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Preface

This book relates to the general-purpose finite element program MSC Marc, which
is distributed by the MSC Software Corporation. It is a specialized program for
nonlinear problems (implicit solver) which is common in academia and industry.
The primary goal of this book is to provide a comprehensive introduction to an
advanced feature of this software: The user can write user subroutines in the pro-
gramming language FORTRAN, which is the language of all classical finite ele-
ment packages. This subroutine feature allows the user to replace certain modules
of the core code and to implement new features such as constitutive laws or new
elements. Thus, the functionality of this commercial code (‘black box’) can easily
be extended by linking user-written code to the main core of the program. This
feature allows to take advantage of a commercial software package with the flex-
ibility of a ‘semi-open’ code.

Chapter 1 is a comprehensive introduction to the programming language
FORTRAN. This chapter can be easily skipped by an experienced FORTRAN
programmer. Nevertheless, it seems that there is a common trend at certain uni-
versities to avoid a classical programming language in engineering degrees. The
engaged reader may find this chapter useful to overcome this serious deficiency. In
contrast, it can play the role of a quick guide for an experienced user. Chapter 2 is a
general introduction to the finite element package MSC Marc/Mentat. However, the
focus is not on the handling of the graphical interface, i.e., the pre- and
post-processor Mentat, but rather on topics which are important for the extension
of the functionality. Chapter 3 introduces the different classes of subroutines,
whereas the focus is on single-task examples which are mainly carried out by means
of a single subroutine. Chapter 4 is devoted to more complicated examples which
deal with several subroutines and their interaction and communication.

The instructions provided in this book relate to the MSC Marc/Mentat 2014.2.0
(64 bit) version under Microsoft Windows OS and the Intel XE 2013 FORTRAN
(update 5) compiler (also known as Intel FORTRAN version 13). The application
of user subroutines and common blocks might be slightly different for older ver-
sions, and the reader is in that case advised to adjust some of the given instructions
and examples. The same must be expected for future versions. Finally, it should be
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highlighted that the provided examples and computer codes are intended for purely
educational purposes. The routines are tested and checked for specific application
examples. Transferring routines to other examples may require certain adjustments
and further extensive testing. Nevertheless, the provided results by these subrou-
tines must be validated in every case.

We look forward to receive some comments and suggestions for the next edition
of this textbook.

Southport, QLD, Australia Zia Javanbakht
September 2016 Andreas Öchsner
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Chapter 1
Fortran – Advanced Features

Abstract Considering the fact that Marc is based on the Fortran programming
language, not only is the basic knowledge of the language is indispensable, but
becoming familiar with advanced features will definitely improve the structure of
the code. In this chapter, a comprehensive review of the advanced capabilities of the
Fortran language will be presented.

1.1 Preliminary Concepts

A basic knowledge of the Fortran programming language will be required in order
to gain the most from the subroutine capability ofMarc. Thus in this chapter, some
basic concepts of Fortran will be reviewed in conjunction with some general pro-
gramming concepts. However, the keen reader can continue further reading through
the references given in this book.

The best source as a comprehensive reference for Fortran is the ‘ISO/IEC
1539-1:2010 Fortran 2008 standard’ [19]. This standard describes the capabilities of
Fortran 2008. The 2008 version is a slightly improved version of Fortran 2003
which is equipped with many new features in comparison with Fortran 77. It is the
final result of a 50-year endeavor of standardizing Fortran, with the main objective
of improving the portability of the developed programs among different operating
systems and compilers. The standard is documented in a very organized fashion and
it is definitely worth reading.

All the standard features of Fortran are descriptively expressed in the men-
tioned standard. However, the programming syntaxes are simplified in this book to
improve the learning curve in favor of the reader. This simplification focuses on the
fundamental skills to interact withMarc/Mentat. The extensive capabilities of the
language can be studied in more details as one progresses.

The main concern of the authors was to avoid the modern features of Fortran as
much as possible and to limit themselves to the basic standard features which are
almost available in every version. It is due to the fact that the development ofMarc/-
Mentat goes back to the older versions of Fortran and thus, some old commands
still appear in the listings. Inevitably, these obsolescent features must be discussed.
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2 1 Fortran – Advanced Features

In other words, one may incorporate a recent compiler into Marc/Mentat but its
Fortran 77-base will impose a lot of restrictions to the practice. For instance, it is
not possible to use the free format for the Fortran source files despite the fact that
the compiler supports it. The main source of restriction is withinMarc itself (more
on formats in Chap. 2).

In the following sections, important excerpts of Fortran programming will be
provided as a concise reference in the framework of the fixed format.

1.1.1 Standard Syntax

The correct form of every Fortran entity is manifested by a specific syntax. In other
words, a syntax is the correct grammatical presentation of a programming language.
As mentioned earlier, simplified notations are adapted from the Fortran standard
for consistent demonstrations of entities. However, the same notation of the standard
will be used in some cases.

All Fortran listings, Marc/Mentat codes, syntaxes and any other program-
ming elements in the current book are displayed in San Serif. Additionally, numbered
lines are used for Fortran and Marc/Mentat listings to distinguish them from a
syntax.

Italic fonts will be used for the first encounter of the words with specific meaning
in the terminology of programming. For instance, a statement has a specific meaning
in the nomenclature of the Fortran programming language which is different from
its meaning in the normal English vocabulary.

Some abbreviations will be used in the syntactic language which are listed in
Table 1.1. An executable program, for example, has the following syntax:

program-unit
[ program-unit ] ...

The interpretation of this syntax is that an executable program consists of at least
one program unit (program-unit) plus one or more optional program units. As another
example consider the syntax of the main program:

[ program-stmt ]
[ specification-part ]
[ execution-part ]
[ internal-subprogram-part ]

end-program-stmt

This syntax indicates that a main program (main-program) consists of the following
optional parts: a specification part (specification-part), an execution part (execution-
part) and an internal subprogram part (internal-subprogram-part). However, a program
must end with an end program statement (end-program-stmt) in all cases. A typical
Fortran listing in the fixed format looks like the following:

http://dx.doi.org/10.1007/978-3-319-47668-1_2
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Table 1.1 Common syntactic
abbreviations and symbols
used in Fortran standards.
Adapted from [19]

Abbreviation/Symbol Description

stmt Statement

arg Argument

attr Attribute

decl Declaration

def Definition

desc Descriptor

expr Expression

op Operator

spec Specifier

var Variable

int Integer

char Character

/ Or

[ ] Encloses an optional item

[ ] … Encloses an optionally
repeated item

1 PROGRAM Sample
2 . . .
3 END PROGRAM Sample

Note that ‘…’ in a listing indicates that at least one line of unimportant or irrelevant
codemay be intentionally omittedwhereas in a syntax, it indicates repetitive patterns.

As mentioned earlier, the syntaxes introduced in the current book are either the
same as those of the standard or a simplified versions of them. In either one, the
abbreviations and symbols are kept intact in order to facilitate any possible references
to the standard for more details.

1.1.2 Basic Definitions

There are several interrelated terms which are used in the context of programming,
especially in the Fortran programming language. Understanding these terms and
fully encompassing the meaning will be required for a deeper understanding of the
language. It also improves the efficiency of using the standard. Themost fundamental
terms will be described briefly here and in more detail in the designated sections.

An entity is the most general term in the Fortran language and it can refer to any
existing component of the language. Several combinations of the Fortran character
set are used to produce various entities. An interesting analogy between the com-
ponents of a natural language and a programming language has been mentioned in
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Table 1.2 Analogy between natural language and programming language

Natural language element Programming language element

Letters of alphabet Character

Word and punctuation mark Keyword and lexical token

Sentence Statement

Paragraph Program unit

Text Program

Table 1.3 Special characters. Adapted from [19]

Character Name Character Name

Blank ; Semicolon

= Equals ! Exclamation point

+ Plus " Quotation mark or
quote

- Minus % Percent

* Asterisk & Ampersand

/ Slash ~ Tilde

\ Backslash < Less than

( Left parenthesis > Greater than

) Right parenthesis ? Question mark

[ Left square bracket ’ Apostrophe

] Right square bracket ` Grave accent

{ Left curly bracket ^ Circumflex accent

} Right curly bracket | Vertical line

, Comma $ Currency symbol

. Decimal point or period # Number sign

: Colon @ Commercial at

[21] which is summarized in Table 1.2. In this table, the elements are sorted from the
smallest to the largest one. Namely, similar to the fact that words are made up of the
alphabet, in a programming language lexical tokens are made up of characters. Simi-
larly, sentences are made by joining words, as statements are made by joining lexical
tokens. This table is of a great help to understand the structure of a programming
language; Fortran in our case.

An alphanumeric character is either a letter (upper- or lowercase one), a digit
or an underscore. Alphanumeric characters plus special characters (see Table 1.3)
make up the Fortran character set. Other graphical characters normally just appear
within a comment. Special characters are used as separators, delimiters, operator
symbols etc.
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Table 1.4 Keywords with and without optional blanks. Adapted from [17]

Possible form Suggested form

ENDMODULE END MODULE

ENDSUBROUTINE END SUBROUTINE

ENDFUNCTION END FUNCTION

ENDDO END DO

ENDIF END IF

ENDTYPE END TYPE

ENDMODULE END MODULE

DOUBLEPRECISION DOUBLE PRECISION

ELSEIF ELSE IF

GOTO GO TO

SELECTCASE SELECT CASE

A token or a lexical token is the smallest meaningful unit of a statement which
consists of one or more characters and can be either one of the followings:

• a name,
• a label,
• an operator symbol,
• a keyword,
• a Literal constant except for complex literal constants,
• a delimiter or a separator (, ), /, [, ], (/, /), or
• a comma, =, =>, :, ::, ;, %.

For example, z=x*y consists of five tokens.
Blanks or white spaces can be used to improve the readability of the code and

in this case, multiple blanks are considered as one. However, it is not permitted
to use blanks within a token, and of course they are significant within the strings.
Additional, there are some optional blanks which improve the readability. Therefore,
it is advised to use them as they have been used in the listings of the current book. A
short list is provided in Table 1.4.

A name or an identifier consists of alphanumeric characters; a maximum of 31
characters in Fortran 90 and 63 characters in Fortran 2008. It is used to reference
various entities such as any of the followings:

• a variable,
• a named constant,
• a program unit,
• a common block,
• a procedure,
• an argument,
• a construct,



6 1 Fortran – Advanced Features

• a derived type,
• a namelist group,
• a structure component,
• a dummy argument, or
• a function result.

All alphanumeric characters can be used to form a name, with the following excep-
tions:

1. no blanks can be used, e.g. instead of my variable which is invalid, myVariable
shall be used.

2. the first character cannot be a number, e.g. 1variable is invalid whereas variable1
is valid, and

3. of course non-alphanumeric characters are not allowed, e.g. #variable is not valid.

In some cases, a label must be defined for a statement. A statement label can be
one to five digits long and it starts from the first column of the file. Leading zeros
are insignificant in labels and thus, at least one out of five digits must be non-zero.
Therefore, a label such as 00050 is equal to 50. Although using labels is an obso-
lescent feature of Fortran, there are cases in which using labels is inevitable.
For instance, labels can be used for frequently referred formats defined by the
FORMAT statement. The common way of labeling a point within a piece of code
is using the keyword CONTINUE in front of a label. Such lines do nothing but merely
act as place-holders of the labels, for instance:

1 100 CONTINUE

Note that CONTINUE has a different effect if used in a loop (more details in Sect. 1.4).
There are no reserved words in Fortran because every entity is being interpreted

by the compiler based on its context. However, to improve the readability of the code,
meaningful identifiers should be used in the context of the program (see Sects. 1.1.5
and 1.1.6). For instance, consider the following code:

1 INTEGER : : i f , then , end
2

3 i f = 4
4 then = 4
5 end = 2
6 IF ( i f . eq . then ) then = end∗ i f + then

This piece of code is perfectly valid. However, the readability of the code is low and
hence, it is not advised to use such ambiguous lines. This listing canbe improved to the
following by using proper identifier names and a good combination of indentations,
capitalization, spaces and delimiters:

1 INTEGER : : cu r ren tRa te , f i n a lRa t e , t o l e r ance
2

3 cu r ren tRa te = 4
4 f i n a l R a t e = 4
5 t o l e r ance = 2
6

7 IF ( cur renRate .EQ. f i n a l R a t e ) THEN
8 f i n a l R a t e = t o l e r ance ∗ ( cu r ren tRa te + f i n a l R a t e )
9 END IF
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Table 1.5 Keyword types in Fortran

Type of keyword Appears in… Examples

Statement Syntax of a statement IF, READ, UNIT, INTEGER and etc.

Argument Argument list aChar (45, KIND = 1)

Component Constructor of a structure person (NAME = ‘Chris’, AGE = 21)

Type parameter Type parameter list CHARACTER (LEN = 10, KIND = 1) :: myChar

A keyword is aword used by the programming languagewhich has a specialmeaning.
Namely, it is a key ingredient of a syntaxwhich distinguishes one syntax fromanother.
There are four types of keywords in Fortran as listed in Table 1.5. A statement
keyword is a keyword used to define a statement. The other three types, namely
the argument keyword, the component keyword and the type parameter keyword,
are used to identify a name in a list: the argument list, the constructor type and the
type parameter list, respectively. The KEYWORD= syntax can be used for these three
types. This syntax can be optional in some cases, as it increases the readability of
the code. In addition, it omits the chance of mistakes when the right order of items
is not considered or some optional items are not being used.

It is a legacy of Fortran 77 to use keywords in all capital letters. Following the
same legacy, upper-case letters are used in the current book to add more emphasis to
them. A list of Fortran keywords is made available in Table 1.6. Note that in this
table, the newer versions of Fortran have all the keywords of the previous versions
plus the new ones.

1.1.3 Statement Order

A statement (stmt) is a sequence of one or more complete or partial lines satisfying
a syntax rule. If a statement carries out a specific action or control, then it is an
executable statement. However, if it configures an environment in which an action
takes place, then it is a non-executable statement. There are some restrictions and
obligations for where a statement is allowed to appear. These rules define the state-
ment order. The general syntax for the order of every program unit in Fortran is
as the following:

[ program-stmt ]
[ specification-part ]
[ execution-part ]
[ internal-subprogram-part ]

end-program-stmt
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Table 1.6 List of Fortran keywords. Adapted from [3]

Fortran
version

Keywords

77 ASSIGN BACKSPACE BLOCK DATA CALL CLOSE COMMON CONTINUE

DATA DIMENSION DO ELSE ELSE IF END ENDFILE

ENDIF ENTRY EQUIVALENCE EXTERNAL FORMAT FUNCTION GOTO

IF IMPLICIT INQUIRE INTRINSIC OPEN PARAMETER PAUSE

PRINT PROGRAM READ RETURN REWIND REWRITE SAVE

STOP SUBROUTINE THEN WRITE

90 ALLOCATABLE ALLOCATE CASE CONTAINS CYCLE DEALLOCATE

ELSEWHERE EXIT INCLUDE INTERFACE INTENT MODULE

NAMELIST NULLIFY ONLY OPERATOR OPTIONAL POINTER

PRIVATE PROCEDURE PUBLIC RECURSIVE RESULT SELECT

SEQUENCE TARGET USE WHILE WHERE

95 ELEMENTAL FORALL PURE

2003 ABSTRACT ASSOCIATE ASYNCHRONOUS BIND CLASS DEFERRED

ENUM ENUMERATOR EXTENDS FINAL FLUSH GENERIC

IMPORT NON_OVERRIDABLE NOPASS PASS PROTECTED VALUE

VOLATILE WAIT

2008 BLOCK CODIMENSION DO CONCURRENT CONTIGUOUS CRITICAL

ERROR STOP SUBMODULE SYNC ALL SYNC IMAGES SYNC MEMORY

LOCK UNLOCK

The break-down of this general syntax is illustrated in Fig. 1.1. Although some
statements are not permitted in every programunit, the general ordering requirements
are shown in this figure. Therefore, it can be used as a blueprint for all types of
program units. Based on this figure, the following major parts can be recognized in
a Fortran program:

1. the program statement (program-stmt) is the header of the program unit and it
indicates the type of program unit and its allowable statements. Program units are
described in Sect. 1.5.1.

2. The specification part (specification-part) prepares the data environment in which
data entities are declared or brought in from the outside of the unit (Sects. 1.6 and
1.7). This task is carried out by means of non-executable statements consisting
of the following elements:

a. USE statement (Sect. 1.5.1)
b. IMPORT statement (Sect. 1.8.8)
c. IMPLICIT statement (Sect. 1.6.2)
d. Derived type definition(s) (Sect. 1.7.7)
e. Interface block(s) (Sect. 1.8.8)
f. Type declaration statement(s) (Sect. 1.7)



1.1 Preliminary Concepts 9

PROGRAM, FUNCTION,
SUBROUTINE, MODULE
or BLOCK DATA stmt

Program unit header (program-stmt)

USE stmt
IMPORT stmt

IMPLICIT stmt

derived type def
Interface block(s)
Type decl stmt
Enumeration def
Procedure decl
Specification stms

PARAMETER stmts
DATA stmts

FORMAT stmts

Data environment (specification-part)

Actions stmts
Control constructs

Executable constructs (execution-part)

CONTAINS stmt
Internal-subprogram(s)Contained area (internal-subprogram-part)

END stmtProgram unit end (end-program-stmt)

Fig. 1.1 Schematic statement ordering of a Fortran program

g. Enumeration definition which are integer constants used to interact with C
programming language (not covered),

h. Procedure declaration which are related with polymorphisms and object ori-
ented programming (not covered),

i. Specification statements among which are PARAMETER and DATA statements
are all described in Sect. 1.6

j. FORMAT statement (Sect. 1.9.6)

3. The execution part (execution-part) is for executable constructs (discussed later
in this subsection).

4. The internal subprogram part (internal-subprogram-part) starts with the CON-
TAINS statement and is followed by internal subprograms or module subprograms
(Sect. 1.5.2).

5. The end program statement (end-program-stmt) is a single END statement which
dictates the end of the program unit (Sect. 1.5.2).

Setting up the data environment starts with the IMPLICIT statement and is finished by
the first executable statement (described in Sect. 1.7). Although between USE and
CONTAINS statements, non-executable statements are in priority to the executable
ones, there are exceptions such as FORMAT, DATA and ENTRY which may appear
anywhere in the code.
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Table 1.7 Statement restrictions in scoping units. Adapted from [19]

Statement Main Module Block External Module Internal Interface

Program data subprogram subprogram subprogram body

USE ✓ ✓ ✓ ✓ ✓ ✓ ✓

IMPORT ✗ ✗ ✗ ✗ ✗ ✗ ✓

ENTRY ✗ ✗ ✗ ✓ ✓ ✗ ✗

FORMAT ✓ ✗ ✗ ✓ ✓ ✓ ✗

Misc. decl.a ✓ ✓ ✓ ✓ ✓ ✓ ✓

DATA ✓ ✓ ✓ ✓ ✓ ✓ ✗

Derived type ✓ ✓ ✓ ✓ ✓ ✓ ✓

Interface ✓ ✓ ✗ ✓ ✓ ✓ ✓

Executable ✓ ✗ ✗ ✓ ✓ ✓ ✗

CONTAINS ✓ ✓ ✗ ✓ ✓ ✗ ✗

aMisc. declarations are PARAMETER statements, IMPLICIT statements, type declaration statements,
enumeration definitions, procedure declaration statements, and specification statements

The FORMAT statement is used to format the output and it is best to be placed
after the specification part (described in Sect. 1.9). The ENTRY keyword is used for
multiple entries to a subprogram which is better to be avoided since it is against
structured programming rules (Sect. 1.3).

In addition to the mentioned ordering, Table 1.7 lists the allowed statements
in various scoping units; for instance, in a block data, no executable statements are
allowed or the only place that an IMPORT statement can be used is within an interface
body.

An executable construct is either a control construct (Sect. 1.4) or an action
statement. A brief list of action statements is available in Table 1.8. All these action
statements, manipulate the data environment to produce the intended results of a
program.

1.1.4 Source File Format

A Fortran source file is simply a text file1 with a ‘.f’, ‘.for’ or ‘.f90’ file extension.
Normally, a Fortran character set is used to form the source file. This file consists of
several sequential lines of statements, comments and/or file inclusions. Marc only
recognizes the ‘.f’ extension which emphasizes the fact that it only accepts a fixed
format Fortran text file as opposed to ‘.f90’ which indicates a free format text file.
Hence, the fixed format will be focused on in this book.

In the fixed format, the columns of the source file are banded and a statement
must be indented to be placed in its corresponding band. A Fortran77 compiler

1An ASCII-file.
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Table 1.8 Brief list of action statements in Fortran

Action statement Description

Variable = expression Assignment of an expression to a variable

CALL Used to call a subroutine

GOTO Jumps to another label

CONTINUE Place-holder for a label

CYCLE Terminates the current cycle of a DO construct

RETURN Returns the control of the program to invoker

STOP Stops the execution of the program

EXIT Terminates a DO construct

PRINT Prints the items of the list on the screen

WRITE Writes data to a file unit or output

READ Reads data from a file unit

OPEN Establishes a connection between a file and a unit

CLOSE Terminates the connection of a file to a unit

Data-pointer-object => data-target Associates a pointer to a target

ALLOCATE Allocates memory for dynamic entities

DEALLOCATE Releases the allocated memory of dynamic entities

NULLIFY Disassociates a pointer from any target

only recognizes columns 1–72 which comprises of four distinguished bands as the
following:

1. Column 1: can be blank or otherwise if the line is a comment line then it starts
with the character ‘c’, ‘*’ or ‘!’. Note that the exclamation mark can be used in
other columns as well and the compiler will ignore whatever comes after that.

2. Columns 1–5: can hold a label which is optional.
3. Column 6: any characters including the exclamation mark in this column indicate

a continuation of the previous line. One usual approach is using numbers after
the initial line, i.e. for the first continuation line ‘1’, for the second ‘2’ etc. In
addition, the ‘c’, ‘*’, ‘+’ or ‘&’ character are also used to indicate a continuation
by convention. However, an ampersand (‘&’) will be used in this book.

4. Columns 7–72: any Fortran statement must be placed in this band. One excep-
tion is the compiler preprocessor directiveswhich start from the first column (see
Sect. 2.4.4).

It is possible to use tab characters instead of blanks or even a combination of both.
However, it is advised to use only blanks to form a consistent format. Tab characters
are interpreted differently based on the editor programandhence, using only blanks as
leading spaces (column 1–6) is advised. It is also possible to havemultiple statements
in a single line, each terminated by a semicolon. However, it is not recommended

http://dx.doi.org/10.1007/978-3-319-47668-1_2
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Table 1.9 Comparisons of fixed- and free format of a Fortran source file

Restriction Free format Fixed format

Start of a line Anywhere Column 7

Empty lines Allowed Allowed

Maximum line length 132 72

Blank character Insignificant Significant

Commenting character ! !, c or * in column 1a

Statement termination char. ; ;b

Statement continuation char. & Any character in column 6c

Maximum continuation lines 255 19

Label Columns 1–5 Columns 1–5
aExclamationmark ‘!’ can be used in any columnexcept column6which is considered a continuation
character
bSemicolon is optional as a termination character but can be used in between each two statements
in a single line as a separator. However, this method reduces the readability of the code and is not
advised
cAmpersand ‘&’ is common in the sixth column of a continuation line for a fixed format source. In
contrast, in a free format file, the last non-blank character of the initial line must be an ampersand
to indicate the next line as a continuation line

because it reduces the readability of the line. Finally, a summary of these points and
some additional details of these two formats are presented in Table 1.9.

1.1.5 Programming Conventions

There are several considerations when it comes to programming but one of the most
important ones is being clear; both to the compiler and to the user. While working on
a piece of code, everything seems crystal clear at the time being but reconsidering
the same code after a while may be confusing and time consuming. Depending on to
which extent the code is organized, less time will be required in the future references.
Hence, a rule of thumb is to keep things as simple and straightforward as possible.

In order to have crystal-clear parts of code, it is necessary to understand and
to incorporate concepts such as structured programming, modular programming
and encapsulation. Using these concepts will aid the programmer to manage the
frequently-used pieces of code in a neat and clean way. In addition to this systematic
approach, it is advised to use some programming conventions consistently throughout
a code to increase its textual readability and clarity. A few of these customs will be
discussed here briefly and be used throughout the listings of this book (for a more
descriptive list see [9]):

1. Fortran does not distinguish between the lower- or the upper-case characters,
i.e. it is case-insensitive. Therefore, a programmer can take advantage of this fact
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to generate an easy-to-read code by using only lower-case characters throughout
the listing, minding the following exceptions:

• named constants are used in capital letters and sometimes to improve read-
ability some underscores are added between the words, e.g. POISSON, PI and
TOTAL_NODES.

• Keywords are used in capital letters, e.g. PROGRAM and INTEGER.
• Action statements are used in capital letters, e.g. WRITE, CALL and GOTO.
• lowerCamelCase format is used for naming variables, e.g. tangentStiffness and

curvatureRadius.
• UpperCamelCase format is used for the name of user defined subprograms and
modules e.g. ExtractStiffness and CalcRadius.

• Start intrinsic subprograms with a capital letter, e.g. Sin, Sqrt and Abs.

2. Blank spaces are significant in columns 1–6 of a fixed format code but in the
columns 7–72, they can be used for indentation. Using indentations in a source
filemakes it easier to recognize related lines of code. Both tab and blank characters
can be used for this purpose but in this book blank characters are utilized. It is
good practice to consistently use a two-space indentation to align related lines of
the code for more emphasize, such as the following items:

• nested control structures, e.g. IF-ELSE-END IF and DO-END DO.
• Elements of a data environment, e.g. declarations of named constants, vari-
ables and derived type definition.

• Scope changes, e.g. statements of a subprogram are indented with respect to
the program unit header.

• Use a single space after a comma, e.g. CALL SumUp (a, b, c).
• Use a single space after the name of a subprogram especially in the case of
a function to distinguish it from an array, e.g. in a = test1(i, j) + Test2 (i, j)
statement, test1 is an array and Test2 is a function.

• Use a single space after and before an operator in an expression, e.g. a = b + c
instead of a=b+c.

3. Continuation lines are inevitable especially in a fixed format code, for that the
following points are advised:

• whenever possible, break a long line into meaningful pieces to increases the
readability of the code,

• use an ampersand (&) to mark continuation lines.
• use a consistent indentation for continuation lines with respect to the initial
line.

4. Short statements which are separated by a statement separator, i.e. a semicolon
(;) are allowed but not suggested.

5. Comments are not considered by the compiler but if used correctly they will
clarify the code to a great extent. Consider the following points in commenting:
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• avoid using comments at the end of code lines, i.e. trailing comments by
exclamation mark (!). Instead, group a series of similar code and add a full-
line comment before it to increase the readability.

• Use a consistent comment marker throughout the code, e.g. an asterisk (*) is
a good choice because it can be used to separate blocks of code by forming a
border around comments, or an exclamation mark (!) can be used as a simpler
alternative.

• A comment line cannot be continued because the continuation mark itself is
considered as a part of the comment.

• In managing large databases, often a data dictionary is used which is the
description of the data fields. It is possible to apply the same concept in mod-
ular programming. In otherwords, for a programunit, especially a subprogram
or module, it is a useful practice, while establishing the data environment, to
create a list of used data objects plus a brief description of each. This list
is usually placed at the beginning of the subprogram in the form of several
comment lines. Using such a data dictionary, makes the maintenance process
of a program easier and it is strongly advised while working with modular
programming and subprograms. For instance in a subprogram, add comments
consisting of an explanation of the data environment, i.e. input, output, auxil-
iary variables and a brief description of the procedure. But at the same time,
try to avoid repeating the details which are evident from the subprogram itself.
The following listing is the comments part for the GetNodeCoord function of
the MarcTools module (see Sect. 4.1). These lines clearly describe the inputs
and outputs of the function by providing the details of the data environment:

1 !∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 !
3 ! Objective :
4 ! Returns the undeformed/deformed coordinates of a node ID.
5 ! Returns three zero coordinates in the case of an error .
6 !
7 ! Input (s ) :
8 ! nodID INTEGER external node ID
9 ! nodState INTEGER(OPTIONAL) the state of the node

10 ! 1: undeformed state
11 ! 2: deformed state
12 ! Output(s ) :
13 ! REAL∗8(3) coordinates of the nodID
14 !
15 ! Auxiliary variable (s ) :
16 ! nComp INTEGER number of returned components
17 ! dataType INTEGER the returned data type
18 ! nodCoord REAL∗8(3) coordinates of the nodID
19 ! nodDisp REAL∗8(3) displacement of the nodID
20 ! i INTEGER loop counter
21 ! coordState INTEGER holds the same state as nodState
22 ! i f the la t ter is present
23 !
24 ! Required common blocks :
25 ! none
26 !
27 ! Required subprogram(s ) :
28 ! none
29 !
30 ! Restrictions :
31 ! none

http://dx.doi.org/10.1007/978-3-319-47668-1_4
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32 !
33 ! Future Updates:
34 ! none
35 !
36 ! Last update: 23/3/2016
37 !∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

This much detail may seem excessive but it extremely reduces the effort in
the maintenance of the code. It is advised that the comment area and the data
dictionary to be build during the coding and not after finishing the program.
They both add vital notes for keeping and updating the code. Such notes
are usually forgotten after the code is finished. This importance is magnified
specially for the subprograms of a module which are constantly required to
be updated during the development of the program.

Althoughmost of the listed remarks are customary among programmers, they depend
on personal preferences. It is advised to keep these preferences consistent through
the programming project. In other words, one should consider them as a personal
code of practice which finally generates a homogeneous result.

1.1.6 Naming Identifiers

One last topicwhichmay be closely akin to one’s preferences is naming the identifiers
in the program. Identifiers are used to distinguish the entities from each other, namely
to identify program units, variables, named constants, and others. An identifier is
merely a name that is assigned to an entity for further referrals. Therefore, an identifier
is simply called a ‘name’.

It is good to start any work with a personal convention and select some abbrevia-
tions for the quantities which will be dealt with. It is important to stick to your, even
if not perfect, convention throughout the project, than to follow no conventions at all.
Note that similar to the capitalization conventions discussed earlier, the following
points are merely suggestions, not rigid rules, for choosing a proper name for an
entity.

Generally, a proper name should be context-related, clear in meaning and as short
as possible. Satisfying all these factors may not be possible in every situation but it
is advised to keep to them as much as possible.

In naming entities, context shall be considered. In other words, a name shall
be chosen in such a way that implies the context of the entity. For instance, it is
advised that a verb should be used to name a subprogram. This is due to the fact
that subprograms are used to carry out tasks. For example CalcArea is a good name
for a subroutine which implies its functionality, i.e. calculating the area. Aside from
the capitalization custom, the same name is not as clear for a variable holding the
calculated area, instead area would be a better choice.

Since there is a trade-off between being clear and using less characters, selecting a
name should be done be considering both itsmeaningfulness and length.Obviously, it
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is possible to completely clarify a name by usingmore characters but in programming
languages like Fortran, there is a limitation in the number of characters of a name.2

Although the facility is provided, it is recommended to avoid long names. It is due to
the fact thatMarc does not support the free format yet. Another reason for avoiding
long names is because they make the typing process a tedious job. The remedy to
this is using some abbreviations instead of long phrases.

A long name is usually downsized to an abbreviation with 3–5 characters. There
are some suggestion in doing so. Usually if a name consists of four letters or less,
omitting any letters will cause the loss of meaning. Therefore, all the letters should
be kept, e.g. the node name can be used for a node or the name area for an area.
Further omitting can be done only if it does not affect the meaning. For example,
the name node can be reduced to nod and the meaning is still preserved. But further
truncation will cause the loss of meaning and should be avoided, i.e. the names no
or n. Also the name area cannot be shortened anymore to are.

For names with more than four letters, an abbreviation will be used which usually
consists of the three to four initial letters. Generally, to preserve the meaning, the
trailing letters are omitted, e.g. coord is used for ‘coordinates’. However, one may
prefer to use elm instead of ele to stand for the name element but generally removing
the vowels is not recommended.

Adhering to a consistent rule will keep the abbreviations uniform. However, a
guidance table should be created holding the description of each entity. For example
see Table5.1 which holds the name of the subprograms and the explanation of their
tasks. Another example is Table5.2 which holds the summary of the variables.

Generally, it is good to use more descriptive names for ubiquitous entities such as
entities with a global scope. In contrast, use short but clear names for entities with
limited use such as local variables. Naming local variables is less important than a
global one. Similarly, naming a frequently used subprogram is of utmost importance.

Thementioned rules apply for naming the subprograms.However, one canbemore
generous here in terms of the number of used characters. Since subprograms aremore
frequently encountered rather than a local variable, longer names are preferred. Note
that a long name should be used if it adds to the meaning. In addition, the identifier
of a subprogram usually starts with a verb such as Get, Set, Calc, and so on.

For a quantity which can be named by a phrase, thementioned rules can be applied
for each of its words. For instance in the context of finite elements, the nodCoord
name can be used for a quantity which holds the coordinates of a node.

The order of the multi-word identifiers should be kept the same. Also, it is good
to order the names by importance. Namely, for the name of a variable which holds a
list of elements there are two ordering options: elmLst or lstElm. Because this name
indicates in this case that it is related to some elements, the elm part of the identifier
is more important. Therefore, it must come in the first place, i.e. the elmLst name is
preferred. This type of sorting will ease the search for similar name since one knows
that anything related to elements start with the elm.

2In Fortran 95, names can be 31 characters long. This length is improved to 63 characters in
Fortran 2003.

http://dx.doi.org/10.1007/978-3-319-47668-1_5
http://dx.doi.org/10.1007/978-3-319-47668-1_5
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Aside from the mentioned points, there are some conventions among program-
mers. For instance, the letters i, j and k are usually used as loop counters (possibly
originated from the old Fortran codes with implicit type declaration) or the letter
n is used as a prefix for the number of a quantity. One could get familiar with such
conventions by acquiring more experience. To get some starting ideas, one may refer
to [4, 5, 8, 9, 20, 21, 32].

1.2 Programming - Phases and Tools

Programming is arranging instructions for a computer to manage a task. During
this process, some errors might be introduced which may be due to a wrong use
of a command such as misspelling a keyword, called a syntax error. In contrast,
sometimes the syntax is right but the logic is not sound; a semantic error, i.e. the
program executes but the result is not as expected; it is rather hard to debug this kind
of error. In order for a program to execute properly, not only must the instructions
obey the correct syntax, but also the development of the code must be based on the
right logic. Figure 1.2 illustrates the iterative process of developing a program.

The problemmust be described as in detail as required pertaining to and not limited
to its necessary capabilities and producible outputs. The solution of the problem
must be logically planned in a, not necessarily unique, series of steps; called an
algorithm. In the next steps, the programmer codes, compiles and tests the program
for debugging purposes and then applies updates or maintenance modifications as
required. Among the mentioned phases, the logic planning is the most complicated
one because in that, semantic errors might be introduced to the cycle. The two
common tools for logical planning are flowcharts and pseudocodes which both are
independent of the programming language and they will be investigated briefly in
the following sections.

Fig. 1.2 Iterative stages of
programming. Adapted from
[13]

Understand
the problem

Plan the
logic

Write
the code

Document,
maintain

and update

Compile,
test and
debug
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1.2.1 Planning the Logic

In programming, there exists a task/problem at hand, a goal which will be achieved
by a series of steps of calculations and/or actions. In order to solve such a problem,
there may be several methods, each represented by an algorithm, i.e. a sequence
of small steps which will finally produce the solution of the problem. In computer
science, the word ‘algorithm’ is used in a more specific way than merely a method:
“…a precise method usable by a computer for the solution of a problem” [15]. This
definition necessitates that finite steps of any algorithm to be ordered, well-defined,
precise and unambiguous resulting in a clear computational procedure.

As mentioned earlier, pseudocodes and flowcharts are two useful tools for struc-
tured programming. The transition from an algorithm to a programming code is
bridged using a pseudocode and/or a flowchart. A pseudocode is nothing but a step-
by-step plain English language representation of the algorithm and a flowchart is a
graphical representation for that. Although choosing between these two is subjective,
recognizing patterns via a flowchart is sometimes much easier because of its more
visual nature. Using these tools may look trivial for short programming codes but in
long run and especially for comprehensive projects they could save a lot of confusion
and time.

1.2.2 Pseudocode Conventions

Generally, there are no specific rules about how pseudocodes must be used since
they are just step-wise instructions on how to carry out an algorithm. However, the
following points may be useful during logical planning of the program:

• Pseudocodes are not language dependent. Therefore, no correct syntax is defined
for a pseudocode. In addition, grammatical considerations are also trivial, i.e. cap-
italizing, punctuation, indentation etc. are all optional and user-dependent. How-
ever, it is recommended to stay loyal to a unique style throughout the project.
For instance, it is good to avoid continuation lines and use indentations. Also it is
easier to use lowercase letters for every statement.

• Note that a pseudocode is used to outline what is going to be done in the program.
Therefore, the level of details depends on the skills of the programmer, i.e. the
more experienced the user, the fewer details required.

• Usually, a pseudocode starts with start or begin and ends with stop or end. The rest
of the statements are placed in between with an indentation, e.g. two blank spaces.

• After the start keyword, the declarations are placed inwhich declaring the variables,
constants, and others, takes place.

• Interaction with the user is done by input, read or get and output, write, print or
display terms.

• Processes are simply written in plain English using calculate or compute terms. In
order to write, for example, a calculation of an expression such as x = √

y + x , it
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is possible to write calculate x as square root of y plus x or calculate x=square root of
y plus x as the corresponding pseudocode.

• In addition to using the UpperCamelCase format, it is advised to use a couple of
parentheses after the name of the subprogram such as GetAdditionalData(). This
adds more emphasize on the subprogram and distinguishes from variables.

• Instead of using begin and end, the pseudocode of a subprogram is delimited
between the identifier and the return keyword. Also all the code is indented in
between.

Symbol Name Function

Terminal It is used to mark the start and end
of a flowchart.

Input/output It is used to get inputs or display
outputs.

Process

It is used to indicate variable/con-
stant declarations, calculations or
manipulations of data. Also used for
a block of processes.

Intrinsic subprogram
A predefined subprogram (serie of
processes) within the programming
language.

Internal/external subprogram A user defined subprogram (serie of
processes).

Decision
Used to indicate a comparison or de-
cision which leads to different paths.

Junction Designates the flow.

Off-page connector Used to indicate the continuation of
the process in the next page.

Connections Connects sequential symbols.

Comments
Used to add more clearification to a
symbol.

Group Used to indicate a group of several
symbols.

Fig. 1.3 Basic symbols used in a flowchart
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1.2.3 Flowchart Conventions

Similar to pseudocodes, flowcharts are used to illustrate how an algorithm works.
Flowcharts are more helpful in terms of visualizing and thus, more convenient for
beginners. In contrast, pseudocodes are preferred by professionals because they may
be considered one step closer to the real programming codes. However, using both
of them for a program or a mix of them in larger programs is possible. A flowchart
consists of several rows/columns of block symbols which are related to each other
using connections. Basic flowchart symbols with the corresponding descriptions are
listed in Fig. 1.3.

1.3 Structured Programming

As a programmer, dealing with complicated pieces of code and debugging them gets
harder as the size and complexity of the task increases. It seems much easier to make
a mess trying to make the code work and get entangled with a so-called spaghetti
code. Further complications would arise trying to modify the code.

Another case would be trying to understand and update a code written by some-
body else. Even if the documentation of the code is quite good, it would be very
hard to follow the steps of an unstructured program. A similar condition will be
encountered when transferring a part of an unstructured code to another program. If
not impossible, it could be laborious and troublesome.

An unstructured programming style may be used successfully for small programs
but it is definitely not suitable nor recommended for the larger ones. Note that the
whole point of the argument is of concern to the user/programmer because the com-
piler does not care if the program is well-structured or not; the reader does.

The foundation of the program is constructed during the logic planning phase.
That is the most important of the phases since it prevents an unstructured program.
In addition, keeping to a structured layout will make the proceeding phases of a
programming cycle much easier. Debugging, maintaining, updating, documentation,
understanding and planning additional parts of the program will be much easier and
more straightforward.

Let us elaborate what is considered as a structured program. A structured logic
is based on the divide-and-conquer concept, namely it breaks down large tasks into
one of the three basic structures: a sequence, selection or loop. It is proven that with
the help of these basic structures any task can be broken down to understandble
pieces—no matter how complicated the task is. Each one of these components can
have different variations based on what is required to carry out (see Fig. 1.4).
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Process Single-alternative

Sequence Input/output Decision Double-alternative

Subprogram call Multi-alternative

Test at the top

Repetition Test at the bottom Comments Grouping

Using a counter Callout

Fig. 1.4 Components of structured programming

Fig. 1.5 A sequence
structure consisting of four
statements

Flowchart Pseudo-code

Statement 1 Statement 1

Statement 2 Statement 2

Statement 3 Statement 3

Statement 4 Statement 4

1.3.1 Sequence, Selection and Repetition

A sequence structure is nothing else than a series of processes which must be done
one after another to achieve the intended results. It is analogous to a cooking recipe
which must be followed step-by-step to produce a delicious meal. This structure can
be shown by either a flowchart or pseudocode (see Fig. 1.5). It can be a combinations
of processes, I/O or subprogram calls but no branching is allowed.

Any combination of processes and I/O statements is called a block, i.e. a group of
related statements which will be executed sequentially. In Fortran, a block will be
equivalent to a sequence of statements each denoted by a keyword. Schematically,
a process symbol is also used for a block of code for a concise demonstration. The
Fortran equivalent of this structure is almost any statement but a control structure.
A control structure is used for either a selection or repetition. Small simple programs
usually consist of a sequence of statements.
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Flowchart Pseudo-code

Condition

True BlockFalse

True IF condition THEN
True Block

END IF

(a) A single-alternative decision structure

Flowchart Pseudo-code

Condition

True Block False Block

True False
IF condition THEN

True Block
ELSE

False Block
END IF

(b) A double-alternative decision structure

Fig. 1.6 Simple decision structures

A selection structure, sometimes called a decision structure, is a structure which
branches based on the result of a Boolean expression. Note that the branches must
join each other at the end of the structure. A selection structure can have various forms
based on the number of provided alternatives. A one-alternative structure which is
equal to a IF-THEN control structure is illustrated in Fig. 1.6a with the corresponding
pseudocode. If a two-alternative situation is at-hand then the IF-THEN-ELSE control
structure should be used (Fig. 1.6b).

More alternatives are possible, e.g. four alternatives and a default one which
will be executed if none of the other alternatives was selected (Fig. 1.7a). This multi-
alternative example can be expressed using a CASE construct (Fig. 1.7b) which looks
more organized and easier to understand than the previous structure.

The third basic structure is a repetition, iterative or loop structure which repeats
a block of code; called a loop body (Fig. 1.8). In this structure, a Boolean expression
determines how many times the loop body will be repeated. Based on when this
Boolean expression is tested, at the beginning (top) or at the end (bottom) of each
loop, different control structures will be used.

The most common type of a repetition structure is a WHILE structure which runs
a loop block until a Boolean expression is true and the test is done at the beginning
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Flowchart Pseudo-code

Condition
1

Condition
2 Block 1

Condition
3 Block 2

Condition
4 Block 3

Default
block Block 4

False

False

False

False

True

True

True

True

IF condition1 THEN
Block1

ELSE IF condition2
Block2

ELSE IF condition3
Block3

ELSE IF condition4
Block4

ELSE
Default block

END IF

(a) Demonstrated using a nested decision structure

Flowchart Pseudo-code

Test
Expression

Default
block Block 1 Block 2 Block 3 Block 4

Default Case 1 Case 2 Case 3 Case 4

SELECT CASE Test Expression
CASE case1

Block 1
CASE case2

Block 2
CASE case3

Block 3
CASE case4

Block 4
CASE ELSE

Default block
END SELECT

(b) Demonstrated using a case decision structure

Fig. 1.7 A multi-alternative decision structure

of each loop. Therefore, if the Boolean expression is false then the loop will not be
executed. This type is called a test-at-the-top repetition structure.

In contrast, a test-at-the-bottom structure, a REPEATUNTIL or DOUNTIL structure,
will execute the loop block at least for once without any regards to the value of the
boolean expression. Then, the Boolean expression is tested; if it is true, the loop is
repeated again.

In all of the mentioned loops, the number of repetitions is not known. Therefore,
a condition is tested for the execution of the body of the loop. However, it is also
possible to use a counter and run the loop body for an explicit number of times using
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Fig. 1.8 A loop structure Flowchart Pseudo-code

Condition Loop
block

False

True

WHILE condition is true
Loop block

END WHILE

a DO construct. This construct is used when it the number of repetitions is known
a priori.

The important property of every loop structure is the fact that after executing the
loop body, the flow of the program must go back to the decision symbol in order to
keep the logic structured.

In addition to the three mentioned fundamental structures, optional comments
are also used for informative purposes although they are not considered as basic
structures. The role of comments is usually overlooked despite the fact that they
can be very elaborating especially in future referrals to the code. Therefore, using
a uniform style of commenting throughout the code is recommended. In terms of
flowchart symbols, callouts and curly-brackets are used for commenting andgrouping
the blocks, respectively.

1.3.2 Combining Structured Logic

By combining the three basic structures, every problem can be solved. There are two
ways of combining structures: stacking which is using structures one after another
and nesting which is placing a structure within another one. With the help of these
combination methods, an infinite number of structures can be developed.The multi-
alternative decision structure is an example of a nested decision structure within
another decision structure (Fig. 1.7a).

Usually nesting and stacking are used together such as the structure in Fig. 1.9.
The indentation used in the pseudocode designates the level of the code for instance,
three first steps stepA, stepB and stepC are all in the same level with the condition
control (D?). Therefore, these four symbols are stacked one after another. TheWHILE
loop is nested and thus, it is indented. stepG is stacked with the While loop and they
are in the same level. Similarly, stepH, stepI and stepJ are stacked together. Using
indentation in a pseudocode as well as the code itself, increases the readability of the
code and makes the debugging process easier and thus, it is recommended.

Considering what has been indicated earlier, the following characteristics can be
summarized:
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Flowchart Pseudo-code

Begin

stepA

stepB

stepC
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BEGIN
stepA
stepB
stepC
IF condition D is true THEN

stepH
stepI
stepJ

ELSE
WHILE condition E is TRUE

stepF
END WHILE
stepG

END IF
END

Fig. 1.9 Combination of stacking and nesting in a sample structured flowchart and the correspond-
ing vertically aligned pseudocode

• Every structured program consists of sequences, selections, loops and/or any
stacked or nested combination of those.

• Every structure has only one entry and one exit point; attaching to other structures
is only done by these points. Therefore, jumping from one point of the code to
another one by means of statements such as GOTO is prohibited. Also sudden
jumps out of a loop and jumps into a loop from outside are prohibited.

• In a loop structure, the control of the program goes back to the decision symbol
after executing the loop block. However, in a selection structure one of the two
paths is selected. Then, both sides are joined together, not to the decision symbol,
and the program continues.

Therefore, in order to convert an unstructured flowchart to a structured one, the
program must be checked from the beginning. The basic structures and their com-
bination must be recognized while checking for valid connections, i.e. one-entry,
one-exit. If any connection violates any of the mentioned rules, the program must
be re-structured. This is usually done by means of additional statements and/or vari-
ables. Among the many benefits of a structured logic, modularization is the most
important benefit which will be discussed later in this chapter.



26 1 Fortran – Advanced Features

1.4 Control Constructs in Fortran

Simple programs consist of normal execution of processes, i.e. sequential execution.
In contrast, sophisticated programs will not just flow in a linear fashion but will tend
to have branches and loops. This will cover possible conditions and deal with tedious
recurring events.

In Fortran, control constructs are used to carry out the selection and repetition
structures of the program logic. IF and CASE constructs are dedicated to selection
structures whereas DO and DO WHILE are designated to loops. Note that there is
no REPEAT UNTIL construct in Fortran. However, it can be mimicked using the
labels and the GOTO statement. This is not advised because it is against the one-entry
one-exit rule of structured programs.

1.4.1 IF Construct

Simple decision making is usually done by means of an IF construct. More compli-
cated situations can be simulated using nested IF constructs or compound relational
expressions as the condition of the decision. The syntax of the IF construct in For-
tran is as the following:

[if-construct-name:] IF (scalar-logical-expr) THEN
block

[ELSE IF (scalar-logical-expr) then [if-construct-name]
block]

[else [if-construct-name]]
block

END IF [if-construct-name]

As mentioned earlier, a block in flowcharts consists of several sequence structures.
Similarly in this syntax, a Fortran block is also a sequence of Fortran statements.
The important component of this syntax is the scalar-logical-expr which is a logical
expression.

Note that the scalar-logical-expr must always be delimited within parentheses. It
can incorporate logical operators such as .AND., .OR., .NOT. etc. to form a compound
expression. The use of if-construct-name is optional but it is not very common in
programming.

Indentation of the blocks is recommended because the logic will be easier to
understand. The pseudocode of the IF construct is quite similar to the code itself.

Consider the following one-alternative structure example:

1 IF ( f l a g ) THEN
2 WRITE ( ∗ , ∗ ) ’ F lag i s f l own . ’
3 END IF
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If the value of flag is equal to .TRUE., the message will be shown. Flags are logical
variables which are used in programming quite often to indicate a special state. For
example, a firstRun flag within a subprogram indicates its first run. The true-block
consists of only one statement, it is also possible to use a more concise syntax:

1 IF ( f lag ) WRITE (∗ ,∗ ) ’ Flag is flown . ’

This syntax is not applicable to blocks with multiple statements. If a message is
needed for the .FALSE. value then the following two-alternative structure can be
used:

1 IF ( f l a g ) THEN
2 WRITE ( ∗ , ∗ ) ’ F lag i s f l own . ’
3 ELSE
4 WRITE ( ∗ , ∗ ) ’ F lag i s no t f l own . ’
5 END IF

In the condition of the .FALSE. value for the flag variable, the ELSE block will be
executed. A nested IF construct may be used to cover multiple cases, such as the
following:

1 IF ( d e l t a .GT. 0 .0D0 ) THEN
2 WRITE ( ∗ , ∗ ) ’Two d i s t i n c t roo ts ’
3 ELSE IF ( d e l t a .EQ. 0 .0D0 ) THEN
4 WRITE ( ∗ , ∗ ) ’One double roo t ’
5 ELSE
6 WRITE ( ∗ , ∗ ) ’No r e a l roo ts ’
7 END IF

This example determines the number of roots for a quadratic equation based on its
discriminant (delta). Sometimes nested structures can be converted to a single IF
construct with a more complicated logical expression, for instance:

1 IF ( i .EQ. 0 .0D0 ) THEN
2 IF ( j .EQ. 0 .0D0 ) THEN
3 CALL twoZeros ( )
4 END IF
5 ELSE
6 CALL notTwoZeros ( )
7 END IF

This code can be written with only one IF construct and the logic operator .AND.:

1 IF ( ( i .EQ. 0 .0D0 ) .AND. ( j .EQ. 0 .0D0 ) ) THEN
2 CALL twoZeros ( )
3 ELSE
4 CALL notTwoZeros ( )
5 END IF

This construct is more understandable while carrying out the same decision mak-
ing process. Note that each individual logical expression is put within parentheses.
Generally, .AND. and .OR. logic can be expressed using nested structures. However,
using the compound logical expressions is simpler in terms of programming codes
as well as the flowcharts (Figs. 1.10 and 1.11).

It is worthmentioning that comparing a real variable with an exact value is usually
not a good practice. It is a rare case to have an exact real number after a calculation.
Therefore, it is better to examine the variable to be close to the intended value within
a tolerance. For instance, consider the following line:
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Flowchart Pseudo-code

A?

B? False Block

True Block False Block

True False

True False

IF A THEN
IF B THEN

TRUE block
END IF

ELSE
False Block

END IF

(a) Demonstrated using a nested IF construct

Flowchart Pseudo-code

A .AND. B?

True Block False Block

True False

IF A and B THEN
TRUE block

ELSE
False Block

END IF

(b) Demonstrated using a single IF construct

Fig. 1.10 .AND. logic relational expression

1 IF ( aReal .EQ. 1 . 0 ) THEN

This code tests if the variable aReal is equal to one. However, it is better to be replaced
by the following:

1 IF (ABS( aReal −1.0) . LT . 0 .0001) THEN

1.4.2 CASE Construct

The IF construct is good enough to test several conditions. However, as the number
of conditions increases, the nested IF construct might be rather confusing. In such
cases, using a CASE construct is advised. In this construct, the value of an expression,
called a case index, is tested against one of the several values or ranges of values,
called case values. Unlike the IF construct, comparison of ranges is possible and
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Flowchart Pseudo-code

A?

B?

True Block True Block False Block

FalseTrue

True False

IF A THEN
TRUE block

ELSE
IF B THEN

TRUE block
ELSE

FALSE block
END IF

END IF

(a) Demonstrated using a nested IF construct

Flowchart Pseudo-code

A .OR. B?

True Block False Block

FalseTrue

IF A OR B THEN
TRUE block

ELSE
FALSE block

END IF

(b) Demonstrated using a single IF construct

Fig. 1.11 .OR. logic relational expression

thus, the type of the case index and its case-values for a CASE construct is limited
to discrete types. Namely, they can be either an integer, a character or a logical type.
The syntax of the CASE construct is as the following:

[case-construct-name:] SELECT CASE (case-expression)
[CASE case-selector [case-construct-name]

block] …
END SELECT [case-construct-name]

In this syntax, case-construct-name is an optional name for the construct, case-
expression is the case index and case-selector is either a case value or the DEFAULT
keyword. This keyword indicates the default block if none of the other case values
match the case index.

The case values must be selected in a manner so that no overlapping happens.
Namely, no case index can be assigned to multiple case values. However, it is pos-
sible for a case value to cover a range of not overlapping values as demonstrated in
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Table 1.10 Possible formats for case value ranges in a CASE construct

Case value range Equivalent logical expression

case-value case-index == case-value

case-value case-index <= case-value

case-value: case-index >= case-value

case-value1:case-value2 case-value1 <= case-index <= case-value2

Table 1.10. Note that case values must be delimited in parentheses and can cover
multiple non-overlapping cases. For example, CASE (1:10, –2, :–10) covers integer
numbers 1–10, –2 and all the integers less than or equal to –10.

As an example, consider again the example of finding the number of the roots for
a quadratic equation based on its discriminant (delta). This was carried out earlier
using a nested IF structure. Because delta is a REAL type variable and not a discrete
value, it cannot be used directly as a case index. However, the sign of delta is a
discrete value and thus, it can be used.

Two intrinsic functions are needed: Int (A) which truncates the real value of A and
returns an integer; Sign (A, B)which returns+|A| if B is positive and−|A| otherwise.
Note that A, B and the function return value are of the same type.

Similarly, in our example the delta variable is of the real type and thus, the return
value is a real number. Therefore, the Int intrinsic function must be used to convert
the result to an integer value. The equivalent CASE construct is as the following:

1 SELECT CASE ( I n t ( Sign ( de l t a , d e l t a ) ) )
2 CASE ( + 1 : )
3 WRITE ( ∗ , ∗ ) ’Two d i s t i n c t roo ts ’
4 CASE ( 0 )
5 WRITE ( ∗ , ∗ ) ’One double roo t ’
6 CASE ( : −1)
7 WRITE ( ∗ , ∗ ) ’No r e a l roo ts ’
8 END SELECT

Considering this example, it can be seen that sometimes using a CASE structure is
not in favor of simplicity. This example can be modified using a DEFAULT case, to
be less specific and just state if any roots exist or not:

1 SELECT CASE ( I n t ( Sign ( de l t a , d e l t a ) ) )
2 CASE ( 0 : )
3 WRITE ( ∗ , ∗ ) ’ Real Root ( s ) ’
4 CASE DEFAULT
5 WRITE ( ∗ , ∗ ) ’No r e a l roo ts ’
6 END SELECT

More complicated case recognitions can be developed using nested CASE constructs
with another one or even with an IF construct to take advantage of its capabilities.
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1.4.3 DO Construct

A DO construct is designed to execute a block for a number of times. The syntax of
this construct is as the following:

[do-construct-name:] DO [label] [loop-control]
block

[label] END DO [do-construct-name]

This syntax indicates that the label and do-construct-name are optional. Although
using both is possible, it is not advised. Three different types of loop-control can be
selected for a DO construct. All of them have the following general syntax:

[,] do-variable = scalar-integer-expression1, scalar-integer-expression2 [, scalar-
integer-expression3]

[,] WHILE (scalar-logical-expression)

The first form is called the DO construct with an iteration count. In this form, a
counter is used to control the number of iterations. The counter or the do-variable in
the syntax is merely an integer. The first, second and third scalar-integer-expression
are the starting, finish and step (increment) values for the counter, respectively. In
other words, after assigning the first integer value to the counter the block runs for
the first time and then the step value is added and the block runs again. This loop
continues until reaching the finish value and then, the program will execute the first
statement after the END DO statement.

The default value for the step is 1 and hence, the finish value must be greater than
or equal to the starting value. Generally, any non-zero value is permitted for the step
value which makes running the block possible either by increasing or decreasing the
counter. The number of iterations is equal to than the MAX((finish-start+step)/step,0).
Therefore, for positive step values if the start value is greater than finish value, zero
iterations will result. For the negative step values it is the other way around. A simple
example is summing up all the values of an array named myData with n elements:

1 sum = 0 .D0
2 DO i = 1 , n
3 sum = sum + myData ( i )
4 END DO

If the array is two-dimensional with n1 and n2 ranks, a nested loop must be used to
sum all the elements:

1 sum = 0 .D0
2 DO i = 1 , n1
3 DO j = 1 , n2
4 sum = sum + myData ( i , j )
5 END DO
6 END DO

Another example is printing the even numbers between 100 and 1 in a decreasing
manner:
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1 DO i = 100 , 1 , −2
2 Wr i te ( ∗ , ∗ ) i
3 END DO

The second form of a DO construct is with a WHILE control. In this form, the block
will be executed while a condition is true. The evaluation of the condition expression
is done prior to executing the block and hence if the result is false then the block will
not be executed. This form is a test-at-the-top form of loops. It is possible to convert
from the first to the second form and vice versa. For instance, the following code can
be used to sum up the elements of an array:

1 sum = 0 .D0
2 i = 1
3 DO WHILE ( i <=n )
4 sum = sum + myData ( i )
5 i = i + 1
6 END DO

In this example, initializing the counter i and updating its values by incrementing is
done manually. In contrast, in the iteration form of the DO construct, these two tasks
were carried out automatically.

The third form of the DO construct is an obsolescent one with a non-block struc-
ture. This formwas the only loop construct before Fortran 90 and thus, it is encoun-
tered frequently in older code. The other two forms were introduced afterwards and
have covered all the programing demands. However, the third form is still supported
by the current compilers for compatibility issues. The non-block DO has the following
form:

[DO label [loop-control]]
[execution-part-construct]

label action-statement

Every statement between the DO statement and the label will be repeated (including
the label itself). Note that in the syntax, branching or DO altering constructs are
not allowed as an action-statement. The following example prints the even numbers
between 100 and 1 using this form:

1 DO 100 i = 100 , 1 , −2
2 100 Wr i te ( ∗ , ∗ ) i

Although this is completely right, as a convention the CONTINUE statement is used
just as a place-holder for the label. Namely, it does nothing. Rewriting the same code
will result in the following:

1 DO 100 i = 100 , 1 , −2
2 Wr i te ( ∗ , ∗ ) i
3 100 CONTINUE

Nested loops are also possible in this approach. For instance, to sum up the two-
dimensional array myData we will have:

1 sum = 0 .D0
2 DO 100 i = 1 , n1
3 DO 200 j = 1 , n2
4 sum = sum + myData ( i )
5 200 CONTINUE
6 100 CONTINUE
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It is evident that the third form can readily be converted to other forms. Therefore,
there is no critical need to use this outdated form.

1.4.4 REPEAT UNTIL

Out of the three repetition constructs used in a structured logic, the test-at-the-bottom
structure, i.e. a DO UNTIL or a REPEAT UNTIL loop, is not formally supported by
Fortran. However, it can be mimicked using an IF construct in junction with a
GOTO statement, if necessary. The following is a not-advised example which prints
a line for 10 times:

1 coun te r = 10
2 100 CONTINUE
3 Wr i te ( ∗ , ∗ ) ’ s imu l a t i n g . . . ’ , coun te r
4 coun te r = coun te r − 1
5 IF ( coun te r >= 1) GOTO 100

Again, using a GOTO statement violates the structured logic and it is strongly rec-
ommended to be avoided.

1.4.5 Altering the DO Construct

There are two special statements which can alter the execution process within a
DO construct: EXIT which immediately terminates the construct and CYCLE which
terminates the current increment and jumps to the next one. Although these are
supported by the language, it is strongly advised to avoid using them because they
violate the structured logic of the program. Alternatively, by using a better design
it would be possible to avoid incorporating these statements into the construct. For
instance, it is possible to create an infinite loop by choosing a relational expression
which is always true, e.g. (.TRUE.). In such a case, the control of the repetitions
is done by the EXIT and CYCLE statements. This approach not only violates the
structured program logic but also adds unnecessary complications to the program. In
addition, it makes the understanding and debugging of the program troublesome. It is
recommended to avoid such constructs and try to rearrange the logic to a structured
form. In this context, a flowchart will come in handy to untangle such a structure.

1.4.6 Branching

The act of transferring the execution process from the point of a branch statement
to the point of a branch target statement is called branching. It is usually done by
means of a GOTO statement targeting a labeled statement. The targeted label usually
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holds a trivial CONTINUE. Although it is not permitted to jump to a statement within
a block from outside of the block, it is possible to jump from the inside of a block to
the outside. However, using the GOTO statement is against structured logic and it is
not advised. This is significant to the extent that a structured program is sometimes
called a GOTO-less program.

In this context, a CONTINUE statement may be used to indicate a non-block DO
construct. If aGOTO statement aims for thisCONTINUE statement, it will act the same
way as a CYCLE statement. In other words, jumping to the CONTINUE statement of
a DO construct is the equivalent of starting the next cycle of the loop. However, in
general, any other CONTINUE statements would act just as a place-holder for the
label. Note that the jump is made within the DO construct. To elaborate on this,
consider the following lines of code:

1 DO 100 i = 1 ,10
2 Wr i te ( ∗ , ∗ ) i
3 GOTO 100
4 Wr i te ( ∗ , ∗ ) ’ I am here ! ’
5 100 Cont inue
6 200 Cont inue

In this example, the ‘I am here!’ sentence will never be printed. Because the GOTO
100 actually moves the control of the program to line 5 which is trivial and finally to
line 1 to start the next cycle of the loop. If in the same code, a GOTO 200 statement
is placed before the DO construct, simply the construct will not be executed. Note
that branching from the outside to anywhere inside of a non-block DO construct
(including its CONTINUE statement) is prohibited. For instance, the following code
will not run:

1 GOTO 100
2 DO 100 i = 1 ,10
3 Wr i te ( ∗ , ∗ ) i
4 GOTO 100
5 Wr i te ( ∗ , ∗ ) ’ I am here ! ’
6 100 Cont inue

Another branching statement is the STOP statement which terminates the program
immediately. The STOP statement violates the one-entry one-exit rule of the struc-
tured logic. Therefore, it is advised not to be used.

1.5 Procedural/Modular Programming

Two general ways of implementing the structured programming method are proce-
dural programming andmodular programming. In bothmethods, the idea of breaking
a large problem into smaller tasks is considered and amain program is responsible for
the coherence of the subtasks. In procedural programming, a single file is used con-
taining a main program plus several subprograms. In this method, the main program
is responsible of calling other subprograms located within the same file. In contrast,
modular programming incorporates several independent programs, called modules,
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FORTRAN Program

Module

Module subprogram

Function . . .

Subroutine . . .

Module subprogram

Function . . .

Function . . .

Subroutine . . .

Internal
subprograms

Main program

Subroutine . . .

Function . . .

External subprogram

Function . . .

Function . . .

Subroutine . . .

Fig. 1.12 Structure of a sample Fortran program

to perform the job. Although both of these methods are faithful to incorporate sub-
tasks, the modular programming approach has the advantage of the independence of
the modules, viz. modules can be run, tested and updated separately from the main
program.

In Fortran, both of the mentioned methods can be used. Procedural pro-
gramming is carried out by means of internal subprograms, i.e. internal functions
and/or subroutines whereas the modular concept can be incorporated using modules
(Fig. 1.12). Normally a program is developed using a mixed-mode (procedural/-
modular approach). Namely, each of the mentioned methods is used to some extent.
However, it is recommended to shift the approach from procedural to modular as
much as possible.

The main idea behind the modular approach is to divide a task into independent
sub-tasks. This results in more manageable and understandable pieces of code which
makes the programming easier in the current and following references. In a modular
system, instead of dealing with a program in whole, several discrete subprograms
or procedures will carry out the same purpose but in a well-structured fashion. The
basis of this system is in accordance with the structured logic mentioned in earlier
sections and that is why the phrase structured programming is sometimes used for
the samemeaning. Amodular design for a problem affects the program development
cycle in every phase as described below:
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• better understanding of the idea behind the whole program,
• easier maintenance and application of modifications to the code,
• improved testing due to the fact that individual testing of the sub-tasks is possible,
• easier debugging and detection of errors,
• achieving a better logic design with less time and effort,
• easier changing of the updated parts with regard to the whole program,
• easier team-work because parallelworking is possible due to breaking up thewhole
project to sub-task, and

• improved portability of the code to other programs and re-usability of the same
pieces of code in the future projects.

In Fortran, a program consists of program-units which may be written in a lan-
guage other than Fortran. A program-unit is composed of several constructs and
statements. Based on the heading statement of the unit, it can be either a main pro-
gram, a module, an external subprogram or a block data. In other words, a program
unit defines a data environment and performs some calculations with this data.

Every Fortran program consists of one main program and in accordance to
the procedural/modular programming concept, it will call other subprograms. A
subprogram can be either a function subprogram or a subroutine subprogram. A
subprogram executes one or more procedures that is why it is sometimes called a
procedure or a method despite the fact that a subprogram executes a procedure and
it is not a procedure itself. In any case, both of the terms are used in programming
context but in the current book the subprogram term is preferred.

Additionally, the terms ‘subroutine’ and ‘function’ are used in short for ‘sub-
routine subprogram’ and ‘function subprogram’, respectively. Subprograms and the
main program are executables whereas modules and block data are not. In simple
words, a module is used for sharing procedures and/or data while a block data is used
to initialize the shared data.

When a subprogram is a program unit itself then it is an external subprogram or
external procedure. If it is contained in another program unit, it is called an internal
subprogram or internal procedure. In other words, external subprograms can have
internal subprograms within themselves but further nesting for internal subprograms
is not allowed. Namely, internal subprograms cannot contain any other subprograms.
If a subprogram is defined within a module, it is called a module subprogram or
module procedure.

To elaboratemore on these concepts consider Fig. 1.13which illustrates a program
consisting of the following program units:

• Main, the main program,
• ExternalSub, an external subprogram,
• MyModule a module,
• ModSub1 and ModSub2 are module subprograms,
• InternalSub1 and InternalSub2 are internal subprograms of the main program,
• InternalSub3 is an internal subprogram of the external subprogram, and
• ModInSub1 and ModInSub2 are internal subprograms of the module subprograms.
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PROGRAM Main
USE MyModule
IMPLICIT NONE

CONTAINS

END PROGRAM Main

INTERFACE
SUBROUTINE ExternalSub (a)
INTEGER, INTENT (INOUT) :: a
END SUBROUTINE ExternalSub

END INTERFACE

SUBROUTINE InternalSub1 (a, c)
INTEGER, INTENT (INOUT) :: a, c
. . .

END SUBROUTINE InternalSub1

FUNCTION InternalSub2 (b, c)
InternalSub2 :: INTEGER
INTEGER :: b, c
. . .

END FUNCTION InternalSub2

SUBROUTINE ExternalSub (a)
IMPLICIT NONE
INTEGER, INTENT (IN, OUT) :: a

CONTAINS

END SUBROUTINE ExternalSub

FUNCTION InternalSub3 (b, c)
InternalSub3 :: INTEGER
INTEGER, INTENT (IN) :: b, c
. . .

END FUNCTION InternalSub3

MODULE MyModule
PRIVATE ModSub2
. . .

CONTAINS

END MODULE MyModule

SUBROUTINE ModSub1 (a, b)
INTEGER, INTENT (OUT) :: a
INTEGER, INTENT (IN) :: b
. . .

CONTAINS

END SUBROUTINE ModSub1

SUBROUTINE ModInSub1 (a, b)
INTEGER, INTENT (OUT) :: a
INTEGER, INTENT (IN) :: b
. . .

END SUBROUTINE ModInSub1

FUNCTION ModInSub2 (a, c)
INTEGER, INTENT (IN) :: a, c
INTEGER :: ModInSub2
. . .

END FUNCTION ModInSub2

SUBROUTINE ModSub2 (a, b)
INTEGER, INTENT (IN) :: b
INTEGER, INTENT (INOUT) :: a
. . .

