
Time-Bounded Statistical Analysis
of Resource-Constrained Business Processes

with Distributed Probabilistic Systems

Ratul Saha1(B), Madhavan Mukund2, and R.P. Jagadeesh Chandra Bose3

1 National University of Singapore, Singapore, Singapore
ratul@comp.nus.edu.sg

2 Chennai Mathematical Institute, Chennai, India
madhavan@cmi.ac.in

3 Xerox Research Center India, Bengaluru, India
jcbose@gmail.com

Abstract. Business processes often incorporate stochastic decision
points, either due to uncontrollable actions or because the control flow
is not fully specified. Formal modeling of such business processes with
resource constraints and multiple instances is hard because of the inter-
play among stochastic behavior, concurrency, real-time and resource con-
tention. In this setting, statistical techniques are easier to use and more
scalable than numerical methods to verify temporal properties. However,
existing approaches towards simulation techniques of business processes
typically rest on shaky theoretical foundations. In this paper, we propose
a modular approach towards modeling stochastic resource-constrained
business processes. We analyze such processes in presence of commonly
used resource-allocation strategies. Our model, Distributed Probabilistic
Systems (DPS), incorporates a set of probabilistic agents communicating
among each other in fixed-duration real-time. Our methodology admits
statistical analysis of business processes with provable error bounds. We
also illustrate a number of real-life scenarios that can be modeled and
verified using this approach.

1 Introduction

In recent years, a plethora of models have been proposed in the area of Business
Process Management (BPM) [3,10]. These models have been used to analyze
large processes from diverse industry sectors such as Internet companies, health
care, and finance services. The tasks in these processes are typically mapped to
a finite set of shared resources whose allocation depends on a variety of practical
constraints. In addition, each process is often replicated as a large number of
instances. To optimize performance, one needs to be able to analyze resource-
constrained business processes with well-defined confidence in the result.

BPM systems often do not realize deterministic behavior and incorporate
stochastic decision points. This is due to both the increasing complexity of such
systems, which makes the exact control flow difficult to capture, as well as the
c© Springer International Publishing AG 2016
M. Fränzle et al. (Eds.): SETTA 2016, LNCS 9984, pp. 297–314, 2016.
DOI: 10.1007/978-3-319-47677-3 19

298 R. Saha et al.

inclusion of uncontrollable components in business processes. Even when the
probability distributions can be measured or approximated from domain knowl-
edge or historical data [2], model-based analysis [3] of such systems is hard due
to the interplay between stochastic behavior, concurrency, time taken to perform
tasks, and resource contention.

We propose a novel modular approach towards modelling resource-
constrained BPM (rcBPM) systems. Such systems have a finite set of resources
allocated across replicated instances of a stochastic business process. A business
process is a set of tasks with logical and temporal dependencies. Each task is
mapped to one of the available resources that can perform the task. Resources
are assigned following a predetermined allocation strategy. Each task has an
execution time, ideally drawn from a probability distribution. For simplicity,
we assume the time taken by a task to be fixed—say the mean value of the
distribution.

A case is an instance of the process model. Multiple cases run in parallel,
sharing the same set of resources. Cases need not start simultaneously. We study
systems with a fixed number of cases arriving within a given period of time. The
cases may follow an arrival process such as a Poisson process.

An example of an rcBPM system is the loan/overdraft process in a finan-
cial institution, where cases correspond to applications from different customers.
Tasks in the process may include ‘submitting’, ‘reviewing’, ‘accepting’ or ‘declin-
ing’ the application.

We observe that tasks and resources can be considered as individual agents
that behave independently and communicate among each other. There are two
types of communications among them: (i) task-task interaction, where a com-
pleted task passes the thread of control to some other tasks, and (ii) task-resource
interaction, which describes the allocation of a task to a resource.

This observation leads us to introduce Distributed Probabilistic Systems
(DPS) to model rcBPM systems. A DPS consists of a set of communicating
probabilistic agents. Each agent has a finite local state space. Periodically, agents
synchronize with each other on common actions to perform joint probabilistic
events. Each event has a fixed duration and cost. A scheduler is used to resolve
non-determinism: if an agent can take part in more than one synchronization at
a global state, the scheduler determines which one of them is to be performed.

In general, after the scheduler resolves non-determinism, multiple indepen-
dent actions are enabled at a global state of a DPS, which can be executed
concurrently. Each synchronization action among a set of agents leads to an
event being chosen according to a probability distribution. Each event has a
fixed duration, after which the local states of the participating agents change.
We show that the dynamics of a DPS with a fixed scheduler can be captured
as a discrete-time Markov chain. The DPS model can be viewed as a Markov
Decision Process (MDP) variant of Distributed Markov Chains (DMC) [20].

We model an rcBPM system as a DPS. Each task is an individual agent
incorporating the states of a task, such as ‘ready to perform’, ‘waiting for a
resource’, ‘busy executing’, ‘finished’ etc. When a task finishes, it triggers other

Analysis of Resource-Constrained Business Processes with DPS 299

task agents in the control flow that are ready to perform. Each resource is also a
simple agent, looping between being ‘available’ and ‘busy’. The scheduler maps
each task waiting for a resource to an available resource. This results in a syn-
chronization that generates an event whose duration captures the time taken to
perform the task. We also model the start and end states of a process as agents,
to model the arrival and completion of a case.

To verify temporal properties of rcBPM systems, we use Statistical Model
Checking (SMC) [14,24]. A typical property is of the form “when C cases arrive
with constant arrival density λ, at least x% of the cases will complete within time
t, with probability at least p”. Since the DPS model of an rcBPM system can
be viewed as a discrete-time Markov chain, we can simulate an rcBPM system
and use hypothesis testing to verify properties with provable error bounds.

