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Abstract. We propose a way of reasoning about minimal and maxi-
mal values of the weights of transitions in a weighted transition system
(WTS). This perspective induces a notion of bisimulation that is coarser
than the classic bisimulation: it relates states that exhibit transitions to
bisimulation classes with the weights within the same boundaries. We
propose a customized modal logic that expresses these numeric bound-
aries for transition weights by means of particular modalities. We prove
that our logic is invariant under the proposed notion of bisimulation.
We show that the logic enjoys the finite model property which allows us
to prove the decidability of satisfiability and provide an algorithm for
satisfiability checking. Last but not least, we identify a complete axiom-
atization for this logic, thus solving a long-standing open problem in
this field. All our results are proven for a class of WTSs without the
image-finiteness restriction, a fact that makes this development general
and robust.

1 Introduction

Weighted transition systems (WTSs) are used to model concurrent and distrib-
uted systems in the case where some resources are involved, such as time, band-
width, fuel, or energy consumption. Recently, the concept of a cyber-physical
system (CPS), which considers the integration of computation and the physi-
cal world has become relevant in modeling various real-life situations. In these
models, sensor feedback affects computation, and through machinery, computa-
tion can further affect physical processes. The quantitative nature of weighted
transition systems is well-suited for the quantifiable inputs and sensor measure-
ments of CPSs, but their rigidity makes them less well-suited for the uncertainty
inherent in CPSs. In practice, there is often some uncertainty attached to the
resource cost, whereas weights in a WTS are precise. Thus, the model may be
too restrictive and unable to capture the uncertainties inherent in the domain
that is being modeled.

In this paper, we attempt to remedy this shortcoming by introducing a modal
logic for WTSs that allows for approximate reasoning by speaking about upper
and lower bounds for the weights of the transitions. The logic has two types
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of modal operators that reason about the minimal and maximal weights on
transitions, respectively. This allows reasoning about models where the quanti-
tative information may be imprecise (e.g. due to imprecisions introduced when
gathering real data), but where we can establish a lower and upper bound for
transitions.

In order to provide the semantics for this logic, we use the set of possible
transition weights from one state to a set of states as an abstraction of the
actual transition weights. The logic is expressive enough to characterize WTSs
up to a relaxed notion of weighted bisimilarity, where the classical conditions
are replaced with conditions requiring that the minimal and maximal weights
on transitions are matched. This logical characterization works for a class of
WTSs that is strictly larger than the class of image-finite WTSs.

Our main contribution is a complete axiomatization of our logic, showing that
any validity in this logic can be proved as a theorem from the axiomatic system.
This solves a long-standing open problem in the field of weighted systems. Com-
pleteness allows us to transform any validity checking problem into a theorem
proving one that can be solved automatically by modern theorem provers, thus
bridging the gap to the theorem proving community. The completeness proof
adapts the classical filtration method, which allows one to construct a (canon-
ical) model using maximal consistent sets of formulae. The main difficulty of
adapting this method to our setting is that we must establish both lower and
upper bounds for the transitions in this model.

To achieve this result, we firstly demonstrate that our logic enjoys the finite
model property. This property allows us not only to achieve the completeness
proof, but also to address the problem of decidability of satisfiability. This is our
second significant contribution in this paper: we propose a decision procedure for
determining the satisfiability of formulae in our logic. This decision procedure
makes use of the finite model property to automatically generate a finite model
for any satisfiable formula.

Related Work. Several logics have been proposed in the past to express prop-
erties of quantified (weighted, probabilistic or stochastic) systems [5,6,12,15,17].
They typically use modalities indexed with real numbers to express properties
such as “ϕ holds with at least probability b”, “we can reach a state satisfying ϕ
with a cost at least r”, etc. While our logical syntax resemble these, our seman-
tics is different in the sense that we argue not about one value (a probability
or a cost), but about a compact interval of possible costs. For instance, in the
aforementioned logics we have a validity of type � ¬Lrφ → Mrφ saying that the
value of the transition from the current state to φ is either at least r or at most
r; on the other hand, in our logic the formula ¬Lrφ∧¬Mrφ might have a model
since Lrφ and Mrφ express the fact that the lower cost of a transition to φ is at
least r and the highest cost is at most r respectively.

However, our completeness proof uses a technique similar to the one used for
weighted modal logic [13] and Markovian logic [12,16]. It is however different
from these related constructions since our axiomatization is finitary, while the
aforementioned ones require infinitary proof rules. Our axiomatic systems are
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related to the ones mentioned above and the mathematical structures revealed
by this work are also similar to the related ones. This suggest a natural extension
towards a Stone duality type of result on the line of [11], which we will consider
in a future work.

Satisfiability results have been given for some related logics too, such as
weighted modal logics [14] and probabilistic versions of CTL and the μ-calculus
[4]. However, the satisfiability problem is known to be undecidable for other
related logics, in particular timed logics such as TCTL [1] and timed modal
logic [8]. This fact suggests our logic as an interesting one which, despite its
expressivity, remains decidable.

