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Abstract. The Clock Constraint Specification Language (CCSL), first intro-
duced as a companion language for Modeling and Analysis of Real-Time and
Embedded systems (MARTE), has now evolved beyond the time specification
of MARTE, and has become a full-fledged domain specific modeling language
widely used in many domains. A CCSL specification is a set of constraints,
which symbolically represents a set of valid clock schedules, where a schedule
represents the order of the actions in a system. This paper proposes an algorithm
to detect the divergence behavior in the schedules that satisfy a given CCSL
specification (i.e. it proposes to detect the presence of infinite but non periodic
schedules in a CCSL specification). We investigate the divergence by con-
structing causality chains among the clocks resulting from the constraints of the
specification. Depending on cycles in the causality chains, a bounded clock set
built by our proposed algorithm can be used to decide whether the given
specification is divergence-freedom or not. The approach is illustrated on one
example for architecture-driven analysis.

Keywords: CCSL � Divergence � Clock causality chain � Bounded Clock Set �
PVS

1 Introduction

The Unified Modeling Language (UML) Profile for Modeling and Analysis of
Real-Time and Embedded systems (MARTE) [1], adopted in November 2009, has
introduced a Time Model [2] that extends the informal Simple Time of UML2. This
time model is general enough to support different forms of time (discrete or dense,

This work is supported by the Natural Science Foundation of China (Grant No. 61572306,
61502294).

© Springer International Publishing AG 2016
M. Fränzle et al. (Eds.): SETTA 2016, LNCS 9984, pp. 18–37, 2016.
DOI: 10.1007/978-3-319-47677-3_2



chronometric or logical). Its so-called clocks allow enforcing as well as observing the
occurrences of events and the behavior of annotated UML elements. The Time Model
comes with a companion language named the Clock Constraint Specification Language
(CCSL) [3] defined in the annex of the MARTE specification. Initially devised as a
language for expressing constraints between clocks of a MARTE model, CCSL has
evolved and has been developed independently of the UML. CCSL is now equipped
with a formal semantics [3] and is supported by a software environment (TimeSquare
[4]) that allows for the specification, solving, and visualization of clock constraints.

MARTE promises a general modeling framework to design and analyze systems.
Lots of works have been published on the modeling capabilities offered by MARTE,
much less on verification techniques supported. Inspired by the works about state-based
semantics interpretation for the kernel CCSL operators [5], this paper focuses on the
divergence (see Sect. 3.1) detection of some CCSL specifications. This issue was
addressed by [6, 7] but their propositions were applying parallel composition of
individual CCSL constraints, making the propositions unsuitable for industrial size
systems. In this work, we significantly reduce the complexity of the divergence
detection by constructing and analyzing clock causality chains. Additionally our
algorithm can point out what constraint can be added to make the specification
divergence-free. In order to acquire clock causality chains, we first highlighted some
interesting properties about causal relation between clocks. Furthermore, we propose an
algorithm to decide if a given CCSL is divergence-free or not, by constructing the
proposed a “Bounded Clock Set” (BCS) based on clock delay expression as well as the
causality relation between clocks.

Section 2 introduces a state-transition based semantics for CCSL. Section 3 shows
how to detect the divergence and make sure the specification is divergence-freedom
based on the notion of divergence of CCSL specifications. Also, an algorithm, which is
used to build the bounded clock set for determining the convergence, is depicted in this
section. Section 4 illustrates, by using an example from architecture-driven analysis,
the use of our algorithm on a CCSL specification. It shows how to improve a divergent
specification such that it becomes a convergent one by adding clock constraints hinted
by the algorithm. Finally, Sect. 5 makes a comparison with related works and Sect. 6
concludes the contribution and outlines some future works.

2 Preliminaries

This section briefly introduces the logical time model [2] of MARTE and the Clock
Constraint Specification Language (CCSL). A technical report [3] and it latest update
[8] describes the syntax and the semantics of a kernel set of CCSL constraints. We
describe in this paper only the constraints that are used for our discussion.

The notion of multiform logical time has first been used in the theory of syn-
chronous languages [9] and its polychronous extensions. CCSL is a formal declarative
language to specify polychronous clock specification. It provides a concrete syntax to
make the clocks and clocks constraints first-class citizens of UML-like models. Clocks
in CCSL are used to measure the number of occurrences of events in a system. Logical
clocks replace physical times by a logical sequencing. A CCSL specification do not
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need for clocks to be relative to a global physical time. They are by default independent
of each other and what matter is the partial ordering of their ticks induces by the
constraints between them.

A clock belongs to a clock set C. During the execution of a system, an execution
step is defined and at a given step, every clock in C can tick or not according to the
constraints defined in the specification. A schedule captures what happens during one
particular execution.

Definition 1 (Schedule): A schedule is defined as a function Sched: N[ 0 ! 2C. ■

Given an execution step i 2 ℕ>0, and a schedule σ 2 Sched, σ(i) denotes the set of
clocks that tick at step i.

For a given schedule, the configurations of the clocks tell us the advance of the
clocks, relative to the others.

