
A Comparison of Time- and Reward-Bounded
Probabilistic Model Checking Techniques

Ernst Moritz Hahn1(B) and Arnd Hartmanns2(B)

1 Institute of Software, Chinese Academy of Sciences, Beijing, China
2 University of Twente, Enschede, The Netherlands

hahn@ios.ac.cn, a.hartmanns@utwente.nl

Abstract. In the design of probabilistic timed systems, requirements
concerning behaviour that occurs within a given time or energy bud-
get are of central importance. We observe that model-checking such
requirements for probabilistic timed automata can be reduced to check-
ing reward-bounded properties on Markov decision processes. This is tra-
ditionally implemented by unfolding the model according to the bound,
or by solving a sequence of linear programs. Neither scales well to large
models. Using value iteration in place of linear programming achieves
scalability but accumulates approximation error. In this paper, we cor-
rect the value iteration-based scheme, present two new approaches based
on scheduler enumeration and state elimination, and compare the prac-
tical performance and scalability of all techniques on a number of case
studies from the literature. We show that state elimination can signifi-
cantly reduce runtime for large models or high bounds.

1 Introduction

Probabilistic timed automata (PTA, [17]) are a popular formal model for prob-
abilistic real-time systems. They combine nondeterministic choices as in Kripke
structures, discrete probabilistic decisions as in Markov chains, and hard real-
time behaviour as in timed automata. We are interested in properties of the form
“what is the best/worst-case probability to eventually reach a certain system
state while accumulating at most b reward”, i.e. in calculating reward-bounded
reachability probabilities. Rewards can model a wide range of aspects, e.g. the
number of retransmissions in a network protocol (accumulating reward 1 for
each), energy consumption (accumulating reward at a state-dependent wattage
over time), or time itself (accumulating reward at rate 1 everywhere). Reach-
ability probabilities for PTA with rewards can be computed by first turning a
PTA into an equivalent Markov decision process (MDP) using the digital clocks
semantics [17] and then performing standard probabilistic model checking [3].

The näıve approach to compute specifically reward-bounded reachability
probabilities is to unfold [1] the state space of the model. For the example of

This work was supported by the 3TU.BSR project, by CDZ project 1023 (cap), by
the Chinese Academy of Sciences Fellowship for International Young Scientists, and
by the National Natural Science Foundation of China (grant no. 61550110506).

c© Springer International Publishing AG 2016
M. Fränzle et al. (Eds.): SETTA 2016, LNCS 9984, pp. 85–100, 2016.
DOI: 10.1007/978-3-319-47677-3 6

86 E.M. Hahn and A. Hartmanns

time-bounded properties, this means adding a new clock variable that is never
reset [17]. In the general case on the level of MDP [19], in addition to the current
state of the model, one keeps track of the reward accumulated so far, up to b.
This turns the reward-bounded problem into standard unbounded reachability.
Unfolding blows up the model size (the number of states, or the number of vari-
ables and constraints in the corresponding linear program) and causes the model
checking process to run out of memory even if the original (unbounded) model
was of moderate size (cf. Table 1). For PTA, unfolding is the only approach that
has been considered so far. A more efficient technique has been developed for
MDP, and via the digital clocks semantics it is applicable to PTA just as well:

The probability for bound i depends only on the values for previous bounds
{ i−r, . . . , i−1} where r is the max. reward in the automaton. We can thus avoid
the monolithic unfolding by sequentially computing the values for its “layers”
where the accumulated reward is i = 0, 1, etc. up to b, storing the current layer
and the last r result vectors only. This process can be implemented by solving
a sequence of b linear programming (LP) problems no larger than the original
unbounded model [2]. While it solves the memory problem in principle, LP is
known not to scale to large MDP in practice. Consequently, LP has been replaced
by value iteration to achieve scalability in the most recent implementation [14].
Value iteration is an approximative numeric technique to compute reachability
probabilities up to a predefined error bound ε. When used in sequence, this
error accumulates, and the final result for bound b may differ from the actual
probability by more than ε. This has not been taken into account in [14].

In this paper, we first make a small change to the value iteration-based
scheme to counteract the error accumulation. We then present two new ways to
compute reward-bounded reachability probabilities for MDP (with a particular
interest in the application to PTA via digital clocks) without unfolding (Sect. 3).
Using either scheduler enumeration or MDP state elimination, they both reduce
the model such that a reward of 1 is accumulated on all remaining transitions.
A reward-bounded property in the original model corresponds to a step-bounded
property in the reduced model. We use standard step-bounded value iteration [3]
to check these properties efficiently and exactly. Observe that we improve the
practical efficiency of computing reward-bounded probabilities, but the problem
is Exp-complete in general [6]. It can be solved in time polynomial in the size of
the MDP and the value of b, i.e. it is only pseudo-polynomial in b. Like all related
work, we only present solutions for the case of nonnegative integer rewards.

The unfolding-free techniques also provide the probability for all lower
bounds i < b. This has been exploited to obtain quantiles [2], and we use it
more generally to compute the entire cumulative (sub)distribution function (cdf
for short) over the bound up to b at no extra cost. We have implemented all tech-
niques in the mcsta tool (Sect. 4) of the Modest Toolset [10]. It is currently
the only publicly available implementation of reward-bounded model checking
for PTA and MDP without unfolding. We use it to study the relative perfor-
mance and scalability of the previous and new techniques on six example models
from the literature (Sect. 5). State elimination in particular shows promising per-
formance.