We illustrate our approach using a business process [7] depicting
loan/overdraft applications of a large financial institution. The process has been
mined from real-life event logs from BPM Challenge 2012 [22]. The process has
46 resources for performing 15 tasks in the process. We scaled up to 500 cases
arriving at the rate of 1 case every 10 s. We show (i) the relationship between the
number of cases arriving within a fixed time bound and the fraction of cases that
complete, and (ii) the relationship between the minimum time of completion and
the fraction of cases completed for a fixed number of total cases.

To summarize, our contribution is as follows: (i) we propose a model of dis-
tributed probabilistic systems where events are assigned time and cost values,
and demonstrate that the model acts as a Markov chain for a well-behaved
class of schedulers, (ii) we provide a strong theoretical foundation for resource-
constrained business processes modelled as distributed probabilistic systems,
(iii) we demonstrate a statistical model checking based technique for inferring
time-bounded properties of business processes with multiple cases and a finite
set of shared resources. To the best of our knowledge, this is the first attempt to
provide a simulation based technique for analyzing resource-constrained business
processes with provable error bounds and sound sample size analysis.

The paper is structured as follows. Section 2 introduces resource-constrained
BPM systems and different properties of interest. Section 3 defines the Distrib-
uted Probabilistic System (DPS) model and a statistical model checking tech-
nique for DPS. Sections 4 and 5 provide a proof-of-concept demonstration of
our approach. Section 4 describes how rcBPM systems are modelled using DPS.
Section 5 discusses experimental results for a simple example. Finally, Sect. 6
provides a summary and future directions.

Related Work. The need for an underlying formal model for business processes
has been long felt. Workflow nets (WF nets, a class of Petri nets), equipped with
clean graphical notation and abundance of analysis techniques, have served as a
solid framework for BPM systems [1,4,6].

For this discussion, we restrict to related work that involves modelling or
analyzing stochastic business processes. The most prominent modelling formal-
ism for stochastic analysis for business processes is (generalized) stochastic WF
nets [9,18]. Such a system is modelled using exponentially distributed firing

300 R. Saha et al.

delay with timed transitions. A few recent papers [8,15,21] also demonstrate a
generic Markovian analysis that is mostly applicable to rigidly structured WF
systems. The work of [12] focuses on modelling BPM systems as Markov decision
processes in the language of PRISM [13]. These works are either very simplistic
in nature, where block-like patterns are chained together, or hard-to-tackle mod-
els involving arbitrary nondeterminism that cannot be readily adopted for sound
simulation techniques. Most importantly, extending these approaches to model
business processes with shared resources across multiple cases is not obvious.

Analyzing resource-constrained BPM systems with simulation-based tech-
niques is not new [16,17], but rigorous statistical analysis has often been limited
to computing analysis of variance and confidence intervals. The deductions are
often difficult to justify and can be arbitrarily far from truth—van der Aalst
correctly points out that “simulation does not provide any proof” [5]. Our work
is the first to (i) provably bound the error of analysis of business processes with
finite resources shared across multiple cases arriving at different time points and
(ii) provide a sound analysis of the sample size of simulation.

2 Resource-Constrained BPM (rcBPM) Systems

A resource-constrained BPM (rcBPM) system consists of two main components:
(i) the process, instantiated as a fixed number of cases, and (ii) a finite set
of resources. An rcBPM system is then accompanied by a resource allocation
strategy. To explain these, we use a process model that has been mined [7] from
a real-life event log of loan/overdraft applications of a large financial institution.
Along with the process, the average time for each resource to perform a particular
task has been mined. The event log is obtained from BPI Challenge 2012 [22].

The Process. A process in an rcBPM system consists of a start state, a finite set
of tasks and an end state. The tasks in the process are combined in sequence or
parallel. We assume that the control flow is probabilistic: a discrete probability
distribution is attached to each set of outgoing choices and sequential tasks have
outgoing probability 1. Each case is an instantiated copy of the process.

The Example. Figure 1 demonstrates, in Petri net notation, a process for
loan/overdraft applications of a large financial institution. We consider two
sub-processes—namely the application and offer sub-processes—of the overall
loan/overdraft application process. The tasks of the application and offer sub-
processes are prefixed with “A ” and “O ” respectively. From historical data,
we estimate the probability values of outgoing edges from places in the Petri
net. Unmarked edges have probability 1. The process starts with the submis-
sion of an application (A Submitted/A PartlySubmitted). An application can
be declined (A Declined) if it does not pass any checks. The probability of an
application being declined outright is estimated to be 0.84. Applications that
pass the checks are pre-accepted (A PreAccepted) with probability 0.16. Often
additional information is obtained by contacting the customer by phone. Based
on this information, an application can be cancelled (A Cancelled) with proba-
bility 0.63 or accepted (A Accepted) with probability 0.37. Once an application

Analysis of Resource-Constrained Business Processes with DPS 301

Fig. 1. An example process of an rcBPM system (in Petri net notation).

is accepted, it is finalized (A Finalized) and, in parallel, an offer is selected for
the customer (O Selected). An offer is then created (O Created) and sent to
eligible applicants and their responses are assessed (O Sent). A customer then
may (i) accept the offer (O Accepted) with probability 0.01, (ii) cancel the offer
(O Cancelled) with probability 0.95, or (iii) send the offer back (O SentBack)
with probability 0.04. If an offer is sent back, a new offer is created for the cus-
tomer. If the offer is accepted, the application is finally approved (A Approved).
Declining, cancellation or approval signals the end of the application.

Resources. A finite set of resources is provided, each capable of performing a
subset of tasks in the process. Different resources can take different time for per-
forming the same task. We may further group resources with the same behaviour
and capability into roles.

