
Performance Evaluation of Concurrent
Data Structures

Hao Wu1(B), Xiaoxiao Yang2, and Joost-Pieter Katoen1

1 Software Modelling and Verification Group, RWTH Aachen University,
Aachen, Germany

hao.wu@cs.rwth-aachen.de
2 State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences, Beijing, China

Abstract. The speed-ups acquired by concurrent programming heav-
ily rely on exploiting highly concurrent data structures. This has led
to a variety of coarse-grained and fine-grained locking to lock-free data
structures. The performance of such data structures is typically analysed
by simulation or implementation. We advocate a model-based approach
using probabilistic model checking. The main benefit is that our mod-
els can also be used to check the correctness of the data structures.
The paper details the approach, and reports on experimental results on
several concurrent stacks, queues, and lists. Our analysis yields worst-
and best-case bounds on performance metrics such as expected time and
probabilities to finish a certain number of operations within a deadline.

1 Introduction

Background and Motivation. Multi-core computers are ubiquitous. However
shared concurrent data structures [11] are an important obstacle. The downside
of lock-based data structures is that they are a sequential bottleneck. Lock-free
data structures are resilient to failures, are more complex, and require special
synchronisation primitives. Modern multi-core architectures support compare-
and-swap operations to allow threads to read, modify and write atomically. Cor-
rectness of concurrent data structures is a key issue and typically addressed by
a semi-formal pencil proof; performance is typically assessed by simulation or
implementation [2,4]. We propose to carry out both correctness and performance
analysis using a single, model-based, approach. This has the advantage that both
analyses use the same model, and that results are coherent. In addition, it allows
for using a single technique—model checking—for both types of analysis.

Modelling approach. The starting point for our approach is to model the con-
current data structure at hand, together with the threads that perform oper-
ations on it. We use the LOTOS NT language (LNT1, for short) which is a

Supported by the CDZ project CAP (GZ 1023) and the A. von Humboldt-
Foundation.

1 The LNT language is a formal description technique standardized by ISO OSI (1989),
please refer to: http://www.iso.org/iso/catalogue detail.htm?csnumber=16258.

c© Springer International Publishing AG 2016
M. Fränzle et al. (Eds.): SETTA 2016, LNCS 9984, pp. 38–49, 2016.
DOI: 10.1007/978-3-319-47677-3 3

http://www.iso.org/iso/catalogue_detail.htm?csnumber=16258

Performance Evaluation of Concurrent Data Structures 39

compositional modelling language with process algebraic roots, that supports
abstract data specifications. The structure of the entire system has the form
(T1 ||| . . . |||Tn) ||G D where the n threads T1 through Tn which are independent
(hence indicated by |||, a shorthand for ||∅) and communicate with the concur-
rent data structure D via the communication gates G. To keep the state space
finite, we bound the number of operations by applying a monitor process M
that keeps track of the number of read and write operations. Using the CADP
toolbox [7], the underlying state space can be generated and be analysed for
checking functional correctness. We focus here on performance evaluation.

Fig. 1. Our approach

Performance modelling and evaluation. To
enable performance evaluation, we assume that
delays between reads and writes are random in
nature and are governed by negative exponen-
tial distributions. We insert these random delays
into the model by renaming such read and write
actions to Markovian delay with different rates
in CADP. As a result, CADP yields (after a
mild post-processing) a Markov automaton [3,6].
These automata have random delay transitions,
and allow for non-determinism, a feature that
we exploit to model the concurrency among the
threads. Prior to the performance evaluation,
the state space is minimised using branching
bisimulation minimisation in CADP, which pre-
serves the important properties in the perfor-
mance evaluation [15]. The analysis of Markov
automata is enabled using recently developed
algorithms by Guck et al. [8,9], which allow for determining the expected time
until a certain state is reached—like “what is the expected time until each thread
has completed 10 reads and writes?”—and the likelihood to reach a state within
a given deadline—like “what is the probability that all reads and writes finish
within 10 min?”. Due to the inherent non-determinism (due to concurrency),
the analysis does not obtain the expected time, or the probability, but rather
obtains bounds. These bounds represent the best- and worst-case scenarios. The
quantitative analysis of MA is supported by the MAMA tool-set2. The entire
approach is given in Fig. 1.