Our approach of considering upper and lower bounds is related to interval-
based formalisms such as interval Markov chains (IMCs) [9] and interval weighted
modal transition systems (WMTSs) [10]. Much like our approach, IMCs consider
upper and lower bounds on transitions in the probabilistic case. WMTSs add
intervals of weights to individual transitions of modal transition systems, in
which there can be both may- and must-transitions. A main focus of the work
both on IMCs and WMTSs have been a process of refinement, making the inter-
vals progressively smaller until an implementation is obtained. However, none of
these works have explored the logical perspective up to the level of axiomatiza-
tion or satisfiability results, which is the focus of our paper.

2 Model

The models addressed in this paper are weighted transition systems, in which
transitions are labeled with numbers to specify the cost of the corresponding
transition. In order to specify and reason about properties regarding imprecision,
such as “the maximum cost of going to a safe state is 10” and “the minimum cost
of going to a halting state is 5”, we will abstract away the individual transitions
and only consider the minimum and maximum costs from a state to another.
We will do this by constructing for any two states the set of weights that are
allowed from one to the other.

First we recap the definition of a weighted transition system. A WTS is
formally defined as follows:

Definition 1. A weighted transition system (WTS) is a tuple M = (S,→, �),
where

– S is a non-empty set of states,
– →⊆ S × IR≥0 × S is the transition relation, and
– � : S → 2AP is a labeling function mapping to each state a set of atomic

propositions.

Note that we impose no restrictions on the state space S; it can be uncountable.
Consider now a WTS as in Fig. 1a. If this is a CPS, then the weights may have

been obtained by measurements, simulations, or educated guesses, which may be
imprecise. However, it may be that we can establish 1 as a lower bound and 10
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(a) We may not know the
precise weights from s to t,
but we can establish 1 as a
lower bound, and 10 as an
upper bound.
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(b) We add transitions from
s to t with weights that are
between 1 and 10.
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(c) We add infinitely many
transitions from s to t with
each real weight between 1
and 10.

Fig. 1. Possible ways to address the problem of not knowing the precise weight for
each transition.

as an upper bound on the actual weight. We could then address this problem by
making more measurements and adding the results as weights on transitions, as
in Fig. 1b but as long as we only introduce finitely many new transitions, there
will still be some imprecision. Instead, we could add infinitely many transitions,
for example one for each real or rational weight that lies between 1 and 10, as in
Fig. 1c. However, then our WTS is no longer image-finite, so it no longer satisfies
the Hennessy-Milner theorem [7].

In this paper, we will address this problem by abstracting away the individual
transitions, and instead consider the set of weights between a state and a set of
states.

Definition 2. For arbitrary WTS M = (S,→, �) the function θM : S →(
2S → 2IR≥0

)
is defined for any state s ∈ S and set of states T ⊆ S as

θM (s) (T ) = {r ∈ IR≥0 | ∃t ∈ T such that s
r−→ t}.

Thus θM (s) (T ) is the set of all possible weights of going from s to a state in T .
We will sometimes refer to θ (s) (T ) as the image from s to T or simply as an
image set.

Next, we introduce the notion of an image-compact WTS, which imposes
a requirement on the image sets. This notion is very closely related to that of
compactly branching introduced by van Breugel [3].

Definition 3. Let M = (S,→, �) be a WTS. We say that M is image-compact
if for any s ∈ S and T ⊆ S, θM (s) (T ) is a compact set, i.e. a closed and
bounded set.

Intuitively, one can think of a WTS being image-compact if each state can not
take transitions with arbitrarily large weights and whenever a state can take
transitions with weights arbitrarily close to some real number x it can also take
a transition with exactly the weight x. We will drop the subscript M from θ
unless we wish to differentiate between the image sets of two different WTSs. For
the bisimulation invariance theorem that we will discuss later, it will be necessary
to restrict ourselves to only considering image-compact WTSs. However, this will
be the only place in the paper where this restriction is needed.
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Fig. 2. A simple model of a robot vac-
uum cleaner.

Consider a state s that can take a
transition with weight 1

2i for any i ∈ IN
to some state in a set T . We then have
θ (s) (T ) = { 1

2i | i ∈ IN} which is clearly

not a closed set, since 1
2i

i→∞−−−→ 0 and
0 �∈ θ (s) (T ), hence it is non-compact.
Consider now a state s′ that has the same
outgoing transitions as s except that also
s′ 0−→ t for some t ∈ T . We then have
θ (s′) (T ) = { 1

2i | i ∈ IN} ∪ {0} which
is a closed and bounded set, hence it is
compact.

