was to gain a new skill or that it was required for class. 40 %
indicated that helping others is or was the motivation. Religious participants
typically participated in volunteering activities organised by their religious com-
munities. No participant indicated that international travel was a motivation for
volunteering.

Figure 3 shows the breakdown of factors that currently or previously inhibited
participation in volunteer activities. The largest factor is lack of time due to

Community-Based Service Learning in a Geoinformatics Project 149

Fig. 1. Important job qualities as indicated per participant

Fig. 2. Reasons provided by participants for volunteering currently or in the past

150 S. Coetzee and V. Rautenbach

Fig. 3. Factors currently or previously inhibiting participation in volunteer activities

course work (28 %). 16 % of participants indicated that they did not know how
to get involved in volunteering. Financial limitations (13 %) and lack of time due
to work obligations (13 %) were also significant factors.

4.2 Results and Discussion of Interviews

In this section, we present and discuss the interview results under the following
topics:

– perception of social responsibility;
– social issues considered important;
– role of geoinformatics;
– future career in geoinformatics in solving community problems;
– reasons for studying geoinformatics; and
– experience during community-based service learning module.

These topics serve to reflect on the objective to raise awareness of social issues,
and to contribute to understanding students’ sense of social responsibility and
their perception of the role of geoinformatics in solving community problems.

Perception of Social Responsibility. Each participant completed the EPRA
survey before starting his/her interview. The survey includes definitions for

Community-Based Service Learning in a Geoinformatics Project 151

‘community service’, ‘social responsibility’, ‘social justice’ and ‘pro bono’. Social
responsibility is defined as “an obligation that an individual (or company) has
to act with concern and sensitivity, aware of the impacts of their actions on
others, particularly the disadvantaged” [2]. Participants would have read this
definition in the survey, but were asked again halfway through the interview to
define social responsibility. The participants’ definition of social responsibility
helps to understand their attitude towards social responsibility and how they
exploit volunteerism.

All participants were able to identify aspects of social responsibility in their
definition. The focus was on community or society, followed by a focus on bene-
fits. This focus encapsulates two key points of social responsibility. However, the
concept of ethical duty was only mentioned, as ‘obligation’, by one participant.
The following four distinct definitions illustrate participants’ diverse perceptions
of social responsibility:

– One participant defined social responsibility as “your obligation to act in such
a way that you positively affect the greater community”.

– One participant spoke about assisting a community to the extent of one’s
abilities. This idea of “to the extent of one’s abilities” aligns with the “pro-
portional to the opportunities and skills which one has been afforded” in the
definition by Rulifson and Bielefeldt [16].

– One participant had a very different view on social responsibility and focused
more on not being involved in unethical practices and using one’s skills to
benefit society. Social responsibility is strongly connected to ethics and eth-
ical duty, and it was interesting that this participant focused on unethical
practices.

– One participant had a more passive approach to social responsibility and
stated that one should “not make things worse”.

Participants with a high SR scores provided more accurate definitions of social
responsibility and reported previous involvement in volunteerism. For exam-
ple, one participant provided a near accurate definition of social responsibility.
This participant has a strong sense of social responsibility (highest SR score),
indicated a religious preference, indicated five reasons for volunteering (highest
number of reasons), and also detailed involvement in weekly volunteer activities
relating to church, tutoring, and everyday activities. On the other end of the
spectrum, a participant with a low SR score reported lack of time and interest
in volunteering as major factors inhibiting volunteering. This participant indi-
cated a focus on environmental issues in the interview, while the EPRA survey
was focused on volunteering related to humans. These results suggest that the
EPRA survey can determine whether a participant has a sense of social responsi-
bility towards humans. However, it is not suitable to identify social responsibility
towards the environment.

Social Issues Considered Important. During the interview, the participants
were asked twice which social issues are important to them; before (question

152 S. Coetzee and V. Rautenbach

10) and after (question 16) discussion of the community-based service learning
module (GMT320). From the discussion, it was evident that participants’ back-
ground greatly influenced the social issues that they consider important. Below
three specific motivations for social issues are discussed:

– One participant considers gender equality as important, and mentioned that
ethnicity and family background were the main influences for considering
these issues as important. In many communities in South Africa and across
the world, women are still fighting against gender discrimination.

– Three participants are in the ethnic group that was previously disadvantaged
in South Africa. All three participants consider education as the one social
issue that they are passionate about. The three participants are from various
(urban and rural) areas in South Africa and from different age groups, but all
of them believe that education is important for people to improve themselves
and their living circumstances.

– Three participants indicated that environmental issues are important to them.
One of them was a ‘Junior Honorary Ranger’4 while at school. The partici-
pant volunteered in the South African National Parks (SANParks), amongst
others, by removing alien invasive plants and identifying snares. Similarly,
another participant had a botanist family member and grew up helping with
‘Environmental Day’ interventions (e.g. litter clean-up or alien invasive plant
projects in local nature reserves).

Figure 4 provides an indication of how the participants changed their considera-
tion of important social issues after discussing their experience of the community
project. The graph shows the number of participants who indicated a specific
issue in their responses to questions 10 and 12. After the discussion, participants
were asked to single out one social issue that they are most passionate about.
It is interesting to note that lack of service delivery was mentioned as a social
issue for the first time after the discussion. This can be attributed to the lack of
service delivery infrastructure in ‘Alaska’, Mamelodi. Other issues that received
more attention afterwards are education, poverty and environmental issues. This
shows that the experience in the community-based service learning module has
raised their awareness of important social issues in the community.

Role of Geoinformatics in Solving Community Problems. The partici-
pants were asked how geoinformatics could be used to address social issues. This
question focuses on the practical application of geoinformatics. All participants
stated that geoinformatics could assist with mapping the issues, thus making
them more visible. However, geoinformatics is generally also used to understand
a social issue, aid in decision making, and sometimes also in identifying possi-
ble solutions. Only four participants focused on using geoinformatics to solve a
social issue, and three on visualizing an issue to understand it better. Two par-
ticipants stated they could be role models as geoinformatics professionals and

4 http://www.sanparksvolunteers.org/.

http://www.sanparksvolunteers.org/.

Community-Based Service Learning in a Geoinformatics Project 153

Fig. 4. Social issues mentioned by participants during the interview

that this could inspire others to overcome social issues, such as gender equality
and poverty through education. One participant focused on using their educa-
tion to educate others in less fortunate communities. These results suggest that
the role of geoinformatics in understanding social problems and in solving them
needs to receive more attention in the undergraduate curricula.

Future Career in Geoinformatics. Figure 1 provides an overview of the job
qualities that participants indicated as important to them in the EPRA survey.
To supplement this question, the participants were asked in the interview:

– to describe their ideal future career;
– which sector they would prefer to work for;
– possible companies that they have identified for future employment; and
– the qualities of a job or company that they consider important.

The participants are all in their 4th year of study, and most of them are likely
to enter the job market at the end of this year. Five participants indicated that
they would prefer an opportunity to work as a geoinformatics analyst, and one
participant as a geoinformatics project manager. Geoinformatics analyst is the
most common career path for a geoinformatics graduate, and the result is thus
as expected. Four participants would prefer to start their own businesses; three
of them in geoinformatics. Lastly, one participant indicated a research position
in interdisciplinary research in mining and agriculture.

154 S. Coetzee and V. Rautenbach

When asked if they would prefer a job opportunity in the public sector, pri-
vate sector or at a non-governmental organization, the majority of participants
(eight) indicated that they would favour a position in the private sector. The
variety of projects, perceived challenges they would face, and making a greater
impact was cited as motivators for the private sector. The remaining two par-
ticipants indicated that they would prefer the public sector, because it offers a
comfort zone and because of the additional employee benefits in the public sec-
tor. Currently, most participants (seven) do not have a preference for a future
employer. Google and Esri were identified as ideal future employers in the pri-
vate sector, and local municipalities or parastatals, such as Eskom (electricity),
in the public sector.

The ‘wordle’5 in Fig. 5 provides an overview of the keywords that the partic-
ipants used when describing the qualities that are important to them in a job
opportunity or company. From the figure it is clear that a good work environ-
ment is most important to the participants, followed closely by opportunity for
progress, variety of projects and a good salary. Two participants mentioned that
community work would be important qualities for them.

The participants were asked which opportunity they would pursue if offered
two positions of equal pay, one opportunity with a focus on social responsibil-
ity projects (i.e. community projects) and the other one not. All participants,
except one, selected the job opportunity with social responsibility projects. The
participant who did not select the social responsibility opportunity, motivated
this choice by stating that such an opportunity would be emotionally draining
and that it would be difficult to separate work from personal life. The participant
would prefer to be involved in community projects or volunteering in a personal
or private capacity.

Fig. 5. Key qualities mentioned by the participants (produced with ‘wordle’)

5 http://www.wordle.net.

http://www.wordle.net

Community-Based Service Learning in a Geoinformatics Project 155

Reasons for Studying Geoinformatics. To get a better understanding of
the participants reasons for studying geoinformatics, they were asked:

– why did they study geoinformatics?
– what in geoinformatics interests them?
– what do they like about geoinformatics?
– and, lastly, about positive and negative experiences during their undergradu-

ate geoinformatics studies.

Seven participants were motivated by their geography school teacher to study
geoinformatics. This started commonly as a love for geography and maps, and
the job opportunities available in geoinformatics. Many participants also men-
tioned a love of technology. Two participants have previous qualifications, in
architecture and surveying respectively. They indicated that they started study-
ing geoinformatics because the previous degree was not a good fit for them or
did not allow personal growth. After graduation, one participant is now perusing
a degree in civil engineering, as he discovered a love for engineering through his
undergraduate studies.

The range of possibilities and versatility of the application of geoinformatics
interests participants about the field. They also mentioned that geoinformatics
is new and still evolving and could thus provide them with numerous challenges.
The use of software and tools to perform analyses, and the more practical use
of geoinformatics were the aspects that the participants liked the most about
geoinformatics.

The community-based service learning module was mentioned by five partic-
ipants as a positive experience during their undergraduate studies. Their experi-
ence during this module will be presented in the next sub-section. Other positive
experiences include learning new skills and the wide range of modules in different
subjects in their first year of study (these include human geography, geomorphol-
ogy, environmental sciences, meteorology, programming, systems theory, and
information systems theory). However, some participants considered the large
number of subjects and their relevance as frustrating. Programming modules
were regarded as both positive and negative experiences, depending on whether
participants found them challenging or not. Participants agreed that once they
grasped the concept of programming, it turned into a positive experience. Never-
theless, most participants would not pursue a career in geoinformatics software
development, and prefer analysis work. Interacting with industry representatives
and guest lectures were positive experiences for five participants. Financial prob-
lems were negative experiences for some participants, and also motivated them
through tough times (to avoid payment for repeating modules). One participant
was motivated to “make the family proud”.

Experience During the Community-Based Service Learning Module.
GMT320 is the first module during their undergraduate degree for which
only geoinformatics students can enrol. Positive experiences during the module
included the opportunity to do field work, getting hands-on experience using a

156 S. Coetzee and V. Rautenbach

GPS, completing a project from start to finish, and engaging with the community.
All participants mentioned community interaction as a positive experience. They
enjoyed learning about the community and sharing their knowledge about aerial
photographs and GPSs with the community. The community was an inspiration
to the participants because its members have so little, but are nevertheless full of
pride.

The terrain, heat and the language barrier were challenges during the field-
work, but provide the students with a true reflection of fieldwork in the ‘real
world’. The participants cited the need for the data to complete their project
as their main motivation when fieldwork got tough. A frustrating, but positive
experience, that most participants mentioned was the challenge of integrating
the data captured by the four groups. As a result of poor planning, the integra-
tion was not optimal and had to be repeated more than once. This was definitely
an obstacle for the participants, but all participants noted that this mistake had
taught them the importance of proper planning when starting a project.

The participants were very grateful for the opportunity to work with the
Viva Foundation, but due to their many other priorities and commitments, the
participants experienced Viva as having a lack of interest in the community
project. This led them to question the usefulness of the project. One participant
also had a bad previous experience with a community project (everything that
the students contributed with their community project was destroyed after a
few months) and that had influenced the participant’s perspective on commu-
nity engagement. Such experiences may negatively influence the participants’
willingness for future community engagement.