Experimentation. We have applied our approach to the modelling and perfor-
mance evaluation of several concurrent stacks, queues, and lists. We treat the
Treiber stack [13] and its variant with hazard pointers, see e.g., [16]. In addition,
we cover the Michael-Scott two-lock (MS 2L) queue [14], its lock-free variant (MS
LF) [14], and an improvement on this lock-free variant [5] (known as DGLM).
Finally, we consider the coarse-grained synchronisation list [11, Chap. 9.4], a fine-
grained synchronization list [11, Chap. 9.5], the lazy list [10] and an optimistic

2 http://www.home.cs.utwente.nl/∼timmer/mama/.

http://www.home.cs.utwente.nl/~timmer/mama/

40 H. Wu et al.

list [11, Chap. 9.6]. Our performance evaluation treats models of up to 378 mil-
lion states. The experiments show that—as expected—lock-based data structures
have a rather deterministic performance, whereas lock-free and fine-grained lock-
based show more variance in their performance. In addition, fine-grained lists
may yield a lower throughput as under intense race conditions many unsuccess-
ful operations are carried out. To the best of our knowledge this is the first work
that formally models concurrent data structures and uses this for a performance
evaluation. Related works are the probabilistic model checking of low-level OS
kernels including spin-locks [1] and the modelling and performance evaluation of
mutual exclusion algorithms [12].

type Memory is
 array [0 .. 10] of Qnode
 with "get", "set"
end type

2type Qnode is
 Qnode (next: Nat)
 with "get", "set"
end type

1

4

process H_Lock[HL: Lock_Ops] is
 var locked : Bool, pid: Pid in
 locked := false;
 loop select
 HL(lock_head, ?pid)
 []
 HL(test_and_set, false, ?pid)
 where (locked == false);
 locked := true
 []
 HL(test_and_set, true, ?pid)
 where (locked == true)
 []
 HL(unlock_head, ?pid);
 locked := false
 end select end loop
end var end process

3 process Queue[M: Queue_Ops] is
 var m: Memory, head, tail, size, hd,
 pos, pos_next: Nat, pid: Pid in
 size := 10; head := 0; tail := 0;
 m := Memory(Qnode (0 of Nat));
 loop select
 M(read_head, head, ?any Pid)
 []
 M(read_next, ?pos, ?pos_next, ?pid)
 where (m[pos].next == pos_next)
 []
 M(set_tail_next, ?pid);
 m[tail] := m[tail].{next => (tail + 1)}
 []
 M(set_tail, ?pid); tail := m[tail].next
 []
 M(set_head, ?hd, ?pid);
 head := m[head].next
 end select end loop
 end var end process

5

process Thread[M: Queue_Ops,
 HL, TL: Lock_Ops, complete,
 T: Thread_Ops](pid: Pid) is
 loop
 select
 Enq[M, TL, T](pid); complete
 []
 Deq[M, HL, T](pid); complete
 end select
 end loop
end process

6

process Enq [M: Queue_Ops, TL: Lock_Ops,
 T: Thread_Ops] (pid: Pid) is
 var locked : Bool in
 TL(lock_tail, pid);
 loop G in
 TL(test_and_set, ?locked, pid);
 if (locked == false) then break G
 else T(thr_delay, pid)
 end if
 end loop;
 M(set_tail_next, pid);
 M(set_tail, pid);
 TL(unlock_tail, pid)
end var end process

7 process MAIN [M: Queue_Ops, HL, TL: Lock_Ops,
 finish, complete, T: Thread_Ops] is
 par M, HL, TL, complete, T in
 par M in
 par HL, TL in
 par
 Thread[M, HL, TL, complete, T] (1 of Pid)
 ||
 Thread[M, HL, TL, complete, T] (2 of Pid)
 end par
 ||
 par
 H_Lock[HL]
 ||
 T_Lock[TL]
 end par
 end par
 ||
 Queue [M]
 end par
 ||
 Monitor [M, HL, TL, finish, complete, T]
end par end process

Fig. 2. The (partial) LNT code of the MS 2L queue

Performance Evaluation of Concurrent Data Structures 41

2 Modeling Concurrent Data Structures in LNT

For space sake we only show the LNT model3 of the MS 2L queue [14] here in
Fig. 2. Furthermore, the references of LNT language and various tools (e.g. state
space minimisation) provided by CDAP can be found under http://cadp.inria.fr.