Note that any image-finite WTS is
also image-compact, since any finite set
is compact. However, an image-compact WTS is not always image-finite. In
the rest of the paper, we will use the notation θ− (s) (T ) = inf θ (s) (T ) and
θ+ (s) (T ) = sup θ (s) (T ) with the convention that inf ∅ = −∞ and sup ∅ = ∞.
Note that this convention is the opposite of the one usually adopted.

Example 4. Figure 2 shows a simple model of a robot vacuum cleaner that can
be in a waiting state, a cleaning state, or a charging state. This is an example of
a cyber-physical system where the costs of transitions are necessarily imprecise.
The time it takes to recharge the batteries depends on the condition of the bat-
teries as well as that of the charger; the time it takes to clean the room depends
on how dirty the room is, and how free the floor is from obstacles; and the time
it takes to reach the charger depends on where in the room the robot is when
it needs to be recharged. By constructing the image sets, we can abstract away
from the individual transitions. For example, we have θ (s2) ({s1}) = {5, 10, 15},
so θ− (s2) ({s1}) = 5 and θ+ (s2) ({s1}) = 15.

We will now establish some useful properties of image sets. We first show that
the transition function is monotonic with respect to set inclusion, meaning that
if T1 is a subset of T2 then, the image from any state s to T1 is also a subset of
the image from s to T2.

Lemma 5 (Monotonicity of θ). Let M = (S,→, �) be a WTS and let T1 and
T2 be subsets of S. If T1 ⊆ T2, then θ (s) (T1) ⊆ θ (s) (T2).

Next, we show that union and intersection over image sets distribute as usual.

Lemma 6. Let M = (S,→, �) be a WTS. For any s ∈ S and T1, T2 ⊆ S, it
holds that

1. θ (s) (T1 ∪ T2) = θ (s) (T1) ∪ θ (s) (T2) and
2. θ (s) (T1 ∩ T2) = θ (s) (T1) ∩ θ (s) (T2).
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As usual we would like some way of relating model states with equivalent behav-
ior. To this end we define the notion of a bisimulation relation. The classical
notion of a bisimulation relation for weighted transition systems [2], which we
term weighted bisimulation, is defined as follows.

Definition 7. Given a WTS M = (S,→, �), an equivalence relation R ⊆ S ×S
on S is called a weighted bisimulation relation iff for all s, t ∈ S, sRt implies

– (Atomic harmony) �(s) = �(t),
– (Zig) if s

r−→ s′ then there exists t′ ∈ S such that t
r−→ t′ and s′Rt′, and

– (Zag) if t
r−→ t′ then there exists s′ ∈ S such that s

r−→ s′ and s′Rt′.

We say that s, t ∈ S are weighted bisimilar, written s ∼W t, iff there exists a
weighted bisimulation relation R such that sRt. Weighted bisimilarity, ∼W , is
the largest weighted bisimulation relation. Note that we could replace the zig-
zag conditions by the condition that θ (s) (T ) = θ (t) (T ) for all R-equivalence
classes T ⊆ S.

Since it is our goal to abstract away from the exact weights on the transitions,
the bisimulation that we will now introduce does not impose the classical zig-
zag conditions [2] of a bisimulation relation, but instead require that bounds be
matched for any bisimulation class.

Definition 8. Given a WTS M = (S,→, �), an equivalence relation R ⊆ S ×S
on S is called a generalized weighted bisimulation relation iff for all s, t ∈ S,
sRt implies

– (Atomic harmony) �(s) = �(t),
– (Lower bound) θ− (s) (T ) = θ− (t) (T ), and
– (Upper bound) θ+ (s) (T ) = θ+ (t) (T )

for any R-equivalence class T ⊆ S.

Given s, t ∈ S we say that s and t are generalized weighted bisimilar, written
s ∼ t, iff there exists a generalized weighted bisimulation relation R such that
sRt. Generalized weighted bisimilarity, ∼, is the largest generalized weighted
bisimulation relation.

s{a}

s′{b}

t {a}

t′ {b}

1 2 3 1 3

Fig. 3. s ∼ t but s �∼W t.

In what follows, we will use bisimula-
tion to mean generalized weighted bisim-
ulation and bisimilarity to mean general-
ized weighted bisimilarity. We now show
the relationship between ∼ and ∼W .

Example 9. Consider the WTS depicted
in Fig. 3. It is easy to see that {s′, t′} is
a ∼-equivalence class, and in fact it is
the only ∼-equivalence class with ingo-
ing transitions. Since θ− (s) ({s′, t′}) = θ− (t) ({s′, t′}) = 1 and θ+ (s) ({s′, t′}) =
θ+ (t) ({s′, t′}) = 3 we must have s ∼ t, but because s

2−→ s′ and t � 2−→ it cannot
be the case that s ∼W t.
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Theorem 10. Generalized weighted bisimilarity is coarser than weighted bisim-
ilarity, i.e.

∼W � ∼
This result is not surprising, as our bisimulation relation only looks at the
extremes of the transition weights, whereas weighted bisimulation looks at all of
the transition weights.