END SUBROUTINE ModSub2

Fig. 1.13 Detailed sample arrangement of program units in a Fortran program

The access to the external subprogram is provided by means of an interface
(Sect. 1.8.8) in the main program and the access to the module is made available
through the USE statement (Sect. 1.6.1). In addition, the arguments are fully declared
using the INTENT attribute (Sect. 1.8.5) and the access to ModSub2 module subpro-
gram is declared as PRIVATE (Sect. 1.8.2).

1.5.1 Structure of Program Units

The following syntax can be used for every program unit, i.e. a main program, a
module, a subprogram and a block data, provided that some minor modifications are
applied:

[heading]
[specification-part]
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[execution-part]
[CONTAINS

internal-subprogram
[internal-subprogram] …]

[ending]

The required modifications are as the following:

• The heading (heading) and the corresponding ending (ending)must be altered based
on what type of program unit is being used. In other words, the heading defines
the type of program unit.

• In the specification part (specification-part), the data environment will be set up.
• An execution part (execution-part) contains the procedure of the programming
logic. This part only exists in executable program units, i.e. the main program and
subprograms. This part is prohibited for the non-executable programming units,
i.e modules and block data.

• An internal subprogram (internal-subprogram) is prohibited for a block data and
for an internal subprogram itself.

The execution of a typical program starts from the main program with a syntax such
as the following:

[PROGRAM program-name]
[specification-part]
[execution-part]

[CONTAINS
internal-subprogram
[internal-subprogram] …]

[END [PROGRAM [program-name]]]

Note that the heading for a main program is optional and inMarc/Mentat using a
main program is not allowed.

1.5.2 Subprograms

Essentially, a procedure can be done by a subprogram which is either a function or
a subroutine. Aside from the syntactic differences, a function and a subroutine are
similar in many aspects. However, each has slightly different characteristics.

Generally, a subroutine interacts with its arguments and the result of its procedure
is reflected by modification of one or more of its arguments. Hence, a subroutine
may return several values via modifying its arguments or no values at all. Dealing
with several inputs and outputs is usually an indicator of a complicated procedure
and a subroutine is a good choice to perform such a job.

In contrast to the subroutines, the result of a procedure done by a function is
normally a single value. It is called the result of function. The result is returned not
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by the arguments but by the function itself acting as a variable. Because the name
of a function is a variable, it has the advantage of being referenced in expressions
while subroutines are invoked by a CALL statement. The procedure of a function is
normally simpler than that of a subroutine. In other words, the purpose of a function
is just calculating the result value while avoiding any manipulation of its arguments;
called having minimum side effects.

From another point of view, subroutines are either external or internal. Although
both internal and external subprograms are used in a procedure-based approach, there
are a few subtle distinctions:

• An internal subprogram is a local entity and can be accessed only within the
program or subprogram in which it is defined whereas an external subprogram is
global (more on the scope in Sect. 1.6.4).

• An external subprogram (or a module) may contain internal subprograms but an
internal subprogram cannot contain another internal one.

• The interface of an external subprogram is not known to the referencing program/-
subprogram but for an internal subprogram the interface is known and therefore,
an explicit interface is not required (more on interfaces in Sect. 1.8.8).

• An external subprogram (or a module) is compiled separately and thus, producing
separate files with a .mod extension. On the contrary, an internal subprogram is
compiled within its host (more on hosts in Sect. 1.6.4).

• The name of an internal subprogram has precedence over the external ones and
even over intrinsic subprograms.

The syntax of an external subroutine is as the following:

SUBROUTINE subroutine-name [([dummy-argument-list])]
[specification-part]
[execution-part]

[CONTAINS
internal-subprogram
[internal-subprogram] …]

END [SUBROUTINE [subroutine-name]]

Compared to a program unit, only the header and end statement are different. The
header now contains a list of arguments needed for the subroutine (dummy-argument-
list) and the end statement contains the SUBPROGRAM keyword. The CONTAINS
keyword indicates the internal subprograms of the subroutine. As mentioned earlier,
an internal subprogram cannot contain other internal subprograms. Therefore, the
syntax for an internal subprogram will be the same as an external one but without
the CONTAINS part:

SUBROUTINE subroutine-name [([dummy-argument-list])]
[specification-part]
[execution-part]

END [SUBROUTINE [subroutine-name]]
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The following are some examples for subroutine headers and the corresponding end
statements:

1 SUBROUTINE PrintWelcomeMessage
2 . . .
3 END SUBROUTINE PrintWelcomeMessage
4

5 SUBROUTINE Pr intMessage ( )
6 . . .
7 END SUBROUTINE Pr intMessage
8

9 SUBROUTINE So r tA r r ay ( anArray )
10 . . .
11 END SUBROUTINE So r tA r r ay
12

13 SUBROUTINE ReadFi le ( f i leName , readData )
14 . . .
15 END SUBROUTINE ReadFi le

The two first subroutines, i.e. PrintWelcomeMessage and PrintMessage, do not have
any argumentswhereas the next two subroutines have one and two arguments, respec-
tively: the anArray argument for the SortArray subroutine and the filename and the
readData arguments for the ReadFile subroutine. The declaration of these arguments
will be defined in the specification part of the subroutine. The specification and exe-
cution parts of a subprogram are similar to those of a main program only that the
dummy argument list must be defined in the specification part as well. The subpro-
gram header and the data declaration of the arguments are called the signature of the
subprogram. For instance, the signature of the subprograms of the previous example
can be as the following:

1 SUBROUTINE So r tA r r ay ( anArray )
2 REAL , DIMENSION (10 ) : : anArray
3 . . .
4 END SUBROUTINE So r tA r r ay
5

6 SUBROUTINE ReadFi le ( f i leName , readData )
7 CHARACTER (LEN=32) : : f i leName
8 REAL : : readData
9 . . .

10 END SUBROUTINE ReadFi le

In this example, the subroutine SortArray accepts an array of ten real numbers named
as anArray. The ReadFile subroutine deals with two variables: a string of 32 char-
acters named fileName and a real number named readData. Because an argument of
a subroutine may be used as an input, output or both. Therefore, a better way of
declaring an argument is using it with an INTENT attribute to sort out the intention
of the argument (more details are available in Sect. 1.8.5). As another example, in
the following code Outside is an external subroutine which is the host of the Insider
subroutine:

1 SUBROUTINE Outs ide
2 . . .
3 CONTAINS
4 SUBROUTINE I n s i d e
5 . . .
6 END SUBROUTINE I n s i d e
7 END SUBROUTINE Outs ide
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The syntax of an external function is as the following:

FUNCTION function-name [([dummy-argument-list])]
[ specification-part ]
[ execution-part ]

[ CONTAINS
internal-subprogram
[ internal-subprogram ] ... ]

END [FUNCTION [function-name]]

The syntax of an external function is very similar to that of an external subroutine:
similarly, not only it is required to declare the arguments of a function but additionally,
the type of the function itself must be declared. An internal function has the same
syntax but without the internal subprogram part:

FUNCTION function-name [([dummy-argument-list])]
[ specification-part ]
[ execution-part ]

END [FUNCTION [function-name]]

In the following example, a function named AddNumbers with two real arguments
named a and b is declared which returns a real value as the result:

1 FUNCTION AddNumbers ( a , b )
2 REAL : : a , b , AddNumbers
3 . . .
4 END FUNCTION AddNumers

1.5.3 Procedure Referencing and Arguments

A procedure reference occurs when the name of a procedure is used in a piece of code
in order to execute it. The terms invoking or calling are also used in the samemeaning
for both functions and subroutines. When a subprogram is referenced, the execution
of the current program is suspended until after the execution of the subprogram is
completed. Then, the execution of the initial program continues.

Referencing can be done for both functions and subroutines; called function refer-
ence and subroutine reference, respectively. Referencing to a subroutine is done using
a Call statement and to a function is done when the function is used in an expression.
User-defined programming units can be accessed with proper referencing.

In contrast to the user defined procedures, there are procedures provided by For-
tran itself which are called intrinsically defined procedures or intrinsic procedures.
They can be categorized in one of the following items:

• standard intrinsic procedures, defined by the standard, e.g. Sign (), Sqrt (), Abs ()
etc.

• procedures in standard intrinsic modules such as C interoperability module, and
• non-standard procedures made available by a specific compiler.
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Using non-standard procedures will make your code not portable to other compilers
and hence, is not advised. Replacing the compiler-dependent procedures with one’s
own procedures is a better idea to resolve the problem of portability.

In a subprogram reference, some entities are passed to the subprogram to take part
in the calculation procedure. This entity is an argument to the subprogram. From
the perspective of the subprogram, it receives the value of the entity as a parameter.
These two terms are usually used instead of each other [13].

The argument which is declared in the header of the subprogram is called a dummy
argument because it is not actually a variable and does not occupy any memory.
However, the entity which is passed as this dummy argument is actually a data entity
which is called an actual argument.

An actual argument for a function is usually used only as an input whereas it may
be used as an input, an output or both in a subroutine. The INTENT attribute is used
to indicate this (see Sect. 1.8.5).

A subprogram takes control of the execution flow upon being invoked. In other
words, execution of the program transfers to the first action statement within the
subprogram in which the actual arguments are now known as dummy arguments.
This process is called argument association. From now on, accessing the actual
arguments is done through the dummy arguments; the latter serves as a link to the
former.

A CALL statement for invoking a subroutine has the following syntax:

CALL subroutine-name [([[keyword=]actual-argument])]

In the syntax, an actual argument can be either a variable in the simplest form or an
expression which is being passed to the subroutine. The keyword here is the name
of the dummy argument which is indicated in the header of the subroutine. Using
this keyword is optional but when the sequence of arguments is not considered, it
must be used to avoid any confusion. For instance in the following example, sum,
myInt and 2*12 are actual arguments for a subroutine reference to SumUp and they
are associated to dummy arguments a, b and c within the subroutine, respectively:

1 PROGRAM Main
2 INTEGER : : sum , myInt
3

4 myInt = 10
5 Sum = 0
6 CALL SumUp (sum , myInt , 2∗12)
7 END PROGRAM Main
8

9 SUBROUTINE SumUp ( a , b , c )
10 INTEGER , INTENT ( IN ) : : b , c
11 INTEGER , INTENT (OUT) : : a
12

13 a = b + c
14 END SUBROUTINE SumUp

In addition, referencing to the previously declared sample subroutines in Sect. 1.5.2,
can be done as in the following example:
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1 CALL PrintWelcomeMessage
2 CALL Pr intMessage ( )
3 CALL So r tA r r ay (2 ∗ myArray1 + myArray2 )
4 CALL ReadFi le ( ’ data . t x t ’ , myText )
5 CALL ReadFi le ( readDATA = myText , f i leName = ’ data . t x t ’ )

In the first two lines of this listing, the PrintWelcomeMessage and the PrintMessage
subroutines have no arguments. The argument for the third subroutine is the 2 *
myArray1 + myArray2 expression and for the fourth one the arguments are a named
constant ’data.txt’ and a variable named myText. In the last line, another reference is
made to theReadFile subroutine but the sequence of the arguments are not considered.
Therefore, using the keywords of the subroutine is mandatory, i.e. readData and
fileName.

1.5.4 Modules

Asmentioned earlier, two non-executable programunits are data blocks andmodules.
Data blocks will be discussed in conjunction with common blocks in Sect. 1.8.3.
Data and common blocks are constructs used for sharing data whereas a module
manifests the concept of modularization which allows the user to not only share data
entities between program units but also share procedures as well. In other words, a
module is a collection of encapsulated data entities and subprograms with the ability
of hiding unnecessary entities from the user. This is called encapsulation which
provides a more professional and independent package. The syntax of a module is
as the following:

MODULE module-name
[ specification-part]

[ CONTAINS
module-subprogram
[ module-subprogram ] ... ]

END [MODULE [ module-name ] ]

The specification part of a module is similar to that of an external subprogram except
that no execution part exists for a module. In addition, the access to the items within
a module can be controlled using the PUBLIC and the PRIVATE attributes (described
in Sect. 1.8.2). The entities with the PUBLIC attribute can be accessed from outside
of the module. This is the default attribute for any module entity.

Every module is compiled to a file with a .mod extension and linked later to the
subprograms in which it is needed. In order to use a module in any subprogram or
even in another module, the USE statement must be used at the beginning of that
program unit (described in Sect. 1.6.1). Note that a USE statement can be used within
a module to use another module but a module cannot refer to itself.

Each program unit may have several internal subroutines. Every variable in the
program unit is considered global to all its internal subprograms.
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TheSAVE attribute is used to save the value of a variable in amodule. This feature is
similar to what common blocks do. But it is a better way of transferring data between
subprograms (Sect. 1.8.3). Themodule subprogram part (module-subprogram) is sim-
ilar to the internal subprograms of other program units.

The following example is a module which works as a common block just to share
data between program units:

1 MODULE CommonData
2 CHARACTER (LEN=30) : : MESSAGE = ’Welcome . . . ’
3 REAL : : lengthSum
4 INTEGER , SAVE : : runCount
5 TYPE Geometr ic
6 REAL : : Area , Pr iemeter , sideA , baseB , sideC
7 END TYPE Geometr ic
8 END MODULE CommonData

In this example only the specification part of a module is used to share a constant
named MESSAGE and two variables: a real LengthSum and an integer runCount with
SAVE attribute. A user defined type named Geometric is declared and shared in the
module. It is common practice that a derived data type is packaged with related
subprograms in a module. A more complicated example will package subprograms
as well:

1 MODULE MyModule
2 TYPE Geometr ic
3 REAL : : Area , Pr iemeter , sideA , baseB , sideC
4 END TYPE Geometr ic
5 CONTAINS
6 SUBROUTINE CalcArea ( geoEn t i t y )
7 TYPE ( Geometr ic ) , INTENT ( INOUT ) : : geoEn t i t y
8 . . .
9 END SUBROUTINE CalcLength

10 END MODULE MyModule

It is good practice to put each module in a separate file and import them in the
program using the INCLUDE statement (more details in Sect. 1.8.3).

1.6 Specification Part

A specification part (implicit-part) consists of several specification statements by
which a data environment is prepared, e.g. types, attributes and some initialization of
variables, introduction of named constants, type declarations, data statements, and
others, are placed in this part. The specification part of program units is slightly
different in terms of the type of that program unit. However, the general syntax of
the specification part is as follows:

[use-statement] …
[implicit-part]
[declaration-construct] …



1.6 Specification Part 45

1.6.1 USE Statement

In addition to the reference types mentioned in Sect. 1.5.3,module reference is refer-
encing amodule bymeans of a USE statement. The first statement of the specification
part is used for module referencing which grants a program unit the access to the
public entities of other modules. This access can be either a complete access to all the
public entities or a selective one, by using the ONLY option. Based on the approach,
one of the following simplified syntaxes will be used:

USE module-name [, rename-list]
USE module-name, ONLY: [only-list]

If all of the public entities are usedwith the first syntax then a rename list (rename-list)
might be needed to avoid any name conflicts. This conflict can be among the local
entities or those of the other modules and the module in use. The renaming facility
can also be used just for adapting to the current naming convention of the program.
A rename list or an only list (only-list) is generated using the following syntax:

[local-name =>] module-entity-name

Using this syntax for a rename list, a local name (local-name) is selected for a module
entity name (module-entity-name). The same syntax can be used for an only list and
the difference will be that only the mentioned entities can be accessed. Consider the
following examples:

1 USE AModule
2 USE MyLibrary , myL is t => so r ted_da ta
3 USE MyLibrary , ONLY : So r tA r r ay => qu i c k_a r r a y_ so r t

The first USE statement gives access to all the public entities of AModule and the
second one, uses all entities of MyLibrary but renames sorted_data to myList. The
last USE statement gives access only to the quick_array_sort entity and renames it to
SortArray at the same time.

1.6.2 IMPLICIT Declaration

A simple implicit part (implicit-part) consists of an IMPLICIT statement but its general
syntax is as the following:

IMPLICIT implicit-spec-list

The type of a named data object can be declared explicitly by a type declaration
statement in a declaration construct (declaration-construct) or implicitly using the
IMPLICIT statement in the implicit part. In the latter case, the type will be assigned to
the data object based on the first letter of its name and when used, it applies to every
named variable and named constant. If no implicit statements exist then the default
implicit mapping will be used, that is every entity starting with one of the letters I,



46 1 Fortran – Advanced Features

J, K, L, M or N is a default integer type and entities starting with all other letters are
considered of default real type.

Although it is possible to change this default setting, the approach itself is dan-
gerous because any careless mistypes will be considered as a new variable based
on its first letter. This causes the program to run without any warnings. To avoid
the complications of debugging such programs, the best way is to declare the types
explicitly and disable the implicit typing facility by replacing implicit-spec-list with
the NONE keyword:

1 IMPLICIT NONE

By this way, the compiler will detect and report anymistyped name as a namewithout
a type and will ask for the explicit type declaration of that data entity. This statement
must be used before any PARAMETER attributes and no other implicit statements are
allowed to be used after that.

1.6.3 Declaration Construct

The declaration construct (declaration-construct) is the part in which, explicit declara-
tions of types is carried out whereas for an implicit approach, an implicit declaration
is done in the implicit part. In the declaration part of a program unit, the following
items can be declared:

• derived type definitions (Sect. 1.7.7),
• interface block (Sect. 1.8.8),
• type declaration statements (Sect. 1.7),
• specification statements (Sect. 1.8).

First of all, derived types are defined because they may be used in the following
interface using the IMPORT statement. Afterwards, variables are declared using type-
declaration statements and the specific attributes are added using specification state-
ments. There are two main approaches to declare an entity equipped with attributes:

• the first approach is the most concise one: it uses the attributes together with
the type declaration statement, called an entity-oriented declaration. In this way,
the focus is on the entity itself and the combination of attributes are lined one
after another, making the whole construct easy to understand. The syntax of this
approach is as the following:

declaration-type-spec [ [, attribute-spec] …::] entity-declaration-list

The declaration type specification (declaration-type-spec) is the type of the entity
and the attribute specification (attribute-spec) is the corresponding attribute.

• In the second approach, initially the type is declared and then, the attribute
statements are added in separate statements called specification statements. The
approach is called an attribute-oriented declaration. It is inherited from earlier
versions of Fortran and emphasizes attributes because separate lines of code are
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dedicated to them. The syntax of this approach depends on the used attribute but
generally is shown as:

specification-statement

Although a mixture of these two approaches can be used, the entity-oriented one
is preferred in this book. Note that no matter which approach is selected, each
attribute must be assigned just once.

In conclusion, a simple declaration construct has the following syntax:

declaration-type-spec [ [, attribute-spec] …::] entity-declaration-list
specification-statement
derived type-definition
interface-block

This syntax consists of a type declaration with optional attributes and/or specification
statements plus derived type declarations (derived type-definition) and an interface
block (interface-block).

1.6.4 Association and Scope

Association, scope and definition are interrelated conceptswhich come upwhile deal-
ing with entities within nested program units. As mentioned earlier, a program unit
may contain several other program units. Each one of them with multiple constructs
while interactions exist among them. These relations mostly consist of referencing
several named entities such as subprograms and variables within their corresponding
scope. The scope of an entity is the domain where it is accessible or to be more
precise if it is defined then it is accessible. Named entities, e.g. variables, named
constants, subprograms and modules, as well as some unnamed entities, e.g. labels
and file unit numbers, have a scope.

The scope is a limiting capability which enables several program units work
together but with independent data environments. The scope of an entity can vary in
size and can be as big as the whole program or as small as a part of a statement.

A global entity is one that can be accessed throughout the whole program,
e.g. name of an external subprogram whereas a local entity can be accessed within
the scope of a subprogram, e.g. a statement label. There are many minuscule points
regarding the concept of scope and hence, only the essential ones are described here
with the help of examples. To begin with, consider the following example:

1 PROGRAM Main
2 INTEGER : : a
3

4 . . .
5 CONTAINS
6

7 SUBROUTINE MySub
8 INTEGER : : b
9 . . .
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10 END SUBROUTINE MySub
11 END PROGRAM Main

In this example, the variable a is a global onewhich is accessible in thewhole program
as well as within the subroutineMySub. On the other hand, b is a local variable which
is only accessible within the internal subroutine but cannot be accessed from the
main program. This is called access through a host association. If another variable
is declared as a local one within the internal subroutine then the access to the global
variable will be canceled. For example in the following code, the variable a within
the internal subroutine is a local variable and it differs from the global one in the
main program, i.e. the value 4 is not accessible because of the cancellation of host
association:

1 PROGRAM Main
2 INTEGER : : a
3

4 a = 4
5 . . .
6 CONTAINS
7

8 SUBROUTINE MySub
9 INTEGER : : a

10 . . .
11 END SUBROUTINE MySub
12 END PROGRAM Main

For the case of an external subprogram, the host association is not valid anymore and
hence, the data entities will be accessed via argument association, as the following:

1 PROGRAM Main
2 INTEGER : : a
3 . . .
4 Ca l l MySub ( a )
5 END PROGRAM Main
6

7 SUBROUTINE MySub ( anArg )
8 INTEGER , INTENT ( IN ) : : anArg
9 . . .

10 END SUBROUTINE MySub

Upon the execution of the external subroutine, the variable a will be passed to the
subroutine as a local variable named anArg. In this example, the value of the variable
is passed to the external subroutine as the dummy argument anArg just for reading
purposes. If it is needed to change the value of the actual argument a, then the
following code must be used:

1 PROGRAM Main
2 INTEGER : : a
3 . . .
4 Ca l l MySub ( a )
5 END PROGRAM Main
6

7 SUBROUTINE MySub ( anArg )
8 INTEGER , INTENT ( INOUT ) : : anArg
9 . . .

10 END SUBROUTINE MySub

This code just differs in the INTENT attribute of the dummy argument. Another way
of making variables global is using a common block, for instance:
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1 PROGRAM Main
2 INTEGER : : a
3 COMMON / myblock / a
4 . . .
5 Ca l l MySub
6 END PROGRAM Main
7

8 SUBROUTINE MySub
9 INTEGER : : a

10 COMMON / myblock / a
11 . . .
12 END SUBROUTINE MySub

The variable a is declared as an integer in the myblock common block and considered
as a global variable. This kind of access is granted via storage association. Using
common blocks is old school and it is not recommended; better alternatives are
argument association or use association. Use association is done via modules, for
instance:

1 MODULE MyData
2 INTEGER : : a
3 END MODULE MyData
4

5 PROGRAM Main
6 Use MyData
7 . . .
8 Ca l l MySub
9 END PROGRAM Main

10

11 SUBROUTINE MySub
12 Use MyData
13 . . .
14 END SUBROUTINE MySub

This is a much better approach when compared to the use of common blocks. Note
that through a use association the integer is made available for the main program. If
an internal subprogram existed then it could access the same variable via the host
association such as in the following example. Both MySub and MyFunc internal sub-
programs have access to the integer a which is provided by means of use association
to the main program and then by host association to the internal subprograms:

1 MODULE MyData
2 INTEGER : : a
3 END MODULE MyData
4

5 PROGRAM Main
6 Use MyData
7 . . .
8 CONTAINS
9 SUBROUTINE MySub

10 . . .
11 END SUBROUTINE MySub
12

13 FUNCTION MyFunc
14 . . .
15 END FUNCTION MyFunc
16 END PROGRAM Main

Generally, a host can be either a main program, an external program or a module. In
the following example, the host is the module and the integer is accessible to MySub
and MyFunc module subprograms through host association:
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1 MODULE MyData
2 INTEGER : : a
3

4 CONTAINS
5 SUBROUTINE MySub
6 . . .
7 END SUBROUTINE MySub
8

9 FUNCTION MyFunc
10 . . .
11 END FUNCTION MyFunc
12 END MODULE MyData

It is worth mentioning that although local variables of internal subprograms are not
accessible to each other but the internal subprograms themselves can be invoked by
each other. In the following example, for instance, the variable a is not accessible
within the MyFunc function but the subroutine itself can be invoked:

1 MODULE MyData
2

3 CONTAINS
4 SUBROUTINE MySub
5 INTEGER : : a
6 . . .
7 END SUBROUTINE MySub
8

9 FUNCTION MyFunc
10 CALL MySub
11 END FUNCTION MyFunc
12 END MODULE MyData

While based on the encapsulation concept, the programmer’s intent should be modu-
larizing, i.e. breaking down the whole program to independent chunks. On the other
hand, it is required for these portions to interact which each other. The interaction
is mainly exchanging data entities which takes place through associations. This has
been demonstrated in the earlier examples. Hence, it can be concluded that associa-
tions are working against the limitations of the scope.

Fromanother point of view, the concept of scope permits the user to incorporate the
same name for different entities in various parts of a program without any conflicts.
For example, local variables in different subprograms can have identical names but
different declarations, provided that they are not referring to the same variable.

In contrast, association is a means to use an entity in the same scope or other
scopes of the program with different names, i.e. while using common blocks, several
names can be used to refer to the same entity. Although these two concepts help the
programmer to use entities with desirable names, it is recommended to use mean-
ingful names. In addition, it is advised to avoid choosing similar or identical names
unless there exists a greater purpose behind this selection.

As mentioned earlier, the association mechanism is somehowworking against the
scopes. In other words, by means of association it is possible to remove the borders
between scopes. Therefore, it should be used with care and consideration to keep
faithful to the concept of data encapsulation.

Now, let us investigate various associationswhich are already introduced bymeans
of some examples. An association can occur in any of the following forms:
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• Name association establishes an association between names in different scoping
units with one of the following forms:

– Argument association is established between an actual argument located in the
scope of the subprogram reference and the dummy argument within the scope of
the subprogram. The association and dissociation of the argument is done upon
the entering and exiting the subprogram, respectively. An argument association
is present in every subprogram invocation. In the example previously provided
in Sect. 1.5.3, the external subroutine SumUp gained access to the variables of
another scope using an argument association.

– A subprogram or program can gain access to all or some of the public entities
of a module by means of a USE statement (more details in Sect. 1.6.1). This
association is a Use association. In this sort of association to resolve name
conflicts, a renaming capability of entities is provided with the ONLY statement.

– By means of a host association, the data environment of the host is made avail-
able to internal subprograms and derived type definitions within the host. How-
ever, there is no renaming capability. Therefore, a local entity overrides a host
association, namely for an entity which exists with the same name both in the
host and in the subprogram, the access to the entity in the host will be denied.
A host is a program unit which can contain the internal subprogram, i.e. a main
program, an external subprogram or a module.

• Pointer association is a dynamic association for a pointer during the execution of
the program. During this period, the association status and definition status of a
pointer can either be undefined, disassociated, associated or defined. Association
of a pointer is done either by a TARGET attribute or an ALLOCATE statement.

• Storage association occurs when several variables share the samememory storage
unit. In other words, the same data can be referenced using different names. This
can be done with EQUIVALENCE and COMMON statements.

• Sequence association is a special case of argument association which can apply to
characters and arrays, e.g. assumed shape arrays and assumed-length characters.

A program unit is made of several non-overlapping scoping units. For an entity, a
scoping unit is considered as one of the following:

• a program unit or subprogram excluding any scoping units in it, i.e. derived type
definitions and interface bodies,

• a subprogram interface body, excluding any scoping units in it, i.e. derived type
definitions, interface bodies and subprograms, or

• a derived type definition.

When it comes to scope, there exists many subtle points among which the followings
are mentionable:

• Labels have a local scope.
• I/O file unit numbers have a global scope.

A variable which is defined in the scope of a main program, module or subprogram
is called a local variable.
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1.7 Data Type Declaration

In Fortran terminology, every piece of data is called a data entity. A data entity is
either a data object, result of an expression or result of a function reference; called a
function result. A data object is either a variable or a constant. If a name is assigned
to the data, it is called a named data object. A data object can be static, i.e. it has
a fixed memory location, or dynamic, i.e. it does not have a fixed memory location.
The definition status of a data object depends on whether a value is assigned to it
or not: it is defined when a value is assigned otherwise the status is undefined. In
addition to the definition status, dynamic data objects have an additional allocation
status which can be either undefined, associated, or disassociated (Sect. 1.8.6).

Every data entity has a rank which defines if it is a scalar, i.e. a single value, or
an array, i.e. a collection of homogeneous values (Sect. 1.7.8).

A variable is a named data object with a variable definition status and/or allocation
status. During the program execution, a variable can be defined, undefined or even
redefined and take various acceptable values.

A constant is a syntactic notation of a mathematical constant value. Without a
name, it is called a literal constant, e.g. 3.14 but if a name is assigned, it is called a
named constant, e.g. PI. During the program execution, the value of a constant will
not change, i.e. the status of a constant is always defined. Figure 1.14 illustrates the
relation between the mentioned terms.

For instance, if one considers a variable named aRealNum then expressions like
2.0*aRealNum or .NOT. .TRUE. or a function result like 2**SQRT(5) are all considered
data entities; they are all representing a data or in simpler terms a value.

In addition to the reference types mentioned in Sects. 1.5.3 and 1.6.1 such as
function referencing, there is another type called data object referencing which has
the appearance of a data object designator. Named scalars and named arrays are
referenced by a name where subobjects are referenced using an object designator.
A subobject is a portion of a data object that can be referenced independently of
any other portion. A data object may consist of many subobjects. Derived types
and arrays consist of subobjects which can be accessed by means of one or more
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Data Entity Expression
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Fig. 1.14 Data entities in Fortran
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qualifiers following the parent object name, e.g. anArray(2:5), aType%node or aType-
dArray(2)%node (Sects. 1.7.7 and 1.7.8).

But prior to any valid data object references, it is required to prepare a proper data
environment. A data environment is set up by choosing the right properties for data
objects. In a more technical way, a data environment is where the type declaration
of data objects takes place. Type declaration is selecting the type for data objects.
Fortran uses data types to determine how to deal with data entities engaged in
various operations.

There are two types of data objects: intrinsic and derived types. An intrinsic
data type is a standard built-in Fortran type which can be either an INTEGER, a
REAL, a COMPLEX, a LOGICAL, or a CHARACTER type. In contrast, a derived data
type is a user defined combination of the intrinsic types, i.e. it is derived from the
intrinsic types. By defining the type of a data object, the following properties will be
determined:

1. a type name, e.g. INTEGER,
2. a set of valid values, e.g. {.TRUE., .FALSE.},
3. constant forms to assign a valid value, e.g. 0.012D-12,
4. type parameters to fine-tune the properties, e.g. KIND = 4, and
5. valid operations and procedures to manipulate the values, e.g. 120 + 11.

As mentioned earlier, there are no reserved words in Fortran but when it comes
to type names, the story is different. Intrinsic data type names cannot be used as the
name of a derived type. Another exception is DOUBLEPRECISION which cannot be
used either.

In any data environment a variable can be declared using a declaration statement
by means of the following syntax:

decl-type-spec [type-parameter-selector] [[, attr-spec] …:: ] entity-decl-list]

In this general form of a declaration statement, a type attribute specifier (attr-spec)
is used to select an appropriate attribute which will be discussed in more detail in
Sect. 1.8. A type parameter selector ([type-parameter-selector]) is used to select the
kind or length parameter which will be discussed in Sect. 1.7.1. A declaration type
specifier (decl-type-spec) is a name which is used for a specific type, either intrinsic
(intrinsic-type-spec) or derived type (derived type-spec), e.g. INTEGER or TYPE. A list
of entity names (entity-decl-list) consists of objects (separated by commas) with the
mentioned attributes or function names. For instance, in the following example the
type of the function result for a function named calcFrequency is declared to be an
integer:

1 INTEGER : : ca lcFrequency

In the following example the type of a list of objects is declared:
1 INTEGER , DIMENSION(10 ) : : myInt1 , myInt2

Two arrays of 10 integer elements are declared with the variable names of myInt1
and myInt2. The type specifier is INTEGER with the DIMENSION attribute. These
variables are declared but still undefined because no values have been assigned to
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them. Initializing is the act of assigning a value to a variable or a named constant in
the declaration construct which is optional for a variable but mandatory for a named
constant. It is also possible to assign an attribute to a type declaration to make it
more specialized: for instance, to convert the declaration of a real type variable to an
array of real type numbers or to a named constant, among others (Sect. 1.8). But the
simplest way to initialize a variable is assigning a value. Whenever a valid value is
assigned to the variable using an assignment statement the status will be changed to
defined. The syntax for a simple scalar assignment is as follows:

variablename = expr

In the following example, a variable named r1 is declared of type REAL and then, a
value of 0.001 is assigned to it and changes its status from undefined to defined:

1 REAL : : r1
2

3 r1 = 0.001

If the variable is of a compound type, such as an array or a structure, then only when
every subobject of that compound variable is defined, the whole variable will be
considered as a defined variable. The same concept is true for a character variable.
For instance in the following code, variables named c and string2 are undefined
because no values are assigned neither to c and nor to the last character of string2:

1 REAL : : a , b , c
2 CHARACTER(LEN = 5) : : s t r i n g1 , s t r i n g 2
3

4 a = 1.0
5 b = 2∗a
6

7 s t r i n g 1 = ’ abcde ’
8 s t r i n g 2 = s t r i n g 1 ( 1 : 4 )

1.7.1 Type Parameters

Each intrinsic type can only accept certain values, which are processor-dependent for
INTEGER, REAL and CHARACTER types. A type parameter is used to parameterize
a data object. Namely, it is used to select between different representations of a type
and thus, different valid values. For instance, in the case of an integer type, it is
possible to select between different ranges of integers or for a logical type to select
a packed logical representation and save memory.

There are two type parameters in Fortran: kind which can be used for every
intrinsic type and length which can be used for the character type to specify its size.

There are a few intrinsic functions which help us dealing with kinds. But before
investigating the kinds more deeply, it is a very good idea to understand what is
going on in the memory while dealing with data objects and how approximations are
introduced. These topics will be investigated in the following subsection and after
that the intrinsic types will be elaborated in more detail.
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1.7.2 Data Representation

Using high-level programming languages to handle data objects, obscures the under-
lying in-progress processes. Nevertheless, catching a glimpse of how the compiler
handles the raw data will improve a programmer’s understanding of data handling
and the errors involved. The higher the level of a programming language the more
abstraction is involved, i.e. more details are hidden.

In reality at the lowest level, the computer memory consists of cells which store
either 0 or 1 bits representing a binary system. Memory cells are usually grouped
into 2, 4, 8, 16, 32, 64 and 128 bits which are used to store any sort of data. A n-bit
storage can hold 2n unique combination of bits, e.g. a 4-bit block of memory can
generate the 24 = 16 combinations (see Table 1.11).

Each one of these combinations can be used to represent any type of data; 16
patterns to represent 16 characters, 16 different country names, numbers 200–216
etc. It can be concluded that the computer is dealing with on/off currents, making
bit patterns in one level where on the higher levels, these patterns of signals can be
interpreted in any way required by a user. The interpretation of binary patterns is
called data representation. Due to the fact that a fixed number of bits is used to form
a pattern and make up its storage unit, the number of representable combinations is
limited.

Acomputer treats andprocesses numbers in twomajor groups:fixedpoint numbers
(i.e. integers) and floating point numbers (i.e. real numbers). In this context, the term
radix point is used to separate the fractional part of a number from its integer part.
In other words, radix point is a more general concept compared to decimal point; the
former is not only used for a decimal number but it is also used for bases other than
ten. In a fixed point number, the radix point is always after the least-significant digit
whereas in a floating point number the radix point can be positioned anywhere.

A fixed number of bits can be designated for an integer number and based on
the interpretation of the patterns, two types of integers can be represented: unsigned
integers which only represent positive integers plus zero, and signed integers which
represent positive and negative integers plus zero. There are three schemes to repre-
sent signed integers: sign-magnitude representation, 1’s complement representation
and 2’s complement representation.

The value of an unsigned integer is simply the converted value from binary to
decimal, i.e. the unsigned decimal integer is just equal to the magnitude of the binary
pattern. Hence, an unsigned n-bit integer can represent only positive numbers from
0 to 2n − 1. Unsigned integers are not a part of standard Fortran.

Table 1.11 Combinations of a 4-bit block of memory

Pattern 1 2 3 4 5 6 7 8

Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Pattern 9 10 11 12 13 14 15 16

Binary value 1000 1001 1010 1011 1100 1101 1110 1111
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Table 1.12 Comparison of different integer representation schemes

Representation scheme n-bit covering range Summary

Unsigned [0, 2n − 1] Only zero and positive numbers
are presentable

Sign-magnitude [−(2n−1 − 1), 0]⋃[0, 2n−1 − 1] Zero is defined twice, separate
processes are required for positive
and negative integers

1’s complement [−(2n−1 − 1), 0]⋃[0, 2n−1 − 1] Zero is defined twice, positive and
negative integers are processed
separately

2’s complement [−(2n−1), 0)
⋃[0, 2n−1 − 1] One representation for zero,

positive and negative integers are
treated together in addition and
subtraction. Subtraction can be
carried out using the addition logic

On the contrary, the value of a signed integer can be interpreted differently based
on which scheme is used. In all schemes, one of the storage bits is required to be used
to indicate the sign of the number. This bit is called a sign bit. In a binary number,
the bit position with the greatest value is the left-most bit which is also called the
most significant bit (MSB) or the high-order bit. The MSB is used as the sign bit
of a binary number; representing positive values with 0 and negative values with 1.
Hence, in a n-bit signed integer, only the remaining (n − 1)-bits are used to store
the magnitude of the number and the nth-bit is used to hold the sign. The scheme
determines how this (n − 1)-bit part is evaluated:

• In the signed magnitude method, the absolute value of both positive and negative
integers is the value of the remaining (n − 1)-bit part which is directly converted
to decimal.

• In the 1’s complement method, again for positive numbers the remaining bits are
converted to decimal but the absolute value of negative integers is equal to the
magnitude of complement of the remaining bits. Complement of 0 is 1 and vice
versa, e.g. complement of 11001010b is 00110101b.

• In the 2’s complement method, again for positive numbers the remaining bits are
converted to decimal but the absolute value of negative integers is equal to the
magnitude of complement of the remaining bits plus one.

The covering range of these schemes is summarized in Table 1.12. According to the
table, the 2’s complement method manages to extend the representable range by one
extra negative number. In addition, no extra work is required to add and subtract
numbers in this scheme. Because of these efficiencies, Fortran uses this scheme to
handle integer numbers.

As an example, the comparative interpretation of binary patterns in different
schemes using 8 bits of memory storage is illustrated in Fig. 1.15. In this figure,
binary numbers are increased from top to bottom. Notice if you subtract the first
number which is zero by 1, the generated binary pattern will be 11111111b which
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Unsigned Sign-magnitude 1’s complement 2’s complement 8-bit binary

+0 +0 +0 +0 0000 0000
+1 +1 +1 +1 0000 0001
+2 +2 +2 +2 0000 0010
. . . . . . . . . . . . . . .

+125 +125 +125 +125 0111 1101
+126 +126 +126 +126 0111 1110
+127 +127 +127 +127 0111 1111

+128 -0 -127 -128 1000 0000
+129 -1 -126 -127 1000 0001
+130 -2 -125 -126 1000 0010
. . . . . . . . . . . . . . .

+253 -125 -2 -3 1111 1101
+254 -126 -1 -2 1111 1110
+255 -127 -0 -1 1111 1111
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Fig. 1.15 Decoding binary patterns in different schemes

corresponds to –1 only in 2’s complement method. In addition, increasing the largest
positive number, i.e. 127, will result in a negative number in complement represen-
tation and minus zero in sign-magnitude method. This indicates that the range of a
signed integer must be considered prior to use because out-of-range values may lead
to absurd results.

In Fortran, the 2’s complement method is used to deal with signed integer
numbers and it is incorporated using amathematical representationwith the following
general form:

i = s
q−1∑

k = 0

wkr
k, (1.1)

where

i is the integer value
s sign, +1 or −1
r is the base, an integer greater than 1
q is the number of digits, an integer greater than 0
wk is the kth digit, an integer 0 ≤ wk < r

Note that this formula is basedon the least significant bit (LSB) numbering scheme
in which the numbering of bits starts from the right-hand side, i.e. the least significant
bit is the rightmost one. This model will cover a total of rq integer numbers within
the range [−rq − 1, rq − 1]. In the binary computer architecture, the base is r = 2
and thus, the only usable digit iswk = 1. Finally every integer can be indicated using
the following form:

i = ±
q−1∑

k = 0

wk2
k = ±(wq−1wq−2 . . . w2w1)b. (1.2)
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Depending on how big the dedicated memory to an integer is, i.e. q, the range will be
bigger. For example, if the storage unit is 1 byte then q = 8 bits or digits in binary-
base will be used for an integer. Therefore, 28 = 256 integer numbers (including
zero) can be shown with this amount of memory. Because Fortran implements the
2’s complement method, the range of [−128, 127] will be used.

Although fixed point numbers, i.e. integers, are quite simple, they are ample to
manage whole numbers. In contrast, the representation model and the corresponding
calculations of the floating point numbers, i.e. real numbers, are not that simple.
Hence, in order to be efficient in terms of computational costs, choosing a real
number should be done just when an integer cannot manage the same task.

It is worth reminding that there is an infinite number of real numbers in a range.
Because a limited amount of storage memory is designated to the computer rep-
resentation of the real numbers, it is not possible to represent every real number.
Consequently, the unrepresentable numbers are approximated to the nearest pre-
sentable number and hence, during the process they suffer from loss of precision.
However, the floating point schememanages to represent several very small and very
large numbers in a range but obviously, not all existing real numbers.

A floating point representation of a real number has the form of m × re in which,
m is a fractional number calledmantissa, significant or fraction, e an integer number
called exponent or characteristic and b is the radix or base. Although the common
base for a floating point representation in a computer is 2, normal mathematical
problems use the base ten or the decimal system. For instance consider the number
0.12 × 10−3 in a decimal system then 0.12 will be the mantissa and −3 will be the
exponent of the floating point representation and the base will be ten.

In a real number, a single number can be written with different fractional parts
and exponents depending on the number of its significant digits. From the point of
engineering, significant digits or significant figures of a number are the meaningful
digits that can be used with confidence. For example, by using a millimeter ruler a
number such as 12mm can be read. This reading has two significant figures and reli-
able enough. It is possible to say that the reading is approximately close to 12.5mm.
However, the last digit is an approximation and we still have just two significant
figures.

Leading zeros in a number are not significant. For instance, 0.012m still has two
significant figures but changing the unit may cause problems concerning the identi-
fication of the significant figures, i.e. the trailing zeros are usually misleading. For
example, 12000µm may have two, three, four or even five significant numbers. In
order to avoid this ambiguity and preserve the accuracy, using a scientific notation3

is advised, since 12 × 103 µm, 1.2 × 10−2 cm and 1.2 × 10−5 km all have two sig-
nificant figures but represented in different units. More uniformity can be achieved
by using the normalized scientific notation which is writing the fractional part with

3In engineering applications, it is common practice to keep the exponent a factor of 3 and use SI
prefixes to facilitate reading. This is called an engineering notation for example, 12 × 10−3 m is
easier to be read and understood as ‘twelve millimeters’ instead of 1.2 × 10−4 which is read as
‘one-point-two times ten-to-the-negative-four meters’.
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Fig. 1.16 Layout of a binary
floating point representation

Sign Exponent Fraction

1 bit w bits t = p − 1 bits

k = w + t + 1 bits

one non-zero digit before the decimal point, e.g. 1.2 × 10−2 cm. This concept holds
for radices other than decimal, i.e. a normalized scientific notation in base b would
be in the following form:

m × be provided that 1 ≤ m < b

For instance, a normalized scientific notation in binary will look like 1.01b × 211b.
A real number is encoded to its binary pattern and then stored in memory using

a binary floating point representation. Hence, the radix is always equal to two and
the fraction and exponent parts are calculated for every number. As illustrated in
Fig. 1.16, the designated memory for a floating point representation is comprised of
three fields:

1. the first field is just one single bit which is the sign bit of the real number; similar
to the integer representation, 1 indicates a negative number and zero is used for
a positive one.

2. The second field is w bits long and is an unsigned integer which represents the
exponent as a power of two. For a normalized number the exponent is stored in
a biased mode (E) but for a denormalized number an unbiased exponent (e) is
used.

3. The last field holds t bits of the fraction which are the significant digits of the
number.

Obviously, the range and precision of representable real numbers using the floating
point representation is highly dependent on the size of the dedicated memory which
is called the encoding length (k) with the usual values of 32, 64 and 128 bits. p is
the number of significant digits of a normalized number which is equal to t + 1; one
bit more than the actual bits used for storage. For real types, Fortran uses a rather
complicated representation model in which a real number such as x can be modeled
by the following:

x =
(

s
p∑

k = 1

fkb
−k

)

be = mbe, (1.3)

where

x is a real value
s sign, +1 or −1
b is the base (or radix), an integer greater than 1
e is an integer, emin ≤ e ≤ emax
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+inf−inf
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2×Max. rounding error Max. chopping errorMachine Epsilon

Fig. 1.17 Schematic map of real numbers in a floating point representation

p is the number of mantissa digits, an integer greater than 0
fk is the kth digit, an integer 0 ≤ fk < b

normally f1 �= 0 but it can be zero only if e and all the fk are zero

Note that this formula is based on the most significant bit numbering scheme in
which the numbering of bits starts from the left-hand side, i.e. numbering the bits
starts from themost significant bit.With the introducedmodel, the common approach
is using a binary base; the radix is equal to 2:

x = ±(0. f1 f2 f3 . . . f p−2 f p−1 f p)b × 2e = m2e. (1.4)

Although the representation model formulates the main idea of how numbers are
stored in a floating point format, there is more subtlety to it. Using the representation
model and considering the restrictions made by a limited encoding length, numbers
fall into various ranges. A map of these ranges is illustrated in Fig. 1.17. In this map,
vertical lines (tickmarks) are normalized numberswhich are exactly representable by
themodel.All normalized numbers are placed in a range from the smallest normalized
number (Tiny) to the largest normalized number (Huge). When a number is exactly
equal to a normalized number which is a rather rare case, no approximation occurs.
However, usually the floating point number is placed between normalized numbers
and therefore, an error is introduced.

Generally, because the range and precision of the representable numbers are lim-
ited, several cases may arise while dealing with arithmetic operations. These special
cases are called exceptions. The possible exception categories are listed in Table 1.13.
Based on the range which the number fells into, approximations and/or exceptions
may be introduced while storing. In this table, w is the width of the exponent field.
An exception may also be raised due to the lack of required precision for a number,
namely there are not enough digits to represent a very precise number. Inevitably, this
leads to rounding the number; this case is called an inexact exception. This is a very
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Table 1.13 Categories of numbers in floating point representation

Number (x) Range Sign Exponent Fraction

± Normalized +Tiny < x <+Huge or –Huge
< x <–Tiny

± 1 < e < 2w − 2 Any number

± Denormalized –Tiny < x <+Tiny excluding zero ± 0 Any number

± 0 Positive/negative zero ± 0 All zeros

± INF +Huge < x or x <–Huge ± 2w − 1 All zeros

NaN Not a number ± 2w − 1 Some one bits

common exception since just at the first step of using a model as a representative of a
real number, errors are being introduced because quantities like π = 3.14159265 . . .
are in need of infinite significant digits to be represented accurately which is not
possible nor practical with the limited available resources. Consequently, some sig-
nificant digits must be omitted and an approximation will be introduced from there
on.

This approximation can take place in two ways: chopping, which is just omitting
the extra significant digits and rounding which is just rounding-off the number to
the nearest representable number (ticks of the map). Chopping is a faster way for
the processor but the results are biased whereas rounding involves less error and
less bias because positive and negative errors may occur and cancel each other. The
shaded areas in Fig. 1.17 illustrate the maximum error possible for these types of
approximations. The corresponding exception for these approximations is inexact
exception which happens all the time during evaluation of expressions in Fortran.

A famous special case of inexact exceptions is named themachine epsilon (Epsilon)
which is a very small number and negligible in comparison to 1 or in other words,
it is the maximum chopping error that can happen around 1. The maximum value of
the chopping is two times the maximum value of rounding. The machine epsilon can
be evaluated using the following formula:

Epsilon or machine epsilon: ε = b1−p (1.5)

In this formula, b is the base and p is the number of significant digits of the fraction
part of the floating point number. Alternatively, the following code can calculate the
machine epsilon in Fortran:

1 REAL (KIND = 4) : : r4
2 LOGICAL : : n o t D i f f e r e n t
3

4 r4 = 1 .
5 n o t D i f f e r e n t = . FALSE .
6 DO WHILE ( n o t D i f f e r e n t .EQV. . FALSE . )
7 r4 = r4 / 2 .
8 IF ( r4 +1. <= 1 . ) n o t D i f f e r e n t = .TRUE.
9 END DO

10 P r i n t ∗ , ’ Machine Eps i l on = ’ , r4 ∗2 .
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In the map considered in Fig. 1.17, zero is placed in the middle with two representa-
tions: positive and negative. While moving from zero to either extremities, the den-
sity of tick marks decreases, namely the density of normalized numbers decreases
as they increase in magnitude. The numbers beyond the maximum representable
number cannot be presented, and are considered as infinity (±inf) in both negative
and positive directions. This exception is called an overflow.

On the other hand, the numbers smaller than the±Tiny threshold, lose one of their
significant digits and are called denormalized numbers; the occurred exception is an
underflow.

An invalid exception is used for values that are not mathematically presentable,
i.e. not a number (NaN). Note that for the especial case of dividing a number by zero,
the exception divided-by-zero will occur (Table1.14).

In Fortran, a representation model can be selected using the KIND parameter
which must be set to a processor-dependent value; usually a number which is equal
to the storage size of the kind in bytes. The KIND parameter for each data type will
be discussed in Sect. 1.7.3.

In Table 1.15 real kinds used in Intel® Fortran are listed with the description
of each kind, encoding length (k), significant digits in binary format (p), number
of bits used for the exponent (w), the smallest number compared to 1 (epsilon),
minimum and maximum value of the exponent for a normalized number (emin and
emax, respectively).

In order to understand how a number is stored using the introduced representation
model, let us consider a floating point numberwith a 32-bitmemory storage (k = 32).
The sign bit of the pattern is readily understood; it is the sign of thewhole number. The
fraction part holds the significant digits of the number using p bits for normalized
number and p − 1 bits for denormalized numbers, i.e. a loss of precision occurs.
Denormalized numbers are necessary because it is not possible to present zero with
a normalized pattern. And finally the exponent part is stored in a biased format for
normalized numbers. The bias is a constant used to make the exponent non-negative.
For the case of 32-bit floating point numbers, the bias is equal to 127 for normalized
numbers. Based on the category of the number, one of the following cases will
happen:

Table 1.14 List of exceptions regarding floating point numbers in Fortran

Exception Reason Examples

Invalid No mathematical value NaN 0.0
0.0 , 0.0

0.0 or Inf−1

Overflow Numbers larger than Huge Huge×Huge

Divided-by-zero Division of a non-zero value
by zero

1.0
0.0

Underflow Numbers between –Tiny and
−0 or +0 and +Tiny

Tiny/0.2

Inexact Is in the range but between the
ticks as in Fig. 1.17

(1.0 + 2−40)b in Real*4
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Table 1.15 Models for real numbers in Fortran

Kind Storage
memory
(k)

Digits (p) Exponent
width (w)

Common
name

Epsilon emin emax

4 32 bits 24 bits 8 bits Single
precision

1.192 . . . × 10−7 –126 +127

8 64 bits 53 bits 11 bits Double
precision

2.220 . . . × 10−16 –1022 +1023

16 128 bits 113 bits 15 bits Quad
precision

1.925 . . . × 10−34 –16382 +16383

1. Normalized numbers are usually encountered in normal arithmetic calculations
and can acquire either a positive or negative sign with a range enclosed with Tiny
and Huge values.

a. Fraction: Considering the mathematical model and the fact that in normal-
ized numbers f1 is always equal to 1, there is no point in storing it. In other
words, normalized numbers always have an implicit 1 before the radix point
and therefore, storing this implicit number is trivial. By avoiding the storage
of this digit, an extra bit is gained to store the fraction with more significant
digits. For instance, the 32-bit single-precision real number occupies 32 bits
of storage of which 1 bit is used as the sign bit, 8 bits are used to store the
exponent and the rest, namely t = 32 − 1 − 8 = 23 bits are used for the
mantissa. Since one bit is always implied, practically p = 24 bits are being
used to represent the fractional part. The result is acquiring more precision.

b. Exponent: Because it is required for a normalized number to represent very
large numbers as well as very small ones, the exponent must cover both neg-
ative and positive numbers. For this, the exponent for a normalized number
is stored in a biased format.

2. Zero is stored in both negative and positive value.

a. Fraction: Filled with zero bits.
b. Exponent: Filled with zero bits.

3. Denormalized numbers cover the range slightly less than the +Tiny to slightly
larger than zero and therefore, there is a small gap between them. The same holds
for the negative side. These numbers are very small numbers which have less
accuracy than the normalized ones.

a. Fraction: There is no implicit 1 in the fraction part and instead an implicit
zero is used; during the process one significant digit is lost.

b. Exponent: For a denormalized number the exponent is always zero but it will
be evaluated as −126 for 32-bit real numbers to represent small numbers.
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32-bit floating point binary Equivalent decimal

1 0000 0000 000 0000 0000 0000 0000 0000Negative zero = −0
0 0000 0000 000 0000 0000 0000 0000 0000Positive zero = +0

0 0000 0000 000 0000 0000 0000 0000 0001Smallest denormalized = ±2−126 × 2−23

= ±2−149 ≈ ±1.4013E − 45

0 0000 0000 111 1111 1111 1111 1111 1111Largest denormalized = ±2−126 × (1 − 2−23)

≈ ±1.17549421E − 38

0 0000 0001 000 0000 0000 0000 0000 0000Smallest normalized (Tiny) = ±21−127 × 20

≈ ±1.175494351E − 38

0 1111 1110 111 1111 1111 1111 1111 1111Largest normalized (Huge) = ±2254−127 × (2 − 2−23)

≈ ±3.402823467E + 38

0 1111 1111 000 0000 0000 0000 0000 0000Positive infinity (+inf) = +2255−127 × (20)

= +3.402823669E + 38 ≈ +inf

1 1111 1111 000 0000 0000 0000 0000 0000Negative infinity (-inf) = −2255−127 × (20)

= −3.402823669E + 38 ≈ −inf

0 1111 1111 000 0000 0000 0000 0000 0001Smallest not a number (NaN) = ±2128 × (1 + 2−23)

= ±3.402824075E + 38 ≈ NaN

0 1111 1111 111 1111 1111 1111 1111 1111Largest not a number (NaN) = ±2128 × (2 − 2−23)

= ±6.805646934E + 38 ≈ NaN

Fig. 1.18 Decoding floating point binary patterns to decimal equivalents

4. Infinity can be either positive or negative and it is a representative of very large
numbers.

a. Fraction: Filled with zero.
b. Exponent: Filled with one.

5. Not-a-Number (NaN) is a representative of non-mathematical entities.

a. Fraction: a non-zero value.
b. Exponent: Filled with one.

It is worth mentioning that some processors can distinguish between a negative
and positive zero but in Fortran both of these zeros are treated equally in relational
expressions. Anyway, if it is required to detect the sign, the Sign intrinsic function
may be used. The aforementioned categories, their border values for a 32-bit floating
point representation, and the corresponding decoding are all illustrated in Fig. 1.18.

Generally, there are intrinsic functions by which various values regarding a repre-
sentation model can be obtained; a list of these functions and the corresponding short
description are given in Table 1.16. The first column is the name of the function with
the argument x, the second column is a brief description of the result value of the
function and finally the third column is the type of argument x. These functions are
important because they will provide us with values which determine the precision,
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Table 1.16 Intrinsic functions for numeric inquiries of representation models in Fortran

Function Result of the function Type of argument x

Kind (x) Kind parameter Real/Integer

Digits (x) Number of significant digits of the mantissa,
p for real and q for integer

Integer/Real/Complex

Epsilon (x) Negligible value relative to 1, (b1−p) Real

Tiny (x) Smallest positive number, (bemin−1) Real

Huge (x) Largest positive number representable by the
model, ((1 − b−p)bemax or rq − 1)

Real/Integer

MaxExponent (x) Maximum value for model exponent, (emax) Real

MinExponent (x) Minimum value for model exponent, (emin) Real

Precision (x) Equivalent decimal precision in the model,
(int ((p − 1) log10(b) + k); k = 1 if b is an
integral power of 10 otherwise k = 0

Real/complex

Radix (x) Base of the model, b for real and r for integer Real/Integer

Range (x) Decimal exponent range of the model,
int(log10(huge)) for integers,
int (min(log10(huge),−log10(tiny) for reals

Integer/Real/Complex

Exponent (x) Exponent of a real value Real

Fraction (x) Fractional part of a real value Real

Sizeof (x) Returns the size of occupied memory by the
variable x in bytes

Any type

accuracy and range for a type with a specific kind. For instance, Huge (x) is the largest
positive number that a variable of type x can contain.

In conclusion, not everything is covered here on floating point representation
and for a meticulous eye, there are more points to understand. However, a good
description is presented on how a real number is dealt within a digital computer. Note
that especially in releases before Fortran 95, handling the mentioned exceptions is
not supported. Hence, the acquired knowledge will be helpful when programming.
For more details on exception handling and floating point representation, one may
refer to [16].

1.7.3 Intrinsic Data Types

In the previous subsection, the internal representation of integer and real numbers
were investigated to obtain a better understanding of the background of data manip-
ulation. This introduction also makes the selection of the appropriate type parameter
easier. In this subsection, declaring the types and their type parameters within For-
tran will be introduced.
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Fortran provides five default types and their proper operations; called intrinsic
types. The first step of declaring a data entity is declaring the data type and thus,
extra attributes can be assigned to it. Intrinsic data types consist of numeric types,
i.e. integer (INTEGER), real (REAL) and complex, (COMPLEX) aswell as non-numeric
types, i.e. character (CHARACTER) and logical (LOGICAL) type. Most of the time,
these intrinsic data types have satisfactory properties for a wide range of applications
and it is almost evident what type of data object must be selected in a specific context.
However, fine-tuning the properties can be done using type parameters. There are
two type parameters: kind and length type parameter.

A kind parameter is represented by a non-negative integer number by which a
specific representation of that type is selected. The number of kinds for an intrinsic
data type is compiler- and processor-dependent. A default kind valuewill be assigned
if no specific values are selected for a data object. Although usually the kind number
indicates the number of memory bytes used for the type, it is not a standardized fact.

Kinds were introduced to omit the problems of program portability because some-
times errors may be introduced to the calculations due to the fact that different
processors handle data differently in terms of precision. For example, when a pro-
gram containing a double precision floating point number declaration is transferred
to a machine which basically has a 64-bit architecture, a 128-bit representation will
be more than necessary and it would be a good idea to change the type back to an
ordinary real number. Such cases require changing the code in each transfer which
is not a practical approach.

For normal cases, the default kind will produce satisfactory results but it is nec-
essary to know how to select an appropriate kind when it is necessary, e.g. when a
wider range of numbers is required.

As stated before, the following syntax is used for a type declaration:

decl-type-spec [type-parameter-selector] [[, attr-spec] …:: ] entity-decl-list]

The type parameter selector ([type-parameter-selector]) is either a kind or a length
parameter selector. A length type parameter can only be used for a CHARACTER
type and will be introduced later. The syntax of a kind parameter selector is as the
following:

([KIND =] kind-value)

The kind specifier (KIND) assigns a positive integer (kind-value) representing the kind.
A Kind parameter can be assigned to a variable, function or a named constant. It is
also possible to assign kind to a literal constant using an underscore after the literal
constant followed by the kind value, i.e. the following syntax:

literal-constant_kind-value

For example 12.45_8 is a literal constant of kind 8.
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Table 1.17 Models for integer numbers in Fortran
Kind Storage

memory
Common name Lower bound Upper bound

1 8 bits – −128 127

2 16 bits Short −32, 768 32, 767

4 32 bits Long −2, 147, 483, 648 2, 147, 483, 647

8 64 bits Longlong −9, 223, 372, 036, 854, 775, 808 9, 223, 372, 036, 854, 775, 807

1.7.4 Numeric Data Types

There are four integer kinds in Fortran, each corresponding to a representation
model as listed in Table 1.17. Based on the results of this table, the biggest rep-
resentable integer number has 19 digits but the most common one is called a long
integer.

Suppose that we want to make sure that the right kind is always selected for a
particular type of integer number, in other words, for our purpose an integer with
R + 1 number of decimal digits is required. Therefore, an integer type is needed to
support a range from−10R to+10R . Using the intrinsic function Selected_int_kind(R)
which results in the kind corresponding to the aforementioned range, one can make
sure that the adequate range is provided even if the code is transferred to another
machine. For instance, if an integer number is needed with at least 15 digits, the
following code will find the corresponding integer kind:

1 INTEGER , PARAMETER : : MYKIND = se l e c t e d _ i n t _ k i n d (15 )
2 INTEGER (KIND = MYKIND) : : an In tege r
3 ! The a l t e r n a t i v e syn tax may be used :
4 INTEGER∗MYKIND : : ano t he r I n t ege r

In this code, first a named constantMYKIND is definedwhich corresponds to an integer
type with the −1015 < i < 1015 and then it is used to declare anInteger variable with
our intended range. If the code is transferred to another machine, theMYKINDmay be
different but this trick will ensure the selection of the correct kind. If an appropriate
kind does not exist, the Selected_int_kind(R) function returns −1. In other words,
Selected_int_kind(R) returns the most appropriate of kinds among the available ones,
depending on the required range.

The following code determines the number of kinds of the system:

1 INTEGER : : i , de f au l tK i nd , temp , k indCount
2

3 i = 0
4 temp = 1
5 k indCount = 1
6 DO WHILE ( s e l e c t e d _ i n t _ k i n d ( i ) > 0)
7 IF ( temp . ne . s e l e c t e d _ i n t _ k i n d ( i ) ) THEN
8 k indCount = k indCount + 1
9 temp = se l e c t e d _ i n t _ k i n d ( i )

10 END IF
11 i = i + 1
12 END DO
13 PRINT ∗ , k i ndcoun t , ’ i n t e g e r k inds are a v a i l a b l e on t h i s system . ’
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If a kind is not specified, the default kindwill be selected. The importance of knowing
the kind of an integer is realizing its range. This will help preventing or at least
understanding the possibility of an exception such as an overflow. The range and the
precision can be realized for a real type.

In the case of an overflow, increasing the largest integer number of any kind by 1,
results in the smallest integer of that kind. This property can be used to determine the
lower boundary for the range of an integer kind. The Huge() intrinsic function returns
the biggest allowable number for a type. This function along with the mentioned
property is used to obtain the range of the default integer type. The listing is as
follows:

1 INTEGER : : i , lowerBound , upperBound
2

3 de f au l t K i n d = Kind ( i )
4 lowerBound = Huge ( i ) + 1
5 upperBound = Huge ( i )
6 PRINT ∗ , ’ The d e f a u l t k i nd i s ’ , d e f a u l t K i n d
7 PRINT ∗ , ’ and i t ranges from ’ , lowerBound , ’ t o ’ , upperBound

As mentioned earlier, it is possible to assign an integer kind parameter to a literal
integer constant. This capability is used in the following listing to illustrate that
overflow of a number will produce undesired results without generating any compiler
errors:

1 INTEGER , PARAMETER : : SHORT = se l e c t e d _ i n t _ k i n d ( 4 ) ,
2 & LONG = se l e c t e d _ i n t _ k i n d ( 8 )
3 INTEGER (KIND = SHORT) : : a
4 INTEGER (KIND = LONG) : : b
5

6 a = 1234_SHORT
7 b = 12345678_LONG
8 PRINT ∗ , ’ a = ’ , a , ’ b = ’ , b
9 ! ou tpu t : a= 1234 b=12345678

10

11 b = 1234_SHORT
12 a = 12345678_LONG
13 PRINT ∗ , ’ a∗ = ’ , a , ’ b∗ = ’ , b
14 ! ou tpu t : a∗ = 24910 b∗ = 1234
15

16 b = 1234_LONG
17 PRINT ∗ , ’ b∗∗ = ’ , b
18 ! ou tpu t : b∗∗ = 1234

A real type is an intrinsic data type representing an approximation for mathematical
real numbers using the floating point number concept. Intel® Fortran uses IEEE
three basic binary formats for representing real numbers. For a real type, the KIND
parameter sets the precision and range.

In declaring real numbers, the specifier REAL is identical to a single-precision
floating point number and is the default real type. However, it is possible to change
the default real type by setting a compiler option.

A double precision real number can be introduced either with a DOUBLE PRE-
CISION specifier or a REAL specifier plus a kind type parameter indicating a higher
precision. However, no kind parameters are defined for the DOUBLE PRECISION type
specifier.

The appropriate kind number depends on the processor and the compiler but one
single precision and one double precision real number type are the minimums that a
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Fortran compiler must provide. The syntax for a real type is identical to the integer
type declaration. Only in the latter, the REAL type specifier will be used:

1 REAL : : aS i ng l eP rec i s i onRea l
2 REAL∗4 : : ano t he rS i ng l eP rec i s i onRea l
3 REAL∗8 : : anotherSing leOne
4 DOUBLE PRECISION : : aDoub lePrec is ionRea l
5 REAL∗16 : : anotherDoubleOne

It is worth noticing that a real literal constant is identified by one of the following:

1. a decimal point, e.g. 1.0 or 1.
2. an exponent letter (E, D or Q), e.g. 1.E0, 1E0, 1D0 or 1Q0

To be more precise, the syntax for a real literal constant is as follows:

significant [exponent-letter exponent][_kind-param]

The fractional part of the real number (significant) is followed by an exponent letter
(exponent-letter) and the exponent (exponent) itself. exponent-letter is either E or D.

In addition, when dealing with operands of different type or kind in an expression,
called a mixed mode expression, Fortran converts the result to the strongest of the
two types/kinds; consider the following example:

1 REAL : : r4
2 REAL∗8 : : r8
3 REAL∗16 : : r16
4

5 r4 = 1 / 3
6 PRINT ∗ , r4
7 ! ou tpu t : 0.0000000E+00

In this example, the output is 0.0000000E+00 because both 1 and 3 are integers. The
result is as an integer, i.e. 0, and the type implicitly will be converted to a real number
that is 0.0000000E+00. However, if one of the two numbers was declared as a real
literal constant then the result will be of the strongest form, i.e. a real type and the
assignment to r4 will be correct:

1 r4 = 1. / 3
2 PRINT ∗ , r4
3 ! output : 0.3333333E+00

The following example demonstrates the limitations of precision when dealing with
a real number. Note that the number of significant figures is kept the same even the
target has more precision:

1 r4 = 1E0 / 3
2 print ∗ , r4
3 ! output : 0.3333333
4 r4 = 1. / 3
5 print ∗ , r4
6 ! output : 0.3333333
7 r8 = 1. / 3.
8 print ∗ , r8
9 ! output : 0.333333343267441

10 r16 = 1. / 3.
11 print ∗ , r16
12 ! output : 0.333333343267440795898437500000000
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Every number with just a decimal point or with the exponent letter E is considered
as the default real number, that is REAL*4. Therefore, assigning the result of an
expression which is done using real numbers of KIND = 4 to a real number of higher
precision, such as 8 or 16will introduce approximations in the results. The exponent
letter D is an indicator of DOUBLE PRECISION or REAL*8 kind. The double precision
type is a legacy of Fortran 77 and therefore it does not have a kind parameter.
Intel® Fortran uses Q as an indicator of quad precision which is the equivalent of
KIND = 16.

Using underscore is another way of defining the type of a real literal constant.
By using the right kind and assigning the result of the expression to a right kind,
accurate results are obtained as follows:

1 r8 = 1._8 / 3._8
2 PRINT ∗ , r8
3 ! output : 0.333333333333333
4 r8 = 1.D0 / 3.D0
5 PRINT ∗ , r8
6 ! output : 0.333333333333333
7 r16 = 1._16 / 3._16
8 PRINT ∗ , r16
9 ! output : 0.333333333333333333333333333333333

10 r16 = 1.Q0 / 3.Q0
11 PRINT ∗ , r16
12 ! output : 0.333333333333333333333333333333333

Also the following types of assignments add approximations to the results:

1 r8 = 1.E0 / 3.E0
2 print ∗ , r8
3 ! output : 0.333333343267441
4 r16 = 1.D0 / 3.D0
5 print ∗ , r16
6 ! output : 0.333333343267440795898437500000000

It is worthy of notice that approximations can occur when dealingwith large numbers
as well:

1 r4 = 100000000.0 + 1.0
2 print ∗ , r4
3 ! output : 1.0000000E+08

In Chap. 2, Marc/Mentat will be discussed in which all real variables are con-
sidered to be double precision numbers. Therefore, the best approach to reduce the
approximation error is using the D exponent letter with every real number. The root
of all these approximations is the representation models introduced in Sect. 1.7.2.