Figure 2 - 1 2 define the data structure of the MS 2L queue. It consists
of a bounded array of Qnodes, since mutable dynamic data structure is not
supported by LNT. Moreover, since to model a pointer is also not possible here,
the next field of the Qnode stores the index (a natural number) of its next node
in the array. A thread (Fig. 2 - 3) identified by pid needs to synchronize with
the lock (process) for head (i.e., H Lock), the lock for tail (i.e., T Lock) and the
queue (process) to perform enqueue and dequeue operations, hence the gates (M,
HL, TL) required for synchronization with these processes are declared. Further,
the gates (complete, T) indicate the process’s own operations. The behavior
of a thread is to repeatedly perform (enclosed by loop) either an enqueue or
a dequeue operation and emits a complete signal (synchronized with monitor
process for counting) if the operation is finished. Figure 2 - 4 defines the enqueue
operation (for dequeue similarly) of a thread. First it tries to acquire the tail
lock (via gate TL) before performing operations on the queue. The two locks
are assumed to be simple test-and-set locks with fixed back-off delay. The delay
(T(thr delay, pid)) are inserted after each unsuccessful try of test-and-set,
then the test-and-set is restarted. If it is succeed, the loop is exited and the
operations to enqueue (e.g., set tail next (set tail’s next to new node) and
set tail) are performed via the synchronization with gate M. Finally, the lock
is released (unlock tail). Figure 2 - 5 defines the head lock, which consists of a
boolean variable locked and operations to lock with the test and set operation
(it returns previous value of locked and set it to true atomically) and unlock
via the gate HL. Note that complex locks can be modelled similarly. Figure 2 - 6

is the queue process which consists of the queue (array) and the head and tail
(as indexes in the array) with auxiliary variables for synchronization. Note that
enqueue a new node is simply represented by setting the tail’s next to current
tail’s index + 1 in our model. Figure 2 - 7 defines the whole MS 2L queue:
the threads, the two locks, the queue and the monitor process are composed in
parallel with corresponding gates. Note that the threads are independent hence
they do not synchronize.

3 Towards Performance Evaluation

In performance evaluation, we bound number of operations on the data struc-
tures to keep the state space finite. The monitor process synchronises with the

3 The complete LNT models and their corresponding scripts of all aforementioned con-
current data structures follow the same principle described here and can be found
under the link: https://moves.rwth-aachen.de/wp-content/uploads/LNT-models.
zip.

http://cadp.inria.fr
https://moves.rwth-aachen.de/wp-content/uploads/LNT-models.zip
https://moves.rwth-aachen.de/wp-content/uploads/LNT-models.zip

42 H. Wu et al.

complete actions from threads and counts the successfully completed opera-
tions. Goal states indicate when the number of operations has reached a cer-
tain bound. The performance of the concurrent data structure is then evaluated
based on reaching a goal state. Since we assume that performing the elementary
operations (e.g., read/write, test and set, compare and swap) cause a random
delays governed by negative exponential distribution. We use the renaming rules
to replace such operations with Markovian transitions with rates in the state
space.

Experimental setup. To conduct experiments, we used the workflow as depicted
in Fig. 1. The CADP tool [7] is used to generate the state space of the par-
allel composition of the LNT models of the data structures, the threads, the
monitor. CADP also supports branching bisimulation minimisation that we
exploit to reduce the models prior to performance analysis. We developed a
CADP2MA script that transforms the state space as generated by CADP
into a Markov automaton (MA) [3,6]. MA are state-transition systems that
cater for non-determinism and support random delays. The performance eval-
uation of MA is done using the recent MAMA tool-set [8]. This tool sup-
ports the numerical computation of several quantitative objectives on MA.
Our experiments focus on two measures: (1) the expected time until the sys-
tem completes a certain number of operations requested by the overall threads
and (2) the probability of finishing all these operations within a given dead-
line. As a thread repeatedly performs enqueue (push, add) and dequeue (pop,
remove) operations in a non-deterministic manner4, our analysis does not
yield a single number but yields two bounds. A lower bound on the expected
time gives the minimal time that is needed on average to complete all opera-
tions; an upper bound gives the maximal time. The former can be understood
as the best achievable scenario; the latter as the worst one.