3 Logic

In this section we introduce a modal logic. Our aim is that our logic should
be able to capture the notion of bisimilar states as presented in the previous
section, and as such it must be able to reason about the lower and upper bounds
on transition weights.

Definition 11. The formulae of the logic L are induced by the abstract syntax

L : ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | Lrϕ | Mrϕ

where r ∈ Q≥0 is a non-negative rational number and p ∈ AP is an atomic
proposition.

Lr and Mr are modal operators. An illustration of how L and M are interpreted
can be seen in Fig. 4. Intuitively, Lrϕ means that the cost of transitions to where
ϕ holds is at least r (see Fig. 4a), and Mrϕ means that the the cost of transitions
to where ϕ holds is at most r (see Fig. 4b).

We now give the precise semantics interpreted on WTSs.

Definition 12. Given a WTS M = (S,→, �), a state s ∈ S and a formula
ϕ ∈ L, the satisfiability relation |= is defined inductively as:

M, s |= p iff p ∈ �(s),
M, s |= ¬ϕ iff M, s � ϕ,
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ,
M, s |= Lrϕ iff θ− (s) (�ϕ�M) ≥ r,
M, s |= Mrϕ iff θ+ (s) (�ϕ�M) ≤ r,

where �ϕ�M = {s ∈ S | M, s |= ϕ}.

Fig. 4. Lr and Mr semantics.

We will omit the subscript M from �ϕ�M
whenever the model is clear from the con-
text. If M, s |= ϕ we say that M is a
model of ϕ. A formula is said to be sat-
isfiable if it has at least one model. We
say that ϕ is a validity and write |= ϕ
if ¬ϕ is not satisfiable. In addition to the
operators defined by the syntax of L, we
also have the derived operators such as
⊥, →, etc. defined in the usual way.
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The formula L0ϕ has special significance in our logic, as this formula means
that there exists some transition to where ϕ holds. In fact, it follows in a
straightforward manner from the semantics that M, s |= L0ϕ if and only if
θ (s) (�ϕ�) �= ∅.

Example 13. Consider again our model of a robot vacuum cleaner depicted in
Fig. 2. Perhaps we want a guarantee that it takes no more than one time unit
to go from a waiting state to a charging state. This can be expressed by the
formula waiting → M1charging, but since we know the only waiting state
in our model is s1 this can be simplified to simply checking whether M, s1 |=
M1charging. We thus have to check that θ+ (s1) (�charging�) ≤ 1. We do this
by constructing the image set θ (s1) (�charging�). Since �charging� = {s3}, we
have θ (s1) ({s3}) = {1, 2}. Hence θ+ (s1) (�charging�) = 2 �≤ 1, so M, s1 �

M1charging.

Next we show that our logic L is invariant under bisimulation, which is also
known as the Hennessy-Milner property.

Theorem 14 (Bisimulation invariance). For any image-compact WTS M =
(S,→, �) and states s, t ∈ S it holds that

s ∼ t iff [∀ϕ ∈ L. M, s |= ϕ iff M, t |= ϕ] .

The proof strategy follows a classical pattern: The left to right direction is shown
by induction on ϕ for ϕ ∈ L. The right to left direction is shown by constructing
a relation R relating those states that satisfy the same formulae and showing
that this relation is a bisimulation relation.

4 Metatheory

In this section we propose an axiomatization for our logic that we prove not only
sound, but also complete with respect to the proposed semantics.

4.1 Axiomatic System

Let r, s ∈ Q≥0. Then the deducibility relation �⊆ 2L×L is a classical conjunctive
deducibility relation, and is defined as the smallest relation which satisfies the
axioms of propositional logic in addition to the axioms given in Table 1. We will
write � ϕ to mean ∅ � ϕ, and we say that a formula or a set of formulae is
consistent if it can not derive ⊥.

Axiom A1 captures the notion that since ⊥ is never satisfied, we can never
take a transition to where ⊥ holds. Axiom A2 says that if we know some value
is the lower bound for going to where ϕ holds, then any lower value is also a
lower bound for going to where ϕ holds. Axiom A2′ is the analogue for upper
bounds. Axioms A3–A4 show how Lr and Mr distribute over conjunction and
disjunction. The version of axiom A4 where Lr is replaced with Mr is also sound,
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Table 1. The axioms for our axiomatic system, where ϕ, ψ ∈ L and q, r ∈ Q.