5 Conclusion

In this paper we presented students’ experiences of a community-based service
learning approach in a third year geoinformatics module. Students mapped an
informal settlement, captured information about dwellings and conducted a num-
ber of studies in support of environmental and social problem solving. The aim
was to raise awareness of social issues. We also wanted to understand students’
sense of social responsibility and their perception of the role of geoinformatics
in problem solving. After completion of the module, we conducted qualitative
research through in-depth interviews with ten students.

After completion of the module in the second semester of 2015, in-depth
interviews were conducted with ten students in March 2016. Before each inter-
view, the participant completed a professional responsibility assessment (EPRA)
from which a social responsibility score was calculated. The EPRA survey was
developed to better understand students’ attitude towards social responsibility
and the effectiveness of educational interventions. An SR score for each partic-
ipant was calculated from the EPRA survey, and showed that all participants,
except one, scored in the upper quarter, meaning that most of them have a high
sense of social responsibility.

Results of the in-depth interviews show that the participants have diverse
perceptions of social responsibility; some can even be regarded as misperceptions.

Community-Based Service Learning in a Geoinformatics Project 157

A strong social responsibility score correlates with a participant’s involvement
in volunteering. The participants’ experience in the community-based service
learning module has raised their awareness of important social issues in the
community, such as education, poverty, environmental issues and the lack of
service delivery infrastructure. If given the choice, participants would prefer to
work for an organisation that is involved in social responsibility projects.

Participants mentioned visualization and mapping as a means of rais-
ing awareness of social challenges through geoinformatics. The participants’
responses to questions about the role of geoinformatics in addressing challenges,
suggest that the role of geoinformatics in understanding social problems and in
solving them needs to receive more attention in the undergraduate curricula.
The real world experience of the community project provided the participants
with valuable lessons for their future careers. It taught them about the numerous
challenges one may face in fieldwork, such as terrain, weather and data integra-
tion. Additionally, students learned the importance of planning. They needed to
plan how four groups would go about capturing data and how the data would
be integrate into a single harmonised dataset.

The results of the in-depth interviews confirm the value of community-based
service learning in enhancing understanding of theoretical concepts [5,19] and
facilitating contributions to local communities [19]. In addition, the experience
prepared students for their future career, as also reported by Helzer [10].

Generally, interview participants reported a love of geography, maps and
technology as the reason for choosing geoinformatics as a career. The range of
possibilities and versatility of the application of geoinformatics interests partici-
pants about the field, there was no mention of contributing to society as a reason
for becoming a geoinformatics professional. These results are significantly differ-
ent to EPRA survey results with engineering students in the US who generally
linked engineering to social responsibility in some manner [17]. However, more
studies need to be done to make any general conclusion.

This was a first experience with a community-based service learning app-
roach in a geoinformatics module and it raises many questions for further work.
For example, in future, we will ask students about their perceptions of social
responsibility before and after completion of the module. This will provide a
clearer indication of how the module influenced their perceptions. The profes-
sional responsibility assessment needs to be revised to consider both human and
environmental issues, as both are relevant to geoinformatics work. The assess-
ment questions also need to be adapted to be more suitable for geoinformatics
students (as opposed to engineering) and they should consider South African cir-
cumstances. For example, international travel as a motivation for volunteering
seems to be irrelevant to South African students.

South Africa has a highly diverse population with a Gini coefficient of 59.3,6

indicating very high wealth inequalities in the population. There are also many
environmental and social challenges to be addressed and it is important to

6 http://data.worldbank.org/indicator/SI.POV.GINI?locations=ZA.

http://data.worldbank.org/indicator/SI.POV.GINI?locations=ZA

158 S. Coetzee and V. Rautenbach

understand how geoinformatics students can be made aware of the role of geoin-
formatics in addressing these challenges.

Acknowledgments. We would like to thank the Viva Foundation for the productive
collaboration on the GMT320 project in ‘Alaska’. We appreciate the financial support
for transportation of the students to the informal settlement provided by Community
Engagement at the University of Pretoria. Finally, we would like to acknowledge the
contribution by the ten students who participated in the interviews.

References

1. Bielefeldt, A., Canney, N.E.: Social responsibility attitudes of first year engineering
students and the impact of courses. In: Proceedings 121st ASEE Annual Conference
and Exposition, paper #9569, Indianapolis (2014)

2. Canney, N.E.: Assessing engineering students’ understanding of personal and pro-
fessional social responsibility. Ph.D. thesis, University of Colorado (2013)

3. Canney, N.E., Bielefeldt, A.: A framework for the development of social responsi-
bility in engineers. Int. J. Eng. Educ. 31, 414–424 (2015)

4. Canney, N.E., Bielefeldt, A.: A model for the development of personal and pro-
fessional social responsibility for engineers. In: Proceedings 199th ASEE Annual
Conference and Exposition, San Antonio (2012)

5. Dorsey, B.: Linking theories of service-learning and undergraduate geography edu-
cation. J. Geogr. 100, 124–132 (2001)

6. Duffy, J., Barry, C., Barrington, L., Heredia, M.: Service-learning in engineering
science courses: does it work? In: Proceedings ASEE Annual Conference and Expo-
sition, Austin (2009)

7. Giles, D.E., Eyler, J.S.: The impact of a college community service laboratory
on students’ personal, social, and cognitive outcomes. J. Adolesc. 17(4), 327–339
(1994)

8. Hamilton, C., Flanagan, C.: Reframing social responsibility within a technology-
based youth activist program. Am. Behav. Sci. 51(3), 444–465 (2007)

9. Harvey, F.: Values, choices, responsibilities: thinking beyond the scholarly place of
ethics for the GIScience and technology profession and GIScience. J. Geogr. High.
Educ. 38, 500–510 (2014)

10. Helzer, J.: Elearning by doing: a geographic approach to service learning and build-
ing community. Calif. Geogr. 50, 75 (2010)

11. Jordaan, M.: Community project module. University of Pretoria (2016). http://
www.up.ac.za/en/community-project-module/article/1949838/jcp-module

12. Leveson, L., Joiner, T.A.: Exploring corporate social responsibility values of mil-
lennial job-seeking students. Educ. Training 56, 21–34 (2014)

13. Mohan, J.: Thinking local: service-learning, education for citizenship and geogra-
phy. J. Geogr. High. Educ. 19, 129–142 (1995)

14. Neuman, M.: Teaching collaborative and interdisciplinary service-based urban
design and planning studios. J. Urban Des. 21(5), 596–615 (2016)

15. Pedersen, P.J., Meyer, J.M., Hargrave, M.: Learn global, serve local: student out-
comes from a community-based learning pedagogy. J. Exp. Educ. 38(2), 189–206
(2015)

16. Rulifson, G., Bielefeldt, A.: Engineering students’ varied and changing views of
social responsibility. In: Proceedings 122nd ASEE Annual Conference and Expo-
sition, paper #13591, Seattle (2015)

http://www.up.ac.za/en/community-project-module/article/1949838/jcp-module
http://www.up.ac.za/en/community-project-module/article/1949838/jcp-module

Community-Based Service Learning in a Geoinformatics Project 159

17. Rulifson, G., Bielefeldt, A.: Understanding of social responsibility by first year
engineering students: ethical foundations and courses. In: Proceedings 121st ASEE
Annual Conference and Exposition, paper #9425, Indianapolis (2014)

18. United Nations: United Nations Sustainable Development Goals (2015). http://
www.un.org/sustainabledevelopment/sustainable-development-goals/

19. Warren, J.L.: Does service-learning increase student learning? A meta-analysis.
Mich. J. Community Serv. Learn. 18(2), 56–61 (2012)

http://www.un.org/sustainabledevelopment/sustainable-development-goals/
http://www.un.org/sustainabledevelopment/sustainable-development-goals/

Which Are Harder? Soft Skills or Hard Skills?

Vreda Pieterse1(B) and Marko van Eekelen2,3

1 Department of Computer Science, University of Pretoria, Pretoria, South Africa
vreda.pieterse@up.ac.za

2 Open University of the Netherlands, Heerlen, The Netherlands
marko.vanEekelen@ou.nl

3 Radboud University Nijmegen, Nijmegen, The Netherlands

Abstract. This paper describes some technical and employability skills
that are essential for our students to succeed in a career in software
development. We conducted research aimed at understanding the stu-
dents’ problems when required to develop these skills. We explain our
techniques for observing skills gaps. Knowledge about these gaps enables
us to intervene and suggest remedial action. We discuss how we create
opportunities for our students to enhance their skills, based on our expe-
rience and the findings of our research.

Keywords: Software development · Technical skills · Employability
skills · Soft skills

1 Introduction

Apart from equipping our students with the technical knowledge and practical
experience needed to enter the workforce, it is our educational responsibility to
create opportunities for them to develop their employability skills.

Employment experts agree that technical skills may secure an interview, but
that soft skills may well be a decisive factor in landing and keeping a job. Poten-
tial employees are expected not only to have the skills required in the job descrip-
tion of a vacancy, but also to convince their potential employer that they will be
able to make progress in an enterprise and contribute successfully to its strategic
directions.

Our teaching is aimed at providing a complete learning experience to cover
the spectrum of skills required in a career in software development. These skills
can roughly be classified in two categories, namely technical skills, often called
hard skills and employability skills, commonly referred to as soft skills. Here we
mention a broad selection of each of these types of skills relevant to our context
and describe how we create opportunities for our students to develop these skills
in our final-year software engineering module.

2 Technical Skills

A software engineering course should introduce students to common soft-
ware engineering practices and tools from both a theoretical and a practical
c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 160–167, 2016.
DOI: 10.1007/978-3-319-47680-3 15

Which Are Harder? Soft Skills or Hard Skills? 161

perspective [10]. Every student should aquire the necessary technical fluency
skills such as unit testing, pair programming, refactoring and continuous inte-
gration. Besides these general skills and those specified in the Computer Science
Curricula 2013 report by ACM/IEEE [6], the following should receive attention:

Problem Solving. Higher cognitive skills such as inference, problem solving and
product development are learned through life experiences similar to those for
learning social skills. Stokes and Fisher [14] observe that working with constraints
is critical to creative achievement. For this reason, we emphasise constraints
when presenting the software development tasks in our course.

Configuration Management. It is common practice to use modern configuration
management tools, such as git,1 or subversion so that a team of people can
be facilitated to work concurrently on the same artefacts, resolving conflicts as
needed. We expect our students to use these tools.

Build Tools. Modern software systems are generally complex and building com-
plex systems requires identifying and configuring the dependencies among a vari-
ety of components, which may themselves be developed in different technologies.
Activities such as linking, compiling, testing, packaging, deployment and dis-
tribution of these systems are complex. It is standard practice in industry to
use platform-independent build tools which automate these activities. Examples
include make, Apache, Ant, Maven, Gradle and npm.

3 Employability Skills

The need for employability skills is emphasised in the Computer Science Cur-
ricula 2013 report by ACM/IEEE, where the knowledge areas explicitly include
social issues and professional practice as well as project management with all its
facets, as part of the software engineering knowledge area [6]. Liebenberg and
Pieterse [7] observe that high-value computing skills and capabilities alone are
not enough when one has to compete and succeed as a software developer in
industry. The following skills are important in all careers:

Communication. The success or failure of a software engineering project can
often be attributed to the effectiveness of communication among the various
stakeholders of the system under development [1]. We monitor our students’
communication skills by regularly evaluating all forms of communication, from
the quality of their comments in code and git commit messages, the quality and
coherence of the documentation of their projects to their presentation skills when
demonstrating their projects.

1 https://git-scm.com/.

https://git-scm.com/

162 V. Pieterse and M. van Eekelen

Management and Planning. It is well known that software engineering man-
agement and planning involve balancing the scope, budget, time-to-market and
quality of a software project. The consequences of bad planning may include the
failure of the project as well as interpersonal disasters [4]. We encourage the use
of software tools for project management, including the use of burn-down charts
and Gantt charts.

Teamwork and Collaboration. Teamwork is not merely the ability to work well
as a member of a team. It includes aspects such as getting along with people
of different ages, genders, races, religions or political persuasions; defining one’s
role in a team; identifying the strengths of the other team members; and being
able to lead a team effectively [8]. We aim to enhance the teamwork skills of our
students by fostering the characteristics of high-performing collaborative teams
identified by Cheruvelil et al. [3], namely the positive interdependence of team
members, effective communication, and individual and group accountability.