Definition 2 (Clock Configuration): For a given schedule σ, clock c 2 C and a natural
number n 2 ℕ, the configuration χσ: C × ℕ → ℕ is defined recursively as:

vr c; nð Þ ¼
0; if n ¼ 0
vr c; n� 1ð Þ; if c 62 r nð Þ
vr c; n� 1ð Þþ 1; if c 2 rðnÞ

8<
: ðF:1Þ

■
For a clock c 2, and a step n 2 ℕ, χσ(c, n) counts the number of times the clock

c has ticked at step n for the given schedule σ.
CCSL is used to specify a set of valid schedules. There is usually more than one

valid schedule that satisfies a given specification. If there is no satisfying schedule, then
we say that the specification is ill-formed. The detail properties about the schedules
against the given specification is investigated in [10]. Clocks can be finite of infinite.
Since divergence problem only makes sense on infinite clocks, we do not care about
constraints that make clock terminating (see [8] for details). Consequently, every clock
in C are infinite (will never terminate), i.e., 8c 2 C, χσ(c, n) is boundless with
n increasing.

Definition 3 (CCSL Specification): A CCSL specification SPEC is a pair <C,
CConstr> , where C is a set of clocks, CConstr is a set of formulae (see Definition 5)
used to specify the relations among the clocks in the set C. ■

Definition 4 (Clock Set) An element in the clock set C can be given by the specifi-
cation writer explicitly (explicit clock), or by one of the following clock expressions
(implicit clock):

Clock := aþ b a � bj janb sup a; bð Þj jinf a; bð Þ a$n j SampledOn a; bð Þj jFilteredBy a; u; vð Þ
ðF:2Þ
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where a, b 2 C are clocks, u, v 2(0 + 1)* are finite binary words, and n 2 ℕ is a natural
number. ■

Once we write one clock expression in the form of (F.2), a new clock is created and
added into the clock set C. For example, if we give the explicit clock set {a, b, c}, and
clock expression set {d = a + b, e = c $1}, then the considered clock set is C = {a, b,
c, d, e}. Note that there may not be any given name for the implicit clock of the clock
expression (e.g. if it occurs in one clock relation) (see Definition 5). It should be noted
that the new clock will be scheduled depending on the clock(s) that occur in that
expression.

It is convenient to define a clock as an Abstract Data Type (ADT) [11] in Prototype
Verification System (PVS) [12, 13] if we treat the clock expression as an element in a
clock set instead of assigning them a new clock name.

The CCSL constraint defined over the clock set includes both the explicit clocks
and implicit ones.

Definition 5 (CCSL Relation): For a given clock set C, the corresponding clock
relation set Φ(C) over C is defined recursively as:

ψ ≔ a ≺ b | a ≼ b| a � b | a # b | ψ ∧ ψ
where a, b 2 C. ■

Every clock relation in the set Φ(C), is a primitive formula that relates a clock pair
or their conjunction.

Definition 6 (CCSL Specification Satisfaction). For a given CCSL specification
SPEC = <C, CConstr>, A schedule σ over C satisfies SPEC, denoted σ ⊨ SPEC, if and
only if for every formulae r in CConstr, σ evaluates to true according to the following
definition postulated by the CCSL semantics:

σ ⊨ r if and only if cases r’s form of

a � b : 8n 2 N; vr a; nð Þ ¼ vr b; nð Þ ) b 62 rðnþ 1Þ Precedenceð Þ
a4b : 8n 2 N; vr a; nð Þ� vr b; nð Þ Causalityð Þ
a � b : 8n 2 N[ 0; a 2 r nð Þ ) b 2 rðnÞ Subclockð Þ
a# b : 8n 2 N[ 0; a 62 r nð Þ _ b 62 rðnÞ Exclusionð Þ
w1 ^ w2 : r�w1 ^ r�w2 Conjunctionð Þ

ðF:3Þ

where a, b 2 C. ■
It’s straightforward to prove that both Causality and Subclock are pre-orders on C,

i.e., they are reflexive and transitive. For simplicity, we can write a ≼ b ≼ c for a ≼ b∧
b ≼ c, and so do other transitive clock relation. The transitivity property of the
Causality relation is of importance in determining the boundedness of a specification
(see Sect. 3.2). It is also straightforward to prove that Exclusion is neither reflexive nor
transitive. The transitive property of Precedence is very tedious to prove from this form
of definition, although it is obvious in other semantics model [8].
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The implicit clocks defined using clock expressions (F.2), are constrained according
to the parameters of the clock expression. In other words, a clock expression is a clock
generator where the output clock ticks or not according to the input clock(s) state and
other arguments, if any.

Definition 7 (Clock Expression Satisfaction). Whether an implicit clock (denoted
c in the following) can tick or not in a schedule σ, is determined by the behaviors of the
input clock(s) in σ,

σ ⊨ c if and only if cases c is defined by

a þ b : 8n 2 N[ 0; c 2 r nð Þiffa 2 r nð Þ _ b 2 rðnÞ Unionð Þ
a � b : 8n 2 N[ 0; c 2 r nð Þiffa 2 r nð Þ ^ b 2 rðnÞ Intersectionð Þ
anb : 8n 2 N[ 0; c 2 r nð Þiffa 2 r nð Þ ^ b 62 rðnÞ Minusð Þ
sup a; bð Þ : 8n 2 N; vr c; nð Þ ¼ minðvr a; nð Þ; vr b; nð ÞÞ Supremumð Þ
inf a; bð Þ : 8n 2 N; vr c; nð Þ ¼ maxðvr a; nð Þ; vr b; nð ÞÞ ðInfimumÞ
a$d : 8n 2 N; vr c; nð Þ ¼ maxðvr a; nð Þ � d; 0Þ ðDelayÞ