Assumptions and parameter settings. As concurrent programs with shared data
structures (and possibly pointers) in principle have an unbounded state space,
we make the following assumptions and modelling choices so as to enable a
performance evaluation on a finite state space: (1) The number of threads is
fixed. These threads invoke pre-defined operations (like pop and push) of the
concurrent data structure. The invocation of such operations is modelled by
means of synchronisation. (2) We bound the number of performed operations.
(3) As LNT does not natively support pointers, fixed-size arrays with pre-defined
elements are used, an index (a natural number) is used to locate the node, and a
pointer is treated as an index record. The delays that are used in our experiments
are adopted from [12] where the performance of mutual exclusion algorithms
was analysed. The analysis is not based on a specific processor architecture, it is
assumed that local caches are absent, and all operations are carried out on global
memory. The rates of the exponential distributions are: a read operation from
global memory (rate 3000, i.e., on average 1/3000 time units), write to a global
memory (2000), and complex operations (1200) on variables in global memory

4 Thus, the thread behavior is not biased to certain scenarios.

Performance Evaluation of Concurrent Data Structures 43

e.g., compare and swap or test and set actions. The experiments are conducted
on a computer with 4 × 12-core AMD CPU @ 2.1 GHz and 192 GB memory
under 64-bit Debian 7.6.

4 Experimental Results

This section reports on applying our approach to the modelling and performance
evaluation of several concurrent stacks, queues, and lists. For each data structure,
we modelled and compared several variants from the literature. We report on
the state spaces, the performance analysis results, and discuss them.

Concurrent queues. We cover the MS 2L queue [14], its lock-free variant (MS
LF) [14], and an improvement on this lock-free variant (known as DGLM) [5].

State space size and analysis times. Table 1 shows the state spaces of different
configurations of the three queues, the reduced state space by probabilistic
branching bisimulation minimisation [7], the reduction factor, and the times
(in seconds) for generating + reducing the state space and analysing expected
time objectives. For four threads, three operations are considered (due to state
space explosion). As expected, the state space grows exponentially in the num-
ber of threads and number of operations. State spaces up to about 378 million
states have been generated (MS LF, 3 threads and 15 operations). The bisim-
ulation reduction times for large state spaces are about 50 % of the generation
times. Since the actions in the resulting system cannot be delayed by any other
actions, all actions (except delay transitions) are turned into τ -transitions. This
gives rise to state space reductions of up to 99.9 %. The MS 2L queue has a
relatively small state space, due to its nature of low concurrency.

Expected time results. Figure 3 shows the analysis results of the expected time to
finish a number of operations on the queues. Observe that the MS 2L queue is
rather deterministic as the minimal and maximal values are quite close. This does
not hold for the lock-free queues. The performance of the lock-based queue thus

Table 1. State space and the analysis time of expected time for concurrent queues

44 H. Wu et al.

Fig. 3. Min./max. expected time versus # operations for concurrent queues (Color
figure online)

provides a more stable service than its lock-free variants. Comparing Fig. 3 (left)
and (right), we see that the expected time of finishing 3 operations with 2 threads
is improved by 11 %/7 % in best/worst case of MS 2L queue, 26 %/10 % of MS
LF queue, 27 %/9 % of DGLM queue with 3 threads (due to more concurrency),
receptively. In best case the expected time for lock-free queues is much better
than for the MS 2L queue comparing to the difference between lock-free queues
and the MS 2L queue in worst case. The lock-free queues have—as expected—a
much higher overhead than the lock-based queue. Thus, lock-free queues have
a lower throughput in worst case than the lock-based one. The DGLM queue
outperforms the MS LF queue in best case. Finally, we observe that expected
times grow linearly in the number of operations.

Fig. 4. How likely do concurrent queues complete three oper-
ations on time? (Color figure online)

Probability of timely
completion. To get
more insight into
the performance of
queues, we analyse
the probability of
finishing a certain
number of opera-
tions within a (vary-
ing) deadline, see
Fig. 4. Note that
the faster the curve
goes to one, the bet-
ter the queue’s per-
formance. Since the
number of opera-
tions only causes a linear increase in the expected delay, we consider three
operations. We vary the number of threads from two to four. The three left-
most groups of curves indicate the maximal probabilities of the three queues
with 4/3/2 threads, respectively. We can observe that the algorithms have a
very strong impact on these results: lock-free queues perform much better than
the lock-based one in best case. However in worst case, the performance of

Performance Evaluation of Concurrent Data Structures 45

algorithms is not that distinguishable (the rightmost curves), since they are
close to each other. The number of threads in all queues influence these curves
quite consistently, the more threads the much quicker the queue will finish the
operations. As for the expected times, the lock-based algorithm behaves rather
deterministic and its performance is quite stable when varying the number of
threads.