A Comparison of Time- and Reward-Bounded Probabilistic Model 87

Other Related Work. Randour et al. [18] have studied the complexity of com-
puting reward-bounded probabilities (framed as percentile queries) for MDP
with multiple rewards and reward bounds. They propose an algorithm based on
unfolding. For the soft real-time model of Markov automata, which subsumes
MDP, reward bounds can be turned into time bounds [13]. Yet this only works
for rewards associated to Markovian states, whereas immediate states (i.e. the
MDP subset of Markov automata) always implicitly get zero reward.

2 Preliminaries

N is { 0, 1, . . . }, the set of natural numbers. 2S is the powerset of S. Dom(f) is
the domain of the function f .

Definition 1. A (discrete) probability distribution over a set Ω is a function
μ ∈ Ω → [0, 1] such that support(μ) def= {ω ∈ Ω | μ(ω) > 0} is countable and∑

ω∈support(μ) μ(ω) = 1. Dist(Ω) is the set of all probability distributions over Ω.
D(s) is the Dirac distribution for s, defined by D(s)(s) = 1.

Markov Decision Processes. To move from one state to another in a Markov
decision process, first a transition is chosen nondeterministically; each transition
then leads into a probability distribution over rewards and successor states.

Definition 2. A Markov decision process (MDP) is a triple M = 〈S, T, sinit 〉
where S is a finite set of states, T ∈ S → 2Dist(N×S) is the transition function,
and sinit ∈ S is the initial state. For all s ∈ S, we require that T (s) is finite and
non-empty. M is a discrete-time Markov chain (DTMC) if ∀ s ∈ S : |T (s)| = 1.

We write s −→T μ for ∃μ ∈ T (s) and call it a transition. We write s r−→T s′

if additionally 〈r, s′〉 ∈ support(μ). 〈r, s′〉 is a branch with reward r. If T is
clear from the context, we write just −→. Graphically, transitions are lines to
an intermediate node from which branches labelled with reward (if not zero)
and probability lead to successor states. We may omit the intermediate node
and probability 1 for transitions into Dirac distributions, and we may label
transitions to refer to them in the text. Figure 1 shows an example MDP Me

with 5 states, 7 (labelled) transitions and 10 branches. Using branch rewards
instead of the more standard transition rewards leads to more compact models;
in the example, we assign reward 1 to the branches back to s and t to count the
number of “failures” before reaching v. In practice, high-level formalisms like
Prism’s [15] guarded command language are used to specify MDP. They extend
MDP with variables over finite domains that can be used in expressions to e.g.
enable/disable transitions. This allows to compactly describe very large MDP.

Definition 3. A finite path in M = 〈S, T, sinit 〉 is defined as a finite sequence
πfin = s0 μ0 r0 s1 μ1 r1 s2 . . . μn−1 rn−1 sn where si ∈ S for all i ∈ { 0, . . . , n} and
si −→ μi ∧ 〈ri, si+1〉 ∈ support(μi) for all i ∈ { 0, . . . , n − 1}. Let |πfin| def= n,

last(πfin)
def= sn, and reward(πfin) =

∑n−1
i=0 ri. Pathsfin(M) is the set of all finite

88 E.M. Hahn and A. Hartmanns

Fig. 1. Example MDP Me Fig. 2. Transformed MDP Me↓Fe↓R

paths starting with sinit . A path is an infinite sequence π = s0 μ0 r0 s1 μ1 r1 . . .
where si ∈ S and si −→ μi ∧ 〈ri, si+1〉 ∈ support(μi) for all i ∈ N. Paths(M) is
the set of all paths starting with sinit . We define s ∈ π

def⇔ ∃ i : s = si.

Definition 4. Given M = 〈S, T, sinit 〉, S ∈ Pathsfin(M) → Dist(Dist(N × S))
is a scheduler for M if ∀πfin: μ ∈ support(S(πfin)) ⇒ last(πfin) −→ μ. The set of
all schedulers of M is Sched(M). S is reward-positional if last(π1) = last(π2)∧
reward(π1) = reward(π2) implies S(π1) = S(π2), positional if last(π1) =
last(π2) alone implies S(π1) = S(π2), and deterministic if |support(S(π))| = 1,
for all finite paths π, π1 and π2, respectively. A simple scheduler is positional
and deterministic. The set of all simple schedulers of M is SSched(M).

Let M↓Ss

def= 〈S, T ′, sinit〉 with T ′(s) def= {μ | Ss(s) = D(μ)} forSs ∈ SSched(M).
M↓Ss

is a DTMC. Using the standard cylinder set construction [3], a scheduler S
induces a probability measure PS

M on measurable sets of paths starting from sinit .
We define the extremal values Pmax

M (Π) = supS∈Sched(M) PS
M (Π) and Pmin

M (Π) =
infS∈Sched(M) PS

M (Π) for measurable Π ⊆ Paths(M).
For an MDP M and goal states F ⊆ S, we define the unbounded, step-bounded

and reward-bounded reachability probabilities for opt ∈ {max,min}:

– Popt(F) def= Popt
M ({π ∈ Paths(M) | ∃ s ∈ F : s ∈ π}) is the extremal probability

of eventually reaching a state in F .
– PS≤b

opt (F) is the extremal probability of reaching a state in F via at most b ∈ N

transitions, defined as Popt
M (ΠT

b) where ΠT
b is the set of paths that have a

prefix of length at most b that contains a state in F .
– PR≤b

opt (F) is the extremal probability of reaching a state in F with accumulated
reward at most b ∈ N, defined as Popt

M (ΠR
b) where ΠR

b is the set of paths that
have a prefix πfin containing a state in F with reward(πfin) ≤ b.