Finally, similar to the integer type to assure the portability of the code, the intrin-
sic function Selected_real_kind can be used with the following syntax to select an
appropriate kind of real model:

Selected_real_kind ([P, R, RADIX])

This function returns the appropriate kind for a real number with at least P digits for
decimal precision, exponent range of R with a radix of RADIX.

A complex type consists of a pair of integer or real literal constants. The pair is
enclosed in parentheses and separated by a comma, representing the real and complex
part of the number, correspondingly. To do so, the following form is used:

http://dx.doi.org/10.1007/978-3-319-47668-1_2
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(real-part, imaginary-part)

The complex type has the same number of kinds as a real type. Therefore, thememory
used by a complex type is twice that of the corresponding real type. The intrinsic
functions Kind, Range and Precision can be used for this type as well (see Table 1.16).
Similarly, the Selected_Real_Kind intrinsic function can be used for a complex type.
For instance:

1 COMPLEX : : c1
2 COMPLEX ( Selected_Real_Kind ( 10 , 20 ) ) : : c2
3 COMPLEX ( Kind = 8) : : c3 , c4
4

5 c1 = (1 , 3 . 2 )
6 c2 = (0 .00001 , .002 e20 )
7 c3 = ( 1 . , 3 .2D0 )
8 c4 = ( 1 . _8 , 3 . 2 _8 ) + c3

1.7.5 Non-Numeric Data Types

The kind parameter can be used for non-numeric data types as well, i.e. for character
and logical types. The kind parameter for a character introduces other character sets
which permits using additional graphical symbols. However, the default character
kind, i.e. a single-byte character, is enough for most cases and normally no kind
selection is required.

In addition to the KIND parameter, character types have the length parameter,
named LEN. The length parameter indicates the number of characters of the string
which can even be equal to zero. The syntax for declaring a character type can be
one of the following:

CHARACTER [([LEN =] length-value, [KIND = ] kind-value)]
CHARACTER ([LEN=] length-value)
CHARACTER [(length-value, [KIND = ] kind-value)]
CHARACTER [(KIND = kind-value, [LEN =] length-value)]
CHARACTER*length-value

If the kind value is not stated, then the default one will be selected. The only KIND
parameter for the character type in Intel® Fortran is 1. If the length is not specified,
a length equal to 1 will be selected, i.e. equal to one character.

The delimiters of a character literal constant are either a pair of quotation marks
or apostrophes. If it is needed to represent one of these delimiters as a character
within the string, several choices are available: using doubled delimiters or switching
between the delimiters. The following example elaborates these methods:

1 CHARACTER(LEN=40) : : char1
2

3 char1 = ’ Th is i s an apst rophe : ’ ’ ’
4 char1 = " Th is i s a quo t a t i o n mark : " " "
5 char1 = " Th is i s another aps t rophe : ’ "
6 char1 = ’ Th is i s ano ther quo t a t i o n mark : " ’
7 char1 = " These are a p a i r o f aps t rophes : ’ ’ "
8 char1 = ’ These are a p a i r o f quo t a t i o n marks : " " ’
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A special case for the length-value is using an asterisk (*) which is handy in many
cases of which the following cases are more frequent:

• a dummy argument which assumes the length of the associated actual argument,
for instance:

1 SUBROUTINE MyStr ing ( S t r1 )
2 CHARACTER (LEN = ∗ ) : : S t r1
3

4 P r i n t ∗ , ’ The l eng t h o f my dummy argument i s ’ , Len ( S t r1 )
5 END SUBROUTINE

Note that the intrinsic function Len returns the length of Str1 depending on the actual
argument being used.

• a named constant, for instance:

1 CHARACTER (LEN = ∗ ) , PARAMETER : : MYNOTE = ’ Th is i s very long not&
2 &e and I have no idea how many cha rac t e r s are needed f o r t h i s one &
3 &so l e t ’ ’ s use an a s t e r i k s ! ’

Note that the Intel® Fortran 2003 continuation line style is used; each line embod-
ies an extra ampersand at the end which is not required in a fixed format of the earlier
Fortran versions.

Another special case for length-value is using a colon (:). For this case, an ALLO-
CATABLE attribute must be used (Sect. 1.8.6) such as the following:

1 CHARACTER (LEN = : ) , ALLOCATABLE : : AS t r i ng

This statement declares the AString variable with an unknown length. The length can
be set using an Allocate statement such as the following example:

1 ALLOCATE (AString(60))

A logical literal constant is either one of the .TRUE. or .FALSE. values. In Intel® For-
tran there are four kinds of logical types: 1, 2, 4 and 8; the number represents the
number of bytes used for the storage. Normally, the most compatible kind is selected
by default and thus, no changes are necessary when dealing with logical data types.

No matter which kind is used, there are only two values that can be assigned to
a logical variable. A stored zero in the variable indicates .FALSE and any non-zero
values indicates .TRUE. Obviously, using a single bit would be enough to represent
this type. However, for CPU4 performance reasons the default type is set to KIND =
4. The intrinsic function KIND is usable with logical types but there are no intrinsic
functions available to select a logical type.

1.7.6 Expressions, Operators and Operands

An expression (expr) is usually a calculation, called an operation, resulting in a scalar
or an array. It is made up of a combination of operands, operators and parentheses.

4Central Processing Unit.
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Table 1.18 Fortran operators. Adapted from [19]

Operator Responsibility Category Precedence

User-defined Unary defined operator User-defined Highest

** Exponentiation Numeric .

*, / Multiplication,division Numeric .

+, – Unary identity, or negation Numeric .

+, – Binary addition, subtraction Numeric .

// Concatenation Character .

.EQ., .NE., .LT., .LE., .GT.,

.GE., ==, /=, <, <=, >, >=
Comparison Relational .

.NOT. Negation (unary) Logical .

.AND. Conjunction Logical .

.OR. Inclusive disjunction Logical .

.EQV., .NEQV. Equivalence,
non-equivalence

Logical .

User-defined Binary defined operator User-defined Lowest

An operand is any scalar or array engaged in an operation. The operation is done by
means of operators.

An operator is called binary or dyadic if it acts on two operands, e.g. addition in
a+b. It is called unary or monadic if it acts on one operand, e.g. the negative sign in
-a. Some of the commonly-used operators are listed in Table 1.18. In addition, it is
possible to define custom operators using operator overloading (see [8]).

1.7.7 Derived-Data Types

Although the aforementioned intrinsic data types are usually enough for handling
simple tasks, sometimes it is required to define customized data types. This is the
case when dealing with complex structures especially in a large number. Analogous
to an intrinsic data type, a derived data type has also a name, a set of type parameters,
a set of values, a set of operations, and a means to represent the constants. The very
first thing to use a derived type, is defining the type. The general syntax for a type
definition is:

TYPE [[, type-attribute-list] ::] type-name [(type-parameter-name-list)]
[type-parameter-definition-statement] …
[private-or-sequence-statement] …
[component-definition-statement] …
[procedure-binding-part] …

END TYPE [type-name]
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An example will help elaborating this syntax: suppose that a new type is needed to
represent a node in a finite element code which contains the following:

• the identification number of the node (an integer),
• coordinates of the node (real numbers),
• a field that indicates if the node is assigned to an element or not (a logical variable).

The following can be a data type definition of various possible ones providing the
mentioned characteristics:

1 TYPE NODE
2 INTEGER : : I d
3 REAL∗8 : : X , Y , Z
4 LOGICAL : : Connected
5 END TYPE NODE

The NODE is called a type specifier. The definition of this new derived type named
NODE consists of 5 scalar components or fields: Id is an integer indicating the iden-
tification number of the node, x, y, z are real numbers indicating the coordinates of
the node and Connected which is a logical variable declaring the connection status
of the node to an element.

Scalar objects of a derived type are usually called structures and the state-
ment used for defining the type is called a derived type statement. In order to
declare a structure of this type, a type declaration statement is used in the following
manner:

1 TYPE (NODE) : : myNode

This line of code declares a variable named myNode of type NODE. There are two
ways of assigning values to a type: one is using parentheses as delimiters and commas
as separators of the fields which forms a literal constant of this derived type, for
instance:

1 myNode = Node (1,100.0,50.0,20.0,.FALSE. )

The other way is accessing fields separately by means of a component selector
character, i.e. a percentage special character such as the following:

1 myNode%Id = 1
2 myNode%X = 100.0
3 myNode%Y = 50.0
4 myNode%Z = 20.0
5 myNode%Connected = . FALSE .

The lines assigning values to the variable are called assignment statements. When a
type is declared it can be incorporated as a part of another type declaration to produce
even more sophisticated types. Suppose that it is needed to declare an element type
in a finite element code which consists of two nodes, one declaration can be as the
following:

1 TYPE ELEMENT
2 TYPE NODE : : F i rs tNode , SecondNode
3 END TYPE ELEMENT
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In addition, the type declaration and assignment statements are in the form of the
following:

1 TYPE (ELEMENT) : : myElement
2

3 myElement = ELEMENT (NODE (1 , 10 , 20 , 30 , .TRUE . ) ,
4 & NODE (2 , 20 , 30 , 40 , . FALSE . ) )
5 myElement%SecondNode%Connected = .TRUE.

Note that although it is possible to defineoperators for a specific type, there are not any
available automatically. An easier way is operating on the fields separately. Namely,
depending on the type of the field, the operations corresponding to that type are valid.
For example, myElement1 + myElement2 is not valid but myElement1%FirstNode%Id
+ myElement1%SecondNode%Id is a valid assignment statement.

1.7.8 Arrays

Derived types were discussed in the previous section with the main purpose of gath-
ering various types of data in one compound structure. Another case is using several
variables of the same type of data with the same specific data parameters (i.e. kind
and/or length) in one structure, called an array. In other words, an array is a sequence
of homogeneous data objects. Each single member of an array is called an element.
Note that the data type of each element can be in any scalar form, i.e. intrinsic or
even a derived type.

Fromanother perspective, an array is a data objectwith the attribute of DIMENSION
which enables it to have multiple elements of the same kind. The number of dimen-
sions of an array is called its rank and is equal to the number of comma-separated
items in the array specification. The maximum allowable number of dimensions is 7
in Fortran 90, which has been extended to 15 in Fortran 2008.

A familiar example for an array is amathematical vector. A vector inmathematical
terms is a column of real numbers which is representable in Fortran by a one-
dimensional array of real numbers (rank = 1). Similarly, a mathematical matrix
consists of rows and columns of real numbers which can also be represented by a
two-dimensional array of real numbers (rank = 2).

The extent of each dimension in an array, i.e. the number of elements along that
dimension, is defined by its lower- and upper bound. A couple of parentheses are
used to specify either the extent or the bounds of the array for each dimension. A
colon is used to separate the lower bound from the upper bound. For instance in a
one-dimensional array specified by (L:U), L is the lower bound, U is the upper bound
and the extent of this dimension is equal toU-L+1. A bound can be any integer number
but if the lower bound is larger than the upper bound, a zero-size array results.

The shape of an array is determined by the rank and the extent of array in each
dimension. Therefore, the shape can be presented by a vector containing the extent
for each dimension, e.g. a shape of the form (3, 4, 5) indicates that the corresponding
array has three elements in the first dimension, four elements in the second dimension
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Table 1.19 Terminology of arrays in Fortran

Term Description

Array A collection of values of the same type and type parameter

Element Each individual value of the array

Array element order Is the sequence in which array is stored in memory

Dimension Analogous to dimension of a matrix in mathematics

Rank Number of dimension(s) (equal to the number of indices)

Subscript or index An integer used to access each element

Bounds Upper and lower limits of the index in each dimension

Extent Number of elements along a dimension

Size Total number of elements in an array

Shape Is determined by the rank and extent of array in each dimension

Dummy array An array used as an argument of a procedure

Subarray or section Any portion of an array ranging from 1 to the size of array

Conformable arrays Arrays of the same shape

andfive elements in the third dimensionbut it says nothing about the lower- andupper-
bounds. Namely, arrays with different bounds may have the same shape. Arrays with
the same shape are called conformable arrays. Conformable arrays can take part as
operands of an operator in an expression.

The size of an array is the number of total elements of the array and it can be
calculated by multiplying all of the extents of an array, e.g. an array with the shape
of (3, 4, 5) consists of 3 × 4 × 5 = 60 elements.

Each element of an array can be accessed by a subscript. A subscript is an integer
in the range of the lower- and upper bounds of each dimension. Using any number
out of this range raises an out-of-bound exception. A summary of the described array
terminology is gathered in Table 1.19.

The general syntax for an array is not different than that of a variable. Similar to a
variable, an array can have several attributes among which the DIMENSION attribute
must be used. Nevertheless, this is not the only way to declare an array. The first
syntax for an array is as the following:

type-spec, DIMENSION (array-spec) [[, attr-spec]…::] entity-decl-list

The second syntax for an array is as the following:

type-spec [[, attr-spec]…::] object-name (array-spec) [[, object-name] …]

An array specifier (array-spec) determines the type of the array. It is the only part
of the array syntax that differs from one array to another. Generally, there are four
array specifiers which form four main types of arrays and a fifth special type. These
five types of arrays are listed in Table 1.20. As it is evident from this table, the rank
of every array must be known prior to the compilation of the code, but the shape can
be defined based on the type of array being used.
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Table 1.20 Array forms and their characteristics

Array Type Dummy Allocatable Rank Extent Bounds Shape Size

Explicit shape ✓ ✓ ✓ ✓ ✓ ✓ ✓

Automatic ✓ ✗ ✓ ✗ ✗ ✗ ✗

Assumed shape ✓ ✗ ✓ ✗ ✗ ✗ ✗

Deferred-shape ✓✗ ✓ ✓ ✗ ✗ ✗ ✗

Assumed size ✓ ✗ ✓ ✗ ✗ ✗ ✗

The simplest type of arrays is the explicit array. For an explicit-shape array, rank,
size and bounds are declared prior to the running of the program. The array specifier
for an explicit array is the explicit shape specifier with the following syntax:

specification-expr : specification-expr

A specification expression (specification-expr) is a restricted case of an expression
which results in a scalar integer. It can be an expression consisting of constants or
variables. The first and second specification expression of the syntax are separated
by a colon. They dictate the lower- and upper bound, respectively; for instance:

1 REAL , DIMENSION ( −10:10 ,100) : : a r ray1

In this example, array1 is a two-dimensional array. The lower bound and the upper
bound of the first dimension are -10 and 10, respectively. For the second dimension,
an extent of 100 is specified which corresponds to lower- and upper bounds of 1 and
100, respectively. The extent of first and second dimensions are 21 and 100 and thus,
the shape of this array is (21,100). Note that when the lower bound of an array is not
declared, it will be assumed to be equal to one.

As mentioned earlier, it is possible to declare an array without the DIMENSION
attribute. The same example could have been written using the second syntax:

1 REAL : : a r ray1 ( −10:10 ,100)

A special case of explicit arrays is encountered within a subprogram where at least
one of the array bounds is a dummy argument of that subprogram. This special
explicit array is called an automatic array. The size and the bounds of an automatic
array is defined upon running the subprogram. For example:

1 SUBROUTINE ArraySample ( a , b )
2 INTEGER , INTENT ( IN ) : : a , b
3 REAL : : au toAr ray ( a , a + b )
4 . . .
5 END SUBROUTINE ArraySample

In this example, autoArray is a two-dimensional automatic array. The rank is already
known before the compilation but the extents of each dimension, and thus, its shape,
is only defined within the subroutine upon its invoking. The bounds of the first and
the second dimension are 1:a and 1:a+b, respectively.
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The bounds of an automatic array can be defined more explicitly. For instance in
the following example, the bounds of autoArray are -a and b:

1 SUBROUTINE ArraySample ( a , b )
2 INTEGER , INTENT ( IN ) : : a , b
3 REAL : : au toAr ray (−a : b )
4 . . .
5 END SUBROUTINE ArraySample

As it is summarized in Table 1.20, an explicit array can be a dummy argument and
an allocatable variable. In addition, the rank, extent, bounds, shape and size of an
explicit array is defined before compilation. An automatic array can be a dummy
argument but not an allocatable one. Prior to compilation only its rank is known and
the other characteristics will be defined upon entering the subprogram.

The third type of arrays is the assumed shape arraywhich has the following syntax
for the array specifier:

[lower bound] :

The assumed shape array is a dummy argument which takes the shape of the actual
argument. The rank is equal to the number of colons used in the specifier; for each
colon, an optional lower bound can be specified otherwise the default value is 1.
The upper bound will be evaluated upon entering the subprogram by adding the
extent of that dimension minus 1. Therefore, the extent, bounds, shape and size of an
assumed-array is not known during compilation and in addition, an assumed shape
array cannot be of a dynamic type, i.e. an ALLOCATABLE or POINTER one. Consider
the following example:

1 PROGRAM Main
2 REAL : : anArray ( −10:10)
3 . . .
4 CALL SumUp ( anArray )
5 . . .
6 SUBROUTINE SumUp( a r r )
7 REAL : : a r r ( : )
8 . . .
9 END SUBROUTINE SumUp

In this example, the extent of the actual argument anArray is 21 and the assumed shape
array named arr takes its shape. Therefore, upon invoking the subroutine SumUp, the
boundaries of arr will be (1:21).

The fourth type is a deferred-shape array which is a dynamic array: either an
allocatable array with ALLOCATABLE attribute or an array pointer with POINTER
attribute. The shape of this array is postponed to run-time of the program, i.e. the
bounds, extent and the shape of this array can be assigned during the program based
on its requirements. The array specifier for a deferred-shape array consists of a single
colon for each dimension. This type is not necessarily a dummy one but it can be. The
only defined characteristic is the rank. The bounds, extent, shape and size definition
is postponed to the allocation or association time. Consider the following example:

1 SUBROUTINE AssignValue ( a r ray1 )
2 INTEGER , ALLOCATABLE, INTENT ( INOUT ) : : a r ray1 ( : )
3

4 ALLOCATE ( a r ray1 ( −5 :5 ) )
5 ar ray1 = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 ]
6 END SUBROUTINE AssignValue
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In this example, an ALLOCATABLE deferred-shape named array1 is allocated and then
defined by assigning values 1–11. The bounds, extent, shape and size of the array are
defined explicitly. Another example for a deferred-shape array is an array of pointers,
such as the following:

1 INTEGER , POINTER : : a r ray1 ( : )
2

3 ALLOCATE ( a r ray1 ( −5 :5 ) )
4 ar ray1 = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 ]

There are two important options which can be used with the ALLOCATE statement;
the SOURCE and the MOLD options. An already-defined array can be used as the
source of the array to be defined. In this case, all the elements of the defined array
are copied to those of the array to be allocated. For instance:

1 INTEGER , POINTER : : a r ray1 ( : )
2 INTEGER : : sourceAr ray ( 3 )
3

4 sourceAr ray = [ 1 , 2 , 3 ]
5 ALLOCATE ( ar ray1 , SOURCE = sourceAr ray )

After executing line 5 of this code, the array1 array will be a defined array with the
same elements of the sourceArray. In some cases, it is required to use an array, which
is not necessarily defined, as a template to build another one. To do so, the MOLD
option can be used:

1 INTEGER , POINTER : : a r ray1 ( : )
2 INTEGER : : t emp la teA r ray ( 3 )
3

4 ALLOCATE ( ar ray1 , MOLD = temp la teA r ray )

After executing line 4, the array1 array is a declared array but not yet defined. Note
that even if the templateArray is defined, the array1 array will not be defined after
executing the ALLOCATE statement.

Before investigating the properties of the fifth array type, it is necessary to under-
stand the array element order. The array element order is the order in which every
element is stored in the memory. The same order is used when intrinsic functions act
on the array as a whole.

In Fortran, the column-major order is used. In this element ordering scheme,
accessing to the elements starts by increasing the subscript of the first dimension
incrementally from its lower bound to its upper bound. This results in increasing the
subscript of the higher dimensions one-by-one. As it is illustrated in Fig. 1.19, the
subscript of the first dimension vary more rapidly than the last dimension.

For example consider the case that an array is used in an I/O statement such as a
Write statement. The array is passed to the statement without any subscripts and thus,
all the elements will be printed. Elements will be printed in the saved sequencing
order which is a column-major order. Note that this array element order is specific
to Fortran and other languages may have a row-major ordering such as C/C++.

The order of each array element in the storage sequence can be represented
by an integer. It is called the subscript order value of that element. The shape
of a n-dimensional array with the explicit specifier (l1 : u1, l2 : u2, . . . , ln : un) is
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(1, 1, 1) (1, 2, 1) (1, 3, 1) (1, 1, 2) (1, 2, 2) (1, 3, 2))

(2, 1, 1) (2, 2, 1) (2, 3, 1) (2, 1, 2) (2, 2, 2) . . .

(3, 1, 1) (3, 2, 1) (3, 3, 1) (3, 1, 2) (3, 2, 2)

(4, 1, 1) (4, 2, 1) (4, 3, 1) (4, 1, 2) (4, 2, 2)

(5, 1, 1) (5, 2, 1) (5, 3, 1) (5, 1, 2) (5, 2, 2)

Fig. 1.19 Column-major ordering for array element order in Fortran

(e1, e2, . . . , en)where for i = 1 . . . n the extents are ei = ui − li . The subscript order
value of an element with subscripts (s1, s2, . . . , sn) can be evaluated with the follow-
ing formula:
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⎠ (si − li )

⎞
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For instance in an array with the explicit specifier of (5, 3, 3), the element (1, 1, 1)
has a subscript order value of 1 and the element (1, 3, 2) has an order value of 26.

Accessing an array is more efficient if it is done in the same order in which it is
stored. The most efficient way of accessing a three-dimensional array in Fortran is,
for example, using the following nested loops:

1 DO k = 1, l
2 DO j = 1, m
3 DO i = 1, n
4 ! code for array element ( i , j ,k)
5 ENDDO
6 ENDDO
7 ENDDO

The fifth type, the assumed size array, is a dummy array which takes the size of the
actual argument. Therefore, the shape of the actual array is not necessarily preserved.
In other words, the actual argument is reshaped into the shape of the assumed size
array upon entering the subprogram. During this process, the column-major ordering
of the array will be preserved. To be more precise, the rank and extent of every
dimension of the assumed size array except the last dimension must be declared. The
syntax is as follows:

[ explicit-shape-spec-list, ] [ lower bound : ] *

The default value for the lower bound of any dimension is 1 and all dimensions except
the last one can be explicitly defined similar to what has been done for explicit arrays.
Assumed size arrays are very flexible because, for instance, a one-dimensional array
can be reshaped to any array with any rank and vice versa. Consider the following
example:
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1 PROGRAM Main
2 INTEGER : : a r r ay (2 , 4 , 2 )
3

4 a r ray = Reshape ( [ 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ] , [ 2 , 4 , 2 ] )
5

6 CALL SumAndMult ip ly ( a r ray , Size ( a r r ay ) )
7

8 CONTAINS
9 SUBROUTINE SumAndMult ip ly ( anArray , a r r ayS i ze )

10 INTEGER , INTENT ( IN ) : : anArray ( ∗ ) , a r r ayS i ze
11 INTEGER : : i , res = 0
12

13 DO i =1 , a r r ayS i ze
14 res= res + anArray ( i ) ∗ anArray ( i )
15 END DO
16 PRINT ∗ , res
17 END SUBROUTINE SumAndMult ip ly
18 END PROGRAM Main

The Size () intrinsic function is one of the array functions which is provided as
standard by every Fortran compiler (a brief selection of similar intrinsic functions
is listed in Table 1.21). This function is used to retrieve the size of an array. However,
the Size () function cannot determine the size of an assumed size array. Therefore, the
size of an assumed size array must be passed to the subroutine as an argument. In this
example, within the subroutine, the originally three-dimensional array is interpreted
as a one-dimensional array with the size indicated by the arraySize parameter.

The last topic on arrays is their initializing which is done by a powerful tool
named the array constructor. An array constructor is a mechanism of initializing
one-dimensional arrays. It is a combination of literal-scalar constants, arrays and
implied-DO specifications which are enclosed in square brackets ([ ]) or parenthesis-
slash delimiter ((/ /)). The syntax of an array constructor is as the following:

[ [type-spec ::] [ac-value-list ] ]

In the first line of this syntax, the outer brackets are delimiters but the inner brackets
are indicators of optional part of the syntax. Alternatively, the following syntax can
also be used:

(/ [type-spec ::] [ac-value-list ] /)

This syntax is the same as the first one except that the delimiters are changed to a
couple of parenthesis-slash.

An array constructor value list (ac-value-list) is a list of array constructors which
can be either an expression (scalar or array) or an implied-DO loop. Every expression
in the array constructor must have the same type and type parameters. The syntax of
an implied-DO loop is as the following:

( ac-value-list, ac-do-variable = scalar-int-expr, scalar-int-expr [, scalar-int-expr])

An array constructor DO-variable (ac-do-variable) is an integer variable with a local
scope within the constructor. Several implied-DO constructs can be nested but addi-
tional DO-variables must be introduced. Similar to a normal DO construct, three
scalar integer expressions (scalar-int-expression) are used for initial, final and the step
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Table 1.21 Selected standard intrinsic subprograms for arrays in Fortran

Function Task

All Returns .TRUE. if all elements contain the .TRUE. value

Any Returns .TRUE. if any of elements contain the .TRUE. value

Count Returns the number of .TRUE. array elements

Cshift Circular shift of the array elements

Dot_product Dot product of two matrices

Lbound Lower dimension of an array

MatMul Multiplication of matrices

Maxloc Location of the maximum value within in array

Maxval Maximum value of an array

Merge Selection of values under the control of a mask

Minloc Location of the minimum value of an array

Minval Minimum value of an array

Pack Pack an array into an array of rank one considering a mask

Product Product of array elements

Reshape Reshapes a one-dimensional array to a desired shape

Shape Determines the shape of an array

Size Determines the size of an array

Spread Adds a dimension to an array

Sum Sum of array elements

Transpose Transpose an array of rank two

Ubound Upper dimension of an array

Unpack Store the elements of a vector in an array of higher rank considering a mask

value, correspondingly. The following example is for a scalar array constructor which
is filled with three scalar values:

1 REAL : : s to rage (10 ) = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ]

The following example uses an implied-DO structure to fill the array with the same
values as the previous example:

1 REAL : : s to rage (10 ) = [ ( i , i =1 , 1 0 ) ]

A nested implied-DO structure is also possible:

1 REAL : : s to rage (10 ) = [ ( ( i ∗ j , i =1 , 5 ) , j =1 , 2 ) ]

An array expression is also possible in an array construct:

1 REAL : : s to rage (10 ) = [ pa r t 1 ( 1 : 5 ) , pa r t 2 ( 1 : 5 ) ]

A combination of these three forms plus other intrinsic functions gives even more
flexibility in constructing arrays:

1 REAL , PARAMETER : : p a r t ( 5 ) = [ 1 , 2 , 3 , 4 , 5 ]
2 REAL : : s to rage (10 ) = [ p a r t ( 1 : 5 ) , ( Sq r t ( i + pa r t ( i ) ) , i = 1 , 4 ) , 0 . 0 ]
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In this example, a part of a constant array named part is used in another array named
storage. Array constructors can be used both in the variable declaration part of the
program and the execution part of it. However, if used in the declaration part, only
constant arrays are allowed in an array constructor.

In addition, there is a subscript triplet formwhich is equivalent to the implied-DO
construct. For example the following two examples are equivalent:

1 REAL : : s to rage (10 ) = [ 1 : 9 : 2 ]
2 REAL : : s to rage (10 ) = [ ( i , i =1 , 9 , 2 ) ]

In contrast, initializing the arrays with higher ranks is donewith theReshape intrinsic
function. It reshapes the first argument, an array of any rank, in the shape of the second
one such as in the following example:

1 REAL : : a ( 2 , 4 ) = reshape ( [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ] , [ 2 , 4 ] )

In addition to previous methods, a very powerful way of selecting arbitrary elements
of an array is using a vector subscript which is a rank one integer array containing
the indices of the selected elements. For instance to select the elements 1, 5 and 7 of
the array anArray, the following code can be used:

1 REAL : : anArray (10 ) = [ ( 2 . 0 ∗ i , i =1 ,10 ) ]
2 INTEGER : : s e l e c t i o n ( 3 ) = [ 1 , 5 , 7 ]
3

4 PRINT ∗ , anArray ( s e l e c t i o n )

A vector subscript is merely a container of the selected indices which are referring to
the parent array. It is also possible to use a vector subscript to select specific elements
of a high rank parent array; consider the following lines of code for this case:

1 REAL : : anArray ( 2 , 5 ) = reshape ( [ ( 2 . 0 ∗ i , i =1 , 10 ) ] , [ 2 , 5 ] )
2 INTEGER : : s e l e c t i o n ( 2 ) = [ 1 , 4 ]
3

4 PRINT ∗ , anArray ( : , s e l e c t i o n )

The output of this code will be the values of the elements (1, 1), (2, 1), (1, 4) and
(2, 4) of the array anArray.

1.8 Data Attributes

As mentioned earlier, attributes make type declarations more specific. They are
not only used in type declarations but also subprogram declaration statements. For
instance, to save the value and type of a variable within a subprogram the SAVE
attribute is used. It is worth mentioning that an entity cannot posses all the available
attributes because not all of them are compatible with each other. For instance, the
PARAMETER attribute cannot be used together with the INTENT attribute. A number
of attributes are briefly listed in Table 1.22.
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Table 1.22 List of common attributes in a declaration construct

Attribute Used for…

PARAMETER Declaration of named constants

DIMENSION Declaration of arrays

DATA Initializing variables

COMMON Specifying a shared entity between different program units

SAVE Retaining value of variables

ALLOCATABLE or POINTER Declaration of dynamic entities

TARGET Specifying that a variable can be targeted by a pointer

INTENT, VALUE or OPTIONAL Specifying the nature of a dummy argument

PUBLIC or PRIVATE Specifying the accessibility of an entity within a module

1.8.1 PARAMETER Statement

Using named constants saves a lot of timewhen dealingwith several literal constants.
Usually when a literal constant has a specific meaning, it is used in multiple places
of a code. In such cases, it is better to use a named constant instead of the literal
constant, because at future points in time, it might be necessary to change this specific
number and it is not practical to do it one-by-one. For example, the number of total
employees in a company will be used in several locations of the code to prepare the
data environment and carry out the calculations. It is better to use a named constant
to hold this total number.

The other application of the named constants is for scientific constants, e.g. the
number π = 3.141592 . . ., or Napier’s constant e = 2.71828182 . . . etc. Because
one may need to change the number of significant digits of a scientific constant, it is
advised to use a named constant to hold the constant. Additionally, named constants
increase the readability of the code.

In order to define a named constant the PARAMETER attribute is used.5 The syntax
for the PARAMETER statement, which can be used in a statement specification, is as
the following:

PARAMETER (named-constant = initialization-expr, [named-constant = initialization-
expr] …)

The following examples are with an entity-oriented declaration:
1 REAL , PARAMETER : : PI = 3.14
2 REAL (KIND = 8 ) , PARAMETER : : NAPIER = 2.7182818284590
3 DOUBLE PRECISION , PARAMETER : : COMBO = NAPIER∗PI
4 CHARACTER (LEN = ∗ ) : : TEXT = ’Welcome aboard ! ’
5 INTEGER , PARAMETER : : ELEMENTS = 100 , NODES = 200
6 CHARACTER (LEN=1) , PARAMETER : : NUMBERS ( 0 : 9 )
7 &= [ ’ 0 ’ , ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7 ’ , ’ 8 ’ , ’ 9 ’ ]
8 REAL , PARAMETER, DIMENSION ( 3 ) : : MYDATA = ( / PI , PI ∗2 , PI ∗3 / )

5In Fortran, a PARAMETER attribute is used to define a named constant. However, as mentioned
earlier, in general programming terminology a parameter is an argument of a subprogram.
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Note that it is possible to use the defined constants as a parameter for the consequent
ones. Initializing the arrays is possible using either a couple of brackets [ ] or (/ /) as
delimiters. Note that both DIMENSION and PARAMETER attributes are used after the
type name, emphasizing more on the named constant itself which is more preferred.
However, the same result can be obtained with the help of an attribute-oriented
approach. For instance, the same array is defined as the following:

1 REAL : : PI
2 PARAMETER ( PI = 3 .14 )
3

4 REAL : : MYDATA
5 DIMENSION MYDATA( 3 )
6 PARAMETER (MYDATA = ( / PI , PI ∗2 , PI ∗3 / )

It is possible to declare constants after variable declarations by using an entity-
oriented approach. However, it is recommended that all the constants are defined
before variable declarations and after the implicit statement. This makes the program
clearer and readable. In addition, some constants may be used later in the declaration
of other variables.

1.8.2 PUBLIC Versus PRIVATE

The most powerful capability of modules is encapsulation (packaging) of entities
within themselves which allows the programmer to protect unnecessary information
from the user; PUBLIC and PRIVATE attributes are the tools for the job. An entity with
a PUBLIC attribute can be accessed from outside of the module whereas a PRIVATE
attribute allows access only for the internal subprograms of the module. By default,
every entity is considered a public one unless the PRIVATE keyword is used. For
instance:

1 MODULE MyModule
2 INTEGER : : a
3

4 PRIVATE
5 INTEGER : : b
6 END MODULE MyModule

In this example, the default access is private and thus, both a and b variables are
considered as private ones. Only one explicit declaration of the default access is
permitted; either PUBLIC or PRIVATE must be used. Consider the following:

1 MODULE MyModule
2 INTEGER , PRIVATE : : a
3

4 TYPE, PRIVATE : : aType
5 CHARACTER (10 ) : : Name
6 INTEGER : : ID
7 END TYPE aType
8

9 REAL : : anArray ( 1 : 100 )
10

11 PUBLIC CalcSum
12 PRIVATE Ins i deCa l c
13
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14 CONTAINS
15 SUBROUTINE CalcSum
16 . . .
17 END SUBROUTINE CalcSum
18

19 FUNCTION Ins i deCa l c
20 . . .
21 END FUNCTION Ins i deCa l c
22 END MODULE MyModule

In this example, none of the keywords PUBLIC or PRIVATE are used. Therefore, all
entities are public by default. As a result, the array named anArray and the CalcSum
module subroutine are public entities. In contrast, the variable named a, the derived
type aType and the module function InsideCalc are private entities.

1.8.3 SAVE and COMMON Attribute

Upon entering a subprogram, local variables are undefined. Their status can be
changed by assigning a value. However, after finishing the execution of the subpro-
gram and upon exiting the subprogram, the local variable becomes undefined again.
Therefore, in every invocation of the subprogram, the variable has to be initialized
again unless the SAVE attribute is used.

The SAVE attribute preserves the defined status of the variable even after the
subprogram is executed. For the next execution of the subprogram without any ini-
tialization, the value of the variable will be saved. For instance, if the last used value
of a variable will be needed within the subprogram to calculate the next one, this
attribute can be used.

This attribute is quite convenient especially if it is used within a module. Such
variables can be shared between several subprograms using a common module. In
older Fortran programs, common blockswere more frequently utilized to carry out
the same task.

Generally, data entities are passed to a subprogram via its arguments. Alterna-
tively, the data can be shared among various subprograms by a COMMON statement.
This attribute allows the blocks of data to be considered global, namely they are
defined in several subprograms. This approach is against the encapsulation concept.
However, it is still in use in some old Fortran codes and particular to our attention
in the subroutines ofMarc/Mentat (see Sect. 2.3.3). In such inevitable cases, there
is no point passing a ubiquitous piece of data as an argument. Furthermore, there
will be no harm in sharing a few frequently-used blocks of data.

By using the COMMON statement, the data to be shared between program units
will be placed in common blocks. A common block without a name is called a blank
block and if it is used with a name, it is called a named common block. Note that

http://dx.doi.org/10.1007/978-3-319-47668-1_2
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only for a named common block, the SAVE attribute can be applied and thus, it is
recommended to use a named common block instead of a blank one.

The syntax for a COMMON statement is as the following:

COMMON [ / [common_block_name] / ] common_block_object_list
[ [,] / [common_block_name] / common_block_object_list ] …

common_block_name is the name of the common block which is enclosed between
two slashes whereas using just two slashes (//) will indicate a blank common block.
common_block_object_list is the list of namedvariableswith exception of thePARAME-
TER attribute, dummy arguments, allocatable arrays, automatic objects and function
names.

The same syntax must be repeated in every subprogram in which it is intended
for the data to be shared. Note that the sequence of data must be kept the same.
Therefore, it is good practice to put all the statements regarding the common blocks
in a single text file and include the file using the INCLUDE line. The include statement
substitutes the containing lines of the included file with itself. The syntax for include
is as follows:

INCLUDE ’file-name’

The keyword INCLUDE is followed by a string which is the file to be included (file-
name). Thefile used for a commonblockusually has a .cmnor .cbl extension.Consider
the following named common block:

1 LOGICAL : : myFlag
2 REAL , DIMENSION (10 ) : : myArray
3 CHARACTER (12 ) : : message
4 COMMON / SharedData / myFlag , myArray , message
5 SAVE / SharedData /

To preserve the same sequence of data in the common block, i.e. myFlag, myArray,
title, these lines are saved in a text file named, say Myblocks.cmn. The following line
is used instead of the previous listing whenever the data is needed:

1 INCLUDE ’MyBlocks.cmn’

The access to a common block is provided using a storage association. Namely,
one memory location is associated with several variable names. In other words, it is
possible to rename the variables of a commonblock.However, it is not recommended.

One limitation of using common blocks is not being able to initialize the variables.
The solution is using a BLOCK DATA structure to hold and initialize the common
blocks. BLOCK DATA is a program unit which is mainly used for initialization of the
variables in a common block. The syntax is as the following:

BLOCK DATA [block-data-name]
[specification-stmt] …

END BLOCK DATA [block-data-name]

The DATA attribute is used to initialize the values as in the following example:

1 BLOCK DATA
2 LOGICAL : : myFlag
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3 REAL , DIMENSION (10 ) : : myArray
4 CHARACTER (12 ) : : message
5 COMMON / SharedData / myFlag , myArray , message
6 DATA myf lag / . FALSE . /
7 DATA messege / ’ I ’ ’m de f i ned ! ’ /
8 END BLOCK DATA

A block data can be placed anywhere in the code except inside of any other program
unit. Initializing the variables of a data block will occur prior to the execution of the
main program.

The other restriction of common blocks is not supporting dynamic arrays. This
issue can be easily resolved by replacing the commonblockwith amodule.Generally,
using a module to solely hold the common data is preferred to the common blocks.

1.8.4 DATA Statement and Explicit Initialization

Explicit initialization is specifying the initial value of a non-pointer variable or dis-
association of a pointer. An explicit initialization is done only once [1].

The usual way of initializing a variable is done via its entity declaration. In each
scoping unit, this initialization is done only upon the first entry. Namely, a scoping
unit such as a subroutine may be accessed several times during the execution of the
program but the initialization is done only once in the first entry.

Another alternative for initialization is using an assignment statement. However,
the result of this approach is not identical to the previous one. Since the assignment
statement is executed upon every entry to the scoping unit, the initialization is done
every time.

Note that for a main program explicit initialization using either methods produces
the same result, because the main program is executed only once. Both methods are
described in the following paragraphs.

The DATA attribute can be used in the declaration of a variable for its initialization.
The important point of using a DATA attribute is the fact that it contains an implicit
SAVE attribute. Therefore, in the following executions the latest value of the variable
will be saved. It means that the initialization will not repeat in every execution. This
facility can be used to detect the number of execution, for example:

1 SUBROUTINE RunMe
2 INTEGER : : runCount
3 DATA runCount / 1 /
4

5 Wr i te ( ∗ , ∗ ) ’ Cu r ren t sub rou t i ne run = ’ , runCount
6 runCount = runCount + 1
7 END SUBROUTINE RunMe

In this listing, the runCount variable is initialized once by the DATA attribute with the
value of 1. A couple of slashes (/) are used as delimiters for a DATA attribute.

Alternatively, in the declaration of a variable the following syntax can be used for
initialization:
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= initialization-expression

For instance, the previous listing can be rewritten as the following:

1 SUBROUTINE RunMe
2 INTEGER : : runCount = 1
3

4 Wr i te ( ∗ , ∗ ) ’ Cu r ren t sub rou t i ne run = ’ , runCount
5 runCount = runCount + 1
6 END SUBROUTINE RunMe

In this listing, the runCount variable is initialized only upon the very first execution of
the RunMe subroutine. The second way of initialization has the same characteristics
of the DATA attribute but it is done in the variable declaration statement.

The second method is using an assignment statement. If it was required to reini-
tialize the runCount variable in every execution, the following code should have been
used:

1 SUBROUTINE RunMe
2 INTEGER : : runCount
3

4 runCount = 1
5 Wr i te ( ∗ , ∗ ) ’ Cu r ren t sub rou t i ne run = ’ , runCount
6 runCount = runCount + 1
7 END SUBROUTINE RunMe

Obviously, in this listing the runCount variable cannot be used to hold the number of
executions.

1.8.5 INTENT and OPTIONAL Statement

The INTENT attribute is used for the arguments of a subprogram. An argument can be
defined as read-only by using the (INTENT (IN)) statement. An output (INTENT (OUT))
statement is used for the arguments which require to be evaluated. Furthermore, it is
possible for an argument to be read and written, i.e. they act at the same time as an
input and an output (INTENT(INOUT)). The INTENT statement helps the compiler to
optimize the code.

TheOPTIONAL attribute is used to indicate that the argument is an optional one.An
optional argument may or may not be used during the referencing of the subprogram.
For instance, consider the following subroutine:

1 SUBROUTINE CalcValues ( a , b , c )
2 INTEGER , INTENT (OUT) : : a
3 INTEGER , INTENT ( IN ) : : b
4 INTEGER , INTENT ( IN ) , OPTIONAL : : c
5

6 IF ( Present ( c ) ) Then
7 Wr i te ( ∗ , ∗ ) ’ Op t i ona l argument e x i s t s ’
8 ELSE IF
9 Wr i te ( ∗ , ∗ ) ’No o p t i o n a l argumenta ’

10 END IF

Using the OPTIONAL attribute, indicates that there is no need for the argument to be
always present, i.e. it can be used optionally. The intrinsic function Present is used to
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detect whether the optional argument is present or not. It returns a TRUE value if the
optional argument c is used for invoking the subroutine, otherwise the return value
is FALSE. Using the Present intrinsic function along with the OPTIONAL attribute is
a good way of covering complicated argument situations.

1.8.6 ALLOCATABLE, POINTER and TARGET

The storage memory for a static data entity is dedicated based on the type of data
at the beginning of a program whereas for a dynamic data entity the memory can be
allocated, deallocated and even reallocated at any time during the execution of the
program. The ALLOCATABLE attribute is used to define dynamic arrays and will be
discussed in Sect. 1.7.8.

On the other hand, the POINTER attribute can be assigned to any type of static data
to make it dynamic. Before defining a dynamic entity, the required memory space
must be allocated. There are two ways to prepare the required memory: the first
way is allocating the memory space using an ALLOCATE statement. This statement
allocates a new space in memory to the pointer object. The syntax for the ALLOCATE
statement is as the following:

ALLOCATE (allocation-object [allocate-shape-spec] [, STAT = stat-variable])

The allocation object (allocation-object) is either a pointer or an allocatable array, and
the shape specifier is used to specify the boundaries of the array. The result of the
allocation is returned by the optional state variable (stat-variable). It is set to zero for
a successful execution.

Opposite to the ALLOCATE statement is the DEALLOCATE statement which deal-
locates the memory of a dynamic data entity with a similar syntax:

DEALLOCATE (allocation-object [allocate-shape-spec] [, STAT = stat-variable])

The disassociation can be done by means of a NULLIFY statement as well:

NULLIFY (pointer-object-list)

The pointer object list (pointer-object-list) is a list of pointer objects separated by
commas.

The second way to allocate objects is by using a pointer assignment statement
by which the pointer will use the memory allocated to another static entity; called
the pointer’s target. A pointer target can be a data object or a part of a data object
declared with the TARGET attribute. The syntax for a pointer assignment statement
is as the following:

pointer-object => target

A pointer object (pointer-object) is a variable with the POINTER attribute. The target
of a pointer (target) is a variable with the TARGET attribute whichmatches the pointer
in terms of type, type parameter and rank.
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A pointer can have different definitions and allocation status during the execution
of a program, i.e. a pointer can be defined or undefined and associated to a target
or disassociated from a target. The SAVE attribute could be used to preserve the
association status of a pointer especially when returning from a subprogram. To be
more precise, consider the following lifetime scenario for a pointer:

1. If a pointer is declared without any initialization, its status is undefined and
disassociated, for example:

1 INTEGER , POINTER : : aPo in t e r

However, to make the disassociation official, a better approach is to initialize the
pointer with a null target such as the following:

1 INTEGER , POINTER : : aPo in t e r => Nu l l ( )

Or it is even possible to nullify it after declaration anywhere in the code:
1 INTEGER , POINTER : : aPo in t e r
2

3 NULLIFY ( aPo in t e r )

Nullifying a pointer or associating a pointer with a null object makes the pointer
disassociated. The association status of a pointer can be tested by the intrinsic
function Associated which returns a .TRUE. value for an associated pointer.

2. If an ALLOCATE statement is used for the pointer then a fresh space in the memory
will be appointed to it. In other words, the ALLOCATE statement sets the target of
the pointer to be a new memory address without any values in it. Allocation of
a pointer creates a data object with implied TARGET attribute. Now the status is
associated but still undefined.

3. It is possible to disassociate a pointer at any time using a NULLIFY statement; the
status will be disassociated and undefined. Associating a pointer to another object
also disassociates the pointer from the old object.

4. If a value is assigned to the pointer, corresponding to its type, then the pointer
status will be associated and defined. It is not possible for a pointer to be defined
without being associated.Asmentioned earlier, oneway of association is using the
ALLOCATE statement and the other one is using the pointer assignment statement
which points to a non-null target.

Pointers are usually used to create dynamic linked lists. For example, in the following
listing a linked list of the type item is created and filled with values:

1 TYPE i tem
2 REAL : : va lue
3 TYPE ( i tem ) , POINTER : : nex t I tem
4 END TYPE
5

6 TYPE ( i tem ) , POINTER : : myList , c u r r en t I t em
7 INTEGER : : i
8

9 ALLOCATE ( myL is t )
10 myLis t%nex t I tem => myL is t
11 cu r r en t I t em => myL is t
12

13 DO i = 1 , 10
14 ALLOCATE ( cu r r en t I t em%nex t I tem )
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15 cu r r en t I t em%va lue = 1.25∗ i
16 cu r r en t I t em=> cu r r en t I t em%nex t I tem
17 END DO
18

19 cu r r en t I t em => myL is t
20

21 DO i = 1 , 10
22 P r i n t ’ ( F5 . 2 ) ’ , c u r r en t I t em%va lue
23 cu r r en t I t em=> cu r r en t I t em%nex t I tem
24 END DO

A list of type definitions can be created using arrays as well. However, using pointers
to make such a list has its own advantages. For instance, adding/deleting a middle
element in a linked list is much easier than in the case of an array in terms of
computational expenses. In addition, usually for an array a big part of memory must
be allocated by a good guess of the number of required elements whereas in a linked
list, the memory is allocated upon adding a new link. The disadvantage of a linked
list is having a sequential access, namely a random access to a middle element is not
possible without going through the previous elements.

1.8.7 CRAY Pointer

The modern type of pointers, which were introduced in the previous subsection,
were first introduced in Fortran 90. In order to compromise this deficiency in
earlier versions, a non-standard extension was applied to incorporate a special form
of pointers similar to those of the C programming language, called CRAY pointers.

The CRAY pointers were first introduced in Fortran 77 and they can still be
traced in some old pieces of code. It is not quite easy to translate the old codes written
using CRAY pointers to the new type. Therefore, they still exist in some subroutines
of Marc/Mentat.

Because a CRAY pointer is nothing but an integer holding a memory address, it
can be realized that the whole point of using CRAY pointers is accessing absolute
memory locations. It is a rather advanced tool to access a memory storage which is
completely managed by the user. Also creating linked lists with CRAY pointers are
not possible because a CRAY pointer cannot point to another one.

Although a CRAY pointer is an integer, explicit declaring is not advised. A better
approach is using a CRAY pointer statement with the following syntax:

POINTER (pointer-name, pointee-name [ (array-spec) ]) [, (pointer-name, pointee-
name [ (array-spec) ])] ...

A pointer name (pointer-name) is the variable which contains the address for the
pointee (pointee-name). Note that the CRAY pointer statement is used together with
other variable declarations and it is not an action statement. A CRAY pointer holds,
like other pointers, the address of a variable. Although the CRAYpointer is genuinely
an integer, it cannot be declared explicitly as an integer. This is due to the fact that an
integer has a variable size in different machines. Therefore, to support the portability
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of the code, it is advised to avoid declaring a CRAY pointer as an explicit integer
variable. The pointee is the variable to which the pointer points and can be either a
scalar variable or an array. The array can be an explicit or an assumed size but an
assumed shape or a deferred-shape array is not allowed. An array which acts as a
pointee is called a pointee array [7].

The compiler will not allocate any space for the pointee of the CRAY pointer.
Namely, it is the responsibility of the programmer to ensure the validity of the address
of the pointer by means of one of the following:

• by allocating a portion of dynamic memory by calling theMalloc intrinsic function,
• or by setting the pointer to the address of an existing block of data by the Loc
intrinsic function by which the address of a variable is returned.

The pointee may have its type declared before or after the pointer statement, and
its array specification (if any) may be declared before, during, or after the pointer
statement.

Pointer arithmetic is valid with CRAY pointers, but it is not the same as the C
pointer arithmetic. CRAYpointers are just ordinary integers, so the user is responsible
for determining howmany bytes to add to a pointer in order to increment it. Consider
the following example:

1 REAL : : s to rage (100)
2 REAL : : i n d i c a t o r ( 5 )
3 POINTER ( p I nd i c a t o r , i n d i c a t o r )
4

5 s to rage = [ ( i , i =1 ,100 ) ]
6 p r i n t ∗ , s to rage
7

8 p I n d i c a t o r = l o c ( s to rage )
9 i n d i c a t o r = 0 .0

10 p r i n t ∗ , s to rage

In the first three lines of this listing, a CRAY pointer named pIndicator is declared
by a CRAY pointer statement with a template consisting of a one-dimensional array
of five real numbers named indicator. Note that no explicit declaration is used for
the variable named pIndicator and the pointee is just a link to access the data where
the pointer points and thus, does not occupy any memory itself; this is unlike any
ordinary array declarations.

In other words, up to now only the link between a pointer and pointee is set up and
the pointee just declares what the pointer can point to. Therefore, in order to make
the pointee usable, it is required to allocate a part of the memory and set the pointer
to its address or just set the pointer to a variable already declared. Up to now, it is
only specified that our pointer has the potential to point to an address which holds
five real numbers and nothing more.

In lines 5 and 6, an array constructor is used to fill the storage with numbers 1–100
and print these values. Line 7 puts the address of storage to the CRAY pIndicator and
the next line puts zero to the pointee which is now, the five first elements of the
storage.

Since using CRAY pointers is complicated, it is better to avoid them as much as
possible and replace them with normal Fortran 90 pointers. The following points
are a brief comparison between CRAY pointers and normal Fortran pointers:
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• ACRAY pointer is nothing else but an address whereas a normal Fortran pointer
is an attribute for a pointer variable.

• Arithmetic operations can be used on CRAY pointers but may cost them their
portability whereas a normal pointer includes all the information needed to access
the target; no extra manipulations are required.

• Assigning a pointee to a CRAY pointer just changes the way that pointer deals
with its objects. The value of the object must be assigned to the pointee and not
the pointer. However, assigning a value to a normal pointer changes the value of
its target. Also changing the target is done by a pointer association expression.

• CRAY pointers are mainly used for a dynamic memory management for which the
programmer is responsible whereas normal pointers are usually used for linked
lists and allocatable data entities are used for dynamic memory allocation.

• In comparison to CRAY pointers which should be used with extra care, using
normal pointers is a more conservative way of dealing with dynamic entities. For
instance when a CRAY pointer is associated to various pointees then the role of
the pointees will be more like an alias to the variable; consider the following:

1 REAL : : a , b , c
2 POINTER ( pReal , a ) , ( pReal , b )
3

4 pReal = l o c ( c )
5 a = 1.0
6 b = 2.0
7 c = 3.0
8

9 p r i n t ∗ , a
10 p r i n t ∗ , b
11 p r i n t ∗ , c

The output of this listing is printing the number 3.0 three times, because assigning
a value to either of variables a, b or c will set the other two to the same value.

1.8.8 Interface Block

The header of a subprogram is the subprogram name and its arguments. The return
type for a function can be specified in the header. The signature of a subprogram
consists of its header and the declaration of the arguments.6

The interface of a subprogram holds its signature and thus, dictates its allowable
referencing form. An implicit interface is the case of not providing the signature to
the referencing program. For instance, an interface for a module subprogram is not
required and thus, the interface is implicitly specified.

6Note that depending on the programming language, the return type may not be a part of the
signature. However, it is not of a concern in this case.
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In contrast, it is required to explicitly specify the interface in some cases, e.g. for
external subprograms, when optional arguments are used, or for array-valued func-
tions. The interface of such cases is called an explicit interface.

Using an explicit interface ensures that the compiler does not mistake a user
defined subprogram with an intrinsic subprogram. In addition, the compiler can
check the consistency between the actual and dummy arguments.

The signature of the subprogram is specified in the interface body (interface-body)
of an interface block. The typical syntax is as the following:

INTERFACE
interface-body

END INTERFACE

For instance, in the following example an external subroutine and an external function
are defined with their arguments. Note how the INTENT attribute is used to define a
clear informative signature:

1 INTERFACE
2 SUBROUTINE SwapValues ( a , b )
3 INTEGER , INTENT ( INOUT ) : : a , b
4 END SUBROUTINE SwapValues
5

6 FUNCTION CalcSum ( anArray )
7 REAL , INTENT ( IN ) , DIMENSION ( 1 0 ) : : anArray
8 REAL : : CalcSum
9 END FUNCTION CalcSum

10 END INTERFACE

Using explicit interfaces is mandatory in many cases. They help the compiler and
increase the readability of the program as well. However, the same modifications
applied to the signature of the subprogram must be reflected in the interface too. To
avoid this, it is better to change the external subprogram to a module subprogram.
Consequently, the interface will be changed to an implicit interface.

In any case, if an explicit interface is used, it is recommended to be located after
the IMPLICIT statement. Then a quick glance will be enough to understand which
external procedures will be used in the current program.

Because an interface block is a separate scoping unit, it does not have access to its
host. Such an access is sometimes required, e.g. an interface block wants to access
a derived type of the host. This access is granted using the IMPORT statement with
the following syntax:

IMPORT [[::] import-name-list]

If the IMPORT statement is usedwithout any optional names (import-name-list) then all
the entities will be accessible. For instance, a subroutine is defined by the following
interface which needs access to a derived type named NODE:

1 PROGRAM MyProgram
2 TYPE NODE
3 INTEGER : : I d
4 REAL∗8 : : X , Y , Z
5 LOGICAL : : Connected
6 END TYPE NODE
7

8 INTERFACE
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9 SUBROUTINE ReadNode ( aNode )
10 IMPORT
11 TYPE(NODE) , INTENT ( IN ) : : aNode
12 . . .
13 END SUBROUTINE ReadNode
14 END INTERFACE
15 . . .

1.9 Input and Output Management

In the course of the execution of a program, most of the time is spent to deal with
the I/O operations. In contrast, the arithmetic and the memory access operations of
a program are quite fast procedures. Hence, special attention must be paid to this to
improve the performance of the program.

It is possible to execute the program while dealing with the I/O operations in
parallel. It is called an asynchronous I/O. Although buffered data transfer is provided
in Fortran, in most cases the normal I/O transfer is used which is the focus of the
current section.

In Fortran, the following standard statements are used for I/O actions:

• OPEN and CLOSE file connection statements,
• READ input statement,
• PRINT and WRITE output statements,
• BACKSPACE, ENDFILE and REWIND file position statements, and
• INQUIRE statement for file connection inquiries.

Transferring data to/from a file requires a connection to a file unit. Connecting a file
to a unit is done by means of an OPEN statement. After establishing a connection,
other I/O action statements can be used. In the end, the unit must be disconnected
using a CLOSE statement. Note that since the INQUIRE statement can be executed at
any time, it is an exception to this.

The general form of every I/O statement is as the following:

statement-name ( specifier-list ) [variable-list]

All the I/O statements use a list of specifiers (specifier-list) and some of them may
require an additional list of variables (variable-list). The general form of a specifier is
as the following:

[ keyword = ] expression

Some specifiers are common between I/O statements, e.g. the UNIT specifier, whereas
some other ones are usable only in specific statements, e.g. the FORMATTED specifier.

From another perspective, a specifier can be used in two ways: either a value is
assigned to it to control the execution of the statement or a value is returned via a
variable as the result of the execution. However, regardless of the type, in a single
statement, a specifier is permitted to be used just once.
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1.9.1 Files, Records and Positions

There are two types of files in Fortran: an internal filewhich is basically a variable
occupying a part of the memory or an external filewhich is saved on a storage media
such as a hard-disk. As a precaution to any unforeseen software crashes, the best
approach is to write the invaluable computed data in an external file instead of an
internal one. However, keeping it to the safe side is accompanied by a drawback: it
slows down the execution of the program.

From another perspective, a file is a sequence of data parts, called records. All of
the records in a file are either formatted or unformatted. A formatted record consists
of a sequence of characters whereas an unformatted record contains the data as
it is stored in the memory. Thus, working with such records does not require any
conversion which leads to a faster interaction. On the other hand, formatted records
are readable as text files and more portable than the unformatted ones.

The file may end with an end-of-file record. The end-of-file record is a processor-
dependent recordwhichmarks the end of the file. This record can bewritten explicitly
by using the ENDFILE statement or implicitly by using the REWIND, the BACKSPACE
or the CLOSE statement.

The main issue of I/O management is working with external files to deal with a
huge amount of data. There are twomethods of accessing a file: sequential and direct
access. The connection to a file can support one of these methods at a time. However,
a file may be accessible by both of the methods. To change the access method, the
file must be disconnected and then reconnected with the new access method.

In a sequential access the data transfer begins at the beginning of the file and
proceeds record-by-record towards its end. Therefore, no sudden jumps to specific
records are possible. Themost important property in this kind of access is that the last
record written to the file is actually the last record in the file. For example, consider
a file with several records. If a record is written to the beginning of this file, that
record will be the only record on the file and other records will be discarded. In other
words, a sequential written record truncates the following ones.

In contrast, in a direct access, selection of a specific record is possible by its
number and thus, the data transfer can occur in any arbitrary order.

A formatted file with equal record lengths can be accessed by either one of the
mentioned methods.

During the course of a data transfer, a position holds the place which undergoes
the I/O action and then due to the same action, the position is updated to a new
one. If an error occurs, the position of the corresponding file will be indeterminate
and unreliable to continue the transfer. The best approach to resolve the issue is
disconnecting and reconnecting the file.

A schematic presentation of positions in a file is illustrated in Fig. 1.20. The point
before the first record is the initial point and the one after the last record is the
terminal point. For a new file without any records, these two positions are the same.

The position in a formatted file acts in two different manners: non-advancing and
advancing. In the advancing approach, after operating on a record, the position of
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Fig. 1.20 Various positions
with respect to records of a
file
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1st record

2nd record

...
Preceding record

Between records

Next record

Within the record Current record

...
Last record

Terminal point

the file will be located after the finished record and before the fresh record, called
preceding and next record, respectively.

In contrast, in a non-advancing approach, the position stayswithin the same record
until the operation is completely finished (end-of-record or end-of-file status); the
record is called the current record in this case. To be more specific, the position is
moving forward within the current record in a character-by-character base. If the
position within the record is just after its last character, an attempt to read will lead
to an end-of-record situation and if the record is the last one, one more attempt will
lead to an end-of-file situation.

1.9.2 Connection Statements

The OPEN statement is the general way of connecting an external file to a file unit.
However, theremay be pre-connected external files which do not require establishing
a connection.

In addition, an OPEN statement can be used to change the properties of an existing
connection. However, bear in mind to avoid connecting a file which is already con-
nected to a unit, to another one. Only one file at a time can be connected to a unit. By
connecting a file to a unit, that file is made available globally throughout the program
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via the unit number. Opening a non-existing file creates a new file automatically. The
syntax of an OPEN statement is as the following:

OPEN (connect-spec-list)

The connection specifier list (connection-specifier-list) facilitates opening of the file by
means of various specifiers as listed in Table 1.23. The following notes on connection
specifiers are worth mentioning:

• Generally, Fortran tries to handle the mistakes of a programmer as much as
possible. Consider, for example, the case that a file is currently connected to a
unit and without using a CLOSE statement, the programmer connects another file
to the same unit. The result of this act is not catastrophic: since Fortran closes
the current file and connects the new file automatically. However, this is not an
advised approach. It is even possible to write in a file either without a connection,
or without a FILE specifier. In this case, Fortran creates a fort.n file (n is the
unit number) and writes the data as a safe approach to avoid the loss of possible
valuable data. Again, this is not a recommended practice.

• A unit number is a non-negative integer. The allowable values for the unit depend
on the compiler and the environment being used. Usually a number between 10
and 100 is safe to use in pure Fortran programs. Allowable unit numbers in
Marc/Mentat are slightly different (see Table 2.1).

• For a temporary file which uses a SCRATCH specifier, no FILE specifier is required.
• The access specifier (ACCESS) is used for either a sequential or direct access. If
a direct access method is chosen, using the RECL specifier is a must.

• The record length specifier (RECL) sets the record length in a direct access: for a
formatted file in terms of characters and for an unformatted file in terms of bytes.

• If a form specifier (FORM) is absent, the default value for a direct and sequential
access is unformatted and formatted, respectively.

• The position specifier (POSITION) can only be used in a sequential access.
• The following specifiers are only permitted in a formatted file: PAD, BLANK, DEC-

IMAL, DELIM, ROUND and SIGN.
• If the padding specifier (PAD) is set to NO, the input must be exactly the same
length as required. But if a YES value is assigned, the empty characters are filled
with blanks.

After establishing the connection to an external file and finishing the data transfer,
the connection should be terminated by means of a CLOSE statement. Nevertheless,
Fortran manages the unclosed files after the termination of the program. But it
is not recommended to leave an idle unit file connected. The syntax for a CLOSE
statement is as the following:

CLOSE (close-spec-list)

http://dx.doi.org/10.1007/978-3-319-47668-1_2
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Table 1.23 Specifiers of an OPEN statement

Specifier keyword Description Allowed values or return values

UNIT Specifies the unit *: default unit

scalar-int-expr: for an external unit

char-var: for an internal unit

FILE Specifies the name of the file scalar-char-expr: for file name

ACCESS Specifies the access method of the
connection

’DIRECT’: for a direct access

’SEQUENTIAL (DEFAULT)’: for a
sequential access

’STREAM’: for a stream access

ACTION Specifies the allowed actions ’READ’: prohibits writing

’WRITE’: prohibits reading

’READWRITE’: permits read/write

STATUS Specifies the file existence before
establishing a connection

’OLD’: file must be an existing one

’NEW’: file must be non-existing to
be created

’UNKNOWN’: the status is unknown
(default)

’REPLACE’: a new file is created
even if exists

’SCRATCH’: file is deleted after
program termination

IOSTAT Returns the status of the open
statement execution by an integer

>0: error condition
=0: successfull execution

RECL Specifies the length of records in a
direct access

Positive integer value

FORM Specifies the format of the I/O file ’FORMATTED’: formatted file

’UNFORMATTED’: unformatted file

POSITION Specifies the position of a
sequential file

’ASIS’: position not altered
(default)

’REWIND’: set to initial point
’APPEND’: set to terminal
point/before EOF record

ERR Error specifier label: a label to branch

Formatted files specifiers

PAD Specifies using blanks in the place
of missing characters of inputs
shorter than required length

’YES’: blank padding (default)

’NO’: no blanks padding

BLANK Specifies the intrepretation of
blanks in numeric fields

’NULL’: ignores all blanks

’ZERO’: all trailing blanks are zeros

(continued)
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Table 1.23 (continued)

Specifier keyword Description Allowed values or return values

DECIMAL Sets the character indicating the
decimal point

’COMMA’: ’,’ as decimal point
’POINT’: ’.’ as decimal point

DELIM Specifies the delimiting character ’APOSTROPHE’: ’’’ used as
delimiter

’QUOTE’: ’"’ used as delimiter

’NONE’: no delimiter characters
(default)

ROUND Sets the rounding mode of
formatted I/O

’UP’: rounds up

’DOWN’: rounds down

’ZERO’: round to zero

’NEAREST’: round to nearest

’COMPATIBLE’: compatible
rounding

’PROCESSOR_DEFINED’: default
rounding

SIGN Controls the plus sign ’PLUS’: plus sign always appears

’SUPPRESS’: plus sign will not
appear

’PROCESSOR_DEFINED’: default

Table 1.24 Specifiers of a CLOSE statement

Specifier keyword Description Allowed values or return
values

UNIT Specifies the unit number scalar-int-expr: for an external
unit

STATUS Specifies the file existence
after terminating the
connection

’KEEP’: keeps the file (default)

’DELETE’: deletes the file
(default for a scratch file)

IOSTAT Returns the status of the close
statement execution by an
integer

>0: error condition

=0: successfull execution

ERR Error specifier label: a label to branch

A UNIT specifier is required in the close statement specifier list (close-spec-list). In
order to use the CLOSE statement specifiers, mind the list in Table 1.24. It is notable
that the specifiers of a CLOSE statement are very much similar to those of an OPEN
statement. Also remember that after a sequential write to a file, closing the file also
writes an end-of-file record to the file.



102 1 Fortran – Advanced Features

1.9.3 Data Transfer Statements

Data transfer statements, i.e. Print or Write and Read, are used to handle all sorts
of I/O actions ranging from printing messages on the screen and reading keyboard
inputs to dealing with internal/external files. The syntax for these statements are as
follows:

READ (io-control-spec-list) [ input-item-list ]
READ format [, input-item-list ]

WRITE (io-control-spec-list) [ output-item-list ]
WRITE format [, output-item-list ]

PRINT format [, output-item-list ]

The I/O control specifiers (io-control-spec-list) add a lot of flexibility to an I/O
process; a brief list is prepared in Table 1.25. In addition, mind the following points
while using I/O control specifiers:

• A unit specifier (UNIT) is the most common specifier and it is required when
dealing with external files; other specifiers are optional. The default unit (*) is
used either for formatted sequential input or output. The associated number is
usually processor-dependent (5 and 6). The default I/O units refer to the keyboard
as input and the display as output in a pure Fortran program.

• The format specifier (format) is used to shape the data into a specific format and
will be described more in detail in the next subsection.

• A namelist specifier (NML) lists data objects to be read or written. It cannot be
used together with a format specifier.

• If a format or a namelist specifier is used in a data transfer statement, it is called a
formatted I/O statement otherwise it is an unformatted I/O statement.

• The advance specifier (ADVANCE) is used just for a formatted sequential external
file. It indicates an advancing or non-advancing positioning in the file. If a size
control specifier (SIZE) or an end-of-record control specifier EOR is used, then a
non-advancing approach must be set by using ADVANCE=NO specifier.

• An end-of-file control (END) is used to determine if during a reading process, the
end of the file is reached without any errors. Then the IOSTAT variable is set to a
negative integer (if present) and finally a jump is made to the indicated label.

• An end-of-record control specifier (EOR) is used to indicate the end of a record in
a non-advancing reading approach. If the end of a record is reached, the IOSTAT
variable is set to a negative integer (if present) and finally, a jump is made to the
indicated label.
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Table 1.25 Specifiers of data transfer statements (I/O control specifiers)

Specifier
keyword

Description Allowed values or return values

UNIT Specifies the unit *: default unit

scalar-int-expr: for an external unit

char-var: for an internal unit

FMT Specifies the format *: for a list-directed formatting

label: label of a format statement

char-expr: format string

NML Specifies a namelist group namelist-group-name: name of a namelist
group

ADVANCE Specifies the advancing or
non-advancing formatted sequential
data transfer

’YES’: advancing (default)

’NO’: non-advancing

SIZE Returns the number of read characters scalar-default-int-variable: size indicator

EOR End-of-record specifier in a read
statement

label: a label to branch

REC Specifies the record number to be read
or written

scalar-int-expr: record number

IOSTAT Returns the status of the I/O statement
execution

scalar-default-int-variable: status indicator

ERR Error specifier label: a label to branch

END Specifies the end-of-file without any
errors in a read statement

label: a label to branch

• An error control specifier (ERR) indicates that an error has occurred. Then the
position of the file becomes indeterminate and the IOSTAT variable is given a
positive integer (if present). Finally, a jump is made to the designated label.

• The status of the I/O statement (IOSTAT) is returned by an integer: zero for a suc-
cessful execution, a negative number for an end-of-file or end-of-record condition
and a positive number for any other errors.

• A record number specifier (REC) indicates the record number to be read or written
and it can only be used in a direct file access.

• A size control specifier (SIZE) returns the number of read characters in a non-
advancing reading process. Note that if PAD specifier is set toYES, then the inserted
blanks are not counted.