ðF:4Þ

SampledOn(a, b): 8n 2 ℕ>0, c 2 r nð Þiff

ðb 2 r nð Þ ^ ð9j 2 ½1::n�; a 2 r jð Þ ^ 8m : ½j::n� 1�; b 62 r mð ÞÞÞ ðSampledOnÞ

FilteredBy (a, u, v): 8n 2 ℕ>0, c 2 r nð Þiff

ða 2 r nð Þ ^ ifk	 uj jthen u k½ � ¼ 1 else v k � uj jð Þmod vj j½ � ¼ 1ð Þ;where k ¼ Xrða; nÞÞ
FilteredByð Þ

where a, b 2 C, u, v 2 (0 + 1)*, and d 2 ℕ>0. |u| (resp. |v|) represents the length of
binary word u (resp. v), k = χσ(a, n) is the number of tick of clock a from step 1 to n. ∎

By composing the relations and the expressions provided in Definitions 4 and 5,
some user-defined clock relations can be further defined, as below:

a
 b :¼ a � b � a $ 1 Alternationð Þ ðF:5Þ

a �n b := a � b � a $ n Bounded precedenceð Þ ðF:6Þ

a � b := a4b ^ b4a Coincidenceð Þ ðF:7Þ

Obviously, Alternation (F.5) is a special case of bounded precedence (F.6).
Alternation (which is frequently used in the CCSL specifications), is a kind of bounded
relation that is discussed in detail in Sect. 3.

From the definitions above, some proved propositions can be listed below. The
reader who is interested the proof can get the details in the report [5].

Proposition 1 (Precedence Implies Causality). The Precedence is a stronger form of
causality:

σ ⊨ a ≺ b ⟹ σ ⊨ a ≼ b ■
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Proposition 2 (Subclock Implies Causality). When a is a Subclock of b, then b is
faster than a:

σ ⊨ a � b ⟹ σ ⊨ b ≼ a ■

Proposition 3 (Union and Causality). The union of two clocks is faster than both
clocks:

σ ⊨ u ≔ a + b ⟹ σ ⊨ u ≼ a ∧ σ ⊨ u ≼ b ■

Proposition 4 (Intersection and Causality). The intersection of two clocks is slower
than both clocks:

σ ⊨ i ≔ a * b ⟹ σ ⊨ a ≼ i ∧ σ ⊨ b ≼ i ■

Proposition 5 (Infimum and Causality). The infimum of two clocks is always faster
than both clocks:

σ ⊨ f ≔ inf(a, b) ⟹ σ ⊨ f ≼ a ∧ σ ⊨ f ≼ b ■

Proposition 6 (Supremum and Causality). The supremum of two clocks is always
slower than both clocks:

σ ⊨ s ≔ sup(a, b) ⟹ σ ⊨ a ≼ s ∧ σ ⊨ b ≼ s ■

Proposition 7 (Delay and Causality). The delayed clock is always slower than the
base clock:

σ ⊨ c ≔ a $ d ⟹ σ ⊨ a ≼ c ■

Propositions 1 to 7 defines new implicit Causality relations from all the other
relations (Precedence and Subclock) and expressions (Union, Intersection, Infimum,
Supremum and Delay). The Definitions 1 to 7 have been formalized in PVS, and the
Propositions 1 to 7 have been proved (in most cases by induction).

Based on the definitions of SampledOn and FilteredBy in (F.3), c ≔ SampledOn(a,
b) implies a ≼ c and c � a, c ≔ FilteredBy(a, u, v) implies c � a. Hence, some
Causality relations between the new implicit clock and their input clock can indirectly
be deduced from the clock expression SampledOn and FilteredBy. Therefore, we can
also get Causality relations using SampledOn and FilteredBy, besides using Proposi-
tions 1 to 7.

3 Divergence Detection

3.1 Divergence and Bounded Relation

Let’s consider a very simple CCSL specification SPEC1 = <{sending, ack}, {sending
≼ ack}>. It is divergent as we don’t know what will happen at a certain execution step
i in a schedule σ provided that σ satisfies SPEC1 from step 1 to step i – 1. That is to say,
there are many possibilities of clock ticking (tick sending, tick ack, or both) to ensure
the satisfaction of SPEC1 at step i. Furtherly, whether the clock ack ticks or not is
uncontrollable and unpredicatable since there is nothing to trigger its firing. Therefore,
some expected properties may eventually not be guaranteed, if it is implied by the
implementation of ack’s tick.
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Definition 8 (Divergent Specification). We say a CCSL specification SPEC = <C,
CConstr> is divergent, if an expected clock in C has the possibility never ticks,
formally,

9σ, (σ ⊨ SPEC ∧9g, r 2, 8i:{k: ℕ>0| r 2 σ(k)}, 9j> i, g 62 σ(j)). ■

Here g (means goal) is the expected action that may be an acknowledge
signal/operation of other clock r (means request). That is to say, after performing some
necessary operation(s) by ticking the some clocks in C\{g} containing clock r, there
must be an expected final result (ticking clock g) appears in the admissible future, but
unfortunately only God knows g will tick or not in the divergent specification SPEC.
Therefore, the divergence of SPEC1 is asserted by choosing g = ack, r = sending and
the given schedule σ such that 8i 2 ℕ>0, σ(i) = {sending}.