Theorem 1. For an unbounded property, there exists an optimal simple sched-
uler, i.e. one that attains the extremal value [3]. For a reward-bounded property,
there exists an optimal deterministic reward-positional scheduler [12].

Continuing our example, let F e = { v}. We maximise the probability to even-
tually reach F e in Me by always scheduling transition a in s and d in t, so
Pmax(F e) = 1 with a simple scheduler. We get PR≤0

max (F e) = 0.25 by scheduling
b in s. For higher bound values, simple schedulers are no longer sufficient: we
get PR≤1

max (F e) = 0.4 by first trying a then d, but falling back to c then b if we
return to t. We maximise the probability for higher bound values n by trying d
until the accumulated reward is n − 1 and then falling back to b.

A Comparison of Time- and Reward-Bounded Probabilistic Model 89

Probabilistic Timed Automata. Probabilistic timed automata (PTA [17])
extend MDP with clocks and clock constraints as in timed automata to model
real-time behaviour and requirements. PTA have two kinds of rewards: branch
rewards as in MDP and rate rewards that accumulate at a certain rate over time.
Time itself is a rate reward that is always 1. The digital clocks approach [17] is
the only PTA model checking technique that works well with rewards. It works
by replacing the clock variables by bounded integers and adding self-loop edges
to increment them synchronously as long as time can pass. The reward of a self-
loop edge is the current rate reward. The result is (a high-level model of) a finite
digital clocks MDP. All the algorithms that we develop for MDP in this paper
can thus be applied to PTA. While time- and branch reward-bounded properties
on PTA are decidable [17], general rate reward-bounded properties are not [4].

Probabilistic Model Checking. Probabilistic model checking for MDP (and
thus for PTA via the digital clocks semantics) works in two phases: (1) state space
exploration turns a given high-level model into an in-memory representation of
the underlying MDP, then (2) a numerical analysis computes the value of the
property of interest. In phase 1, the goal states are made absorbing:

Definition 5. Given M = 〈S, T, sinit 〉 and F ⊆ S, we define the F -absorbing
MDP as M↓F = 〈S, T ′, sinit〉 with T ′(s) = {D(〈1, s〉)} for all s ∈ F and T ′(s) =
T (s) otherwise. For s ∈ S, we define M [s] = 〈S, T, s〉.
An efficient algorithm for phase 2 and unbounded properties is (unbounded)
value iteration [3]. We denote a call to a value iteration implementation
by VI(V,M↓F , opt , ε) with initial value vector V ∈ S → [0, 1] and opt ∈
{max,min}. Internally, it iteratively approximates over all states s a (least)
solution for

V (s) = optμ∈T (s)

∑
〈r,s′〉∈support(μ)μ(〈r, s′〉) · V (s′)

up to (relative) error ε. Let initially V = { s �→ 1 | s ∈ F} ∪ { s �→ 0 | s ∈ S \ F}.
Then on termination of VI(V,M↓F , opt , ε), we have V (s) ≈ε Popt(F) in M [s] for
all s ∈ S. All current implementations in model checking tools like Prism [15]
use a simple convergence criterion based on ε that in theory only guarantees
V (s) ≤ Popt(F), yet in practice delivers ε-close results on most, but not all, case
studies. Guaranteed ε-close results could be achieved at the cost of precomputing
and reducing a maximal end component decomposition of the MDP [7]. In this
paper, we thus write VI to refer to an ideal ε-correct algorithm, but for the sake
of comparison use the standard implementation in our experiments in Sect. 5.

For a step-bounded property, the call StepBoundedVI(V = V0,M↓F , opt , b)
with bound b can be implemented [3] by computing for all states

Vi(s) := optμ∈T (s)

∑
〈r,s′〉∈support(μ)μ(〈r, s′〉) · Vi−1(s′)

iteratively for i = 1, . . . , b. After iteration i, we have Vi(s) = PS≤i
opt (F) in M [s] for

all s ∈ S when starting with V as in the unbounded case above. Note that this

90 E.M. Hahn and A. Hartmanns

algorithm computes exact results (modulo floating-point precision and errors)
without any costly preprocessing and is very easy to implement and parallelise.

Reward-bounded properties can näıvely be checked by unfolding the model
according to the accumulated reward: we add a variable v to the model prior to
phase 1, with branch reward r corresponding to an assignment v := v + r. To
check PR≤b

opt (F), phase 1 thus creates an MDP that is up to b times as large as
without unfolding. In phase 2, Popt(F ′) is checked using VI as described above
where F ′ corresponds to the states in F where additionally v ≤ b holds.