(A1): � ¬L0⊥
(A2): � Lr+qϕ → Lrϕ if q > 0
(A2′): � Mrϕ → Mr+qϕ if q > 0
(A3): � Lrϕ ∧ Lqψ → Lmin{r,q}(ϕ ∨ ψ)
(A3′): � Mrϕ ∧ Mqψ → Mmax{r,q}(ϕ ∨ ψ)
(A4): � Lr(ϕ ∨ ψ) → Lrϕ ∨ Lrψ
(A5): � ¬L0ψ → (Lrϕ → Lr(ϕ ∨ ψ))
(A5′): � ¬L0ψ → (Mrϕ → Mr(ϕ ∨ ψ))
(A6): � Lr+qϕ → ¬Mrϕ if q > 0
(A7): � Mrϕ → L0ϕ
(R1): � ϕ → ψ =⇒ � ((Lrψ) ∧ (L0ϕ)) → Lrϕ
(R1′): � ϕ → ψ =⇒ � ((Mrψ) ∧ (L0ϕ)) → Mrϕ
(R2): � ϕ → ψ =⇒ � L0ϕ → L0ψ

but it can be proven from the other axioms. Axioms A5 and A5′ say that if it
is not possible to take a transition to where ψ holds, then requiring that ψ also
holds does not change the bounds. Axioms A6 and A7 show the relationship
between Lr and Mr. In particular, A6 ensures that all bounds are well-formed.
Notice also that the contrapositive of axiom A2 and A7 together gives us that
¬L0ϕ implies ¬Lrϕ and ¬Mrϕ for any r ∈ Q≥0. The axioms R1 and R1′ give a
sort of monotonicity for Lr and Mr, and axiom R2 says that if ψ follows from
ϕ, then if it is possible to take a transition to where ϕ holds, it is also possible
to take a transition to where ψ holds.

Theorem 15 (Soundness)

� ϕ implies |= ϕ.

4.2 Finite Model Property and Completeness

With our axiomatization proven sound we are now ready to present our main
results, namely that our logic has the finite model property and that our axiom-
atization is complete.

To show the finite model property we will adapt the classical filtration method
to our setting. Starting from an arbitrary formula ρ, we define a finite fragment
of our logic, L[ρ], which we then use to construct a finite model for ρ. The main
difference from the classical filtration method is that we must find an upper and
a lower bound for the transitions in the model. For an arbitrary formula ρ ∈ L
we define the following based on ρ:
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– Let Qρ ⊆ Q≥0 be the set of all rational numbers r ∈ Q≥0 such that Lr or Mr

appears in the syntax of ρ.
– Let Σρ be the set of all atomic propositions p ∈ AP such that p appears in

the syntax of ρ.
– The granularity of ρ, denoted as gr(ρ), is the least common denominator of

all the elements in Qρ.
– The range of ρ, denoted as Rρ, is defined as

Rρ =

{
∅ if Qρ = ∅
Iρ ∪ {0} otherwise ,

where Iρ =
{

q ∈ Q≥0 | ∃j ∈ N. q = j
gr(ρ) and minQρ ≤ q ≤ max Qρ

}
. Note

that we need to add 0 to Rρ whether or not ρ actually contains 0 in any of its
modalities. This is because, as we have pointed out before, formulae involving
L0 have special significance in our logic.

– The modal depth of ρ, denoted as md(ρ), is defined inductively as:

md(ρ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if ρ = p ∈ AP
md(ϕ) if ρ = ¬ϕ

max {md(ϕ1),md(ϕ2)} if ρ = ϕ1 ∧ ϕ2

1 + md(ϕ) if ρ = Lrϕ or ρ = Mrϕ.

Since all formulae are finite, the modal depth is always a non-negative integer.
The language of ρ, denoted by L[ρ], is defined as

L[ρ] = {ϕ ∈ L | Rϕ ⊆ Rρ,md(ϕ) ≤ md(ρ) and Σϕ ⊆ Σρ}.

Because all formulae are finite, L[ρ] must also be finite (modulo logical equiv-
alence), and as we shall see, it contains all the formulae that are necessary to
construct a model for ρ.

In order to define the model, we need the notion of filters and ultrafilters.

Definition 16. A non-empty subset F of L[ρ] is called a filter on L[ρ] iff

– ⊥ �∈ F ,
– ϕ ∈ F and � ϕ → ψ implies ψ ∈ F , and
– ϕ ∈ F and ψ ∈ F implies ϕ ∧ ψ ∈ F .

Intuitively, one can think of a filter as a consistent set of formulae closed under
conjunction and deduction.

Definition 17. A filter F ∈ F is called an ultrafilter iff for all formulae ϕ ∈ L
either ϕ ∈ F or ¬ϕ ∈ F .

The ultrafilters on L[ρ] correspond to the maximal consistent sets of L[ρ]. We
let U [ρ] denote the set of all ultrafilters on L[ρ]. Since L[ρ] is finite U [ρ] is also
finite and consequently, any ultrafilter u ∈ U [ρ] must be a finite set of formulae.
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Hence the formula obtained by taking the conjunction over all the formulae of
u tells us exactly what formulae u contains.