Interpersonal Relations. Interpersonal skills have two components, namely social
sensitivity and emotional engagement. Social sensitivity is the capacity to main-
tain healthy social relationships [16]. Emotional engagement is the level of empa-
thy one has for the other team members and one’s devotion to the project as
a whole [11]. During the first six weeks of our course, we assigned students to
short-lived teams to complete a task. This strategy provides a platform where
students are exposed to situations where they could use interpersonal skills in
cases where mistakes could be made without having to resolve the harm caused.

4 Relative Difficulty of Learning Hard and Soft Skills

We conducted a survey, asking our students to compare the difficulty of learn-
ing technical skills with the difficulty of acquiring social skills. There were three
options: the Pretoria University Software Engineering class, the Radboud Uni-
versity Software Engineering class [2], or both. To avoid the influence of cultural
differences, we chose a single university: Pretoria, since this university had the
highest number of students. The students had to answer the multiple-choice
question of Fig. 1, and then write a sentence or paragraph to explain the reasons
for their answer.

At the time, the participants were working in teams on their final capstone
projects. Of the 160 students in the class, 107 completed the survey, giving us a
response rate of 67 %. Five of the responses were incomplete and have not been
included in our analysis. We used the explanation that the respondents who
selected the middle option to classify them as being either both are challenging
or both are easy.

To visualise the relative ease with which the students mastered the two cat-
egories of skills, we classified each type separately in four classes, namely very
easy, easy, challenging, and very challenging. When classifying each respondent
in terms of their ease of acquiring social skills, students who indicated that both

Which Are Harder? Soft Skills or Hard Skills? 163

COS301 is about learning skills in a variety of domains. The development of skills,
whether technical or social, requires practice. Rate the level of difficulty for you to
acquire social skills relevant to work in your team in relation to the difficulty you
experience in acquiring technical skills relevant to your project.
— Acquiring social skills is fun: it comes naturally to me
— Acquiring social skills is easier
— I find both equally challenging or easy
— Acquiring technical skills is easier
— Acquiring technical skills is fun: I like solving technical problems

Fig. 1. The question students had to answer

Fig. 2. Number of students in each category per type of skill (n = 102)

were easy as well as those who indicated that they found social skills much eas-
ier were counted as very easy; those who responded that social skills were easier
were counted as easy; those who said technical skills were easier were counted as
challenging; and the rest were counted as very challenging. Similarly the students
were classified in terms of their comfort about learning technical skills. Figure 2
shows the results.

It is clear that the number of students in each of the classes is almost the
same for both types of skills, though the number of students who found it very
easy to overcome technical obstacles was marginally higher than the number of
students who had issues with mastering social skills. Stated differently, those
who struggle with social skills are only slightly higher in number than those who
struggle with technical skills. The majority of the students stated that they found
learning technical skills and acquiring social skills equally easy. A gifted student
who claimed to breeze through the academic programme made the following
claim:

I am already quite a social person and I really like to think I have a knack
for understanding technology at the same time.

164 V. Pieterse and M. van Eekelen

Many students who claimed that they did not have difficulties when social skills
were needed, based their argument on the fact that they already had these skills
or had the right personality to help them perform teamwork almost effortlessly.
The following remark is representative of the comments of these students:

I’m a social person. I do well in social situations and am the most sociable
guy in the group. So learning to interact with fellow group members wasn’t
challenging at all to me. I actually enjoyed it.

Another frequent reason the respondents gave for finding the acquisition of social
skills very easy was simply that the other people with whom they had to work
were pleasant and accommodating.

Since we are all friends I find the question above to be one sided since
we have already established the social skills in the group to work together.
Therefore I would find acquiring social skills to be easier.

Students who claimed that they found it easy to learn technical skills often
admitted that they shied away from the need to interact with people, as is
evident from the following remark:

I’m a more technical person and find social situations very hard to deal
with, so I’d much rather solve technical problems than deal with social
problems.

A number of students explained the aspects of social interaction that contributed
to their finding it difficult to master social skills. In contrast to technical knowl-
edge which is more likely to be exact, they pointed out that people were complex
and might be inconsistent. Often there are many ways to deal with people and
none of them is unconditionally wrong or guaranteed to have the required posi-
tive effect. These uncertainties might make it more challenging for these students
to collaborate with people than to learn technical aspects, as explained in the
following remark:

I am not the most social of people and dealing with technical aspects can
be frustrating but not as much as dealing with people. People can be quite
difficult at times.

A respondent found it difficult to trust other people and might be tempted to do
work on their behalf so as to ensure that the project would not fail not realising
that he was denying himself the opportunity to improve his management skills
and also denying the other team members an opportunity to gain technical
experience. The following comment by this respondent reveals this:

People tend to be unreliable and it is easier to finish a 1 hour bug fix than
to wait days or weeks for others to get to it. Ensuring others do their jobs
sometimes helps, however it also does put oneself behind on work and that
is risky.

Which Are Harder? Soft Skills or Hard Skills? 165

5 Recommendations

This pilot study revealed that, although many students are confident that they
are capable of learning the required skills, some individuals may need assistance
and encouragement to learn some of the skills. It is often the case that someone
who has reached high technical competency may lack social skills, and vice versa.
We recommend that a complete learning experience for all our students should be
ensured. We describe how we attempt to identify the skills gaps of our students
on an individual basis and how we provide opportunities for students to close
these gaps. This should serve as inspiration for others to apply similar strategies,
appropriate to their situation, to achieve the same goals.

5.1 Uncovering Skills Gaps

We subscribe to the learning theory of Gibbs [5], supported by Schank [13], that
doing is an effective way of learning. We believe that students learn best by
resolving their own issues because this increases their sense of accomplishment.
It is possible, however, that problems which are not dealt with appropriately at
an early stage may grow into bigger problems which may be difficult to resolve
at a later stage. For this reason, we observe the team activities closely and are
constantly on the alert to signs of underdeveloped skills that often manifest as
turmoil in a team.

We instruct our students to complete peer reviews at regular intervals. The
main purpose of these peer reviews is to provide a structured opportunity to
reflect on teamwork experiences. Such self-reflection may lead an individual to
discover personal skills gaps. Apart from serving as a reflection tool, we use
these reviews as an instrument to gauge the skill levels of the students. The
questions that the students have to answer are intended to guide them to reflect
on their own contributions and also on the contributions of the other members.
The questions used in our reviews are described by Marshall et al. [9].

We analyse the feedback the students provide in their peer ratings, using
the procedure described by Pieterse and Thompson [12]. This analysis reveals
whether or not there is conflict in a team, which may be an indication of a lack
of social skills. Students may report the inability of one or more of their peers to
complete certain tasks, in which case the lack of technical skills can be identified.

5.2 Closing Skills Gaps

Technical skills as well as social skills can be enhanced when students work
in teams. When students with varying viewpoints are grouped together for a
project, conflict is likely to arise. When a team deals constructively with this
conflict and follows procedure, the act of resolving as well as the resolution itself
will probably motivate the members. This in turn can contribute to improved
team performance. If a team performs at its peak, the combined achievement
could surpass the sum of the achievements of the individual members [15].

166 V. Pieterse and M. van Eekelen

The downside of differences in opinion and misunderstanding among mem-
bers, is that it may decrease motivation. We try to intervene swiftly and with a
constructive agenda when we observe signs of destructive conflict. We call our
unobtrusive intervention our chat-walk-chat strategy [10]. Ideally, from the stu-
dent’s point of view, these chats should seem coincidental, but from the staff
member’s point of view, they are an active means of seeking opportunities to
create a “coincidental” meeting. The use of social media and knowledge of the
lecture schedules of the courses for which the students are registered, make it
possible to bump into a student on campus and start a conversation aimed at
guiding the student to deal with the lurking problem.

When a student complains to staff members, we try to respond openly and
as soon as possible. In such a case, we arrange a meeting with all the students
involved. The meeting venue is the lecturer’s office and the time is agreed indi-
vidually with the students involved. We try to be as discreet and sympathetic
as possible and are careful not to reveal the whistle-blower to the affected par-
ties. We simply state that the issue came to our attention, describe the issue
in general terms and then ask all parties, including the whistle-blower, to state
their opinion about the truth of our summary of the problem. In most cases
the discussion can be steered towards better mutual understanding. Often the
whistle-blowers had a greater role in instigating the problem than they may care
to admit.

6 Conclusion

Our research revealed that many of our students were confident that they could
master the required skills. The students who stated that some of the skills might
be difficult to acquire have also succeeded in identifying the reasons for finding
it difficult and proposed actions they would take or had taken to overcome their
difficulties. This is evidence that our teaching strategies have been successful
and that the students are generally appreciative of our efforts.

In our presentation of the software engineering module, we aim to create
optimal opportunities for students to learn by doing tasks on their own, and to
develop the required skills through experiential learning, without smothering or
policing them.

In future work, we also intend to use the available data to check whether there
is a correlation between how students have participated and performed and how
hard they found the acquisition of the skills (both soft and hard). Furthermore,
it is the intention to enhance this study with a comparison between a Dutch
university and a South-African university, including the possibility of cultural
influences too.

Which Are Harder? Soft Skills or Hard Skills? 167

References

1. Bostrom, R.P.: Successful application of communication techniques to improve the
systems development process. Inf. Manage. 16(5), 279–295 (1989)

2. Buisman, A.L.D., van Eekelen, M.: Gamification in educational software develop-
ment. In: Proceedings of the Computer Science Education Research Conference,
CSERC 2014, NY, USA, pp. 9–20 (2014). http://doi.acm.org/10.1145/2691352.
2691353

3. Cheruvelil, K.S., Soranno, P.A., Weathers, K.C., Hanson, P.C., Goring, S.J.,
Filstrup, C.T., Read, E.K.: Creating and maintaining high-performing collabora-
tive research teams: the importance of diversity and interpersonal skills. Front.
Ecol. Env. 12(1), 31–38 (2014). http://0-dx.doi.org.innopac.up.ac.za/10.1890/
130001

4. Ferrucci, F., Harman, M., Ren, J., Sarro, F.: Not going to take this anymore:
Multi-objective overtime planning for software engineering projects. In: Proceed-
ings of the 2013 International Conference on Software Engineering, ICSE 2013,
pp. 462–471. IEEE Press, Piscataway (2013). http://0-dl.acm.org.innopac.up.ac.
za/citation.cfm?id=2486788.2486849

5. Gibbs, G.: Learning by Doing: A Guide to Teaching and Learning Methods. Far
Eastern University Publications, Manila (1988)

6. Joint Task Force on Computing Curricula ACM/IEEE: Computer sciencecurric-
ula 2013: Curriculum guidelines for undergraduate degreeprograms in computer
science, January 2013. http://dl.acm.org/citation.cfm?id=2534860

7. Liebenberg, J., Pieterse, V.: Career goals of software development professionals and
software development students. In: Proceedings of the Computer Science Education
Research Conference, CSERC 2016. ACM, New York (2016)

8. Marock, C.: Grappling with youth employability in South Africa. Technical report,
Human Sciences Research Council, Pretoria (2008)

9. Marshall, L., Pieterse, V., Thompson, L., Venter, D.M.: Exploration of participa-
tion in student software engineering teams. ACM Trans. Comput. Educ. (TOCE)
16(2), 5:1–5:38 (2016). http://doi.acm.org/10.1145/2791396

10. Omeleze, S., Pieterse, V., Solms, F.: Teaching modular software development and
integration. In: 6th Annual International Conference on Computer Science Educa-
tion: Innovation & Technology, pp. 178–197. GSTF (2015)

11. Parker, J.N., Hackett, E.J.: Hot spots and hot moments in scientific collaborations
and social movements. Am. Sociol. Rev. 77(1), 21–44 (2012)

12. Pieterse, V., Thompson, L.: Investigating the applicability of Belbin Roles on par-
ticipatory levels in IT student teams. In: Proceedings of the 44th Annual Con-
ference of the Southern African Computer Lecturers’ Association (SACLA), pp.
161–169. University of the Witwatersrand, Johannesburg (2015)

13. Schank, R.C.: What we learn when we learn by doing. Technical report, Technical
Report No. 60, Institute for Learning Sciences, Northwestern University (1995)