3 Reward-Bounded Analysis Techniques

We describe three techniques that allow the computation of reward-bounded
reachability probabilities on MDP (and thus PTA) without unfolding. The first
one is a reformulation of the value iteration-based variant [14] of the algorithm
introduced in [2]. We incorporate a simple fix for the problem that the error
accumulation over the sequence of value iterations had not been accounted for
and refer to the result as algorithm modvi. We then present two new techniques
senum and elim that avoid the issues of unbounded value iteration by transform-
ing the MDP such that step-bounded value iteration can be used instead.

From now on, we assume that all rewards are either zero or one. This sim-
plifies the presentation and is in line with our motivation of improving time-
bounded reachability for PTA: in the corresponding digital clocks MDP, all tran-
sitions representing the passage of time have reward 1 while the branches of all
other transitions have reward 0. Yet it is without loss of generality: for modvi, it
is merely a matter of a simplified presentation, and for the two new algorithms,
we can preprocess the MDP to replace each branch with reward r > 1 by a chain
of r Dirac transitions with reward 1. While this may blow up the state space, we
found that most models in practice only use rewards 0 and 1 in the first place:
among the 15 MDP and DTMC models currently distributed with Prism [15],
only 2 out of the 12 examples that include a reward structure do not satisfy this
assumption. It also holds for all case studies that we present in Sect. 5.

For all techniques, we need a transformation ↓R that redirects each reward-
one branch to a copy s′

new of the branch’s original target state s′. In effect, this
replaces branch rewards by branches to a distinguished category of “new” states:

Definition 6. Given M = 〈S, T, sinit 〉, we define M↓R as 〈S � Snew, T ↓, sinit〉
with Snew = { snew | s ∈ S},

T ↓(s) =

{
{Conv(s, μ) | μ ∈ T (s)} if s ∈ S

{D(〈0, s〉)} if s ∈ Snew

and Conv(s, μ) ∈ Dist(N × S � Snew) is defined by Conv(s, μ)(〈0, s′〉) =
μ(〈0, s′〉) and Conv(s, μ)(〈1, s′

new〉) = μ(〈1, s′〉) over all s′ ∈ S.

For our example MDP Me and F e = { v}, we show Me↓F e↓R in Fig. 2. Observe
that Me↓F e is the same as Me, except that the self-loop of goal state v

A Comparison of Time- and Reward-Bounded Probabilistic Model 91

1 function ModVI(V, M = 〈S, T, sinit〉, F, b, opt , ε)
2 for i = 1 to b do
3 foreach snew ∈ Snew do V (snew) := V (s)
4 VI(V, M↓F ↓R, opt , ε

b+1
)

Algorithm 1. Sequential value iterations for reward-bounded reachability

gets reward 1. Me↓F e↓R is then obtained by redirecting the three reward-one
branches (originally going to s, t and v) to new states snew, tnew and vnew.

All of the algorithm descriptions we present take a value vector V as input,
which they update. V must initially contain the probabilities to reach a goal
state in F with zero reward, which can be computed for example via a call to
VI(V = V 0

F ,M↓F ↓R, opt , ε) with sufficiently small ε and

V 0
F

def= { s �→ 1, snew �→ 0 | s ∈ F} ∪ { s �→ 0, snew �→ 0 | s ∈ S \ F}.

3.1 Sequential Value Iterations

We recall the technique for model-checking reward-bounded properties of [2] that
avoids unfolding. It was originally formulated as a sequence of linear program-
ming (LP) problems LPi, each corresponding to bound i ≤ b. Each LPi is of the
same size as the original (non-unfolded) MDP, representing its state space, but
uses the values computed for LPi−r, . . . ,LPi−1 with r being the maximal reward
that occurs in the MDP. Since LP does not scale to large MDP [7], the technique
has been reconsidered using value iteration instead [14]. Using the transforma-
tions and assumptions introduced above, we can formulate it as in Algorithm1.
Initially, V contains the probabilities to reach a goal state with zero reward. In
contrast to [14], when given an overall error bound ε, we use bound ε

b+1 for the
individual value iteration calls. At the cost of higher runtime, this counteracts
the accumulation of error over multiple calls to yield an ε-close final result:

Consider M↓F ↓R = 〈S, T, sinit 〉 and f ∈ (S → [0, 1]) → (S → [0, 1]) with
f = limi fi where for V ∈ S → [0, 1] it is f0(V)(s) = V (s) and fi+1(V)(s) =
optμ

∑
s′ μ(s′)·fi(V)(s′), i.e. f corresponds to performing an ideal value iteration

with error ε = 0. Thus, performing Algorithm1 using f would result in an error of
0. If we limit the error in each value iteration to ε

b+1 , then the function we use can
be stated as f ′ = fn for n large enough such that ||f ′(V) − f(V)||max ≤ ε

b+1 for
all V used in the computations. Let V0, V ′

0 = V0 + δ0 be the initial value vectors,
δ0 < ε

b+1 . Further, let Vi, V
′
i ∈ S → [0, 1], i ∈ {1, . . . , b}, be the value vectors

after the i-th call to VI for the case without (Vi) and with error (V ′
i). We can then

show by induction that ||Vi−V ′
i ||max ≤ (i+1) ε

b+1 . Initially, we have V ′
0 = V0+δ0.