For any set of formulae Φ ⊆ L[ρ], the characteristic formula of Φ, denoted
�Φ�, is defined as �Φ� =

∧
ϕ∈Φ ϕ. Note that �Φ� ∈ L[ρ] is a finite formula, and

that if u ∈ U [ρ], then �u� ∈ u.
We will now construct a (finite) model, Mρ, for ρ. In order to define the

transition relation →ρ⊆ U [ρ] × R≥0 × U [ρ], we consider any two ultrafilters
u, v ∈ U [ρ] and define two functions L,M : U [ρ] × U [ρ] → 2Rρ as

L(u, v) = {r | Lr�v� ∈ u} and M(u, v) = {s | Ms�v� ∈ u}.

The following lemma establishes a relationship between L and M , that we
will need to define the transition relation. The lemma is a straightforward con-
sequence of axiom A7.

Lemma 18. Given any ultrafilters u, v ∈ U [ρ], it can not be the case that
L(u, v) = ∅ and M(u, v) �= ∅.

We can now define the transition relation in terms of L(u, v) and M(u, v). In
Fig. 5, we have illustrated the different cases that we must consider. For any of
the arches in the figure, we have the following correspondence with Lr and Mr.

– If a number r on the real line is contained within the arch, then we have
¬Lr�v� ∈ u and Mr�v� ∈ u.

– If a number r on the real line is to the left of the arch, then we have Lr�v� ∈ u
and ¬Mr�v� ∈ u.

– If a number r on the real line is to the right of the arch, then we have Mr�v� ∈ u
and ¬Lr�v� ∈ u.

In case (a), we therefore have L(u, v) �= ∅ and M(u, v) �= ∅, so we have all
the information we need to define the transition. In case (b) and (f), we have
L(u, v) �= ∅ and M(u, v) = ∅, so we have enough information to define the
minimum transition, but we do not know what the maximum transition is. Note
that we can not simply say that the maximum transition is maxQρ, because
that would imply MmaxQρ

�v� ∈ u, but we know that M(u, v) = ∅. Hence we
need to pick a number that is to the right of maxQρ as the maximum. In case
(d), we have both L(u, v) = ∅ and M(u, v) = ∅. This implies that ¬L0�v� ∈ u,
which means that there should be no transition from u to v. In case (c) and (e),
we have L(u, v) = ∅ and M(u, v) �= ∅, but according to Lemma18 these cases
can never occur.

We therefore distinguish the following three cases in order to define the tran-
sition relation:

1. If L(u, v) �= ∅ and M(u, v) �= ∅, then we add the two transitions u
r1−→ v and

u
r2−→ v where r1 = max L(u, v) and r2 = min M(u, v).

2. If L(u, v) �= ∅ and M(u, v) = ∅, then we add the two transitions u
r1−→ v and

u
r2−→ v where r1 = max L(u, v) and r2 = max Qρ + 1

gr(ρ) .
3. If L(u, v) = ∅ and M(u, v) = ∅, then there is no transition from u to v.
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0

minRρ maxRρ

(a) (b)(c)

(d)

(e) (f)

Fig. 5.When constructing a transition from u to v, we will only have information about
what happens in the region Rρ (which always includes 0). The line represents the non-
negative real line and the arches represent the transitions that would be possible in a
full model (i.e. one not restricted to L[ρ]). The dashed part of the arches represent the
part of the transition that we do not have information about.

Finally we define the labeling function �ρ : U [ρ] → 2AP for any u ∈ U [ρ] as
�ρ(u) = {p ∈ AP | p ∈ u}. We then have a model Mρ = (U [ρ],→ρ, �ρ), and it is
not difficult to prove that Mρ is a WTS. The following lemma shows that any
formula ϕ in the language of ρ that is contained in some ultrafilter u must be
satisfied by the state u in the finite model Mρ.

Lemma 19 (Truth lemma). If ρ ∈ L is a consistent formula, then for all
ϕ ∈ L[ρ] and u ∈ U [ρ] we have Mρ, u |= ϕ iff ϕ ∈ u.

To prove the truth lemma, we first establish the following two theorems.

� ϕ ↔ ψ =⇒ � Lrϕ ↔ Lrψ � ϕ ↔ ψ =⇒ � Mrϕ ↔ Mrψ

The proof then proceeds by induction on the structure of ϕ. For the only-if-case
of ϕ = Lrψ, it is easy to see that �ψ� �= ∅. We then partition the ultrafilters
v ∈ �ψ� by �ψ� = E ∪ N where E = {v ∈ �ψ� | L(u, v) = ∅} and N = {v ∈ �ψ� |
L(u, v) �= ∅}. Because u is an ultrafilter, we have

∧
v∈E ¬L0�v�∧∧

v∈N Lr�v� ∈ u,
which we prove implies Lrψ ∈ u. For the if-case, it is straightforward to show
by contradiction that θ− (u) (�ψ�) ≥ r, if we know that θ (u) (�ψ�) �= ∅. To show
this, assume towards a contradiction that θ (u) (�ψ�) = ∅. Then ¬Lr�v� ∈ u for
all v ∈ �ψ�, which we can enumerate as ¬Lr�v1� ∧ · · · ∧ ¬Lr�vn� ∈ u. This can
then be shown to imply ¬Lrψ ∈ u, which is a contradiction.