An I/O item list (io-item-list) is either an input list used for a read statement or an
output list used for a write statement. An input list is a list of variables whereas an
output list is a list of expressions. An implied-DO loop (p. 82) can be used in either
cases.
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1.9.4 File Positioning Statements

The connection and data transfer statements affect the position of the file. However,
there are three specialized statements, i.e. file positioning statements, which enable
the programmer to control the position of a file:

• the BACKSPACE statement is used for backspacing, i.e. returning the position to
the previous record,

• the REWIND statement is used for rewinding, i.e. returning the position to the
beginning of the file, and

• theENDFILE statement is used forwriting an end-of-file record and sets the position
after this record.

All positioning statements have the following common syntaxes:

positioning-stmt external-file-unit
positioning-stmt (position-spec-list)

A positioning statement (positioning-stmt) operates on an external file unit (external-
file-unit) by the help of a list of positioning specifiers (position-spec-list). The position
specifiers listed in Table 1.26 can be used minding the following notes:

• Note that the position statementsworkon afilewhich is connectedwith a sequential
access.

• If an error occurs during the execution of a position statement, the position of the
file will be indeterminate.

• Backspacing in a non-advancing method returns the position of the current record
to its beginning. In an advancing method in which there is no current record, the
position is placed before the preceding record. For example, if the preceding record
is an end-of-file record, the position will be placed before that.

• If the last I/O statement in a sequential file is an output data transfer statement,
no end-of-file record will be present at the moment. In this case, backspacing the
file will perform two tasks: first, it executes an ENDFILE statement to write the
end-of-file record and second, it positions the file before the record preceding the
end-of-file one. In a similar situation, a REWIND statement writes an end-of-file
record and positions the file in its beginning.

Table 1.26 Specifiers of position statements

Specifier
keyword

Description Allowed values or return values

UNIT Specifies the unit number scalar-int-expr: for an external unit

IOSTAT Returns the status of a position statement
execution by an integer

>0: error condition

=0: successfull execution

ERR Error specifier label: a label to branch
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• After execution of an ENDFILE statement, no data transfer is permitted unless a
rewind or backspacing is done.

1.9.5 INQUIRY Statement

In some cases it is required to obtain specific information regarding a file and then,
deal with it correspondingly. The INQUIRY statement can extract such information
based on either the file unit number, using the UNIT specifier, or the file name, using
a FILE specifier. The syntaxes of an inquiry is as the following:

INQUIRE (inquire-spec-list)
INQUIRE (IOLENGTH=scalar-int-var) output-item-list

A list of inquiry specifiers (inquire-spec-list) is presented in Table 1.27. Since all
of these specifiers return values, appropriate variables (of compatible types) should
be used for each of the specifiers. The only exceptions are the UNIT and the FILE
specifiers which can be specified only by values. The mentioned table can be used
minding the following points:

• An inquiry can be made using either one of the UNIT or the FILE specifiers but not
both.

• An inquiry can be made before or after connecting a file to a unit.
• All character values are returned in upper-case letters except for theNAME specifier.

The second syntax is used for inquiries by an output item list (output-item-list) which
returns the I/O length (IOLENGTH) as an integer variable (scalar-int-var). It is used to
calculate the required record size for the intended output list prior to establishing the
connection with an unformatted file. In other words, the required size of the file to
hold the unformatted output list is obtained. This value can be used later in a RECL
specifier of the OPEN statement for a direct accessed unformatted file.

1.9.6 Data Format

Formatted I/O procedures are preferred for common practices because the results can
be modified and checked using a text editor. As mentioned earlier, a list of entities to
be read/written is called an I/O list. These items can be either expressions as outputs
or variables as inputs. In addition, implied-DO lists can be used for both of them.

At the lowest level, data entities are saved in their binary representation in the
memory. In contrast, the same data is saved as characters in a formatted file. Trans-
lating the items of an I/O list to their preferred character representation is done using
a format specification.
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Table 1.27 Specifiers of an INQUIRY statement

Specifier keyword Description Allowed values or return values

UNIT Used for making inquiries by means
of the unit number

scalar-int-expr: for an external unit

FILE Used for making inquiries by means
of the file name

scalar-char-expr: for file name

ACCESS Returns a scalar-char-variable for the
access method of the connection

’DIRECT’: for a direct access

’SEQUENTIAL’: for a sequential
access

’UNDEFINED’: for a disconnected file

ACTION Returns a scalar-char-variable for the
allowed actions

’READ’: prohibits writing

’WRITE’: prohibits reading

’READWRITE’: permits read/write

’UNDEFINED’: for a disconnected file

BLANK Returns a scalar-char-variable for a
blank specifier in numeric fields

’NULL’: ignores all blanks

’ZERO’: all trailing blanks are zeros

’UNDEFINED’: unformatted or
disconnected file

DELIM Returns a scalar-char-variable
indicating the delimiting character

’APOSTROPHE’: ’’’ used as delimiter

’QUOTE’: ’"’ used as delimiter

’NONE’: no delimiter characters

’UNDEFINED’: unformatted or
disconnected file

DIRECT Returns a scalar-char-variable
indicating if a direct access is
allowed

’YES’: direct access is allowed

’NO’: direct access is not allowed

’UNKNOWN’: direct access status is
unknown

ERR Error specifier of the inquiry label: a label to branch

EXIST Returns a scalar-logical-var if the
file/unit exists

.TRUE.: file or unit exists

.FALSE.: file or unit does not exist

FORM Returns a scalar-char-variable to
indicate if the file is connected for
formatted I/O

’FORMATTED’: formatted file

’UNFORMATTED’: unformatted file

’UNDEFINED’: for a disconnected file

FORMATTED Returns a scalar-char-variable
indicating if a formatted data
transfer is allowed

’YES’: formatted transfer allowed

’NO’: formatted transfer is not
allowed

’UNKNOWN’: unknown formatted
transfer

IOSTAT Returns a scalar-int-variable for
execution status of the statement

>0: error condition

=0: successfull execution

(continued)
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Table 1.27 (continued)

Specifier keyword Description Allowed values or return values

NAME Returns a scalar-char-variable for the
name of a connected file

Defined value: a file name

Undefined value: file without a name
or disconnected

NAMED Returns a scalar-logical-variable
indicating if the file has a name

.TRUE.: file has a name

.FALSE.: file does not have a name

NEXTREC Returns a scalar-int-variable returns
the number of next record in a direct
access method

last record + 1: next record to be
processed 1: no records are
processed

Undefined value: indeterminate
position or not connected for direct
access

NUMBER Returns a scalar-int-variable for the
unit number

number: unit number

-1: no file connected to the unit

OPENED Returns a scalar-logical-variable
indicating if the unit is connected

.TRUE.: unit is connected

.FALSE.: unit is not connected

PAD Returns a scalar-char-variable for the
value of a PAD specifier

’YES’: padding is used for the file

’NO’: padding is not used for the file

POSITION Returns a scalar-char-variable
indicating the position of file when
connected

’ASIS’: position not altered

’REWIND’: positioned at initial point

’APPEND’: positioned at terminal
point

Undefined value: indeterminate
position or connected for direct
access

READ Returns a scalar-char-variable if a
read is allowed for the file

’YES’: read is allowed

’NO’: read is not allowed

’UNKNOWN’: unknown read
condition

WRITE Returns a scalar-char-variable if a
write is allowed for the file

’YES’: write is allowed

’NO’: write is not allowed

’UNKNOWN’: unknown write
condition

READWRITE Returns a scalar-char-variable if a
read and write is allowed for the file

’YES’: read-write is allowed

’NO’: read-write is not allowed

’UNKNOWN’: unknown read-write
condition

(continued)
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Table 1.27 (continued)

Specifier keyword Description Allowed values or return values

RECL Returns a scalar-int-variable
indicating the maximum record
length (sequential access) or record
length (direct access)

Defined value: character length
(formatted) or one-byte size
(unformatted)

Undefined value: file does not exist

SEQUENTIAL Returns a scalar-char-variable
indicating if a sequential access is
allowed

’YES’: sequential access is allowed

’NO’: sequential access is not
allowed

’UNKNOWN’: unknown access

UNFROMATTED Returns a scalar-char-variable
indicating if an unformatted access
is allowed

’YES’: unformatted access is allowed

’NO’: unformatted access is not
allowed

’UNKNOWN’: unknown access

• a data edit descriptor which represents a data value,
• a control edit descriptor which controls the spacing, positioning, rounding, inter-
pretation of blanks and dealing with the plus sign, and

• a string edit descriptor which is a literal constant of character type. It is usually
used to add more information to the data item.

A format specification consists of several edit descriptors. There are three kinds
of edit descriptors:

In simplewords, the FORMAT specifier indicates the proper widths for data entities
and represents them in a fashionable manner. If the FORMAT specifier is not used, the
I/O statement determines a proper width based on the type of the data being used.
This is called implicit formatting which can be used for some common practices.
However, in more complicated cases such as formatted files an explicit formatting,
i.e. using the FORMAT specifier, is the best approach.

Note that generally in a formatted file, it is not permitted to transfer data in an
unformatted fashion. However, it is possible to do so with an implicit formatting.
For instance, assume that the (fileUnit = 20) file unit is opened for a formatted writing
process. Also consider the following output statement which is used to write a line
of text in the file:

1 WRITE ( f i leUni t ) ’an unformatted text . . . ’

Because no explicit/implicit formatting is specified, the Intel® Fortran compiler
will raise the following error while compiling the line:

forrtl: severe (256): unformatted I/O to unit open for formatted transfers, unit 20, file

A quick way of resolving this issue is using implicit formatting. This can be done by
replacing the previous line with the following one:

2 WRITE ( f i leUnit ,∗) ’an unformatted text . . . ’
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An explicit format specifier can be either a labeled FORMAT statement for compli-
cated and frequently-referenced formats or a character expression for simpler and
one-time cases. The syntax of a labeled FORMAT statement is as the following:

label FORMAT ([ format-item-list ])

A format item list (format-item-list), delimited in parentheses and separated by com-
mas, makes up the format specification. This FORMAT statement can be referenced
by means of the indicated label. Each data item on a format list must have a corre-
sponding data edit descriptor plus optional control edit descriptors and/or string data
descriptor. For instance, explicit formatting can be used to print three integer, real
and character variables named myInt, myReal and myChar with the following code:

1 WRITE (∗,100) myInt , myReal, myChar
2 100 FORMAT ( I5 , F8.4 , A10)

The line up of the variables is in correspondence with the indicated format. The
labeled FORMAT statement can be located anywhere in the scope of the code. For a
one-time use, a character expression format can be used to obtain the same result:

1 WRITE (∗ , ’ ( I5 , F8.4 , A10) ’ ) myInt , myReal, myChar

Any positive number before a data edit descriptor is considered a repeat factor with
the default value of 1 which allows compact format specifications. For instance, (I4,
I4, I4) can easily be expressed with a repeat factor of 3 like (3I4). It is also possible to
nest formats with parentheses to define more complicated formats in a concise way.
For instance, to print an array named myArray with 20 integer elements the following
formats are possible:

1 WRITE (∗ , ’ (5( I2 , I3 , I4 , I3 ) ) ’ ) myArray
2 WRITE (∗ , ’(2(3 I2 ,2I3),10I5 ) ’ ) myArray

Note that the array named myArray is broken down to its elements in order to create
an effective item list which matches data entities and data edit descriptors. The same
thing happens for a user defined data type or a complex number.

A character string edit descriptor is merely an informative character string which
is printed exactly as it is. For example, to indicate the number of iteration in a loop
by the ‘Loop #’ string and the result of the calculation by the ‘Result =’ string, the
following code could be used:

1 DO i = 1, 10
2 . . .
3 WRITE (∗ , ’ ( ’Loop # ’ , I2 , ’ Result = ’ ,F8.2) ’ ) i , r
4 ENDDO

Note that the blankswithin a character edit descriptor are significant.A list of standard
data and control edit descriptors is summarized in Table 1.28. There are many subtle
points using these descriptors. Nevertheless, the following points would be useful in
a formatted data transfer:

• A plus sign is mandatory when the SP descriptor is used and optional if the SS or
the S descriptors are used.

• The BN descriptor treats trailing blanks in a numeric input as blanks whereas the
BZ descriptor treats them as zeros.
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Table 1.28 Data and control edit descriptors in Fortran

Descriptor format Description

Data edit descriptors

[r]I w[.m] Integer data

[r]B w[.m] Integer data (Binary representation)

[r]O w[.m] Integer data (Octal-base representation)

[r]Z w[.m] Integer data (Hexadecimal representation)

[r]F w.d Real data type (without an exponent)

[r]D w.d Real data type (with an exponent)

[r]E w.d[E e] Real data type (with an exponent)

[r]EN w.d[E e] Real data type (engineering notation)

[r]ES w.d[E e] Real data type (scientific notation)

[r]G w.d[E e] General intrinsic data type

[r]A [w] Character type data

[r]L w Logical data type

Control edit descriptors

BN Ignores non-leading blanks in numeric items

BZ Non-leading blanks considered as zeros in numeric items

RC Compatible rounding

RD Rounding down

RN Rounding to the nearest

RP Processor-defined rounding

RU Rounding up

RZ Rounding to zero

T n Moves to position n

TL n Moves left n position(s)

TR n Moves right n position(s)

n X Moves right n position(s)

S Optional plus sign based on the processor (default)

SP Mandatory plus sign

SS Suppress plus sign

/ End current record

: Stop format processing if no further I/O list items exist

kP Scale factor is applied to certain real numbers

Notes: w total width of the field including the decimal point and sign in numerals
m minimum number of digits
d number of digits after decimal point
e number of digits of the exponent
n indicates the number of positions to move
k scale factor
r repeat factor (If not indicated, it is considered to be equal to 1.)
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• No scaling is present in a format specifier unless the kP descriptor is used. It
indicates a scale factor of k for all the real numbers. If an input is entered without
an exponent, the value is multiplied by 10k . For an output F descriptor, the value
is multiplied by 10k . However, for E or G descriptors, the significant is multiplied
by 10k and the exponent is reduced by k.

• A colon is used to stop formatting if the required items are not present. This is
useful for the cases when the number of items is not known. For example, consider
a list of maximum ten integers which is to be printed but the exact number of items
is not known. To print exactly ten integers the 10(I5,X) format is used. However,
the 10(I5,:,X) format must be used for any number of integers less than or equal to
ten. Note that even the edit descriptor for the space (X) will not be used for the last
item on the list.

• A slash ends the current record. Therefore, for an input file, the remaining part
of the file will be discarded and the position will be moved to the beginning of
the next record. In an output file, the current record will be written and then, the
position will be moved. For a simple output, a slash is the same as a carriage-return
and moves the cursor to the beginning of a new line.

• Obviously there is a limit for left tabbing using the (TL) descriptor. In a formatted
record this limit is the beginning of the record for an advancing method and the
current position for a non-advancing method.

• The rounding is set firstly using the OPEN statement. If no rounding descriptor
is used in an explicit formatting, the default value will be used. The rounding
occurs because of the difference between the number and its representation (see
Sect. 1.7.2). However, rules are the same as for an OPEN statement and they can
be summarized as the following points:

– Round up results in the smallest value greater than or equal to the original value.
– Round down results in the largest value less than or equal to the original value.
– Round to zero, results to the closest representable value which is not greater
than the original value.

– Round to the nearest, results in the closest of the two representable values if
there is not such a value the decision is processor-dependent.

– Compatible rounding, results in the same as the nearest rounding unless the
original value is halfway between two representable values. In the latter case,
the value away from zero is selected.

– Processor-defined rounding is a reserved type of rounding which is different
from all other types.

1.10 Summary of Accessing Files

As mentioned earlier, two main categories of accessing external files are the sequen-
tial and the direct access method. The sequential access can be done in either a for-
matted manner (advancing or non-advancing) or an unformatted manner. For direct
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access, only formatted and unformatted access is supported in the non-advancing
mode.

It is a useful practice to check if a unit is occupied and if the file exists prior to
applying any manipulations. For instance, the following code first checks the unit
number. If it is disconnected, it then checks for the existence of the filename.txt file.
If yes, it deletes the file and then connects the file, as a new one, to the same unit:

1 INTEGER : : f i l e U n i t = 10
2 CHARACTER(LEN=250) : : f i leName = ’ f i l ename . t x t ’
3 LOGICAL : : f i l e E x i s t , f i l eEnded , un i tConnected
4

5 INQUIRE (UNIT = f i l e U n i t , OPENED = un i tConnected )
6 IF ( un i tConnected .EQV. . FALSE . ) THEN
7 INQUIRE ( FILE = f i leName , EXIST= f i l e E x i s t )
8 IF ( f i l e E x i s t .EQV. .TRUE . ) THEN
9 P r i n t ∗ , ’ f i l e e x i s t s . ’

10 OPEN (UNIT = f i l e U n i t , F i l e = f i leName , STATUS = ’OLD ’ )
11 CLOSE (UNIT = f i l e U n i t , STATUS = ’DELETE ’ )
12 END IF
13 OPEN (UNIT = f i l e U n i t , F i l e = f i leName , ACCESS = ’SEQUENTIAL ’ ,
14 & STATUS = ’NEW’ , ACTION = ’READWRITE ’ )
15 ! I /O s ta tements go here . . .
16 CLOSE (UNIT = f i l e U n i t )
17 ELSE
18 WRITE ( ∗ , ∗ ) ’ Un i t i s a l r eady connected . ’
19 END IF

Another case which is frequently encountered is determining whether an end-of-file
(EOF) case or an end-of-record case (EOR) has occurred. In a READ statement,
the IOSTAT specifier returns different negative values for each case which can be
distinguished using the following intrinsic functions:

• is_iostat_end (i) returns .TRUE. for the I/O status variable i if it is the end of the file,
otherwise a .FALSE. value is returned.

• is_iostat_eor (i) returns .TRUE. for the I/O status variable i if it is the end of a record,
otherwise a .FALSE. value is returned.

It is recommended to use these functions instead of assigning labels to the EOF and
EOR specifiers. This will result in a more structured program.

Themost frequent use of external files is using them to generate formatted reports.
Therefore, in the simplest form, a sequential formatted access will satisfy the needs
of a program by producing portable text files. However, various types of access are
summarized in the following subsections.

1.10.1 Sequential Formatted Access - Advancing
Versus Non-advancing

Advancing and non-advancing data transfer is applicable to a file which is connected
via sequential formatted access. Because the access is formatted, the file is considered
as a sequence of records. In addition, an unformatted data transfer is not allowed for
a formatted access. However, it is possible to switch between the advancing and
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non-advancing approaches in a session. Nevertheless, the file positioning behaves
differently in each case.

In the advancing data transfer, the execution of an I/O statement positions the file
at the end of the record. In contrast, a non-advancing data transfer can be stopped in
the middle of a record.

Consider the case that a non-advancing method is used to read a part of record
and now the file position is in the middle of a record. If the method is changed to the
advancing method, reading will be continued from the current file position and not
the beginning of a record.

It is also possible for an advancing sequential access to be interrupted in the
following cases:

• an error condition,
• an EOF condition while reading, or
• while processing the format a colon descriptor comes up in a short list of input/out-
put data list. This will result in jumping to the beginning of the next record (if any
available).

From another perspective, a simple WRITE statement can be used in both advancing
and non-advancing methods to print some formatted output. An asterisk is used for
the default output, i.e. the display in normal cases. The difference will be only that
at the end of the advancing method a carriage return will return the cursor to the
beginning of the next line. This is similar to finishing a record in a file and moving to
the beginning of the next record. In contrast, in a non-advancing method, the cursor
is moved to the beginning of the next character at the same line.

The following syntax is used for I/O statements of an advancing sequential access
of a formatted file:

READ ([UNIT =] io-unit [, FMT =] format [, IOSTAT = scalar-int-var] [,ERR = label]
[, END = label] [, ADVANCE = ’YES’]) [input-item-list]

WRITE ([UNIT =] io-unit [, FMT =] format [, IOSTAT = scalar-int-var] [,ERR = label]
[, ADVANCE = ’YES’]) [output-item-list]

In this syntax, the I/O unit (io-unit) can be either an asterisk or a non-negative number.
Using this syntax, in the following listing, a file is opened in a sequential formatted
access. Then, a header plus a line of data is written to the file. Finally, the file is
moved to its beginning to read the written data and print them on the screen:

1 INTEGER : : i , j , recCounter , i oResu l t , f i l e U n i t = 10
2 CHARACTER(LEN=250) : : f i leName = ’ temp . t x t ’
3 LOGICAL : : f i l e E x i s t , f i l eEnded , un i tConnected
4 CHARACTER(LEN=22) : : c
5 CHARACTER(LEN=35) : : header
6 REAL : : r
7

8 99 FORMAT (A)
9 100 FORMAT ( i3 , 2x , F6 .2 , ’% ’ , 1x , A)

10

11 INQUIRE (UNIT = f i l e U n i t , OPENED = un i tConnected )
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12

13 IF ( un i tConnected .EQV. . FALSE . ) THEN
14 INQUIRE ( FILE = f i leName , EXIST= f i l e E x i s t )
15

16 IF ( f i l e E x i s t .EQV. .TRUE . ) THEN
17 P r i n t ∗ , ’ f i l e e x i s t s . ’
18 OPEN (UNIT = f i l e U n i t , F i l e = f i leName , STATUS = ’OLD ’ )
19 CLOSE (UNIT = f i l e U n i t , STATUS = ’DELETE ’ )
20 END IF
21

22 OPEN (UNIT = f i l e U n i t , F i l e = f i leName , ACCESS = ’SEQUENTIAL ’ ,
23 & STATUS = ’NEW’ , ACTION = ’READWRITE ’ )
24 WRITE ( f i l e U n i t , 99 , ADVANCE= ’YES ’ ) ’ I nc # Percent Comments ’
25 WRITE ( f i l e U n i t , 100 , ADVANCE= ’YES ’ ) 345 ,−12.3456 , ’A comment ’
26 ENDFILE ( f i l e U n i t )
27 REWIND ( f i l e U n i t )
28

29 recCounter = 0
30 i oResu l t = 0
31

32 f i l eEnded = . FALSE .
33 READ (UNIT = f i l e U n i t ,FMT = 99 , ADVANCE = ’YES ’ ) header
34 Wr i te (∗ , 9 9 ) header
35

36 DO WHILE ( f i l eEnded .EQV. . FALSE . )
37 READ (UNIT = f i l e U n i t ,FMT = 100 , ADVANCE = ’YES ’ ,
38 & IOSTAT = i oResu l t ) i , r , c
39 WRITE (∗ , 100 ) i , r , c
40 WRITE ( ∗ , ∗ ) i oResu l t
41 WRITE ( ∗ , ∗ ) i s _ i o s t a t _ e nd ( i oResu l t )
42 IF ( i s _ i o s t a t _ e nd ( i oResu l t ) .EQV. .TRUE . ) THEN
43 f i l eEnded = .TRUE.
44 ELSE
45 recCounter = recCounter + 1
46 END IF
47 END DO
48

49 WRITE ( ∗ , ∗ ) ’ Number o f read reco rd ( s ) ’ , recCounter
50 CLOSE (UNIT = f i l e U n i t )
51 ELSE
52 WRITE ( ∗ , ∗ ) ’ Un i t i s a l r eady connected . ’
53 END IF

It was not really necessary to use a WHILE loop in this specific example, because it
is already known that there is only one record in the file. Also note that two different
formats are used for the header and the data part. The ADVANCE specifier is not used
in the WRITE statement to show that the default value for advancing is YES.

In contrast to the advancing method, the non-advancing formatted method may
be more suitable for the following cases:

• a case in which only a part of data is required to be read or written. It is called
reading partial records, e.g. only the first two columns of a table,

• records with varying lengths, or
• irregularly formatted records. Consider the case that based on the value of a field,
the format and/or the length of the rest of the record may be different. Therefore,
it is not possible to read/write the whole record at once.

The syntax of the non-advancing method is as the following:

READ ([UNIT =] io-unit [, FMT =] format , ADVANCE = ’NO’ [, SIZE = scalar-int-var]
[, EOR = label] [, IOSTAT = scalar-int-var] [,ERR = label] [, END = label] [input-item-list])
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WRITE ([UNIT =] io-unit [, FMT =] format , ADVANCE = ’NO’ [, IOSTAT = scalar-int-var]
[,ERR = label]) [output-item-list]

Note that in this syntax, the ADVANCE = ’NO’ specifier is required to override the
default ’YES’ value. In non-advancing reading, EOR and SIZE specifiers are made
available to detect an end-of-record condition and read records with varied sizes,
respectively. Note that the EOR descriptor cannot be used in the advancing method.
A non-advancing access method can be interrupted in the following conditions:

• an error condition,
• an EOF or EOR condition while reading, or
• while processing the format a colon descriptor comes up in a short list of input/out-
put data list. This will result in jumping to the beginning of the next record (if any
available).

As a demonstration, assume that there is a file which consists of several records with
varied sizes and a maximum record size of 200 characters. It is necessary to read
the first field of every record which is an integer number. The rest of the data is not
required and thus, just stored in a temporary variable. A sequential formatted read
with non-advancing features is selected to carry out the job. The first field will be
read into the variable anInt and the rest to a temporary character variable named temp
in the following code:

1 CHARACTER (LEN = 200) : : temp
2

3 OPEN (UNIT = f i l e U n i t , F i l e = f i leName , ACCESS = ’SEQUENTIAL ’ ,
4 & STATUS = ’UNKNOWN’ , ACTION = ’READ’ , RECL = 200)
5 REWIND ( f i l e U n i t )
6

7 to ta lReadChars = 0
8 recCounter = 0
9

10 DO WHILE ( f i l eEnded .EQV. . FALSE . )
11 READ (UNIT = f i l e U n i t ,FMT= ’ ( I 3 ) ’ , ADVANCE = ’NO’ ,
12 & IOSTAT = ioResu l t , SIZE = readChars ) an I n t
13 to ta lReadChars = to ta lReadChars + readChars
14

15 READ (UNIT = f i l e U n i t ,FMT= ’ (A ) ’ , ADVANCE = ’NO’ ,
16 & IOSTAT = ioResu l t , SIZE = readChars ) temp
17 to ta lReadChars = to ta lReadChars + readChars
18

19 IF ( I s _ i o s t a t _ end ( i oResu l t ) .EQV. .TRUE . ) THEN
20 f i l eEnded = .TRUE.
21 ELSE
22 recCounter = recCounter + 1
23 END IF
24 END DO

In this example listing, the reading will continue until EOF is reached and the total
number of characters (totalReadChars) and the total number of records (recCounter)
is calculated.
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1.10.2 Sequential Access - Unformatted

In an unformatted sequential data transfer, the data is stored in the external file in the
binary representation. Therefore, it is the fastest of the sequential transfer methods.
The term ‘record’ is not appropriate to be used for an unformatted file. However, it
can be interpreted that an unformatted file consists of one unformatted record plus
an EOF record.

The syntax of I/O statements of this method is as the following:

READ ([UNIT =] io-unit [, IOSTAT = scalar-int-var] [, ERR = label]
[END = label]) [input-item-list]

WRITE ([UNIT =] io-unit [, IOSTAT = scalar-int-var][, ERR = label]) [output-item-list]

Note that when a file is connected for an unformatted data transfer, formatted access
is prohibited.

In the unformatted file no records are visible. Therefore, without knowing the
structure of the written data, the data will not be accessible. For the same reason,
an unformatted file is not a good choice in terms of portability, because even if the
structure of the data is known, the size of the data types is processor-dependent and
they may differ from the original resource. In addition, the file cannot be viewed or
edited using a text editor.

Considering all the mentioned properties, an unformatted file is not a suitable
choice to produce a portable output which can be edited manually and distributed
by the user. However, it is a very good choice to create dump files of several parts of
the memory due to its quick nature. In addition, the dumped values are not rounded
because they are saved in the exact binary values.

For instance, the following code writes 2000 integers stored in an array named
storage into an unformatted file:

1 INTEGER : : i oResu l t , f i l e U n i t = 10
2 CHARACTER(LEN=250) : : f i leName = ’dump . dat ’
3 LOGICAL : : f i l e E x i s t , f i l eEnded , un i tConnected = . FALSE .
4

5 INTEGER , PARAMETER : : MAXITEMS = 2000
6 INTEGER : : s to rage (MAXITEMS) = [ ( i , i = 1 , MAXITEMS ) ]
7 INTEGER , PARAMETER : : REQUIREDBYTES = S izeo f ( s to rage )
8

9 Wr i te ( ∗ , ∗ ) ’ f r e e = ’ , f i l e U n i t
10

11 OPEN (UNIT = f i l e U n i t , F i l e = f i leName , FORM = ’UNFORMATTED’ ,
12 & ACCESS = ’SEQUENTIAL ’ , STATUS = ’UNKNOWN’ ,
13 & ACTION = ’WRITE ’ , RECL = REQUIREDBYTES)
14

15 WRITE ( f i l e U n i t , IOSTAT = i oResu l t )
16 & [ ( s to rage ( i ) , i = 1 , MAXITEMS ) ]
17

18 ENDFILE ( f i l e U n i t )
19 CLOSE ( f i l e U n i t )

Note that, when dealing with unformatted files, the sizes are in bytes not characters.
Therefore, the intrinsic function Sizof() is used which returns the size of any variable
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in the memory. The variable REQUIREDBYTES is used to set the RECL specifier to
the required size.

1.10.3 Direct Access - Formatted Versus Unformatted

The advantage of direct access is performing I/O actions on selected records of an
external file. Contrary to the sequential method, in order to access a specific record
number, there is no need to read all the previous records, i.e. random access is
allowed. But unlike a sequential access, deleting a record is not possible. Data can
just be overwritten therefore deleting can be carried out by filling the record with
blanks.

Both of the formatted and unformatted methods can be used in a direct access.
However, if the file is connected for a formatted access, unformatted access is pro-
hibited and vice versa. For both formatted and unformatted access, all the records
must have the same length as specified using the RECL specifier in the corresponding
OPEN statement.

The following points characterize a formatted direct access:

• Although non-advancing or advancing is not applicable to direct access, it can be
stated that the access method is always advancing. The ADVANCE specifier is not
allowed.

• The END specifier is not allowed.
• An attempt to read the unwritten data causes the input values to be undefined.
• The size of the data to be written must not violate the record size. However, if the
number of items on an output list is less than the record size, then the rest of the
record will be filled with blanks.

The syntax for a formatted direct access I/O transfer is as the following:

READ ([UNIT =] io-unit [, FMT =] format , REC = scalar-int-expr
[, IOSTAT = scalar-int-var] [, ERR = label]) [input-item-list]

WRITE ([UNIT =] io-unit [, FMT =] format , REC = scalar-int-expr
[, IOSTAT = scalar-int-var][, ERR = label]) [output-item-list]

A formatted direct access is interrupted in the case of either one of the followings:

• an error condition, and
• a colon descriptor comes upwhile processing the format in a short list of input/out-
put data list. This will result in jumping to the beginning of the next record (if any
available).

In the following listing, 10 records will be created using the direct access method.
Then, in order to delete the fifth record, it is overwritten with blanks:

1 INTEGER : : i oResu l t , f i l e U n i t , recordLength , i n tDa ta , i
2 CHARACTER(LEN = 250) : : f i leName = ’ t e s t . t x t ’
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3 CHARACTER(LEN = 10) : : charData
4 REAL : : rea lDa ta
5

6 101 FORMAT (20X)
7 100 FORMAT ( I3 ,1X , F5 .1 ,1 x , A10 )
8

9 recordLength = 20
10 f i l e U n i t = 10
11

12 OPEN (UNIT = f i l e U n i t , F i l e = f i leName , FORM = ’FORMATTED’ ,
13 & ACCESS = ’DIRECT ’ , STATUS = ’UNKNOWN’ ,
14 & ACTION = ’READWRITE’ , RECL= recordLength )
15

16 i n tDa t a = 1
17 r ea lDa ta = 12.3456
18 charData = ’ Pressure ’
19

20 DO i = 1 , 10
21 WRITE ( f i l e U n i t , FMT = 100 , IOSTAT = ioResu l t , REC = i )
22 & in tDa ta , rea lData , charData
23 END DO
24

25 WRITE ( f i l e U n i t , FMT = 101 , IOSTAT = ioResu l t , REC = 5)
26

27 i n tDa t a = 0
28 r ea lDa ta = 0.0
29 charDAta = ’ ’
30

31 DO i = 1 , 10
32 READ ( f i l e U n i t , FMT = 100 , IOSTAT = ioResu l t , REC = i )
33 & in tDa ta , rea lData , charData
34 WRITE (∗ , ’ ( "RECORD #" , I2 , " : " ) ’ , ADVANCE = ’NO’ ) i
35 WRITE (∗ , 100) i n tDa ta , rea lData , charData
36 END DO
37

38 CLOSE ( f i l e U n i t )

This code generates a formatted file, i.e. a text file which can be edited by the user.
An unformatted direct access writes the binary data of the memory to the file. The

following points characterize this type of access:

• The same type of written values must be repeated while reading to assure a correct
data transfer. However, it is possible to specify fewer items to be read than the
number of written items.

• Exactly one record is transferred in an I/O action.
• END, FMT and ADVANCE specifiers are not allowed.
• The size of the data to be written must not violate the record size.
• An attempt to read the unwritten data causes the input values to be undefined.
• If the number of items on an output list is less than the record size, then the rest
of the record will be undefined.

The syntax for an unformatted direct access I/O transfer is as follows:

READ ([UNIT =] io-unit [, FMT =] format , REC = scalar-int-expr
[, IOSTAT = scalar-int-var] [, ERR = label]) [input-item-list]

WRITE ([UNIT =] io-unit [, FMT =] format , REC = scalar-int-expr
[, IOSTAT = scalar-int-var][, ERR = label]) [output-item-list]
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An unformatted direct access is terminated in one of the following cases:

• an error condition, and
• a short number of items on either an input item list or output item list.

Asmentioned previously, the unformatted I/O is a fastmethod to dump large amounts
of data. One may prefer an unformatted direct access. As an example, the formatted
direct-access example is re-written using an unformatted access:

1 INTEGER : : i oResu l t , f i l e U n i t , recordLength , i n tDa ta , i
2 CHARACTER(LEN = 250) : : f i leName = ’ t e s t . t x t ’
3 CHARACTER(LEN = 10) : : charData
4 REAL : : rea lDa ta
5

6 recordLength = s i z e o f ( rea lDa ta ) + s i z e o f ( i n tDa t a ) +
7 & s i z e o f ( charData )
8

9 f i l e U n i t = 10
10

11 OPEN (UNIT = f i l e U n i t , F i l e = f i leName , FORM = ’UNFORMATTED’ ,
12 & ACCESS = ’DIRECT ’ , STATUS = ’UNKNOWN’ ,
13 & ACTION = ’READWRITE’ , RECL= recordLength )
14

15 i n tDa t a = 1
16 r ea lDa ta = 12.3456
17 charData = ’ Pressure ’
18

19 DO i = 1 , 10
20 WRITE ( f i l e U n i t , IOSTAT = ioResu l t , REC = i )
21 & in tDa ta , rea lData , charData
22 END DO
23

24 i n tDa t a = 0
25 r ea lDa ta = 0.0
26 charDAta = ’ ’
27 WRITE ( f i l e U n i t , IOSTAT = ioResu l t , REC = 5)
28 & in tDa ta , rea lData , charData
29

30 DO i = 1 , 10
31 READ ( f i l e U n i t , IOSTAT = ioResu l t , REC = i )
32 & in tDa ta , rea lData , charData
33 WRITE (∗ , ’ ( "RECORD #" , I2 , " : " ) ’ , ADVANCE = ’NO’ ) i
34 WRITE (∗ , ∗ ) i n tDa ta , rea lData , charData
35 END DO
36

37 CLOSE ( f i l e U n i t )

In conclusion, there are various methods to tackle an I/O transfer job among which
the best one could be easily recognized by user experience. However, I/O transfer is
an extensive topic and this section is merely a brief introduction. One may follow
more advanced techniques through reading the references.



Chapter 2
Introduction to Marc/Mentat

Abstract In the current chapter, the internal structure of Marc/Mentat is
explained. In this chapter, various aspects are considered such as interaction between
Marc and Mentat, program files, the input file structure, table-driven input, sets,
user-defined subroutines, predefined-common blocks, debugging tips etc. In addi-
tion, a brief introduction to procedure files, using C programming codes in Fortran,
and Python scripts (PyMentat and PyPost) are provided.

2.1 MARC/MENTAT Interactions

The commercial finite element package Marc/Mentat provides a wide variety of
advanced capabilities to facilitate the finite element modeling of physical phenom-
ena. It consists of two major parts:Marc is the core solver andMentat is the GUI1

responsible of both pre- and post-processing of the finite elementmodel. For an unex-
perienced user,Mentat is a good starting point. However, in order to take advantage
of the advanced possibilities of this package, it is imperative for an experienced user
to have a deeper understanding of how these parts communicate with each other in
the background. As several interactions take place between these components, many
files are created, opened, read and written. In a nutshell,Mentat translates the mod-
eling process with the corresponding details into the input file and then passes it to
the solver to be read. The solver, Marc, reads this file, interprets it and carries out
the solution of the system of equations and the results are passed back toMentat for
post-processing. A part of these interactions is concisely illustrated in Fig. 2.1.

In this package,Mentat can handle almost all the steps of generating and manip-
ulating a finite element model before analysis (pre-processing) as well as working
on the primary and secondary solutions after obtaining the output results (post-
processing). The created finite element model is saved in the model file (.mud or
.mfd) which is a binary file without any analysis results. This file is used to generate
a formatted/unformatted text file, the input file (.dat). The input file will be sent to
Marc for analysis. Note thatMentat always starts in a directory, called theworking
directory in which the files mentat.proc and mentat.log will be saved. These two files

1Graphical User Interface.
© Springer International Publishing AG 2017
Z. Javanbakht and A. Öchsner, Advanced Finite Element Simulation
with MSC Marc, DOI 10.1007/978-3-319-47668-1_2
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Fig. 2.1 Marc/Mentat interaction

contain all of the user activities during a working session. Therefore, in the case of
a sudden crash of the software the unsaved part of the model can be retrieved. These
files are overwritten when a new session starts and thus, it is a good approach to set
a separate working directories at the beginning of each session. Such capabilities
makeMentat a great starting point for finite element modeling. The advantages of
using Mentat can be summarized, but are not limited to, as follows:

• the input file can be generated in an interactive way which speeds-up the model
generating process,

• extra lines can be added to the input file,
• pre-processing data can be viewed in a graphical environment, e.g.mesh, boundary
conditions, loads, element types etc. which makes the debugging of the model
easier,

• post-processing can be done to generate graphs, contours, iso-surfaces, cutting-
planes, deformed/original shapes, and others, which allows for a quick view of the
results,

• error-checking of the input file can be done prior to submitting a job and proper
warnings/errors can be displayed,

• input-verification is carried-out to some extent while entering data via keyboard
which prevents common mistakes, and

• automatization of the routine jobs is possible by means of the procedure files or
Python scripts.
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Although generally using Mentat can save a considerable amount of time in the
model generation procedure, this is not enough when it comes to dealing with com-
plicatedmodels and advanced questions. In other words, it is a good idea to generate a
basicmodel usingMentat and apply furthermanipulations, for example, by directly
editing the input file.

As mentioned earlier, after a model is created using Mentat, upon running the
corresponding job, an input file is created and passed to Marc for a run, i.e. an
analysis. The result of a successful analysis is passed back to Mentat for post-
processing.Alongwith these, there are several other auxiliary fileswhich are involved
in the wider scope of the analysis; for instance:

• the control file (.cnt) by which the user can control the analysis process,
• the status file (.sts) containing a short summary of the analysis,
• the log file (.log) with the progress of the solution of the problem,
• the output file (.out) which is a descriptive file containing error and warning mes-
sages as well as additionally requested information,

• the post files (.t16 and .t19) in binary/text formatwhich are the results of the analysis
and can be used for subsequent analyses, and

• the restart file(s) (.t08) is created in specific points of an analysis which enables
the user to continue the analysis from these points onward.

The most powerful aspect of Marc is providing the user subroutines capability
which adds great flexibility in solving non-standard problems. A user subroutine can
be written in Fortran, the C/C++ programming language or a mixture of both. The
source files are compiled using the appropriate compilers, linked and run instead of
the standard routines of Marc to carry out a user-desired procedure.

Programming features are also made available in Mentat via Python scripts
and procedure files. Python scripts can be used either to run commands in the
Mentat environment, called PyMentat, or to process the results of Marc, called
PyPost. In contrast, a procedure file is a text file which contains the commands and
input values exactly as if the user is running and entering them.2

As mentioned in Sect. 1.9, handling a file in Fortran requires a unique file unit
to handle the data transmission process. Considering the fact that the Marc/Men-
tat package is also written in Fortran, not only the same concept is still true but
also there are additional reserved unit numbers by which the read/write process of
the auxiliary files is done.

In other words, whenMarc deals with the supplementary files they remain con-
nected until the end of the analysis. Therefore, these specific unit numbers are con-
sidered as pre-connected units. The user must avoid connecting such units to other
files to prevent any conflicts. Although a unit number between 110 to 119 can be used
for a personal file, using a number larger than 200 is recommended. In Table 2.1, a
short list of these unit numbers is shown. For a more descriptive table, one may refer
to [25]. The aforementioned capabilities will be discussed more descriptively in the
following sections of the current chapter.

2Similar to the concept of a macro in other programs.
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Table 2.1 Selected FORTRAN file units used by MARC. Adapted from [25]

File name Unit Description File
type

jidname.log 0 Analysis sequence log file SF

jidname.t02 2 OOC solver scratch file DF

jidname.t03 3 ELSTO parameter storage for element data DU

jidname.dat 5 Data input file SF

jidname.out 6 Output file SF

jidname.t08 8 Restart file, written out SU

ridname.t08 9 Restart file to be read in from a previous job SU

jidname.t11 11 OOC solver scratch file SU

jidname.t12 12 OOC solver scratch file SU

jidname.t13 13 OOC solver scratch file SU

jidname.t14 14 OOC solver scratch file DU

jidname.t15 15 OOC solver scratch file SU

jidname.t16 16 Post file, written out SU

ridname.t16 17 Post file to be read in from a previous job SU

jidname.t19 19 Post file, written out SF

ridname.t19 20 Post file to be read in from a previous job SF

jidname.sts 67 Analysis progress reporting file SF

user-specified 110–119 Custom files to be included in the input file SF

jidname.dump N/A Scratch file for a failed in-core reallocation SU

OOC Out-of-core
SF Sequential-access formatted
SU Sequential-access unformatted
DD Direct-access formatted
DU Direct-access unformatted

2.1.1 Mentat Commands

To provide a consistent system for specifying commands in Mentat, the symbols
in Table 2.2 are used. For example, the command for importing the test.dat input file
toMentat is as follows:

3 File � Import � Marc Input � File name:test.dat

The interpretation of this command is to select File from the Main Menu Tabs. Then
Import should be selected and after that, the Marc Input menu item must be selected.
Finally, the value of the File name field must be set to test.dat.

This notation for specifying a Mentat command is for the experienced user. A
more descriptive notation can be found in [31] which is helpful for a beginner.
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Table 2.2 Command
symbols for Mentat

Symbol Description

1 Dropdown menu

2 Function buttons

3 Main menu tabs

4 Tab sections

5 Model navigator

6 Graphic interface

7 Graphic interface navigation menu

8 Command line dialog

� Command separator

a:b The value of a is set to b

2.1.2 MARC Solver Types

Using the finite element method leads to the solution of a system of simultaneous
equations instead of the original differential equation governing the system. Themost
straightforward approach is using the inverse of the matrix of coefficients, which is
not the best approach in every case. In Marc, the two main categories of solvers
are direct and iterative ones. Various solver types are made available through the
command-line and the SOLVER option; they are listed in Table 2.3.

2.1.3 Structure of the Installation Folder

After completing the installation of the Marc/Mentat package, separate folders
are created forMarc andMentat. If the default path is selected for the installation,
then a path similar to C:\MSC.Software\Marc\2014.2.0 will be the parent folder of
the package. Each part of the package, i.e. Marc and Mentat, will have separate

Table 2.3 Solver types for
Marc

Solver code Solver type

0 Profile direct solver

2 Sparse iterative

4 Sparse direct solver

8 Multi-frontal direct sparse solver

9 CASI iterative solver

10 Mixed direct/iterative solver

11 Pardiso parallel direct solver

12 MUMPS parallel direct solver
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Marc
subdirectories af flowmat Material data

bin Executable files

common Common block files

demo Demonstration examples

demo ddm Demonstration examples for parallel analyses

demo table Demonstration examples with table-driven input

intelmkl Intel R© Math Kernel Library

intelmpi Intel R© MPI libraries for parallel analyses

lib Compiled binary libraries

lib shared Shared system libraries

pldump Source routine for pldump program

test ddm Installation test examples

tools Batch files

user User-subroutine templates

run marc.bat Job submission batch files
include win64.bat Settings of run marc.bat
run marc defaults Setting file for two default values

Fig. 2.2 Subdirectories of Marc

folders, e.g. marc2014.2 and mentat2014.2, respectively. The subdirectories of each
one of these folders contain all the executables and the corresponding setting files.
In the advanced level, it is sometimes required to modify some of the installed files.
Note that before applying any modifications, it is advised to make a backup copy of
the files to be modified as a precaution to any unwanted or incorrect modifications.
In Figs. 2.2 and 2.3, the typical subdirectories are shown for Marc and Mentat,
respectively. However, based on the chosen type and/or the version of installation
package, the subdirectories might be slightly different than what is shown in the
figures.

In Fig. 2.2, the subdirectories for the main folder of Marc are listed and are
accompanied with a brief description for each one of them. Among these folders, the
following ones are worth mentioning:

• The common subdirectory is dedicated to the common blocks of Marc. Each
common block is included in a separate file with a .cmn file extension with a few
lines of comments describing some of the variables.

• The tools folder contains the following important files:

– The run_marc.bat is used to run a job from the command prompt.
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– The include_win64.bat batch file runs prior to the run_marc.bat batch file in order
to specify the settings for the latter.

– The run_marc_defaults file indicates the default solver mode (MARC_MODE i4/i8)
and the default MPI3 version. There are two solver modes: the LP64 or i4 mode
which uses 4-byte integers and the ILP64 or i8 mode which uses 8-byte inte-
gers. The latter has almost no limitations regarding model size but it uses more
memory. This setting is stored in the run_marc_defaults file in a line such as the
following one:

MARC_MODE i8

In order to change this setting, simply edit the mentioned file and change i4 to i8
or the other way around, as preferred. Within the same file, the default MPI can
be specified to either one of Intel® MPI or HP® MPI via the following line:

MARC_MPI intelmpi

This line can be changed to MARC_MPI hpmpi to apply the setting for HP® MPI.

• The user folder contains the templates for the subroutines of Marc. The syntax
of these templates is slightly different from that of the listed subroutines in the
documentation ofMarc. In the templates of the documentations, an implicit type
declaration is used, but in these template files no implicit type declarations exist.
It is recommended to use these files as the starting point of writing subroutines for
Marc.

• Various demonstration examples can be found in demo, demo_ddm and demo_table
folders.

• A few installation testing examples are also provided within the folder test_ddm.
• The pldump folder contains the source files for a utility program with the same
name which is used to work on post-files of Marc. The executable version is
located in the bin folder.

• Various library files are located in the lib, lib_shared, intelmkl and intelmpi folders.
• Executable files of Marc are located in the bin folder.

As mentioned, Mentat files are organized in a separate parent folder (Fig. 2.3)
in which the following subdirectories are located:

• The bin subdirectory contains the executables and the batch files which can be run
within Mentat by specific commands, e.g. a job can be submitted using either
submit1.bat, submit2.bat or submit3.bat and these files can bemanipulated to arrange
a differently-configured run. These files originate from the submit.bat file in this
subdirectory. Note that the main batch file for running Mentat is the mentat.bat
file which is also located in the same subdirectory.

• The help subdirectory contains the help files for Mentat.
• The materials and materials_pre2010 folders contain several material properties
saved in files with the .mat extension. The latter folder contains the same files as
the former but saved in the old format.

3Message Passing Interface.
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Mentat
subdirectories bin Executable files

help Help files

materials Material files

materials pre2010 Material files in the old version

menus Menu files for the GUI

python Python scripting tools

shlib Shared libraries

submit.bat Original job submission batch file
submit1.bat submit2.bat submit3.bat Job submission batch files
mentat.bat Batch file to run Mentat

Fig. 2.3 Subdirectories of Mentat

• The interface menu files for Mentat are located in the menus subdirectory and
are saved with the extension .ms.

• The python subdirectory contains the files for the Python programming language
which can be used for scripting purposes within Mentat.

• The shlib subdirectory contains the shared library files.

2.2 The Input File

The input file or sometimes called the data-file, is a text file containing the finite
element model with all the corresponding data, i.e. the parameters and the options
which have been selected during the process of modeling.

At the beginner level, this file is usually generated by the GUI of the package,
i.e. Mentat, but at more advanced levels it can completely, or at least in part, be
created and edited by the user.

In any computer programming language, interpretable commands and the neces-
sary data are passed to the compiler via a source-file. The compiler is in charge of
translating the commands and the related data to machine code or at the most basic
level, to binary codes.

Similarly,Marc plays the role of the interpreter of the input file and sinceMarc is
written in Fortran, the syntax of the input file is very similar to Fortran program-
ming code. Each line of the input file is called a block or a data block. Commands in
the input file are usually organized in several sequential blocks and are recognized
by their keywords. In other words, a command is identified by its specific keyword
followed by its required data.Marc reads each block of the input file as an alphanu-
meric string and then interprets it as a combination of keywords, integer numbers
or floating point numbers. In conclusion, the keywords represent the commands and
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input file
$ Marc parameters e.g. TITLE, SIZING and etc.
. . .
END

Parameter Data

$ Model definition data for the increment zero
$ e.g. CONNECTIVITY, COORDINATES and etc.
. . .
END OPTION

Model Definition Data

$ History definition data for the first increment
$ e.g. PROPORTIONAL, INCREMENT and etc.
. . .
CONTINUE
$ History definition data for the second increment.
. . .
CONTINUE
$ History definition data for the following increments.
. . .
CONTINUE

History Definition Data
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Fig. 2.4 Input file structure in Marc

the data can be passed to Marc as either alphanumeric values, integer numbers or
floating point numbers.

2.2.1 Grouped Structure

Three distinctive groups of commands are distinguishable in the input file structure:
the parameter data, the model definition data and the history definition data, as
illustrated in Fig. 2.4. Each one of these groups is composed of specific commands
which are organized in several blocks. Specific keywords are allowed in each group.
A parameter is a keyword which is used in the parameter data section of the input
file whereas an option can be used in either one of the model definition data section
or history definition data section. Using the parameter data group and the model
definition group is enough to handle a simple linear analysis if no incremental loading
is required. Additional increments will be specified in the history definition group.

It is worth mentioning that in order to reduce the size of the input file, default
values are defined for various features. In other words, most of the keywords are
optional and they are used only if a value other than the default one is preferred. This
will help to maintain the small size and the simple structure of the input file.

The input file startswith the firstmandatory group of blocks, i.e. the parameter data
group. In this section, several attributes can be set by means of different parameters,
among which the following are worth mentioning:

• TITLE, defines the output title,
• ELEMENTS, defines up to 14 element types used in the analysis,
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• ALLOCATE, allocates the necessary memory for the job to start,
• SIZING, sets the maximum number of nodes and elements,
• VERSION, selects the version of the input file,
• EXTENDED, allows working with large and/or higher precision models, and
• END parameter which marks the end of the section.

There is a rather long list of parameters that are used to set different preferences
in this section such as analysis type, rezoning, input/output control and even for
modifying default values. However, the minimum parameters to be used are TITLE,
ELEMENTS and END.

The second mandatory section of the input file is the model definition section.
This section, in the most concise form, contains the necessary options for obtaining
an initial elastic solution, a so-called zero-increment solution of the problem in-
hand. Thus, it covers a wide variety of information such as the geometry, nodal point
data, boundary conditions, material data, contacts, error controlling, post-processing,
print-out options etc. Some of the common options of this section can be listed as
follows:

• GEOMETRY, specifies the geometrical data,
• COORDINATES, assigns coordinates to nodes,
• CONNECTIVITY, specifies the nodes that compose an element,
• DEFINE, defines a set and associates members to it,
• POST, creates a file for post-processing,
• OPTIMIZE, invokes a bandwidth optimizer for the stiffness matrix,
• INCLUDE, inserts an external file at the exact place of this option,
• PRINT, activates the printout of various useful items for debugging,
• NO PRINT, suppresses element and nodal output,
• PRINT ELEMENT, selected elements and the corresponding selected quantities will
appear in the output file,

• PRINT NODE, selected nodes and the corresponding selected quantities will appear
in the output file,

• SUMMARY, generates a summarized report of the increment,
• RESTART, used to write restart data to a file or read the data from a file, and
• the END OPTION keyword which marks the end of the section.

The last section of the input file is the optional history definition section. After obtain-
ing the zero-increment solution, controlling the flow of Marc will be done through
the options provided in this section. This group of options can applymultiple sequen-
tial loadcases or any alterations to the initial model such as a change in the boundary
conditions. Each one of the loadcases ends with the keyword CONTINUE and can
be applied to a single increment or multiple ones; the latter is usually done auto-
matically. The following is a list of some allowable options of the history definition
group:

• NEW, used to change the format of the input file from EXTENDED to default or
vice versa,
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• INCLUDE, POST, NO PRINT, PRINT ELEMENT, PRINT NODE, SUMMARY and
RESTART have the same effect as explained in the previous section,

• CONTROL, an important option to set the convergence parameters of the current
loadcase,

• PARAMETERS, sets quite a few finite element parameters for advanced users,
• LOADCASE, sets the boundary and initial conditions active in the current loadcase,
and

• CONTINUE which marks the end of the information related to the current loadcase,
and is the starting point for the data related to the next loadcase.

As it has already beenmentioned, there are some common options which can be used
in either model definition or history definition group such as the POST option. In
addition, there are common keywords in both parameter and history definition groups
such as TITLE. Another frequently used keyword is the COMMENT keyword or the
Dollar sign ($) which are used by the user to add informative comments anywhere
in the input file.

2.2.2 Format Conventions

Marc recognizes the parameters and the options of the input file in either lower- or
upper-case letters. Each line of the input file is structured as a data-block and may
consists of one or several entries. Each entry is either an alphanumeric keyword or
a piece of data which can be an alphanumeric value (A), an integer number (I), or
a floating point number (F). Each data-block can be structured in fixed format or
free format; although a mixture of these formats can be used, only one of them is
allowed in a single line of text. Similar to the fixed format of Fortran programming
convention, a fixed number of columns are designated to each entry in the fixed
format. The following points are mentionable with regards to the fixed format:

• Each line consists of a total of 80 characters.
• An integer number is specified using five columns and a floating point number is
specified using 10 or 15 characters.

• Each number must be right-justified with respect to its own field. Therefore, blank
spaces are significant.

In contrast to this rather restrict format, the free format provides more flexibility
in terms of field-width considerations. This format can be used by following some
simple rules:

• A comma must follow after every single item of a data block (even a keyword).
• If a block consists of just one data item, an optional comma could follow that item.
• Blank spaces are insignificant.
• In order to skip a value in the data block, two consecutive commas shall be used.

In both of these formats, the following points must be considered to introduce a
number:
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Fig. 2.5 Format for the COORDINATES option. Adapted from [24]

• Floating point numbers can be specified with or without exponents but in either
case, using a decimal point is mandatory.

• The decimal point distinguishes between an integer and a floating point without
an exponent. AlthoughMarc tries to compensate for the errors, this is an advised
approach.

• The exponent of a floating point follows after the character E, D or a plus sign (+).

The correct format for all of the available options and parameters are explained thor-
oughly in [24], but as an example, the COORDINATES option of the model definition
group will be discussed to further clarify the concept. This option is used to specify
the coordinates of the nodes in the model. The format of this option is illustrated in
a table in Fig. 2.5. The first column of the table is the number of each fields in the
fixed format. The second column indicates the sequence of fields in the free format.
The third column is the type of the field which is either an alphanumeric, an integer
or a floating point number represented with A, I or F, respectively. The last column
is a short explanation of each data field. The fields of the COORDINATES option are
categorized in three data blocks: the first one is the keyword, the second one consists
of four integers to specify themaximum number of degrees of freedom for each node,
set the number of total nodes, specify the unit number to read the node coordinates
from and to set the print out capability. The following blocks are repetitive blocks
each consisting of the number of the node followed by its coordinates. Based on this
format, a sample COORDINATES option can be written in the fixed format as follows:
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1 $ L ines 2 to 4 are used as a guide f o r the f i x e d fo rma t
2 $ 5 10 15 20 25 30 35 40
3 $234567890123456789012345678901234567890
4 $ | | | | | | | |
5 $ 1 s t data b lock
6 COORDINATES
7 $ 2nd data b lock
8 3 40 0 1
9 $ 3 rd data b lock

10 1 1 . 20 . 300. $ ( 1 . 0 , 2 0 . 0 , 3 0 0 . 0 )
11 2 1.0 20.0 300.0 $ ( 1 . 0 , 2 0 . 0 , 3 0 0 . 0 )
12 3 1 . E0 2 . E1 3 . E2 $ ( 1 . 0 , 2 0 . 0 , 3 0 0 . 0 )
13 4 1 .D0 2 .D1 3 .D2 $ ( 1 . 0 , 2 0 . 0 , 3 0 0 . 0 )
14 5 1.00000+0 2.00000+1 3.00000+2 $ ( 1 . 0 , 2 0 . 0 , 3 0 0 . 0 )
15 6 1.00000+02.000000+13.000000+2 $ ( 1 . 0 , 2 0 . 0 , 3 0 0 . 0 )
16 7 1.00 2.00 3.00 $ ( 1 . 0 , 2 0 . 0 , 3 0 0 . 0 )
17 8 1 2 3 $ ( 1 . 0 , 2 . 0 , 3 . 0 )
18 9 1 . 2 .0E1 3.0000+3 $ ( 1 . 0 , 2 E10 ,3 E30 )
19 101 2 3 $ ( 1 . 0 , 2 . 0 e9 , 3 . 0 e9 )
20 11 1e1 2e2 3e3 $ ( 1 . 0 , 2 0 . 0 , 3 0 0 . 0 )
21 12 1d1 2d2 3d3 $ ( 1 . 0 , 2 0 . 0 , 3 0 0 . 0 )
22 . . .
23 40 0 . 0.00000+0 0 . E1
24 . . .
25 $ I n d i c a t e s the ou tpu t u n i t f i l e f o r the summary i s 8
26 SUMMARY 8
27 . . .

In this listing, different examples of inputs for floating point numbers are demon-
strated. The result of each line is shown as a comment in the same line. Note that if the
right-justification rule is not considered,Marc fills the empty spaces with zeros and
the result might be far away from what is intended for (line 19). In the listing, just to
clarify this example, a pipeline character (|) is used as a mark for every five column;
informative comments are printed in gray. The first data block is the keyword of the
option, i.e. COORDINATES. The second data block indicates that 3 coordinates will
be specified in the default input file for each of the 40 nodes and the print-out of
the node list is disabled. The following blocks consists of 40 node numbers and the
corresponding coordinates. The same listing can be rewritten using the free format:

1 $ 1 s t data b lock
2 COORDINATES
3 $ 2nd data b lock
4 3 ,40 ,0 ,1 ,
5 $ 3 rd data b lock
6 1 , 1 . , 2 0 . , 3 0 0 . , $ ( 1 . 0 , 2 0 . 0 , 3 0 0 . 0 )
7 2 , 1 . 0 , 2 0 . 0 , 3 0 0 . 0 , $ ( 1 . 0 , 2 0 . 0 , 3 0 0 . 0 )
8 . . .
9 $ I n d i c a t e s the ou tpu t u n i t f i l e f o r the summary i s 8

10 SUMMARY, 8 ,
11 . . .

2.2.3 Extended Precision Mode

For most of the usual cases, using the default precision ofMarcwould be sufficient.
However, for models with more than 99,999 elements, using extended precision will
be required. In order to turn the extended mode on, the EXTENDED keyword is used
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in themodel definition section. Therefore, the needed space will be doubled for every
piece of data in fixed format, i.e. for integer numbers, floating point numbers and
characters, namely:

• the total number of characters in each line is doubled, i.e. 160 characters,
• integers will occupy 10 columns instead of 5,
• floating point numbers will occupy 20 or 30 instead of 10 or 15, and
• all character strings will be written using 20 characters instead of 10, e.g. the
keywords.

The previous example can be re-written in the extended mode. Obviously, the free
format will not be affected by the extendedmode but the fixed format will be changed
to the following:

1 $ 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
2 $ | | | | | | | | | | | | | | |
3 $ 1 s t data b lock
4 COORDINATES
5 $ 2nd data b lock
6 3 40 0 1
7 $ 3 rd data b lock
8 1 1.000000000000000+0 2.000000000000000+1 3.000000000000000+2
9 . . .

10 $ I n d i c a t e s the ou tpu t u n i t f i l e f o r the summary i s 8
11 SUMMARY 8
12 . . .

Note that in line 11, the SUMMARY keyword field starts from column 1 to column 20
and the integer number is right-justified in the field which consists of columns 21 to
30.

The extended precision mode can be selected via Mentat by checking the cor-
responding option through the following:

3 Jobs � Jobs � Properties � Run � Advanced Job Submission � Extended Precision

2.2.4 Modifying the Input File

As previously stated in Sect. 2.2, there are two ways of creating an input file: by
Mentat or manually. For the latter, a simple text file editor could be used to edit the
file with the .dat extension. The advised method, at least at the beginner level, is to
create a model by Mentat and to apply further modifications manually. There are
several ways to obtain the input file of a model:

1. The current model can be exported to an input file using the following:

1 File � Export � Marc Input

2. It can be manually asked to write the input file of the current model by the
following:

3 Jobs � Jobs � Properties � Run � Advanced Job Submission � Write Input File
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3. Submitting a jobwithinMentatwill automatically create or overwrite the current
input file.

With these methods, one can create the input file from a model and then edit it with
a text editor. It is also possible to modify the input file usingMentat by one of the
following methods:

1. After creating the input file using one of the previously statedmethods, the editing
process of the input file can be done by the following:

3 Jobs � Jobs � Properties � Run � Advanced Job Submission � Edit Input File

After this process, the edited version of the input file will not run by the usual
submission of the job because submitting a job overwrites the modified input file.
The solution is achieved by executing the job instead of submitting it. This will
analyse the modified input file without overwriting it and can be done using the
following:

3 Jobs � Jobs � Properties � Run � Advanced Job Submission � Execute (1)

2. If extra lines have to be added to the parameter definition or the model definition
part of the input file, it can be done using the following:

3 Jobs � Jobs � Properties � Input File Text

Note that it is not possible to remove any lines by this method.
3. A very neat way of adding lines to the input file is including an external text file.

This included file will always be considered in a job submission and it can be
added inMentat using the following:

3 Jobs � Jobs � Properties � Include File

2.2.5 Table-Driven Input

Most of the time, especially in non-linear analyses, it is required to specify a quantity
such as the value of a boundary condition as a function of some other independent
variable, for example, the time or location. Generally, such an association can be
specified using several input file options but using the table feature ofMarc usually
reduces the number of required options and saves some time and effort. The style of
using tables in the input file is referred to as the table-driven input, whereas the earlier
style, used in the pre-2003 versions, was called the non-table-driven input or the old
style. The old style is still supported by the current versions of Marc/Mentat.

In the table-driven style, a dependent quantity can be specified as a function of
several independent values in the form of a table. Currently,Marc supports tabular
data to be used in defining either a material behavior, a boundary condition or a
contact as function of up to four independent variables. However, these variables
must have ameaningful association, for instance, requesting themodulus of elasticity
as a function of plastic strain is not supported (see [25]).
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Table 2.4 Input file options with tabular input capability

Boundary condition options

ADD RIGID FIXED TEMPERATURE POINT CHARGE

CHANGE STATE FIXED VOLTAGE POINT CURRENT

DIST CHARGES FOUNDATION POINT CURRENT-CHARGE

DIST CURRENT HOLD NODES POINT FLUX

DIST FLUXES INIT CURE POINT LOAD

DIST LOADS INIT PRESS POINT MASS

DIST MASS INIT STRESS POINT SOURCE

DIST SOURCES INITIAL DISP POINT TEMP

EMISSIVITY INITIAL FICTIVE QVECT

FILMS INITIAL PLASTIC STRAIN RESTRICTOR

FIXED ACCE INITIAL STATE SINK POINTS

FIXED DISP INITIAL TEMP THICKNESS

FIXED EL-POT INITIAL VEL VELOCITY

FIXED MG-POT LATENT HEAT WELD FLUX

FIXED POTENTIAL PERMANANET

FIXED PRESSURE PIEZOELECTRIC

Contact options

CONTACT CONTACT TABLE THERMAL CONTACT

Material behavior options

ANISOTROPIC INITIAL PC POWDER

ARRUDBOYCE INITIAL PORE PRESS FILM

CHANGE PORE INITIAL POROSITY RELATIVE DENSITY

COHESIVE INITIAL VOID RATIO SHAPE MEMORY

CRACK DATA ISOTROPIC SOIL

CREEP MOONEY STRAIN RATE

FAIL DATA OGDEN TEMPERATURE EFFECTS

FOAM ORTHO TEMP VISCOCREEP

GENT ORTHOTROPIC VOID CHANGE

HYPOELASTIC POROSITY CHANGE

Many options in Marc are provided in both table-driven and non-table-driven
formats. A brief list of these options is available in Table 2.4. However, not all input
file options support this capability. Therefore, as an alternative to the table-driven
approach, several non-tabular model definition options may be used in conjunction
with some user subroutines to produce the same effects. For instance, the easiest way
to introduce an elastic-plastic material model with isotropic hardening is defining
a table for the yield stress as a function of the equivalent plastic strain and then
assigning it to the plastic behavior of the material. If the table style is not preferred
then using either the WORK HARD input file option or the WKSLP user subroutine is
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suggested to employ the hardening law. Although the table-driven options can cover
many usual cases, subroutines support the most general cases.

InMentat, it is possible to select or change the style of the input file, if possible,
by selecting the proper style in the Run Job dialog. The following commands are
used to open this dialog:

3 Jobs � Jobs � Properties � Run

And then, the input file can be re-written in the new style by following these com-
mands:

3 Jobs � Jobs � Properties � Run � Advanced Job Submission � Write Input File

Selecting the table-driven style will add the TABLE parameter to the parameter group
of the input file, indicating that the new stylewill be used in particular options relating
to the boundary conditions, material definitions and the contact option of the model.
Note that it is possible to use the old style in one area and tabular data in others.
However, by switching the input file back to the old style, the TABLE parameter will
be removed. For instance, the following line indicates that the table-driven style will
be used to define boundary conditions, material definition and contact options:

1 t ab l e , 0 ,0 ,2 ,1 ,1 ,0

The last data entry of this option specifies the table reference value, which is zero
in this case. This value is used in conjunction with the TABVA2 utility subroutine. A
reference value for a table or a multiplication factor is just a scale factor. The values
of a table are multiplied by this factor upon extraction. This value is saved in the
ctable common block by the name jtabmult. In this option, a zero value indicates that
a reference value of zero for the subroutine is considered as one. If 1 is used as the
last data entry of this option then a zero reference value is treated as zero by the
subroutine. The TABVA2 subroutine is used to obtain the value of a table within a
subroutine. The following syntax is used for this subroutine:

1 CALL TABVA2 ( r e f v a l u e , evalue , i d t a b l e , 0 , 0 )

The reference value is used as the first argument of this subroutine (refvalue) which
acts as a scale factor as mentioned. The value of the function for the selected table
(idtable) will be returned via the evalue variable. The value of the independent vari-
ablesmust be specified in the commonblock ctable. As listed in Table 2.5, the variable
of each independent variable is indicated in the Variable column; for example, if the
equivalent plastic strain is used in a table then the value of that must be assigned to
the eqpl variable. In addition to the TABLE parameter, in order to explicitly define
a set of tabular data, the TABLE option is used in the model definition group of the
input file. This option enables the user to define a table as some data points or as a
function. In other words, the dependent value of the table is defined as a function of
up to four independent meaningful variables. An independent variable can be one
of the variables listed in Table 2.5. The function is defined by either the piecewise
linear mode or the equation mode.