On the contrary, another example SPEC2 = <{a, b}, {a * b}> is not divergent
because the constraint a * b postulates that the schedule that satisfies SPEC2 must
execute by alternating a with b forever. In this case, we say the behavior and the
corresponding CCSL specification are convergent if it is also free of some unexpected
properties, such as deadlock and livelock and so on.

The divergent specification behavior is not predicable in the sufficient future. It is
possible for some expected action(s) to be delayed infinitely in the future. This bad
behavior is unexpected since some actions can never happen after a certain simulation
step. Therefore, a specification that contains divergence is unsafe. How to detect di-
vergence existence in a given CCSL specification is the main subject in this section.
Additionally, we provide some suggestions to modify the CCSL specification so that it
becomes divergence-free.

For a given CCSL specification <C, CConstr>, if the difference between the speeds
of two clocks a, b 2 C is limited in an allowed boundary, we say the clock pair (a, b)
has a bounded relation.

Definition 9 (Bounded Relation). For a given clock set C, two clocks a, b 2 C, and a
schedule σ over C, a and b has the bounded relation with a given boundary m 2 ℕ,
denotes |a, b| ≤ m:

σ ⊨ |a, b| ≤ m iff 8i 2 ℕ>0, 9j 2 ℕ>0, | Xrða; iÞ � Xrðb; jÞ | ≤ m
m (resp. – m) can be called upper (resp. lower) bound. ■

When such an unbounded clock pair is found, we say that there is divergence in the
specification. We say the specification free of divergence is a bounded specification.

Definition 10 (Bounded Specification). For a given CCSL specification SPEC = <C,
CConstr>, 8a, b 2 C, SPEC is bounded if and only if any clock pair has the bounded
relation:

8σ, σ ⊨ SPEC ⟹ 9m 2 ℕ, σ ⊨ |a, b| ≤ m ■

A bounded specification is divergence-free because there are no possible boundless
drifts between any clock pair (i.e. between the actions).

If we check every clock pairs among all clocks in C to decide whether a specifi-

cation is divergence-free or not, there are
jCj
2

� �
¼ Cj j � ð Cj j � 1Þ=2 pairs need to be
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checked. The number of checks then totals to (jCj2). But in practice many checks can be
safely neglected when the bounded relation is implied by the already checked one.

The Bounded Relation can directly be derived from the formula for most of the
constraints. Let us show how to get the Bounded Relation between two clocks implied
by the existing clock relations and expressions.

Bounded Relation is an equivalence relation over C, i.e., it is reflexive, symmetric
and transitive. Note that they do not necessarily have the same boundaries for different
bounded relations.

Proposition 8 (Bounded Extension). The Bounded Relation is transitive and the
transitive resulting boundary is the sum of the original ones.

|a, b| ≤ m1 ∧ |b, c| ≤ m2 ⟹ |b, c| ≤ m1 + m2 ■

Proposition 8 can be proved by using classical properties of inequalities addition.
The proof is obvious and omitted here.

Proposition 9 (Bounded Restriction). Bounded relation can be restricted w.r.t.
Causality, and the resulting boundary is not greater than the original one.

|a, b| ≤ m ∧ 8c 2 C, (a ≼ c ≼ b ∨ b ≼ c ≼ a) ⟹ |a, c| ≤ m ∧ |b, c| ≤ m ■

Proof of Proposition 9:
Let maxDrift_ab(n) = vr a; nð Þ � vr b; nð Þ,
maxDrift_ac(n) = vr a; nð Þ � vr c; nð Þ;
maxDrift_bc(n) = vr b; nð Þ � vr c; nð Þ, for all n 2 ℕ,
from the Definition 9, we have
|a, b| ≤ m⟹ |maxdrift_ab(n)| ≤ m⟹−m ≤ maxdrift_ab(n) ≤ m, for all n2ℕ,

Assume a ≼ c ≼ b, from the definition 6, we have8n 2 ℕ, vr a; nð Þ� vr c; nð Þ�
vr b; nð Þ, then maxDrift_ac(n) ≥ 0 ≥ – m.

frommaxdrift ab nð Þ	m ð1Þ

maxdrift bc nð Þ	 0 ð2Þ

(1) + (2) gets
maxDrift_ac(n) = maxdrift_ab(n) + maxdrift_bc(n) ≤ 0 + m = m
therefore, |maxDrift_ac(n)| ≤ m.
similarly, from (2) we have8n 2 ℕ, maxDrift_bc(n) ≤ 0 ≤ m,

– maxDrift_bc(n) ≤ maxdrift_ab(n) ≤ m ⟹ maxDrift_bc(n) ≥ – m

There exists the similar proof under the cases b ≼ c ≼ a. ■
From Definition 7, we can see Delay implies the Bounded Relation:

Proposition 10 (Delay Implies Bounded). The delayed clock a and the corresponding
base clock b has the Bounded Relation with a lower bound 0 and a upper bound d:

σ ⊨ a ≔ b $ d ⟹ σ ⊨ |a, b| ≤ d ■
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Proof of Proposition 10: This is direct conclusion from Definition 7.
The primitive clock relations and the other clock expressions except Delay and

FilteredBy don’t imply bounded relation. But their composition may deduce.