In the running example, we profiled the top 46 of the busiest resources from
the event log. The resource-task matrix with cell values representing the average
time taken by the resource on the particular task is shown (truncated) in Table 1
in the appendix. The columns indicate the resources and the rows indicate the
tasks. If a cell is empty, it indicates that the task is not assigned to the particular
resource. If the value in a cell is 0, the resource performs the task instantly.

Resource Allocation Strategy. At any moment, multiple tasks can compete
for a number of available resources and, conversely, multiple resources may be
available for a single task. The resource allocation strategy is responsible for
assigning each task to a single resource. A strategy is said to be deterministic
if, given the same snapshot of the system, the strategy always picks the same
resource allocation for tasks. While our model can be extended to accommodate
randomized schedulers, to keep the formalism simple, we focus on deterministic
schedulers. For example, the flexible assignment policy [16] is deterministic: given
a specialist-generalist ratio, it assigns the most specialist (available) resource to
a given task.

In the running example, we assume that a priority based scheduler is avail-
able. This scheduler assumes that there is an ordering among cases—one can
think of it as different tiers (platinum/gold/silver) of customers. We also assume
that given a case, there is an ordering among its tasks. Hence, there is a total

302 R. Saha et al.

ordering among tasks across all cases. For simplicity, we also assume a total
order among the resources. Hence at any configuration of the system, the sched-
uler goes through the resources in ascending order. For each resource, if a set
of assigned tasks are available for that particular resource, it schedules the low-
est ranked task among them. We note that such a scheduling policy may not
be optimal, but real-life schedulers for business processes are often simple in
nature. Also, while our model permits more complex schedulers, we have cho-
sen a simpler one to explain the approach and demonstrate some experimental
results.

The Modeling Formalism and Properties of Interest. We do not restrict
ourselves to any particular modeling formalism and discuss the support of our
modeling technique in terms of workflow patterns [19]. We support the core
patterns—sequence (WCP-1), parallel split (WCP-2), synchronization (WCP-
3), (probabilistic) exclusive choice (WCP-4), structured synchronizing merge
(WCP-7). In short, we allow parallel and XOR-splits as well as parallel and
XOR-joins as long as each parallel split is matched with a parallel join. With
some engineering, our approach can be extended to more unstructured models
as long as arbitrarily new thread of controls cannot be spawned. However for
this work, we focus on structured business processes.

We are interested in time-bounded temporal properties of rcBPM systems. A
fixed number of cases arrive following an arrival process. Each task and resource
can have their own time limit. Given a time limit, we are interested to verify lin-
ear temporal properties of business processes bounding the probability of error.
In the running example, let us assume that we are interested in the following
property: when C cases arrive at a rate of λ cases per second, with probability
at least p, at least x% cases are completed within time t. While we can analyze
more complex temporal properties, in this work, we focus on reachability prop-
erties. Note that we can also find optimal parameter values using binary search.
For example, if we are interested in optimizing x, we fix the other values p, t, λ
and C and use simulations to do a binary search for the optimal value of x in
the range [0, 100].

The state-of-the-art approach for analyzing stochastic business process mod-
els is to simulate the system an arbitrary number of times. If p % of the sim-
ulations satisfy the desired property, one claims that the property is true with
probability at least p, perhaps with confidence interval estimates of certain para-
meters. However, such conclusions are dependent on the sample size of the sim-
ulation and correctness is not guaranteed. We apply the theory of hypothesis
testing and sequential probability ratio test, which formally connects the sam-
ple size to the desired margin for error. The conclusions that we draw from our
experiments come with guaranteed bounds on the probability of error due to
false positives and false negatives. Our strategy is explained in detail in Sect. 3.

Analysis of Resource-Constrained Business Processes with DPS 303

3 The Distributed Probabilistic System (DPS) Model

We formulate a model in which a distributed set of agents interact through
actions that synchronize subsets of agents. A synchronization results in a proba-
bilistic choice between a set of events, each with its own time duration and cost.
We can then use hypothesis testing for statistical model checking of quantitative
properties of such systems.

Definition 1 (Distributed State Space). A distributed state space over n
agents [n] = {1, 2, . . . , n} is a tuple S = (n, {Si}, {sin

i }), such that for each
agent i ∈ [n], Si denotes its finite set of local states and sin

i denotes its local
initial state. We abbreviate [n]-indexed sets {Xi}i∈[n] as {Xi} when the context
is clear.

– For non-empty u ⊆ [n], Su =
∏

i∈u Si denotes the set of joint u-states of
agents in u. We denote S = S[n] to be the set of global states.

– For a u-state s ∈ Su and v ⊆ u, sv denotes the projection of s onto v. We do
not distinguish between S{i} and Si, nor between s{i} and si.

Definition 2 (Events and Actions)

– An event over a distributed state space S is a tuple e = (srce, tgte), such that
∅ �= loc(e) ⊆ [n] specifies the agents that participate in e and srce, tgte ∈ Sloc(e)

denote the source and target loc(e)-states of e.
– Let Σ denote the set of all events over S. Each event e has a duration δ(e)

and a cost χ(e), given by functions δ : Σ → R≥0 and χ : Σ → R≥0.
– An action over (S, Σ) is a collection of co-located events with the same source

state, equipped with a probability distribution. Formally, an action is a pair
a = (Ea, πa), where Ea ⊆ Σ is such that for each e, e′ ∈ Ea, srce = srce′ ,
and πa : Ea → [0, 1] is a probability distribution. We write loc(a) for the set
of agents participating in action a and src(a) for the common source state of
the events in Ea. Let A denote the set of all actions over (S, Σ).