14. Stokes, P.D., Fisher, D.: Selection, constraints, and creativity case studies: Max
Beckmann and Philip Guston. Creativity Res. J. 17, 283–291 (2005)

15. Tziner, A., Eden, D.: Effects of crew composition on crew performance: does the
whole equal the sum of its parts? J. Appl. Psychol. 70(1), 85–93 (1985)

16. Woolley, A.W., Chabris, C.F., Pentland, A., Hashmi, N., Malone, T.W.: Evidence
for a collective intelligence factor in the performance of human groups. Science
330(6004), 686–688 (2010)

http://doi.acm.org/10.1145/2691352.2691353
http://doi.acm.org/10.1145/2691352.2691353
http://0-dx.doi.org.innopac.up.ac.za/10.1890/130001
http://0-dx.doi.org.innopac.up.ac.za/10.1890/130001
http://0-dl.acm.org.innopac.up.ac.za/citation.cfm?id=2486788.2486849
http://0-dl.acm.org.innopac.up.ac.za/citation.cfm?id=2486788.2486849
http://dl.acm.org/citation.cfm?id=2534860
http://doi.acm.org/10.1145/2791396

Various Experiences

A Case Study in the Use of the Five Step
Peer Evaluation Strategy to Improve a First
Year Computer Literacy Course: An Exercise

in Reflective Evaluation Practice

Mosiuoa Tsietsi(B)

Department of Computer Science, Rhodes University, Grahamstown, South Africa
m.tsietsi@ru.ac.za

Abstract. In this paper, I recount my experiences in conducting a com-
prehensive five step evaluative exercise which was aimed at collecting
feedback from various sources in order to help inform future teaching
interventions for a first year computer literacy course in a South African
university. The exercise centres on a focus group study that was con-
ducted with a number of students who had completed the course between
2013 and 2015 and solicited their feedback on the basis of their own per-
sonal experiences. The five step process in which this study was executed
included collecting feedback from a critical peer in addition to synthesis-
ing the author’s own insights. The study was prompted by the author’s
realization that feedback is most often mistaken for evaluation, whereas
evaluation is better conceived as the triangulation of various sources of
information. The use of a focus group study instead of the common feed-
back method of the questionnaire also helped engage the students more
robustly and was better suited as a tool to collect a richer set of qualita-
tive data. The study yielded useful insights which have implications for
teaching and learning activities, assessment of student learning and the
curriculum at large.

Keywords: Computer literacy · Reflective evaluation

1 Introduction

The focus of this paper is a first year computer literacy course that is offered by
the Department of Computer Science at my university. It is a single semester,
non-continuing course for non-computer science majors. The purpose of the
course is to provide students with the tools they need in order to be proficient
enough with computers and technology to be able to use them appropriately
within their departmental contexts. To facilitate this, the course is divided into
four modules: Spreadsheets, Human Computing and Publishing, with a brief
three week Introduction module at the beginning which I teach.

The literacy course is open to students from across the university, but is pecu-
liar in that it is mandatory for all first year Pharmacy students. Figure 1 shows
c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 171–178, 2016.
DOI: 10.1007/978-3-319-47680-3 16

172 M. Tsietsi

enrolment figures from 2011 to 2016. It is evident from the bar chart that class
sizes have remained moderately high throughout the years, no doubt in large
part due to the steady stream of incoming Pharmacy students.

Fig. 1. Overall Enrolment Figures from 2011 to 2016

Not only is the class size typically large, but the student population is usually
also very diverse. Diversity manifests itself in at least two different ways. Firstly,
there is a considerable degree of racial diversity. This is evident from Fig. 2 which
shows the same enrolment, only according to race. Figure 2 also shows that a
significant proportion of the students come from the historically disadvantaged
racial groups.

Fig. 2. Enrolment by Race from 2011 to 2016

Though it cannot be said for certain, but given the socio-political history of
the country, it is likely that a significant number of them come from rural or
township schools, and as such may not have had adequate exposure to computers
and technology due to the financial cost of setting up and maintaining a computer

A Case Study to Improve a Computer Literacy Course 173

lab. There is at least some anectodal evidence to support this whereby at the
start of every academic year I usually ask the students who had not studied
computers in high school to indicate this by raising their hands. About ≈ 75%
confirm this year after year, and the bulk of them are from the said racial groups.

Fig. 3. Enrolment by Degree (Curriculum) from 2011 to 2016

Secondly, diversity also manifests itself in the range of disciplinary back-
grounds from which the students come from. Figure 3 shows the degrees for which
the students who participated in the course were enroled. The figure shows the
dominance of the Pharmacy degrees, but also shows a signficant number of BSc
and to a lesser extent, BA degrees. It is important to note that my university is
informed to a large extent by a strong liberal arts tradition, and therefore per-
mits students to incorporate different specialisations from different faculties into
their degrees. So even where BSc or BA degrees appear, there is further diversity
if one drills down and explores how those individual degrees are composed.

2 Motivation

In light of these realities, I was interested in collecting data that could help assess
the extent to which the course was being taught in a manner that helped address
the challenges of massification and diversity. This is part of what is referred to as
reflective practice, where a teacher reflects on her experiences, and tries to assess
the efficacy of their approach in light of factors that impinge on their practice.

Over the years, I have conducted various feedback exercises, exclusively
through the medium of a questionnaire. My use of the questionnaire format
was a knee-jerk reaction that I executed without much critical engagement since
it was just standard practice in my department. However it is shown in [8] that
while questionnaires are quite common, there is little evidence to show that they
are well suited to help improve teaching practice. Furthermore, Morley [5] and

174 M. Tsietsi

Murray [6] argue that feedback taken only from students cannot be used to reli-
ably interrogate all aspects of teaching. They propose that additional sources
be incorporated into feedback exercises in order to triangulate data and derive
a more accurate assessment. As such, over the years, it became apparent to me
that evaluation is best conducted in a more comprehensive way that considers
feedback from various sources and not just the student.

3 Theoretical Underpinnings of Evaluation

In order for the teacher to know that she has taught in a good way, that teaching
must be evaluated. Evaluation is a contentious space for many reasons. Some
of the ways in which this is so are discussed in [9]; it shows that the process of
evaluation should not be considered in isolation from teaching activities, which
are often informed by the teacher’s attitudes about teaching.

He shows that there is a continuum that spans qualitative and quantitative
dimensions of teaching, which inform how teaching is then evaluated. The quan-
titative dimension of teaching is mostly teacher-focused, and is therefore associ-
ated with methods of evaluation that are geared toward measurability, scientific
rigor and precision. On the other hand, the qualitative method of teaching is typ-
ically student-focused, and is geared toward reflection (examining one’s practices
to reform what one does) and reflexivity (examining one’s attitudes/beliefs to
reform what one does).

While the author’s goal is not to denigrate the quantitative dimension, he
does show that, by itself, it lacks the capacity to realise the full potential that
evaluation exercises can deliver within critically reflective spaces in academia.
For instance, the two strategies could be mixed in ways that can facilitate a
better learning environment for the student.

The quantitative-qualitative paradigm is strikingly reminiscent of Pratt’s
work [7] on teaching perspectives. According to Pratt [7], all teachers adopt par-
ticular perspectives when teaching, and those perspectives can be categorised
neatly into a finite number of qualitatively different perspectives. Those per-
spectives are transmission, apprenticeship, developmental, nurturing and social
reform. They can be conceived as different expressions of teaching that are either
teacher-focused, student-focused, or a mixture of both, with transmission (strong
teacher-focus) and social reform (strong student-focus) at opposite ends of the
continuum. The author’s own teaching perspectives profile consists of a mixture
of a strong transmission and apprenticeship perspective.

Trigwell [9] admits that perspectives often straddle the line between the two
extremes. What does emerge, even for teachers with a strong teaching focus, is
that there is value in the adoption of a student-focus that considers what the
student is doing [1]. The teacher is encouraged to be reflexive and scholarly in
their approach to teaching, and to use evaluation as a internally-inspired exercise
that seeks to improve the quality of teaching for the benefit of the student,
as opposed to merely using it as an instrument to provide a set of results for
academic managers.

A Case Study to Improve a Computer Literacy Course 175

4 Exploring My Concerns

It is evident that class size and diversity are factors that require careful consid-
eration when conducting teaching and learning activities in such a course. In line
with this, as I reflected on my practice, I had a number of concerns related to
the way in which my teaching spoke to these realities. Therefore, I decided that
in line with creating a more enabling learning atmosphere that is more student-
focused, I would conduct a feedback exercise to solicit feedback that could better
help me respond to these special circumstances. Those concerns were as follows.

Suitability of the Lecture Venue: Due to class size, lectures are conducted
in large teaching venues, but I have always thought that the best environ-
ment to teach in would be a computer laboratory. This would allow students
to engage better with the practical skills they need to be able to demonstrate
in mid-week practical sessions. Furthermore, my suspicion is that students
who have been exposed to computers and technology before would be able to
navigate this gap between lecture and laboratory, but those will less prepa-
ration would be hampered the most in their learning.

Relevance of the Curriculum to Student’s Context: As a literacy course,
none of the students who complete the course will continue to pursue a qualifi-
cation in computer science. As such, it follows that students will be using what
they are taught to enhance their learning in their own departmental contexts.
As such, I was interested in finding out the extent to which what we teach them
is able to translate into proficiency in the student’s own contexts.

5 The Evaluation Instrument

5.1 Choosing an Instrument

One of the main objectives I had was to develop feedback for a specific purpose,
and to choose a suitable instrument for doing so. Much has been written about
the ineffectiveness of questionnaires as tools to transform teaching [3]. As such,
I began exploring alternative methods of addressing the concerns I had. In [4] it
is argued that quantitative feedback rarely helps to improve teaching practice.
The authors go on to suggest alternative mechanisms for conducting evaluation
including portfolios and interviews. Another example is a focus group where a
small number of participants are invited to collectively provide feedback on the
basis of a set of questions that an interviewer has prepared. The benefit of this
format is that the group can feed off each other and develop each others’ ideas
as each contributes their opinion. I felt that would be a good way to proceed.

To conduct my focus group, I involved former students who had completed
the course. Because I wanted to keep the session small and interactive, I reasoned
that a good sub-group would be the class representatives, so I invited six rep-
resentatives from previous years. With the help of the course-coordinator from
the Pharmacy faculty, the students were contacted and requested to participate.

176 M. Tsietsi

5.2 Choosing a Format

The five step strategy for peer review is a framework that identifies steps that a
teacher and a critical peer can use to develop a well-managed peer interaction.
The strategy is supported by the Centre for Higher Education Research Teaching
and Learning at my university [2]. While it is not a widely known strategy, it
is based on well known concepts such as self and peer assessment. It consists of
the following steps:

1. Pre-observational Meeting: This is meant to achieve a number of objectives
such as to develop rapport between the lecturer and the critical peer, com-
municate the purpose of the evaluation exercise and outline the aspects of
teaching that are to be evaluated.

2. The Observation: This refers to the actual session that informs the evaluation.
The peer is invited to attend the session where he or she must take into
consideration the objectives of the teacher and the specific aspects of the
session that the teacher wishes the peer to provide feedback on.

3. Period of Analysis: Once the session is over, the peers go away and consider
what they have observed. This process is meant to occur as soon as possible
after the session while the peers’ observations are still fresh in their minds.

4. Post-observational Meeting: Later, the peers report on their findings. The lec-
turer can then speak back to this feedback and the two can discuss strategies
to manage any matters arising.

5. The Report: Finally, a written report is given to the lecturer with a summary
of their findings.

6 Results and Discussion

The process was highly valuable and helped to shape and inform the focus group
study that I executed. In this section, I give a broad overview of the main points
that I gathered from the study, and the issues the students raised that I feel are
pertinent to my practice as a teacher.

6.1 The Unsuitability of the Lecture Venue

One of my main concerns had to do with the lecture venue being poorly suited
for teaching a practical course like computer literacy. One of the participants
explained that she had been intent on taking detailed notes in class. However,
when some of the more practical parts of the course began to be taught she
began to doubt whether there was any value in what she was doing:

“Honestly, I started off writing notes, then I just stopped. It felt like I
wasn’t learning anything” (Participant 4).

Another participant suggested that the lecturer could find some way of integrat-
ing the lectures and the practicals in some way:

A Case Study to Improve a Computer Literacy Course 177

“Maybe you can find a way, to like, integrate the lectures and the tuts, like
make it one thing almost . . . something to that effect . . . lectures should
be done in the computer labs on the screen and then you follow what the
lecturer is doing” (Participant 3).