Therefore, we have V ′
1 = f ′(V ′

0) = f(V ′
0) + δ1 = f(V0) +

∑0
j=0 δj + δ1 for some

δ1 ∈ S → [0, 1] with ||δ1||max ≤ ε
b+1 . Then, we have for some δj ∈ S → [0, 1],

j ∈ {0, . . . , i}, with ||δj ||max ≤ ε
b+1 :

V ′
i+1 = f ′(V ′

i) = f(V ′
i) + δi+1

∗= f(Vi) +
∑i

j=0
δj + δi+1 = f(Vi) +

∑i+1

j=0
δj

92 E.M. Hahn and A. Hartmanns

1 function SEnum(V, M = 〈S, T, sinit〉, F, b, opt)
2 T ′′ := ∅, M ′ := M↓F ↓R = 〈S � Snew, T ′, sinit〉
3 foreach s ∈ { sinit} ∪ { s′′ | ∃ s′ : s′ 1−→T s′′} do
4 foreach S ∈ SSched(M ′[s]) do // enumeration of simple schedulers
5 T ′′(s) := T ′′(s) ∪ { ComputeProbs(M ′[s]↓S)}
6 T ′′ := T ′′ ∪ { ⊥ �→ { D(〈0, ⊥〉)}}, V (⊥) := 0
7 StepBoundedVI(V, M ′′ = 〈Dom(T ′′), T ′′, sinit〉, b, opt) // step-bounded iter.

8 function ComputeProbs(M = 〈S � Snew, . . .〉) // M is a DTMC
9 μ := { 〈0, s〉 �→ Pmax=min({ snew}) | snew ∈ Snew}

10 return μ ∪ { 〈0, ⊥〉 �→ 1 −∑snew∈Snew
μ(〈0, s〉)}

Algorithm 2. Reward-bounded reachability via scheduler enumeration

where ∗ holds by the induction assumption. Finally, ||∑i
j=0 δj ||max ≤ (i+1) ε

b+1 ,
so ||Vi − V ′

i ||max ≤ (i + 1) ε
b+1 , which is what had to be proved.

3.2 Scheduler Enumeration

Our first new technique, senum, is summarised as Algorithm 2. The idea is to
replace the entire sub-MDP between a “relevant” state and the new states (that
follow immediately after what was a reward-one branch before the ↓R transfor-
mation) by one direct transition to a distribution over the new states for each
simple scheduler. The actual reward-bounded probabilities can be computed on
the result MDP M ′′ using the standard step-bounded algorithm (line 7), since
one step now corresponds to a reward of 1.

The relevant states, which remain in the result MDP M ′′, are the initial state
plus those states that had an incoming reward-one branch. We iterate over them
in line 3. In an inner loop (line 4), we iterate over the simple schedulers for each
relevant state. For each scheduler, ComputeProbs determines the distribution μ
s.t. for each new state snew, μ(snew) is the probability of reaching it (accumulat-
ing 1 reward on the way) and μ(⊥) is the probability of getting stuck in an end
component without being able to accumulate any more reward ever. A transition
to preserve μ in M ′′ is created in line 5. The total number of simple schedulers
for n states with max. fan-out m is in O(mn), but we expect the number of
schedulers that lead to different distributions from one relevant state up to the
next reward-one steps to remain manageable (cf. column “avg” in Table 2).

ComputeProbs is implemented either using value iterations, one for each new
state, or—since M ′[s]↓S is a DTMC—using DTMC state elimination [8]. The
latter successively eliminates the non-new states as shown schematically in Fig. 3
while preserving the reachability probabilities, all in one go.

3.3 State Elimination

Instead of performing a probability-preserving DTMC state elimination for
each scheduler as in senum, technique elim applies a new scheduler- and

A Comparison of Time- and Reward-Bounded Probabilistic Model 93

Fig. 3. DTMC state elimination [8] Fig. 4. MDP state elimination

1 function Elim(V, M = 〈S, T, sinit〉, F, b, opt)
2 M ′ := M↓F ↓R = 〈S � Snew, . . .〉
3 〈S � Snew, T ′, sinit〉 := Eliminate(M ′, S) // MDP state elimination
4 T ′′ := { ⊥ �→ { D(〈0, ⊥〉)}}, V (⊥) := 0, μ′ := ∅

5 foreach snew ∈ Snew and μ ∈ T ′(s) do // state merging
6 μ′ := μ′ ∪ { ⊥ �→∑〈0,s′〉∈support(μ)∧s′∈S μ(〈0, s′〉)}
7 μ′ := μ′ ∪ { s′ �→ μ(〈0, s′

new〉) | 〈0, s′
new〉 ∈ support(μ) ∧ s′

new ∈ Snew}
8 T ′′(snew) := T ′′(snew) ∪ { μ′}, μ′ := ∅

9 StepBoundedVI(V, 〈Dom(T ′′), T ′′, sinit〉, b, opt) // step-bounded iteration

Algorithm 3. Reward-bounded reachability via MDP state elimination

probability-preserving state elimination algorithm to the entire MDP. The state
elimination algorithm is described by the schema shown in Fig. 4; states with
Dirac self-loops will remain. Observe how this elimination process preserves the
options that simple schedulers have, and in particular relies on their positional
character to be able to redistribute the loop probabilities pci onto the same
transition only.

elim is shown as Algorithm 3. In line 3, the MDP state elimination procedure
is called to eliminate all the regular states in S. We can ignore rewards here since
they were transformed by ↓R into branches to the distinguished new states. As
an extension to the schema of Fig. 4, we also preserve the original outgoing
transitions when we eliminate a relevant state (defined as in Sect. 3.2) because
we need them in the next step: In the loop starting in line 5, we redirect (1) all
branches that go to non-new states to the added bottom state ⊥ instead because
they indicate that we can get stuck in an end component without reward, and
(2) all branches that go to new states to the corresponding original states instead.
This way, we merge the (absorbing, but not eliminated) new states with the
corresponding regular (eliminated from incoming but not outgoing transitions)
states. Finally, in line 8, the standard step-bounded value iteration is performed
on the eliminated-merged MDP as in senum. Figure 5 shows our example MDP
after state elimination, and Fig. 6 shows the subsequent merged MDP. For clarity,
transitions to the same successor distributions are shown in a combined way.