Evaluation. In the best-case scenario, the two lock-free queues behave much
better than the lock-based queue, in worst case however the lock-based queue
outperforms the lock-free queues. Lock-based queues have a stable performance
and are less vulnerable to the number of threads. The DGLM queue has better
expected times than the MS LF in best case, but does not process operations
within a deadline more likely.

Concurrent stacks. We consider two variants of the (lock-free) Treiber stack:
one with hazard pointers (HPs) and one without. Hazard pointers [13] prevents
the well-known ABA problem. HPs is used to keep certain locations as hazard
and prohibit other threads to deallocate them. During garbage collection, only
locations not pointed to by HPs can be freed. Our model of the Treiber-HP stack
is based on [16] and includes a memory allocation thread. Our analyses focus on
evaluating the performance influence of hazard pointers.

Table 2. The state spaces and analysis times of
expected time of Treiber stacks

State space size and analy-
sis times. Table 2 shows the
state spaces for different para-
meter settings. The Treiber-
HP stack causes a state space
explosion due to the fre-
quent scanning of HPs to
find free locations after each
pop()-operation. The branch-
ing bisimulation reduces the
state space significantly (up to
0.999 in case of 4 threads). In
cases for which the state space
could be generated, the analysis time for Treiber-HP is prohibitive (taking
hours).

Expected time results. Figure 5 shows that the HPs cause significant overhead
both in best and worst case. This is due to the additional operations of the HPs
including setting/comparing with the HPs in pop(). It is interesting to observe
that minimal expected times vary less than maximal ones. This is possibly due
to the fact that HPs are not effective for push()-operations.

Probability of timely completion. As for the concurrent queues, we compute the
time-bounded reachability of finishing three operations with 2/3/4 threads. We
notice that increasing the number of threads in the system affect the minimal
probability more than the maximal probability for both stacks. Moreover, the

46 H. Wu et al.

Fig. 5. The expected execution time versus # operations for Treiber stacks (Color
figure online)

difference of the maximal time-bounded reachability between both stacks is quite
small compared with the minimal values (Fig. 6).

Evaluation. We obverse that increasing the number of threads in the system has
a significant impact on the minimal probability of finishing three operations for
both stacks. Adding the HPs to Treiber stack is expensive in the worst case
scenario, since the curves of minimal reachability probabilities of Treiber stacks
with HPs (blue lines) are quite away from the corresponding curves (yellow lines)
representing the minimal reachability probabilities of Treiber stacks without
HPs. However, increasing the number of threads may alleviate this problem.
Note that we did not have any result of the minimal probability of Treiber stack
+ HP with 4 threads due to memory out.

Fig. 6. The prob. of finishing 3 oper. within a given
time-bound of Treiber stacks (Color figure online)

Concurrent lists. We con-
sider four lock-based lists: a
coarse-grained synchroniza-
tion list (cgs) [11], a fine-
grained synchronization list
(fgs) [11], the Heller et al.
lazy list (lazy) [10] and the
optimistic list (opt.) [11].
All these concurrent lists
are list-based implementa-
tions of a concurrent set
object, where we can add
(or remove) a value5 to (or
from) the list (set). Adding
an element which is already
in the list is unsuccessful. The lists are data-dependent, and their performance
strongly depends on the data to be added or removed. Thus, we model an addi-
tional process to generate pseudo random numbers to be added or removed
to/from the list. To test extreme situations, we set the generated random num-
ber to be only 1 or 2 in our experiment. This will cause a large number of unsuc-
5 In our experiments, we consider lists of natural numbers.

Performance Evaluation of Concurrent Data Structures 47

cessful operations. Since these data structures employ different granularities of
locks, we discuss the effect of such granularities of locks on the performance
under this setting. For space reasons, we focus only on the expected time of
finishing different number of operations with several threads.

Table 3. The state spaces and comp. time of max/min expected time of lists

State space size and analysis times. Table 3 shows the generated state spaces and
analysis times of the lists. State spaces in some scenarios can not be generated
due to either memory out at state space generation or time out of computing
the expected time. The generated state spaces correctly reflect the granularities
of locks6: cgs > (is coarser than) fgs > lazy > opt. The bisimulation reduction
times for the large state spaces are about 60 % of the generation times.