As a result of these contributions some useful interventions could be employed.
For instance detailed notes with screenshots and steps could be provided which
the students could follow in-lieu of an actual computer in front of them. Also,
since students do their practicals in the middle of the week, a small amount of
time (i.e. 15 min) could be allocated at the start of the practical to do some
drill-and-practice exercises involving the repetition of actions in order to teach
or develop a skill. The benefit of such exercises is that they can be utilised as
foundational blocks for more meaningful learning.

6.2 Teaching in the Departmental Context

The participants showed that as part of their externship in a pharmacy, they
have to use a computer program known as ‘Unisolv’:

“They have a computer system called Unisolv so we were thrown into the
deep end because we had never seen this program before we have never used
it before . . . and it’s hard for the pharmacists and assistants who are work-
ing to teach you because they have their own work to do” (Participant 3).

Hearing this from the students was interesting because it identified a gap in our
curriculum. While I do not advocate that domain specific programs be taught
in the course, I do believe that it is possible to expose students on some level
to different kinds of interfaces and how those interfaces compare with standard
Microsoft packages. To help ease the students into packages like Unisolv, the
mastery of shortcuts needs to be re-informed, since there are no buttons and
less of an emphasis on menu items. The abstraction of a number of interface
layers that cannot be seen (unlike in Windows where multiple windows can be
opened) could be better emphasised so that students are able to understand that
systems can manage windows or multiple interfaces in different ways.

7 Conclusion

This paper has detailed work in progress related to the development of teaching
interventions that were inspired by robust, qualitative evidence derived from
student and peer interaction. It has shown how lecturers should be aware of the
contexts in which they teach and attempt to respond to factors that impinge
on their practice, such as massification and diversity. Notably, it was shown
in [10] that closing the feedback loop, which is a term for providing feedback
to participants, is an important yet neglected aspect of evaluation exercises. As
such, after this study was executed, a summary of the findings and list of intended
interventions was sent to the students. It is hoped this democratic gesture will
have implications on how students respond to feedback exercises in future and
demonstrate that they can be active participants in curriculum development.

178 M. Tsietsi

References

1. Biggs, J.: What the student does: teaching for enhanced learning. High. Educ. Res.
Dev. 18(1), 57–75 (1999)

2. Centre for Higher Education Research Teaching and Learning: Evaluation of teach-
ing and courses. Rhodes University, Grahamstown (2013)

3. Kember, D., Leung, D., Kwan, K.: Does the use of student feedback questionnaires
improve the overall quality of teaching? Assess. Eval. High. Educ. 27(5), 411–425
(2002)

4. McKeachie, W., Kaplan, M.: Persistent problems in evaluating college teaching
(2007). http://cedar.olemiss.edu/depts/vc academic affairs/problems.html

5. Morley, D.: Claims about the reliability of student evaluations of instruction: the
ecological fallacy rides again. Stud. Educ. Eval. 38, 15–20 (2012)

6. Murray, H.: Does evaluation of teaching lead to improvement of teaching? Int. J.
Acad. Dev. 2(1), 20–41 (1997)

7. Pratt, D.: Good teaching: one size fits all?. In: Ross-Gordon, J. (ed.) An Update
on Teaching Theory, pp. 5–16. Jossey-Bass, San Franciso (2002)

8. Saroyan, A., Amundsen, C.: Evaluating university teaching: time to take stock.
Assess. Eval. Highjer Educ. 26(4), 341–353 (2010)

9. Trigwell, K.: Judging university teaching. Int. J. Acad. Dev. 6(1), 65–73 (2001)
10. Watson, S.: Closing the feedback loop: ensuring effective action from student feed-

back. Tert. Educ. Manag. 9(2), 145–157 (2003)

http://cedar.olemiss.edu/depts/vc_academic_affairs/problems.html

Enterprise Resource Planning Teaching
Challenges Faced by Lecturers

in African Higher Education Institutions

Khadija M. Mahanga and Lisa F. Seymour(B)

Department of Information Systems,
University of Cape Town, Cape Town, South Africa
mhnkha002@myuct.ac.za, lisa.seymour@uct.ac.za

Abstract. Enterprise Resource Planning (ERP) is considered a scarce
graduate competence due to ERP pervasiveness in industry. In response
the international Information Systems 2010 curricula includes ERP cour-
ses. Yet most African HEIs struggle to integrate and teach technology due
to challenges such as poor technology infrastructure. Hence developing
ERP courses comes with major challenges. Therefore this research aimed
to identify challenges of teaching ERP in African HEIs. The study in a
case from Namibia and Tanzania confirmed literature challenges such
as financial constraints and insufficient technological infrastructure, and
new challenges emerged such as course scheduling challenges and dealing
with diverse students such as part-time and distance learning students.
The study proposes strategies to deal with these challenges.

Keywords: Enterprise resource planning · ERP education · ERP chal-
lenges · African ICT education · Tertiary education · Teaching challenges

1 Introduction

African Higher Education Institution (HEIs) have been striving to integrate
Information Communication Technologies (ICTs) in their curricula [16], in
response to pressure and demand by industries for ICT graduates. Yet ICT
integration in African HEIs a complex process [4,12]. An Enterprise Resource
Planning (ERP) system is an enterprise-wide software system that provides
comprehensive functionality and allows integration of core business processes
in organizations [14]. ERP systems offer benefits to ERP adopters [6,13] which
has driven adoption and the demand for ERP specialists to implement, maintain
and support these systems in organizations [5,19]. In response to this demand,
the international information systems (IS) model curriculum (IS2010) recom-
mends that most IS career tracks include enterprise systems [17]. Several HEIs
globally and in Africa have integrated ERP knowledge into curricula [14]. Yet,
introducing new ICT in teaching introduces challenges for HEIs and these are
more pronounced in Africa [10]. Hence motivating this study to identify and
describe challenges faced by HEIs while teaching ERP in African HEIs and
c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 179–186, 2016.
DOI: 10.1007/978-3-319-47680-3 17

180 K.M. Mahanga and L.F. Seymour

suggest solutions to dominant challenges. Also answering a call for more ERP
education research as the area has been described as under-researched [8].

2 Challenges in Teaching Technology in Africa

Many studies have identified barriers to ICT teaching in Africa. Firstly, imple-
menting new courses in HEIs is protracted due to its long process [4]. Some
administrators fear the expense of starting new courses while others keep away
from new tracks as they are rooted to their traditional tracks [1]. The lack of
a systematic approach to ICT implementation is also reported as a challenge
[16]. Many HEIs in developing countries embrace the ICT integration process
without clear plans and strategies to guide the process of integration [10]. Fur-
thermore, most HEIs in Sub Saharan Africa (SSA) have limited infrastructure
such as internet access, bandwidth, hardware and software provision and unreli-
able access to electricity [3]. Lack of technical and structural support is another
barrier [16]. Other challenges are teachers’ lack of expertise and confidence in
ICT, lack of appreciation and negative attitude towards ICT integration, lack
of top management involvement and lack of funds [18]. As with ICT integra-
tion, ERP integration is challenging. Firstly, developing ERP curricula demands
detailed planning, high ICT support, and is time consuming [4]. ERP Curric-
ula development includes organizing course materials, qualified trainers, ERP
systems, case studies, and examinations [14,15]. Developing ERP case studies
that can adequately capture the range of complexities and decision points of
the dynamic nature of process implementation in organizations is challenging
[4]. Moreover, HEIs cannot afford to adopt ERP equipment at the same rate as
ERP implementers, making it difficult to offer ERP courses that are relevant and
up-to date [7]. On the other hand, it is mentioned that ERP systems provided
by vendors to institutions are not designed for instructional purpose, making the
whole learning process challenging to students [4]. These potential ERP teaching
challenges were used as a framework for this research.

3 Research Method

This paper aimed to answer the main research question: What are the challenges
faced while teaching ERP education in African HEIs? As ERP education is new
to African HEIs, the research adopted an exploratory and qualitative approach to
seek insights on the challenges faced. A case study strategy was used using both
observations and interviews. Two HEIs (coded as NT and UD) were purposively
selected. Both had joined the Enterprise Systems Education for Africa (ESEFA)
project [9], a HEI public-private funded project collaborating on curriculum
and training. Data was collected through semi structured interviews with ERP
lecturers (Table 1), and through observations during the first ERP course which
included hands-on ERP exercises and theory through class lectures.

ERP Resource Planning Teaching Challenges 181

Table 1. Profile of participants

Interviewee Job Title ERP Theory Teaching
Experience

ERP Practical
Teaching Experi-
ence

I1 Senior Lecturer 10 years 4 years

I2 Lecturer 6 years 3 years

I3 Lecturer 1 years 1 years

I4 Lecturer 4 years 2 years

I5 Senior Lecturer 8 years 4 years

I6 Senior Lecturer 6 years 0 years

I7 Lecturer 2 years 0 years

Table 2. Table of findings and source of data

4 Data Analysis and Findings

Table 2 shows the challenges identified by the two sources of data (interviews and
observation) from each case study. The conversational density (how many times
each challenge was mentioned) of themes is provided for interviews per case and
a mark is given for challenges observed. Italicised themes were not found in the
literature.

4.1 Administration Challenges

Two administration challenges that emerged were insufficient support and com-
mitment from senior administration and resistance to change. Lack of appreci-
ation of ICT was found in the literature but was not evident in this research.
Senior administration assist in operational strategies for teaching ICT which

182 K.M. Mahanga and L.F. Seymour

may include promoting and advertising the course to students and staff, man-
aging ICT and other resources and managing the effectiveness of the teaching
process [3]. Lack of management involvement and administrative support is one
of the barriers of teaching ICT in most African HEIs [16]. Interviews confirmed
this: “So for now, the support is there but it is not really enough. We need more
assistance from them. We lack enough resources, the labs are not sufficient” (I5).
“We truly do not have the support from the administration. Lecturers need to
put more effort to make sure the course succeeds” (I7). Resistance to change by
administrators and policymakers of HEIs in recognizing, accepting, and respond-
ing to the significant change in ICT innovation and industrial demands has been
noted [3]. We observed some reluctance to adopt ERP. In contrast with the lit-
erature which notes little knowledge and appreciation of integrated ICTs [18],
it was evident that despite poor involvement in ERP teaching at HEIs, top
management had appreciation of ERP systems: “A senior administrator of the
school gave a speech to the class which introduced the ERP ESEFA short course,
and highlighted the importance and demand of ERP systems in the country and
encouraged students to put effort on the course” (I6).

4.2 Technology Challenges

Technology related challenges to achieving ERP learning objectives identified in
the literature were poor infrastructure, poor or no access to ERP systems and lack
of technical support. Lack of technical support did not emerge in the interviews,
however one author observed that technical administrators solved technical prob-
lems that arose and the HEI project helpdesk also provided technical support.
Consistent with the literature [3] poor technology infrastructure was a dominant
challenge: “We face technology problem like slow internet connection, insufficient
number of computers in the labs to accommodate students” (I7). Students have bet-
ter understanding and satisfaction of ERP courses when incorporating hands-on
ERP systems [14]. Yet HEIs cannot afford to adopt ERP systems at the same rate
as ERP implementers [7]. The HEI project reduced this challenge: “The challenge
we had was to find a real live system to train students” (I1).

4.3 Resource Challenges

Two dominant themes were identified under the resource challenge category:
lack of financial resources and lack of expertise. ERP teaching in HEIs demands
financial resources to support it [7]. The lack of funds was related to lack of
administration support. Top management fail to commit themselves to ERP
teaching because of insufficient funds. This resulted in poor or no access to ERP
systems for instructional purpose. “So I think they would want to support us, but
however money is a problem” (I7). “Before the ESEFA project, we had access
to SAP ERP systems for practice but the initiative failed because the university
did not have money to pay for the license” (I5). Studies indicated that HEIs
lack teachers with expertise and confidence in ICT hindering the teaching of
technology in most developing countries [11]. Specific expertise is needed for the

ERP Resource Planning Teaching Challenges 183

planning and delivery of ERP courses to students. Academics with these skills
also play a role in motivating faculty who are not convinced or do not appreciate
the ERP technology. HEIs lack enough expertise, quoting participants: “The plan
is having more student intake next time we run the course, which definitely points
to the need of having more lecturers as they won’t be enough” (I4).