94 E.M. Hahn and A. Hartmanns

Fig. 5. Me
↓ after state elimination Fig. 6. Me

↓ eliminated and merged

3.4 Correctness and Complexity

Correctness. Let Sbe a deterministic reward-positional scheduler for M↓F . It
corresponds to a sequence of simple schedulers Si for M↓F where i ∈ { b, . . . , 0}
is the remaining reward that can be accumulated before the bound is reached. For
each state s of M↓F and i > 0, each such Si induces a (potentially substochastic)
measure μi

s such that μi
s(s

′) is the probability to reach s′ from s in M↓F ↓Si
over

paths whose last step has reward 1. Let μ0
s be the induced measure such that

μ0
s(s

′) is the probability under S0 to reach s′ without reward if it is a goal
state and 0 otherwise. Using the recursion μi

s(s
′) def=

∑
s′′∈S μi

s(s
′′) ·μi−1

s′′ (s′) with
μ0

s
def= μ0

s, the value μb
s(s

′) is the probability to reach goal state s′ from s in M↓F

under S. Thus we have maxS μb
s(s

′) = PR≤b
max (F) and minS μb

s(s
′) = PR≤b

min (F) by
Theorem 1. If we distribute the maximum operation into the recursion, we get

maxS μi
s(s

′) =
∑

s′′∈S
maxSi

μi
s(s

′′) · maxS μi−1
s′′ (s′) (1)

and an analogous formula for the minimum. By computing extremal values w.r.t.
simple schedulers for each reward step, we thus compute the value w.r.t. an opti-
mal deterministic reward-positional scheduler for the bounded property overall.
The correctness of senum and elim now follows from the fact that they imple-
ment precisely the right-hand side of (1): μ0

s is always given as the initial value
of V as described at the very beginning of this section. In senum, we enumerate
the relevant measures μ·

s induced by all the simple schedulers as one transition
each, then choose the optimal transition for each i in the i-th iteration inside
StepBoundedVI. The argument for elim is the same, the difference being that
state elimination is what transforms all the measures into single transitions.

Complexity. The problem that we solve is Exp-complete [6]. We make the fol-
lowing observations about senum and elim: Let nnew ≤ n be the number of new
states, ns ≤ n the max. size of any relevant reward-free sub-MDP (i.e. the max.
number of states reachable from the initial or a new state when dropping all
reward-one branches), and ss ≤ mn the max. number of simple schedulers in
these sub-MDP. The reduced MDP created by senum and elim have nnew states
and up to nnew · ss · ns branches. The bounded value iterations thus involve
O(b · nnew · ss · ns) arithmetic operations overall. Note that in the worst case,
ss = mn, i.e. it is exponential in the size of the original MDP. To obtain the
reduced MDP, senum enumerates O(nnew ·ss) schedulers; for each, value iteration

A Comparison of Time- and Reward-Bounded Probabilistic Model 95

or DTMC state elimination is done on a sub-MDP of O(ns) states. elim needs to
eliminate n − nnew states, with each elimination requiring O(ss · ns) operations.

4 Implementation

We have implemented the three unfolding-free techniques within mcsta, the
Modest Toolset’s model checker for PTA and MDP. When asked to compute
PR≤b
opt (·), it delivers all values PR≤i

opt (·) for i ∈ { 0, . . . , b} since the algorithms
allow doing so at no overhead. Instead of a single value, we thus get the entire
(sub-)cdf. Every single value is defined via an individual optimisation over sched-
ulers. However, we have seen in Sect. 3.4 that an optimal scheduler for bound
i can be extended to an optimal scheduler for i + 1, so there exists an optimal
scheduler for all bounds. The max./min. cdf represents the probability distrib-
ution induced by that scheduler. We show these functions for the randomised
consensus case study [16] in Fig. 7. The top (bottom) curve is the max. (min.)
probability for the protocol to terminate within the number of coin tosses given
on the x-axis. For comparison, the left and right dashed lines show the means of
these distributions. Note that the min. expected value corresponds to the max.
bounded probabilities and vice-versa. As mentioned, using the unfolding-free
techniques, we compute the curves in the same amount of memory otherwise
sufficient for the means only. We also implemented a convergence criterion to
detect when the result will no longer increase for higher bounds, i.e. when the
unbounded probability has been reached up to ε. For the functions in Fig. 7, this
happens at 4016 coin tosses for the max. and 5607 for the min. probability.