Proposition 11 (Alternate Implies Bounded). The clock pair involves in Alternation
relation has the bounded relation with the boundary 1:

σ ⊨ a * b ⟹ σ ⊨ |a, b| ≤ 1 ■

Proof of Proposition 11:
a
 b , by Alternation definition (F.5)
a ≼ b ≼ a $ 1 ⟹ by Proposition 1 (Precedence Implies Causality)
a ≼ b ≼ a $ 1 ⟹ by Proposition 10 (Delay Implies Bounded)
|a, a $ 1| ≤ 1 ⟹ by Proposition 9 (Bounded Restriction)
|a, b| ≤ 1 ∧ |a $ 1, b| ≤ 1 ⟹ by proposition calculus
|a, b| ≤ 1 ■

Similarly, one can prove Bounded Precedence (F.6) is also a Bounded Relation.
FilteredBy expression c ≔ a ▼(u.vω), which defines a clock new clock c as a Sub-
clock of a according to two binary words u and v, implies a Bounded Relation between
clock pair (c, a) if there exists at least one 1-bit in the periodical pattern v.

Proposition 12 (FilteredBy may Imply Bounded). The clock pair (a, c) involves in
the expression c ≔ a ▼(u.vω) has the Bounded Relation with the boundary |u| +
p × (|v| – 1) if and only if 9i 2 [1..|v|] such that v[i] = 1. Where p is the number of
periodical patterns that have passed from the initial configuration. ■

Proof of Proposition 12:
Suppose a schedule σ against by c ≔ a ▼(u.vω), For some schedule step m,

suppose clock a has ticked |u| + |v| times from start, then
χσ(a, m) = |u| + |v|

By FilteredBy definition (F.4), during the process, clock a ticks at step j if and only
if both a ticks and u.(v)ω[j] = 1. Because 9i 2 [1..|v|], v[i] = 1, we get:

1 ≤ χσ(c, m) ≤ |u| + |v|
With the passage of schedule σ, χσ(c, n) will increase at least one while χσ(a, n)

increase every |u| + |v| after passing a periodical pattern. Therefore, when the
schedule σ reaches step n by the time p periodical patterns has passed:

χσ(a, n) = |u| + p × |v| and p ≤ χσ(c, n) ≤ |u| + p × |v| ⟹ |χσ(a, n) – χσ(c, n)| ≤ |
u| + p × (|v| – 1) ■

3.2 Clock Causality Chain and Bounded Clock Set

In order to determine whether a CCSL specification is divergent or not, according to
Definition 9, one must show every clock pair has Bounded Relation. Due to most clock
constraints without the bound information, we try to capture the Bounded Relation
from the Causality relation.
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Definition 11 (Clock Causality Chain). For a given clock set C, some clocks in C may
form a Clock Causality Chain (CCC), which is a finite sequence c1, c2, …, cn such that
8i 2 [1..n – 1], ci ≼ ci+1 and n ≥ 2. It is called Bounded Clock Causality Chain (BCCC)
if 9m 2 ℕ, |c1, cn| ≤ m, and m is called the chain’s boundary. It is an Unbounded CCC
(UCCC) otherwise. ■

Proposition 13 (BCCC Boundedness). ABCCC ρ = c1, c2, …, cn with a boundary
m implies that any two clocks in ρ has the Bounded Relation: 8i, j 2 [1..n], |ci, cj| ≤ m.
■

Proposition 13 is easily proved by using Proposition 9 (Bounded Restriction) as
well as the Causality transition.

Due to Proposition 13, Checking
n
2

� �
clock pairs bounded relation is replaced by

checking only one clock pair and additionally sorting n clocks with respect to Causality
relation. Moreover, the Causality relation is much easier to get than Bounded Relation
as the former is implied by some clock constraints (see Propositions 1–7).

Obviously, a specification is divergent if we can get a UCCC.

Theorem 1 (UCCC Implies Divergence). A CCSL specification SPEC = <C,
CConstr> is divergent, if there exists a UCCC ρ = c1, c2, …, cn (8i 2 [1..n], ci 2 C)
induced by the CConstr. ■

Proof of Theorem 1:
ρ is unbounded ⟹8i 2 [1..n − 1], ci ≼ ci+1 ⟹ That cn doesn’t tick forever in

some schedule σ has nothing about asserting the true value of σ ⊨ SPEC.
We can find such a schedule σ against SPEC that c1 tick at least once. σ is indeed

the witness (g = cn and r = c1) for uncovering the divergence of SPEC according to
Definition 8. ■

Let us illustrate Theorem 1 on a toy example, SPECs ¼ \C, CConstr>, where
C = {a, b, sup(a, b), c} and CConstr = {a * c, sup(a, b) ≼ c}. Let sup = sup(a, b), we
get

|a, c| ≤ 1, by Proposition 11
a ≺ b and a ≼ b, by Alternation definition and Proposition 1.
a ≼ sup ≼ c and b ≼ sup, by Proposition 6.
The Causality Clock Graph (CCG) [5] in Fig. 1 shows the Causality relations

among clocks. The Causality line from clock a to c can be safely removed because of
causality transition.

a

b
sup c

Fig. 1. CCG for SPECs
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The CCC a, sup, c is a BCCC, while the CCC ρ = b, sup is a UCCC. The existence
of ρ draws the conclusion SPECs is a divergent specification.