4.4 Student Challenges

Student related challenges that were identified in literature included: lack of
motivation, student understanding, and cost issues where students could not
afford the course. These, however, did not emerge from the interview. Lectur-
ers commented that students were fully motivated and could afford the course.
Affordability, however, was mentioned in that it would be a concern once the
HEI project funding ends. “Students could not afford earlier ERP programme,
TERP10, which we tried. With ESEFA, at least some can afford. So they are
overcoming the finance challenge” (I2). Interview analysis identified student
background and enrolment status as challenges under this category. This theme
was a new theme not found in the literature. ERP courses are often taught in
multiple disciplines and to a variety of students, and this was a challenge as
some students do not have the business background needed. “When it comes
to theoretical part, some students have difficulty to relate to the content because
they don’t have the business background” (I4). Challenges were faced in one case
with regards to students’ enrolment status. The HEI model appears to be mov-
ing from the more traditional full-time student and NT students were either
full time, part-time, or distance learning. This raised concerns on student atten-
dance in terms of time and other responsibilities. “Most part-time students are
familiar and motivated to ERP especially having the hands-on experience with
system. But the challenge they have is getting enough time to accommodate this
course” (I2).

4.5 Teaching Challenges

Literature teaching challenges were difficulty in planning and structuring courses
and insufficient course content. Scheduling was a new theme that emerged. While
literature had identified insufficient ERP course content in HEIs (i.e. learning
manuals, ERP case studies that capture the range of complexities in industries,
and examinations) as a barrier towards ERP teaching [4], the HEI project pro-
vided course content to HEIs lessening this challenge although academics are
keen to expand the number of modules covered and develop more ERP case
studies: “ESEFA ERP course is more detailed than our previous course. But I
think the system itself covers a lot of things (modules) that we can also cover in
the course. And there is a need to have more industry case studies” (I5). Plan-
ning ERP courses involves detailed preparation and structuring of content such
as case studies and setting up of theory classes and practical classes. ERP courses
need qualified trainers, sufficient infrastructure and sufficient content [5,14,15].
Interview analysis did not point out substantial challenges in the preparation

184 K.M. Mahanga and L.F. Seymour

of the course content, which could be as a result of the HEI project curriculum
used. Courses that have both theory and practical need a well-planned sched-
ule. Scheduling was a theme that was evident in both cases. NT ran an ERP
course during a short vacation period when computer laboratories are easily
accessible and there is a fast internet connection. Academics raised a concern
that scheduling the ERP course in their traditional schedule is an enormous
challenge considering part-time and distance students. At UD the course needed
to repeat practical sessions because of insufficient computers. This was resolved
by installing the ERP user interface on some students’ personal computers. The
scheduling challenge is seen to be linked to the lack of technical resources (i.e.
hardware, network bandwidth) in HEIs, insufficient expertise, and student enrol-
ment status which affects their course management. As quoted: “The only chal-
lenge we faced planning the course, is getting labs. So we end up booking in this
short vac. However, this has limit the distance learning students as they mostly
use vacation period to meet their lecturers and catch up” (I2). “As you can notice
now, practical sessions are hard to conduct with students in 4 different labs and
few number of lecturers that we have” (I5).

4.6 Discussion of Findings

When contrasting literature challenges with those HEIs experience the HEI
project was able to reduce some. Firstly HEIs were able to get affordable access
to ERP systems hosted elsewhere. Secondly ERP courses were more affordable
due to less cost being incurred in course preparation and system access. Thirdly
the project curriculum resolved difficulties with insufficient course content and
finally training of lecturers by the project improved the expertise and confidence
of academics. The concern is that many challenges might re-emerge after the
funding ends and while the project grapples with ensuring sustainability post
funding. Yet on the positive side the project has shown the benefits of HEIs part-
nering and sharing teaching content to improve learning outcomes and decrease
teaching challenges.

Figure 1 shows the dominant ERP teaching challenges experienced by the
two HEIs in this case study. Most challenges were initially caused by a lack of
financial resources. This results in poor technological infrastructure and insuffi-
cient expertise (in the form of lecturers and technical support staff). A further
challenge was catering for part-time and distance students. The main resultant
challenge appeared to be scheduling ERP courses considering the combination
of insufficient infrastructure, insufficient lecturers and part-time and distance
students. Already the HEIs studied were trying to overcome these challenges by
allowing students to install the ERP software on their own personal computers
and by duplicating classes. This would suggest that there is a need for a more
flexible teaching model which allows students remote access to ERP systems
and on-line lecture recordings. These are strategies HEIs could adopt to assist
in overcoming these challenges.

ERP Resource Planning Teaching Challenges 185

Fig. 1. Model of dominant ERP teaching challenges

5 Conclusion

This research aimed to identify ERP teaching challenges faced in SSA HEIs.
Potential challenges were identified from the literature by merging challenges of
teaching technology in Africa and challenges of teaching ERP. The study then
analyzed two cases. A limitation is that only lecturers were interviewed. Teaching
ICT requires computer technicians, teaching assistants and tutors and a richer
understanding of ICT education challenges would emerge from a broader range
of interviewees. Four categories of challenges emerged. Firstly some challenges
relevant to other technologies such as lack of student motivation did not emerge.
Secondly it was noted that a HEI collaborative project was able to overcome
some challenges such as expertise and confidence of educators and insufficient
course content. It seems African ICT education can benefit from such public-
private ICT projects and more research on these projects, their benefits and
sustainability is needed. Thirdly challenges which were consistent with the lit-
erature included lack of financial resources, poor technological infrastructure,
insufficient expertise and lack of top management commitment and administra-
tive support. Finally new challenges emerged inductively such as challenges in
scheduling and dealing with students with different enrolment statuses. These
new challenges seem to be challenges emerging as the nature of HEIs evolves and
needs more research. The final resultant model of dominant challenges that HEIs
experienced as they started teaching ERP points to the need for strategies that
can deal with technological constraints at HEIs and part-time and distance stu-
dents. Strategies suggested include the recording of lectures and making software
more accessible to students off campus. However the unintended consequences
of these strategies needs research.

186 K.M. Mahanga and L.F. Seymour

References

1. Alford, K.L., Carter, C.A., Ragsdale, D.J., Ressler, E.K., Reynolds, C.W.: Spec-
ification and managed development of information technology curricula. In: Pro-
ceedings of the 5th Conference on Information Technology Education, pp. 261–266
(2004)

2. Alshare, K.A., Lane, P.L.: Predicting student-perceived learning outcomes and
satisfaction in ERP courses: An empirical investigation. Commun. Assoc. Inform.
Syst. 28, 571–584 (2011)

3. Bingimlas, K.A.: Barriers to the successful integration of ICT in teaching and
learning environments: A review of the literature. Eurasia J. Math. Sci. Tech.
Educ. 5, 235–245 (2009)

4. Cameron, B.H.: Enterprise systems education: New directions and challenges for
the future. In: Proceedings of the 2008 ACM SIGMIS CPR Conference on Com-
puter Personnel Doctoral Consortium and Research, pp. 119–126 (2008)

5. Chen, K., Razi, M., Rienzo, T.: Intrinsic factors for continued ERP learning: A
precursor to interdisciplinary ERP curriculum design. Decis. Sci. J. Innovat. Educ.
9, 149–176 (2011)

6. Cronan, T.P., Douglas, D.E.: Assessing ERP learning (management, business
process, and skills)and attitudes. J. Organ. End. User. Comput. 25, 59–74 (2013)

7. Davis, C.H., Comeau, J.: Enterprise integration in business education: Design and
outcomes of a capstone ERP-based undergraduate e-business management course.
J. Inform. Syst. Educ. 15, 287–300 (2004)

8. Eden, R., Sedera, D.D., Tan, F.: Archival analysis of enterprise resource planning
systems: The current state and future directions. In: Proceedings ICIS 2012 (2012)

9. ESEFA: http://www.esefa.ac.za
10. Furuholt, B., Ørvik, T.U.: Implementation of information technology in Africa:

Understanding and explaining the results of ten years of implementation effort in
a Tanzanian organization. Inform. Tech. Dev. 12, 45–62 (2006)

11. Hennessy, S., Harrison, D., Wamakote, L.: Teacher factors influencing classroom
use of ICT in sub-Saharan Africa. Itupale Onl. J. of Afri. Stud. 2, 39–54 (2010)

12. Lotriet, H.H., Matthee, M.C., Alexander, P.M.: Challenges in ascertaining ICT
skills requirements in South Africa. S. Afr. Comput. J. 46, 38–48 (2010)

13. O’Leary, D.E.: Enterprise resource planning (ERP) systems: An empirical analysis
of benefits. J. Emerg. Tech. Account. 1, 63–72 (2004)

14. Scholtz, B., Cilliers, C., Calitz, A.: A comprehensive, competency-based education
framework using medium-sized ERP systems. J. Inform. Syst. Educ. 23, 345 (2012)

15. Shtub, A.: A framework for teaching and training in the enterprise resource plan-
ning (ERP) era. Int. J. Prod. Res. 39, 567–576 (2001)

16. Sife, A., Lwoga, E., Sanga, C.: New technologies for teaching and learning: Chal-
lenges. Int. J. Educ. Dev. ICT. 3, 57–67 (2007)

17. Topi, H., Valacich, J.S., Wright, R.T., Kaiser, K., Nunamaker Jr., J.F., Sipior,
J.C., de Vreede, G.J.: IS 2010: Curriculum guidelines for undergraduate degree
programs in information systems. Commun. Assoc. Inform. Syst. 26, 18 (2010)

18. Tusubira, F., Mulira, N.: Integration of ICT in organizations: Challenges and
best practice recommendations based on the experience of Makerere University
and other organizations. In: International ICT Conference held at Hotel Africana,
Kampala, Uganda, September 2004

19. Winkelmann, A., Leyh, C.: Teaching ERP systems: A multi-perspective view on
the ERP system market. J. Inform. Syst. Educ. 21, 233 (2010)

http://www.esefa.ac.za

Grit and Growth Mindset Among High School
Students in a Computer Programming Project:

A Mixed Methods Study

Delia Kench1(B), Scott Hazelhurst2, and Femi Otulaja3

1 School of Computer Science,
University of Witwatersrand, Johannesburg, South Africa

kenchd@stbenedicts.co.za
2 School of Electrical and Information Engineering,

University of the Witwatersrand, Johannesburg, South Africa
scott.hazelhurst@wits.ac.za

3 Science Teaching and Learning Centre, Faculty of Science,
University of the Witwatersrand, Johannesburg, South Africa

femi.otulaja@wits.ac.za

Abstract. This paper investigates the effects of grit (“passion and per-
severance for a long-term goal”) and growth mindset in grade 11 high
school students (Terminological clarification: Throughout this paper
the term ‘students’ refers to the pupils in secondary education before
university. In the South African discourse they are typically refered to
as ‘learners’.), as they code a non-trivial programming project in Java.
Students are guided through the stages of the development of a program-
ming project by the teacher and are given a rubric describing the criteria
for assessment. The project is scaffolded by the teacher. Assessments are
frequent with detailed feedback provided to the students. The students’
grit and mindset are measured using questionnaires to form part of the
quantitative data, together with the number of times each student sub-
mitted his project. Six students were interviewed to provide detailed
qualitative data to interrogate the qualitative data. Although the corre-
lation between the grit and mindset was weak, a stronger correlation was
determined between the number of submissions and the project scores..

Keywords: Grit · Growth mindset · Teaching programming · Sec-
ondary education (highschool)

1 Introduction

Computer programming is difficult for students to master because of its complex-
ity. This includes learning the syntax of the language, the use of the Integrated
Development Environment (IDE), problem-solving strategies, testing strategies
and coping with errors. This paper focuses on how students cope with errors
and their resulting problem-solving strategies. In order to master the skills of
programming, a student needs to persevere to fix the many different errors and
c© Springer International Publishing AG 2016
S. Gruner (Ed.): SACLA 2016, CCIS 642, pp. 187–194, 2016.
DOI: 10.1007/978-3-319-47680-3 18

188 D. Kench et al.

mistakes. The logic in programming is like mathematics where the skills accu-
mulate over time with each concept building on previous concepts [1].