Having established the truth lemma, we can now show that any consistent
formula is satisfied by some finite model.

Theorem 20 (Finite model property). For any consistent formula ϕ ∈ L,
there exists a finite WTS M = (S,→, �) and a state s ∈ S such that M, s |= ϕ.

We are now able to state our main result, namely that our axiomatization is
complete.

Theorem 21 (Completeness). For any formula ϕ ∈ L, it holds that

|= ϕ implies � ϕ.
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We have thus established completeness for our logic. There is also a stronger
notion of completeness, often called strong completeness, which asserts that
Φ |= ϕ implies Φ � ϕ for any set of formulae Φ ⊆ L. Completeness is a spe-
cial case of strong completeness where Φ = ∅. In the case of compact logics,
strong completeness follows directly from completeness. However, our logic is
non-compact.

Theorem 22. Our logic is non-compact, meaning that there exists an infinite
set Φ ⊆ L such that each finite subset of Φ admits a model, but Φ does not.

Proof. Consider the set Φ = {Lqϕ | q < r} ∪ {¬Lrϕ}. For any finite subset of
Φ, it is easy to construct a model. However, if M, s |= Lqϕ for all q < r where
q, r ∈ Q≥0, then by the Archimedean property of the rationals, we also have
M, s |= Lrϕ. Hence there can be no model for Φ. ��

5 Satisfiability

The finite model property gives us a way of deciding in general whether there
exists a WTS and a state in that WTS that satisfies a given formula. We do so by
constructing a model Mρ such that if ρ is satisfiable there exists a state Γ in Mρ

such that Mρ, Γ |= ρ. The model construction closely mimics the finite model
construction in Sect. 4.2. We will not go into the details of the construction here,
but instead point out where the construction differs from that in Sect. 4.2.

Given an arbitrary formula ρ ∈ L, we construct the language of ρ, L[ρ], in
the same way as we did in Sect. 4.2. In this section we will not use ultrafilters
as states in our model, but rather their semantic counterpart which we term
maximal sets of formulae.

Definition 23. We say that a set Γ ⊆ L[ρ] of formulae is propositionally max-
imal if it satisfies the following where ϕ,ψ ∈ L[ρ]:

(P1): ∀ϕ ∈ L[ρ]. ϕ ∈ Γ iff ¬ϕ �∈ Γ
(P2): ϕ ∧ ψ ∈ Γ implies ϕ ∈ Γ and ψ ∈ Γ
(P3): ϕ ∨ ψ ∈ Γ implies ϕ ∈ Γ or ψ ∈ Γ .

In addition to the conditions for propositional maximality listed in Definition 23,
we also have another notion of maximality that we term quantitative maximality.

Definition 24. We say that a set Γ ⊆ L[ρ] of formulae is quantitatively max-
imal if it satisfies the following:

(Q1): ¬L0⊥ ∈ Γ
(Q2): Lr+qϕ ∈ Γ implies Lrϕ ∈ Γ
(Q2′): Mrϕ ∈ Γ implies Mr+qϕ ∈ Γ
(Q3): Lrϕ ∧ Lqψ ∈ Γ implies Lmin{r,q}(ϕ ∨ ψ) ∈ Γ
(Q3′): Mrϕ ∧ Mqψ ∈ Γ implies Mmax{r,q}(ϕ ∨ ψ) ∈ Γ
(Q4): Lr(ϕ ∨ ψ) ∈ Γ implies Lrϕ ∨ Lrψ ∈ Γ
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(Q4′): Mr(ϕ ∨ ψ) ∈ Γ implies Mrϕ ∨ Mrψ ∈ Γ
(Q5): ¬L0ψ ∈ Γ and Lrϕ ∈ Γ implies Lr(ϕ ∨ ψ) ∈ Γ
(Q5′): ¬L0ψ ∈ Γ and Mrϕ ∈ Γ implies Mr(ϕ ∨ ψ) ∈ Γ
(Q6): Lr+qϕ ∈ Γ implies ¬Mrϕ ∈ Γ
(Q7): Mrϕ ∈ Γ implies L0ϕ ∈ Γ
(Q8): ϕ → ψ ∈ Γ and ((Lrψ) ∧ (L0ϕ)) ∈ Γ implies Lrϕ ∈ Γ
(Q8′): ϕ → ψ ∈ Γ and ((Mrψ) ∧ (L0ϕ)) ∈ Γ implies Mrϕ ∈ Γ
(Q9): ϕ → ψ ∈ Γ and L0ϕ ∈ Γ implies L0ψ ∈ Γ

where ϕ,ψ ∈ L[ρ] and r, q ∈ Rρ.