Via the analysis of SPECs, Theorem 1 tell us that the existence of a UCCC in a
CCSL specification witnesses its divergence. Unfortunately, this is a sufficient, but not
necessary, condition for deciding specification’s divergence. We say nothing about the
convergence even if we get one or more BCCCs from a CCSL specification. The
Bounded Clock Set can be used to determine a specification’s convergence.

Definition 12 (Bounded Clock Set). For a given clock set C, a clock set B = {c⊥, c1,
…, cm, c

⊤, cm+1…, cm + n}, subset of C, which contains at least 2 elements, is called a
Bounded Clock Set (BCS), if all the following conditions hold:

(i) (Lower-upper Bound) 9d 2 ℕ, |c⊥, c
⊤| ≤ d,

(ii) (Causality Bound) 8i 2 [1..m], c⊥ ≼ ci ≼ c⊤,
(iii) (Absence Unbounded Clock) 8i 2 [m + 1..m + n], 9c 2 BR (see below), d 2

ℕ, |c, ci| ≤ d.

The clock c⊥ (resp. c⊤) is called the bottom (resp. top) clock. The subsetBR = {c⊥,
c1, …, cm, c

⊤} of B is called Causal Bounded Clock Set (CBCS). ■

A BCS B = {c⊥, c1, …, cm, c
⊤, cm+1…, cm + n}, as shown in Fig. 2, includes two

disjoint subsets:

• BR = {c⊥, c1, …, cm, c
⊤} contains the fastest clock c⊥ as the bottom, and the

slowest clock c⊤ as the top, while all other ones’ speed lies between c⊥ and c⊤.
Note that m = 0 in some cases.

• B\ BR = {cm+1…, cm + n} We don’t care about the speed of these clocks in relation
to the one in BR. But a common fact is that all of them must be bounded by speed
of one of the clocks in BR. Note that n = 0 in some cases, i.e., this set is an empty
set.

The bottom (resp. top) clock is probably not a “proper” bottom (resp. top) clock
because maybe there exists a clock in B\BR which is faster (resp. slower) than it.

Theorem 2 (BCS Implies Divergence-Freedom). A CCSL specification SPEC ¼
\C;CConstr[ is free of divergence, if there exists a BCS B  C implied by the
CConstr. ■

c1, …, cm

c

c

c
m

+1 , …
,c

m
+n

B
ounded 

R
elation

Fig. 2. The BCS structure
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Proof of Theorem 2:
Let B = {c⊥, c1, …, cm, c

⊤, cm+1…, cm + n}, and BR = {c⊥, c1, …, cm, c
⊤}

By applying Proposition 9 (Bounded restriction) to condition (i) and (ii) in
Definition 12, we have

8i 2 1; . . .;m½ �; clock pairs ðc?;ciÞ and ðci;c>Þ are bounded: ðB 1Þ

By Proposition 8 (Bounded extension), via the c⊥ or c⊤ as the middle clock b
occurs, we have

8i; j 2 1; . . .;m½ �; clock pair ci;cj
� �

is bounded: ðB 2Þ

Summarizing (B_1) and (B_2),

8ci;cj 2 BR; clock pair ci;cj
� �

is bounded: ðB 3Þ

From condition (iii) in Definition 12, 8i 2 [m + 1..m + n], 9c 2 BR, clock pair (c,
ci) is bounded,

By Proposition 8 again via the c occurs in the last line as the middle clock b, we
have

8ci 2 BR; cj 2 BnBRclock pair ci;cj
� �

is bounded: ðB 4Þ

8ci;cj 2 BnBR; clock pair ci;cj
� �

is bounded: ðB 5Þ

Summarizing (B_3), (B_4) and (B_5), we conclude
8ci, cj 2 B, clock pair (ci, cj) is bounded.
Because B  C, 8ci, cj 2 C, clock pair (ci, cj) is bounded.
By Definition 10 (Bounded Specification), SPEC is divergence-freedom specifi-

cation. ■

If we cannot derive a bounded relation from C obviously, introducing some external
clock(s) that can form BCCC is allowed. Therefore, we use B  C rather than B = C
in Theorem 2.

Let us illustrate Theorem 2 on a simple example, SPECi ¼ \C;CConstr[ , where
C = {a, b, inf(a, b), o1, o2} and CConstr = { a ≼ o1, inf(a, b) * o1, b * o2, b ≼ o1}.

a

b
inf

o2

o1

Fig. 3. Causality Clock Graph for SPECi
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Let inf = inf(a, b), via some given propositions above, we can get the explicit and
implicit Causality relation list from CConstr (Fig. 3):

inf ≼ a≼ o1, b ≼ o1, b ≼ o2
By Proposition 11, we know clock pairs (inf, o1) and (b, o2) are bounded. Then we

can construct a BCS Bspeci = {c⊥ = inf, c1 = a, c2 = b, c⊤ = o1, c3 = o2} shown in
Fig. 4a with m = 2 and n = 1 in Definition 12. Because Bspeci  (SPECi), we assert
SPECi is free of divergence by Theorem 2.

Note that maybe there several other possibilities to assign the bottom or top clock.
For example, Bspeci_alt = {c⊥ = inf, c⊤ = b, c1 = a, c2 = o1,c3 = o2} shown in Fig. 4b
is another same member set but assigned with different top clock. Herem = 0 and n = 3.