Students developing programming projects are often frustrated when they
encounter errors and find difficulty in completing complex programming tasks.
Programming, in itself, is difficult and requires discipline with constant practice.
Students need to seek out alternate strategies [10] and be prepared to fail without
reacting negatively. This trait is known as grit, i.e. passion and perseverance for
a long-term goal, which can predict success over and above intelligent quotient
(IQ) [6].

Linked to the lack of grit is the students’ perception of their intellectual
ability as being fixed and their failure to achieve as something they cannot
control [1]. Students with a growth mindset who believe that their intelligence
can be changed with perseverance and effort will, more likely, succeed. Learning
to program can easily produce a fixed mindset [5] since there are so many ways
a student can get stuck which can induce a student to give up. Students with a
growth mindset are more likely to employ alternate strategies to address their
problems as the problems arise.

An important factor in this process is the use of praise and feedback. Students
who are praised for their efforts as opposed to their intelligence and ability are
more likely to focus on developing their skills by mastering new materials [11].
The use of constructive and formative feedback to increase motivation [9] and
guide the student to the solution has been proven to produce positive outcomes.

Little research has been done that combines grit and growth mindset in high
school students whilst they develop a significant programming project in South
Africa. This paper explores how grit and growth mindset influence/shape the
learning of high school students in a programming project (PAT). We measured
academic performance, grit and mindset, number of submissions and conducted
interviews with a subset of the students participating in the project. A mixed
methods approach [4] is used to analyse the data.

2 Literature Review

2.1 What Is Growth Mindset?

In a study of junior high school students in a mathematics course, Blackwell
et al. [1] showed that adolescents’ beliefs about their intelligence inform their
motivation for achievement. Some students believe that intelligence is fixed or
unchangeable, (fixed ‘entity’), which is termed an entity theory. Others believed
that intelligence can change and be developed, which they termed an incremental
theory. Blackwell discovered that students who had a more incremental theory
of intelligence had a distinct advantage over those with a more entity theory of
intelligence stance; and had achieved better results in their first year of junior
high [1]. The adolescents who endorse an incremental theory of intelligence held
stronger learning goals and held a positive belief about efforts, made more pos-
itive statements about their ability and created strategies based on efforts in
relation to failure which as a result boosted their achievement in mathematics.

Grit and Growth Mindset Among High School Students 189

Cutts et al. [5] used a growth mindset approach to teaching programming
with first year university students in an introductory programming course over
a six-week period with test scores being used as a measure of effectiveness. They
discovered that when students struggle with programming problems, they can
develop a fixed mindset unless they are encouraged with alternative strategies.
After six weeks, there was a positive effect for those who received growth mindset
training. On the average, people who were taught about mindset showed a shift
toward a growth mindset and those who were not taught about mindset showed
a shift toward a more fixed mindset during the course [5].

2.2 What Is Grit?

Grit overlaps with but is different to mindset. According to Duckworth et al.
[6], grit is a non-cognitive quality that emphasises the long-term stamina of an
individual who will finish tasks and pursue an aim over a period of years. Grit is
not a single entity; it is made up of efforts and continued interest despite failure
or adversary. The study of grit as predictor of success has been developed to
include a grit scale which is a tool to measure grit in individuals [7].

While there is a vast amount of research relating IQ to academic achievement,
there is far less on the non-intellectual strengths of an individual compared to
his/her academic achievement. Little is known about other factors that could pre-
dict academic performance. In studying why some individuals accomplish more
than others with similar intelligence, there is need to consider other attributes of
an individual [6]. Research has indicated that individuals identified as possessing
grit often seem to demonstrate sustained efforts and interests over many years
regardless of failures and setbacks. As examples, they found that IQ was less of
a predictor for academic performance than self-discipline in a longitudinal study
involving the 2005 Scripps National Spelling Bee and freshman candidates who
entered the United States Military Academy, West Point, in July 2004.

2.3 Scaffolding Combined with Feedback

Feedback is significant when a student is developing a project as it forms part
of formative assessment. The student is able to answer questions like [2]:

– What knowledge or skills do I aim to develop?
– How close am I now?
– What do I need to do next?

With the use of the adapted rubric provided by the Independent Examination
Board (IEB), a grade 12 assessment body, which clearly denotes the skills and
level of competency required at each stage, students can determine their success
in the project they are programming. Feedback needs to address cognitive and
motivation factors. This leads to the feeling of having control over their progress,
which could be the motivational factor [2].

190 D. Kench et al.

Contemporary learning theories support two ideas, namely [12]: that knowl-
edge is constructed, and that learning and development are processes that are
embedded in our culture and supported socially.

Scaffolding and formative assessment help move a student through a zone of
proximal development (ZPD) [13]. Scaffolding is the support given by teachers
to students in the form of hints, encouragement, and reminders to ensure the
successful completion of a task.

In a study conducted on teaching software engineering to 16-to-18-years old
high school students, the importance of positive feedback in increasing motiva-
tion was emphasized [9]. The researchers recognised that motivated students can
outperform a more talented student with less motivation. They linked motiva-
tion to interests in the topic with the teacher assessing whether the choice was
feasible and the additional skills required for students to be able to develop their
project [9]. The gap in their knowledge was bridged by scaffolding in the form
of tutorials and articles.

In programming, students will frequently experience problems with their cod-
ing; either in syntax, run time or logical errors. Successful students will employ
a repertoire of strategies to get ‘unstuck’ when programming [10] linked to this
success is the ability to persevere when coding problems occur. A student may
need to use a variety of strategies, such as [10]:

1. getting help from other sources (peers, the Internet, and books);
2. working on similar examples;
3. trying to understand the problem by representing it using diagrams or break-

ing it down into smaller parts; and lastly
4. by ‘using the force’, which is described as the student telling him/herself to

remember, think and persevere.

3 Study Design

3.1 Study Setting

This study was performed in a private Catholic school which highly values aca-
demic achievement. The school is located in a wealthy area of a large South
African city and most, if not all, participants come from affluent families. Most
students are white with a few Asian, Indian and Black students. By the start
of this project the boys were familiar with the programming concepts taught
previously and were able to code objects, arrays of objects, a basic GUI in Java
and create a database in Microsoft Access. The students had basic programming
skills to debug code, fix run time and logical errors for small programs.

Whilst debugging a program is important, this skill was not measured, only
the grit and perseverance when debugging a program will be measured. Students
may improve their debugging skills during the study, but this result will not form
part of the study.

Grit and Growth Mindset Among High School Students 191

3.2 Mixed Methods Methodology

Mixed methods design is a research design for collecting, analysing and report-
ing research by integrating both quantitative and qualitative data [4]. Mixed
methods gather both quantitative and qualitative data, integrates both types
of data and then draws interpretations on the combined results to understand
the research problem. By combining both quantitative and qualitative data the
assumption is that combined strength of both data will provide a better under-
standing of the problem [3].

In January 2015, there were a total of twenty-nine students studying program-
ming divided into two classes. The one class was taught by the researcher (14 stu-
dents) and the other by a colleague (15 students). The students were in their sec-
ond year of their three-year course and were taught programming structures such
a simple data types, sequencing, selection and iteration statements in Java.

In the third term of 2015 the students had to code their own projects using
a topic of their own choosing and this was assessed by the adapted IEB rubric.
After the requirements had been established, students developed their projects
in sections. Students designed, coded and tested each section (Graphical User
Interface, classes, database) before moving on. The project was developed over a
six-week period with students attending seven periods of thirty-five minutes long
per week. The project was assessed at the end of their grade 11 which formed
the foundation of their grade 12 project. The PAT has a significant weighting
of 25% of the year mark. The mark for the PAT depended on the specification,
design and the functionality of the code.

3.3 Quantitative Data

The students were assessed using the grit short-scale questionnaire [7] and an
adaptation of the growth mindset questionnaire [8]. They were assessed at the
beginning of the project, after they had completed their design and at the end
once their project was completed. The three scores for grit and the three scores
for mindset produced by each student were averaged to produce a single grit
score and a single mindset score. In addition, the number of submissions of each
student was also recorded. Each time their project was assessed, the score was
updated on the mark sheet by the teacher. In most cases the teacher assessed the
project in the presence of the student ensuring the student had immediate feed-
back detailing where they went wrong and what they could do to improve. The
students’ average grit score, average mindset score, their number of submissions
and their final PAT result were recorded in a spreadsheet.

3.4 Qualitative Data

Using the quantitative data, 6 students were identified to be interviewed. The
purpose of the interviews was to understand the lack of correlation between the
grit, mindset and PAT results. The students were asked questions to identify
their process when they found errors and whether they gave up or persevered
when they encounter errors.

192 D. Kench et al.

4 Results

Students did very well; only 2 students achieved below 80% (most scored 100%
for the project). This narrow range of scores makes it difficult to differentiate
between the students’ scores. Table 1 summarises the quantitative data in terms
of grit, mindset, number of submissions and the PAT scores while Table 2 exam-
ines the correlation coefficients.

The strongest correlation was between the number of submissions and PAT
score with a correlation of 0.52. The correlation between PAT, mindset and grit
was weak at 0.13 and 0.48, respectively. The correlation between grit and the num-
ber of submissions was even weaker at−0.06. The strongest relationship was deter-
mined between number of submissions and the PAT results with r(29) = 0.52 and
the significance of this relationship is determined by a p value of 0.002. The corre-
lation between grit and the PAT was r(29) = 0.48 with a significance of p = 0.004.
These results imply that both grit and the number of submission are related to the
PAT scores. To investigate these findings six students were interviewed — their
results are shown in Table 3.

All the students interviewed faced problems during the coding phase. All
students displayed perseverance by devising problem-solving strategies to correct
their code. The problem-solving strategy chosen was personal to each student.
Student A and Student E both achieved 100% with 6 to 8 submissions. Both
students did not ask their classmates during class or use the WhatsApp group
but instead traced through their programs to find their errors. Student A was an
extremely shy student who did not like asking for help in class. Student E did not
want his classmates to think he could not solve the problems; so, he persevered
by himself. Student E is a high-achieving student who has academic, sporting
and cultural colours and was selected to be a leader in the school. He enjoyed the

Table 1. Results of quantitative data

Stud. Average Highest Lowest Std.Dev.

Grit out of 5 3.4 4.3 2.3 0.56

Mindset 50.9 % 72.2 % 38.9 % 8.52 %

#Submissions 7.3 11 4 1.75

Final PAT Score 96% 100 % 67 % 7.28 %

Table 2. Correlation coefficients (CC)

CC for Grit Mindset #Submissions PAT

Grit 1.00

Mindset 0.62 1.00

#Submissions 0.24 −0.06 1.00

PAT 0.48 0.13 0.52 1.00

Grit and Growth Mindset Among High School Students 193

Table 3. Results of students interviewed

Pseudonym Grit Mindset #Drafts Overall

Student A 2.6 43 6 100 %

Student B 3.1 42 7 93 %

Student C 4.2 72 5 89 %

Student D 2.9 50 8 97 %

Student E 4.3 58 8 100 %

Student F 4.0 51 7 97 %

challenge of the project and used the teacher’s advice, the internet as a resource
when he was experiencing problems with his coding. He also traced his program
to locate the errors. Both boys found the deadlines motivational in terms of
submitting on time and encouraging to keep their project on track.

Student D persevered by tracing his program on paper and asked friends
and family for help when he was stuck while Student F researched the internet.
Student F also asked classmates and the teacher for help whenever he was stuck.
Both of them found the deadlines motivational and used the multiple submissions
to improve their marks.

Student C devised a system of coding multiple solutions to each problem.
Using these solutions, he chose what he considered to be the best solution and
then moved on from there. He found difficulties in keeping track of the versions
of his solutions. His method was time consuming; however, he was still able to
submit his PAT five times.

Student B alternated coding his solution with a computer game. Each time
he was stuck on either project, he switched to the other. Student B was not able
to successfully separate the working code from the front end. Most of his logic
was in the front end; and once on this path, he could not move the code and
still have a working solution. He did, however, persevere in getting the code to
work by tracing his program and explaining his logic to his father. He admitted
to frequently procrastinating; although, he submitted his PAT seven times.

The qualitative data revealed that each student persevered when problems
were encountered although this is not reflected in their grit and mindset scores.