If some data points are available, e.g. the results of a tensile test, then the piecewise
linear mode can be easily used. In this case, a linear interpolation is used to obtain
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Table 2.5 Independent variable types of the table-driven input. Adapted from [26]

# Description Variable # Description Variable

1 Time timec 28 Contact force forbd

2 Normalized time timen 29 Contact body torbd

3 Increment number xincc 30 Normal stress signormal

4 Normalized increment xincn 31 Voltage volti

5 x coordinate xyz(1) 32 Current curri

6 y coordinate xyz(2) 33 ( current radius
radius of throat )

2 rdnrn

7 z coordinate xyz(3) 34 ξp pyrolysis damage pyrodam

8 s = √
x2 + y2 + z2 su 35 φw water vapor fraction xdv

9 θ angle angl 36 Coking damage xdc

10 Mode number xmoden 37 Gasket closure distance closu

11 Frequency frequ 38 Displacement magnitude displ

12 Temperature tempi 39 Stress rate strsrte

13 Function xfun 40 Experimental data expdata

14 Fourier xfur 41 Porosity voidrtab

15 ε̄p equivalent plastic
strain

eqpl 42 Void ratio voidrtab

16 ˙̄ε equivalent strain rate eqplr 43 Equivalent creep strain rate eqcrpsx

17 Bg = ṁ/αm
normalized mass flow
rate

amdotnam 44 Minor principal total strain formlmt

18 arc length arcdist 45 Distance from neutral axis xxshell

19 Relative density xdensity 46 Normalized distance from
neutral axis

xnshell

20 σ̄ equivalent stress eqstr 47 Local x-coordinate of layer
point for open/closed
section beams

xxc

21 Magnetic induction babs 48 Local y-coordinate of layer
point for open/closed
section beams

yyc

22 Velocity vel 49 1st isoparametric
coordinate

xiso

23 Particle diameter diam 50 2nd isoparametric
coordinate

yiso

24 x0 coordinate corx 51 Wavelength xwaveln

25 y0 coordinate cory 52 Creep strain eqcrpz

26 z0 coordinate corz 53 Pressure or primary
quantity in diffusion

pressrx

27 s0 =
√
x20 + y20 + z20 cors 54 Equivalent strain rate

(nonNewtonian viscosity)
eqfstn

(continued)
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Table 2.5 (continued)

# Description Variable # Description Variable

55 Normalized arc
distance

arcnorm 67 Degree of cure degofcure

56 Distance to other
contact surface
(near contact only)

dnear 68 Magnetic field intensity habs

57 Term of series ijkl 69 Equivalent mechanical
strain

eqms

58 Hydrostatic stress hydstr 70 1st strain invariant dstnin1

59 Hydrostatic strain hydstrn 71 2nd strain invariant dstnin2

60 Bg,p = ṁg, p/αm amdotgpnam 72 3rd strain invariant dstnin3

61 Bg,w = ṁg, w/αm amdotgwnam 73 Any strain component elocal

62 2nd state variable statevars(2) 74 Damage damage

63 3rd state variable statevars(3) 75 Accumulated crack growth crackgrowth

64 4th state variable statevars(4) 76 Relative sliding velocity relsvel

65 5th state variable statevars(5) 77 Damping ratio dampratio

66 Loadcase number xldcas 78 log frequency (base 10) frequ

−1 to
−100

Parametric variable 1–100

the values in between data points. However, for the points after the last data point or
before the first one, either an extrapolation or the closest data point is used, i.e. for
the points after the last data point, the value of the last one is used.

For instance, it is a common approach to define a linear loading in a static structural
analysis. This can be done using one independent variable of type TIME and the
following lines in the model definition part of the input file:

1 TABLE ,RAMP
2 1 ,1 ,0 ,0 ,2
3 1 ,2 ,2 ,0 ,0 ,2 ,0 ,0 ,2 ,0 ,0 ,2
4 0.0E0 , 0 . 0 E0
5 1.0E0 , 1 . 0 E0

Although using just data-points would be enough for many cases, it is sometimes
more convenient to introduce the table as a function. If a mathematical equation
exists for our case then the equation mode might be just what we are looking for.
The equation can be defined in terms of four independent variables, i.e. V1, V2, V3
and/or V4 combined together using the operators listed in Table 2.6. For instance,
a sinusoidal load as a function of time with a maximum value of 20 can be readily
introduced by the function 20*sin(2.*pi*V1) in which V1 is the first independent value
of type TIME. The following lines in the model definition part will add such a load
to the model:

1 TABLE , SINLOAD
2 1 ,1 ,0 ,0 ,3
3 1 ,2 ,2 ,0 ,0 ,2 ,0 ,0 ,2 ,0 ,0 ,2
4 20∗ s i n ( 2 . ∗ p i ∗V1 )
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Table 2.6 Symbols, operators and mathematical functions for declaring mathematical equations
of tables in equation mode. Adapted from [25]

Symbol Description

Operators

+ Addition

− Subtraction

∗ Multiplication

/ Division

∧ Exponential

! Factor

% Mod

Constants

pi π

e Exponent

tz Offset temperature

q Activation energy

r Universal gas constant

sb Stefan Boltzman constant

Mathematical functions

sin(x) sin(x), x in radians

cos(x) cos(x), x in radians

tan(x) tan(x), x in radians

dsin(x) sin(x), x in degrees

dcos(x) cos(x), x in degrees

dtan(x) tan(x), x in degrees

asin(x) sin−1(x) in radians

acos(x) cos−1(x) in radians

atan(x) tan−1(x) in radians

atan2(x,y) Inverse tangent of the point (x, y) in radians

dasin(x) sin−1(x) in degrees

dacos(x) cos−1(x) in degrees

datan(x) tan−1(x) in degrees

datan2(x,y) inverse tangent of the point (x, y) in degrees

log(x) log10(x)

ln(x) ln(x)

exp(x) ex

sinh(x) sinh(x)

cosh(x) cosh(x)

tanh(x) tanh(x)

asinh(x) sinh−1(x)

acosh(x) cosh−1(x)

atanh(x) tanh−1(x)

(continued)
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Table 2.6 (continued)

Symbol Description

sqrt(x)
√
x

rad(x) Converts degrees to radians

deg(x) Converts radians to degrees

abs(x) |x |
int(x) Truncates the value to whole

frac(x) Takes the fractional value

max Takes the maximal value

min Takes the minimal value

mod(x,y) The remainder of x based on y, i.e. mod(x,y) = x - y * int (x/y)

Note that the maximum length of a formula is 80 characters which is doubled in the
extended mode.

2.2.6 Items, Sets and Numbering

There are 12 types of items which can be used in conjunction with the capabilities
of Marc/Mentat:

1. element numbers,
2. node numbers,
3. degrees of freedom numbers (DOFs),
4. integration point numbers,
5. layer numbers,
6. increment numbers,
7. points,
8. curves,
9. surfaces,
10. bodies,
11. edges, and
12. faces.

In order to use some functions withinMarc/Mentat, it is required to make a list of
these items, e.g. a list of nodes for a boundary condition. For this purpose, a set is
used which contains either several items or a combination of other sets. The terms
sublist or subset are also used, equivalently. In this section, defining sets and the
numbering convention of these items will be discussed.

Sets are defined using the DEFINE input file option followed by the list of its
members. The list can be defined by syntaxes declared in Table 2.7 and combined
by means of the subset connectors. For instance, consider the following lists:
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Table 2.7 Syntax used inMarc sets

Syntax Description

Set declaration

a [, b [,c]] A list of items separated by commas

a:b Element:edge/Element:face pair
used to specify edges/faces, a is element ID
and b is edge/face ID

a[:d] TO b[:d] [BY c] A list of items starting from a to b i.e. a, a+1,
a+2,..., b-2, b-1, b

or c indicates the step increase i.e. a, a+c, a+2*c,...,
b-2*c, b-c, b

a[:d] THROUGH b[:d] [BY c] d indicates the edge number i.e. a:d, (a+1):d,...,
(b-2):d, (b-1):d, b:d

Set connectors

set1 AND set2 Final set is consisted of all items in both set1
and set2

set1 INTERSECT set2 Result is the common items of set1 and set2

set1 EXCEPT set1 Result is all items in set1 which are not listed in
set2

1 DEFINE ,NODE, SET , l i s t 0 1
2 1 TO 10
3 DEFINE ,NODE, SET , l i s t 0 2
4 10 TO 5
5 DEFINE ,NODE, SET , l i s t 0 3
6 1 TO 10 BY 2
7 DEFINE ,NODE, SET , l i s t 0 4
8 1 TO 10 BY 3
9 DEFINE ,NODE, SET , l i s t 0 5

10 l i s t 0 3 AND l i s t 0 4
11 DEFINE ,NODE, SET , l i s t 0 6
12 l i s t 0 3 AND l i s t 0 4 INTERSECT l i s t 0 2
13 DEFINE ,NODE, SET , l i s t 0 7
14 l i s t 0 3 AND l i s t 0 4 INTERSECT l i s t 0 2 EXCEPT l i s t 0 4
15 DEFINE ,EDGE, SET , e d g e l i s t
16 1:1 TO 5:1

Based on these definitions, the defined lists consist of the following items:

list01 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
list02 = 5, 6, 7, 8, 9, 10
list03 = 1, 3, 5, 7, 9
list04 = 1, 4, 7, 10
list05 = 1, 3, 4, 5, 7, 9, 10
list06 = 5, 7, 9, 10
list07 = 5, 9
edgelist = 1:1, 2:1, 3:1, 4:1, 5:1

The first block, when defining a set, starts with the DEFINE input file option. Next,
the keyword NODE indicates that a list of nodes is defined. Then there is the keyword
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NODE followed by the name of the set; list01 in the first example. A set name is of
type CHARACTER with a maximum length of 32. The second block is the list of the
members which can be any combination of the predefined set names and members
of the model. Note that only the sets which are already defined can be used in the
current definition.

Generally, a list can be either sorted or unsorted. Most of the sets used in
Marc are sorted lists, except for the list of nodes in the TYING and EXCLUDE options
(i.e. FNDSQ), the list of degrees of freedom in FIXED DISP option (i.e. DOF) and the
unsorted list of elements (i.e. ELSQ). Putting aside these exceptions,Marc sorts the
items of a sorted list or any combination of lists incrementally prior to use. Note that
except and intersect sublist connectors cannot be used in an unsorted list.

An edge/face ID can be expressed in either Marc or Mentat convention: the
edge/face ID is increased by one when transferred from Marc to Mentat, e.g. an
edge pair such as 10:0 inMarc is equal to a 10:1 representation inMentat. The list
of edges in the example is defined using theMarc convention. A similar convention
is valid for the orientation of the surfaces and curves; for more information on this,
refer to the documentation of Marc (see [25]).

When dealing with Marc/Mentat entities, especially elements and nodes, two
types of numbering are used. One is the numbering that is used by the user, called
external or user ID. The other one is the internal numbering which is used by
Marc itself, namely a consecutive numbering system starting from one.

If the user IDs of elements/nodes start from one and they proceed sequentially, the
internal numbering will the same as the user IDs. This is the consecutive numbering
system. In any other cases, the user IDs will not match the internal IDs, e.g. the user
numbering starts from any number other than one. It is important to understandwhich
of these two numbering systems are used because an argument indicating the number
of an element/node may be required to be specified in either one of the systems.

The non-consecutive numbering system for the elements is flagged by means of
the variable nelids, provided by the prepro common block. The value of this variable
is set to a non-zero value equal to the total number of elements to indicate a non-
consecutive numbering system. In this case, the internal numbering system is related
to the user numbering via the ielids_d array provided by the spaceivec common block.

In contrast, the consecutive numbering system is used when the flag is set to
zero. In this case, the internal IDs are the same as the user IDs and no conversion
is required. In the same manner, the flag nnoids is used to indicate the numbering
system of the nodes and the array inoids_d is used to carry out the conversion for the
non-consecutive case.

2.3 Subroutines

Themost powerful aspect ofMarc is its support of user-defined subroutines. A user-
defined subroutine replaces the corresponding standard subroutine of the program
and consequently, unconventional cases of analyses can be covered. A subroutine
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in Marc is a Fortran subroutine with a predefined header, namely the arguments
are declared based on the context. These arguments are used either with an input
intent or an output intent; they are called inputs and outputs, respectively. The input
is the data provided for the subroutine as the raw material of the calculations and the
output is the data which must be available at the end of the subroutine, namely it is
the result of running the subroutine. There are some arguments which act both as an
input and an output. In such cases, the input should be updated during the execution
of the subroutine.

Although most of the subroutines have inputs and outputs, some of them do not
require any inputs/outputs, running at specific points of the analysis for specific pur-
poses. For example, the UBGINC subroutine runs at the beginning of each increment
and it can be used to set up some initial values.

The header of the subroutines and the required inputs/outputs are explained in [26].
In addition to these templates provided in the documentation ofMarc, there is a tem-
plate file for each subroutine which is located in the user subdirectory (Sect. 2.1.3).
These two templates are slightly different in the sense that the one in the documen-
tation is provided with an implicit type declaration while the other one does not use
any implicit type declaring. Although using either works fine, the implicit type dec-
laration makes the debugging process cumbersome and it is not advised. In addition,
it is worth noticing that some of these so-called templates contain some default lines
of code which usually come with enough comments to be modified appropriately.
An example for such a template is the tensof.f file which can be referred to for more
information.

2.3.1 Activating Subroutines

The philosophy behind user subroutines is to increase the flexibility of the package by
attaching a custom piece of code to the solution procedure. The need for a subroutine
in a complicated problem is usually indispensable but in order to develop an efficient
subroutine, most of the time, an in-depth knowledge of finite element analysis is
required. Around 200 subroutines are supplied by Marc to be engaged with user-
defined calculations. These subroutines already exist inside Marc without having
any lines of codes inside them, i.e. they do nothing by default. Therefore, they are
called dummy subroutines. In order to engage them in the process of an analysis,
the user must activate them with the appropriate coding. The Fortran compiler
makes an object file out of this source code and then the Fortran linker makes
an executable file by linking the code with the appropriate library files of Marc.
This file will be incorporated during the solution of the model. The whole process
actually is replacing the user’s subroutine with the dummy one. Based on the type
of the subroutine, one or more of the following methods can be used to activate it:

• Activating is done by selecting a setting in Mentat. An option must be selected
within the interface which writes an option to the input file for activation of the
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subroutine. In order to set, for example, the behavior of a nonlinear spring/dashpot
by the subroutineUSPRNG, the following optionmust be selectedwithinMentat:

3 Links � Springs/Dashpots � New � Fixed DOF � User Subroutine Usprng

• Using the appropriate parameter or option in the input file. Generally, using some
keywords alters the sequence of an analysis inMarc. This process is called setting
a flag. For example, using the USDATA option in the input file invokes the USDATA
subroutine to initialize the user variables.

• Finally a group of subroutines are automatically invoked which means just by
adding the appropriate subroutine header to the Fortran code,Marcwill execute
them. In the documentation of Marc, this type of subroutine is marked with a
note indicating that ‘No special flag is required in the input file’. For example,
the UEDINC subroutine is an automatic subroutine which runs at the end of each
increment.

At least one single Fortran source file or one compiled executable file must be
introduced if the job is submitted using Mentat. The appropriate Fortran source
file can be selected within Mentat by the following chain of commands:

3 Jobs � Jobs � Properties � Run � User Subroutine File

Marc looks for the activated subroutines in the selected file upon a job submission.
Although just oneFortranfile can be included in the analysis, it may contain several
subroutines. However, instead of using a file with all the subroutines, it is possible to
include a text file with references to some other Fortran files. Suppose that three
subroutines are required and each one of them is in a separate file. By creating a
single text file with the following lines and selecting it as the subroutine file, the
issue will be addressed:

1 # i n c l u d e " m y f i l e 1 . f "
2 # i n c l u d e " m y f i l e 2 . f "
3 # i n c l u d e " m y f i l e 3 . f "

Note that the style is similar to that of the C programming language. Therefore, these
lines are actually compiler directives and they are not Fortran statements. However,
using the INCLUDE statement of Fortran, the same lines could appear such as the
following:

1 INCLUDE " m y f i l e 1 . f "
2 INCLUDE " m y f i l e 2 . f "
3 INCLUDE " m y f i l e 3 . f "

2.3.2 Structure of Subroutines

The structure of subroutines in Marc is the same as every subprogram in For-
tran. However, while dealing specifically with subroutines of Marc, considering
the following notes is recommended:
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• Use the templates without any implicit type declaration, i.e. the templates inside
the user subdirectory.

• Declare all the floating point numbers as real numbers of kind = 8 for the sake of
maintaining compatibility with Marc.

• The general rule of using a template is to keep its original structure, i.e. the name
and the type of the arguments, and only add the necessary code. However, some-
times it is necessary to change the name of the argument of the subroutine in
order to resolve a name conflict. This conflict usually arises when using multiple
common blocks with a variable named exactly as an argument. In other cases, it
is easier just to avoid redeclaring any variables already defined as an argument of
the subroutines.

• Try to use the concepts of structured programming and use modular programming
to maintain the clarity of your code. It also helps to keep a library of your own
subroutines for subsequent uses.

• In the documentation of Marc, arguments are called either a required input or
a required output. A required input is an input argument of the subroutine and
the required output is an output argument of that. Therefore, after carrying out
the calculations the required outputs must be passed back to Marc. Usually, it is
not necessary to calculate every required output but only the required ones with
respect to the specific problem in-hand. Similarly, it is possible that based on the
problem, just a few of required inputs are defined.

For example, consider the template of the FORCDT subroutine:

1 ! Par t 1 : Subrout ine header
2 SUBROUTINE FORCDT( u , v , a , dp , du , t ime , dtime , ndeg , node , ug ,
3 & xord , ncrd , i a c f l g , inc , ipass )
4 ! Par t 2 : Data Environment ( S p e c i f i c a t i o n p a r t )
5 # i f d e f _IMPLICITNONE
6 IMPLICIT NONE
7 # e lse
8 IMPLICIT LOGICAL ( a−z )
9 # e n d i f

10 ! ∗∗ S t a r t o f generated type statements ∗∗
11 REAL∗8 a , dp , dtime , du
12 INTEGER i a c f l g , inc , ipass , ncrd , ndeg , node
13 REAL∗8 time , u , ug , v , xord
14 ! ∗∗ End o f generated type statements ∗∗
15

16 DIMENSION u ( ndeg ) , v ( ndeg ) , a ( ndeg ) , dp ( ndeg ) , du ( ndeg ) , ug ( ndeg ) ,
17 & xord ( ncrd )
18 ! Par t 3 : The exectuable c o n s t r u c t ( User code )
19

20 RETURN
21 ! Par t 4 : The conta ined area f o r i n t e r n a l subrou t ines i . e . CONTAINS statement
22

23 ! Par t 5 : The subrou t ine end statement .
24 END

In this listing, the header of the subroutine is followed by the specification part
which contains the implicit statement and the attribute-oriented type declaration of
the arguments. The executable part contains the user code and ends with the RETURN
statement. Internal subprograms are also allowed in the contained area. The user
must manage the inputs and outputs by programming a proper code in the executable
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part. Other subroutines have a similar structure but different headers. More specific
information can be obtained by referring to the documentation of Marc (see [23]).

2.3.3 Predefined Common Blocks of Marc

As mentioned earlier, a custom subroutine inMarc is replacing the default dummy
subroutine in the background with a user-defined one. In most cases, there is more
than one subroutine to be replaced, and most of the time, these incorporated sub-
routines have to interact with each other in a single analysis, i.e. some data within
a subroutine must be shared between other subroutines. As introduced in the previ-
ous chapter, there are several ways to do this; using modules, the common blocks
or data blocks. Although modules and data blocks share the data in an elegant way,
Marc uses its own pre-defined common blocks to share the data regarding the model.
By including a common block in a programming unit, the data will be accessible
within that unit. The common blocks ofMarc are located in its common subdirectory
in several text files with the .cmn file extension. Each one of these files share pieces
of data regarding the model and they can be used in subroutines to obtain additional
required information about the model. For instance, in the dimen common block,
the number of elements and nodes are determined by variables numel and numnp,
respectively. In order to make these variables available in a subroutine, an INCLUDE
statement is used followed by the name of the common block. For this particular
case the INCLUDE ’dimen’ statement should be used.

Althoughusingpredefined commonblocks is imposedbyMarc, a better approach
is to share the data via modules, i.e. use the INCLUDE statements in a single module
and then share the data by the USE statement. This way has the advantage of being
concise because it is not required to use multiple INCLUDE statements. In addition,
other auxiliary variables can be incorporated in the same module. A sample data-
sharing module can be done as follows:

1 MODULE MarcCommonData
2 IMPLICIT NONE
3

4 INCLUDE ’ dimen ’
5 . . .
6 CONTAINS
7 . . .
8 END MODULE MarcCommonData

Several quantities have been made available through the predefined common blocks.
Some of them are general quantities such as the total number of nodes in a mesh
(numnp) which is available in all subroutines. A list of such globally-available quan-
tities is presented in, but not limited to, Table 2.8. In this table, some variables are
presented from the creeps, dimen, concom, spaceset and iautcr common blocks. The
first two common blocks contain some general information of the model whereas the
concom common block contains most of the advanced control flags ofMarc. A flag
is an integer variable which can be set to control the flow of the analysis. Usually,
setting a flag on is done by assigning the value 1 to it and setting it off is possible
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Table 2.8 Selected globally-available quantities via common blocks. Adapted from [26]

Variable name Description

creeps common block

cptim Total time at the beginning of increment

timinc Time increment for this step

time_beg_lcase Time at the beginning of the current load case

time_beg_inc Time at the beginning of the current increment

mcreep Maximum number of iterations for explicit creep

jcreep Counter of the number of iterations for explicit creep

dimen common block

numel Number of elements in mesh

numnp Number of nodes in mesh

nintb Maximum number of integration points used in integration point calculation

nintbmx Maximum number of nintb

ndeg Number of degrees of freedom per node

ndegmx Maximum number of degrees of freedom per node

nnodmx Maximum number of nodes per element in the whole model

neqst Maximum number of invariants per integration point

ngens Number of strains per integration point

ncrd Number of coordinates per node for the current element

ncrdmx Maximum number of coordinates per node in the whole model (same for that of the
integration point)

nstrmx Maximum number of stress components per integration point

ngenmx Maximum number of generalized strains

idss Size of the element stiffness matrix

nsxx Number of non-zero blocks stored in stiffness matrix

maxnp/maxnpr Maximum number of connections to a node (for mass/specific heat matrix)

maxqnp Maximum number of connections to a node (for optimization processes)

neltyp Number of different element types

maxall Current size of ints/vars array

nusdat Number of user variables to be defined in USDATA

nstrmz Maximum number of stresses stored per element

nstrm3 Maximum number of generalized stress/strain components per element
(number of generalized components × number of integration points)

nstrm4 Maximum number of state variables per element
(number of layers × number of integration points)

nstrm5 Maximum number of words needed to store all stress-strain laws in every stress
storage point per element

nintps Number of integration points used on the post-file

maxall Current size of ints/vars array

concom common block

inc Increment number

incsub Sub-increment number

icrpim Implicit creep

iradrt Radial return

(continued)
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Table 2.8 (continued)

Variable name Description

incext Flag indicating if currently a sub-increment is under process

idyn Dynamic analysis type based on the DYNAMIC parameter

ilem Indicates which part of the element assembly is under process

loadup Control flag indicating if nonlinearity occurred during previous increment

iupblg Control flag for the follower force option

loaduq Control flag indicating if nonlinearity occurred

ncycle Cycle number (accumulated in oasemb.f)

iaxisymm Flag indicating an axisymmetric analysis

iassum Assumed strain flag

iradrtp Radial return flag for plastic material

iupdatp Updated Lagrange flag for elastic-plastic material

ismall Flag indicating a small displacement analysis

jlshell Flag indicating if a shell element exists in the model

icompsol Flag indicating if a composite solid is in the mesh

isetoff Flag indicating if beam/shell offset is applied

jel Control flag indicating that the total force is applied in the increment

ioffsetm Minimum value of the offset flag

idinout Flag indicating if inside out elements should be deactivated

lodcor Flag indicating if residual load correction is activated

loadup Flag indicating if nonlinearity has occurred in the previous increment

loaduq Flag indicating if nonlinearity has occurred in the current increment

marmen Flag indicator of Marc used:

0 : for normal analysis 1 : as reader viaMentat

istpnx 1 if to stop at the end of increment

lovl Control flag for determining the analysis phase (overlay name)

1 : memory allocation (omarc.f) 2 : model definition input (oaread.f)

3 : distribute load (opress.f) 4 : stiffness matrix (oasemb.f)

5 : solver (osolty.f) 6 : stress recovery (ogetst.f)

7 : output (oscinc.f) 8 : operator assembly (odynam.f)

13 : history definition input (oincdt.f) 14 : mass matrix (oasmas.f)

17 : vector transformation (oshtra.f) 20 : rezoning (orezon.f)

21 : convergence testing (otest.f) 22 : Lanczos (oeigen.f)

23 : global adaptive meshing

jactch Flag for the activation/deactivation of the elements

0 : normally/reset to 0 when assembly is done

1 or 2 : if elements are activated or deactivated

3 : if elements are adaptively remeshed or rezoned

isolvr Flag for the solver type

0 : profile direct solver 2 : sparse iterative
4 : sparse direct solver 8 : multifrontal direct sparse solver

9 : CASI iterative solver 10 : mixed direct/iterative solver

(continued)
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Table 2.8 (continued)

Variable name Description

ipass Control flag for the type of current iteration in a coupled analysis

−1 : reset to base values 0 : do nothing

1 : stress 2 : heat transfer
3 : fluids 4 : joule heating
5 : diffusion 6 : electrostatic
7 : magnetostatic 8 : electromagnetics

newton Newton-Raphson flag for the current iteration:

1 : full Newton-Raphson
2 : modified Newton-Raphson

3 : Newton-Raphson with strain correct

4 : direct substitution
5 : direct substitution followed by Newton-Raphson

6 : direct substitution with line search

7 : full Newton-Raphson with secant initial stress

8 : secant method

9 : full Newton-Raphson with line search

spaceset common block

ndset number of total sets

nsetmx maximum number of set

nchnam maximum set name characters

mxitmset maximum number of set items (pre-reader)

setname(i) name of set i

isetdat array containing information on all sets

isetdat(1,i) type of set:

0 : sorted element list 10 : face list (no longer active)

1 : sorted node list 11 : unsorted element list

2 : integration point 12 : element:edge list

3 : layer list 13 : element:face list

4 : DOF list 14 : point list
5 : increment list 15 : curve list
6 : unsorted node list 16 : surface list
7 : frequency list 17 : cavity list
8 : entity list 18 : surface:orientation list
9 : body list 19 : curve:orientation list

isetdat(2,i) number of items in set i

isetdat(3,i) sort flag for set i

isetdat(4,i) boundary conditions flag for set i

isetdat(5,i) number of items in set i (full model)

isetdat(6,i) flag for remeshing update of set i

iatucr common block

loadcn Control flag for AUTO LOAD option

totinc Total increment time for the current load increment

totins Running counter of time for the current load increment
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Table 2.9 Element-based user-subroutines. Adapted from [26]

List of subroutines

ANELAS ANEXP ANKOND ANPLAS ASSOC CRPLAW CRPVIS

CUPFLX ELEVAR ELEVEC FILM FLUX FORCEM GENSTR

HOOKLW HOOKVI HYPELA2 INITSV INTCRD NASSOC NEWSV

ORIENT ORIENT2 PLOTV REBAR SINCER TENSOF TRSFAC

UACTIVE UACOUS UADAP UARRBO UCOHESIVE UCOHESIVET UCOMPL

UCRACK UDAMAG UDELAM UELDAM UELASTOMER UENERG UEPS

UFAIL UFILM UFOUND UGENT UELOOP UFINITE UHTCOE

UHTCON UINSTR UMDCOE UMDCON UMOONY UMU UNEWTN

UOGDEN UPERM UPOWDR URESTR URPFLO USELEM USHELL

USIGMA USPCHT UVOIDN UVOIDRT UVSCPL UVTCOE UVTCON

VSWELL UWELDFLUX WKSLP YIEL

by assigning 0 as the value. However, other values are also possible. These flags
either provide the user with more detailed information or they make it possible to
fine-tune the properties of the analysis and to have more control of the procedures.
For instance, the lovl flag indicates the analysis phase and the istpnx flag can be used
to stop the analysis at the end of the current increment. The spaceset common block
holds the information of the sets of the model. The iautcr common block provides
the user with the information regarding the increments.

In contrast to the quantities which are available in all subroutines, some common
blocks can be used only in specific subroutines which are called for each element of
themodel during the analysis. Such subroutines are called element-based subroutines
which contain the calculations to be repeated for each element. A brief list of the
element-based subroutines is provided in Table 2.9. The quantities of some common
blocks are only available within the element loops of the element-based subroutine
(see Table 2.10). Note that in a model with various types of elements, some variables
of this table vary depending on the type of element. For instance, the nnode variable
indicates the number of nodes in an element. This is true for a model with only one
type of element but for a model with various types of elements, it only holds the
respective data for the current type which is the last group of elements by default.
The SETUP_ELGROUPS utility subroutine is used to change the current group of
elements by setting the proper pointers such as the icrxpt pointer [26]. The number
of groups (iGroup) is passed to the subroutine and the number of elements for that
group (nEl) is retrieved back. To do so, the following line of code can be used:

1 CALL SETUP_ELGROUPS ( iGroup , nEl , 0 , 0 , 0 )

Using this line of code, the current element group is changed to iGroup and as men-
tioned earlier, some variables of the common blocks will be updated, e.g. the iel-
group_elnum variable of the elemdata common block now points to the list of ele-
ments of the group iGroup. Additionally, it is possible to set the current element to
intElID by the following:



152 2 Introduction to Marc/Mentat

Table 2.10 Selected element-related data entities accessible via common blocks. Adapted from
[26]

Variable name Description

lass common block

n elsto element number

nn Integration point number

kcus(1) User layer number

kcus(2) Internal layer number

elmcom common block

intel Number of integration points per element (for the current element group)

jintel Number of integration points per element (for the current element). It is equal to intel
except when CENTROID option is used (jintel=1)

intstf Number of integration points per element for stiffness matrix evaluation

nnode Number of nodes in element

nnodc Number of corner nodes in element

ibeamel Is set to 1 if the element is a beam

lclass element class:

0 : pipe element 8 : 3D solid

1 : truss element 9 : Fourier element

2 : shell 10 : axi with twist

3 : none 11 : axisymmetric shell

4 : plane stress 12 : open section beam

5 : plane strain 13 : closed section beam
6 : generalized plane strain 14 : membrane

7 : axisymmetric solid 15 : gap
ityp Internal element type

jtype User element type

ioffsnum Number in list of offset elements

ngenel Number of generated stress component(s) per element

ndi Number of direct components of stress

nshear Number of shear components of stress

nstrm1 Size of stress-strain law

nstrm2 Number of layers per element

ncrdel Number of coordinates

ndegel Number of degrees of freedom

ndi Number of direct componenets

ngens Number of generalized strains

igroup Group number

nzro1 common block

neqst Max. number of layers per element

nstres Max. number of integration points per element

nelstr The amount of memory per element in terms of integer words

far common block

m Element number

(continued)
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Table 2.10 (continued)

Variable name Description

nnumel Number of elements assembled and stored on sequential file for

out of core assembly

elemdata common block

nelgroups Total number of element groups

ielgroup_elnum(*) List of internal element numbers stored sequentially (for the current element group)

ielgroup(*) List of the group of each element (based on the internal element number)

ieltype(*) Element internal type (based on internal ID), generic

ieltype_s(*) Element internal type (based on internal ID), structural

ielcon(*) Element connectivity (based on the internal element number)

ieltab Basic element data array

ieltab(1,i) number of nodes in the element

ieltab(2,i) internal material ID

ieltab(3,i) material orientation type (iangtp)

ieltab(4,i) number of layers in the element

ieltab(5,i) flag for rebar(2), gasket(3), piezo(4,5), pshell(6), pbush(7) and

soil(8)

ieltab(6,i) geometry ID of the element (idgeom)

ieltab(7,i) property ID of the element, < 0 if user element, Nastran only

ieltab(8,i) property type of the element, Nastran only

ieltab(9,i) set to 1 if orient2 specifies orientation for all plies

ielgroupinfo info on element groups

ielgroupinfo(1,i) internal element type

ielgroupinfo(2,i) material number/composite group etc.

ielgroupinfo(3,i) number of elements in group

ielgroupinfo(4,i) nelsto for this element group

ielgroupinfo(5,i) number of layers

ielgroupinfo(6,i) flag indicating fast integrated composites

ielgroupinfo(7,i) number of layers for state variables

ielgroupinfo(8,i) material type

ielgroupinfo(9,i) flag indicatingmicro1 solids

ielgroupinfo(10,i) flag indicating that this group can be used with fefp for non-

automatic option flag indicating that this group can be used with fefp,
additive or total (for LARGE STRAIN,4)

ielgroupinfo(11,i) packed large strain formulation flags for group

ielgroupinfo(12,i) packed large strain formulation flags for group

ielgroupinfo(13,i) packed material/element allocation flags for group

ielgroupinfo(14,i) packed material/element allocation flags for group

ielgroupinfo(15,i) packed material/element allocation flags for group

ielgroupinfo(16,i) jelsto_a for this element group

ielgroupinfo(17,i) Nastran element type for this element group

ielgroupinfo(18,i) Number of element subgroups in element group

(continued)
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Table 2.10 (continued)

Variable name Description

ielgroup_records List of elsto records used by this element group

matdat common block

et(3) Young’s moduli

xu(3) Poisson’s ratios

rho Mass density

shrmod(3) Shear moduli

coed(3) Coefficient of thermal expansion

yield(1) Yield stress

prepro common block

nNoIDs Flag if non-zero indicates non-consecutive node numbering

iNoIDs_d Contains the external ID of the nodes if nNoIDs is flagged

nElIDs Flag if non-zero indicates non-consecutive element numbering

iElIDs_d Contains the external ID of the elements if nElIDs is flagged

maxElID Maximum user ID of the elements

maxCrdID Maximum user ID of the coordinate system

maxCmpID Maximum ID of composites

iQuit Flag indicating if the QUIT subroutine is executed

1 CALL SetE l ( i n t E l I D )

This line of code updates the number of integration points (jintel) to that of the current
internal element (intElID). This is a straightforward way of obtaining the number of
integration points for a specific element.

2.4 Debugging

Whenusing anyprogramming language, avoidingpossible errors is almost inevitable.
Therefore, usually a built-in debugger is provided with the programming package.
But unfortunately, when it comes to using the user subroutines in conjunction with
Marc, things get more complicated because there are not many direct tools provided
for debugging the code and tracing the steps within the program. Moreover, a criti-
cal error during the execution of a Fortran subroutine leads to the crashing of the
program or getting stuck in an infinite loop and it would be rather hard to find out
which part of the code is responsible for such cases. The general strategy is using
procedural/modular programming which makes it possible to verify these indepen-
dent pieces of code in a proper debugger outside ofMarc (Sect. 1.5). Although, this
will ascertain that the modular part is almost innocent, sometimes the erroneous code
is not placed within the modular part. With no tools in hand, coping with problems
would be laborious.
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An indirect approach to find the culprit can be putting a simple output statement
in specific places into the code which are more susceptible to errors, e.g. the complex
part of an algorithm or newly-added lines of code. By this method, the last successful
output indicates thatmost probably up to that output statement everythingworkswell;
the bad line of code is most probably located somewhere after the output statement.
By using more output statements, it would be possible to narrow down the code and
exactly locate the line.

The same approach can be taken in order to get an insight of the variables of
the subroutines and mimic the watch tool of a debugger. In other words, the output
statements can be used to print out the value of the variables to help detecting the
error.

Note that the output to the screen using the default output which is indicated by an
asterisk, i.e. a WRITE (*,*) or a PRINT statement, will not appear on the screen unless
the job is run from the command prompt (see Sect. 2.4.5). If the job is submitted using
Mentat, the output file can be used as a debugging medium, namely the outputs
can be directed to the output file instead of the screen. Since the default file unit for
the output file (.out) is 6, the WRITE (*,*) statement should be replaced by WRITE
(6,*). The result is that the debugging output appears in the output file instead of the
screen.

In the following subsections, some of the common mistakes in Fortran pro-
gramming will be discussed briefly. The best remedy to these pitfalls is to avoid
them. However, a few methods are introduced to tweak Marc/Mentat in order to
obtain extra debugging information of the program and some tools are introduced to
increase the control on running jobs.

2.4.1 Common Pitfalls

There are a few common mistakes in programming which can add an extra twist
to the debugging procedure. The best approach is to get familiar with the following
cases and avoid them to ease the debugging process:

1. It is a good practice to initialize the variables to be used and make them defined
prior to use. An undefined variable contains random data, often called garbage,
which can make the detection of the error source troublesome. It is possible to
initialize a local variable upon its declaration either using the DATA attribute or by
assigning an initial value to it. However, in the former method, the initialization
of a variable is accompanied by an implicit SAVE attribute. Consequently, only
in the first run the initial value is assigned to the variable. Consider the following
example:

1 SUBROUTINE Sample ( )
2 INTEGER : : zero = 0
3

4 WRITE ( ∗ , ∗ ) ’ I n the f i r s t run the va lue i s ’ , zero
5 zero = 1
6 END SUBROUTINE Sample
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In the first run of this code, the value 0 is assigned to the integer zero but in the
subsequent calls the last assigned value will be retained. Because of the local
initialization, in reality the following code will be compiled:

1 SUBROUTINE Sample ( )
2 INTEGER , SAVE : : zero = 0
3

4 WRITE ( ∗ , ∗ ) ’ I n the f i r s t run the va lue i s ’ , zero
5 zero = 1
6 END SUBROUTINE Sample

Concisely, this property is a double-edged sword. It can be used to determine the
first run of the subprogram. But if the goal is just initialization of the variable,
some problems may arise. In any case, a proper initialization can be done with
the following code:

1 SUBROUTINE Sample ( )
2 INTEGER : : zero
3

4 zero = 0
5

6 WRITE ( ∗ , ∗ ) ’ I n the f i r s t run the va lue i s ’ , zero
7 zero = 1
8 END SUBROUTINE Sample

2. An access violation occurs when attempting to access a restricted memory
address, namely the address is not available or the user is not authorized to use
it. Usually the following message is returned by the Fortran compiler for this
error:

forrtl: severe (157): Program Exception - access violation

Various reasons may cause such an error among which are the followings:

a. Accessing elements of an array which are not in the defined range. For
instance, accessing myList(3,5) of the array REAL :: myList(3,3) is not pos-
sible. Note that extra care should be devoted to the assumed size arrays since
the programmer is responsible for the number of elements in such arrays.
To check for the bounds, the following switch can be used with the For-
tran compiler:

/check:bounds

b. The argument mismatch is another source of error, which can be a subtle one
sometimes. Because not only the number and type of arguments must match
but also the KIND and LEN parameter must be selected accordingly. Consider
the following subroutine header:

1 SUBROUTINE Demo( a , b )
2 INTEGER , INTENT ( IN ) : : a
3 REAL∗8 , INTENT (OUT) : : b
4 . . .
5 END SUBROUTINE Demo

A call to this subroutine with the following variables is invalid:
1 INTEGER : : a n I n t
2 REAL : : aReal
3

4 CALL demo ( an In t , aReal )
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Although the compiler could recognize such mismatches, this is not the case
for the external subprogramswhich are in compiled libraries. Therefore,make
sure that the number and the type of arguments are always in accordance to
the header of the subprogram.

c. Assigning a value to a constant, either a numerical or a named one, causes a
crash. This case usually happens when the constant is passed as an argument
to a subprogram in which a value is assigned to the constant. A constant
parameter is assumed to be read-only. To allow writing on the constants the
following switch option can be used with the Fortran compiler:

/assume:noprotect_constants

d. Referencing uninitialized variables, unallocated arrays or pointers may cause
such a problem as well.

3. Avoid implicit type declarations to make typographical errors easy to discover.
4. Try to avoid using common blocks as much as possible and instead use modules

to share data. However, when using common blocks is inevitable, make sure that
the ordering of the variable is preserved.

5. Comparing two real numbers using .EQ. and .NE.may not produce accurate results
because there are always approximations when dealing with floating point num-
bers. It is a good idea to compare the difference of two real variables with an
acceptable tolerance. Consider the following code:

1 REAL : : aReal , bReal
2

3 IF ( aReal .EQ. bReal ) THEN
4 . . .

It is better to convert it to the following:

1 REAL : : aReal , bReal , maxErr
2

3 IF (ABS ( aReal − bReal ) . LT . maxErr ) THEN
4 . . .

Note that the maxErr variable is small enough depending on the problem in-hand
but also larger than the machine epsilon.

6. When it comes to real-integer numerical errors, floating point approximations
can be amplified. Such a case arises with intrinsic functions such as MOD to
calculate the remainder of the divisionof two real numbers.Consider the following
example:

1 REAL : : aReal , bReal , rem
2

3 aReal = 2 .0
4 bReal = 0 .2
5

6 rem = MOD ( aReal / bReal )
7 P r i n t ∗ , rem

Although the result is zero as the remainder, the output will show the number 0.2.
The MOD function actually calculates the following expression:

1 MOD = aReal − ( bReal ∗ INT ( aReal / bReal ) )
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During the floating point conversion of bReal = 0.2, a round-up occurs and thus,
aReal/bReal will be equal to a number slightly less than 10, e.g. 9.999. Next,
the INT function will extract the integral part of the number, i.e. 9. Finally, the
calculation results in 0.2 as the answer which is incorrect. If instead of a real
number, double precision real numbers are used, the result will be a very small
number which can be detected as zero with a proper IF statement.

2.4.2 Requesting Additional Information

During the finite element analysis,Marc hides the extra information from the user,
i.e. not all details of the finite element analysis are provided. Sometimes it is useful to
take a look at the information in these hidden steps to obtain an improved judgment
on the results. It is possible to ask for the hidden information using either Mentat,
subroutines or input file options. By default, the requested information will appear
in the output file.

Within Mentat, the required details can be selected in the output dialog. This
dialog can be reached by the following command:

3 Jobs � Jobs � Properties � Job Results � Output File

It is also possible to request for additional information within a subroutine by setting
the ideva flag from the common block concom. This flag is actually an array of
flags, each one regarding a specific piece of information as listed in Table 2.11. For
instance, it is possible to request extra information on themodel via the ideva variable
by setting the first flag on, i.e. ideva(1) = 1. This will print the information regarding
the stiffness matrices of the elements to the output file.

Another way is to use some input file options such as PRINT, PRINT NODE,
PRINT ELEMENT, NODE SORT, ELEM SORT, PRINT CHOICE, PRINT VMASS and
others. Note that the PRINT option uses the same mechanism as the ideva flag which
leads to a debug printout and the NODE SORT and ELEM SORT options produce
sorted outputs for nodes and elements, respectively. A summary of specific output
information can be obtained using the SUMMARY option in conjunction with the
PRINT NODSTS option.

There are four subroutines which make various quantities available during the
analysis. These quantities can be used for debugging purposes or to pass them to
other subroutines for controlling purposes. The list is as follows:

• the IMPD subroutine makes some nodal quantities available at the end of each
increment,

• the ELEVAR subroutine makes the elemental quantities in the integration points
available at the end of each increment,

• the ELEVEC subroutine makes the elemental quantities in the integration points
available at the end of each harmonic sub-increment, and
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Table 2.11 Print-out details of the IDEVA debugging flag. Adapted from [24]

Variable
name

Description

ideva(60) Flag for debugging print-outs

(01) Print element stiffness matrices, mass matrix

(02) Output matrices used in tying

(03) Force the solution of a non-positive definite matrix

(04) Print info of connections to each node

(05) Info of gap convergence, internal heat, contact touching/separation

(06) Nodal value array during rezoning

(07) Tying info in CONRAD GAP option, fluid element numbers in CHANNEL
option

(08) Output incremental displacements in local coordinate system

(09) Latent heat output

(10) Stress-strain in local coordinate system

(11) Additional info on inter-laminar stress

(12) Output right hand side and solution vector

(13) Info of CPU resources used and memory available on NT

(14) Info of mesh adaptation process, 2D outline information info of penetration
checking for remeshing save .fem files after afmesh3d meshing

(15) Surface energy balance flag

(16) Print information regarding pyrolysis

(17) Print information on streamline topology

(18) Print mesh data changes after remeshing

(19) Print material flow stress data read in from *.mat file if unit flag is on, print
out flow stress after conversion

(20) Print information on table input

(21) Print out information regarding kinematic boundary conditions

(22) Print out information regarding dist loads, point loads, film and foundations

(23) Print out information about automatic domain decomposition

(24) Print out iteration information in SuperForm status report file

(25) Print out information for ablation

(26) Print out information for films - table input

(27) Print out the tying forces

(28) Print out for CASI solver and convection

(29) DDM single file debug printout

(30) Print out cavity debug information

(31) Print out welding related information

(32) Prints categorized DDM memory usage

(33) Print out the cutting info regarding machining feature

(34) Print out the list of quantities which can be defined via a table and for each
quantity the supported independent variables

(35) Print out detailed coupling region info

(36) Print out solver debug info level 1 (Least Detailed)

(37) Print out solver debug info level 1 (Medium Detailed)

(continued)
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Table 2.11 (continued)

Variable
name

Description

(38) print out solver debug info level 1 (Very Detailed)

(39) print detailed memory allocation information

(40) print out Marc-adams debug information

(41) output rezone mapping post file for debugging

(42) output post file after calling oprofos() for debugging

(43) debug printout for VCCT

(44) debug printout for progressive failure

(45) print out automatically generated midside node coordinates (arecrd)

(46) print out message about routine and location, where the ibort is raised
(ibort_inc)

(47) print out summary message of element variables on a group-basis after all
the automatic changes have been made (em_ellibp)

(48) Automatically generate check results based on maximum and minimum
vals. These vals are stored in the checkr file, which is inserted into the *.dat file by
the generate_check_results script from /marc/tools

(49) Automatically generate check results based on the real calculated values at
the specified check result locations. These vals are stored in the checkr file, which
is inserted into the *.dat file by the update_check_results script from tools
subdirectory

(50) generate a file containing the resistance or capacity matrix; this file can be
used to compare results with a reference file

(51) print out detailed information for segment-to-segment contact

(52) print out detailed relative displacement information for uniaxial sliding
contact

(53) print out detailed sliding direction information for uniaxial sliding contact

(54) print out detailed information for edges attached to a curve

(55) print information related to viscoelasticity calculations

(56) print out detailed information for element coloring for multi-threading

(57) print out extra overheads due to multi-threading. These overheads include
time and memory. The memory report will be summed over all the children

(58) debug output for ELSTO usage

• the INTCRD subroutine makes the integration point coordinates available at the
end of each increment.

The activation of the first three subroutines can be done using the UDUMP input
file option and the last is done automatically. There are also a couple of utility
subroutines which can aid the user to obtain additional quantities; NODVAR and
ELMVAR to extract the analysis results of elements and nodes, respectively. These
two utility subroutines can be called from other subroutines but depending on the
stage of the analysis, the returned values may differ. For example, if NODVAR is
called from the IMPD subroutine then the acquired values will be for the end of the
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current increment. However, if the call is made at other points of the analysis, the
results may refer to the end of the previous increment.

2.4.3 Activating the Debugging Mode

One of the powerful Fortran compilers is the Intel® Fortran which is available
for various platforms and is the only compatible compiler for Marc. After intro-
ducing the appropriate file containing all the subroutines, say a file named all_sub.f,
Marc sends this file automatically to the Intel® Fortran compiler, namely ifort,
with a command such as the following to create the object file:

1 i f o r t / f p p / c /DWIN32 \ _ i n t e l −D\ _IMPLICITNONE . . .

The next step will be using the LINK command to link the object file to other library
files of Marc and/or user-defined libraries which finally leads to an executable file
by means of the following command:

1 LINK /no logo / o u t : " a l l \ _sub . exe " . . .

Such command prompt switches are used by Marc to compile the source file with
the appropriate options and link the object file to the appropriate library files. These
switches are set by the include_win64.bat batch file. This important batch file contains
the definition of the variables required during compilation and it runs upon submitting
the job; either fromMentat or from the command prompt via the run_marc.bat batch
files.

Similar to other batch files of the command prompt,many environmental variables
are defined and used to cover various circumstances. For instance, it is possible to
activate the debugging mode for the compiler by setting the MARCDEBUG variable
to ON or even add stack checking for function calls by setting the MARCCHECK
variable to ON.

Activating the debugging mode is useful because it forces the compiler to create
the program database filewith the .pdb extension. An additional benefit is providing
the number of the responsible line(s) in the case of a crash. This temporary environ-
mental variable actually activates the /traceback option of the compiler. To activate
the debugging mode, modify the following lines of the include_win64.bat batch file
by means of a text editor:

1 . . .
2 REM Uncomment the f o l l o w i n g l i n e s to b u i l d MARC i n Debuggable mode
3 se t MARCDEBUG=OFF
4 REM se t MARCDEBUG=ON
5 i f "%MARCDEBUG%" == "ON" goto setdebug
6 . . .

The REM command indicates the remarks of the batch file. To activate the debugging
mode, remove the REM from the fourth line and put it in front of the third line. Acti-
vating extra checks for debugging purposes is possible by modifying the following
line:
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1 REM Uncomment f o l l o w i n g l i n e s to b u i l d MARC w i t h more run− t ime checks
2 se t MARCCHECK=OFF
3 REM se t MARCCHECK=ON
4 i f "%MARCCHECK%" == "OFF" goto endcheck

And setting the MARCCHECK variable to ON:

1 REM Uncomment f o l l o w i n g l i n e s to b u i l d MARC w i t h more run− t ime checks
2 REM se t MARCCHECK=OFF
3 se t MARCCHECK=ON
4 i f "%MARCCHECK%" == "OFF" goto endcheck

It is also possible to add other switches, for instance:

1 SET DEBUG_OPT=%DEBUG_OPT% /debug−pa rame te rs :a l l

In addition, there are other variables in this batch file to force more control among
which are the following ones:

• the MAXNUM variable which is used to set the maximum number of node/elements
of the model with the default value of one million,

• the MEMLIMIT variable which is used to limit the amount of memory used by the
matrix solver with the default value equal to the amount of the available physical
memory,

• the LIBDIR variable contains the paths for the required libraries for compilation,
and

• the MPITYPE variable is used to select a MPI which is used in parallel computing.

2.4.4 Compiler Directives

Another capability of the compiler is using the Fortran compiler preprocessor
which is activated using the /fpp switch. There are times prior to compiling the
Fortran source file inwhich somemanipulations are required tomatch the compiler
with the circumstances or in a more technical term some preprocessing might be
needed for conditional compiling. The commands used to direct the compiler in
order to carry out the preprocessing are called compiler directives. The typical job
of a compiler directive is usually one of the following:

• conditional compilation, e.g. #if, #ifdef, #elif, #else and #endif,
• file inclusion, e.g. #include, or
• preprocessing variable or macro substitution, e.g. #define.

The syntax of the compiler directives are based on theC/C++ programming language
preprocessor and for this fact the directives must start from the first column of each
line; they are not Fortran statements and the fixed format rules will not apply to
them.

One useful directive which is used for conditional compilation is the #ifdef direc-
tive: it checks whether a flag is defined either by the #define directive inside the
Fortran source file or by the -D option upon using the compiler. This facility is
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used by Marc and the flag _IMPLICITNONE is used upon calling the compiler to
impose the necessity of defining every variable explicitly by the following code:

1 # i f d e f _IMPLICITNONE
2 IMPLICIT none
3 # e lse
4 IMPLICIT LOGICAL ( a−z )
5 # e n d i f

This piece of code is used at the beginning of every subroutine template which is
located in the user subdirectory ofMarc and is a good replacement for the following
line:

1 IMPLICIT REAL∗8 ( a−h , o−z )

This implicit type declaration is used in the templates listed in the documentation
of Marc and it has the same problem as any other implicit type declaration, i.e. it
adds more complications to the debugging process. Therefore, this approach is not
recommended. It is also worth reminding that every real type declaration in the
subroutines must be of KIND = 8 to ensure the correct transfer of data between
Marc and the subroutine.

The #include directive is used to include another file in the current source file. For
instance, a file named mymodule.f, residing in the same directory as the source file,
will be included by adding the following line in the code:

1 # i n c l u d e " mymodule . f "

Amacro is a series of commands towhich a name is assigned. Amacro is also called a
symbol which is usually a value. The compiler replaces every macro/symbol with the
corresponding value during preprocessing. There are some predefined preprocessor
symbols such as _WIN64 which is equal to 1 in Windows® operating systems with
a 64 bit architecture. For more information on macros refer to [17].

Another use of the compiler directives is to manage the statements which are
related to the debugging of the code. As mentioned earlier, it is not possible to
use a debugger while developing the user subroutines for Marc. Therefore, output
statements such asWRITE are used to print critical variables of the code for debugging
purposes. After finishing the debugging of the code, these extra statements, which are
not really a part of the original code, are usually turned into comments or removed
from the code. In the case of another crash of the code, those lines must be added
again or turned back into effective code lines.

There is an elegant way of avoiding this repetitive process which appears to be
useful in the case of erroneous code. It is done by using the conditional compila-
tion capability of the Fortran compiler, i.e. the #define, #ifdef and #endif compiler
directive. A variable/macro is defined using the #define directive to indicate that
debugging is required for the code. This condition is checked with the other two
mentioned directives. If the condition is satisfied the code responsible for printing
the debugging information is compiled. Otherwise, the compiler will neglect the
code.

It is worth mentioning that to distinguish the name of this variable/macro from the
normal Fortran programming code, a different naming convention is used. Usually
uppercase letters are used with an underscore at the beginning, e.g. _IMPLICITNON.
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Let us consider the following lines of code:

1 DO i = 1, n
2 elmStress ( i ) = [ ( ( IPStress( j ) , j = 1, m) ] / m
3 END DO

The program crashes during execution and the compiler points to the second line as
the faulty line. It is necessary to investigate the values of the variables during the
execution of the loop. Therefore, the code is modified to the following:

1 DO i = 1, n
2 WRITE (6 ,∗) ’ i = ’ , i
3 WRITE (6 ,∗) ’IPStressSum( i ) = ’ , IPStressSum
4 WRITE (6 ,∗) ’m = ’ , m
5 WRITE (6 ,∗) ’ IPStress(1:m) = ’ , [ ( IPStress( j ) , j = 1, m) ]
6

7 IPStressSum( i ) = IPStressSum( i ) + [ ( IPStress( j ) , j = 1, m) ] / m
8 END DO

Lines 2 to 5 of this code are dedicated to watching the variables for debugging. After
resolving the issue, one may either transform these lines to comments or delete them.
But using the compiler directives, one could control this without changing all the
code. Using the directives, the previous code is update to the following:

1 #define _DEBUGON
2 DO i = 1, n
3

4 #i fdef _DEBUGON
5 WRITE (6 ,∗) ’ i = ’ , i
6 WRITE (6 ,∗) ’IPStressSum( i ) = ’ , IPStressSum
7 WRITE (6 ,∗) ’m = ’ , m
8 WRITE (6 ,∗) ’ IPStress(1:m) = ’ , [ ( IPStress( j ) , j = 1, m) ]
9 #endif

10

11 IPStressSum( i ) = IPStressSum( i ) + [ ( IPStress( j ) , j = 1, m) ] / m
12 END DO

In this listing, a variable named _DEBUGON is declared without assigning any values
to it (line 1). The value could be a number or an expression but none of these is
required in our case. In line 4, the existence of this variable is checked. If it exists,
the debugging lines will be compiled. Otherwise, they will be ignored. To turn off
the debugging lines, the first line should be simply transformed into a comment line.

The benefit of this method is in controlling all the debugging lines of the code
with one single line. In addition, it is possible to define multiple levels of debugging
in terms of description, e.g. a very detailed debugging output or a very compact
one. This can be done using nested compiler conditions using the #if, #elif and #endif
directives. The same code can be modified for a two-level debugging output:

1 #define _DEBUG_LEVEL2
2

3 DO i = 1, n
4 #i fdef _DEBUG_LEVEL1
5 WRITE (6 ,∗) ’ i = ’ , i
6 WRITE (6 ,∗) ’IPStressSum( i ) = ’ , IPStressSum
7 WRITE (6 ,∗) ’m = ’ , m
8 WRITE (6 ,∗) ’ IPStress(1:m) = ’ , [ ( IPStress( j ) , j = 1, m) ]
9 #e l i f _DEBUG_LEVEL2

10 WRITE (6 ,∗) ’ i = ’ , i
11 WRITE (6 ,∗) ’IPStressSum( i ) = ’ , IPStressSum
12 #endif
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13 IPStressSum( i ) = IPStressSum( i ) + [ ( IPStress( j ) , j = 1, m) ] / m
14 END DO

In this listing, the compact debugging output will be printed. This debugging level
is indicated by defining the _DEBUG_LEVEL2 variable.

One could go even further and define some macros for the debugging statements.
For instance, the WRITE statement can be defined as a macro. Using macros, the
previous code can be updated to the following:

15 #define _W WRITE(6 ,∗)
16 #define _DEBUG_LEVEL2
17

18 DO i = 1, n
19 #i fdef _DEBUG_LEVEL1
20 _W ’ i = ’ , i
21 _W ’IPStressSum( i ) = ’ , IPStressSum
22 _W ’m = ’ , m
23 _W ’ IPStress(1:m) = ’ , [ ( IPStress( j ) , j = 1, m) ]
24 #e l i f _DEBUG_LEVEL2
25 _W ’ i = ’ , i
26 _W ’IPStressSum( i ) = ’ , IPStressSum
27 #endif
28 IPStressSum( i ) = IPStressSum( i ) + [ ( IPStress( j ) , j = 1, m) ] / m
29 END DO

In the first line, a macro is defined for the output statement and the corresponding
debugging statements are replaced by the macro (lines 6–9, 11 and 12). This macro
enables the user to change the output of all the debugging statements from 6 to any
other file units by changing a single line. In addition, the debugging code looks more
concise and distinguishable from the normal lines of code.

Macros are quite powerful and they can even be defined to accept parameters and
it is possible to use them to replace normal programming lines. They obscure the real
code, which is alright for the debugging code, but it reduces the clarity of the normal
programming code. Since they change the normal look of the code to a custom one,
it is not advised to use them extensively.

2.4.5 Controlling the Job Submission

The analysis of a job is usually submitted from Mentat and it is done via one of
the submit1.bat, submit2.bat or submit3.bat batch files. Either one of these files will
configure the options for the job submission and finally runs the run_marc.bat batch
file. This batch file is responsible for the running of the job and is located in the
tools subdirectory of Marc. However, it is also possible to submit a job from the
command prompt directly to the run_marc.bat batch file. The direct submission of a
job has the following advantages:

• providing more flexibility over controlling job submission via option switches,
and

• releasing thememory occupied byMentat. Therefore, a larger amount ofmemory
will be available to Marc for the analysis.
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Table 2.12 Switches for direct running of Marc. Adapted from [25]

Switch syntax Description

-alloc ForcesMarc to perform memory allocation test without carrying out the
analysis

-autorst yes/no or
-au y/n

With the yes switch, enables the auto-restart feature in which the analysis is
stopped, a mesher/remesher runs and then the analysis restarts. The default
value is no for which the analysis runs normally

-back yes/no or -b
y/n

With the yes switch,Marc runs in the background. The default value is no
for which the analysis runs normally

-bg yes/no With the yes switch, all the messages will be printed to the screen, i.e. the log
file and the output file. In addition, the output file will be created without the
log file

-def or -de
default-filename

Specifies the name of the default-file

-dir working-path Specifies the current working directory to run the job. The default value is the
current path

-jid or -j input
filename.dat

Specifies the name of the input file name. The .dat file-extension is optional

-list yes or -list y Lists the options used in the input file in the output file. No analysis is done

-ml memory-limit Specifies the memory limit in Megabytes. This will override the default
values specified in the file run_marc_defaults

-mo i4/i8 Specifies one of the following kinds for the integers: i4 and i8 which is
available only on 64-bit systems. This will override the default values
specified in the file run_marc_defaults

-mpi mpi-type Specifies one of the following types for the MPI: intelmpi, msmpi, hpmpi or
hardware

-nprocds or -nps
domain-count

Specifies the number of domains for parallel processing using a single input
files

-nprocd or -np
domain-count

Specifies the number of domains for parallel processing

-nsolver
task-count

Specifies the number of tasks for solver number 12. These distributed tasks
operate via MPI

-nthread_elem
thread-count

Specifies the number of threads for element assembly and recovery. A
shared-memory thread which does not use MPI

-nthread or -nts
thread-count

Specifies the number of threads for the parallel matrix solvers (solver number
8, 9 and 10)

-obj object-
filename.obj

Specifies the user object-file/libraries (if any) used in the subroutines. Note
that the .obj file-extension must be used

-ou 1 ForcesMarc to do the out-of-core storage of the element data

-pid or -pi post-
filename.t16/.t19

Specifies the previously-created post-file

-prog or -pr
compiled-filename

Specifies the compiled executable ready to be used by Marc. Note that the
.exe file-extension must not be used

-rid or -r restart-
filename.t08

Specifies the previously-created restart-file

-save yes/no or
-sav y/n

yes: The compiled user subroutine file will be saved. The default value is no
for which the compiled file will be deleted

(continued)
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Table 2.12 (continued)

Switch syntax Description

-sdir scratch-path Specifies the path for scratch files during the analysis. The default value is set
to the working path

-sid substructure-
filename

Specifies the substructure-file

-user or -u
user-subs.f

Specifies the name of the user subroutine file. The .f file-extension is optional

In Table 2.12, a list of switches for run_marc.bat is provided. Note that most of
the time they come in pairs, e.g. the command-line argument -jid is paired with its
value input filename.dat. These switches can be used to control the behavior ofMarc.
For instance, the following command will run an input file named truss01.dat and
compiles the corresponding subroutine source file mysub.f:

1 run_marc − j i d t r uss01 . da t −user mysub . f

It is possible to save the compiled subroutine as an executable with the following
line:

1 run_marc − j i d t r uss01 . da t −user mysub . f −save yes

Now, it is possible to run the saved executable rather than compiling the For-
tran code at each run:

1 run_marc − j i d t r uss01 . da t −prog mysub

As another example, an object file mylib.obj can be linked to the main Fortran file
with the following line:

1 run_marc − j i d t r uss01 . da t −user mysub . f −obj my l i b . ob j

It is also possible to save the compiled file of such a link to the external object file
by the following:

1 run_marc − j i d t r uss01 . da t −user mysub . f −obj my l i b . ob j −save yes

And run the executable file in the next run by the following line:

1 run_marc − j i d t r uss01 . da t −user mysub . f −prog mysub

It is also possible to use these options fromMentat provided that the proper modi-
fications are done to the files submit1.bat and mentat.bat. For instance, passing a file
name to -obj switch as an object file can be done bymeans of environmental variables,
e.g. an environmental variable named my_object is created containing the full path to
the object file. Next, some modifications will be done to the file submit1.bat to check
if such a variable exists or not and to act accordingly. The following lines of the file
submit1.bat are responsible of calling run_marc.bat to run a job:

1 :do_run
2

3 i f exist %job%. cnt del %job%. cnt
4
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5 cal l "%MARCKDIR%\ tools \run_marc" %slv% −j %job% %nprocds% %nprocd% −autorst %autorst%
%srcfile% %restart% %postfile% %viewfact% %hostfile% %compat% %copy_datfile%
%copy_postfile% %dcom_host% %scr_dir% %decoup% %assem_recov_nthread% %nthread% %nsolver%
%mode% %gpu% −b y

6

7 goto done
8 :error
9 echo ERROR. . . jobname is required

10 :done

These are the last lines of the submit1.bat batch file and can be found easily by search-
ing for the :do_run label. In this listing, line 6 is responsible of runningMarcwithout
the -obj switch. This listing should be modified to the following listing:

1 :do_run
2

3 i f e x i s t %job%. cnt del %job%. cnt
4

5 IF "%my_object%"==" " GOTO no_object_run
6

7 :ob jec t_ run
8 CALL "%MARCKDIR%\ too l s \ run_marc " %slv% −j %job% %nprocds% %nprocd% −autorst

%autorst% %srcfi le% %restart% %postfi le% %viewfact% %hostfi le% %compat%
%copy_datfile% %copy_postfile% %dcom_host% %scr_dir% %decoup%
%assem_recov_nthread% %nthread% %nsolver% %mode% %gpu% −b y −obj

9 %my_object%
10 GOTO done
11

12 :no_object_run
13 c a l l "%MARCKDIR%\ too l s \ run_marc " %slv% −j %job% %nprocds% %nprocd% −autorst

%autorst% %srcfi le% %restart% %postfi le% %viewfact% %hostfi le% %compat%
%copy_datfile% %copy_postfile% %dcom_host% %scr_dir% %decoup%
%assem_recov_nthread% %nthread% %nsolver% %mode% %gpu% −b y

14

15 goto done
16 : e r r o r
17 echo ERROR. . . jobname i s requi red
18 :done

In this modified batch file, line 5 checks if an environmental variables named
my_object exists; if yes, it jumps to the label object_run and calls the run_marc.bat batch
file with the switch -obj %my_object%. Otherwise, it jumps to the label no_object_run
and runs the same batch file without the -obj switch.

Alternatively, to carry out the same task, a simple modification can be done in the
following lines of the run_marc.bat file:

1 . . .
2 se t u s e r d i r =
3 se t ob j s =
4 se t q id =y
5 . . .

And add the environmental variable%my_object% as the object of the job submission.
The same lines will finally look as the following:

1 . . .
2 se t u s e r d i r =
3 se t ob j s =%my_object%
4 . . .
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2.4.6 Using the Visual Studio IDE

Microsoft® Visual Studio (VS)4 is a developer tool for computer programming,
which provides the user with a powerful IDE.5 The IDE offers an environment
equipped with various tools for code editing, compiling and debugging. Normally,
all of these features can be used for typical Fortran programming code. However,
regarding Marc subroutines, the IDE is merely used as a text editor and other
processes, i.e. compiling and debugging, are done using the methods presented in
the previous subsections.

It is possible to configure theMicrosoft® Visual Studio IDE and take advan-
tage of its capabilities to the fullest extent. The correct settings are made avail-
able in this subsection. They are tested for Marc/Mentat 2014.2 equipped with
Intel® Fortran 2013 XE-Update 5 andMicrosoft® Visual Studio 2012 under
a 64bitWindows® operating system. A similar configuration can be applied to other
cases.

It is assumed that Marc/Mentat is installed in its default directory
C:/MSC.Software/ and that the working directory isC:/Mentat_Dir/. Theworking direc-
tory should contain the model input file and the source codes for the subroutines.

In order to compile a dependentMarc subroutine inMicrosoft® Visual Stu-
dio, these steps must be followed:

1. A new empty project must be created as an Intel® Visual Fortran console
application:

File � New � Project

2. The source file of the subroutine must be added to this project:

Project � Add Existing Item...

3. It is required to set the debugging options of the project. For a project, e.g. Con-
sole1, one must execute the following:

Debug � Console1 Properties...