– We assume that each event belongs to exactly one action. In other words Σ =⋃
a∈A Ea and for each a, b ∈ A such that a �= b, Ea ∩ Eb = ∅.

– For a global state s ∈ S, en(s) is the set of actions enabled at s. Formally,
en(s) = {a | src(a) = sloc(a)}.

– At a global state s ∈ S, a set of enabled actions U is schedulable if each agent
participates in at most one action in U . Formally, U ⊆ en(s) is schedulable
if for all a, b ∈ U such that a �= b, loc(a) ∩ loc(b) = ∅. Note that a schedu-
lable set of actions can be executed concurrently since the agents involved do
not interfere with each other. Let sch(s) ⊆ 2en(s) \ ∅ denote the collection of
schedulable sets of actions at s.

Definition 3 (Distributed Probabilistic Systems). A Distributed Proba-
bilistic System (DPS) is a tuple D = (S, Σ, δ, χ,A) such that

304 R. Saha et al.

– S = (n, {Si}, {sin
i }) is a distributed state space,

– Σ is the set of events over S with duration and cost functions δ and χ, respec-
tively,

– A is the set of actions over (S, Σ).

A DPS D evolves as follows. All agents start at their initial state, so the initial
global state at time 0 is sin = (sin

1 , sin
2 , . . . , sin

n).
Suppose D is at a global state s = (s1, s2, . . . , sn) at time t. A set of schedu-

lable actions U ∈ sch(s) is chosen from the set of enabled actions. We assume
the existence of a scheduler that guides this choice.

The actions in U start concurrently and independently. For each action a ∈ U ,
an event ea = (srce, tgte) ∈ Ea is chosen according to the probability distribution
πa, with an associated duration δ(ea) and cost χ(ea).

The durations {δ(ea)}a∈U fix a sequentialization of the events {ea}a∈U . In
general, there will also be a pending list of partially executed events currently
in progress, with their own completion times.

Among the list of pending events, old and new, the events with the earliest
time to completion finish first. For each completed event e, the local states of
agents in loc(e) are changed to tgte, while the states of the agents [n]\ loc(e) are
unchanged.

This gives rise to a new global state where potentially a new set of actions
are scheduled, and we repeat the process of choosing a set of actions to schedule.
We have to ensure that the scheduler respects the decisions made earlier, so that
all pending events remain compatible with the new choice.

We denote a global configuration of a DPS as a snapshot, consisting of a
global state and a list of partially executed events, with their time to completion
from the current time point.

Definition 4 (Snapshots). A snapshot of a DPS D is a tuple (s, U,X) where
U ⊆ en(s) and X = {(a, e, t) | a ∈ U, e ∈ Ea, t ∈ R≥0} such that:

– s is the current global state and U ∈ en(s) is the set of actions that are
currently being performed, which may not have started together.

– For each a ∈ U , there is exactly one entry (a, e, t) ∈ X denoting that event
e ∈ Ea is in progress with time t ≤ δ(e) till completion.

Let Y be the set of snapshots. Though Y is uncountable, a DPS will give rise
to a discrete set of reachable snapshots, determined by the duration function δ.

Nondeterministic choices between actions are resolved by a scheduler. At
each snapshot, the scheduler picks a schedulable set of actions that are pairwise
independent. For consistency, this choice should include all the actions already
in progress, but not necessarily new ones.

Definition 5 (Schedulers). A scheduler G is defined over snapshots as follows.
Let y = (s, U,X) ∈ Y be a snapshot. Then G(y) ∈ sch(s) is such that U ⊆ G(y) ⊆
en(s).

Analysis of Resource-Constrained Business Processes with DPS 305

We also note that, in general, it is hard to define independence-respecting
schedulers for distributed systems. This is closely related to defining local win-
ning strategies in distributed games [11]. The main complication is that a sequen-
tially defined scheduler must behave consistently across different linearizations
that correspond to the same concurrent execution. However, in a DPS, the dura-
tions associated with the events fix a canonical linearization, so there is no need
to reconcile decisions of the scheduler across different interleavings.

Once we fix a scheduler, we can associate a transition system associated with
a DPS whose states are snapshots.

Definition 6 (Transition System). Given a DPS D and a scheduler G, we
construct the transition system TS = (S, yin,→) where S ⊆ Y is a set of snap-
shots, with the initial snapshot given by yin = (sin, ∅, ∅) ∈ S.

Given a snapshot y = (s, U,X) ∈ S, where U = {a1, a2, . . . , am} and X =
{(a1, e1, t1), . . . , (am, em, tm)}, we define the next snapshots from y as follows.

– Let G(y) be the set of actions scheduled. Recall that U ⊆ G(y). Let V =
G(y) \ U = {b1, b2, . . . , bk}.

– For each action b = (Eb, πb) ∈ V , we pick an event eb ∈ Eb according to πb,
with duration δ(eb) and cost χ(eb). This generates a list Y = {(b, eb, δ(eb)) |
b ∈ V, eb ∈ Eb}. Note that all the events in X ∪ Y have pairwise disjoint
locations.

– From X ∪Y , we pick the subset Emin = {(a, e, tmin) | tmin is minimum across
all triples in X ∪ Y }. We then update the snapshot as follows:
(i) For each (a, e, tmin) in Emin, set sloc(e) to tgte, and remove a from U ∪V

and (a, e, tmin) from X ∪ Y .
(ii) For each (a, e, t) in (X ∪Y)\Emin, update t to t− tmin, thus reducing the

time to completion of e by tmin.
This results in a new snapshot (s′, U ′,X ′). Note that each probabilistic choice
of events for the actions in V deterministically determines the next snapshot.