Bspeci is a “much better” BCS than Bspeci_alt in the sense of determining the
boundedness among clocks. We can easily assert Bspeci is a BCS satisfied by condi-
tions (i), (ii) and (iii) in Definition 12. On the contrary, As to Bspeci_alt, both conditions
(i) and (iii) are not straightforwardly asserted using the CConstr( SPECi) as well as the
associated propositions list above. In fact, Bspeci_alt is constructed dedicatedly to show
its inconvenience when I know the fact convergence. In purpose of the efficiency for
convergence assertion, Subsect. 3.3 will design an algorithm for constructing BCS.

All the proofs about these propositions and theorems in Sects. 3.1 and 3.2 are
completed with the help of PVS. Hence, we can try to solve some problem without any
doubt about its correctness. The following theorem, written in PVS specification, is a
special case1 of Theorem 2, can be used to assert divergence-free of CCSL
specifications.

Note:

a,b

o1

inf
o

2
B

o u nde d
R

e lati on

b

inf

a,o
1 ,o

2

B
ounded

R
e lat ion

a. speci    b. speci_alt

Fig. 4. Two represents for BCS of SPECi

1 condition (iii) in Definition 12 is not necessarily be considered.
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(1) Clock is type to represent explicit clock set.
(2) AClock is a defined ADT includes both Clock and implicit clocks defined in

Definition 4.
(3) “⊨” is interpreted via Definitions 6 and 7.
(4) maxDrift is Bounded relation in Definition 9.

3.3 Detection Algorithm

For a given specification SPEC = <C, CConstr>, there are three simply rules to prevent
SPEC from divergence:

One violation of Rules 1–3 causes the specification’s divergence. The following
parts will consider only the specification that follows Rules 1–3.

If we have no enough faith to assert the convergence CCSL specification, we can
try to witness its divergence via discovering a UCCC by Theorem 1 because it is much
easier to find an unbounded clock pair than to determine all the clock pairs are
bounded.

When there is no obvious UCCC be found from a CCSL specification, we need to
design an algorithm to try to construct a BCS, for the purpose of using Theorem 2 to
guarantee specification’s convergence.

For a given SPEC ¼ \C;CConstr[ , we first sort the clock based on the
Causality-related clock constraints (includes Causality relation and those imply it) in
CConstr with regard to Causality.
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Algorithm 1 includes three parts:

(I) Get (and update if required) the bottom and top clock.
(II) Get the clock set in which it is not faster than the bottom and not slower than the

top.
(III) Analyze the boundedness of left clocks.

We can assert that B constructed in Algorithm 1 must be a BCS by Propositions 8
and 9. So this algorithm’s correctness is ensured by Theorem 2 since C = ∅ ⟹
B  C.

Algorithm 1 must terminate because of the finiteness of clock set. The complexity
of Algorithm 1 is (jCj). If most clocks can be dealt with in part I and II, the efficiency of
algorithm is very high. Therefore, via Algorithm 1, determining boundedness among
all clock pairs is converted into checking boundedness on much fewer clock pairs and
additionally sorting clocks w.r.t. Causality relation.

4 Case Study

To illustrate the approach, we take an example inspired by [14], that was used for flow
latency analysis on Architecture Analysis and Design Language (AADL) specifica-
tions. However, with CCSL we are conducting different kinds of analyses.
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Figure 5 considers a simple application described as a UML activity. This appli-
cation captures two inputs in1 and in2, performs some calculations (Step1, Step2 and
Step3) and then produces a result out. This application has the possibility to compute
Step1 and Step2 concurrently depending on the chosen execution platform. This
application runs in a streaming-like fashion by continuously capturing new inputs and
producing outputs.

To abstract this application as a CCSL specification, we assign one clock to each
action. The clock has the exact same name as the associated action (e.g., step1). We
also associate one clock with each input, this represents the capturing time of the
inputs, and one clock with the production of the output (out). The successive instants of
the clocks represent successive executions of the actions or input sensing time or output
release time. The basic CCSL specification is SPECsimp ¼ \C;CConstr[ , where
C = {in1,in2,step1,step2,step3,out}, CConstr includes the following clock constraints:

in14step1
^

step1 � step3 ðF:8Þ

in24step2
^

step2 � step3 ðF:9Þ

step34out ðF:10Þ

(F.8) specifies that step1 may begin as soon as an input in1 is available. Executing
step3 also requires step1 to have produced its output. (F.9) is similar for in2 and step2.
(F.10) states that an output can be produced as soon as step3 has executed. Note that
CCSL precedence is well adapted to capture infinite FIFOs denoted on the figure as
object nodes. Such a specification is clearly not convergent because of its violation of
Rule 2 (Bounds Existence) in Rule list for avoiding divergence. After the sorting the
clocks w.r.t. Causality relation, we get two CCCs:

q1 : in4step14step34out

q2 : in4step14step34out

step1

step2

step3

in1

in2

out

ad application

Fig. 5. Simple application
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It is also stated again that SPECsimp is divergent by Theorem 1 as both ρ1 and ρ2 are
unbounded. If one CCSL constraint like (F.11) is added into CConstr(SPECsimp) as a
test like that in [5].