In the appearing dialog box, the following configurations must be set for the
compiler:

• For 64-bit systems the active platform must be changed by executing the
following:

Configuration Manager... � Platform: x64

• Suppress the startup banner:

Fortran � General � Suppress Startup Banner: Yes (/nologo)

4http://www.visualstudio.com/.
5Integrated development environment.

http://www.visualstudio.com/
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• Include your working directory, e.g. c:/mentat_dir, along with the required
directories of Marc as follows:

Fortran � General � Additional Include Directories: <Edit...>

"C:/MSC.Software/Marc/2014.2.0/marc2014.2/common"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/bcsgpusolver/common"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/mumpssolver/include"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/intelmpi/win64/include"
"C:/mentat_dir"

• Activate the generation of full debugging information:

Fortran � General � Debug Information Format � Full (/debug:full)

• Disable optimization:

Fortran � Optimization � Optimization: Disable (/Od)

• Activate the interprocedural optimization:

Fortran � Optimization � Interprocedural optimization: Single-file (/Qip)

• Enable preprocessing of the source file:

Fortran � Preprocessor � Preprocess source file: Yes(/fpp)

• Use the following preprocessor definitions:

Fortran � Preprocessor � Preprocess Definitions: <Edit...>

WIN32_intel
_IMPLICITNONE
I64
MKL
OPENMP
OMP_COMPAT
_MSCMARC
WIN64
CASI
PARDISO
MUMPS
BCSGPU
CUDA
DDM

• Activate the generation of parallel codes:

Fortran � Language � Process OpenMP Directives: Generate Parallel Code
(/Qopenmps)

• The following property must be changed only if the 8-byte integer mode is
used:

Fortran � Data � Default Integer KIND: 8 (integer_size:64)

• Deactivate sharing memory between CRAY pointers and other variables:
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Fortran � Data � Assume CRAY Pointers Do Not Share Memory Locations: Yes
(/Qsafe_cray_ptr)

• Activate the generation of automatic codes after function calls to check the
stack:

Fortran � Floating-Point Stack � Yes (/Qfp-stack-check)

• Set the output directory, e.g. c:/mentat_dir, for the compiled module file(s),
compiled object file(s), and information file(s):

Fortran � Output Files � Module path: c:/mentat_dir/
Fortran � Output Files � Object File Name: c:/mentat_dir/
Fortran � Output Files � Profile Directory: c:/mentat_dir/

• Specify the output directory, e.g. c:/mentat_dir, for the program database file:

Fortran � Output Files � Program Database File Name: c:/mentat_dir/vc110.pdb

• Activate the generation of traceback information for runtime errors:

Fortran � Run-time � Generate Traceback Information: Yes (/traceback)

• Activate full runtime error checking:

Fortran � Run-time � Runtime Error Checking: All (/check:all)

• Specify the runtime library for linking:

Fortran � Libraries � Runtime Library: Debug Multithread (/Libs:static /threads /
dbglibs)

• Add the following miscellaneous switches as additional options:

Fortran � Command Line � Additional Options:

/c /Qvec- /switch:fe_old_modvar /W0 /Zi /fpe:0 /Qopenmp /Qopenmp-threadprivate:
compat /MD

The following configurations must be applied to the linker:

• The name of the output executable file, e.g. subs.exe, must be added along
with its full path, e.g. c:/mentat_dir/. This file is the final compiled one which
will be used by Marc:

Linker � General � c:/mentat_dir/subs.exe

• Disable incremental linking:

Linker � General � Enable Incremental Linking: No (/INCREMENTAL:NO)

• Suppress the startup banner:

Linker � General � Suppress Startup Banner: Yes

• Add the additional library directory:

Linker � General � Additional Include Directories: <Edit...>

"C:/MSC.Software/Marc/2014.2.0/marc2014.2/intelmpi/win64/lib"
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• Enter the additional object and library files for linking:

Linker � Input � Additional Dependencies:

"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/main.obj"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/blkdta.obj"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/comm1.obj"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/comm2.obj"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/comm3.obj"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/srclib.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/mcvfit.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/mnflib.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/md_user.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/mdsrc.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/bcsgpulib.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/marccuda.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/intelmkl/win64i8/mkl_intel_ilp64.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/intelmkl/win64i8/mkl_intel_thread
.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/intelmkl/win64i8/mkl_core.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/intelmkl/win64i8/libiomp5md.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/blas_src.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/casilib.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/intelmkl/win64i8/mkl_solver_ilp
64.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/ACSI_Marc.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/mumps.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/intelmkl/win64i8/mkl_scalapack_ilp
64.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/intelmkl/win64i8/mkl_lapack95_ilp
64.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/intelmkl/win64i8/mkl_blacs
_intelmpi_ilp64.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/stubs.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/clib.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/clibp.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/lib/win64i8/metislib.lib"
"C:/MSC.Software/Marc/2014.2.0/marc2014.2/xdr_lib/win64/xdr_irc.lib"

• Prevent the linker from using the following default libraries:

Linker � Input � Ignore Specific Library: <Edit...>

libc.lib
libcmt.lib
libifcoremt.lib
MSVCRTD.lib

• Deactivate the generation of the manifest file:

Linker � Manifest File � Generate Manifest: No (/MANIFEST:NO)

• Use the same output file name with the .pdb extension, e.g. subs.pdb, at the
same path, e.g. c:/mentat_dir/, to generate the program database file:
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Linker � Debugging � Generate Program Database File: c:/mentat_dir/subs.pdb

• Specify the subsystem for the linker:

Linker � System � Subsystem: Console

• Enable the checksum of the executable file:

Linker � Advanced � Set Checksum: Yes

• Add the following additional libraries:

Linker � Command Line � Additional Options:

libmmd.lib libifcoremd.lib impi.lib ws2_32.lib kernel32.lib user32.lib netapi32.lib
advapi32.lib comdlg32.lib comctl32.lib

4. Now rebuild the solution using the following:

Build � Rebuild Solution

The result of these steps is an executable file which can be used in either Marc or
Mentat. However, the analysis should run from the command prompt to enable
step-by-step debugging. The following command should be executed for a job named
test_job1:

1 run_marc − j t e s t _ j o b 1 −prg subs −bg n

In addition, a Read statement must be used at the beginning of the program to
pause the execution of the subroutine. This will provide time to attachMicrosoft®

Visual Studio to the running subroutine. The UEDINC subroutine can handle this
task. Consider the following code as an example:

1 SUBROUTINE UEDINC (uInc , uIncsub)
2

3 IMPLICIT NONE
4

5 c ∗∗ Start of generated type statements ∗∗
6 INTEGER uInc , uIncsub
7 c ∗∗ END of generated type statements ∗∗
8

9 IF (uinc .EQ. 0) READ (∗ ,∗)
10

11 END

This code waits for the user to type an integer as an input in increment zero. Before
typing the integer, Microsoft® Visual Studio must be attached to the running
subroutine. This can be done in the IDE using the following:

Tools � Attach to Process...

In the appearing dialog box, the name of the running subroutine must be selected
which is subs.exe in our case. Now, it is possible to toggle breakpoints by pressing
F9 when the cursor is at the intended line. In addition, it is possible to use QuickWatch
to view the value of a variable. This can be done by executing the following in the
IDE:

Debug � QuickWatch
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Other facilities are also available in the Debug menu of the IDE. After defining
the breakpoints, the trivial integer number can be entered and the IDE will stop at
the breakpoints of the code. This is a powerful debugging method for complicated
programming code.

2.5 Miscellaneous Tools

Although subroutines are the strong side of Marc/Mentat, sometimes the tasks at
hand are not that complicated and/or the user is not that acquaintedwith programming
skills. For such cases, Marc/Mentat enables the user to simply use either some
recorded commands via procedure files or some Python scripts for slightly more
complex tasks. In this section, these two tools are briefly introduced. In addition, the
method of using compiled C libraries is demonstrated by an example. Any of these
miscellaneous tools may come in handy for appropriate cases.

2.5.1 Procedure Files

Every interaction withMentatwill finally lead to executing a command. Selecting a
menu, clicking on a button, entering a value in a field of a dialog, among others, will
issue several commands. In the interface, these commands and the user interaction
appear in the command area. A command is just a line of text which has a specific
meaning forMentat. A procedure file is nothing but a text file with .proc extension
which contains an ordered chain of commands. As mentioned previously, all these
commands in every running session of the Mentat software will be saved as the
mentat.proc file in the working directory ofMentat. Similar to this concept, the user
can save a customized procedure file to tackle some obstacles. In this subsection, the
potential of procedure files is briefly introduced.

The procedure capability can have various applications, such as the following:

• Procedure files can be used to handle the typical parts of the modeling process.
Repetitive operations such as entering the coordinates of a geometry can easily be
handled by procedures whereas the more specific steps can be followed up by the
user.

• Since modifying a procedure file can readily be done by a simple text editor, it
makes generating the correspondingmodels for a parametric study an easy process.

• It can serve as an educational tool by which it is made possible to investigate
the commands of Mentat by modifying the model creation process. This can
enlighten the user about the intricate chain of commands in a modeling process.

• The default procedure file ofMentat, i.e mentat.proc, is actually the most up-to-
date backup of the current session which can play a critical protecting role in the
case of a software crash.
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• Sometimes, it is more convenient to organize the results of the analysis in the
form of a procedure file by which the table/graph of the result can be created in
Mentat.

• Any possible chain of commandswhich reveals some errors or bugs of the software
can be recorded using a procedure file for reporting purposes.

In Fig. 2.1, three procedure files are illustrated: a custom input file as an input for
Mentat to run a set of commands (inscript.proc), a custom output file as an output
of an analysis (outscript.proc) and the default session script ofMentat (mentat.proc)
as a backup. A subroutine can be used to generate the procedure for the output file
of the results, e.g. a table for the history plot.

The next question is how to make a procedure file. In the beginning, the most
direct and recommended way of creating a procedure file is via Mentat itself and
then modify it by a text editor to suit the user’s case. As the experience of the user
increases, one will be able to create the procedure file by the text editor from the
very beginning. This is most likely possible for some simple tasks such as creating
a table or simple geometries (see [31] for such examples).

It is advised to observe the command area while working with Mentat to get
acquainted with the syntax of commands. At more advanced levels, the process of
creating the procedure file can be automatized bymeans of a programming language;
more specifically by a user subroutine coded in Fortran. This approach can liberate
the user of the tiring process of organizing the results of analyses.

It is even possible to use other programming languages to create procedure files
which generate models for parametric studies. For instance, a very common table in
most analyses is a Ramp table which helps applying a boundary condition incremen-
tally. A simple procedure file can create such a table with the following lines:

1 ∗new_md_table 1 1
2 ∗table_name Ramp
3 ∗set_md_table_type 1
4 increment_number
5 ∗table_add
6 0 0
7 1 1

Note that each command starts with an asterisk; the other lines without an asterisk
are the inputs. The data points, i.e. next two lines after the command *table_add, can
be replaced by the results of an analysis to create a ready-to-use procedure file.

Procedure files are quite useful when dealingwith the aforementioned taskswhich
are mainly a linear chain of commands. However, they do not provide the user
with the abilities of a programming language such as performing calculations and
using control structures. For example, conditional statements and loops cannot be
incorporated in procedure files. Mentat also provides the solution for such cases,
i.e. PyMentat which combines the ability of the Python programming language
with the typical commands ofMentat. In the next subsection, this topic is discussed
briefly.
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2.5.2 Python and Mentat

Although Python is a general-purpose programming language, it is mostly famous
for being an object-oriented scripting language. Readability, coherence, portability,
development productivity, extensive support libraries, component integration and
many other fine characteristics make Python a favorable scripting tool. In our con-
text, Python serves as a product customization/extension tool which can invoke
library functions and interact with the Mentat interface. This gives the advantage
of end-user product customization without manipulation of the source code. On the
other hand, Python is a very high-level programming language which makes it
rather slow in particular cases. In such occasions, a lower level compiled code can
be accessed to reach a better performance.

Python interacts with Mentat via a module named PyMentat which sends
a sequence of commands to Mentat. This is similar to the previously introduced
procedure concept, but additionally the capabilities of a programming language are
also provided. In other words, it is possible to convert a procedure file to a PyMen-
tat script to benefit from the general potential of the programming language; a script
is provided for this purpose in [27]. When the procedure file is converted, additional
modifications can be applied to the file, e.g. adding loops and calculations. While
this is the recommended approach for a beginner, a more advanced user can start
readily from the PyMentat script itself.

There is another module which acts independently fromMentat on the post files
ofMarc, i.e. PyPost. By this module, the output results which are already recorded
in the post file, can be read, processed and plotted.

As an example consider the following PyMentat code which generates a grid of
nodes using parameters fromMentat:

1 f rom py_mentat i mp o r t ∗
2 def make_grid ( x , y , z , dx , dy , dz , xs , ys , zs ) :
3 x _ d i s t = dx / xs
4 y _ d i s t = dy / ys
5 z _ d i s t = dz / zs
6 x t =x
7 y t =y
8 z t =z
9 f o r i i n range ( 0 , zs ) :

10 f o r j i n range ( 0 , ys ) :
11 f o r k i n range ( 0 , xs ) :
12 cmd = " ∗add_nodes %f %f %f " % ( x t , y t , z t )
13 py_send ( cmd )
14 x t = x t + x _ d i s t
15 y t = y t + y _ d i s t
16 x t = x
17 z t = z t + z _ d i s t
18 y t = y
19 r e t u r n
20

21 def main ( ) :
22 nx = p y _ g e t _ i n t ( " nx " )
23 ny = p y _ g e t _ i n t ( " ny " )
24 nz = p y _ g e t _ i n t ( " nz " )
25 x_ leng th = p y _ g e t _ f l o a t ( " x_ leng th " )
26 y_ leng th = p y _ g e t _ f l o a t ( " y_ leng th " )
27 z_ leng th = p y _ g e t _ f l o a t ( " z_ leng th " )
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28 make_grid ( 0 , 0 , 0 , x_ leng th , y_ leng th , z_ leng th , nx , ny , nz )
29 r e t u r n
30

31 i f __name__ == ’ __main__ ’ :
32 main ( )

In this listing, nx, ny and nz are the number of nodes and x_length, y_length and z_length
are the total length of the grid in the X -, Y - and Z -direction, respectively. These are
the names of the parameters which can be defined using the Mentat parameters
dialog which appears using the following command:

1 Tools � Parameters

After defining the parameters, the PyMentat script can be selected and run by the
following command:

1 Tools � Python � Run

Using PyMentat and PyPost scripts will help the user to automate many tasks
without a great deal of programming expertise. However, the downside of the deal
may be the slower performance especially if using heavy PyMentat scripts which
interact directly with Mentat. The other option in this case may be using some
compiled Fortran subroutines to boost the speed of the process.

2.5.3 C Programming Language

The two previous subsections introduced options for rather unexperienced program-
mers. Here, a brief introduction for mixed-language programming, especially for the
C family language, is provided and it is concluded by an example.

In general, approaching mixed-language programming is due to the availability
of some existing code or the implementation problems in a particular language [18].
A mixed-language approach is beneficial when the required code is available but not
in the main language and it is easier to just prepare a way of communication between
two languages. For the case of Marc, the interoperability between Fortran and
C programming language is supported. Namely, it is possible to use an entity, e.g. a
function, a derived type, a variable etc. of Fortran in C or vice versa. Because the
subroutines of Marc are in Fortran, any C code library can be used to facilitate
the calculations. In addition, even C++ codes, if adapted carefully, can be used in a
Fortran code.

The interoperability between the Fortran and C programming language is a
standard part of Fortran. There are some delicate matters which can be addressed
by means of appropriate references. However, as a simple example, the bubble sort
algorithm is coded in a C file named cfunctions.c containing the following lines:

1 vo id b u b b l e s o r t ( double x [ ] , i n t l en )
2 {
3 i n t i , j ;
4 double temp ;
5 f o r ( i = len −1; i > 0 ; i −−)
6 f o r ( j = 0 ; j < i ; j ++ ) {



178 2 Introduction to Marc/Mentat

7 i f ( x [ j ] > x [ j + 1 ] ) {
8 temp = x [ j + 1 ] ;
9 x [ j +1] = x [ j ] ;

10 x [ j ] = temp ;
11 }
12 }
13 }

In this code, an array of double precision numbers (x[]) with a number of elements
(len) is sorted by means of the subroutine bubblesort. Using a module such as the
following will set up a neat connection between this code and Fortran:

1 MODULE CTools
2 USE i s o _ c _ b i n d i n g
3 IMPLICIT NONE
4

5 INTERFACE
6 SUBROUTINE bubble ( a , b ) BIND ( c )
7 IMPORT
8 INTEGER ( KIND = c _ i n t ) , VALUE, INTENT ( IN ) : : b
9 REAL ( KIND = c_double ) , INTENT ( INOUT ) , DIMENSION ( ∗ ) : : a

10 END SUBROUTINE bubble
11 END INTERFACE
12

13 CONTAINS
14

15 SUBROUTINE Bubb leSor t ( a L i s t , i temCount )
16

17 INTEGER , INTENT ( IN ) : : i temCount
18 REAL∗8 , DIMENSION ( ∗ ) , INTENT ( INOUT ) : : a L i s t
19

20 CALL bubble ( a L i s t , i temCount )
21

22 END SUBROUTINE Bubb leSor t
23

24 END MODULE CTools

The module CTools contains a subroutine in Fortran which simply executes the
C function. Since the call is an external one, the interface is explicitly declared. This
module can be used in any Fortran program to sort one-dimensional arrays, such
as the following:

1 INCLUDE ’ c t o o l s . f o r ’
2 PROGRAM For t ranC
3

4 USE c t o o l s
5 IMPLICIT NONE
6

7 INTEGER ( KIND = c _ i n t ) : : i temCount
8 REAL ( KIND = c_double ) , DIMENSION ( 1 0 ) : : t h e L i s t
9

10 i temCount = 10
11 t h e L i s t ( 1 ) = 100.55D0
12 t h e L i s t ( 2 ) = −12.45D0
13 t h e L i s t ( 3 ) = 0.23D0
14 t h e L i s t ( 4 ) = 0.23D0
15 t h e L i s t ( 5 ) = 40.23D0
16 t h e L i s t ( 6 ) = 0.23D0
17 t h e L i s t ( 7 ) = −20.23D0
18 t h e L i s t ( 8 ) = 0.23D0
19 t h e L i s t ( 9 ) = 300.D0
20 t h e L i s t ( 1 0 ) = 20.3D0
21

22 CALL Bubb leSor t ( t h e L i s t , i temCount )
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23 p r i n t ∗ , t h e L i s t
24

25 END PROGRAM For t ranC

Toobtain an executable for an individualFortran program, such as this example, the
C andFortran codesmust be compiled separately to their corresponding object files
and then using the Fortran compiler, i.e. ifort, all the objects can be linked together.
For example, to compile the C file, i.e. cfunctions.c, use the following command in
the command-prompt to generate the object file:

1 c l −c c f u n c t i o n c s . c

Using the Fortran compiler, compile the module file, i.e. cTools.for, and the main
program file, i.e. FortranC.for, with the following commands:

1 i f o r t −c f o r t a n c . f o r

Note that because the module is already included in the main program, the compiler
will automatically generate the corresponding object and module files. Finally, all
the object files must be linked together by the following command:

1 i f o r t −o f i n a l f o r t a n c . ob j c f u n c t i o n s . ob j

The executable file, i.e. final.exe, will be the result of this command.
Alternatively, it is possible to use the batch filementioned in Sect. 2.4.5 and set the

environmental variable %my_object% to the compiled object file of the C program.
For our case, a command such as the following will do the trick:

1 SET %my_object% = ‘ ‘ c f u n c t i o n s . ob j "



Chapter 3
Basic Examples

Abstract In this chapter, a few simple problems are stated and solvedwith the help of
subroutines. These exampleswill help the reader to review the programming concepts
introduced in the earlier chapters and practice the concepts behind Marc/Mentat.
Themain focuswill be on structural problems. The subroutine structure is kept simple
and the interaction between subroutines is minimized. This chapter is suitable for the
intermediate programmer and provides a good foundation for more complex coding
problems presented in the following chapters.

3.1 Overview

In the previous chapter, the fundamentals of Marc/Mentat were investigated with
a especial focus on the subroutine facility. This knowledge combined with the pro-
gramming skills, equips the FE user with powerful skills to deal with complex and
unconventional problems. In this chapter, this capability is illuminated by simple
examples, namely some practical problems are with the help of some selected sub-
routines. The main area of concern will be simple structural problems which require
basic programming skills and simple interactions between subroutines. The purpose
of this chapter is to familiarize the readerwith employing subroutines in FEproblems.

3.2 Examples

When approaching these examples, all default values will be used for any options
unless otherwise stated. Therefore, it is always assumed that creating a new model
is started by resetting Mentat which can be done by executing the following:

1 File �New
8 *reset

© Springer International Publishing AG 2017
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This will ensure that all the default values of the dialog boxes are restored and that
Mentat is back to the default state. Numerical values are given without units and
can be understood as consistent units.

3.2.1 FORCDT

Example 3.1 This example illustrates the use of the FORCDT subroutine in a static
analysis in which a moving point load is applied on a cantilever beam. The beam is
modeled by means of 11 nodes and 10 elements of type 52, i.e. a two-node Euler-
Bernoulli straight beam element (E = 200 × 103). The beam has a square cross
section with sides equal to 40. A vertical load (F = −10) is applied on each node
in 10 increments, namely in increment 1 the load is applied on node 1, in increment
2 the load is applied only on node 2, and so forth. The structure is shown in Fig. 3.1
with the force acting on the first node in the first increment. The placement of the
force in the succeeding increments is distinguishable by dashed arrows.

The output of this subroutine in a static structural analysis is the displacement
and/or the point load of the nodes. For a table-driven format, the displacement can be
either incremental or total which is indicated by the iacflag flag. However, the point
load is the total point load at the end of the increment. In the table-driven format,
this subroutine is activated within the corresponding kinematic boundary condition
or point load by changing the method field from Entered values to User Sub. Forcdt.
Note that at least one of the degrees of freedom in the boundary condition and/or
point load must be selected to make the subroutine active. Since the real values are
assigned within the subroutine, the entered value and the selected degree of freedom
are arbitrary. Then the subroutine is executed for each of the selected nodes.

The following code is used for the subroutine to apply the constant moving load:

1 SUBROUTINE FORCDT( u , v , a , dp , du , t ime , dt ime , ndeg , node ,
2 & ug , xord , ncrd , i a c f l g , inc , i pass )
3

4 IMPLICIT NONE

1 2 3 4 5 6 7 8 9 1011

I II III IV V VI VII VIII IX X

F = −10

10× 10

Y

X

Fig. 3.1 Application of a moving force using the FORCDT subroutine
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5 ! ∗∗ S t a r t o f generated type s ta tements ∗∗
6 REAL∗8 a , dp , dt ime , du
7 INTEGER i a c f l g , inc , ipass , ncrd , ndeg , node
8 REAL∗8 t ime , u , ug , v , xord
9 ! ∗∗ End o f generated type s ta tements ∗∗

10 DIMENSION u ( ndeg ) , v ( ndeg ) , a ( ndeg ) , dp ( ndeg ) , du ( ndeg ) , ug ( ndeg ) ,
11 ∗ xord ( ncrd )
12

13 IF ( i n c .EQ. node ) THEN
14 dp = [ 0 . 0 , −10.0 , 0 . 0 ]
15 END IF
16

17 RETURN
18 END

In this listing, the node number (node) is compared to the increment number (inc). If
the equality condition is true, the value −10 is assigned to the second component of
the point load array (dp). The result of this value assignment is a moving load which
starts on the first node at the first increment and moves node-by-node to the last node
at the last increment.

If the non-table-driven format is used, the FORCDT input file option must be used
to introduce the list of the nodes for which the subroutine must be executed. For our
case, the following lines must be added to the input file:

1 FORCDT,1
2 1 TO 10

Note that for the non-table-driven format, the point load is applied incrementally.
Therefore, by only changing the format to the non-table-driven, the forces of the
previous increments will be preserved, i.e. in the last increment the applied force
of the first node will be equal to 100. The results of both table-driven and non-
table-driven input files are illustrated in Fig. 3.2. In this figure, the displacement of
node 10 along the Y -axis is plotted against the increment number. In the example of
the table-driven format, the maximum vertical displacement of the node 10 is equal
to −12.583 whereas the same quantity for the non-table-driven format is equal to
−401.396.

Fig. 3.2 Vertical
displacement of node 10
Versus increment number
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3.2.2 FORCEM

Example 3.2 This example illustrates the use of the FORCEM subroutine in a static
analysis in which a cantilever beam is loaded with a linearly distributed load. The
beam is modeled by means of 6 nodes and 5 elements of type 52, i.e. a two-node
Euler-Bernoulli straight beam (E = 200 × 103) element integrated by three point
Gauss integration for numerical calculations. The beam cross-section is a square
with edges equal to 5. The discretized structure is shown in Fig. 3.3 along with the
triangular load. The load is assumed to be a function of the X -coordinate and time.
In addition, the linear load is increased incrementally with time. The total equivalent
load is F = −1000 which is distributed by the following equation:

F(x, t) = −2 × 1000

100
× X

100
× t = −0.2Xt. (3.1)

In most mechanical problems, a distributed load is required to be specified as a
function of time, space coordinates, or both. The FORCEM subroutine enables using
nonuniform distributed loads applied on the elements as a function of some inde-
pendent variables. This subroutine is used to specify either volumetric body forces
(e.g. the gravity load) or surface loads (e.g. shear forces).

The value of the arbitrary distributed load is specified in the integration points
by which the equivalent nodal loads will be calculated by Marc. Therefore, this
subroutine will be called for each integration point of the assigned elements. In our
case, the structure consists of 5 elements each with three integration points, and
the load is applied using the AUTO LOAD option in 5 equal increments. Thus, the
subroutine is going to be executed for 5 × 3 × 5 = 75 times during the analysis.

In Mentat, triggering this subroutine is done by selecting User Sub. Forcem as
the evaluation method of the distributed load for a specific degree of freedom. Note
that any value for the degree of freedom can be entered and will not be used as a
scale factor for the subroutine. The distributed load can be either an edge load, a

2 3 4 5 61

I II III IV V

F0 = − 20

5× 20

Y

X

Fig. 3.3 Application of a non-uniform linear load using the FORCEM subroutine
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face load or a global load. Note that the subroutine will run only for the selected
degree of freedom. Alternatively, the DIST LOADS input option can be used to flag
the subroutine. This option can be used in both table- and non-table-driven formats.
Note that in the table-driven format, the value of the load at the integration points,
i.e. press, is the total value whereas for the non-table-driven style, it is an incremental
value.

Another point of difference is that for the table-driven style, the direction of the
load is already selected in Mentat but in the non-table-driven style it is necessary
to specify IBODY for the DIST LOADS input file option. Depending on the element
type and the edge/face on which the load is applied and whether a subroutine is used
or not, the value of the IBODY differs. For our example, which is a nonuniform load
applied on a beam, IBODY is equal to 111. For more information on other loading
options, refer to [23].

For a time-dependent loading, the increment number or the time increment can be
obtained from the concom and the creeps common blocks, respectively. It is important
for an incremental load to be specified as a function of time. Therefore, during cut-
backs the correct load can be evaluated. In the current example, the timinc variable of
the concom common block is used to determine the current time of each increment
out of the total time of 1.

The following code is used for the subroutine:
1 SUBROUTINE FORCEM( press , th1 , th2 , nn , n )
2

3 IMPLICIT NONE
4 INCLUDE ’ creeps ’
5

6 ! ∗∗ S t a r t o f generated type s ta tements ∗∗
7 REAL∗8 : : prnorm ( 3 )
8 CHARACTER∗32 : : cdum , bcname
9 COMMON / marc_ lpres3 / prnorm

10 COMMON / marc_bc labe l / cdum , bcname
11 INTEGER n , nn
12 REAL∗8 press , th1 ( ∗ ) , th2 ( ∗ )
13 ! ∗∗ End o f generated type s ta tements ∗∗
14 DIMENSION n (10 )
15

16 REAL∗8 , PARAMETER : : TFORCE = −1000.0D0 , TLEN = 100.0D0
17 REAL∗8 : : maxForcePerLen , curTime , to tT ime
18

19 curTime = t im i n c + cp t im
20 t o tT ime = 1.0D0
21

22 maxForcePerLen = (2 . 0∗TFORCE/TLEN)∗ curTime / to tT ime
23 press = ( th1 ( 1 ) / TLEN)∗maxForcePerLen
24

25 RETURN
26 END

In this listing, the common block is included in line 4 and two double precision
constants are introduced, i.e. TFORCE and TLEN, which are the total applied force
on the beam and the total length of the beam, respectively. Three auxiliary double
precision variables are used to hold the current time at the end of the current increment
(curTime), the total time of the loading (totTime) and the maximum force per length of
the beam (maxForcePerLen). Note that the coordinate system is set at the first node.
Therefore, the value of the distributed load at the current integration point (press)
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Fig. 3.4 Vertical displacement of the beam in every increment

can readily be calculated using its first coordinate (th1(1)). In addition, the total force
is applied linearly as a function of time (curTime/totTime). It is worth mentioning that
there is no need to specify the cosine direction of the load since the table-driven style
is used in our example. The vertical displacement of the beam for every increment
is illustrated in Fig. 3.4.

Although the most general way of nonuniform loading is provided by the subrou-
tine, this example can be carried out using only a table as function of two independent
variables, i.e. time and X -coordinates.

3.2.3 WKSLP

Example 3.3 This example illustrates the use of theWKSLP subroutine in a nonlinear
static analysis in which a rod is stretched by an axial displacement (u0). The rod is
modeled bymeans of 2 nodes and one element of type 9, i.e. a two-node truss element
(E = 200×103, L = 100 and A = 400). The load is applied linearly in 10 fixed steps
using a displacement boundary condition resulting in the final u0 displacement in
the X -direction. However, the material is defined by an elastic-plastic behavior with
isotropic hardening. The yield criterion is according to von Mises. In Fig. 3.5(a), the
rod is shown along with the displacement boundary condition applied on the second
node and in Fig. 3.5(b), the stress versus the plastic strain of thematerial is illustrated.
The data points of the hardening curve are approximated by the following function:

σ(εp) = − 66

0.0225
εp

2 + 132

0.15
εp + 190. (3.2)

TheWKSLP subroutine enables the user to specify the current yield stress by introduc-
ing the hardening curve as a function of the equivalent plastic strain and/or tempera-
ture. The yield function itself or the slope(s) of the hardening curve can be specified
within the subroutine. The subroutine is executed for each of the integration points
which undergoes a plastic deformation.
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Fig. 3.5 Axial loading of a nonlinear rod defined by the WKSLP subroutine

InMentat, the subroutine activation can be done for a material by selecting User
Sub. Wkslp as the method in the plasticity properties. The plasticity dialog can be
accessed by executing the following command:

3 Material Properties �Properties �Plasticity

The listing for the subroutine is as follows:

1 SUBROUTINE WKSLP(m, nn , kcus , matus , s lope , ebarp , eqrate , s t r y t , dt ,
2 ∗ i f i r s t )
3 IMPLICIT NONE
4 ! ∗∗ S t a r t o f generated type s ta tements ∗∗
5 REAL∗8 dt , ebarp , eq ra te
6 INTEGER i f i r s t , kcus , m, matus , nn
7 REAL∗8 slope , s t r y t
8 ! ∗∗ End o f generated type s ta tements ∗∗
9 DIMENSION matus ( 2 ) , kcus ( 2 )

10

11 s t r y t = (−66.D0 / 0 . 0225 .D0)∗ ebarp ∗∗2 + (132 .D0 / 0 . 15D0)∗ ebarp + 190.D0
12 s lope = (−2.D0∗66.D0 / 0 . 0225 .D0)∗ ebarp + (132 .D0 / 0 . 15D0 )
13 RETURN
14 END

In this listing, the yield stress (stryt) is specified in terms of the plastic strain (ebarp)
and in line 11, the slope of the hardening curve (slope) is specified.

Now let us consider the case that an explicit function is not provided. If the table-
driven input is chosen, it is required to create a table for the data points. It is possible
to create a table in Mentat, manually, by a procedure file or directly by using the
TABLE parameter. A procedure such as the following can be used to define the table
in Mentat:

1 ∗new_md_table 1 1
2 ∗ table_name da ta_po i n t s
3 ∗ se t_md_tab le_ type 1
4 e q _ p l a s t i c _ s t r a i n
5 ∗ tab le_add
6 0 190
7 0.005 198
8 0.015 209
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9 0.03 225
10 0.05 238
11 0.07 242
12 0.15 256
13

14 ∗ t a b l e _ f i t
15 ∗ se t_md_tab le_ex t rap 1 o f f
16 ∗ e d i t _ t a b l e t a b l e 1

Note that by adding the command in line 15, no extrapolation is done for the out-of-
range independent variables (Sect. 2.2.5). The created table can be used to directly
define the material without using the WKSLP subroutine by choosing Table as the
method for plasticity properties and selecting the data_points table as the table for
the yield stress. Note that by selecting a table, the Yield Stress field will be considered
as a scale coefficient for the values of the table; in our case a value of 1 is advised
for simplicity.

If it is required that the data points are used in a subroutine, then the previous
method will not work. This is because Mentat does not transfer the unused tables
to the input file and therefore, the first two methods of creating tables cannot be used
for this case. As a result, the TABLE input file option must be used. The following
lines must be added to the model definition section of the input file:

1 TABLE , da ta_po i n t s
2 2 ,1 , , , 2
3 15 ,7 ,1 ,
4 0.000D0 , 190.D0
5 0.005D0 , 198.D0
6 0.015D0 , 209.D0
7 0.030D0 , 225.D0
8 0.050D0 , 238.D0
9 0.070D0 , 242.D0

10 0.150D0 , 256.D0

Note that in line 3, the number 15 indicates the equivalent plastic strain as the inde-
pendent variable and the number 7 is the number of data points. In addition, the
number 1 indicates that no extrapolation is done for the out-of-range independent
variable and instead, the value of the first and last point is used. To access the tabular
values within the subroutine, the TABVA2 utility subroutine is used as the following:

1 SUBROUTINE WKSLP(m, nn , kcus , matus , s lope , ebarp , eqrate , s t r y t , dt ,
2 & i f i r s t )
3 IMPLICIT NONE
4 INCLUDE ’ c tab le ’
5 ! ∗∗ S t a r t o f generated type s ta tements ∗∗
6 REAL∗8 dt , ebarp , eq ra te
7 INTEGER i f i r s t , kcus , m, matus , nn
8 REAL∗8 slope , s t r y t
9 ! ∗∗ End o f generated type s ta tements ∗∗

10 DIMENSION matus ( 2 ) , kcus ( 2 )
11

12 INTEGER , PARAMETER : : TABLEID = 2
13 REAL∗8 , PARAMETER : : REFVALUE = 1 .D0
14

15 eqp l = ebarp
16 CALL tabva2 (REFVALUE, s t r y t , TABLEID , 0 , 1)
17 RETURN
18 END
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Fig. 3.6 Results of the
WKSLP subroutine using the
explicit function versus
interpolated data points
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In this listing, the equivalent plastic strain argument (ebarp) is passed to the indepen-
dent variable eqpl in the common block ctable. The scale factor is set to 1 (REFVALUE
= 1.D0) to extract the original values of the table.

The results of either one of the methods, i.e. the approximate function or the data-
points, are quite identical (see Fig. 3.6). Either of the mentioned methods incorporate
the table-driven style with the subroutine support of Marc/Mentat. However, the
same task can be tackled by means of the non-table-driven style using the WORK
HARDmodel definition option. The following lines must be entered in the input file:

1 WORK HARD,DATA
2 7 ,0 ,1 , ,
3 190.D0 , 0.000D0
4 198.D0 , 0.005D0
5 209.D0 , 0.015D0
6 225.D0 , 0.030D0
7 238.D0 , 0.050D0
8 242.D0 , 0.070D0
9 256.D0 , 0.150D0

Alternatively, instead of the data points, the slopes of the hardening curve can be
specified.

3.2.4 PLOTV

Example 3.4 In this example, the PLOTV subroutine is used to provide two scalar
user defined elemental variables at the post processing stage. A cantilever beam
is modeled by means of 4-node quadrilateral plane stress elements, i.e. elements of
type 3 (E = 200×103, ν = 0.2 and t = 1). A uniformly distributed load (q0 = −15)
is applied per length on the top edge of the beam. The discretized model is illustrated
in Fig. 3.7 which is composed of 20 nodes and 12 elements lying in the X -Y plane.

This subroutine is executed once for each one of the user defined variables which
can be up to 200 variables. To calculate the scalars, the subroutine runs for each
integration point of the selected elements. Although all the stresses, strains and
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Fig. 3.7 Discretized model
for the PLOTV subroutine
example
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state variables are provided within the subroutine, sometimes accessing the material
properties will be requiredwhich can be done by including thematdat common block.

In order to flag the subroutine, select any number of user defined variables, to
appear in the post file, under Available Element Scalars in the Results dialog:

3 Jobs � Jobs �Properties � Job Results

For the current example, check the boxes in front of User Defined Var #1, # 2 and # 3.
This will introduce three user defined variables in the post file which will be handled
by the PLOTV subroutine. The number of user defined variables is provided by the
jpltcd variable. The first and second variables are considered to be the octahedral
normal stress (σoct) and octahedral shear stress (τoct), respectively. The first invariant
of stress (I1) and second invariant of stress (I2)will be used to carry out the calculation
using the following formulas:

σoct = 1

3
I1, (3.3)

τoct = 1

3

√
2I 21 − 6I2. (3.4)

The invariants of the stress tensor are calculated using the following formulas:

I1 = σxx + σyy + σzz, (3.5)

I2 =
∣∣∣∣
σxx σxy

σyx σyy

∣∣∣∣ +
∣∣∣∣
σyy σyz

σzy σzz

∣∣∣∣ +
∣∣∣∣
σxx σxz

σzx σzz

∣∣∣∣ . (3.6)

Element 3 only provides three stresses (σxx , σyy and σxy) and three strains (εxx , εyy
and εxy). Therefore, the formulas can be simplified to the following for the plane
stress case:
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I1 = σxx + σyy, (3.7)

I2 = σxxσyy − σxy
2. (3.8)

The third user defined variable is used to calculate the strain along the z-axis, i.e. the
strain normal to the plane of the elements. Note that by default, Marc does not
provide this quantity for isotropic materials in a plane stress analysis. The elas-
tic modulus (E) and the Poisson’s ratio (ν) are used to calculate the strain by the
following formula:

εzz = −ν

E
(σxx + σyy). (3.9)

The following listing is used for the subroutine:

1 SUBROUTINE PLOTV( v , s , sp , e to t , eplas , ecreep , t ,m, nn , kcus , ndi ,
2 & nshear , j p l t c d )
3

4 IMPLICIT NONE
5 INCLUDE ’ matdat ’
6

7 ! ∗∗ S t a r t o f generated type s ta tements ∗∗
8 REAL∗8 ecreep , eplas , e t o t
9 INTEGER j p l t c d , kcus , m, ndi , nn , nshear

10 REAL∗8 s , sp , t , v
11 ! ∗∗ End o f generated type s ta tements ∗∗
12 DIMENSION s ( ∗ ) , e t o t ( ∗ ) , ep las ( ∗ ) , ecreep ( ∗ ) , sp ( ∗ ) ,m( 4 ) , kcus ( 2 ) ,
13 & t ( ∗ )
14

15 REAL∗8 : : inv1 , i nv2
16

17 IF ( j p l t c d .EQ. 1) THEN
18 i nv1 = s ( 1 ) + s ( 2 )
19 v = inv1 / 3 .D0
20 ELSE IF ( j p l t c d .EQ. 2) THEN
21 i nv1 = s ( 1 ) + s ( 2 )
22 i nv2 = s ( 1 )∗ s (2)−s (3 )∗∗2
23 v = SQRT( 2 .D0∗ ( i nv1 ∗∗2)−6.D0∗ i nv2 ) / 3 .D0
24 ELSE IF ( j p l t c d .EQ. 3) THEN
25 v = −xu ( 3 ) ∗ ( s ( 1 ) + s ( 2 ) ) / e t ( 3 )
26 END IF
27 RETURN
28 END

Line 5 is used to gain access to the material properties, i.e. elastic modulus (et(3))
and the Poisson’s ratio (xu(3)). The invariants are stored in the inv1 and inv2 variables.
The stresses are provided by the array s(*) and the sequence of their storage for the
element 3 is σxx , σyy and σxy .

The result of the analysis in terms of extrapolated nodal values of element 8 is
summarized in Table3.1.
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Table 3.1 Analysis result for nodes of element 8 (linearly interpolated)

Node Quantity

σoct τoct εzz

9 −5.36189 9.59335 +1.60857 × 10−5

10 −3.69377 5.20001 +1.10813 × 10−5

15 −1.35280 8.13492 +4.05840 × 10−6

14 +0.38942 12.3154 −1.16828 × 10−6

3.2.5 HOOKLW and ORIENT2

Example 3.5 This example illustrates the use of the HOOKLW subroutine in defining
an anisotropic material which degrades as a function of time. A cantilever beam is
modeled using 4-node plane stress elements of type 3 (t = 1). A constant distributed
load per length of the beam (q0 = −20) is applied to its upper edge in ten equal
increments. In Fig. 3.8, the discretized structure is illustrated in the X–Y plane.
The material is assumed to be orthotropic with hypothetical orientations which are
illustrated schematically in the figure by using the arrows and specifiedmore in detail
in Table3.2.

The HOOKLW subroutine is used to specify a general stress-strain relationship by
the user. In other words, in this subroutine the elasticity matrix or the compliance
matrix of an anisotropic material can be specified which will cover more general
cases. It is a simpler alternative when compared to the ANELAS subroutine. These
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Fig. 3.8 Discretized model for the HOOKLW subroutine example

Table 3.2 Material orientation indicating the X -axis of the elements

Element 1 2 3 4 5 6 7 8

Angle 0 0 −30 +30 −60 +60 −90 +90
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subroutines can be activated in Mentat by checking the User Subs. Hooklw/Anelas
check-box in theStress-Strain Law dialogbox.This dialog canbe reachedbyexecuting
the following commands:

1 Material Properties �Properties � Type: Elastic-Plastic Anisotropic �Stress-Strain Law

For a non-isotropic material, the specification of the material axes is required. The
orientation of the material is specified by means of the element material coordinate
system. More accurately, its relationship with respect to the global coordinate system
must be specified.Bydefault, the elemental coordinates coincidewith the global ones.
Acquiring a different orientation can be done in several ways among which the focus
will be on using the subroutines. Alternatively, the orientation can be defined using
the Orientations group of commands in theMaterial Properties tab inMentat or more
directly the ORIENTATION input file option.

For more general cases, the ORIENT subroutine can be used which incorporates a
transformation matrix to specify the orientation. Instead of this obsolete subroutine,
the ORIENT2 subroutine is preferred to define the material orientation using a couple
of vectors. This subroutine runs once at the beginning of the analysis for every
integration point of the model. The material orientation can be specified either in the
global coordinate system or the element coordinate system; for the latter, the ilocal
flag argument must be set to 1. The element coordinate system is accessible within
the subroutine by referring to dircos, a 3×3 array, which holds the direction cosines,
e.g. dircos(1:3,1) is the local X -axis in the global coordinate system.

The two vectors used to define the orientation are vec1 and vec2. The first one
is the first material direction. The third material direction is perpendicular to the
plane of these two vectors, i.e. equal to the cross product of the first and second
vectors. Finally, the second direction is perpendicular to the plane of the third and first
material directions, i.e. their cross products. This method ensures that an orthogonal
coordinate system is defined.

Activating theORIENT2 subroutine is simply done by executing the following and
then selecting the elements in the appearing dialog:

1 Material Properties �New Orientations �Usub Orient2

The HOOKLW subroutine is called for each integration point of the selected elements.
For the case of our example, the stress-strain relationship using the compliancematrix
is as follows: ⎡

⎣
εXX

εYY
εXY

⎤
⎦ =

⎡
⎢⎣

1
EXX

−νXY
EYY

0
−νXY
EYY

1
EYY

0

0 0 1
2GXY

⎤
⎥⎦

⎡
⎣

σXX

σYY

σXY

⎤
⎦ . (3.10)

The following values are considered for the orthotropic material and the orientation
of the material changes in 30 degree steps as previously illustrated:

EXX = 6.91 × 103, (3.11)
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EYY = 8.51 × 103, (3.12)

νXY = 0.32, (3.13)

GXY = 2.41 × 103. (3.14)

EXX and EYY are the elastic moduli along the X - and Y -axis, respectively; νXY

is the Poisson’s ratio and GXY is the shear modulus of the material in the global
coordinates.

The first and the most general solution is using the two required subroutines,
i.e. the HOOKLW and the ORIENT2 subroutines. The listing which contains both of
the subroutines is as follows:

1 SUBROUTINE HOOKLW(m, nn , kcus , b , ngens , dt , d t d l , e , pr , nd i , nshear ,
2 & imod , rprops , i p r ops )
3 IMPLICIT NONE
4 ! ∗∗ S t a r t o f generated type s ta tements ∗∗
5 REAL∗8 b , dt , d t d l , e
6 INTEGER imod , ip rops , kcus , m, ndi , ngens , nn , nshear
7 REAL∗8 pr , rp rops
8 ! ∗∗ End o f generated type s ta tements ∗∗
9

10 DIMENSION b ( ngens , ngens ) , d t ( ∗ ) , d t d l ( ∗ ) , rp rops ( ∗ ) , i p r ops ( ∗ ) ,
11 & kcus ( 2 ) ,m( 2 ) , e ( ∗ ) , p r ( ∗ )
12

13 REAL∗8 : : exx , eyy , vyx , gxy
14

15 exx = 6.91D3
16 eyy = 8.51D3
17 vyx = 0.32D0
18 gxy = 2.41D3
19 ! Compliance ma t r i x
20 imod = 2
21

22 b ( 1 , 1 ) = 1 .D0 / exx
23 b ( 1 , 2 ) =−vyx / eyy
24 b ( 1 , 3 ) = 0 .D0
25 b ( 2 , 1 ) = b ( 1 , 2 )
26 b ( 2 , 2 ) = 1 .D0 / eyy
27 b ( 2 , 3 ) = 0 .D0
28 b ( 3 , 1 ) = 0 .D0
29 b ( 3 , 2 ) = 0 .D0
30 b ( 3 , 3 ) = 1 .D0 / ( 2 . D0∗gxy )
31

32 RETURN
33 END
34

35 SUBROUTINE ORIENT2 ( n , nn , kcus , ma te r i a l , matname , icomp , nodes , nnodes ,
36 & coord , coo rd i n t , ncoord , d i r cos , i c a l l , i p l y , i l o c a l , i f a s t ,
37 & vec1 , vec2 , i n t ege r_da ta , r ea l _da ta )
38 IMPLICIT NONE
39 INTEGER kcus , n , nn , ma te r i a l , nodes , nnodes , ncoord , i c a l l , i p l y , i l o c a l
40 INTEGER icomp , i f a s t , i n t ege r _da t a
41 REAL∗8 coord , d i r cos , vec1 , vec2 , coo rd i n t , r ea l _da t a
42 CHARACTER∗24 matname
43 DIMENSION n ( 2 ) , kcus ( 2 ) , ma t e r i a l ( 2 ) , nodes ( ∗ )
44 DIMENSION coord ( ncoord , ∗ ) , d i r c o s ( 3 , 3 ) , vec1 ( 3 ) , vec2 ( 3 )
45 DIMENSION coo r d i n t ( ∗ ) , i n t ege r _da t a ( ∗ ) , r ea l _da t a ( ∗ )
46

47 SELECT CASE ( n ( 1 ) )
48 CASE ( 1 : 2 )
49 vec1 = [ 1 . D0 , 0 .D0 , 0 .D0 ]
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50 vec2 = [ 0 . D0 , 1 .D0 , 0 .D0 ]
51 CASE ( 3 )
52 vec1 = [+0 .866D0,−0.500D0 , 0 .D0 ]
53 vec2 = [−0.500D0,−0.866D0 , 0 .D0 ]
54 CASE ( 4 )
55 vec1 = [+0 .866D0 , 0.500D0 , 0 .D0 ]
56 vec2 = [−0.500D0 , 0.866D0 , 0 .D0 ]
57 CASE ( 5 )
58 vec1 = [+0 .500D0,−0.866D0 , 0 .D0 ]
59 vec2 = [−0.866D0,−0.500D0 , 0 .D0 ]
60 CASE ( 6 )
61 vec1 = [+0 .500D0 , 0.866D0 , 0 .D0 ]
62 vec2 = [−0.866D0 , 0.500D0 , 0 .D0 ]
63 CASE ( 7 )
64 vec1 = [ 0 . D0 , 1 .D0 , 0 .D0 ]
65 vec2 = [ 1 . D0 , 0 .D0 , 0 .D0 ]
66 CASE ( 8 )
67 vec1 = [ 0 . D0 , −1.D0 , 0 .D0 ]
68 vec2 = [ −1.D0 , 0 .D0 , 0 .D0 ]
69 END SELECT
70 i l o c a l = 0
71

72 RETURN
73 END

In this listing, the compliance matrix is used to define the elastic matrix. This is done
by assigning imod equal to 2. It is not necessary to define separate variables for the
material properties such as exx and gxy but it adds to the readability of the code. In
the orient2 subroutine different values are assigned to the direction vectors based on
the element number; a SELECT CASE structure covers all the possible cases. Note
that ilocal = 0 indicates that all the vectors are defined in the global coordinate system.

It would be helpful to check the orientations visually. However, visualizing the
element coordinate system is possible only at the post-processing stage. It can be
done by selecting the orientations check box:

1 View �Plot Control �Orientations Settings

Additionally, the components of the direction vectors can be obtained by selecting
the element post codes 691 and 694 which refer to the first and second elemental
orientation vectors. In Mentat, it can be done by selecting the 1st Element Orienta-
tion Vector and 2nd Element Orientation Vector in the Available element Scalars of the
Job Results dialog. Note that it is possible to specify different orientations for the
integration points of a single element. However, it is not possible to visualize them
separately. Nevertheless, an average representation for each element will be available
in the post-processing visualization.

It is also possible to carry out the same example without using the subroutines and
instead, simply modify the input file. In this case, the anisotropic material properties
must be entered using the ORTHOTROPIC or ANISOTRIOPIC option; the former is
used and the same material properties are entered via Mentat. This can be done by
selecting the Elastic-Plastic Orthotropicmaterial type in the material properties dialog.

To define the material orientations via Mentat, it is necessary to use seven
coordinate systems. Each can be defined by entering the orientation angles −30,
30, −60, 60, −90 and 90 degrees for the elements III, IV, V, VI, VII and VIII,
respectively. Note that elements I and II have the default orientation angle of zero.
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Table 3.3 Analysis results for nodes of element VIII

Node Quantity

σeq uX uY

13 +3.13989 0.00053 −0.68225

15 +1.65111 0.00081 −1.00752

3 +3.93205 0.16413 −1.00848

14 +10.1924 0.15977 −0.68441

A coordinate system for the material orientation can be defined by executing the
following commands:

3 Material Properties � New Orientations � Coordinate system

The analysis results for the nodes of element VIII are summarized in Table3.3 and
described in terms of the equivalent stress (σeq), horizontal displacement (uX ) and
vertical displacement (uY ).

3.2.6 USDATA and UACTIVE

Example 3.6 This example illustrates the use of theUACTIVE andUSDATA subroutine
in a static analysis in which a cantilever beam is loaded with two point loads. The
beam is modeled by means of 44 nodes and 30 elements of type 3, i.e. 4-node
quadrilateral plane stress elements (E = 200 × 103, ν = 0.2 and t = 1). The point
loads (|P1|= |P2|= 1000) are assumed to increase gradually in 10 equal increments.
In Fig. 3.9, the discretized structure is shown along with the parallel normal loads.
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Fig. 3.9 Discretized model for the USDATA and UACTIVE subroutine example
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The nine elements in the second row, i.e. elements XXIX to V, are deactivated one-
by-one in increments 2 to 10, respectively. Finally, at the end of the analysis, the
beam will look like a double cantilever beam.

The UACTIVE subroutine is used to activate/deactivate the elements during the
analysis. It executes both at the beginning and at the end of each increment for every
element. This subroutine is automatically activated.

The list of the elements to be deactivated is passed using the USDATA subroutine.
The USDATA subroutine is generally used as a variable initializer which is activated
by means of the USDATA input file option. This subroutine uses the marc_usdacm
common block to make the variables available among subroutines. By means of this
facility, a neat approach will be acquired namely, instead of modifying the code and
recompiling it every time, it is possible to edit the input file.

The USDATA subroutine runs twice in each analysis. The first run is executed
during the memory allocation of Marc which is called the pre-reader phase. The
second run, the real reader phase, is carried out by Marc while reading the input
file; to be more precise, it is done upon encountering the USDATA input file option.
At this moment, the reading process of the input file is interrupted and passed to the
subroutine. In this way, the subsequent lines can be read by the subroutine as a raw
data reader. The raw data can be supplied in multiple text lines. However, to prevent
any input file errors, they all must be read by the subroutine, even if they are not
used.

The following lines should be added to the model definition section of the input
file to activate the USDATA subroutine:

1 USDATA,9
2 29,26,23,29,17,14,11,8,5

The first line indicates the number of variables being passed to the subroutine,
i.e. 9 variables. This number is accessible via the nusdat variable of the dimen com-
mon block. It is used to allocate the required memory for the data being passed using
the marc_usdacm common block. The second line contains the list of the elements
to be deactivated.

The Fortran file containing both of the subroutines has the following lines:
1 SUBROUTINE USDATA( k in , kou , i c )
2 IMPLICIT NONE
3 INCLUDE ’ dimen ’
4 ! ∗∗ S t a r t o f generated type s ta tements ∗∗
5 INTEGER ic , k in , kou
6 ! ∗∗ End o f generated type s ta tements ∗∗
7

8 INTEGER , DIMENSION(20 ) : : e l emen tL i s t
9 INTEGER : : i

10 COMMON / marc_usdacm / e l emen tL i s t
11

12 IF ( i c .EQ. 2) THEN
13 READ ( k in , ∗ ) ( e l emen tL i s t ( i ) , i = 1 , nusdat )
14 WRITE ( kou , ∗ ) ( e l emen tL i s t ( i ) , i = 1 , nusdat )
15 END IF
16

17 RETURN
18 END
19

20 SUBROUTINE UACTIVE (m, n ,mode , i r s t s t r , i r s t s t n , inc , t ime , t im i n c )
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21 IMPLICIT NONE
22 INCLUDE ’ dimen ’
23 ! ∗∗ S t a r t o f generated type s ta tements ∗∗
24 INTEGER inc , i r s t s t n , i r s t s t r , m, mode , n
25 REAL∗8 t ime , t im i n c
26 ! ∗∗ End o f generated type s ta tements ∗∗
27 DIMENSION m( 3 ) ,mode ( 3 )
28

29 INTEGER , DIMENSION(20 ) : : e l emen tL i s t
30 INTEGER : : i
31 COMMON / marc_usdacm / e l emen tL i s t
32

33 mode ( 2 ) = 2
34 IF ( i n c .GT. 1) THEN
35 IF (m( 1 ) .EQ. e l emen tL i s t ( inc −1)) THEN
36 mode ( 1 ) = −1
37 mode ( 2 ) = 0
38 mode ( 3 ) = 1
39 i r s t s t r = 1
40 i r s t s t n = 1
41 END IF
42 END IF
43 RETURN
44 END

In the USDATA subroutine, the ic flag is used to indicate in which phase the subroutine
is executed. It is equal to 1 for the pre-reader and 2 for the real reader. The kin and
kou variables are the default input and output file units, respectively. In line 13, an
implied-DO structure is used to read the element list from the input file and just to
confirm a correct reading process, the same list is printed in the output file.

In the UACTIVE subroutine, the default mode is to keep the status of the element
as before (mode(2) = 2). Starting from increment 2, the first element of the list is
deactivated, i.e. element 29, and in the next increment the next item of the list is
deactivated and so on. The deactivated elements are removed from the post-file
(mode(1) = -1) and their stresses and strains are set to zero upon deactivation (irststr
= 1 and irststn = 1). The deactivation is done at the beginning of each increment
(mode93) = 1).

The same example can be repeatedwithout deactivating the elements, i.e. a typical
cantilever beam with two point loads. The results of this analysis along with the one
with element deactivation are illustrated in Fig. 3.10. For both cases, the external
vertical force, applied to node 3, is plotted against its vertical displacement. The
graphs indicate a nonlinear behavior for the case of element deactivation which is
accompanied by an extreme displacement whereas a linear behavior is observed for
the typical case.

3.2.7 SEPFOR and MOTION

Example 3.7 This example incorporates both the SEPFOR and the MOTION subrou-
tines in a static contact analysis. In this problem, a cantilever beam is modeled by
means of 12 nodes and 5 elements of type 3, i.e. 4-node quadrilateral plane stress
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Fig. 3.10 Result of incorporating the UACTIVE subroutine in a double cantilever beam
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elements (E = 200 × 103, ν = 0.2 and t = 1). The node-to-segment method is
used to model the contact problem of the deformable elements and the three rigid
boundaries illustrated in Fig. 3.11. The left-hand rigid curve is glued to node 2 and
3 whereas the other two rigid curves are in a touching contact with the elements. An
initial touching contact between nodes 4, 6, 8, 10 and 12 and the bottom rigid curve is
set at the beginning of the analysis whereas the upper rigid curve has a 0.62 gap with
the elements. Also the possibility of a touching interaction is defined between the
elements and the upper rigid curve. The elements are defined as ameshed deformable
body. Note that no boundary conditions are used to model this problem but instead,
sinusoidal rigid body movement is applied to nodes 2 and 3 via the glued contact.

The SEPFOR subroutine is made available only to node-to-segment contact mod-
els and it is used to define the normal and tangential separation forces. This subroutine
runs for all of the nodes in contact with a body in each increment. Thus, this makes
it possible to specify various separation forces per node.

The MOTION subroutine is used to specify the velocity of the rigid bodies during
an analysis. It can be used for both 2D and 3D analyses with a slightly different
syntax. This subroutine runs at the beginning of each increment and returns the
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velocity of the rigid curve/surface along the axes as well as the angular velocity. The
2D version of this subroutine is used in this example to specify the velocity with only
a Y -direction component.

The activation of these two subroutines can be done by checking the corresponding
checkboxes in the following dialog box:

3 Jobs � Jobs �Properties �Contact Control �Advanced Contact Control

Both of the subroutines can be placed in a single Fortran file with the following
listing:

1 SUBROUTINE MOTION( x , f , v , t ime , dt ime , nsu r f , i n c )
2 IMPLICIT NONE
3 ! ∗∗ S t a r t o f generated type s ta tements ∗∗
4 REAL∗8 dt ime , f
5 INTEGER inc , n su r f
6 REAL∗8 t ime , v , x
7 ! ∗∗ End o f generated type s ta tements ∗∗
8 DIMENSION x ( ∗ ) , v ( ∗ ) , f ( ∗ )
9

10 REAL∗8 , PARAMETER : : PI = 3.1415927D0
11

12 IF ( n su r f .EQ. 2) THEN
13 v ( 1 ) = 0 .D0
14 v ( 2 ) = 2 .D0∗SIN ( 2 . 0D0∗PI∗ t ime )
15 v ( 3 ) = 0 .D0
16 END IF
17

18 RETURN
19 END
20

21 SUBROUTINE SEPFOR( fnorm , f tang , ibody , nnode , i n c )
22 IMPLICIT NONE
23 ! ∗∗ S t a r t o f generated type s ta tements ∗∗
24 REAL∗8 fnorm , f t a ng
25 INTEGER ibody , inc , nnode
26 ! ∗∗ End o f generated type s ta tements ∗∗
27

28 IF ( ibody .EQ. 3 ) THEN
29 SELECT CASE ( nnode )
30 CASE ( 6 )
31 fnorm = 300.D0
32 f t a ng = 0 .D0
33 CASE ( 8 )
34 fnorm = 450.D0
35 f t a ng = 0 .D0
36 CASE(10 )
37 fnorm = 550.D0
38 f t a ng = 0 .D0
39 CASE(12 )
40 fnorm = 240.D0
41 f t a ng = 0 .D0
42 CASE DEFAULT
43 fnorm = 500.D0
44 f t a ng = 0 .D0
45 END SELECT
46 END IF
47

48 RETURN
49 END

In line 12, the code determines if the subroutine is running for surface 2, i.e. the
left-hand rigid curve. In such a case, a sinusoidal velocity is assigned to the second
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Fig. 3.12 Result of the contact analysis using the SEPFOR and the MOTION subroutines

component of the velocity vector. In line 33, a multiple selection condition is exam-
ined and for the in-contact lower nodes of the elements, i.e. nodes 6, 8, 10 and 12,
normal separation forces 300, 450, 550 and 240 are assigned, respectively. A normal
separation force (fnorm = 500) is assigned for all other nodes, namely the upper nodes
of the elements which will be in contact with the upper rigid curve.

In this example, the initial contact state is selected for the lower rigid curve and
50 increments are used to apply the velocity. Note that for contact problems, it is
advised to increase the number of increments for higher accuracy which sometimes
helps avoiding penetration of bodies.

As a result of the analysis, the normal contact force of node 2 versus the number
of increments is illustrated in Fig. 3.12.

3.2.8 UINSTR

Example 3.8 This example illustrates the use of theUINSTR subroutine to specify the
initial condition of the elements in a static analysis. In this problem, a cantilever beam
is modeled by means of 22 nodes and 10 elements of type 3, i.e. 4-node quadrilateral
plane stress elements (E = 200× 103, ν = 0.3 and t = 1). A point load (P = −20)
is applied on node 3 in 10 increments (see Fig. 3.13). The subroutine is used to define
the stress state of each element by specifying the stress tensor of the integration
points.

The UINSTR subroutine is used to specify the initial stress state of the elements.
This subroutine is executed twice for every integration point of each element. In the
first run, the stress vector is used to calculate the nodal forces and in the second run the
initial stress is calculated. Except in the rigid-plastic analyses, this subroutine runs
only in increment zero. The activation of the subroutine is simply done by selecting
the proper method for the initial conditions:

3 Initial Conditions � Initial Conditions �Properties �Method:User Sub.Uinstr
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Fig. 3.13 Discretized model for the UINSTR subroutine example

The listing of the subroutine is as follows:
1 SUBROUTINE UINSTR ( s , ndi , nshear , n , nn , kcus , x i n t p , ncrd , inc , t ime ,
2 & t ime i n c )
3

4 IMPLICIT NONE
5

6 ! ∗∗ S t a r t o f generated type s ta tements ∗∗
7 INTEGER inc , kcus , n , ncrd , ndi , nn , nshear
8 REAL∗8 s , t ime , t ime inc , x i n t p
9 ! ∗∗ End o f generated type s ta tements ∗∗

10 DIMENSION s ( ∗ ) , x i n t p ( ncrd ) , n ( 2 ) , kcus ( 2 )
11

12 REAL∗8 , PARAMETER : : TLEN = 100.D0 , MAXSTRESS = 50.D0
13

14 s ( 1 ) = x i n t p ( 1 )∗MAXSTRESS/TLEN
15 s ( 2 ) = −s ( 1 )
16 s ( 3 ) = 0 .D0
17

18 RETURN
19 END

In line 14 of this code, the total length of the beam (TLEN=100) and the maximum
stress value (MAXSTRESS) are used to calculate a linear distribution of stress with
respect to the X -coordinate of each integration point (xintp(1)). The first and second
components of the stress have the same absolute value (s(2)=-s(1)) but the third stress
component is zero (s(3)=0.D0). Note that for the element type 3, the first, second and
third stress components correspond to σxx , σyy and σxy , respectively.

The result of the analysis in the last increment is shown in Fig. 3.14 for the length
of the beam. The equivalent stress of the upper nodes of the beam are selected for
this path plot. In addition, the result of the analysis without the initial stress state is
plotted for comparison.

3.2.9 UBREAKGLUE

Example 3.9 This example illustrates the use of the UBREAKGLUE subroutine in
a static contact analysis in which a cantilever beam is loaded with a linear load.
The beam is modeled by means of 22 nodes and 9 elements of type 52, i.e. 4-node
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Fig. 3.14 Result of incorporating the UINSTR subroutine in the cantilever beam problem (calcu-
lated for the upper nodes)
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Fig. 3.15 Discretized model for the UBREAKGLUE subroutine example

quadrilateral plane stress elements (E = 200 × 103, ν = 0.3 and t = 1). The point
loads (|P1|= |P2|= 50) are assumed to increase gradually in 20 equal increments.
The node-to-segment method is used to model the frictionless contact problem of
the two deformable meshed bodies, i.e. the top and the bottom portion of the beam.

The cantilever beam ismeshedwith incompatible elements, namely the top portion
of the beam is descretized by 3 elements of 10× 10 dimension whereas in the lower
portion, 5× 5 elements are used. In Fig. 3.15, these two portions are illustrated with
a contact interface between them. Note that there is no gap between these two parts,
and that the contact interface has no dimension (δ = 0). In other words, the contact
interface is merely a line starting from node 5, passing through nodes 7 and 9, and
finally ending at node 3. With this description, there are four overlapping nodes
(double nodes), i.e. nodes 5 and 11, 7 and 15, 9 and 19, and finally 3 and 22.
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The node-to-segment contact type is used to carry out the analysis which intro-
duces the concept ofmaster and slave contact bodies. A body with the slave property
has active exterior nodes which are ready to make contact with the master body. On
the other hand, the nodes on the master body are not active and instead, its segments
are ready to make contact with the nodes of the slave body. Although this is a sim-
plified approach, it contains several disadvantages such as the discontinuity of the
stress field along the interface. However, the most evident drawback is the depen-
dency of the solution on the master/slave body selection. Since only the nodes on
the slave body can touch the segments of the master body, at the same time nodes on
the master body can penetrate the slave body. Therefore, the selection of the master
and slave bodies will dramatically change the results of the analysis. In this context,
it is advised that the body with a finer mesh to be selected as the slave. Therefore,
the lower portion of the beam will be the slave and the upper part will be assigned
the master role.

This cantilever beam consists of two meshed (deformable) bodies. Because the
node-to-segment contact model determines the master/slave bodies based upon the
body number, the selection sequence of the contact bodies is important.Marc con-
siders the body with the lower number to be the slave. Therefore, the lower portion
of the beam must be selected first to assign the finely-meshed body as the slave. To
define a new deformable contact body, execute the following:

3 Contact �Contact Bodies �New �Meshed (Deformable)

Now, select the 6 elements of the lower portion as cbody1 then define another
deformable contact body and assign the remaining elements to cbody2. As a result,
the lower portion acts as a slave to the upper master elements. This approach is true
for both single-sided and double-sided contacts. However, to ask Marc to look for
the body with a finer mesh as the slave and neglect the numbering priority, the Opti-
mize Contact Constraint Equation check-box must be checked in the following dialog
box:

3 Jobs � Jobs �Properties �Contact Control �Advanced Contact Control

In this example, the only required interaction is between the two deformable bodies
which is a breaking glued contact. To add this interaction to the model, execute the
following:

3 Contact �Contact Interactions �New �Meshed (Deformable) vs. Meshed (Deformable)

In the appearing dialog box, select Glued from the Contact Type drop-list. Then click
on the Advanced Glue Settings and choose the following items from the drop-lists in
the appearing dialog box:

Glue Type: Breaking
Mode: Normal only

In the same dialog box, enter the values 25 and 1 for the Breaking Normal Stress
and the Breaking Normal Exponent, respectively. Now a frictionless breaking glued
interaction is defined between two deformable bodies. In this type of contact, nodes
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can be released from the glued condition and act as an ordinary contact node which
is capable of separation and friction.

In a contact analysis, Marc considers every possible combination of contacts
between the defined bodies including self-contact for each one of them. However, in
most cases the direction of the contact and the engaged bodies are known. Therefore,
it is advised to use a contact table to specify only our point of interest and reduce the
computational costs. One contact table is enough to define all possible interactions
between bodies in this analysis. To do so, first add a new contact table to the model
and select the matrix view:

3 Contact �Contact Tables �New �View Mode: Entry Matrix

A matrix view of the possible interactions between two bodies in the model will
appear in the right-hand side of the dialog box. No self-contact is required in this
example and thus, click on the second column of the first row to assign the interaction
between the first and the second body. In the Contact Table Entry Properties dialog
box, check the Active check-box and then click on the Contact Interaction button. In the
appearing Contact Interaction dialog box, select your previously-defined interaction
(interact1).

Note that another benefit of a contact table is overriding the numbering priority
of the bodies without changing the numbering of the bodies. In other words, if it is
required for the body with the higher number to be the slave, this can be done via the
Contact Table Entry Properties dialog box. The default value for the Contact Detection
Method is selected which can be changed either to First –>Second or Second–>First.
The former assigns the slave role to the first body which is the default and the latter
does the opposite. In our case, the default value and the First->Second will produce
the same results.

Note that when applying the glued contact, the initial contact option must be
checked, otherwise the two bodies will be separated at the beginning of the analysis.
To prevent this, execute the following:

3 Jobs � Jobs �Properties �Contact Control � Initial Contact �Contact Table:ctable1

The UBREAKGLUE subroutine is used to redefine the breaking criterion of a breaking
glue contact. It is flagged automatically and executed for every node on the slave
body acting in a breaking glue interaction. The breaking criterion is the following
equation: (

σn

Sn

)m

+
(

σt

St

)n

> 1. (3.15)

This equation considers the interaction between the current normal stress (σn) and
the current tangential stress (σt ). The normal stress is normalized with respect to the
breaking normal stress (Sn) and the tangential stress is normalized with respect to the
breaking tangential stress (St ). Two exponents are used to give emphasis to the effect
of the normal and tangential stress; m and n, respectively. In our case, the tangential
stress is neglected and the breaking normal exponent is assumed to be 1. The criterion
is calculated per node and thus, it is available as a nodal post-processing value. The
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normal breaking index (t1 = ( σn
Sn
)m), tangential breaking index (t2 = ( σt

St
)n) and the

breaking index (t = t1 + t2) can be selected to show up in the post file.
In the subroutine, both of the normal and tangential breaking indices will be

calculated based on the values already entered via Mentat. If any modification is
necessary, it can be done within the subroutine namely, both of these values act as
the input as well as the output of the subroutine. In our example, various normal
breaking stresses are considered for the slave node as stated in Table3.4.

The listing of the subroutine is as follows:

1 SUBROUTINE UBREAKGLUE( t1 , t2 , signorm , s ig tan , sn , s t ,
2 & expn , expt , i n f o , ibodc , i bod t , inc , t ime , t ime i n c )
3

4 IMPLICIT NONE
5

6 REAL∗8 t1 , t2 , signorm , s ig tan , sn , s t , expn , expt , t ime , t ime i n c
7 INTEGER in f o , inc , ibodc , i b o d t
8

9 DIMENSION i n f o ( ∗ )
10

11 IF (SN .GT. 0 .D0 .AND. signorm .GT. 0 .D0 ) THEN
12 SELECT CASE ( i n f o ( 1 ) )
13 CASE (22 )
14 sn = 3 .D0
15 CASE (21 )
16 sn = 5 .D0
17 CASE (19 )
18 sn = 15.D0
19 CASE (17 )
20 sn = 30.D0
21 CASE (15 )
22 sn = 35.D0
23 CASE (13 )
24 sn = 40.D0
25 END SELECT
26 t 1 = ( signorm / sn )∗∗ expn
27 ELSE
28 t 1 = 0 .D0
29 END IF
30 RETURN
31 END

In line 11, two conditions are checked: if a normal breaking condition is entered (SN
.GT. 0.D0) and if the stress is tensile (signorm .GT. 0.D0). If any of the conditions is not
satisfied, the normal breaking index is set to zero (t1 = 0.D0). Otherwise, a SELECT
CASE will assign the proper normal breaking stress to each node and the normal
breaking index is recalculated in line 26.