We label each transition from snapshot y to y′ with a pair of sets (EV , Emin),
where V = {b1, b2, . . . , bk} is the new set of actions chosen by the scheduler at
snapshot y, EV = {eb1 , eb2 , . . . , ebk} is the set of events chosen corresponding to
V and Emin is the set of triples corresponding to the events that complete their

execution at y′. We write such a transition in the usual way as y
(EV ,Emin)−−−−−−−→ y′.

We associate a probability, time duration and cost with this transition as follows.
The probability associated with the transition is p =

∏
eb∈EV

πb(eb), where
for action b = (Eb, πb) in V , the event eb is probabilistically chosen from the set
Eb via πb. If V = ∅, p = 1. The time duration associated with the transition is
the time tmin attached to each (a, e, tmin) ∈ Emin. The cost associated with the
transition is the sum of χ(e), for all (a, e, tmin) ∈ Emin.

We claim that the probabilities we have attached to transitions transform the
system into a Markov chain. Suppose V = {b1, b2, . . . , bk} is the new set of actions
chosen by the scheduler at a snapshot y. As observed earlier, each combination of
events {e1, e2, . . . , ek} generated by applying πbi to Ebi , i ∈ {1, 2, . . . , k}, results

306 R. Saha et al.

in a unique next snapshot. Hence the sum of the probabilities across all the
successors of y adds up to 1. If V = ∅, there is only one outgoing transition with
probability 1.

Statistical Analysis of DPS

Properties. We are interested in checking linear time properties for distributed
probabilistic systems. For traditional transition systems, these are combinations
of safety and liveness properties. In a quantitative setting, we would typically
like to make assertions about the total duration or the total cost of a run. Since
our DPS model is not deterministic, we have to frame these questions in terms
probabilities. For instance, we might ask if the probability of reaching a target
state within time t is at least p.

A natural approach to checking such a property is to estimate the probability
by a large number of simulations. For this, we need the additional constraint
that the property can be checked within a bounded length run, so that we can
effectively terminate each simulation with a yes or no verdict. Bounded duration
properties can be formalized in notations such as bounded linear-time temporal
logic (BLTL) [24]. In this paper we will not get into the details of BLTL but
instead concentrate on reachability properties, defined informally.

The main shortcoming of naively estimating probabilities through random
simulations is that we have no guarantee about the accuracy of the estimate. To
perform this estimation in a principled manner, we need to frame the property
of interest as a hypothesis testing problem.

Hypothesis Testing. We briefly overview the preliminaries of hypothesis test-
ing before detailing the simulation procedure. For more details, see [14,24].

Suppose we are given a DPS (S, Σ, δ, χ,A), a bounded reachability property
described by a formula φ in a suitable notation, and a threshold γ. Our goal is to
verify if φ is achieved with probability at least γ, which we write as Φ = Pr≥γφ.

Let p be the probability of satisfying φ. To verify whether p ≥ γ, we test
the hypothesis H : p ≥ γ against its negation K : p < γ. Since a simulation-
based test does not guarantee a correct result, there are two types of errors we
encounter: (i) Type-I error: accepting K when H holds, and (ii) Type-II error:
accepting H when K holds. We would like to ensure that the probabilities of
Type-I and Type-II errors are bounded by pre-defined values (say) α and β,
respectively.

Enforcing exact bounds on Type-I and Type-II errors simultaneously is hard,
so we allow uncertainty using an indifference region [24]. We relax the test by
providing a range (γ−δ, γ+δ) for a given threshold δ. We now test the hypothesis
H0 : p ≥ γ + δ against H1 : p ≤ γ − δ. If the value of p is between γ − δ and
γ + δ, we say that the probability is sufficiently close to γ, so we are indifferent
with respect to which of the hypothesis K or H are accepted.

Sequential Probability Ratio Test. Traditional sampling theory fixes the
sample size in advance based on the Type-I and Type-II error thresholds α
and β. Computationally, it is often more efficient to estimate the sampling size

Analysis of Resource-Constrained Business Processes with DPS 307

adaptively, based on the observations made so far. Such an approach was pro-
posed by Wald, called a sequential probability ratio test (SPRT) [23].

Time-bounded SPRT for DPS proceeds as follows. The user provides Type-I
and Type-II error bounds α and β, as well the threshold of indifference δ. We
repeatedly simulate the system. We can determine in a bounded amount of time
whether a simulation run satisfies the property of interest or not.

After m simulation runs, let dm be the number of runs with a positive out-
come so far. We calculate a ratio quo = (γ−)dm (1−γ−)m−dm

(γ+)dm (1−γ+)m−dm
that takes into

account the number of successes and failures seen so far. We accept H0 if
quo ≤ β

1−α and H1 if quo ≥ 1−β
α . Otherwise, we continue the simulation. The

simulation is guaranteed to halt with probability 1 [24] and will typically con-
verge much before the number of samples required by a traditional static esti-
mate.

Please see Algorithm 1 in the Appendix for a concise algorithm.

4 Modeling rcBPM Systems as DPS

We recall that an rcBPM system consists of a business process instantiated
as a number of cases and a finite set of resources. Let us assume that in an
rcBPM system B, there are C cases numbered {1, 2, . . . , C} each with kT tasks
labelled as follows: Tij denotes the jth task of the ith case, for 1 ≤ i ≤ C and
1 ≤ j ≤ kT . We assume the rate of the arrival process is λ cases per second.
Let us assume there are r resources denoted {R1, R2, . . . , Rr}. In the running
example of loan/overdraft application, kT = 15 and r = 46 (see Fig. 1). For each
resource Ri, let tasks(Ri) ∈ {Tij | 1 ≤ i ≤ C, 1 ≤ j ≤ kT } denote the set of
tasks resource Ri is able to perform. Since resources can be shared among tasks,
for any 1 ≤ i, j ≤ r, tasks(Ri) ∩ tasks(Rj) can possibly be non-empty.