Fig. 7. Cdfs and means for the randomised consensus model (H = 6, K = 4)

5 Experiments

We use six case studies from the literature to evaluate the applicability and
performance of the three unfolding-free techniques and their implementation:

– BEB [5]: MDP of a bounded exponential backoff procedure with max. back-
off value K = 4 and H ∈ { 5, . . . , 10} parallel hosts. We compute the max.
probability of any host seizing the line while all hosts enter backoff ≤ b times.

96 E.M. Hahn and A. Hartmanns

– BRP [9]: The PTA model of the bounded retransmission protocol with
N ∈ { 32, 64} frames to transmit, retransmission bound MAX ∈ { 6, 12} and
transmission delay TD ∈ { 2, 4} time units. We compute the max. and min.
probability that the sender reports success in ≤ b time units.

– RCONS [16]: The randomised consensus shared coin protocol MDP as
described in Sect. 4 for N ∈ { 4, 6} parallel processes and constant K ∈
{ 2, 4, 8}.

– CSMA [9]: PTA model of a communication protocol using CSMA/CD, with
max. backoff counter BCMAX ∈ { 1, . . . , 4}. We compute the min. and max.
probability that both stations deliver their packets by deadline b time units.

– FW [16]: PTA model (“Impl” variant) of the IEEE 1394 FireWire root con-
tention protocol with either a short or a long cable. We ask for the min.
probability that a leader (root) is selected before time bound b.

– IJSS [14]: MDP model of Israeli and Jalfon’s randomised self-stabilising algo-
rithm with N ∈ { 18, 19, 20} processes. We compute the min. probability to
reach a stable state in ≤ b steps of the algorithm (query Q2 in [14]). This is a
step-bounded property; we consider IJSS here only to compare with [14].

Experiments were performed on an Intel Core i5-6600T system (2.7 GHz, 4 cores)
with 16 GB of memory running 64-bit Windows 10 and a timeout of 30 min.

Looking back at Sect. 3, we see that the only extra states introduced by modvi
compared to checking an unbounded probabilistic reachability or expected-
reward property are the new states snew. However, this was for the presentation
only, and is avoided in the implementation by checking for reward-one branches
on-the-fly. The transformations performed in senum and elim, on the other hand,
will reduce the number of states, but may add transitions and branches. elim may
also create large intermediate models. In contrast to modvi, these two techniques
may thus run out of memory even if unbounded properties can be checked. In
Table 1, we show the state-space sizes (1) for the traditional unfolding app-
roach (“unfolded”) for the bound b where the values have converged, (2) when
unbounded properties are checked or modvi is used (“non-unfolded”), and (3)
after state elimination and merging in elim. We report thousands (k) or millions
(M) of states, transitions (“trans”) and branches (“branch”). Column “avg” lists
the average size of all relevant reward-free sub-MDP. The values for senum are
the same as for elim. Times are for the state-space exploration phase only, so
the time for “non-unfolded” will be incurred by all three unfolding-free algo-
rithms. We see that avoiding unfolding is a drastic reduction. In fact, 16 GB of
memory are not sufficient for the larger unfolded models, so we used mcsta’s
disk-based technique [11]. State elimination leads to an increase in transitions
and especially branches, drastically so for BRP, the exceptions being BEB and
IJSS. This appears related to the size of the reward-free subgraphs, so state
elimination may work best if there are few steps between reward increments.

In Table 2, we report the performance results for all three techniques when
run until the values have converged at bound value b (except for IJSS, where
we follow [14] and set b to the 99th percentile). For senum, we used the vari-
ant based on value iteration since it consistently performed better than the one

A Comparison of Time- and Reward-Bounded Probabilistic Model 97

Table 1. State spaces

using DTMC state elimination. “iter” denotes the time needed for (unbounded
or step-bounded) value iteration, while “enum” and “elim” are the times needed
for scheduler enumeration resp. state elimination and merging. “#” is the total
number of iterations performed over all states inside the calls to VI. “avg” is the
average number of schedulers enumerated per relevant state; to get the approx.
total number of schedulers enumerated for a model instance, multiply by the
number of states for elim in Table 1. “rate” is the number of bound values com-
puted per second, i.e. b divided by the time for value iteration. Memory usage in
columns “mem” is mcsta’s peak working set, including state space exploration,
reported in mega- (M) or gigabytes (G). mcsta is garbage-collected, so these
values are higher than necessary since full collections only occur when the sys-
tem runs low on memory. The values related to value iteration for senum are
the same as for elim. In general, we see that senum uses less memory than elim,

98 E.M. Hahn and A. Hartmanns

Table 2. Runtime and memory usage

but is much slower in all cases except IJSS. If elim works and does not blow up
the model too much, it is significantly faster than modvi, making up for the time
spent on state elimination with much faster value iteration rates.

6 Conclusion

We presented three approaches to model-check reward-bounded properties on
MDP without unfolding: a small correction of recent work based on unbounded
value iteration [14], and two new techniques that reduce the model such that
step-bounded value iteration can be used, which is efficient and exact. We also
consider the application to time-bounded properties on PTA and provide the
first implementation that is publicly available, within the Modest Toolset at
modestchecker.net. By avoiding unfolding and returning the entire probability

http://www.modestchecker.net

A Comparison of Time- and Reward-Bounded Probabilistic Model 99

distribution up to the bound at no extra cost, this could finally make reward- and
time-bounded probabilistic timed model checking feasible in practical applica-
tions. As we presented the algorithms in this paper, they compute reachability
probabilities. However all of them can easily be adapted to compute reward-
bounded expected accumulated rewards and instantaneous rewards, too.