5 Conclusion and Future Work

Upon initial investigation, there appears to be little relationship between grit,
mindset and the PAT scores. However, upon further investigation into the qual-
itative data, grit can be seen by the perseverance displayed by the students.
Students did not give up when they encountered errors and went on to develop
problem-solving strategies to fix their errors. The deadlines served to motivate
the students and kept them on track with their projects. A possible reason for the
lack of correlation between the grit, mindset and PAT scores could be the stu-
dents’ immaturity in completing the questionnaire or their fixed mindset in that

194 D. Kench et al.

they considered themselves to already be very intelligent, which is supported by
their PAT results. The sampled population was skewed toward a more affluent
demographic together with an existing motivation to achieve good results.

This study could be enhanced by investigations into the problem-solving
strategies developed by the students. Since no problem-solving strategy was
taught, there is clear evidence that the problem-solving strategies were developed
independently by the students and each were varied. Studies could be conducted
to determine whether teaching a particular problem-solving strategy would be
beneficial as opposed to students developing their own. Since the sampled popu-
lation was skewed towards the more affluent demographic, further studies could
be performed in government schools, among female students in single-gender
female schools with a more diverse race groups; and in schools where the class
average is lower and with a wider range.

References

1. Blackwell, L.S., Trzesniewski, K.H., Dweck, C.S.: Implicit theories of intelligence
predict achievement across an adolescent transition: a longitudinal study and an
intervention. Child Dev. 78(1), 246–263 (2007)

2. Brookhart, S.M.: How to Give Effective Feedback to Your Students. ASCD,
Alexandra (2008)

3. Creswell, J.W.L., Clark, V.L.P.: Designing and Conducting Mixed Methods
Research, vol. 2. Sage, Thousand Oaks (2011)

4. Creswell, J.W.L., Plano-Clark, V.L.P., Gutmann, M.L., Hanson, W.E.: Advanced
mixed methods research designs. In: Tashakkori, A., Teddlie, C. (eds.) Handbook
of Mixed Methods in Social and Behavioral Research, pp. 209–240. Sage, Thousand
Oaks (2003)

5. Cutts, Q., Cutts, E., Draper, S., O’Donnell, P., Saffrey, P.: Manipulating mindset to
positively influence introductory programming performance. In: Proceedings 41st
ACM Technical Symposium on Computer Science Education (SIGCSE 2010), p.
431 (2010)

6. Duckworth, A.L., Peterson, C., Matthews, M.D., Kelly, D.R.: Grit: perseverance
and passion for long-term goals. J. Pers. Soc. Psychol. 92(6), 1087–1101 (2007)

7. Duckworth, A.L., Quinn, P.D.: Development and validation of the short grit scale
(grit-s). J. Pers. Assess. 91(2), 166–174 (2009)

8. Dweck, C.S.: Test your Mindset. Ballantine, New York (2006)
9. Kohler, B., Gluchow, M., Brigge, B.: Teaching basic software engineering to senior

high school students. In: Information Systems and Technology for Organizations
in a Networked Society, pp. 149–166. BusinessScience (2014)

10. McCartney, R., Eckerdal, A., Mostram, J.E., Sanders, K., Zander, C.: Successful
students – Strategies for getting unstuck. SIGCSE Bull. 39, 156–160 (2007)

11. Mueller, C.M., Dweck, C.S.: Praise for intelligence can undermine children’s moti-
vation and performance. J. Pers. Soc. Psychol. 75(1), 33–52 (1998)

12. Shepard, L.A.: Linking formative assessment to scaffolding. Educ. Leadersh. 63(3),
66–70 (2005)

13. Vygotsky, L.S.: Mind in Society: The Development of Higher Psychological
Processes. Harvard University Press, Cambridge (1978)

Author Index

Ade-Ibijola, Abejide 69

Calitz, André P. 35, 51, 115
Coetzee, Serena 143

Durrheim, Mark S. 69

Eloff, Jan H.P. 131
Ewert, Sigrid 69

Foster, Greg 123

Glaum, Arthur 115
Greyling, Jean 115

Halland, Ken 43
Hazelhurst, Scott 187

Kench, Delia 187
Koorsse, Melisa 35, 51

Machanick, Philip 104
Mahanga, Khadija M. 179
Marshall, Linda 131

Nash, Jane 123
Nel, Liezel 95

Olivier, Martin S. 3
Otulaja, Femi 187

Pieterse, Vreda 59, 160

Radebe, Fani Moses 95
Rautenbach, Victoria 143

Seymour, Lisa F. 179
Solms, Fritz 59
Suleman, Hussein 83

Taljaard, Marinda 35
Travica, Bob 22
Tsietsi, Mosiuoa 171

van Eekelen, Marko 160

Zietsman, Jaco 51

	Preface
	Organization
	Contents
	Invited Lectures
	On the Morality of Teaching Students IT Crime Skills
	1 Thirty Odd Years Ago �
	2 To Teach or Not to Teach
	3 Potentially Harmful IT Skills
	4 The IT Worker --- From Hero to Zero
	5 Stratification of Responsibility
	6 Conclusion
	References

	Teaching Informatics in North America: Jugglers Wanted
	1 Introduction
	2 Organisation of IS Programs
	3 Student-Learner vs. Student-Customer
	4 Technology Wishes vs. Funding Limitations
	5 Self-identity vs. Attributions
	6 Teaching Prospects
	7 Conclusion
	References

	Assessment Methods
	A Comparison of E-Assessment Assignment Submission Processes in Introductory Computing Courses
	1 Introduction
	2 Research Study
	2.1 Current Situation
	2.2 Research Methods
	2.3 Methods of Submission

	3 Data Analysis and Results
	4 Conclusions and Future Work
	References

	Assessing Programming by Written Examinations
	1 Introduction
	2 Literature Review
	3 Assessment of Programming
	3.1 Learning Outcomes of Programming
	3.2 Assessment Methods for Programming
	3.3 Other Issues

	4 Suitability of Assessment Methods
	4.1 Suitability Matrix
	4.2 Suitability of Written Exams

	5 Our Position
	References

	Criteria for Evaluating Automated Grading Systems to Assess Microsoft Office Skills
	1 Introduction
	2 Literature Survey
	2.1 E-Assessment
	2.2 Types of Automated Grading Systems
	2.3 Summary of Requirements

	3 Recommended Features
	4 Conclusions
	References

	Towards a Generic DSL for Automated Marking Systems
	1 Introduction
	2 Related Work
	3 Requirements for the Proposed DSL
	3.1 Semantic Scope
	3.2 Quality Requirements for the ASL

	4 The Domain-Specific Language
	4.1 Abstract Syntax
	4.2 Concrete Syntaxes

	5 Summary
	6 Conclusions and Future Work
	References

	Instruction Methods
	Code Pathfinder: A Stepwise Programming E-Tutor Using Plan Mirroring
	1 Introduction
	2 Background
	2.1 Definitions
	2.2 Plan-Oriented Teaching
	2.3 Intelligent Tutoring Systems
	2.4 Program Narration
	2.5 Basis for a New Intelligent Tutoring System

	3 Problem Statement
	4 The Tutoring System
	4.1 Role of Narrations
	4.2 Plan Mirroring
	4.3 Equivalent Variables
	4.4 Creating Instructions
	4.5 Checking the Line
	4.6 Producing Feedback
	4.7 Available Problems

	5 Implementation and Results
	5.1 User Interface
	5.2 Next Integer
	5.3 Average of Two Numbers
	5.4 Factorial Problem
	5.5 Fahrenheit to Celsius Conversion
	5.6 Feedback Examples

	6 Limitations
	7 Conclusion and Future Work
	7.1 Key Contributions
	7.2 Future Work

	References

	Flipping a Course on Computer Architecture
	1 Introduction
	2 Literature Review
	3 Outline of Computer Architecture Course
	4 Learning Design
	4.1 Flipping on the Cheap
	4.2 Content Videos
	4.3 Readings
	4.4 Discussion
	4.5 Quizzes
	4.6 Demonstrations

	5 Evaluation and Analysis
	5.1 Quantitative Feedback
	5.2 Qualitative Feedback
	5.3 Lecturer Evaluation
	5.4 Analysis

	6 Conclusions and Future Work
	References

	Effective Integration of a Student Response System in An Undergraduate Computer Science Classroom: An Active-Engagement Instructional Strategy
	1 Introduction
	2 Perspectives from Literature
	2.1 Student Engagement
	2.2 Active Learning and Motivation
	2.3 Student Response Systems

	3 Instructional Strategy
	4 Methodology
	5 Reflection on Instructional Strategy
	6 Conclusions
	References

	Teaching Operating Systems: Just Enough Abstraction
	1 Introduction
	2 Background
	3 Course Design
	3.1 Small Subset
	3.2 Trace-Driven Simulation
	3.3 User-Level Examples

	4 Course Detail
	4.1 Small Subset: File System
	4.2 Trace-Driven Simulation: Scheduling and Virtual Memory
	4.3 User-Level: Parallel Programming

	5 Experience
	6 Conclusion
	References

	New Curricula
	CS and IS Alumni Post-Graduate Course and Supervision Perceptions
	1 Introduction
	2 The Research Problem and Research Design
	3 Alumni Surveys
	4 CS&IS Post-Graduate Courses and Supervision
	5 Alumni Post-Graduate Survey Results
	6 Conclusions
	References

	Introducing Health Informatics as an Elective Module in an Information Systems Honours Degree: Experiences from Rhodes University
	1 Introduction
	2 Health Informatics Education
	3 Curriculum Development
	4 Course Evaluation
	5 Discussion
	6 Concluding Remarks
	References

	Towards an Interdisciplinary Master's Degree Programme in Big Data and Data Science: A South African Perspective
	1 Introduction
	2 What Is Big Data and Data Science?
	2.1 Requirements for a Data Scientist
	2.2 The Data Science Lifecycle

	3 Interdisciplinary Curriculum Design
	3.1 Considerations for Developing an Interdisciplinary Curriculum
	3.2 Existing Curricula in Big Data and/or Data Science

	4 Recommendations for a Big Data and Data Science Master's Curriculum
	5 Conclusion
	6 Future Work
	References

	Social Skills
	Reflections on a Community-Based Service Learning Approach in a Geoinformatics Project Module
	1 Introduction
	2 Community-Based Service Learning: Mapping the Informal Settlement of `Alaska' in Mamelodi (ZA)
	3 Methodology
	4 Results and Discussion
	4.1 Overview of Participants, SR Scores and EPRA Survey Results
	4.2 Results and Discussion of Interviews

	5 Conclusion
	References

	Which Are Harder? Soft Skills or Hard Skills?
	1 Introduction
	2 Technical Skills
	3 Employability Skills
	4 Relative Difficulty of Learning Hard and Soft Skills
	5 Recommendations
	5.1 Uncovering Skills Gaps
	5.2 Closing Skills Gaps

	6 Conclusion
	References

	Various Experiences
	A Case Study in the Use of the Five Step Peer Evaluation Strategy to Improve a First Year Computer Literacy Course: An Exercise in Reflective Evaluation Practice
	1 Introduction
	2 Motivation
	3 Theoretical Underpinnings of Evaluation
	4 Exploring My Concerns
	5 The Evaluation Instrument
	5.1 Choosing an Instrument
	5.2 Choosing a Format

	6 Results and Discussion
	6.1 The Unsuitability of the Lecture Venue
	6.2 Teaching in the Departmental Context

	7 Conclusion
	References

	Enterprise Resource Planning Teaching Challenges Faced by Lecturers in African Higher Education Institutions
	1 Introduction
	2 Challenges in Teaching Technology in Africa
	3 Research Method
	4 Data Analysis and Findings
	4.1 Administration Challenges
	4.2 Technology Challenges
	4.3 Resource Challenges
	4.4 Student Challenges
	4.5 Teaching Challenges
	4.6 Discussion of Findings

	5 Conclusion
	References

	Grit and Growth Mindset Among High School Students in a Computer Programming Project: A Mixed Methods Study
	1 Introduction
	2 Literature Review
	2.1 What Is Growth Mindset?
	2.2 What Is Grit?
	2.3 Scaffolding Combined with Feedback

	3 Study Design
	3.1 Study Setting
	3.2 Mixed Methods Methodology
	3.3 Quantitative Data
	3.4 Qualitative Data

	4 Results
	5 Conclusion and Future Work
	References

	Author Index