The vertical displacement of node 4 versus the increment number is printed for two
analyses in Fig. 3.16. The first analysis is conducted with a uniform normal breaking
stress and in the second one with the aforementioned non-uniform values. In the
former, only one separation has occurred in node 22 and in the latter the separation

Table 3.4 Assumed non-uniform normal breaking stresses (Sn) for nodes

Node 22 21 19 17 15 13

Sn 3 5 15 30 35 40



3.2 Examples 207

0 5 10 15 20
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Increment

V
er
ti
ca

l
di
sp

la
ce
m
en

t
of

no
de

4

Non-uniform breaking stress Uniform breaking stress

Fig. 3.16 Result of incorporating the UBREAKGLUE subroutine in the cantilever beam

continues up to node 13. The separations can be detected as the steps in the diagrams
e.g. for the uniform case, the break occurs in increment 18.

3.2.10 USHELL

Example 3.10 This example illustrates the use of the USHELL subroutine in a static
analysis in which a cantilever plate is loaded with a linear point load. The plate is
modeled by means of 9 nodes and 4 shell elements of type 75, i.e. four-node bilinear
thick-shell elements (E = 200×103, ν = 0.3 and t = 0.1). The point load PZ = −1
is applied along the Z -axis incrementally in 20 fixed steps. The discretized structure
is shown in Fig. 3.17 in the XY -plane. However, the analysis is conducted three-
dimensionally to investigate the effect of thickness change in shell elements for two

Fig. 3.17 Discretized model
for the USHELL subroutine
example (from the top view)

3 8 4

5 7 9

1 6 2

II IV

I III

2× 5

2× 5

Y

X

PZ = −20



208 3 Basic Examples

cases: the first one is for the elements with the uniform thickness of 0.1 and the
second one is for a thickness starting from 0.1 at the support and linearly increasing
to 0.2 at the free end under the following equation:

t(X) = 0.1 × (0.1X + 1). (3.16)

The fixed displacement boundary conditions of the support are applied to nodes 1, 3
and 5 to fix the translational degrees of freedom along all three axes and one rotational
degree of freedom about the Y -axis.

The USHELL subroutine is used to specify the thickness of shell elements at
their integration points. The initial uniform thickness of the elements are already
specified as geometric property. This value is made available both as an input and an
output argument within the subroutine. It is recommended that the non-uniformity
of the thickness is kept constant during the analysis. This subroutine is flagged
automatically for the shell elements. The following listing is used for the non-uniform
thickness case:

1 SUBROUTINE USHELL( t h i c k , x i n t p , ncrd ,m, nn )
2 IMPLICIT NONE
3

4 ! ∗∗ S t a r t o f generated type s ta tements ∗∗
5 INTEGER m, ncrd , nn
6 REAL∗8 t h i c k , x i n t p
7 ! ∗∗ End o f generated type s ta tements ∗∗
8 DIMENSION x i n t p ( ∗ ) ,m( 2 )
9

10 REAL∗8 , PARAMETER : : TLEN = 5 .D0 , t 0 = 0.1D0
11

12 t h i c k = ( ( x i n t p ( 1 ) / TLEN) + 1 .D0)∗ t 0
13

14 RETURN
15 END

In line 12, a linear distribution of the thickness is defined which relates the thickness
at the support (thick = 0.1D0) to the thickness at the free end (thick = 0.2).

Fig. 3.18 Result of
incorporating the USHELL
subroutine in a cantilever
shell
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In this example, two runs were executed: one for the uniform thickness (thick =
0.1D0) and the other one for the linear distribution of the thickness. The results of the
analyses are illustrated in Fig. 3.18 which prints the vertical displacement of node
9 versus the loading increments. The maximum displacement for the non-uniform
thickness case is less than that of the uniform thickness analysis.



Chapter 4
Advanced Examples

Abstract This chapter covers more advanced examples which require the
incorporation of several Fortran subroutines in Marc/Mentat. Furthermore, many
examples apply a multitude of customized subprograms and require advanced finite
element knowledge.

4.1 Overview

The simulation of a physical phenomena can be done at different levels of complexity.
As an increasing number of factors are considered, the more complicated the mod-
eling and the analysis process will be. Obviously, the increased computational cost
should be justified by more accurate results provided by the improved model. Such
a sophisticated model is not created instantly, but instead, it is developed gradually
rising from a very simple model.

In programming, the same concept applies. It is advised to initiate the coding
process with the purpose ofmanaging a simple task for a simplemodel, e.g. obtaining
the edges of just one quadrilateral plane element. No matter how trivial the initial
task may look, it is best practice to start the programming process from the simplest
task for the simplest possible case. Following this, one should build on the example
and try to cover more general cases, e.g. develop a subroutine to extract the edges of
the elements in a model consisting of several quadrilateral elements. By developing
the code further, a quite comprehensive package of subprograms will result which
should be able to cover the more general cases, e.g. to extract the edges of various
types of elements existing in a model. This step-by-step approach will make the
implementation of the most intricate algorithms possible and the testing process
manageable.

Following this idea, simple examples were introduced in Chap.3, and in the cur-
rent chapter, more complicated cases will be discussed. The complexity of the exam-
ples increases with the number of engaged subroutines, the amount of interaction
among them and the incorporated knowledge of the finite element method. Dealing
with advanced examples provides the user with the opportunity of practicing the
fundamentals of the finite element method along with his/her programming skills.

© Springer International Publishing AG 2017
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To facilitate some of the common tasks which are usually encountered during
this process, some customized subprograms are prepared. These customized subpro-
grams are categorized in three separate modules, namely the MarcTools, FileTools and
MiscTools modules. For a detailed description of the included subroutines, one may
refer to Chap.5.

4.2 Examples

4.2.1 USPRNG and UEDINC

Example 4.1 This example illustrates the use of theUSPRNG andUEDINC subroutine
in a static analysis in which a double cantilever beam is loaded with two point
loads. The beam is modeled by means of 23 nodes and 10 elements of type 3, i.e.
4-node quadrilateral plane stress elements (E = 200 × 103, ν = 0.3 and t = 1). The
point loads (|P1|= |P2|= 150) are assumed to increase gradually in 10 fixed-step
increments. In Fig. 4.1, the discretized structure is shown along with the five springs
which are linking nodes together. The top half of the cantilever beam is separated from
the bottomhalf. Note that the gap between these two halves is zero (δ = 0), namely all
the nodes on the gap are overlapping. Among these nodes is only one common node,
i.e. node 5. The boundary conditions are applied as fixed displacements (Displacement
X = 0 and Displacement Y = 0) on the three leftmost nodes of the model, i.e. nodes 1,
5 and 4. Two analyses are done for this model: one with linear behavior (constant
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Fig. 4.1 Discretized model for the USPRNG subroutine example
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stiffness of K = 50) and the second one assuming nonlinear behavior of the springs.
The nonlinear behavior of the springs is defined by the following equations:

F(u) = 22.5u − 2.5u2, (4.1)

K (u) = 22.5 − 5u. (4.2)

In these equations the force of the spring (F(u)) and its stiffness (K (u)) are defined
as functions of the relative displacement (u). The results will be collected by the
UEDINC subroutine at each increment.

There are five nonlinear springs (K1 to K5) which link the second DOF of node
couples 7 to 19, 10 to 20, 13 to 21, 16 to 22, and 18 to 23. Linking these nodes can
be done by creating a spring via the following command:

3 Links � Springs/Dashpots � New � Fixed DOF

In the appearing dialog box, the DOFs are set to 2 and the start and end nodes
are set to the mentioned node couples. Additionally, checking the User Subroutine
Usprng check-box will flag the subroutine.

The USPRNG subroutine is used to define nonlinear-elastic foundations (the
FOUNDATION option) and springs (SPRINGS option) in both static and dynamic
analyses, i.e. the stiffness and the damping effect of springs, respectively. For the
case of the springs, it will run once for each spring in every increment. The nonlinear
behavior is introduced by using a table and/or the subroutine. However, the latter
provides more versatility to the process. In either case, the behavior can be specified
in terms of force or stiffness which can be a function of the relative displacement,
time, normalized time, increment number or normalized increment number.

If only a table is used to specify the stiffness/force of the spring, the assignment
of the table to an existing spring can be done in the following dialog box:

3 Links � Springs/Dashpots � Properties � Properties

In the same dialog box, a value can be entered for either stiffness/force of the
spring which acts as a reference value, i.e. a scale factor. In other words, all the
values of the table will be calculated automatically and then multiplied by this scale
factor.

If only a subroutine is chosen to carry out the task, both the stiffness and the spring
force must be calculated in every increment by the user. Calculating only one of the
quantities will result in slightly deviated results. The procedure is the same if a table
is used in conjunction with the subroutine. However, the scaled tabular values will
also be available within the subroutine (via datak variable).

The second subroutine used in this example is UEDINC. This is an automatic
subroutine which is executed at the end of each increment and subincrement. It is
usually used for collecting the results of the current increment or modifying some
common data variables. The only input variable of this subroutine is the number of
the current increment and subincrement; no output variables are required. The idea
behind using this subroutine is to collect the forces induced in the springs in every
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increment and to print them into an external text file. This approach automates the
result gathering process, prevents us from having to use History Plot in every analysis
we run and is time-efficient, especially in the case of numerous analyses.

In addition to the subroutines, the FileTools user-defined module is used to provide
the user with the supplementary subroutines FindFreeUnit and DeleteFile.

The following Fortran file is used as the subroutine listing:
1 # i n c l u d e ’ F i l e T o o l s . f ’
2 MODULE CommonData
3 IMPLICIT NONE
4

5 INTEGER , PARAMETER : : SPRINGS = 5
6 REAL∗8 , DIMENSION ( SPRINGS ) : : S p r i n g F o r c e s
7 END MODULE CommonData
8

9 SUBROUTINE usprng ( r a t k , f , datak , u , t ime , n , nn , nsprng )
10 USE CommonData
11

12 IMPLICIT NONE
13

14 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
15 REAL∗8 datak , f
16 INTEGER n , nn , nsprng
17 REAL∗8 r a t k , t ime , u
18 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
19 DIMENSION r a t k ( ∗ ) , da tak ( ∗ ) , u ( ∗ ) , t i m e ( ∗ ) , n ( ∗ ) , f ( 2 ) ,
20 ∗ nsprng ( ∗ )
21

22 r a t k ( 1 ) = ( −5.D0∗u ( 1 ) ) + 22 .5 D0
23 f ( 1 ) = −2.5D0 ∗ ( u ( 1 ) ∗ ∗ 2 . D0 ) + 22 .5 D0∗u ( 1 )
24

25 S p r i n g F o r c e s ( nsprng ( 1 ) ) = f ( 1 )
26

27 RETURN
28 END
29

30 SUBROUTINE ued inc ( i nc , i n c s u b )
31 USE CommonData
32 Use F i l e T o o l s
33

34 IMPLICIT NONE
35 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
36 INTEGER inc , i n c s u b
37 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
38 INTEGER : : f i l e U n i t
39 INTEGER : : i
40 CHARACTER( LEN=250) , PARAMETER : : f i l e Na me = ’ R e s u l t s . t x t ’
41 LOGICAL : : f i l e E x i s t , f i l e E n d e d , u n i t C o n n e c t e d
42

43 I F ( i n c .EQ. 0 ) THEN
44 CALL F i n d F r e e U n i t ( f i l e U n i t )
45 CALL D e l e t e F i l e ( f i l e Na me )
46

47 OPEN ( UNIT = f i l e U n i t , F i l e = f i l eName , ACCESS = ’ SEQUENTIAL ’ ,
48 & STATUS = ’NEW’ , ACTION = ’READWRITE ’ , FORM = ’FORMATTED ’ )
49 WRITE ( f i l e U n i t , 102)
50 WRITE ( f i l e U n i t , 100)
51 WRITE ( f i l e U n i t , 102)
52 ELSE
53 WRITE ( f i l e U n i t , 1 0 1 ) i nc , ( S p r i n g F o r c e s ( i ) , i = 1 , SPRINGS )
54 I F ( i n c .EQ. 10) THEN
55 WRITE ( f i l e U n i t , 102)
56 CLOSE ( UNIT = f i l e U n i t )
57 END IF
58 END IF
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59 RETURN
60 100 FORMAT ( ’ INC Spr i ng1 Sp r i ng2 Sp r i ng3 Sp r i ng4 Spr ing5 ’ )
61 101 FORMAT ( I3 , 1 X , 5 ( F7 . 4 , 1 X ) )
62 102 FORMAT ( 4 4 ( ’ − ’ ) )
63 END

This listing contains a module (CommonData) and two subroutines (usprng and ued-
inc). The module is used to transfer the data between the other two subroutines. It
contains the total number of springs (SPRINGS = 5) and an array for the spring forces
(SpringForces). In lines 22 and 23, the stiffness of the spring (ratk(1)) and its force
(f(1)) are defined using Eqs. (4.1) and (4.2), respectively. In line 25, the calculated
forces are assigned to the corresponding element of the SpringForces array. In line
44 a free file unit is selected using the FindFreeUnit subroutine. In the following line,
the file Results.txt is deleted using the DeleteFile subroutine (Sect. 5.5). In line 47,
the external text file (Results.txt) is prepared for writing (see Sects. 1.9 and 1.10). In
lines 49 to 51, the formatted header of the text file is printed which is followed by
data lines printed using the code in line 53. The increment number (inc) is followed
by an implied-DO to print the spring forces. Lines 54 to 57 print the last line of the
file and close its file unit.

The result of the analysis for the nonlinear spring is summarized in the text file
with the following content:

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
INC Sp r i ng1 Sp r i ng2 Sp r i ng3 Sp r i ng4 Sp r i ng5
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 0 .0609 0 .2173 0 .4459 0 .7238 1 .0229
2 0 .1218 0 .4344 0 .8905 1 .4436 2 .0368
3 0 .1827 0 .6513 1 .3336 2 .1588 3 .0413
4 0 .2437 0 .8680 1 .7752 2 .8695 4 .0364
5 0 .3047 1 .0844 2 .2152 3 .5757 5 .0218
6 0 .3658 1 .3006 2 .6537 4 .2773 5 .9978
7 0 .4268 1 .5166 3 .0907 4 .9744 6 .9642
8 0 .4879 1 .7323 3 .5262 5 .6669 7 .9209
9 0 .5491 1 .9477 3 .9600 6 .3549 8 .8681

10 0 .6102 2 .1629 4 .3924 7 .0382 9 .8055
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The same example can be carried out for the springs with a constant stiffness. The
only part requiring modification, is the USPRNG subroutine for which the following
listing is used:

1 s u b r o u t i n e usprng ( r a t k , f , datak , u , t ime , n , nn , nsprng )
2 USE CommonData
3 IMPLICIT NONE
4

5 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
6 REAL∗8 datak , f
7 INTEGER n , nn , nsprng
8 REAL∗8 r a t k , t ime , u
9 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗

10 DIMENSION r a t k ( ∗ ) , da tak ( ∗ ) , u ( ∗ ) , t i m e ( ∗ ) , n ( ∗ ) , f ( 2 ) ,
11 ∗ nsprng ( ∗ )
12 REAL∗8 : : k = 5 0 . D0
13

14 r a t k ( 1 ) = k
15 f ( 1 ) = k∗u ( 1 )
16
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17 S p r i n g F o r c e s ( nsprng ( 1 ) ) = f ( 1 )
18 RETURN
19 END

In line 12, a constant stiffness (k = 50.D0) is assigned to every spring and the force
is calculated in line 15. The transfer of the force values is done using the same array
(SpringForces) which finally results in the following text file as the output:

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
INC Sp r i ng1 Sp r i ng2 Sp r i ng3 Sp r i ng4 Sp r i ng5
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 0 .1159 0 .4166 0 .8601 1 .4048 1 .9945
2 0 .2319 0 .8332 1 .7203 2 .8095 3 .9891
3 0 .3478 1 .2499 2 .5804 4 .2143 5 .9836
4 0 .4637 1 .6665 3 .4405 5 .6191 7 .9781
5 0 .5797 2 .0831 4 .3007 7 .0239 9 .9727
6 0 .6956 2 .4997 5 .1608 8 .4286 11 .9672
7 0 .8115 2 .9164 6 .0209 9 .8334 13 .9617
8 0 .9275 3 .3330 6 .8811 11 .2382 15 .9563
9 1 .0434 3 .7496 7 .7412 12 .6430 17 .9508

10 1 .1593 4 .1662 8 .6013 14 .0477 19 .9453
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

4.2.2 UFXORD, UEDINC and UBGINC

Example 4.2 This example illustrates the use of the UFXORD, UEDINC and UBGINC
subroutines in a static analysis of a 2D truss structure which is modeled by means of
6 nodes and 9 elements of type 9, i.e. a two-node truss element (E = 200 × 103 and
A = 20). In Fig. 4.2b, the truss is shown with a horizontal point load (F = +1500)
which is gradually applied on the top node in 10 fixed increments. A pinned support
on the left and a roller support on the right-hand side provide the truss with the
required constraints. Considering manufacturing imperfections, a slightly-modified
version of the structure will be analysed. The required modifications are applied by
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randomly relocating the nodes in a given range. In addition, the whole time of the
analysis is measured starting from increment zero to the end of increment 10.

The UFXORD subroutine is used to generate, modify or expand the nodal coor-
dinates of the mesh. The COORDINATES input file option creates the list of nodes
followed by their coordinates. Therefore, any calls to the subroutine must be made
after the COORDINATES option. The activation of the subroutine is done as soon as
encountering the UFXORD input file option. It is also possible to invoke multiple
calls to the subroutine by using this option several times. The subroutine is called
for all the nodes which are introduced to the UFXORD option. To do so, the list of
the nodes must follow this option in the input file. For this example, the subroutine
must be executed for all nodes except for the support ones (i.e. nodes 1 and 2). The
following lines must be added to the model definition section of the input file:

1 UFXORD
2 3 t o 6

Note that for more sophisticated geometries, the UFXORD subroutine can be used in
conjunction with the FOXRD input file option (see [24, 25]).

With a similar structure to the UEDINC subroutine which runs at the end of each
increment (Sect. 4.2.1), the UBGINC subroutine is called automatically at the begin-
ning of each increment. It is usually used to set up the initial values of the common
variables or to connect a file to a file unit in the beginning of the analysis.

In addition to these three subroutines, the MiscTools module (Sect. 5.6) and the
FileTools module (Sect. 5.5) are included in the Fortran file to carry out the addi-
tional tasks, i.e. generating the random numbers (GetRandNum function), calculating
the duration of the analysis (the PrintElapsedTime subroutine), and handling routine
file-related tasks (the FindFreeUnit and the AutoFilename subroutines). The full listing
is as follows:

1 # i n c l u d e ’ M iscToo l s . f ’
2 # i n c l u d e ’ F i l e T o o l s . f ’
3

4 SUBROUTINE UFXORD( xord , ncrd , n )
5 USE MiscToo l s
6 USE F i l e T o o l s
7

8 IMPLICIT NONE
9

10 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
11 INTEGER n , nc rd
12 REAL∗8 xo rd
13 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
14

15 DIMENSION xord ( nc rd )
16

17 INTEGER : : f i l e U n i t
18 COMMON / CommonData / f i l e U n i t
19 SAVE / CommonData /
20

21 CHARACTER ( LEN=20) : : f i l e Na me = ’ MyResul ts ’
22 REAL∗8 , PARAMETER : : MAXTOLERANCE = 1 . D0
23 REAL∗8 : : randNum
24 INTEGER : : i
25 LOGICAL : : f i r s t R u n = . TRUE .
26

27 100 FORMAT ( ’NODE X−COORD Y−COORD’ )
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28 101 FORMAT ( I4 , 1 X , 2 ( F7 . 4 , 1 X ) )
29 102 FORMAT ( 2 1 ( ’ − ’ ) )
30

31 I F ( f i r s t R u n . EQV . . TRUE . ) THEN
32 f i r s t R u n = . FALSE .
33 CALL F i n d F r e e U n i t ( f i l e U n i t )
34 CALL AutoF i lename ( f i l e Na me )
35

36 OPEN ( UNIT = f i l e U n i t , F i l e = f i l eName , ACCESS = ’ SEQUENTIAL ’ ,
37 & STATUS = ’NEW’ , ACTION = ’READWRITE ’ , FORM = ’FORMATTED ’ )
38 WRITE ( f i l e U n i t , 102)
39 WRITE ( f i l e U n i t , 100)
40 WRITE ( f i l e U n i t , 102)
41 END IF
42 WRITE ( f i l e U n i t , 1 0 1 ) n , ( xo rd ( i ) , i = 1 , 2 )
43 DO i = 1 , 2
44 randNum = GetRandNum ( )
45 xo rd ( i ) = xo rd ( i ) + (MAXTOLERANCE ∗ randNum )
46 END DO
47 WRITE ( f i l e U n i t , 1 0 1 ) n , ( xo rd ( i ) , i = 1 , 2 )
48 RETURN
49 END
50

51 SUBROUTINE UBGINC ( inc , i n c s u b )
52 USE MiscToo l s
53

54 IMPLICIT NONE
55 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
56 INTEGER inc , i n c s u b
57 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
58

59 I F ( i n c .EQ. 0 ) CALL P r i n t E l a p s e d T i m e ( )
60

61 RETURN
62 END
63

64 SUBROUTINE ued inc ( i nc , i n c s u b )
65 USE MiscToo l s
66

67 IMPLICIT NONE
68 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
69 INTEGER inc , incsub , i
70 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
71

72 INTEGER : : f i l e U n i t
73 COMMON / CommonData / f i l e U n i t
74 SAVE / CommonData /
75

76 I F ( i n c .EQ. 10) THEN
77 CALL P r i n t E l a p s e d T i m e ( )
78 CLOSE ( UNIT = f i l e U n i t )
79 END IF
80 RETURN
81 END

In line 17 to 19 of this listing, a common block is defined containing the file unit
which will be required at the end of the analysis in lines 72 to 74 of the UEDINC
subroutine (Sect. 1.8.3). In lines 21 to 25, the required variables in the program
are declared. Lines 31 to 41 prepare a new file to be written upon the first run of
the UFXORD subroutine. Note that because the AutoFilename subroutine is used, the
previously-created result files will be preserved. Line 42 writes the original coordi-
nates to the custom file and after updating the coordinates by random numbers, the
modified coordinates are written in line 47. The UBGINC subroutine is used to start
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Fig. 4.3 Result of
incorporating UFXORD
subroutine in a cantilever
shell
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the stopwatch at increment zero (line 59) whereas the UEDINC subroutine is used
to stop the stopwatch (line 77) and to close the file unit (line 78). A sample of the
generated result file is as follows:

- - - - - - - - - - - - - - - - - - - - -
NODE X-COORD Y-COORD
- - - - - - - - - - - - - - - - - - - - -

3 50 .0000 50 .0000
3 50 .3702 49 .7619
4 50 .0000 0 .0000
4 49 .6244 - 0 .2325
5 25 .0000 25 .0000
5 25 .7875 24 .4215
6 75 .0000 25 .0000
6 74 .8862 25 .5726

- - - - - - - - - - - - - - - - - - - - -
E l ap s ed t ime i s 0 . 031 second ( s )

The results of the analyses for the ideal truss (no imperfections) along with four
random imperfections are illustrated in Fig. 4.3. In this graph, the total displacement
of node 3 is printed at each increment. It is notable that the displacement of the
imperfect structure fluctuates about the values of the perfect structure.

4.2.3 USPLIT_MESH

Example 4.3 This example demonstrates the use of the USPLIT_MESH subroutine,
along with the UBGINC and UEDINC subroutines to model the behavior of a plate
(50 × 25) with a hole (r = 5) which is illustrated in Fig. 4.4. The Automesh capability
of Mentat is used to discretize the model by quadrilateral plane elements. To do
this, the following commands are executed to result in 96 elements and 115 nodes:

3 Geometry & Automesh � Planer � Divisions
8 10 10
Quadrilaterals (Overlay) � Quad Mesh!

The elements are 4-node quadrilateral plane stress elements (E = 200 × 103,
ν = 0.3 and t = 5). A distributed load (q = +170) is applied to the right-hand edge
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Fig. 4.4 Geometry of the
plane stress plate with a hole
for the USPLIT_MESH
subroutine example
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of the plate and is increased gradually in 10 fixed-step increments. The material
behaves linearly but as the splitting criterion, the von Mises equivalent stress will be
compared to the yield stress (σy = 210).

The USPLIT_MESH subroutine is used to split a mesh along an edge or a face. The
split results in additional edges and nodes which are added automatically byMarc.
For a 2D case, a list of nodes and/or a list of edges should be defined as an output of
the subroutine. If only a list of nodes is introduced, the corresponding edge list will
be created automatically. If only a list of edges is used, all the nodes of the edges are
eligible of splitting. If only some of the nodes of an edge should be split, both the
node and edge list must be filled. Note that this subroutine is flagged automatically.

This subroutine can be executed multiple times during an analysis and thus, the
icall variable is used to determine the stage of the analysis. The very first run is in
increment zero (icall=1). It also runs during the recycling of the current increment
(icall=2) and at the end of each increment (icall=3). In the current example, only
runs at the end of increments are handled by the code. As mentioned earlier, the
USPLIT_MESH subroutine requires a list of edges to be split. In most cases, it is not
possible to introduce an exact path for the split. Therefore, in this example a set is
defined, named ElementList, consisting of nominated elements which have potential
edges to split. This can be done by creating a new set of elements and selecting the
two column of elements which are located above the hole (15 elements in total). The
selecting process of the members of the set can be done by executing the following:

1 Select � Set Control � Elements � New Set
8 ElementList

Then, the two central columns of elements above the hole must be selected (see
Fig. 4.5).

In addition to the three mentioned subroutines, the MarcTools module (Sect. 5.4)
is included in the Fortran file to carry out the additional tasks, i.e. extracting
the members of a set (ExtractSetItems subroutine), extracting the edges of the ele-
ments (the ExtractElementEdges subroutine), removing multiple items of an array
(the DelRepeated and PutSmallFirst subroutines), and removing the exterior edges
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Fig. 4.5 Selected elements
located above the hole of the
plate (ElementList set)
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(the RemoveExterior subroutine). In addition, the stress on the edges is calculated
using the CalcStressEdge subroutine which itself uses other subroutines of the mod-
ule. The CommonData module is also used to share the common data between the
subroutines. The full Fortran listing is as follows:

1 #INCLUDE ’ MarcToo ls . f ’
2

3 MODULE CommonData
4 IMPLICIT NONE
5

6 CHARACTER∗32 , PARAMETER : : SETNAME = ’ E l e m e n t L i s t ’
7 REAL∗8 , PARAMETER : : y S t r e s s = 210 .D0
8

9 INTEGER , ALLOCATABLE : : e d g e L i s t ( : , : )
10 INTEGER : : edgeCount
11

12 REAL∗8 , ALLOCATABLE : : edgeSt ress ( : )
13 LOGICAL , ALLOCATABLE : : yMask ( : )
14 END MODULE CommonData
15

16 SUBROUTINE ubg inc ( ubInc , ub Incsub )
17

18 USE CommonData
19 USE MarcToo ls
20

21 IMPLICIT NONE
22

23 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
24 INTEGER ubInc , ub Incsub
25 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
26

27 INTEGER , PARAMETER : : MAXEDGE = 8
28
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29 INTEGER , ALLOCATABLE , DIMENSION ( : ) : : e l L s t
30 INTEGER : : elNum
31

32 INTEGER , ALLOCATABLE , DIMENSION ( : , : ) : : cu r E d L s t
33 INTEGER : : cu r E l , curEdNum
34

35 INTEGER , ALLOCATABLE , DIMENSION ( : , : ) : : o rgEdLs t
36 INTEGER : : orgEdNum
37

38 INTEGER , ALLOCATABLE , DIMENSION ( : , : ) : : r e f E d L s t
39 INTEGER : : nRefEdLst
40

41 INTEGER : : i , j , k
42

43 I F ( ub Inc .EQ. 0 ) THEN
44

45 CALL E x t r a c t S e t I t e m L s t (SETNAME, e l L s t , elNum )
46

47 I F ( elNum . GT . 0 ) THEN
48 ALLOCATE ( o r g E d l s t ( 2 , elNum∗MAXEDGE ) )
49 orgEdNum = 0
50

51 DO i = 1 , elNum
52 c u r E l = e l L s t ( i )
53 CALL E x t r a c t E l m E d g e L s t ( c u r E l , cu rEdLs t , curEdNum )
54 DO j = 1 , curEdNum
55 DO k = 1 , 2
56 orgEdLs t ( k , orgEdNum + j ) = cu r E d L s t ( k , j )
57 END DO
58 END DO
59 orgEdNum = orgEdNum + curEdNum
60 END DO
61

62 CALL P u t S m a l l F i r s t ( o rgEdLst , orgEdNum )
63 CALL DelRepeated2D ( o r g E d l s t , orgEdNum , r e f E d l s t , nRefEdLst )
64

65 CALL DelElmFreeEdge ( r e f E d l s t , nRefEdLst , e d g e L i s t )
66 edgeCount = s i z e ( e d g e L i s t , 2 )
67

68 A l l o c a t e ( edgeSt ress ( edgeCount ) )
69 A l l o c a t e ( yMask ( edgeCount ) )
70 yMask = . FALSE .
71 edgeSt ress = 0 . D0
72 ELSE
73 CALL QUIT ( 1 2 3 4 )
74 END IF
75 END IF
76 RETURN
77 END
78

79 SUBROUTINE u s p l i t _ m e s h ( i c a l l , n o d e l i s t , n l i s t , i e d g e l i s t , n e d g e l i s t ,
80 $ i f a c e l i s t , n f a c e l i s t , i nc , t ime , t i m e i n c )
81

82 USE CommonData
83 IMPLICIT NONE
84

85 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
86 INTEGER n o d e l i s t , n l i s t , i e d g e l i s t , n e d g e l i s t , i f a c e l i s t , n f a c e l i s t
87 INTEGER i c a l l , i n c
88 REAL∗8 t ime , t i m e i n c
89 DIMENSION n o d e l i s t ( ∗ ) , i e d g e l i s t ( 2 , ∗ ) , i f a c e l i s t ( 4 , ∗ )
90 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
91

92 INTEGER : : i , yEdNum
93 INTEGER , ALLOCATABLE , DIMENSION ( : ) : : y I ndex
94

95 I F ( i c a l l .EQ . 3 ) THEN
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96 yMask = [ ( edgeS t ress ( i ) . GT . yS t ress , i =1 , edgeCount ) ]
97 yEdNum = COUNT( yMask )
98 ALLOCATE ( y Index ,SOURCE=PACK ( [ ( i , i =1 , edgeCount ) ] , yMask ) )
99

100 n E d g e L i s t = yEdNum
101 i E d g e L i s t ( : , 1 : yEdNum ) = e d g e L i s t ( : , y I ndex )
102 END IF
103 RETURN
104 END
105

106 SUBROUTINE ued inc ( i nc , i n c s u b )
107

108 USE CommonData
109 USE MarcTools , ONLY : GetElmEdgeVal
110 IMPLICIT NONE
111 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
112 INTEGER inc , i n c s u b
113 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
114

115 INTEGER : : i
116

117 I F ( i n c . GT . 0 ) THEN
118 DO i = 1 , edgeCount
119 edgeSt ress ( i ) =
120 & GetElmEdgeVal ( e d g e L i s t ( 1 , i ) , e d g e L i s t ( 2 , i ) , 1 7 , 2 )
121 WRITE ( 6 , ∗ ) e d g e L i s t ( 1 , i ) , ’ − ’ , e d g e L i s t ( 2 , i )
122 WRITE ( 6 , ∗ ) ’ s t r e s s ’ , edgeSt ress ( i )
123 END DO
124 END IF
125 RETURN
126 END

In lines 6 and 7, the constant parameters SETNAME and YSTRESS are used to specify
the name of the set and the yield stress, respectively. In lines 9 and 10, the allocat-
able2D array edgeList and the integer edgeCount are declared to hold the number of
nodes which make up the edges and the number of total edges, respectively. In the
next two lines, the edgeStress array holds the calculated stress of the edges and the
yMask array holds the yield state of each edge.

In the UBGINC subroutine, the code only runs in increment zero (line 43) to extract
the edgeList array and initialize other common variables. The pseudo-code can be
stated as the following steps:

• extract the element numbers using the set name (line 45),
• extract all the edges of each element (line 48 to 59),
• remove the recurring edges (line 62 and 63), and
• remove the exterior edges (line 65).

The result of these steps is a list of only the interior edges. In line 66, the intrinsic
function SIZE is used the extract the second dimension of the edgeList array, i.e. the
final number of edges. This value is used in lines 55 and 56 to allocate the dynamic
arrays edgeStress and yMask in the common module which is followed by a couple
of lines to initialize them with default values zero and .FALSE., respectively. Note
that the ExtractSetItemLst returns zero if no items could be found in the specified set
and for this case, the QUIT utility subroutine is used to return the exit code 1234 and
to terminate the job.

The UEDINC subroutine is used to calculate the stress on the edges at the end of
each increment (lines 117 to 125). The GetElmEdgeVal function is used to calculate
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Fig. 4.6 Result of using the USPLIT_MESH subroutine in the plate

the von Mises stress on an edge which is assumed to be equal to the mean stress of
its connecting nodes. The stress on the node is the average stress of the neighboring
integration points (Sect. 5.4).

The analysis is done twice; with the subroutine to model the split of the mesh
and without the subroutine for a linear material. The results of both analyses are
demonstrated in Fig. 4.6 for the right-hand bottom node (node 87 in Fig. 4.4). The
equivalent von Mises stress is printed versus the horizontal displacement of the
node. In the final increments, a lower stiffness is measured for the split mesh in the
mentioned direction.

4.2.4 IMPD and NODVAR

Example 4.4 This example illustrates the use of the NODVAR utility subroutine in
a static analysis in which a tensile test is conducted on a round rod sample (r = 3)
under displacement control. The sample is modeled by means of 44 nodes and 30
elements of type 10, i.e. 4-node quadrilateral axisymmetric elements (E = 73 × 103,
ν = 0.34, and t = 1). The material is assumed to be linear-elastic with isotropic
hardening in the plastic material range. The displacement-controlled test is simulated
by applying the gradually increasing vertical displacement along the rod axis in 100
increments. The discretized structure is shown in Fig. 4.7.

The material is assumed to be elastic-plastic with isotropic hardening which is
defined by the data points provided in Table. 4.1. Generally, it is possible inMarc to
use either the engineering strain/stress or the true strain/stress uniaxial test data. This
depends on the options which are selected in the input file. For instance, the FINITE,
LARGE DISP, LARGE STRAIN and UPDATE options require the true strain/stress data
(see [25]). In the current example, the necking phenomenon is simulated. Therefore,
to consider the geometric nonlinearity, the LARGE STRAIN option is activated by
modifying the properties of the current job:
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Fig. 4.7 Discretized model for the IMPD subroutine example

Table 4.1 Work hardening
data for the assumed plastic
behavior of the material

True plastic strain True stress

0.0000 190.0

0.0050 198.0

0.0150 209.0

0.0300 225.0

0.0500 237.6

0.0700 242.4

0.1500 256.0

0.2416 266.9

0.3220 273.4

0.3839 276.6

0.5112 281.0

0.6499 283.8

0.7753 285.6

0.9028 286.8

0.9959 287.6

1.0491 287.9

1.5200 289.2

2.5600 291.0

4.0000 292.4

3 Jobs � Jobs � Properties � Analysis Options � Nonlinear Procedure: Large Strain

Next, at the same dialog to activate the updated Lagrangian procedure, execute the
following:

Advanced Options � Large Strain: Updated Lagrange

The aimof this example is to calculate the true and engineering values of the stress and
strain in the specimen. The engineering stress (σ) is calculated using the following
equation:
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σ = F

A0
. (4.3)

The total force of the cross section (F) is obtained by summing up the reaction
forces of the right-hand nodes along the X -axis. The initial cross sectional area (A0)
is calculated using the initial radius of the specimen.

The longitudinal engineering strain (ε) is calculated using

ε = �L

L
, (4.4)

where the elongation of the specimen (�L) is divided by its initial length (L). The
elongation is calculated by subtracting the initial length of the specimen from the
distance between node 44 and node 34, i.e. the instantaneous length of the specimen.

Since larger deformations and strains are considered in this example, the true stress
(σtr) and the true strain (εtr) are more commonly used in such cases. Additionally,
the true plastic strain (εpltr ) is a useful value to be calculated [30]. The true stress is
calculated using:

σtr = F

A
, (4.5)

where the total force of the cross section (F) is divided by the actual area of the
specimen (A). Since in this example we are interested in the necking zone, the actual
cross sectional area is calculated using the necking radius, i.e. the distance between
nodes 1 and 34.

The true strain is simply calculated using the engineering strain:

σtr = ln(1 + ε). (4.6)

Finally, the true plastic strain is obtained using:

ε
pl
tr = ln(1 + ε) − σtr

E
, (4.7)

where the elastic strain part (σtr
E ) is subtracted from the total true strain (E is the

modulus of elasticity).
The NODVAR utility subroutine is used to extract the nodal values in a model. It

is available in any user subroutine ofMarc. However, depending on the subroutine
in which it is executed, the returned values may be for the previous increment.
Therefore, it is advised to use NODVAR at the end of each increment, i.e. within the
UEDINC subroutine, when the solution is converged. This way, one ensures that the
values are the final values of the current increment. Then, the nodal values can be
shared between other subroutines in the subsequent increments. Alternatively, if this
utility is called within the IMPD subroutine, the values are those at the end of the
current increment [26].
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Also note that only the requested nodal post codes are accessible by the NODVAR
subroutine. For more information on the nodal post codes refer to the description of
the POST input file option in [24].

In the MarcTools module, the CalcNodVal subroutine is used to extract the nodal
values of a node bymeans of the NODVAR subroutine. The MakeNodValLst subroutine
creates a list of those values for a selected number of nodes and the PrintNodValLst
subroutine prints the values to a file.

The extraction of the reaction force is done for nodes 11, 22, 33, and 44. For a
brief list of nodes/elements, the USDATA subroutine can be used to pass the selected
nodes/elements to the subroutine (see Sect. 3.2.6). However, a more complicated
problem includes numerous nodes and elements. Therefore, it is advised to put the
selected items in a set and extract the members of the set within the subroutine. This
has been made possible via the ExtractSetItemLst subroutine of the MarcTools module
(Sect. 5.4).

In this example, the right-hand nodes, i.e. nodes 11, 22, 33 and 44, are selected
as a set of nodes named ForceNodes and nodes 1 and 34 are selected as a set named
NeckNodes. Additionally, nodes 34 and 44 are selected in a set named DistanceNodes.

The UEDINC automatic subroutine is used to collect the data at the end of each
increment. The complete listing for this subroutine is as follows:

1 # i n c l u d e ’ MarcToo ls . f ’
2 SUBROUTINE UEDINC ( inc , i n c s u b )
3 USE MarcTools , ONLY : MakeNodValLst , Ge tD is tance , GetNodCoord ,
4 & E x t r a c t S e t I t e m L s t
5 USE F i l e T o o l s
6

7 IMPLICIT NONE
8

9 INCLUDE ’ matdat ’
10

11 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
12 INTEGER inc , i n c s u b
13 ! ∗∗ END o f gene ra ted t y p e s t a t e m e n t s ∗∗
14

15 CHARACTER ( ∗ ) , PARAMETER : : FILENAME = ’ r e s u l t . t x t ’ ,
16 & FORCE_NOD_SET = ’ ForceNodes ’ ,
17 & NECK_NOD_SET = ’ NeckNodes ’ ,
18 & DISTANCE_NOD_SET = ’ Dis tanceNodes ’
19 REAL∗8 , PARAMETER : : PI = 4 . D0 ∗ ATAN ( 1 . D0 )
20

21 REAL∗8 , ALLOCATABLE , DIMENSION ( : , : ) : : r e a c t i o n F o r c e L s t
22 REAL∗8 , ALLOCATABLE , DIMENSION ( : ) : : r e a c t i o n F o r c e S u m L s t
23

24 REAL∗8 , SAVE : : i n i t i a l A r e a , i n i t i a l R a d i u s , i n i t i a l L e n g t h ,
25 & e l a s t i c M o d u l u s
26

27 REAL∗8 : : engSt ress , t r u e S t r e s s , e n g S t r a i n , t r u e S t r a i n ,
28 & t r u e P l a s t i c S t r a i n , t r u e E l a s t i c S t r a i n ,
29 & c u r r e n t R a d i u s , c u r r e n t A r e a , c u r r e n t L e n g t h
30

31 INTEGER , SAVE , ALLOCATABLE , DIMENSION ( : ) : : d i s t anceNodLs t ,
32 & fo rceNodLs t ,
33 & neckNodLst
34

35 INTEGER , SAVE : : nD is tanceNodLs t , nForceNodLst , nNeckNodLst ,
36 & f i l e U n i t
37

38 INTEGER : : i , nComp , n R e a c t i o n F o r c e L s t
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39

40 100 FORMAT ( 1 0 9 ( ’ − ’ ) )
41 200 FORMAT ( A3 , X , 8 ( A14 , X ) )
42 300 FORMAT ( I3 , X , 8 ( F14 . 4 , X ) )
43

44 I F ( i n c .EQ. 0 ) THEN
45 CALL F i n d F r e e U n i t ( f i l e U n i t )
46 OPEN ( UNIT = f i l e U n i t , F i l e = FILENAME , ACCESS = ’ SEQUENTIAL ’ ,
47 & STATUS = ’REPLACE ’ , ACTION = ’ WRITE ’ )
48

49

50 CALL E x t r a c t S e t I t e m L s t ( DISTANCE_NOD_SET , d i s t anceNodLs t ,
51 & n d i s t a n c e N o d L s t )
52

53 CALL E x t r a c t S e t I t e m L s t (FORCE_NOD_SET , fo r ceNodLs t ,
54 & n F o r c e N o d l s t )
55

56 CALL E x t r a c t S e t I t e m L s t ( NECK_NOD_SET , neckNodLst , nNeckNodLst )
57

58 i n i t i a l R a d i u s = Ge tD i s tance ( GetNodCoord ( neckNodLst ( 1 ) ) ,
59 & GetNodCoord ( neckNodLst ( 2 ) ) )
60

61 i n i t i a l A r e a = PI ∗ ( i n i t i a l R a d i u s ∗∗ 2 . D0 )
62

63 i n i t i a l L e n g t h = Ge tD i s tance ( GetNodCoord ( d i s t a n c e N o d L s t ( 1 ) ) ,
64 & GetNodCoord ( d i s t a n c e N o d L s t ( 2 ) ) )
65 e l a s t i c M o d u l u s = e t ( 1 )
66

67 WRITE ( f i l e U n i t , 100)
68 WRITE ( f i l e U n i t , 200) ’ Inc ’ , ’ React . Force X ’ , ’ Eng . S t ress ’ ,
69 & ’ True S t ress ’ , ’ Eng . S t r a i n ’ , ’ True S t r a i n ’ , ’ True P l . S t r a i n ’ ,
70 & ’ True E l . S t r a i n ’
71 WRITE ( f i l e U n i t , 100)
72 ELSE
73 CALL MakeNodValLst ( 5 , r e a c t i o n F o r c e L s t , n R e a c t i o n F o r c e L s t
74 & , nComp , fo r ceNodLs t , nForceNodLst )
75

76 I F ( . NOT . ALLOCATED ( r e a c t i o n F o r c e S u m L s t ) )
77 & ALLOCATE ( r e a c t i o n F o r c e S u m L s t ( nComp ) )
78

79 r e a c t i o n F o r c e S u m L s t = SUM ( r e a c t i o n F o r c e L s t , 1 )
80

81 c u r r e n t R a d i u s = Ge tD i s tance ( GetNodCoord ( neckNodLst ( 1 ) , 2 ) ,
82 & GetNodCoord ( neckNodLst ( 2 ) , 2 ) )
83

84 c u r r e n t A r e a = PI ∗ ( c u r r e n t R a d i u s ∗∗ 2 . D0 )
85

86 e n g S t r e s s = r e a c t i o n F o r c e S u m L s t ( 1 ) / i n i t i a l A r e a
87 t r u e S t r e s s = r e a c t i o n F o r c e S u m L s t ( 1 ) / c u r r e n t A r e a
88

89 c u r r e n t L e n g t h = Ge tD i s tance ( GetNodCoord ( d i s t a n c e N o d L s t ( 1 ) , 2 ) ,
90 & GetNodCoord ( d i s t a n c e N o d L s t ( 2 ) , 2 ) )
91

92 e n g S t r a i n = ( c u r r e n t L e n g t h − i n i t i a l L e n g t h ) / i n i t i a l L e n g t h
93

94 t r u e S t r a i n = Log ( c u r r e n t L e n g t h / i n i t i a l L e n g t h )
95 t r u e E l a s t i c S t r a i n = t r u e S t r e s s / e l a s t i c M o d u l u s
96 t r u e P l a s t i c S t r a i n = t r u e S t r a i n − t r u e E l a s t i c S t r a i n
97

98 WRITE ( f i l e U n i t , 300) i nc , r e a c t i o n F o r c e S u m L s t ( 1 ) ,
99 & engSt ress , t r u e S t r e s s , e n g S t r a i n , t r u e S t r a i n ,
100 & t r u e P l a s t i c S t r a i n , t r u e E l a s t i c S t r a i n
101 END IF
102

103 I F ( i n c .EQ. 10) THEN
104 WRITE ( f i l e U n i t , 100)
105 CLOSE ( f i l e U n i t )
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106 END IF
107

108 RETURN
109 END SUBROUTINE UEDINC

In this subroutine, the ONLY option is used with the USE statement to avoid any
conflict between the variables of the common blocks with the local variables such
as the inc variable (lines 3 and 4). The matdat common block is used to obtain the
elastic modulus (lines 9 and 65).

The data declaration part starts with the constant parameters (lines 15 to 19).
In this part, the name of the output file (FILENAME) and the name of the sets,
e.g. FORCE_NOD_SET, are defined. In addition, instead of explicitly specifying the
digits of the Pi number (π = 3.1415 . . .), the PI constant is defined using the ATAN
intrinsic function to obtain higher precision (line 19).

The data declaration is finished after declaring various variables (20 to 38). Since
the output file is opened for FORMATTED writing, the required format statements are
defined in lines 40 to 42.

At the end of increment zero, the output file is connected to a free unit (lines 45 and
46) and the old file is replaced by the current one. The ExtractSetItemLst subroutine
is used to extract the items of the defined sets (lines 50 to 56). The initial geometric
properties of the specimen are calculated in lines 58 to 64, e.g. the initial radius
(initialRadius) and the initial cross sectional area (initialArea). Finally, the header of
the table is written to the output file in lines 67 to 71.

At the end of every increment (not for increment zero) the nodal values are
printed. First the list of nodal values, i.e. the reactions forces, is obtained using the
MakeNodValLst subroutine (lines 73 and 74). Then, the sum of the reaction forces
of the selected nodes are calculated along X - and Y -directions (line 79). Next, all
the current geometric values are calculated using the acquired coordinates of the
nodes (line 81 to 90). These values are used along with initial geometrical values
to calculate the stresses and strains (line 92 to 96). All the stresses and strains are
printed to the output file in a single line (lines 98 to 100).

At the end of increment 10, the last row of the file is printed and the file unit is
closed (lines 103 to 106). The resulting output file will contain the following lines:

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Inc React . Force X Eng. Stress True Stress Eng. Strain True Strain True Pl . Strain True El . Strain
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 6089.7454 215.3807 220.8539 0.0250 0.0247 0.0217 0.0030
2 6333.3023 223.9947 235.8550 0.0500 0.0488 0.0456 0.0032
3 6352.1811 224.6624 248.6905 0.0750 0.0723 0.0689 0.0034
4 6134.6940 216.9704 271.9314 0.1001 0.0954 0.0917 0.0037
5 5747.5788 203.2790 298.9705 0.1253 0.1181 0.1140 0.0041
6 5179.8638 183.2002 331.0129 0.1506 0.1403 0.1358 0.0045
6 4862.8925 171.9896 354.0936 0.1634 0.1513 0.1465 0.0049
7 4543.7224 160.7013 385.4573 0.1762 0.1623 0.1570 0.0053
8 3980.5280 140.7824 470.9491 0.2019 0.1839 0.1775 0.0065
9 3544.3844 125.3570 588.0141 0.2277 0.2051 0.1971 0.0081
10 3190.6989 112.8479 751.9715 0.2534 0.2258 0.2155 0.0103
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Example 4.5 In the previous example, the customized subroutines of the MarcTools
module were used to calculate the nodal values. This method is merely using the
NODVAR subroutine in a structured way. The resulting code is compact and easily
understood. However, one may prefer to approach the same example from another
angle, namely not using the customized subroutines or theNODVAR utility subroutine.
The IMPD subroutine provides another way of obtaining the nodal values. Since it is
not a utility subroutine, the approach is rather different.

The IMPD subroutine makes several nodal quantities available at the end of every
increment. Nodal displacements, coordinates, reaction forces, velocities and acceler-
ations are available within the subroutine as the input arguments. The UDUMP option
is used for the activation of the IMPD subroutine. The same option is also used for
activating the ELEVAR subroutine. This subroutine is used to obtain various elemental
values and it will be discussed in Sect. 4.2.5. However, for the IMPD subroutine a list
of nodes, and for the ELEVAR subroutine a list of elements, should be provided. This
information is specified in the second block of the UDUMP option whereas the first
block holds the option keyword, i.e. UDUMP. In the second block, the selected nodes
and elements are specified in terms of the user ID ranges. For the specified nodes,
the IMPD subroutine and for the specified elements, the ELEVAR subroutine will be
executed at the end of each increment. In our case, it is necessary to run the IMPD
subroutine for the right-hand nodes of the mesh, i.e. nodes 11, 22, 33, 34, 44 and 1,
but the ELEVAR subroutine is not used. Therefore, the following lines are added to
the model definition part of the input file:

1 UDUMP
2 1 ,4 4 , ,

These lines select the nodes 1 to 44 and by default all the elements of the model
for which the corresponding subroutines will be executed. The selected range of
the nodes includes the required nodes plus many other ones which is a result of the
limitation imposed by the UDUMP option. The exact selection will be done within
the subroutine itself using conditional statements. Therefore, sometimes it would be
easier to run the IMPD subroutine for all existing nodes and the ELEVAR subroutine
for all elements. To do so, execute the following command for the current job:

3 Jobs � Jobs � Properties � Job Results � Output File � User Subroutines � Impd (Nodes)
or Elevar/Elevec (Elements)

This command is the equivalent of the UDUMP option followed by an empty line
which covers all the elements and nodes of the model.

In this example, the IMPD subroutine is used to collect the nodal data and the
UEDINC subroutine to operate on them. Note that even in increment zero, both of
these subroutines will run. In each increment, first the IMPD subroutine is executed
and at the end of the increment the UEDINC subroutine is executed. The UBGINC
subroutine is used to allocate the arrays and prepare the output file for writing. The
CommonData module is used to share the data between these two subroutines.

Although the general approach in this example is rather different than that of the
previous one, the customized subroutines are also used to facilitate the procedure.
The listing of the Fortran file is as follows:
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1 # i n c l u d e ’ MarcToo ls . f ’
2 MODULE CommonData
3 CHARACTER ( ∗ ) , PARAMETER : : FILENAME = ’ r e s u l t . t x t ’ ,
4 & FORCE_NOD_SET = ’ ForceNodes ’ ,
5 & NECK_NOD_SET = ’ NeckNodes ’ ,
6 & DISTANCE_NOD_SET = ’ Dis tanceNodes ’
7 REAL∗8 , PARAMETER : : PI = 4 . D0 ∗ ATAN ( 1 . D0 )
8

9 REAL∗8 , ALLOCATABLE , SAVE , DIMENSION ( : ) : : r e a c t i o n F o r c e L s t
10

11 REAL∗8 , SAVE : : reac t ionForceSum , e l a s t i c M o d u l u s ,
12 & i n i t i a l A r e a , i n i t i a l R a d i u s , i n i t i a l L e n g t h
13

14

15 REAL∗8 : : engSt ress , t r u e S t r e s s , e n g S t r a i n , t r u e S t r a i n ,
16 & t r u e P l a s t i c S t r a i n , t r u e E l a s t i c S t r a i n ,
17 & c u r r e n t R a d i u s , c u r r e n t A r e a , c u r r e n t L e n g t h
18

19 INTEGER , SAVE , ALLOCATABLE , DIMENSION ( : ) : : d i s t anceNodLs t ,
20 & fo rceNodLs t ,
21 & neckNodLst
22

23 REAL∗8 , SAVE , ALLOCATABLE , DIMENSION ( : , : ) : : neckNodCoordLst ,
24 & d is tanceNodCoordLs t
25

26 INTEGER , SAVE : : nD is tanceNodLs t , nForceNodLst , nNeckNodLst ,
27 & f i l e U n i t , n R e a c t i o n F o r c e L s t
28 END MODULE CommonData
29

30 SUBROUTINE UBGINC ( inc , i n c s u b )
31 USE MarcTools , ONLY : ncrd , E x t r a c t S e t I t e m L s t
32 USE F i l e T o o l s
33 USE CommonData
34 IMPLICIT NONE
35

36 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
37 INTEGER inc , i n c s u b
38 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
39

40 100 FORMAT ( 1 0 9 ( ’ − ’ ) )
41 200 FORMAT ( A3 , X , 8 ( A14 , X ) )
42

43 I F ( i n c .EQ. 0 ) THEN
44 CALL F i n d F r e e U n i t ( f i l e U n i t )
45 OPEN ( UNIT = f i l e U n i t , F i l e = FILENAME , ACCESS = ’ SEQUENTIAL ’ ,
46 & STATUS = ’REPLACE ’ , ACTION = ’ WRITE ’ )
47

48 CALL E x t r a c t S e t I t e m L s t ( DISTANCE_NOD_SET , d i s t anceNodLs t ,
49 & nD is tanceNodLs t )
50 ALLOCATE ( d i s tanceNodCoo rdLs t ( nD is tanceNodLs t , 3 ) )
51

52 d i s tanceNodCoordLs t = 0 . D0
53

54 CALL E x t r a c t S e t I t e m L s t (FORCE_NOD_SET , fo r ceNodLs t ,
55 & n F o r c e N o d l s t )
56

57 ALLOCATE ( r e a c t i o n F o r c e L s t ( nForceNodLst ) )
58

59 CALL E x t r a c t S e t I t e m L s t ( NECK_NOD_SET , neckNodLst , nNeckNodLst )
60 ALLOCATE ( neckNodCoordLst ( nNeckNodLst , 3 ) )
61 neckNodCoordLst = 0 . D0
62

63 WRITE ( f i l e U n i t , 100)
64 WRITE ( f i l e U n i t , 200) ’ Inc ’ , ’ React . Force X ’ , ’ Eng . S t ress ’ ,
65 & ’ True S t ress ’ , ’ Eng . S t r a i n ’ , ’ True S t r a i n ’ , ’ True P l . S t r a i n ’ ,
66 & ’ True E l . S t r a i n ’
67 WRITE ( f i l e U n i t , 100)
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68 END IF
69 RETURN
70 END
71

72 SUBROUTINE IMPD ( lnode , dd , td , xord , f , v , a , ndeg , nc rd )
73

74 USE MarcTools , ONLY : Get Index
75 USE CommonData
76

77 IMPLICIT NONE
78

79 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
80 REAL∗8 a , dd , f
81 INTEGER lnode , ncrd , ndeg
82 REAL∗8 td , v , xo rd
83 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
84 DIMENSION lnode ( 2 )
85 DIMENSION dd ( ndeg ) , t d ( ndeg ) , xo rd ( nc rd ) , f ( ndeg ) ,
86 ∗ v ( ndeg ) , a ( ndeg )
87

88 INTEGER : : nodIndex
89

90 NodIndex = Get Index ( d i s t anceNodLs t , nD is tanceNodLs t , l node ( 1 ) )
91 I F ( NodIndex . NE . 0 ) THEN
92 d i s tanceNodCoo rdLs t ( nodIndex , 1 : 2 ) = xo rd ( 1 : 2 ) + t d ( 1 : 2 )
93 END IF
94

95 NodIndex = Get Index ( neckNodLst , nNeckNodLst , l node ( 1 ) )
96 I F ( NodIndex . NE . 0 ) THEN
97 neckNodCoordLst ( nodIndex , 1 : 2 ) = xo rd ( 1 : 2 ) + t d ( 1 : 2 )
98 END IF
99

100 NodIndex = Get Index ( fo rceNodLs t , nForceNodLst , l node ( 1 ) )
101 I F ( NodIndex . NE . 0 ) THEN
102 r e a c t i o n F o r c e L s t ( nodIndex ) = f ( 1 )
103 END IF
104 RETURN
105 END
106

107

108 SUBROUTINE UEDINC ( inc , i n c s u b )
109 USE MarcTools , ONLY : MakeNodValLst , Ge tD is tance ,
110 & E x t r a c t S e t I t e m L s t
111 USE F i l e T o o l s
112 USE CommonData
113

114 IMPLICIT NONE
115

116 INCLUDE ’ matdat ’
117

118 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
119 INTEGER inc , i n c s u b
120 ! ∗∗ END o f gene ra ted t y p e s t a t e m e n t s ∗∗
121

122

123 100 FORMAT ( 1 0 9 ( ’ − ’ ) )
124 300 FORMAT ( I3 , X , 8 ( F14 . 4 , X ) )
125

126 I F ( i n c .EQ. 0 ) THEN
127 i n i t i a l R a d i u s = Ge tD i s tance ( neckNodCoordLst ( 1 , 1 : 3 ) ,
128 & neckNodCoordLst ( 2 , 1 : 3 ) )
129

130 i n i t i a l A r e a = PI ∗ ( i n i t i a l R a d i u s ∗∗ 2 . D0 )
131

132 i n i t i a l L e n g t h = Ge tD i s tance ( d i s t anceNodCoo rdLs t ( 1 , : ) ,
133 & d is tanceNodCoordLs t ( 2 , : ) )
134 e l a s t i c M o d u l u s = e t ( 1 )
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135

136 ELSE
137 reac t i onForceSum = SUM ( r e a c t i o n F o r c e L s t )
138

139 c u r r e n t R a d i u s = Ge tD i s tance ( neckNodCoordLst ( 1 , : ) ,
140 & neckNodCoordLst ( 2 , : ) )
141

142 c u r r e n t A r e a = PI ∗ ( c u r r e n t R a d i u s ∗∗ 2 . D0 )
143

144 engSt ress = reac t i onFo rceSum / i n i t i a l A r e a
145 t r u e S t r e s s = reac t i onForceSum / c u r r e n t A r e a
146

147 c u r r e n t L e n g t h = Ge tD i s tance ( d i s tanceNodCoo rdLs t ( 1 , : ) ,
148 & d is tanceNodCoordLs t ( 2 , : ) )
149

150 e n g S t r a i n = ( c u r r e n t L e n g t h − i n i t i a l L e n g t h ) / i n i t i a l L e n g t h
151

152 t r u e S t r a i n = Log ( c u r r e n t L e n g t h / i n i t i a l L e n g t h )
153 t r u e E l a s t i c S t r a i n = t r u e S t r e s s / e l a s t i c M o d u l u s
154 t r u e P l a s t i c S t r a i n = t r u e S t r a i n − t r u e E l a s t i c S t r a i n
155

156 WRITE ( f i l e U n i t , 300) i nc , reac t ionForceSum ,
157 & engSt ress , t r u e S t r e s s , e n g S t r a i n , t r u e S t r a i n ,
158 & t r u e P l a s t i c S t r a i n , t r u e E l a s t i c S t r a i n
159 END IF
160

161 I F ( i n c .EQ. 10) THEN
162 WRITE ( f i l e U n i t , 100)
163 CLOSE ( f i l e U n i t )
164 END IF
165

166 RETURN
167 END SUBROUTINE UEDINC

TheCommonDatamodule holds all the required data for the calculation of the stresses
and strains. In addition, the constants are also defined and shared via this module
(lines 2 to 28).

The UBGINC subroutine is executed at the beginning of each increment. However,
it is only required to carry out some initial constructions at increment zero. At the
beginning of this increment, it prepares the output file for writing, extracts the items
of the sets and allocates the arrays. For instance, the nodes of the necking zone
(neckNodLst) are extracted from the NECK_NOD_SET. In addition, the header of the
result table is printed in the output file.

The IMPD subroutine collects the nodal values and stores them in the previously
allocated arrays. This is done by searching for the current node in the list of nodes
which was extracted from the sets. For example, to extract the coordinates for the
nodes of the necking zone (neckNodCoordLst), the lnode(1) variable, i.e. the user node
ID for which the current subroutine is running, is searched in the neckNodLst. If a
match exists, its index is returned by the GetIndex function.

The UEDINC subroutine handles the calculations of the current increment and
prints them into the result file. The variables with a constant value during the analysis,
e.g. the initial length of the specimen (initialLength), are calculated once at the end
of increment zero and saved by the SAVE attribute in the CommonData module. In
the remaining increments, the current values are calculated and written in the output
file. At the end of the last increment, the last raw is written to the file and the file unit
is disconnected (lines 161 to 163).
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The result of this example is the same as the previous one. However, in comparison
with the previous example, the current listing is longer and the number of subroutines
is greater. It is worth mentioning that without using the customized subroutines, the
listing of this example would be even longer.

4.2.5 ELMVAR and ELEVAR

Example 4.6 This example illustrates the use of the ELMVAR utility subroutine in a
static analysis in which a plate is loaded with several horizontal and vertical point
loads (Fig. 4.8). The plate is modeled by means of 12 nodes and 6 elements of type 3,
i.e. 4-node quadrilateral plane stress elements (E = 200 × 103, ν = 0.3, and t = 1).
The material is assumed to be linear-elastic. The horizontal loads (F1 = +1000) are
applied to each of the right-hand nodes whereas the vertical loads (F2 = +2000)
are applied to the nodes 10, 11, and 12. All loads are applied gradually in 10 steps.
The purpose of this example is to obtain the nodal values for some scalar elemental
quantities. All the calculated outputs are printed to an external text file.

The ELMVAR utility subroutine is used to extract the elemental quantities at the
integration points of the elements. To do so, the required inputs are the element
ID, integration point number, internal layer number, and the element post code. The
standard element post codes are positive values which are used in the POST input
file option (see [24]). Note that this subroutine does not support negative post codes
which indicate user-defined variables used in conjunctionwith the PLOTV subroutine.

In addition, depending on the stage of the analysis, the values returned by the
ELMVAR subroutine may not be the converged ones. Therefore, it is good practice
to call this subroutine at the end of each increment to obtain the final values of the
increment. In this example, the UEDINC subroutine is used to collect the results at
the end of increments.

9 10 11 12

4 3 7 8

1 2 5 6
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I II III
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F1 = +1000

F1 = +1000

Fig. 4.8 Discretized model for the ELMVAR subroutine example
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InMentat, three methods can be selected for the calculation of the nodal values
of elemental quantities. The Linear method extrapolates the values of the integration
points to the nodal points. The Translate method copies the values of the integration
points to the neighboring node. The Average method calculates the average of the
values obtained from the integration points and copies it to all nodes of the element.
In the post-processing stage, the user can switch between these methods via the
Element Extrapolation Settings dialog box. For instance, to select the Translate method,
one should execute the following command:

3 Results � Settings � Extrapolation � Method: Translate

A node, which is connected to several elements, receives a contribution from the
neighboring integration points of those elements. The received values are usually
averaged with no regard to the weight of the contribution, i.e. with an unweighted
averaging method. Namely, any parameters related to the contributor element, such
as its size, are not considered in this method. In this example, the standard results
of Marc are exported to an external file for later post-processing. In addition, the
same results are calculated using an assumed weighted averaging method in which
the surface area of each element is used as the weight of the quantity.

The developed subroutines of the MarcTools module use the ELMVAR utility sub-
routine to obtain the initial values. The FileTools module is also used to obtain a free
file unit. The listing is as follows:

1 #INCLUDE ’ MarcToo ls . f ’
2

3 SUBROUTINE UEDINC ( uInc , u Incsub )
4 USE MarcToo ls
5 USE F i l e T o o l s
6

7 IMPLICIT NONE
8

9 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
10 INTEGER uInc , u Incsub
11 ! ∗∗ END o f gene ra ted t y p e s t a t e m e n t s ∗∗
12

13 CHARACTER( LEN =∗ ) , PARAMETER : : f i l e Na me = ’ r e s u l t . t x t ’
14 INTEGER : : i
15 INTEGER , SAVE : : f i l e U n i t
16 100 FORMAT ( A20 , I 2 )
17

18

19 I F ( u I n c .EQ. 1 ) THEN
20 CALL F i n d F r e e U n i t ( f i l e U n i t )
21 OPEN ( UNIT = f i l e U n i t , F i l e = f i l eName , ACCESS = ’ SEQUENTIAL ’ ,
22 & STATUS = ’REPLACE ’ , ACTION = ’ WRITE ’ )
23

24 CALL P r i n t I P C o o r d L s t ( f i l e U n i t )
25 CALL P r i n t N o d C o o r d L s t ( 1 , f i l e U n i t )
26 CALL P r i n t E l a p s e d T i m e ( f i l e U n i t )
27 END IF
28

29 I F ( u I n c .GE . 1 ) THEN
30 WRITE ( f i l e U n i t , 1 0 0 ) ’ I n c r e m e n t No . ’ , u I n c
31

32 CALL P r i n t N o d C o o r d L s t ( 2 , f i l e U n i t )
33

34 DO i = 1 , 3
35 WRITE ( f i l e U n i t , 1 0 0 ) ’ S t r e s s ’ , i
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36 CALL P r i n t N o d V a l I P L s t (10+ i , f i l e U n i t )
37 END DO
38

39 DO i = 1 , 3
40 WRITE ( f i l e U n i t , 1 0 0 ) ’ S t r e s s ’ , i
41 CALL P r i n t N o d V a l I P L s t (10+ i , f i l e U n i t )
42 END DO
43 END IF
44 WRITE ( f i l e U n i t , ∗ ) ’ t i m i n c = ’ , t i m i n c
45 I F ( u I n c .EQ. 10) THEN
46 CALL P r i n t E l a p s e d T i m e ( f i l e U n i t )
47 CLOSE( f i l e U n i t )
48 END IF
49 RETURN
50 END

Note that the values obtained from Mentat might be slightly different from those
which Marc produces [25].

In the results.txt file, the stresses are printed for each increment. For instance, the
first component of the stress in the nodes in the last increment is as follows:

Stress 1
Element Post 11
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Unweighted Weighted
Node Translated Extrapolated Average Translated Extrapolated Average

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 273.5087 314.0950 218.0668 273.5087 314.0950 218.0668
2 213.2047 209.9672 217.6273 230.1795 239.2612 217.7738
3 163.7480 143.6618 191.1864 163.3117 136.4540 200.0000
4 148.8546 118.0265 190.9666 156.5712 124.7791 200.0000
5 313.8684 391.0555 208.4290 303.6830 371.2765 211.3486
6 270.4015 322.1804 199.6701 270.4015 322.1804 199.6701
7 163.2923 139.5057 195.7855 198.3260 197.1006 200.0000
8 107.2877 39.2968 200.1649 89.8303 9.1805 200.0000
9 151.8576 143.0665 163.8665 151.8576 143.0665 163.8665
10 173.3683 179.6807 164.7454 182.9216 196.4419 164.4524
11 203.7399 218.8186 183.1421 191.1000 201.2002 177.3028
12 335.7245 434.5987 200.6598 335.7245 434.5987 200.6598

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The elemental values for the first stress component are as follows:

Stress 1
Element Post 11
- - - - - - - - - - - - - - - - - - - - - - - - - - - -
Element IP Value
- - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 1 273.5087
1 2 264.1292
1 3 172.0044
1 4 162.6248

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
2 1 162.2803
2 2 283.3122
2 3 151.0635
2 4 272.0954

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 1 344.4247
3 2 270.4015
3 3 128.9387
3 4 54.9155
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- - - - - - - - - - - - - - - - - - - - - - - - - - - -
4 1 125.7049
4 2 175.8754
4 3 151.8576
4 4 202.0281

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
5 1 165.4285
5 2 186.5401
5 3 144.7085
5 4 165.8202

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
6 1 65.5951
6 2 159.6599
6 3 241.6596
6 4 335.7245

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

In Fig. 4.9, the result of the analysis is illustrated for themiddle rowof nodes, i.e. node
4, 3, 11, and 12. In this graph, the stress in the X -direction (σX ) is plotted along the
length of the plate (its X -coordinate). The stress is calculated using the average
weighted and average unweighted nodal values. A notable feature of this graph is
that the weighted average method gives a constant stress in each node of the middle
row.