Outlook. The digital clocks approach for PTA was considered limited in scala-
bility. The presented techniques lift some of its most significant practical limita-
tions. Moreover, time-bounded analysis without unfolding and with computation
of the entire distribution in this manner is not feasible for the traditionally more
scalable zone-based approaches because zones abstract from concrete timing. We
see the possibility to improve the state elimination approach by removing tran-
sitions that are linear combinations of others and thus unnecessary. This may
reduce the transition and branch blowup on models like the BRP case. Going
beyond speeding up simple reward-bounded reachability queries, state elimina-
tion also opens up ways towards a more efficient analysis of long-run average
and long-run reward-average properties.

References

1. Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked.
In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-40903-8 8

2. Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quan-
tiles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 285–
299. Springer, Heidelberg (2014). doi:10.1007/978-3-319-06200-6 24

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Massachusetts
(2008)

4. Berendsen, J., Chen, T., Jansen, D.N.: Undecidability of cost-bounded reachability
in priced probabilistic timed automata. In: Chen, J., Cooper, S.B. (eds.) TAMC
2009. LNCS, vol. 5532, pp. 128–137. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02017-9 16

5. Giro, S., D’Argenio, P.R., Ferrer Fioriti, L.M.: Partial order reduction for proba-
bilistic systems: a revision for distributed schedulers. In: Bravetti, M., Zavattaro, G.
(eds.) CONCUR 2009. LNCS, vol. 5710, pp. 338–353. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-04081-8 23

6. Haase, C., Kiefer, S.: The odds of staying on budget. In: Halldórsson, M.M., Iwama,
K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 234–
246. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47666-6 19

7. Haddad, S., Monmege, B.: Reachability in MDPs: refining convergence of value
iteration. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol.
8762, pp. 125–137. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11439-2 10

8. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. STTT 13(1), 3–19 (2011)

9. Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed
automata. In: QEST, pp. 187–196. IEEE Computer Society (2009)

http://dx.doi.org/10.1007/978-3-540-40903-8_8
http://dx.doi.org/10.1007/978-3-319-06200-6_24
http://dx.doi.org/10.1007/978-3-642-02017-9_16
http://dx.doi.org/10.1007/978-3-642-02017-9_16
http://dx.doi.org/10.1007/978-3-642-04081-8_23
http://dx.doi.org/10.1007/978-3-662-47666-6_19
http://dx.doi.org/10.1007/978-3-319-11439-2_10

100 E.M. Hahn and A. Hartmanns

10. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54862-8 51

11. Hartmanns, A., Hermanns, H.: Explicit model checking of very large MDP using
partitioning and secondary storage. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.)
ATVA 2015. LNCS, vol. 9364, pp. 131–147. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-24953-7 10

12. Hashemi, V., Hermanns, H., Song, L.: Reward-bounded reachability probability
for uncertain weighted MDPs. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI
2016. LNCS, vol. 9583, pp. 351–371. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49122-5 17

13. Hatefi, H., Braitling, B., Wimmer, R., Fioriti, L.M.F., Hermanns, H., Becker, B.:
Cost vs. time in stochastic games and Markov automata. In: Li, X., Liu, Z., Yi,
W. (eds.) SETTA 2015. LNCS, vol. 9409, pp. 19–34. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-25942-0 2

14. Klein, J., Baier, C., Chrszon, P., Daum, M., Dubslaff, C., Klüppelholz, S., Märcker,
S., Müller, D.: Advances in symbolic probabilistic model checking with PRISM.
In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 349–366.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 20

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

16. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In:
QEST, pp. 203–204. IEEE Computer Society (2012)

17. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis
of probabilistic timed automata using digital clocks. FMSD 29(1), 33–78 (2006)

18. Randour, M., Raskin, J.-F., Sankur, O.: Percentile queries in multi-dimensional
Markov decision processes. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV
2015. LNCS, vol. 9206, pp. 123–139. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-21690-4 8

19. Ummels, M., Baier, C.: Computing quantiles in Markov reward models.break
In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 353–368. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-37075-5 23

http://dx.doi.org/10.1007/978-3-642-54862-8_51
http://dx.doi.org/10.1007/978-3-642-54862-8_51
http://dx.doi.org/10.1007/978-3-319-24953-7_10
http://dx.doi.org/10.1007/978-3-319-24953-7_10
http://dx.doi.org/10.1007/978-3-662-49122-5_17
http://dx.doi.org/10.1007/978-3-662-49122-5_17
http://dx.doi.org/10.1007/978-3-319-25942-0_2
http://dx.doi.org/10.1007/978-3-662-49674-9_20
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-319-21690-4_8
http://dx.doi.org/10.1007/978-3-319-21690-4_8
http://dx.doi.org/10.1007/978-3-642-37075-5_23

	A Comparison of Time- and Reward-Bounded Probabilistic Model Checking Techniques
	1 Introduction
	2 Preliminaries
	3 Reward-Bounded Analysis Techniques
	3.1 Sequential Value Iterations
	3.2 Scheduler Enumeration
	3.3 State Elimination
	3.4 Correctness and Complexity

	4 Implementation
	5 Experiments
	6 Conclusion
	References