Given an rcBPM system, we transform it to a DPS as follows. We model
tasks and resources as agents. To facilitate the arrival process and clearly mark
the case completion, we also model the start and end states as agents. Hence,
the rcBPM system B can be modeled using r + C × (kT + 2) agents.

Each task agent consists of 4 states (i) ready to perform, (ii) waiting for a
resource, (iii) busy being executed, and (iv) finished. Each resource agent consists
of 2 states (i) available and (ii) busy. An agent modeling the start state is called
a starter agent, and has two states waiting and arrived. Similarly, the agent
modeling the end state is named finisher agent with states pending and done.

We illustrate a part of DPS modeling the running rcBPM example in Fig. 2.
We show the agents corresponding to the start state and 4 tasks: A Submitted,
A Partially Submitted, A Declined and A PreAccepted. We also demonstrate
a resource that can perform tasks A Submitted and A Partially Submitted.
The states are depicted in rounded cornered rectangles and the edges between

the states are defined as follows: s s′a e denotes the action at local state
s, e ∈ Ea and s′ be the next local state after event e.

308 R. Saha et al.

initial arrived

(i) the starter.

a1 e1
available busy

(ii) the resource

a2

a3

e4
e5

e2
e3
a4

a5

ready busy

waiting

finished

(iii) task A Submitted

a1

e1 a2

e2

a4

e4a6

e6

ready busy

waiting

finished

(iv) task A Partially Submitted

a6

e6 a3

e3

a5

e5a7

e7 e′
7

ready busy

waiting

finished

(iii) task A Declined

a7

e7

e′
7

a8

e8

a9

e9a10

e10

ready busy

waiting

finished

(iv) task A PreAccepted

a7

e′
7

e7

a11

e11

a12

e12a13

e′
13e13

Fig. 2. Modeling (part of) the running rcBPM system example as DPS agents.

The starter agent mimics the wait for a case. At state initial, it synchronizes
with the starting task agent at ready state followed by an event with proba-
bility 1. The duration of the event is equal to the total time before arrival for
the particular case. The starter then moves to arrived state and the starting
task moves to waiting state, where it waits for a resource to be scheduled. For
example, Fig. 2(i) shows the action a1 between the starter agent and the task
A Submitted followed by event e1 such that πa(ea) = 1 and δ(e1) = 1/λ.

Once a task is in waiting state and the scheduler assigns a resource that is
in available state, the task and the resource synchronize and they both move to
busy state with probability 1. In Fig. 2, examples of such actions are a2 and a3.
There they synchronizes again, performs an event with possibly non-zero time
duration, and the task moves to finished with probability 1. In Fig. 2, examples
of such actions are a4 and a5.

Once a task is finished, it signals the next task(s) in the control flow via
synchronization. For example, in Fig. 2, after task A Partially Submitted is
at finished, it sychronizes with tasks A Declined and A Preaccepted via action
a7 such that Ea7 = {e7, e

′
7} with πa7(e7) = 0.84 and πa7(e

′
7) = 0.16. Hence,

with probability 0.84, event e7 is chosen and only task A Declined moves to
waiting state. Otherwise, with probability 0.16, event e′

7 is chosen and only task

Analysis of Resource-Constrained Business Processes with DPS 309

A Preaccepted moves to waiting state. In both cases, A Partially Submitted
moves to ready state. A task is ready again after finishing since due to loops in
control flow, a task may be executed multiple times in the same case.

When a case finishes, the last task in finished state synchronizes with the
finisher agent in pending state. The task then moves to ready as usual and the
finisher agent moves to done, indicating the completion of the corresponding
task. The finisher agent then stays at the state done with probability 1.

Extensibility. For brevity, we did not illustrate the rest of the DPS corre-
sponding to the loan/draft application, but it can be easily extended. Also, we
would like to point out that the described methodology to model rcBPM systems
as DPS is only one example among many possibilities. One may easily extend
this approach and incorporate an even more complex state space for tasks or
resources modeling different scenarios. For example, we can easily model prob-
abilistic error in task execution. Let us assume that when the resource depicted
in Fig. 2 performs task A Submitted, there is a small probability of 0.1 that such
an execution fails. This phenomenon can be easily modeled by adding another
event e to Ea2 such that πa2(e2) = 0.9 and πa2(e) = 0.1 where after e, they move
back to available and waiting respectively. Also, for simplicity, we assumed that
the business processes under consideration are sound, but DPS can be easily
used to model unsound rcBPM systems as well.

5 Experimental Evaluation

We have tested our SMC procedure on the running example. The property we
are interested in is follows:

With probability at least 0.99, when cases arrive at a fixed rate of 1 case per
10 s, x fraction of cases are completed among C cases within t s.

We ensure that the probability of Type-I error and Type-II error of verifying
this property is less than 0.01 with indifference region (0.99 ± 0.005).

We first investigate the relationship between the number of total cases and
the number of cases completed within fixed maximum time t = 500, 000 s. The
shaded area in Fig. 3 (left) represents the values (C, x) that satisfies the property
when t = 500, 000 s. The dotted line represents an upper limit for the values
(C, x) satisfying the property.

Then, we illustrate the relationship between the minimum total time and the
fraction of cases completed within that total time when the total number of cases
C = 100 is fixed. The shaded area in Fig. 3 (right) represents the values (x, t)
that satisfies the property when C = 100. The dotted line represents a lower
limit for the values (x, t) satisfying the property. We note that the limits are not
the tightest, but can be made arbitrary closer with more SMC simulations.