The conditions for quantitative maximality are semantic analogues of the axioms
listed in Table 1. We will say that a set Γ ⊆ L[ρ] of formulae is maximal if it is
both propositionally maximal and quantitatively maximal.

The transitions between states and their associated weights are derived in
the same was as in Sect. 4.2. We can now formally define the WTS Mρ.

Definition 25. Given a formula ρ ∈ L, we define the WTS Mρ = (Sρ,→ρ, �ρ)
as follows.

– Sρ =
{
Γ ∈ 2L[ρ] | Γ is maximal

}
.

– →ρ⊆ Sρ × R≥0 × Sρ is defined as: for any Γ, Γ ′ ∈ Sρ, Γ
x−→ρ Γ ′ if L0�Γ

′� ∈ Γ
and either
1. M(Γ, Γ ′) = ∅ and x ∈

{
max L(Γ, Γ ′),max Qρ + 1

gr(ρ)

}
, or

2. M(Γ, Γ ′) �= ∅ and x ∈ {max L(Γ, Γ ′),min M(Γ, Γ ′)}.
– �ρ : Sρ → 2AP is defined for any Γ ∈ Sϕ as �ρ(Γ ) = {p ∈ AP | p ∈ Γ}.
The following lemma shows that any formula contained in a maximal set in the
language of ρ has at least one model, namely the model Mρ.

Lemma 26. For an arbitrary formula ϕ ∈ L[ρ] and maximal set of formulae
Γ ∈ 2L[ρ] it holds that ϕ ∈ Γ iff Mρ, Γ |= ϕ.

With the preceding result, we are now able to show that any formula in the
language of ρ which has a model, must also be contained in a maximal set and
vice versa.

Theorem 27. For any formula ρ ∈ L, the following two statements are equiv-
alent:

1. There exists a maximal set Γ ∈ 2L[ρ] such that ρ ∈ Γ .
2. There exists a model M = (S,→, �) and a state s ∈ S such that M, s |= ρ.

A consequence of Theorem 27 is that if we can find a maximal set Γ ∈ 2L[ρ] such
that ρ ∈ Γ , then ρ is satisfiable, and in particular it is satisfied by Γ in the WTS
Mρ. Also, if we can find no such maximal set, then ρ is not satisfiable. This
gives a way of deciding satisfiability of a given formula. For any formula ϕ ∈ L,
the following algorithm decides whether ϕ is satisfiable, and constructs a model
if it is satisfiable.
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Algorithm 28

1. Construct the finite language L[ϕ].
2. Construct the finite set 2L[ϕ] of all subsets of L[ϕ].
3. Go through all elements Γ ∈ 2L[ϕ] and check whether they satisfy the condi-

tions for maximality. If they do not, remove them.
4. Go through all the remaining maximal sets Γ and check whether ϕ ∈ Γ . If

there is no such Γ , then ϕ is not satisfiable. If there is one such Γ , then ϕ is
satisfiable, and the finite model Mϕ is a model for ϕ.

Example 29. Applying Algorithm28 on the formula M1charging yields a model
MM1charging with a state Γ such that MM1charging, Γ |= M1charging, thus
showing the satisfiability of the formula M1charging. We will not go through
the construction here, but consider the WTS depicted in Fig. 6. It is easy to
verify that M, s1 |= M1charging.

6 Concluding Remarks

s1

{}
s2

{charging}
1

Fig. 6. A model for M1charging.

Our contributions in this paper have been to
define a new bisimulation relation for weighted
transition systems (WTSs), which relates those
states that have similar behavior with respect
to their minimum and maximum weights on
transitions, as well as an accompanying modal
logic to reason about the upper and lower
bounds of weights on transitions. We have shown that this logic characterizes
exactly those states that are bisimilar. This characterization holds for WTSs that
we call image-compact, which is a weaker requirement than image-finiteness. Fur-
thermore, we have provided a complete axiomatization of our logic, and we have
shown that it enjoys the finite model property. Based on this finite model prop-
erty, we have developed an algorithm which decides the satisfiability of a formula
in our logic and constructs a finite model for the formula if it is satisfiable.

This work could be extended in different ways. Since our logic is non-
compact, strong completeness does not follow directly from weak completeness,
and hence it would be interesting to explore a strong-complete axiomatization
of the proposed logic. Such an axiomatization would need additional, infini-
tary axioms. An example of such axioms would be {Lqϕ | q < r} � Lrϕ
and {Mqϕ | q < r} � Mrϕ, which are easily proven sound and describe the
Archimedean property discussed in Theorem 22.

Although we have shown that our logic is expressive enough to capture bisim-
ulation, it would also be of interest to extend our logic with a kind of fixed-point
operator or standard temporal logic operators such as until in order to increase
its expressivity, and hence its practical use. We envisage two ways in which such
a logic could be given semantics: either by accumulating weights or by taking
the maximum or minimum of weights. In the accumulating case in particular,
one could also allow negative weights to model that the system gains resources.
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