sup in1; in2ð Þ
 out ðF:11Þ

By Proposition 6, the following are two new UCCCs are acquired since the
addition of (F.11):

in1 ≼ sup(in1, in2)
in2 ≼ sup(in1, in2)
Now we try to use Algorithm 1 to check whether SPECsimp is free of divergence or

not. Let supin12/sup(in1, in2), by Expanding the Alternation definition, (F.11) becomes
supin12 ≺ out ∧ out ≺ (supin12 $ 1)
Now (SPECsimp) = {in1, in2, step1, step2, step3, out, supin12, supin12 $ 1} corre-

spondingly, by part I of Algorithm 1, we get B = {c⊥ = supin12, c
⊤ = sup $1}, then

using part II of Algorithm 1, the clock out is added into B. Furtherly, because of ρ1, ρ2
and the fact supin12 is the fastest clock that is slower than in1 and in2 by Definition 7,
we can deduce 8c 2 {step1,step2, step3}, c⊥≼ c ≼ c⊤ by Propositions 1 to 7.
Therefore, the clocks step1, step2 and step3 can also be added into B via part II of
Algorithm 1. Up to now, B = {c⊥ = supin12, step1,step2, step3,out, c

⊤ = supin12 1},
and none of other clock can be added into B further. Therefore, SPECsimp is divergent
because B ⊉ C witnessed by in1,in2 2 C but in1,in2 62B. This is caused by that bounds
on Supremum do not imply bounds on in1(or in2) and out, not to mention to the
bound on in1 and in2.

To become a bounded(or safe) system SPECsimp safe, we can for instance replace
(F.11) by (F.12).

inf in1; in2ð Þ
 out ðF:12Þ

Let in fin12/inf(in1, in2), in fact, (F.12) equals
in fin12 ≺ out ∧ out (infin12 $ 1)
Because of introducing new clock constraint (F.12), some new clocks (implicit

clocks) are introduced as well, now CðSPECsimp safeÞ = CðSPECsimpÞ [ {infin12, infin12
$ 1}.

Let’s check its divergence-freedom again by Algorithm 1. By part I of Algo-
rithm 1, we get B = { c⊥ = infin12, c

⊤ = infin12 $ 1}, then using part II of Algorithm 1,
all the clocks in C can be added into B because their speed are constrained between the
slowest clock infin12 and the fastest clock infin12 $ 1 as revealed by the following CCCs
deduced by the Propositions 1, 5 and 7 as well as ρ1 and ρ2 above.

infin12 ≼ in1 ≼ step1 ≼ step3 ≼ out ≼ (infin12 $ 1)
infin12 ≼ in2 ≼ step2 ≼ step3 ≼ out ≼ (infin12 $ 1)
The resulting B = {c⊥ = infin12, in1, step1, in2, step2, step3, out, c

⊤ = infin12 $ 1},
as shown in Fig. 6, is obviously a superset of C(SPECsimp safe). Hence, the CCSL
specification SPECsimp safe is free of divergence. Note that B is also a CBCS because
all of clock c 2 B, c⊥ ≼ c ≼ c⊤.

34 Q. Xu et al.



With the help of bounded_set_boundSPEC in Sect. 3.2, we can complete the proof
of theorem simp_safe for asserting the boundedness of SPECsimp safe in PVS by the
lemma simp_bcs as follows. In fact, SPECsimp safe is a specification free of divergence.

5 Related Work

Some techniques were provided as an effort to analyze CCSL specifications. [15]
implemented the automatic analysis by translating CCSL into signal, for the purpose of
generating executable specifications through discrete controller synthesis. However,
this work did not consider the Infimum and Supremum operators that introduce
unbounded counters and did not address the problem of deciding whether the speci-
fication is divergence-freedom or not. Exhaustive analysis of CCSL through a trans-
formation into labeled transition systems has already been attempted in [16]. However,
in those attempts, the CCSL operators were bounded because the underlying
model-checkers cannot deal with infinite labeled transition systems.

In [6], the authors showed that even though the primitive constraints were
unbounded, the composition of these primitive constraints could lead to a system where
only a finite number of states were accessible. [7] defines a notion of safety for CCSL
and establish a condition to decide whether a specification is safe on the transformed
marked graph from CCSL.

All the above works share one common point: the specification analysis were done
by some transformation and performed on the transformed target. The results were
dependent on the correctness and efficiency of the mechanized transformation.

Our contribution is straightforward based on the clock Causality relation used to
sort and the clock expression used to determine the clock pair’s boundary. It is not
necessary for the reader to have the other mathematic theory preliminaries except the
basic set-theory.

in1, step1, in2,
step2, step3, out

infin12$1

infin12

Fig. 6. BCS of simple application
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6 Conclusion and Future Works

Based on the state-based semantics of a kernel subset of CCSL, We have presented a
sufficient condition to discover the CCSL divergence existence, and an easily con-
structed Bounded Clock Set (BCS) for deciding the convergence of CCSL. An algo-
rithm is proposed to actually build BCS of a given specification with the help of sorted
the bounded clock chain with respect to causality relation and the clock delay
expression used to decide clock pair’s boundary. Therefore, determining boundedness
among all clock pairs is converted into checking boundedness on much fewer clock
pairs and additionally sorting clocks with respect to causality relation. Finally, a simple
application’s convergence is investigated. We first discover its divergence by the
existence of unbounded clock causality chain. Consequently, a BCS is built to ensure
the new specification is convergent by adding suitable constraint.

As a future work, we plan to extend and prove the extensive application of clock
causality chain further. For instance, the potential causality conflict between clocks
may be found if the specification is not deadlock-free or ill-formed, the periodicity in a
schedule may be revealed in the chain in some style, etc.
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