Extensibility. Though our experiment is only a proof-of-concept, we would
like point out that we can scale the size of the model comfortably to accom-
modate 500 cases. Since there is no other known approach to verify business
processes with provable bounds, we were not able to compare our results with

310 R. Saha et al.

Fig. 3. (left) Fraction of cases completed vs total no. of cases when the time bound is
fixed, (right) Minimum total time vs fraction of cases completed when the total number
of cases is fixed.

existing literature. This methodology also supports verifying a variety of prop-
erties, depending on the focus of optimization for the business. For example, one
may investigate the performance of resources by verifying the following property:
given a resource, in what fraction of cases was it used?

6 Conclusion

We have presented a modular approach to modelling resource-constrained BPM
systems with multiple cases, using distributed probabilistic systems. We have
shown that a real-time distributed probabilistic system under a fixed sched-
uler behaves like a Markov chain. We have then presented a rigorous technique
for time-bounded approximate verification of business processes using statistical
model checking, illustrated through a proof-of-concept experiment.

In future, we plan to extend this model to shed light on different types of
scheduling policies and their impact on business processes. We would also like to
incorporate stochastic durations for events, which will take us to a Continuous
Time Markov Chain (CTMC) setting. Finally, we would like to see how approx-
imate verification techniques can also enrich process mining BPM systems [2].

Acknowledgements. The authors would like to thank S Akshay for his invaluable
comments on the draft and Ansuman Banerjee for the early discussions.

Analysis of Resource-Constrained Business Processes with DPS 311

A Appendix

Algorithm 1. Statistical Model Checking for DPS
INPUT:
1: D, G � a DPS and a scheduler
2: Φ = Pr≥γT≤tφ � a property
3: α, β, δ ∈ (0, 1) � error bounds and threshold of indifference
OUTPUT:
4: YES or NO
5: procedure Simulate-DPS
6: m ← 0 � the number of simulations so far
7: γ+ ← γ + δ and γ− ← γ − δ
8: while True do
9: tspent ← 0 � time spent so far

10: yin = (sin, ∅, ∅), y = (s, U, X) = yin � the initial and current snapshot
11: ρ ← y � the current execution
12: b ← 0 � the outcome of the Bernoulli random variable
13: dm ← 0 � accumulator of outcome of the Bernoulli variable
14: while (tspent ≤ t) do
15: G(y) = U ∪ V ← scheduled actions at y
16: Y ← set of fresh actions probabilistically chosen from V
17: Emin ⊆ X ∪ Y is the set of tuples with minimum time to completion
18: for all (a, e, tmin) ∈ Emin do
19: sloc(e) ← tgte, remove a from U ∪ V, remove (a, e, t) from X ∪ Y

20: for all (a, e, t) ∈ X ∪ Y \ Emin do
21: t ← t − tmin

22: y = (s′, U ′, X ′)is the new snapshot
23: tspent = tspent + tmin, ρ ← ρy
24: if ρ satisfies φ then
25: b = 1
26: break
27: m ← m + 1 and dm ← dm + b

28: quo = (γ−)dm (1−γ−)m−dm

(γ+)dm (1−γ+)m−dm

29: if (quo ≥ (1−β)
α

) then
30: return NO
31: else if (quo ≤ β

1−α
) then

32: return YES

312 R. Saha et al.

T
a
b
le

1
.
R

es
o
u
rc

e-
ta

sk
m

a
tr

ix
(t

ru
n
ca

te
d
)

w
it

h
av

er
a
g
e

ti
m

e
ta

k
en

b
y

th
e

re
so

u
rc

e.

1
0
2
2
8

1
0
6
2
9

1
0
7
7
9

1
0
8
5
9

1
0
8
6
1

1
0
8
6
2

1
0
8
6
3

1
0
8
8
0

1
0
8
8
1

1
0
8
8
9

1
0
8
9
9

1
0
9
0
9

1
0
9
1
0

1
0
9
1
2

1
0
9
1
3

1
0
9
2
9

1
0
9
3
1

A
A
c
c
e
p
t
e
d

2
5
2
1

3
0
4
3
5

4
7
1
8
4

5
3
0
8
6

9
4
6
7
8

6
2
1
8
7

7
2
1
0

1
8
2
7
6

2
4
1
3
6

3
8
8
7
1

6
2
7
4
7

7
1
0
0
2

3
0
0
9
2

7
4
7
5

A
A
p
p
r
o
v
e
d

A
C
a
n
c
e
l
l
e
d

5
1
1
0
6

A
D
e
c
l
i
n
e
d

A
F
i
n
a
l
i
z
e
d

0
3
5

6
2

0
5
9

7
8

8
6

2
4

2
6

0
7
9

9
4

2
5

A
P
a
r
t
l
y
S
u
b
m
i
t
t
e
d

A
P
r
e
a
c
c
e
p
t
e
d

3
1
8
9
7

2
1
8
6

5
7
7
5

9
8
2
3

1
0
6
1

3
3
3
3

1
7
9
9
0

4
4
5
4
5

2
1
6
1
3

1
6
3
0
1

1
8
4
8
0

2
0
3
3
0

1
7
7
3
5

1
9
7
2
0

2
9
3
0
1

A
S
u
b
m
i
t
t
e
d

O
C
a
n
c
e
l
l
e
d

1
7
3
7
4
7

1
4
0
8
4
0

3
2

3
7

8
1
4
2

5
3
5
0
9

1
9
4
3
7

1
5
5
6
5
6

0
0

0

O
C
r
e
a
t
e
d

4
7

1
1

2
1

2
2

2
1

2
1

9
1

1

O
S
e
l
e
c
t
e
d

1
3
0

0
4
8

3
8
5
8
7

1
7
9

8
3

0
2
7
0
3
2

4
2
1
1
7

2
8

1
9
2

1
8
5
9
8

2
4
7
4
7

2
2
9
0
1

O
S
e
n
t

0
0

0
0

0
0

0
0

0
0

0
0

0
0

O
S
e
n
t
B
a
c
k

8
5
3
3
8

D
u
m
m
y

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

O
A
c
c
e
p
t
e
d

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

Analysis of Resource-Constrained Business Processes with DPS 313

References

1. Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.)
ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997). doi:10.
1007/3-540-63139-9 48

2. Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer Science & Business Media, New York (2011)

3. Aalst, W.M.P.: Business process management: a comprehensive survey. ISRN
Softw. Eng. 2013, 1–37 (2013)

4. Aalst, W.M.P.: Business process management as the Killer App for Petri nets.
Softw. Syst. Model. 14(2), 685–691 (2014)

5. Aalst, W.M.P.: Business process simulation survival guide. In: vom Brocke, J.,
Rosemann, M. (eds.) Handbook on Business Process Management 1: Introduction,
Methods, and Information Systems, pp. 337–370. Springer, Heidelberg (2015)

6. Aalst, W.M.P., Hee, K.M.V.: Workow Management: Models, Methods, and Sys-
tems. MIT Press, Cambridge (2004)

7. Bose, R.P.J.C., Aalst, W.M.P.: Business Process Management Workshops: BPM
2012 International Workshops, Tallinn, Estonia, September 3, 2012. Revised
Papers, pp. 221–222. Springer, Heidelberg (2013)

8. Braghetto, K.R., Ferreira, J.E., Vincent, J.-M.: Performance evaluation of resource-
aware business processes using stochastic automata networks. Int. J. Innov. Com-
put. Inf. Control 8(7B), 5295–5316 (2012)

9. Chuang, L.I.N., Yang, Q.U., Fengyuan, R.E.N., Marinescu, D.C.: Performance
equivalent analysis of workflow systems based on stochastic Petri net models. In:
Han, Y., Tai, S., Wikarski, D. (eds.) EDCIS 2002. LNCS, vol. 2480, pp. 64–79.
Springer, Heidelberg (2002). doi:10.1007/3-540-45785-2 5

10. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.: Fundamentals of Business
Process Management. Springer, Berlin (2013)

11. Gastin, P., Lerman, B., Zeitoun, M.: Distributed games and distributed control for
asynchronous systems. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976,
pp. 455–465. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24698-5 49

12. Herbert, L.T.: Specification, verification and optimisation of business processes. a
unified framework. Technical University of Denmark (2014)

13. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic
verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006). doi:10.1007/
11691372 29

14. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16612-9 11

15. Magnani, M., Montesi, D.: BPMN: how much does it cost? An incremental app-
roach. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol.
4714, pp. 80–87. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75183-0 6

16. Netjes, M., Aalst, W.M.P., Hajo, A.R.: Analysis of resource-constrained processes
with colored petri nets. In: Sixth Workshop and Tutorial on Practical Use of
Coloured Petri Nets and the CPN Tools, vol. 576, pp. 251–266 (2005)

17. Oliveira, C.A.L., Lima, R.M.F., Reijers, H.A., Ribeiro, J.T.S.: Quantitative analy-
sis of resource-constrained business processes. IEEE Trans. Syst. Man Cybern. Part
A Syst. Hum. 42(3), 669–684 (2012)

http://dx.doi.org/10.1007/3-540-63139-9_48
http://dx.doi.org/10.1007/3-540-63139-9_48
http://dx.doi.org/10.1007/3-540-45785-2_5
http://dx.doi.org/10.1007/978-3-540-24698-5_49
http://dx.doi.org/10.1007/11691372_29
http://dx.doi.org/10.1007/11691372_29
http://dx.doi.org/10.1007/978-3-642-16612-9_11
http://dx.doi.org/10.1007/978-3-540-75183-0_6

314 R. Saha et al.

18. Reijers, H.: Design and Control of Workflow Processes: Business Process Manage-
ment for the Service Industry. Springer, New York (2003)

19. Russell, N., Ter Hofstede, A.H.M., Mulyar, N., Patterns, W.C.: A revised view.
Technical report (2006)

20. Saha, R., Esparza, J., Jha, S.K., Mukund, M., Thiagarajan, P.S.: Distrib-
uted Markov chains. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI
2015. LNCS, vol. 8931, pp. 117–134. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46081-8 7

21. Sampath, P., Wirsing, M.: Computing the cost of business processes. In: Yang, J.,
Ginige, A., Mayr, H.C., Kutsche, R.-D. (eds.) UNISCON 2009. LNBIP, vol. 20,
pp. 178–183. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01112-2 18

22. van Dongen, B.F.: BPI challenge 2012 (2012)
23. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16, 117–186

(1945)
24. Younes, H.L.S.: Verification and planning for stochastic processes with asynchro-

nous events. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, USA (2004)

http://dx.doi.org/10.1007/978-3-662-46081-8_7
http://dx.doi.org/10.1007/978-3-662-46081-8_7
http://dx.doi.org/10.1007/978-3-642-01112-2_18

	Time-Bounded Statistical Analysis of Resource-Constrained Business Processes with Distributed Probabilistic Systems
	1 Introduction
	2 Resource-Constrained BPM (rcBPM) Systems
	3 The Distributed Probabilistic System (DPS) Model
	4 Modeling rcBPM Systems as DPS
	5 Experimental Evaluation
	6 Conclusion
	A Appendix
	References