Fig. 7. The expected execution time versus # read/write oper. of concurrent lists
(Color figure online)

Expected time results. One would expect that the fine-grained concurrency
(=finer granularity of lock) allows more operations to be performed per unit
time than coarse-grained concurrency. Hence one expects for the throughput:
opt > (the expected time is smaller) > lazy > fgs > cgs. However, in our exper-
iment this is not the case. Reversely, we can easily observe that cgs finishes 3
operations sooner than the others in both best and worst scenarios (Fig. 7).

6 If for a given scenario, the number of states of a data structure is higher than for
another data structure, it allows for more concurrency and has finer lock granularity.

48 H. Wu et al.

Evaluation. The results of expected times above indicate that the finer-grained
concurrency will not always achieve a higher throughput when the data race is
(extremely) intensive. The more unsuccessful operations will lower the overall
throughput and in such scenario the fine-grained implementation could be worse
than the coarse-grained implementation.

5 Conclusion

This paper presented the modelling and performance analysis of various con-
current data structures using a combination of the CADP and MAMA tools.
We emphasise that probabilistic model checkers such as PRISM/MRMC are not
appropriate as they do not support non-deterministic continuous-time stochas-
tic models. Future work consists of validating our model-based results against
concurrent data structure implementations (e.g., in Java).

Acknowledgments. We thank Wendelin Serwe for his support in CADP.

References

1. Baier, C., Daum, M., Engel, B., Härtig, H., et al.: Locks: picking key methods for
a scalable quantitative analysis. J. Comput. Syst. Sci. 81(1), 258–287 (2015)

2. Cederman, D., Chatterjee, B., Tsigas, P.: Understanding the performance of con-
current data structures on graphics processors. In: Kaklamanis, C., Papatheodorou,
T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 883–894. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32820-6 87

3. Deng, Y., Hennessy, M.: On the semantics of Markov automata. Inf. Comput. 222,
139–168 (2013)

4. Dodds, M., Haas, A., Kirsch, C.M.: A scalable, correct time-stamped stack. In:
POPL, pp. 233–246. ACM (2015)

5. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a prac-
tical lock-free queue algorithm. In: Frutos-Escrig, D., Núñez, M. (eds.) FORTE
2004. LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30232-2 7

6. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351 (2010)

7. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)

8. Guck, D., Hatefi, H., Hermanns, H., Katoen, J., Timmer, M.: Analysis of timed
and long-run objectives for Markov automata. Log. Methods Comput. Sci. 10(3)
(2014)

9. Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and
analysis of Markov reward automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA
2014. LNCS, vol. 8837, pp. 168–184. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11936-6 13

10. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N., Shavit, N.:
A lazy concurrent list-based set algorithm. Parallel Process. Lett. 17(4), 411–424
(2007)

http://dx.doi.org/10.1007/978-3-642-32820-6_87
http://dx.doi.org/10.1007/978-3-540-30232-2_7
http://dx.doi.org/10.1007/978-3-540-30232-2_7
http://dx.doi.org/10.1007/978-3-319-11936-6_13
http://dx.doi.org/10.1007/978-3-319-11936-6_13

Performance Evaluation of Concurrent Data Structures 49

11. Herlihy,M., Shavit, N.: TheArt ofMultiprocessor Programming.MorganKaufmann
(2008)

12. Mateescu, R., Serwe, W.: Model checking and performance evaluation with CADP
illustrated on shared-memory mutual exclusion protocols. Sci. Comput. Program.
78(7), 843–861 (2013)

13. Michael, M.M.: Hazard pointers: safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst. 15(6), 491–504 (2004)

14. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: PODC, pp. 267–275. ACM (1996)

15. Neuhäußer, M.R., Katoen, J.-P.: Bisimulation and logical preservation for
continuous-time Markov decision processes. In: Caires, L., Vasconcelos, V.T. (eds.)
CONCUR 2007. LNCS, vol. 4703, pp. 412–427. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-74407-8 28

16. Tofan, B., Schellhorn, G., Reif, W.: Formal verification of a lock-free stack with
hazard pointers. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol.
6916, pp. 239–255. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23283-1 16

http://dx.doi.org/10.1007/978-3-540-74407-8_28
http://dx.doi.org/10.1007/978-3-540-74407-8_28
http://dx.doi.org/10.1007/978-3-642-23283-1_16

	Performance Evaluation of Concurrent Data Structures
	1 Introduction
	2 Modeling Concurrent Data Structures in LNT
	3 Towards Performance Evaluation
	4 Experimental Results
	5 Conclusion
	References