Example 4.7 This example ismodeled using the custom subroutines of theMarcTools
module which enables the user to obtain the elemental quantities by a few lines of
code. This approach does not depend on a specific subroutine and it is accessible
from most of the user subroutines. Alternatively, it is possible to use the ELEVAR
subroutine to produce similar results.

The ELEVAR subroutine provides the user with elemental quantities at the end of
every increment. The subroutine is executed for all integrationpoints of the nominated
elements. This execution repeats at the end of every increment before the execution of
the UEDINC subroutine. Several input arguments are available within the subroutine,
e.g. the total strain, total stress, plastic strain, Cauchy stress, equivalent plastic strain,
state variables, crack indicators etc.

Since only the data regarding a particular integration point of an element is avail-
able at each run, the required data must be collected. For instance, calculating the

Fig. 4.9 Result of using the
ELMVAR subroutine in the
last increment
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average stress of the integration points is not possible until the execution of the
ELEVAR subroutine for the last integration point of that element. This drawback is
magnified if the calculation process requires the elemental values for all the elements,
which demands a large memory allocation.

The ELEVAR subroutine is the counterpart of the NODVAR subroutine. The former
provides the elemental values and the latter supplies the nodal ones at the end of
each increment. The activation can be done simultaneously for both of them using
theUDUMPoption (seeSect. 4.2.4). In this example, it is required to run the subroutine
for all elements.

The ELEVAR subroutine is used in conjunction with the UBGINC and UEDINC
subroutines. Additionally, the CommonData module is used to share the common
data between these subroutines. The FindFreeUnit subroutine of the FileTools module
is used to get a free file unit number. The listing is as follows:

1 #INCLUDE ’ F i l e T o o l s . f ’
2

3 MODULE CommonData
4 CHARACTER( LEN =∗ ) , PARAMETER : : f i l e Na me = ’ r e s u l t . t x t ’
5 INTEGER , SAVE : : f i l e U n i t
6

7 REAL∗8 , DIMENSION ( 3 , 4 ) , SAVE : : s t r e s s L s t
8 REAL∗8 , DIMENSION ( 3 ) , SAVE : : meanSt ressLs t
9 END MODULE CommonData

10

11 SUBROUTINE UBGINC ( inc , i n c s u b )
12 USE F i l e T o o l s
13 USE CommonData
14 IMPLICIT NONE
15 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
16 INTEGER inc , i n c s u b
17 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
18

19 100 FORMAT ( A60 , X , I 3 )
20 200 FORMAT ( A7 , X , A2 , X , 6 ( A15 , X ) )
21 300 FORMAT (61X , A15 )
22 400 FORMAT ( 1 0 7 ( ’ − ’ ) )
23

24 I F ( i n c .EQ. 0 ) THEN
25 CALL F i n d F r e e U n i t ( f i l e U n i t )
26 OPEN ( UNIT = f i l e U n i t , F i l e = f i l eName , ACCESS = ’ SEQUENTIAL ’ ,
27 & STATUS = ’REPLACE ’ , ACTION = ’ WRITE ’ )
28

29 WRITE ( f i l e U n i t , 400)
30 WRITE ( f i l e U n i t , 300) ’ Mean Values ’
31

32 WRITE ( f i l e U n i t , 200) ’ Element ’ , ’ IP ’ ,
33 & ’ S t r e s s ( 1 ) ’ , ’ S t r e s s ( 2 ) ’ , ’ S t r e s s ( 3 ) ’ ,
34 & ’ S t r e s s ( 1 ) ’ , ’ S t r e s s ( 2 ) ’ , ’ S t r e s s ( 3 ) ’
35

36 WRITE ( f i l e U n i t , 400)
37 END IF
38

39 I F ( i n c . GT . 0 ) THEN
40 WRITE ( f i l e U n i t , 100) ’ I n c r e m e n t ’ , i n c
41 WRITE ( f i l e U n i t , 400)
42 END IF
43

44 RETURN
45 END
46

47 SUBROUTINE ELEVAR ( n , nn , kcus , g s t r a n , g s t r e s , s t r e s s , p s t r a n ,
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48 1 c s t r a n , v s t r a n , cauchy , ep las , equ ivc , s w e l l , k r t y p , prang , d t ,
49 2 gsv , ngens , ngen1 , n s t a t s , ns tass , t h m s t r )
50

51 USE F i l e T o o l s
52 USE CommonData
53

54 IMPLICIT NONE
55

56 INCLUDE ’ concom ’
57

58 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
59 REAL∗8 cauchy , c s t r a n , d t , ep las , equ ivc , g s t r a n , g s t r e s , gsv
60 INTEGER kcus , k r t y p , n , ngen1 , ngens , nn , ns tass , n s t a t s
61 REAL∗8 prang , p s t r a n , s t r e s s , s w e l l , t h m s t r , v s t r a n
62

63 DIMENSION g s t r a n ( ngens ) , g s t r e s ( ngens ) ,
64 1 s t r e s s ( ngen1 ) , p s t r a n ( ngen1 ) , c s t r a n ( ngen1 ) , v s t r a n ( ngen1 ) ,
65 2 cauchy ( ngen1 ) , d t ( n s t a t s ) , gsv ( ∗ )
66 3 , t h m s t r ( ∗ ) , p rang ( 3 , 3 ) , k r t y p ( 4 ) , kcus ( 2 )
67 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
68

69 INTEGER : : i
70

71 300 FORMAT ( I7 , X , I2 , X , 3 ( F15 . 4 , X ) )
72 400 FORMAT ( 1 0 7 ( ’ − ’ ) )
73 500 FORMAT ( I7 , X , I2 , X , 6 ( F15 . 4 , X ) )
74

75 I F ( i n c . GT . 0 ) THEN
76 DO i = 1 , 3
77 s t r e s s L s t ( i , nn ) = s t r e s s ( i )
78 END DO
79

80 I F ( nn .EQ. 4 ) THEN
81

82 DO i = 1 , 3
83 meanSt ressLs t = Sum ( s t r e s s L s t , 2 ) / 4 . D0
84 END DO
85

86 WRITE ( f i l e U n i t , 5 0 0 ) n , nn , s t r e s s ( 1 ) , s t r e s s ( 2 ) , s t r e s s ( 3 ) ,
87 & meanSt ressLs t ( 1 ) , meanSt ressLs t ( 2 ) , meanSt ressLs t ( 3 )
88 WRITE ( f i l e U n i t , 400)
89 ELSE
90 WRITE ( f i l e U n i t , 3 0 0 ) n , nn , s t r e s s ( 1 ) , s t r e s s ( 2 ) , s t r e s s ( 3 )
91 END IF
92

93 END IF
94 RETURN
95 END
96

97 SUBROUTINE UEDINC ( inc , i n c s u b )
98

99 USE CommonData
100

101 IMPLICIT NONE
102

103 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
104 INTEGER inc , i n c s u b
105 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
106

107 I F ( i n c .EQ. 10) THEN
108 CLOSE ( f i l e U n i t )
109 END IF
110

111 RETURN
112 END
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In the CommonData module, two arrays are used to collect the stress of each
integration point and the mean stress for each element, i.e. the StressLst and the
meanStressLst arrays. Note that for the current calculations, it is not really necessary
to share these arrays. The fileName is used to specify the name of the output file and
the fileUnit holds its file unit number.

The UBGINC subroutine is used to prepare the output file and to print the table
header in increment zero. In addition, it prints a line indicating the number of incre-
ments in each subsequent increment.

In the ELEVAR subroutine, from increment 1 onwards, the stress is stored in the
StressLst array for each integration point. The last execution of the subroutine for
each element is the one that corresponds to the last integration point, i.e. integration
point 4 in our case. If this condition is true (line 80), the mean stress of the element is
calculated using theSum intrinsic function (line 83).Note that the second argument of
this function, an optional one, indicates that summing is carried out over the second
dimension of the stressLst array. The result of this function is an array of rank 3
which holds the sum of the values of the second dimension of the stressLst array.
Nevertheless, in addition to the integration point stresses, the mean stress values are
printed in the last increment of each element whereas in all other increments, only
the stresses of the integration points are printed.

TheUEDINC subroutine is used to close the file unit in the last increment, i.e. incre-
ment 10.

The result.txt file will contain the following lines for the last increment:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Mean Values
Element IP Stress (1) Stress (2) Stress (3) Stress (1) Stress (2) Stress (3)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
.
.
.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Increment 10
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 1 273.5087 59.8075 128.2171
1 2 264.1292 28.5423 57.1641
1 3 172.0044 29.3562 122.7457
1 4 162.6248 -1.9090 51.6927 218.0668 28.9492 89.9549

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2 1 162.2803 121.9526 -181.7169
2 2 283.3122 525.3921 -185.6428
2 3 151.0635 118.5875 -40.5131
2 4 272.0954 522.0271 -44.4389 217.1878 321.9898 -113.0779

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 1 344.4247 595.9185 239.8525
3 2 270.4015 349.1743 202.1425
3 3 128.9387 531.2727 67.1316
3 4 54.9155 284.5285 29.4216 199.6701 440.2235 134.6371

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4 1 125.7049 -41.3143 -38.0495
4 2 175.8754 125.9207 -1.4357
4 3 151.8576 -33.4685 -23.4164
4 4 202.0281 133.7665 13.1974 163.8665 46.2261 -12.4260

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
5 1 165.4285 201.9295 -5.2660
5 2 186.5401 272.3017 -19.7700



4.2 Examples 241

5 3 144.7085 195.7135 7.0491
5 4 165.8202 266.0857 -7.4548 165.6243 234.0076 -6.3604

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
6 1 65.5951 363.8960 45.0434
6 2 159.6599 677.4454 106.6660
6 3 241.6596 416.7153 154.7857
6 4 335.7245 730.2647 216.4083 200.6598 547.0804 130.7259

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

It is alternatively possible to calculate the nodal stresses using the ELEVAR subroutine
which is not done for this example.

4.2.6 UVSCPL

Example 4.8 This example illustrates the use of the UVSCPL subroutine to perform
a linear static analysis in which a rod is elongated by applying a linear displacement.
The rod is modeled by means of 2 nodes and one element of type 9, i.e. a two-node
simple linear straight truss element with a constant cross section (E = 70 × 103,
L = 400, and A = 100). The displacement is assumed to be increased incrementally
in 10 equal steps. The total displacement is u0 = +8 which is applied on node 2.
The discretized structure is shown in Fig. 4.10.

The UVSCPL subroutine is used to implement general constitutive laws of elastic-
viscoplastic materials. There are several inputs provided within the subroutine,
e.g. the material properties, stress state, state variables, strains etc. These inputs
are used to calculate the required outputs, i.e. the inelastic strain increment (avgine),
stress increment (sinc), inelastic strain rate (ustrrt), tangent stiffness matrix (b), and
the change in stress due to the state variables (gf). In the most general case, the output
variables must be compatible with the employed creep law. In addition, they must
satisfy the following equation within a tolerance one order less than that of the global
Newton-Raphson algorithm:

sinc = b * (e - avgine - thmstri) + gf, (4.8)

Fig. 4.10 Axial loading of a
nonlinear rod defined by the
UVSCPL subroutine
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where thmstri is the thermal strain increment and e is the current strain increment.
For the general 3D case, all the variables in this equation are arrays but for the
current 1D example, all tensorial variables can be simplified to scalar ones. Further-
more, by omitting the effect of the state variables, e.g. temperature, and assuming a
time-independent behavior, i.e. omitting the viscous behavior, this equation can be
simplified to the following:

sinc = b * (e - avgine), (4.9)

which can be used to describe an elasto-plastic behavior. This equation is written
in terms of the input variables of the subroutine. In mathematical terms, it can be
written as the following equation:

dσ = Eelpl × (dε − dεpl), (4.10)

where the total stress increment dσ is related to the total strain increment dε and the
plastic strain increment dεpl by the elasto-plastic modulus Eelpl.

Equation (4.10) is the result of classical additive decomposition of strain and it
is valid for the small stress and strain increments and it must be integrated [6]. As
mentioned earlier, this equation is simplified for the 1D problem and a similar, but
more general, tensorial equation is valid for the 3D case (see [26]). Note that the
irreversible nature of the plastic behavior, i.e. the path-dependency, is manifested in
the form of an incremental formulation [28].

For the current example, a linear-elastic behavior is assumed and thus, Eq. (4.10)
reduces to:

dσ = E × dε, (4.11)

which is the incremental form of Hooke’s law. In this equation, E is the elastic
modulus of the material.

In every increment, the UVSCPL subroutine is executed twice. Once during the
stiffness matrix calculation (lovl=4) and the second run is during the calculation of
the residuals (lovl=6) (see Table2.8). It is the responsibility of the user to provide
a compatible set of data in both of these executions. The material behavior and
the execution stage determines which output variables are required. For the current
linear-elastic case, in the second stage the stress increment must be calculated using
Eq. (4.11) whereas in the first stage a zero value must be returned for the stress
increment. Since the material has no plastic properties, the plastic strain increment
is equal to zero in both stages.

The UVSCPL subroutine can be activated using the VISCO PLAS keyword in the
ISOTROPIC or ORTHOTROPIC model definition options. Alternatively, it is possible
to activate it inMentat by modifying the properties of the material. To do this, the
Viscoplasticity check-box must be checked in the Viscoplastic Properties dialog box:

3 Material Properties � Properties � Viscoplasticity

In the same dialog box, the method must be set to User Sub. Uvscpl. Namely, the
following command should be executed:
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3 Material Properties � Properties � Viscoplasticity � Method: User Sub. Uvscpl

Another important note in engaging the UVSCPL subroutine during the analysis is to
use a creep loadcase instead of a static one. This should be done even if the subroutine
is dealing with a case in which no time-dependent behavior is considered.

The listing of the subroutine is as follows:

1 # i n c l u d e ’ MarcToo ls . f ’
2

3 SUBROUTINE UVSCPL ( young , po iss , shear , b , u s t r r t , e t o t , e , t h m s t i , ee las ,
4 1 s , s i nc , g f , ep l , avg ine , eqcrp , eqcpnc , yd , yd1 , vscpar ,
5 2 dt , d t d l , cp t im , t i m i n c , x i n t p , ngens ,m, nn , kcus ,
6 3 matus , nd i , nshear , ncrd , i a n i s o , n s t a t s , i nc , ncyc le ,
7 4 l o v l , nvsplm )
8 USE F i l e T o o l s
9 IMPLICIT NONE

10 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
11 REAL∗8 avg ine , b , cp t im , d t , d t d l , e , ee las , ep l , eqcpnc , eqcrp
12 REAL∗8 e t o t , g f
13 INTEGER i a n i s o , i nc , kcus , l o v l , m, matus , ncrd , ncyc le , n d i
14 INTEGER ngens , nn , nshear , n s t a t s , nvsplm
15 REAL∗8 po iss , s , shear , s i nc , t h m s t i , t i m i n c , u s t r r t , v scpa r
16 REAL∗8 x i n t p , yd , yd1 , young
17 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
18

19 DIMENSION p o i s s ( 3 , 2 ) , young ( 3 , 2 ) , b ( ngens , ngens ) , u s t r r t ( ngens ) ,
20 1 e t o t ( ngens ) , e ( ngens ) , t h m s t i ( ngens ) , e e l a s ( ngens ) ,
21 2 s ( ngens ) , s i n c ( ngens ) , g f ( ngens ) , e p l ( ngens ) , avg ine ( ngens ) ,
22 3 d t ( n s t a t s ) , d t d l ( n s t a t s ) , x i n t p ( nc rd ) ,
23 4 shear ( 3 , 2 ) , vscpa r ( nvsplm ) , matus ( 2 ) , kcus ( 2 )
24

25 CHARACTER ( ∗ ) , PARAMETER : : FILENAME = ’ r e s u l t . t x t ’
26 INTEGER , SAVE : : f i l e U n i t
27 REAL∗8 : : elMod , s t r a i n I n c , s t r a i n , s t r e s s , f o r c e
28

29 100 FORMAT ( 3 8 ( ’ − ’ ) )
30 200 FORMAT ( A4 , X , 3 ( A10 , X ) )
31 300 FORMAT ( I4 , X , 3 ( F10 . 3 , X ) )
32

33 I F ( i n c .EQ. 0 ) THEN
34 CALL F i n d F r e e U n i t ( f i l e U n i t )
35 OPEN ( UNIT = f i l e U n i t , F i l e = FILENAME , ACCESS = ’ SEQUENTIAL ’ ,
36 & STATUS = ’REPLACE ’ , ACTION = ’ WRITE ’ )
37 WRITE ( f i l e U n i t , 100)
38 WRITE ( f i l e U n i t , 200) ’ I n c . ’ , ’ S t r a i n ’ , ’ S t ress ’ , ’ Force ’
39 WRITE ( f i l e U n i t , 100)
40 ELSE
41 elMod = young ( 1 , 2 )
42 s t r a i n I n c = e ( 1 )
43

44 I F ( l o v l .EQ . 4 ) THEN
45 s i n c ( 1 ) = 0 . 0 D0
46 avg ine ( 1 ) = 0 .0 D0
47 ELSE
48 s i n c ( 1 ) = elMod ∗ s t r a i n I n c
49 avg ine ( 1 ) = 0 .0 D0
50

51 s t r a i n = e t o t ( 1 ) + s t r a i n I n c
52 s t r e s s = s ( 1 ) + s i n c ( 1 )
53 f o r c e = s t r e s s ∗ 100 .D0
54

55 WRITE ( f i l e U n i t , 300) i nc , s t r a i n , s t r e s s , f o r c e
56 WRITE ( f i l e U n i t , 100)
57

58 I F ( i n c .EQ. 10) THEN
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59 CLOSE ( f i l e U n i t )
60 END IF
61 END IF
62 END IF
63

64 END

The output file contains the following lines:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
I n c . S t r a i n S t r e s s Fo rce
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 0 . 002 140 .000 14000 .000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2 0 . 004 280 .000 28000 .000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3 0 . 006 420 .000 42000 .000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

4 0 . 008 560 .000 56000 .000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

5 0 . 010 700 .000 70000 .000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

6 0 . 012 840 .000 84000 .000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

7 0 . 014 980 .000 98000 .000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

8 0 . 016 1120 .000 112000 .000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

9 0 . 018 1260 .000 126000 .000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

10 0 . 020 1400 .000 140000 .000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Example 4.9 The previous example can be repeated by changing the constitutive
material equation to a nonlinear behavior. In the current example,1 the material is
assumed to be isotropic and elasto-plastic with an exponential isotropic hardening
behavior. The classicwayof capturing the nonlinear behavior of this rate-independent
material is utilizing an incremental-iterative procedure which is explained briefly
here. For a more descriptive explanation of the nonlinear behavior, one may refer
to [10–12, 29, 33, 35].

The general approach for an elasto-plastic material is to divide the load and apply
it in increments. Within each increment, several iterations are performed. This type
of analysis is called the incremental-iterative analysis. In this type of analysis, the
solution at a stage is known, the increment is applied and the solution for the next
increment is sought [2].

In a nonlinear finite element analysis, the iterative part of the procedure is carried
out on two levels. The first level is the global level which establishes the global
equilibrium equation. The second level is the local level or thematerial level inwhich
the plasticity equations must be satisfied. Generally, each of these levels requires
the solution of a nonlinear system of simultaneous equations. In this example, the
Newton-Raphson method is used to numerically solve each of these systems.

1The original example is adapted from [29]. One may refer to it for details in the hand-calculations
of the solution.
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Marc handles the global iterative procedure whereas the convergence of the local
level is achieved within the UVSCPL subroutine. However, this subroutine is partially
engaged with the solution of the global equilibrium equations. This engagement
is in terms of providing the tangent stiffness matrix to Marc along with a zero
displacement increment to initiate theNewton–Raphson algorithm in increment zero.

To deal with the nonlinearity at the material level, the fully implicit backward-
Euler algorithm will be used. This algorithm is a predictor-corrector method which
predicts a linear behavior for thematerial and then adjusts this behavior bymeans of a
plastic corrector. The correction part of the algorithm is generally an iterative process
which produces the result within a given tolerance. The Newton–Raphson algorithm
is used for this part. However, for some special cases such as the simple 1D case
of a linear-isotropic hardening, this algorithm results in a closed-form formulation
which replaces the iterative procedure [29].

In the current example, the following quadratic flow function is chosen to describe
the behavior of the material:

k(κ) = (350 + 12900κ − 1.25 × 105κ2), (4.12)

where the isotropic hardening parameter κ is selected as the effective (equivalent)
plastic strain,

ε
pl
eff = ∣

∣εpl
∣
∣ . (4.13)

Note that in the 1D case, the effective plastic strain can simply be replaced by the
plastic strain. Also the plasticmodulus can be calculated using the following relation:

Epl = dk

dκ
= 12900 − 2.5 × 105κ. (4.14)

To obtain a better understanding of the local iterative procedure, let us consider a
monotonic loading case in which equal displacement increments are applied. In all
the increments, elastic behavior is initially considered, i.e. without any regards for
the real material behavior, an elastic behavior is predicted. Therefore, the obtained
stress is called the trial stress σtrial

n+1 for the increment.
For the increments located within the elastic region, this prediction corresponds

to the real behavior of the material. However, in a particular increment n, the stress
within the material passes the initial yield stress. Namely, the material enters the
elasto-plastic region. Now, by using the elastic predictor in the nonlinear region, the
stress state is placed outside of the yield surface. This results in an incorrect final
stress, incorrect hardening parameter and a positive yield function. These parameters
differ from the actual ones. Therefore, inmathematical terms, the produceddeviations
are non-zero values which can be expressed in terms of three residuals. A residual
function m defines these three residuals in a vector:
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m(σ,κ,�λ) =
⎡

⎣

rσ(σ,�λ)

rκ(κ,�λ)

rF (σ,κ)

⎤

⎦ =
⎡

⎣

E−1σ − E−1σtrial
n+1 + �λsgn(σ)

−κ + κtrial
n+1 + �λ

|σ| − k(κ)

⎤

⎦ , (4.15)

where the vectorm is a function of the three scalar variables σ, κ and�λ in a specific
increment. These values can be gathered into a solution vector v and the function
can be rewritten in terms of the new vector variable:

m(v) =
⎡

⎣

rα(v)

rκ(v)
rF (v)

⎤

⎦ , v =
⎡

⎣

σ
κ

�λ

⎤

⎦ . (4.16)

To capture the real behavior, the goal is to eliminate the residuals. Namely, these
three equations should be equal, or at least approximately equal, to zero, namely:

m(v) = 0. (4.17)

This simultaneous system of equations can be solved for its three variables, i.e. the
correct stress σn+1, the correct hardening parameter κn+1, and the correct plastic
multiplier �λn+1.

Since this system of equations is generally nonlinear, an iterative procedure must
be carried out. This is where the full Newton–Raphson method is used—to obtain
the roots of the residual functionm. This iterative procedure starts with the following
initial vector:

v(0) =
⎡

⎣

σ(0)

κ(0)

0

⎤

⎦ , (4.18)

whereas for iteration i the vector of solution looks like the following:

v(i) =
⎡

⎣

σ(i)

κ(i)

�λ(i)

⎤

⎦ . (4.19)

In each iteration of the algorithm, the solution is improved. The improved answer
for the next iteration (i + 1) can be obtained using the following equation:

v(i+1) = v(i) − (

J(v(i))
)−1 × m(v(i)), (4.20)

where the inverse of the Jacobian matrix of the residual function J is defined as
follows:

(

J(v(i))
)−1 = ∂m

∂v(i)
= E

E + dk
dκ

⎡

⎣

dk
dκ −sgn(σ) dkdκ sgn(σ)

sgn(σ) −1 −E−1

sgn(σ) E−1 dk
dκ −E−1

⎤

⎦ . (4.21)
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After finishing the iterations, the final vector is the solution of the current increment,
i.e. it gives the corrected stress σn+1, the corrected hardening parameter κn+1, and
corrected plastic multiplier �λn+1 for the current increment. These values are used
to calculate the plastic corrector.

From the geometrical point of view, the trial stress results in a point outside the
yield surface in the stress space. Because any point outside the yield surface is invalid,
this trial point should be projected back onto the yield surface. Therefore, a correction
is required to be applied to the trial stress state of the current increment. This can
be done by the plastic corrector �σpl which can be calculated using the following
equation:

�σpl = σtrial
n+1 − σn+1. (4.22)

The solution of the residual system of equations m in terms of σ, κ and �λ allows to
calculate the plastic predictor and to correct the trial stress. Obviously, the solution
is the one which satisfies a condition within a tolerance. The Euclidean norm of the
residual vector is used to obtain such a criterion.

The described algorithm can be implemented in the UVSCPL subroutine to han-
dle the local convergence. In addition, this subroutine is engaged with the global
iterations. Both of these aspects are incorporated in a flowchart (see Fig. 4.11).

TheUVSCPL subroutine requires the elasto-plasticmatrix (b), the stress increment
(sinc) and the plastic strain increment (avgine) dependingon the execution stagewhich
is indicated by the lovl flag (see Table2.8).

The UVSCPL subroutine is executed first before the solution of the global equilib-
rium equation (lovl=4) and for the second time in the same increment, after obtaining
the solution at the stress recovery stage (lovl=6). In the former stage, in order to update
the global residual, the tangent stiffness matrix (elasto-plastic matrix) is required for
the global Newton–Raphson algorithm. In the latter stage, the stress increment and
the plastic strain increment are required for the local Newton–Raphson algorithm.
As stated earlier, the execution of the global Newton–Raphson is carried out by
Marc whereas the user is responsible for the local algorithm.

As mentioned earlier, Eq. (4.8) must be satisfied within a tolerance one order less
than that of the global Newton–Raphson algorithm. The global tolerance can be set
for a particular loadcase by executing the following command:

3 Loadcases � Properties � Convergence Testing � Relative Force Tolerance: 0.1

Note that theRelative andResiduals radio buttons should be selected in the samedialog
box. In the current example, a tolerance of 0.1 is set for the global convergence of
the relative residuals and the local convergence testing of the residual increments.

Note that the current UVSCPL subroutine is designed only for monotonic
displacement-control loading. In addition, the flowchart focuses on the mathemat-
ical calculations and their relation to the subroutine parameters rather than other
programming routines, such as the code for handling files. Such parts are omitted to
maintain the clarity of the flowchart. The listing for the subroutine is as follows:
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Fig. 4.11 Flowchart for the UVSCPL subroutine (elasto-plastic material behavior)
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1 # i n c l u d e ’ MarcToo ls . f ’
2

3 SUBROUTINE UVSCPL ( young , po iss , shear , b , u s t r r t , e t o t , e , t h m s t i , ee las ,
4 1 s , s i nc , g f , ep l , avg ine , eqcrp , eqcpnc , yd , yd1 , vscpar ,
5 2 dt , d t d l , cp t im , t i m i n c , x i n t p , ngens ,m, nn , kcus ,
6 3 matus , nd i , nshear , ncrd , i a n i s o , n s t a t s , i nc , ncyc le ,
7 4 l o v l , nvsplm )
8

9 USE F i l e T o o l s
10 IMPLICIT NONE
11

12 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
13 REAL∗8 avg ine , b , cp t im , d t , d t d l , e , ee las , ep l , eqcpnc , eqcrp
14 REAL∗8 e t o t , g f
15 INTEGER i a n i s o , i nc , kcus , l o v l , m, matus , ncrd , ncyc le , n d i
16 INTEGER ngens , nn , nshear , n s t a t s , nvsplm
17 REAL∗8 po iss , s , shear , s i nc , t h m s t i , t i m i n c , u s t r r t , v scpa r
18 REAL∗8 x i n t p , yd , yd1 , young
19 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
20

21 DIMENSION p o i s s ( 3 , 2 ) , young ( 3 , 2 ) , b ( ngens , ngens ) , u s t r r t ( ngens ) ,
22 1 e t o t ( ngens ) , e ( ngens ) , t h m s t i ( ngens ) , e e l a s ( ngens ) ,
23 2 s ( ngens ) , s i n c ( ngens ) , g f ( ngens ) , e p l ( ngens ) , avg ine ( ngens ) ,
24 3 d t ( n s t a t s ) , d t d l ( n s t a t s ) , x i n t p ( nc rd ) ,
25 4 shear ( 3 , 2 ) , vscpa r ( nvsplm ) , matus ( 2 ) , kcus ( 2 )
26

27 REAL∗8 , PARAMETER : : TOL = 0 . 1 D0
28 INTEGER , PARAMETER : : NMAX_ITER = 10
29 CHARACTER ( ∗ ) , PARAMETER : : FILENAME = ’ r e s u l t . t x t ’
30

31 REAL∗8 : : s t r e s s L a s t I n c , s t r a i n L a s t I n c , e lp lMod , elMod ,
32 & s t r e s s T r i a l , s t r a i n T r i a l P l , s t r a i n T h i s I n c ,
33 & s t r a i n I n c , y i e l d F u n c T r i a l , s t r a i n P l L a s t I n c , norm
34

35 REAL∗8 , DIMENSION ( 3 ) : : resFunc , resVar , newResVar
36 REAL∗8 , DIMENSION ( 3 , 3 ) : : j a c o b i a n I n v
37

38 LOGICAL : : converged
39 INTEGER : : i
40 INTEGER , SAVE : : f i l e U n i t
41

42 100 FORMAT ( 1 0 9 ( ’ − ’ ) )
43 200 FORMAT ( A4 , X , A5 , X , 7 ( A13 , X ) )
44 300 FORMAT ( I4 , X , I5 , X , 7 ( F13 . 7 , X ) )
45

46 I F ( i n c .EQ. 0 ) THEN
47 CALL F i n d F r e e U n i t ( f i l e U n i t )
48 OPEN ( UNIT = f i l e U n i t , F i l e = FILENAME , ACCESS = ’ SEQUENTIAL ’ ,
49 & STATUS = ’REPLACE ’ , ACTION = ’ WRITE ’ )
50 WRITE ( f i l e U n i t , 100)
51 WRITE ( f i l e U n i t , 200) ’ I n c . ’ , ’ I t e r . ’ , ’ To t . S t r a i n ’ ,
52 & ’ T r i a l S t ress ’ , ’ S t ress ’ , ’ P l . S t r a i n ’ , ’ P l . M u l t i . ’ ,
53 & ’ E l p l . Mod . ’ , ’ Norm ’
54 WRITE ( f i l e U n i t , 100)
55 ELSE
56 elMod = young ( 1 , 2 )
57 s t r e s s L a s t I n c = s ( 1 )
58 s t r a i n L a s t I n c = e t o t ( 1 )
59 s t r a i n P l L a s t I n c = e p l ( 1 )
60 s t r a i n I n c = e ( 1 )
61 s t r a i n T h i s I n c = s t r a i n L a s t I n c + s t r a i n I n c
62

63 e lp lMod = GetElPlMod ( s t r a i n P l L a s t I n c , elMod )
64

65 I F ( l o v l .EQ . 4 ) THEN
66 b = e lp lMod
67 s i n c ( 1 ) = 0 . 0 D0
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68 avg ine ( 1 ) = 0 .0 D0
69 ELSE
70 s t r e s s T r i a l = s t r e s s L a s t I n c + ( elMod ∗ s t r a i n I n c )
71 s t r a i n T r i a l P l = s t r a i n P l L a s t I n c
72 y i e l d F u n c T r i a l = Ge tY ie ldFunc ( s t r e s s T r i a l , s t r a i n T r i a l P l )
73 i = 1
74 I F ( y i e l d F u n c T r i a l . LE . 0 . D0 ) THEN
75 s i n c ( 1 ) = s t r e s s T r i a l − s t r e s s L a s t I n c
76 avg ine ( 1 ) = 0 . D0
77 u s t r r t = 0 . D0
78 WRITE ( f i l e U n i t , 300) i nc , i ,
79 & s t r a i n T h i s I n c , s t r e s s T r i a l , s t r e s s T r i a l ,
80 & 0 . D0 , 0 . D0 , 0 . D0 , 0 . D0
81

82 ELSE
83 r esVa r ( 1 ) = s t r e s s T r i a l
84 r esVa r ( 2 ) = s t r a i n T r i a l P l
85 r esVa r ( 3 ) = 0 . D0
86

87 converged = . FALSE .
88

89 DO WHILE ( . NOT . converged )
90 CALL CalcResFunc ( )
91 CALL C a l c J a c o b i a n I n v e r s e ( )
92 CALL CalcNewResVar ( )
93 CALL CalcNorm ( )
94

95 r esVa r = newResVar
96

97 WRITE ( f i l e U n i t , 300) i nc , i ,
98 & s t r a i n T h i s I n c , s t r e s s T r i a l , r esVa r ( 1 ) ,
99 & resVa r ( 2 ) , r esVa r ( 3 ) , e lp lMod , norm
100

101 I F ( norm . LE . t o l ) converged = . TRUE .
102 I F ( i .EQ . NMAX_ITER ) CALL QUIT ( 1 2 3 4 )
103 i = i + 1
104 END DO
105

106 s i n c ( 1 ) = resVa r ( 1 ) − s t r e s s L a s t I n c
107 avg ine ( 1 ) = resVa r ( 2 ) − s t r a i n P l L a s t I n c
108 u s t r r t = 0 . D0
109

110 END IF
111

112 WRITE ( f i l e U n i t , 100)
113 I F ( i n c .EQ. 10) THEN
114 CLOSE ( f i l e U n i t )
115 END IF
116 END IF
117 END IF
118 RETURN
119

120 CONTAINS
121 SUBROUTINE CalcNorm ( )
122 REAL∗8 , DIMENSION ( 3 ) : : tempVec to r
123

124 norm = 0 . D0
125 t empVec to r = newResVar − r esVa r
126 t empVec to r = tempVec to r ∗∗ 2
127 norm = SQRT (SUM ( tempVec to r ) )
128 RETURN
129 END SUBROUTINE CalcNorm
130

131 SUBROUTINE CalcNewResVar ( )
132 newResVar = ResVar − Matmul ( j a c o b i a n I n v , resFunc )
133 RETURN
134 END SUBROUTINE CalcNewResVar
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135

136 FUNCTION G e t Y i e l d S t r e s s ( kappa )
137 REAL∗8 , INTENT ( IN ) : : kappa
138 REAL∗8 : : G e t Y i e l d S t r e s s
139

140 G e t Y i e l d S t r e s s = 350 .D0 + ( 1 2 9 0 0 . D0∗ kappa ) − ( 1 . 2 5 D5∗ kappa ∗∗2 )
141 RETURN
142 END FUNCTION G e t Y i e l d S t r e s s
143

144 FUNCTION GetY ie ldFunc ( sigma , kappa )
145 REAL∗8 , INTENT ( IN ) : : sigma , kappa
146 REAL∗8 : : Ge tY ie ldFunc
147

148 GetY ie ldFunc = Abs ( sigma ) − G e t Y i e l d S t r e s s ( kappa )
149 RETURN
150 END FUNCTION
151

152 SUBROUTINE CalcResFunc ( )
153 REAL∗8 : : sigma , kappa , dLambda
154

155 sigma = resVa r ( 1 )
156 kappa = resVa r ( 2 )
157 dLambda = resVa r ( 3 )
158

159 resFunc ( 1 ) = ( sigma ) − ( s t r e s s T r i a l )
160 & + dLambda ∗ elMod∗ Sign ( 1 . D0 , sigma )
161 resFunc ( 2 ) = kappa − s t r a i n T r i a l P l − dLambda
162 resFunc ( 3 ) = Abs ( sigma ) − G e t Y i e l d S t r e s s ( kappa )
163

164 RETURN
165 END SUBROUTINE CalcResFunc
166

167 SUBROUTINE C a l c J a c o b i a n I n v e r s e ( )
168 REAL∗8 : : sigma , kappa , dLambda , c o e f f , s igmaSign , c u r r e n t M o d P l
169 sigma = resVa r ( 1 )
170 kappa = resVa r ( 2 )
171 dLambda = resVa r ( 3 )
172 c u r r e n t M o d P l = GetPlMod ( kappa )
173

174 c o e f f = elMod / ( elMod + c u r r e n t M o d P l )
175 s igmaSign = Sign ( 1 . D0 , sigma )
176

177 j a c o b i a n I n v ( 1 , 1 ) = c o e f f ∗ c u r r e n t M o d P l
178 j a c o b i a n I n v ( 1 , 2 ) = −1.D0 ∗ c o e f f ∗ s igmaSign ∗ c u r r e n t M o d P l
179 j a c o b i a n I n v ( 1 , 3 ) = c o e f f ∗ s igmaSign
180

181 j a c o b i a n I n v ( 2 , 1 ) = c o e f f ∗ s igmaSign
182 j a c o b i a n I n v ( 2 , 2 ) = c o e f f ∗ −1.D0
183 j a c o b i a n I n v ( 2 , 3 ) = c o e f f ∗ −1.D0 / elMod
184

185 j a c o b i a n I n v ( 3 , 1 ) = c o e f f ∗ s igmaSign
186 j a c o b i a n I n v ( 3 , 2 ) = c o e f f ∗ ( 1 . D0 / elMod ) ∗ c u r r e n t M o d P l
187 j a c o b i a n I n v ( 3 , 3 ) = c o e f f ∗ −1.D0 / elMod
188

189 RETURN
190 END SUBROUTINE C a l c J a c o b i a n I n v e r s e
191

192 FUNCTION GetPlMod ( kappa )
193 REAL∗8 , INTENT ( IN ) : : kappa
194 REAL∗8 : : GetPlMod
195

196 GetPlMod = 12900.D0 − 2 . 5 D5 ∗ kappa
197

198 RETURN
199 END FUNCTION GetPlMod
200

201 FUNCTION GetElPlMod ( kappa , Ee l )
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202 REAL∗8 , INTENT ( IN ) : : kappa , Ee l
203 REAL∗8 : : GetElPlMod
204

205 REAL∗8 : : Ep l
206

207 I F ( kappa . NE . 0 . D0 ) THEN
208 Ep l = GetPlMod ( kappa )
209 GetElPlMod = ( Ee l ∗ Ep l ) / ( Ee l + Ep l )
210 ELSE
211 GetElPlMod = Ee l
212 END IF
213

214 RETURN
215 END FUNCTION GetElPlMod
216 END

In this listing, only the FileTools module is used to handle the output file. This
subroutine contains eight internal subprograms to modularize the process and to
make it more clear. These subprograms along with a summary of their function are
listed in Table4.2. Note that in this example, the internal subroutines operate on the
global variables. Therefore, no explicit input arguments are specified in this table.

In lines 27 to 29 of the listing, the constant parameters are defined, i.e. the tolerance
for convergence (TOL), the number of maximum iterations (NMAX_ITER), and the
name of the output file (FILENAME). In lines 31 to 40, the auxiliary variables are
declared and in the next three lines, the FORMAT statements define the arrangement
of the output data. Lines 47 to 54 prepare the output file and print the header of
the table in increment zero. In lines 56 to 60, some auxiliary variables are used to
store the arguments. These lines are not necessary in practice but they are used for
educational purposes and for increasing the readability of the code. In line 63, the
elasto-plastic modulus (elplMod) is calculated.

Lines 65 to 68 are responsible for returning the elasto-plastic modulus to the
global solver without any stress and plastic strain increments. In line 71 and 72, the
trial stress is calculated and the value of the trial hardening parameter is set to be
equal to that of the previous increment. These two variables are used in the next line
of the code to calculate the value of the trial yield function. Lines 74 to 80 cover the

Table 4.2 Summary of the internal subroutines used in the UVSCPL subroutine

Subprogram Type Input(s) Output(s)

CalcJacobianInverse Subroutine None Jacobian inverse

CalcNorm Subroutine None Norm of the residual
vector increment

CalcResFunc Subroutine None Residual function

GetElplMod Function Hardening variable
and elastic modulus

Elasto-plastic modulus

GetPlMod Function Hardening variable Plastic modulus

GetYieldFunction Function Hardening variable
and stress

Yield function

GetYieldStress Function Hardening variable Yield stress
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elastic case and print the obtained values to the output file whereas lines 83 to 108
handle the plastic iterative core.

Lines 83 to 87 set the residual variable equal to the starting values and set the
convergence status to .FALSE.. In lines 90 to 102, the iterative procedure is carried
out by calculating the residual function, inverse of the Jacobian, updated residual
and the norm of the residual increment. Then the values of the iteration are printed
to the output file (lines 97 to 99). Next, the norm is checked and if it is less than
the tolerance, the convergence status will change to .TRUE.. Also to avoid an infinity
loop, which occurs when convergence is not possible, the number of iterations (i)
is checked to be less than the maximum number (NMAX_ITER). If the number of
iterations exceeds the maximum number, the program quits with an error number
1234.

In the case of convergence, the increment for the stress and hardening parameter
is calculated in lines 106 to 108. Note that because this example is rate-independent,
the ustrrt argument is always zero. Finally, the output file is closed when increment
10 is reached (lines 113 to 115).

The output file containing the result of the analysis consists of the following lines:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Inc . I ter . Tot . Strain Trial Stress Stress Pl . Strain Pl . Multi . Elpl . Mod. Norm
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 1 0.0020000 139.9999999 139.9999999 0.0000000 0.0000000 0.0000000 0.0000000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2 1 0.0040000 279.9999997 279.9999997 0.0000000 0.0000000 0.0000000 0.0000000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3 1 0.0060000 419.9999996 360.8926417 0.0008444 0.0008444 10170.9401717 59.1073579
3 2 0.0060000 419.9999996 360.8171937 0.0008455 0.0008455 10170.9401717 0.0754480

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4 1 0.0080000 500.8171935 382.3002987 0.0025386 0.0016931 9803.4398045 118.5168948
4 2 0.0080000 500.8171935 381.9954000 0.0025429 0.0016975 9803.4398045 0.3048987
4 3 0.0080000 500.8171935 381.9954084 0.0025429 0.0016975 9803.4398045 0.0000084

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
5 1 0.0100000 521.9954083 402.8671391 0.0042448 0.0017018 9431.3967877 119.1282692
5 2 0.0100000 521.9954083 402.5574811 0.0042492 0.0017063 9431.3967877 0.3096580
5 3 0.0100000 521.9954083 402.5574790 0.0042492 0.0017063 9431.3967877 0.0000021

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
6 1 0.0120000 542.5574788 422.8082754 0.0059599 0.0017107 9054.7263701 119.7492035
6 2 0.0120000 542.5574788 422.4937329 0.0059644 0.0017152 9054.7263701 0.3145425
6 3 0.0120000 542.5574788 422.4937014 0.0059644 0.0017152 9054.7263701 0.0000314

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
7 1 0.0140000 562.4937013 442.1137527 0.0076841 0.0017197 8673.3416794 120.3799486
7 2 0.0140000 562.4937013 441.7941959 0.0076887 0.0017243 8673.3416794 0.3195567
7 3 0.0140000 562.4937013 441.7942031 0.0076887 0.0017243 8673.3416794 0.0000072

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
8 1 0.0160000 581.7942030 460.7734350 0.0094175 0.0017289 8287.1536551 121.0207681
8 2 0.0160000 581.7942030 460.4487293 0.0094222 0.0017335 8287.1536551 0.3247057
8 3 0.0160000 581.7942030 460.4487361 0.0094222 0.0017335 8287.1536551 0.0000068

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 1 0.0180000 600.4487359 478.7768045 0.0111603 0.0017382 7896.0709791 121.6719315
9 2 0.0180000 600.4487359 478.4468101 0.0111650 0.0017429 7896.0709791 0.3299943
9 3 0.0180000 600.4487359 478.4467989 0.0111650 0.0017429 7896.0709791 0.0000112

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
10 1 0.0200000 618.4467988 496.1130792 0.0129127 0.0017476 7500.0000036 122.3337196
10 2 0.0200000 618.4467988 495.7776510 0.0129175 0.0017524 7500.0000036 0.3354282
10 3 0.0200000 618.4467988 495.7776485 0.0129175 0.0017524 7500.0000036 0.0000025

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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The results of the constitutive law implementation using user coding must be veri-
fied by an alternative source such as another software or a built-in model of the same
software. Additionally, several special cases must be selected to test the subroutine.
For instance, the conditions must be switched between a single element and multi-
ple elements, axial and pure shear condition, displacement-control and load-control
increments, uniaxial and multiaxial stress state, uniform and non-uniform stress and
strain field etc. Another quickway of testing the subroutine is testing the special cases
of the general formulation. For instance, it is possible to test only the undamaged
elasto-plastic behavior in the implemented elasto-plastic model with damage. Note
that this reveals only one aspect of the whole model [12].

4.2.7 USELEM

Example 4.10 This example illustrates the use of the USELEM subroutine to perform
a linear static analysis in which a rod is elongated by applying a linear displacement.
The rod is modeled by means of 2 nodes and one element of type 9, i.e. a two-node
simple linear straight truss element with a constant cross section (E = 200 × 103,
L = 400, and A = 100). However, in order to investigate the characteristics of the
USELEM subroutine, the same formulation is carried out by the subroutine. The total
displacement u0 = +10 is applied gradually in ten equal increments on node 2. The
discretized structure is shown in Fig. 4.12. The goal of this example is to reintroduce
the two-node truss element but with the user implementation of the finite element
formulations.

In order to incorporate a new element type inMarc/Mentat, the following four
tasks must be accomplished:

1. the new user-defined element type should be introduced in the input file by means
of the ELEMENTS parameter,

2. the properties of the element type must be defined using the USER option,
3. the new element type must be assigned to some elements by means of either the

CONNECTIVITY option or the UFCONN subroutine, and finally
4. the formulation of the element behavior must be implemented by the user within

the USELEM subroutine.

Fig. 4.12 Axial loading of a
linear-elastic rod defined by
the USELEM subroutine
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In an input file, all the element types of the model are listed in the parameter defi-
nition part. The introduction is carried out by the ELEMENTS parameter which is a
mandatory keyword in every model. It can be used several times to define different
element types in a multi-element simulation. The typical positive values for the built-
in element types can be found in [23] whereas the user-defined element types are
distinguished by negative numbers. For instance, the quadrilateral four-node plane
stress element (type 3), two-node truss elements (type 9) and an arbitrary user-defined
element (type -1) are introduced into a model using the following line in the input
file:

1 ELEMENTS,3 ,9 , −1 ,

Usually a user-defined element is similar to a standard element with a few improved
aspects. The goal of the current example is to implement the formulation of the
standard element type 9. Therefore, to show the relation of the user-defined element
to the existing built-in element, −9 is used as the element type. There is another
advantage to this approach which will be discussed later. The following line is added
to the parameter definition section of the input file to introduce this new type of
element:

1 ELEMENTS, −9 ,

The USER input file parameter is used to define the parameters of the user-defined
element. By default, such an element type is not a standard part of the program. The
user-defined element types are indicated by negative numbers whereas Marc uses
positive integer numbers to distinguish various standard element types.

The properties of the element type −9 must be defined in the input file using the
USER parameter. All the critical values for this user-defined element are summarized
in Table4.3. The following line defines the element using the values of the table:

Table 4.3 Summary of the element properties for the user-defined element type −9

Field no. Property Value

2 Element type −9

3 Degrees of freedom per node 2

4 Stress quantities per integration point 1

5 Number of nodes per element 2

6 Number of generalized strains 1

7 Number of coordinates per node 2

8 Number of integration points per element 1

9 Number of direct components of stress 1

10 Number of shear components of stress 0

11 Element class 1

12 Heat transfer flag 0

13 Associated heat transfer element no values

14 Topology class 11
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1 USER, −9 , 2 , 1 , 2 , 1 , 2 , 1 , 1 , 0 , 1 , 0 , , 1 1 ,

One simple way of engaging the USELEM subroutine is using the negative element
type number as the element type given in theCONNECTIVITYmodel definition option.
Note that an introduction must have been made a priori using the ELEMENTS para-
meter. This requires modifying the input file. However, the same task can be handled
in a more elegant way by means of the UFCONN subroutine.

The UFCONN user subroutine is used to modify the CONNECTIVITY input file
option. Alternatively, it is used to generate all the connectivities of the mesh or add
new connections to the existing mesh, i.e. expanding the connections.

The activation is done via the UFCONN model definition option followed by the
list of elements for which the subroutine is called. The element number can point to
either an existing element or a new one.

Similar to the CONNECTIVITY model definition option, the subroutine can be
called several times by using multiple UFCONN options in the input file. There is no
limitation in regards to the number of the UFCONN option which is used in a model.
In our case, the following lines in the model definition section of the input file calls
the subroutine for element 1:

1 UFCONN
2 1 ,

One powerful aspect of this subroutine is the ability to change the type of the existing
element. Therefore, it is possible to keep the existing connectivity of the element but
change the type of the element. Obviously, if changing the type of the element results
in changing the number of nodes, the connectivitymust also be updated. This specific
facility is the one which can be used in conjunction with the USELEM subroutine.

The USELEM subroutine is used to formulate the behavior of the user-defined
elements. Based on the type of the analysis, various element-related quantities must
be calculated and thus, this subroutine is executed multiple times for each iteration
of all the increments. Within this subroutine, the iflag variable is used to indicate the
stage of every execution. The value of the flag along with the corresponding required
outputs are listed in Table4.4. The calculation of the equivalent nodal loads (iflag=1),
the stiffness matrices (iflag=2), the mass matrices (iflag=3), the stresses and strains,
and the internal forces (iflag=4) of the elements are carried out within this subroutine.
In addition, at the fifth step (iflag=5) the elemental output results are prepared. Note
that all of the mentioned values are specified in the global coordinate system.

All the elemental formulations for a user-defined element are implemented within
theUSELEM subroutine. Asmentioned earlier, quantities such as the equivalent nodal
loads, the stiffness matrix, the internal load vector, the mass matrix and others should
be calculated by the user. However, not all of these quantities are usually required to
be calculated. As mentioned earlier, a user-defined element builds up on a standard
element. Most of the properties of the new element are the same as those of the
standard one which are already provided by Marc. It makes sense to delegate the
identical parts to Marc and to concentrate on programming the new aspects. For
instance, one may change the stiffness matrix of an element but keep the mass matrix
untouched.Marc can readily handle the generation of the mass matrix by using the
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Table 4.4 Summaryof the required outputs for theUSELEMsubroutine in a pure structural analysis

iflag Output(s) Comments

1 Equivalent nodal loads (f) Calculate total load: required for the ELASTIC
and FOLLOW FOR parameter and the AUTO
STEP, AUTO TIME and AUTO INCREMENT
options

Calculate incremental load: otherwise

2 Element stiffness matrix (k) total
internal forces (r)

In a nonlinear analysis the element tangential
stiffness matrix must be returned. In a linear
analysis the total internal force is not required

3 Mass matrix (m) Required only for a dynamic analysis

4 Incremental strain (de) For a linear analysis if only the
displacements are required,

Generalized stress (gsigs) There is no need for any of these outputs

Total internal forces (r)

Total strain (etota)

5 Any elemental output quantities Optional

already existing formulation. This is done by changing the element type during the
execution of the USELEM for that specific stage. In the stage indicated by iflag=3, it
is required to return the mass matrix. The following lines will ask Marc to handle
the mass matrix generation for our user element type exactly the same way as the
standard truss:

1 I F ( i f l a g .EQ. 3 ) THEN
2 j t y p e = − j t y p e
3 END IF

This is the other virtue of naming the user-defined element type −9 which is based
on the element type 9. By giving back the original element type, Marc handles
the required value as before. The same approach can be used for other stages of
execution such as the output calculation (iflag=5). Note that generally the results of
the USELEM subroutine cannot be shown in Mentat unless all the output values
are calculated within the subroutine and additionally, the output stage is handled by
Marc. For instance in a linear-elastic analysis, it is optional to calculate the internal
nodal forces at the iflag=2 stage. However, if the values are required to be present in
the post-processing stage of Mentat, they must be calculated at the iflag=5 stage.
For this, the output stage should be handled in a similar fashion as mentioned earlier:
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1 I F ( i f l a g .EQ . 5 ) THEN
2 j t y p e = − j t y p e
3 END IF

It is worth mentioning that while using this subroutine, both the incremental and
total displacements are available. At a particular increment, before the solution of
the global equilibrium equations, the number of iterations or cycles for the analysis is
zero. At this stage, all the calculations must be based on the incremental values. The
solution of the global equations is generally done in several cycles; at best with one
cycle for a linear case. From this point onwards, the calculation must be carried out
using the current displacement which is the total displacement plus the incremental
one. One may refer to [25] for more information.

A truss element consists of two nodes with two degrees of freedom in the global
coordinate system (plane problem). However, each node has only one degree of
freedom in the local coordinate system. For the current case of the horizontal bar,
both of the coordinate systems are the same. Therefore, the stiffness matrix of the
horizontal truss is:

K = E A

L

⎡

⎢
⎢
⎣

+1 0 −1 0
0 0 0 0

−1 0 +1 0
0 0 0 0

⎤

⎥
⎥
⎦

, (4.23)

where E is the elastic modulus, A is the cross sectional area and L is the length
of the truss. Note that only the degrees of freedom along the X -direction are active
because of the non-zero values. The axial strain ε can be calculated by the following
equation:

ε = δ

L
, (4.24)

where δ is the displacement and L is the length of the rod. Then, the normal stress σ
can be calculated using the Hooke’s law:

σ = Eε, (4.25)

where E is the elastic modulus. Finally, the internal force along the X -direction will
be equal to:

FX = σA, (4.26)

where A is the cross sectional area of the rod. These formulas are implemented in
the following listing of the subroutine:

1 # i n c l u d e ’ MarcToo ls . f ’
2 SUBROUTINE UFCONN( j , i t y p e , lm , nnodmx )
3 IMPLICIT NONE
4

5 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
6 INTEGER i t y p e , j , lm , nnodmx
7 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
8 DIMENSION lm ( ∗ )
9
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10 i t y p e = −9
11

12 RETURN
13 END
14

15 SUBROUTINE USELEM (m, xk , xm , nnode , ndeg , f , r ,
16 ∗ j t y p e , d i s p t , d i sp , nd i , nshear , j pass , n s t a t s , ngenel ,
17 ∗ i n t e l , coord , ncrd , i f l a g , i dss , t , d t , e t o t a , gs igs , de ,
18 ∗ geom , jgeom , s i g xx , ns t rmu )
19

20 USE MarcTools , ONLY : Ge tD i s tance
21 IMPLICIT NONE
22

23 INCLUDE ’ concom ’
24 INCLUDE ’ matdat ’
25 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
26 REAL∗8 coord , de , d i sp , d i s p t , d t , e t o t a , f , geom , g s i g s
27 INTEGER idss , i f l a g , i n t e l , j pass , jgeom , j t y p e , m, ncrd , ndeg
28 INTEGER nd i , ngenel , nnode , nshear , n s t a t s , ns t rmu
29 REAL∗8 r , s i g xx , t , xk , xm
30 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
31 DIMENSION xk ( i dss , i d s s ) , xm ( i dss , i d s s ) , d i s p t ( ndeg , ∗ ) , d i s p ( ndeg , ∗ )
32 DIMENSION t ( n s t a t s , ∗ ) , d t ( n s t a t s , ∗ ) , coord ( ncrd , ∗ )
33 DIMENSION e t o t a ( ngenel , ∗ ) , g s i g s ( ngenel , ∗ ) , de ( ngenel , ∗ )
34 DIMENSION f ( ndeg , ∗ ) , r ( ndeg , ∗ ) , s i g x x ( nstrmu , ∗ ) , geom ( ∗ ) , jgeom ( ∗ )
35 ! I f t h e r e i s an I n c s u f f i x , t h e v a r i a b l e i s an i n c r e m e n t a l one ,
36 ! o t h e r w i s e i t i s a t o t a l v a l u e .
37 INTEGER : : i
38 REAL∗8 : : elMod , area , l e n g t h ,
39 & disp1 , d isp2 , s t r a i n , s t r e s s ,
40 & d i s p I n c 1 , d i s p I n c 2 , s t r a i n I n c , s t r e s s I n c ,
41 & i n t e r n a l F o r c e I n c , i n t e r n a l F o r c e
42

43 REAL∗8 , DIMENSION ( 3 ) : : p o i n t 1 , p o i n t 2
44

45 elMod = e t ( 3 )
46 area = geom ( 1 )
47

48 p o i n t 1 = 0 . D0
49 p o i n t 2 = 0 . D0
50 DO i = 1 , nc rd
51 p o i n t 1 ( i ) = coord ( i , 1 )
52 p o i n t 2 ( i ) = coord ( i , 2 )
53 END DO
54 l e n g t h = Ge tD i s tance ( p o i n t 1 , p o i n t 2 )
55

56 I F ( ( i f l a g .EQ. 2 ) .OR. ( i f l a g .EQ. 4 ) ) THEN
57 I F ( n c y c l e .EQ. 0 ) THEN
58 d i s p I n c 1 = d i s p ( 1 , 1 )
59 d i s p I n c 2 = d i s p ( 1 , 2 )
60 ELSE
61 d i s p 1 = d i s p ( 1 , 1 ) + d i s p t ( 1 , 1 )
62 d i s p 2 = d i s p ( 1 , 2 ) + d i s p t ( 1 , 2 )
63 END IF
64 END IF
65

66 SELECT CASE ( i f l a g )
67 CASE ( 1 , 3 , 5 )
68 j t y p e = − j t y p e
69 CASE ( 2 , 4 )
70 CALL C a l c S t i f f n e s s ( )
71 CALL C a l c S t r e s s S t r a i n ( )
72 CALL C a l c I n t e r n a l F o r c e ( )
73 END SELECT
74

75 RETURN
76 CONTAINS
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77

78 SUBROUTINE C a l c S t i f f n e s s ( )
79 xk ( 1 , 1 ) = +1 . D0
80 xk ( 1 , 2 ) = 0 . D0
81 xk ( 1 , 3 ) = −1.D0
82 xk ( 1 , 4 ) = 0 . D0
83

84 xk ( 2 , : ) = 0 . D0
85

86 xk ( 3 , 1 ) = −1.D0
87 xk ( 3 , 2 ) = 0 . D0
88 xk ( 3 , 3 ) = +1 . D0
89 xk ( 3 , 4 ) = 0 . D0
90

91 xk ( 4 , : ) = 0 . D0
92

93 xk = ( elMod ∗ area / l e n g t h ) ∗ xk
94 RETURN
95 END SUBROUTINE C a l c S t i f f n e s s
96

97 SUBROUTINE C a l c I n t e r n a l F o r c e ( )
98 i n t e r n a l F o r c e I n c = s t r e s s I n c ∗ area
99 i n t e r n a l F o r c e = s t r e s s ∗ area
100

101 I F ( n c y c l e . GT . 0 ) THEN
102 r ( 1 , 1 ) = + i n t e r n a l F o r c e
103 r ( 2 , 1 ) = 0 . D0
104 r ( 1 , 2 ) = − i n t e r n a l F o r c e
105 r ( 2 , 2 ) = 0 . D0
106 ELSE
107 r ( 1 , 1 ) = + i n t e r n a l F o r c e I n c
108 r ( 2 , 1 ) = 0 . D0
109 r ( 1 , 2 ) = − i n t e r n a l F o r c e I n c
110 r ( 2 , 2 ) = 0 . D0
111 END IF
112

113 RETURN
114 END SUBROUTINE C a l c I n t e r n a l F o r c e
115

116 SUBROUTINE C a l c S t r e s s S t r a i n ( )
117 s t r a i n I n c = ( d i s p I n c 2 − d i s p I n c 1 ) / l e n g t h
118 s t r a i n = ( d i s p 2 − d i s p 1 ) / l e n g t h
119 s t r e s s = elMod ∗ s t r a i n
120 s t r e s s I n c = elMod ∗ s t r a i n I n c
121

122 I F ( n c y c l e . GT . 0 ) THEN
123 de ( 1 , 1 ) = s t r a i n
124 e t o t a ( 1 , 1 ) = s t r a i n
125 g s i g s ( 1 , 1 ) = s t r e s s
126 s i g x x ( 1 , 1 ) = s t r e s s
127 r ( 1 , 1 ) = s t r e s s ∗ area
128 ELSE
129 de ( 1 , 1 ) = s t r a i n I n c
130 e t o t a ( 1 , 1 ) = s t r a i n I n c
131 g s i g s ( 1 , 1 ) = s t r e s s I n c
132 s i g x x ( 1 , 1 ) = s t r e s s I n c
133 r ( 1 , 1 ) = s t r e s s I n c ∗ area
134 END IF
135 RETURN
136 END SUBROUTINE C a l c S t r e s s S t r a i n
137

138 END

In line 1, the MarcTools module is included just to use the GetDistance function. Lines
2 to 13 hold the body of the UFCONN subroutine with only one line as the execution
statement, namely line 10 which changes the type of the element to −9.
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In the lines 23 and 24 of the USELEM subroutine, the concom and the matdat
predefined common blocks are included to gain access to the number of cycles
(ncycle) and the material properties (et and geom), respectively (see Sect. 2.3.3). To
highlight the difference between the incremental and total values, separate variables
are used for each one as it should be in an educational listing (lines 37 to 43).

In lines 45 and 46, the elastic modulus (elmod) and the cross sectional area (area)
of the rod are obtained. The length (length) of the rod is calculated based on the
coordinates of its nodes (lines 48 to 54). In lines 56 to 64, the displacements are
extracted from the arguments of the subroutine based on the number of cycles.

In lines 66 to 73, a case selection structure is used to direct the flow of the code
based on the flag (iflag). For the flag values of 1, 3 and 5, the original element
type number is returned and thus, Marc handles the calculations for these cases.
For the flag values 2 and 4, the stiffness matrix, the stresses and strains, and the
internal forces are calculated by calling the CalcStiffness, the CalcStressStrain and
the CalcinternalForce internal subroutines, respectively (lines 70 to 73).

The CalcStiffness subroutine calculates the stiffness matrix and returns it via the
xk output variable (lines 78 to 95). The CalcInternalForce calculates the incremental
internal forces for the case of cycle number equal to zero and otherwise, the total
internal force is returned. The CalcStressStrain subroutine calculates the incremental
and total stresses and strains. Similarly, depending on the cycle number, proper values
are returned.

The result of the analysis is illustrated in Fig. 4.13 in terms of displacement along
the X -axis versus the reaction force for node 2.

Example 4.11 In this example, the formulation of a horizontal rod with a variable
cross section is implemented using the USELEM subroutine. The model of the previ-
ous example is used in the current one and similarly, the simulation of the element
type 9 is repeated. However, the cross sectional area varies linearly from A1 = 40 to
A2 = 80 as follows:

A(X) = A1 + A2 − A1

L
X, (4.27)

where L is the total length of the rod. The variation of the cross section affects the
calculation of the element stiffness matrix K e which can be obtained by evaluating

Fig. 4.13 Result of using
the USELEM subroutine for
a horizontal rod with a
constant cross section
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the following equation:

K e =
L∫

0

BE A(X)BTdX, (4.28)

where E is the elastic modulus, A(X) is the cross sectional area as a function of X .
The B-matrix can be evaluated using the following equation:

B(X) = dN(X)

dX
, (4.29)

where N is the column matrix of interpolation functions. For the case of a rod, the
interpolation function matrix can be simplified to the following:

N(X) =
[

N1

N2

]

=
[

1 − X
L

X
L

]

. (4.30)

Since the analytical integration of Eq. (4.28) is not possible viaFortran, a numerical
approach is acquired. For this case, the Gauss–Legendre quadrature is used which
requires the transformation from the Cartesian to the natural coordinate system. The
transformation will result in the following equation:

K e =
+1∫

−1

dN(ξ)

dξ
E A(ξ)

dNT(ξ)

dξ

1

J
dξ, (4.31)

where J is the Jacobian. This equation can be expanded by substituting J = L
2 and

dN(ξ)
dξ = [− 1

2 + 1
2

]T
and considering only one integration point (abscissa ξ = 0 and

weight ω = 2) to the following:

[

K11 K12

K21 K22

]

=
[+ 1

4 − 1
4+ 1

4 − 1
4

]

E A(ξ)
2

L
× 2. (4.32)

This equation gives the element stiffness matrix in the local coordinates (see [30] for
more details). Since a horizontal rod is considered in the current example, it is not
required to carry out any transformations to the global coordinate system.

The Fortran listing for the current example is as follows:
1 # i n c l u d e ’ MarcToo ls . f ’
2 SUBROUTINE UFCONN( j , i t y p e , lm , nnodmx )
3 IMPLICIT NONE
4

5 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
6 INTEGER i t y p e , j , lm , nnodmx
7 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
8 DIMENSION lm ( ∗ )
9

10 INTEGER : : i
11
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12 i t y p e = −9
13

14 RETURN
15 END
16

17 SUBROUTINE USELEM (m, xk , xm , nnode , ndeg , f , r ,
18 ∗ j t y p e , d i s p t , d i sp , nd i , nshear , j pass , n s t a t s , ngenel ,
19 ∗ i n t e l , coord , ncrd , i f l a g , i dss , t , d t , e t o t a , gs igs , de ,
20 ∗ geom , jgeom , s i g xx , ns t rmu )
21

22 USE MarcTools , ONLY : Ge tD i s tance
23 IMPLICIT NONE
24

25 INCLUDE ’ concom ’
26 INCLUDE ’ matdat ’
27 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
28 REAL∗8 coord , de , d i sp , d i s p t , d t , e t o t a , f , geom , g s i g s
29 INTEGER idss , i f l a g , i n t e l , j pass , jgeom , j t y p e , m, ncrd , ndeg
30 INTEGER nd i , ngenel , nnode , nshear , n s t a t s , ns t rmu
31 REAL∗8 r , s i g xx , t , xk , xm
32 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
33 DIMENSION xk ( i dss , i d s s ) , xm ( i dss , i d s s ) , d i s p t ( ndeg , ∗ ) , d i s p ( ndeg , ∗ )
34 DIMENSION t ( n s t a t s , ∗ ) , d t ( n s t a t s , ∗ ) , coord ( ncrd , ∗ )
35 DIMENSION e t o t a ( ngenel , ∗ ) , g s i g s ( ngenel , ∗ ) , de ( ngenel , ∗ )
36 DIMENSION f ( ndeg , ∗ ) , r ( ndeg , ∗ ) , s i g x x ( nstrmu , ∗ ) , geom ( ∗ ) , jgeom ( ∗ )
37 ! I f t h e r e i s an I n c s u f f i x , t h e v a r i a b l e i s an i n c r e m e n t a l one ,
38 ! o t h e r w i s e i t i s a t o t a l v a l u e .
39 INTEGER : : i
40 REAL∗8 : : elMod , l e n g t h , k s i ,
41 & d ispTo t1 , d i spTo t2 , s t r a i n , s t r e s s ,
42 & d i s p I n c 1 , d i s p I n c 2 , s t r a i n I n c , s t r e s s I n c ,
43 & i n t e r n a l F o r c e I n c , i n t e r n a l F o r c e , k11 , k12 , k22 , b1 , b2
44

45 REAL∗8 , PARAMETER : : A1 = 4 0 . D0 , A2 = 8 0 . D0
46

47 REAL∗8 , DIMENSION ( 3 ) : : p o i n t 1 , p o i n t 2
48

49 elMod = e t ( 3 )
50

51 p o i n t 1 = 0 . D0
52 p o i n t 2 = 0 . D0
53 DO i = 1 , nc rd
54 p o i n t 1 ( i ) = coord ( i , 1 )
55 p o i n t 2 ( i ) = coord ( i , 2 )
56 END DO
57 l e n g t h = Ge tD i s tance ( p o i n t 1 , p o i n t 2 )
58

59 I F ( ( i f l a g .EQ. 2 ) .OR. ( i f l a g .EQ. 4 ) ) THEN
60 I F ( n c y c l e .EQ. 0 ) THEN
61 d i s p I n c 1 = d i s p ( 1 , 1 )
62 d i s p I n c 2 = d i s p ( 1 , 2 )
63 ELSE
64 d i s p T o t 1 = d i s p ( 1 , 1 ) + d i s p t ( 1 , 1 )
65 d i s p T o t 2 = d i s p ( 1 , 2 ) + d i s p t ( 1 , 2 )
66 END IF
67 END IF
68

69 k s i = 0 . D0
70

71 SELECT CASE ( i f l a g )
72 CASE ( 1 )
73 j t y p e = − j t y p e
74 CASE ( 2 )
75 CALL C a l c S t i f f n e s s ( )
76 CALL C a l c S t r e s s S t r a i n ( )
77 CALL C a l c I n t e r n a l F o r c e ( k s i )
78 CASE ( 3 )
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79 j t y p e = − j t y p e
80 CASE ( 4 )
81 CALL C a l c S t i f f n e s s ( )
82 CALL C a l c S t r e s s S t r a i n ( )
83 CALL C a l c I n t e r n a l F o r c e ( k s i )
84 CASE ( 5 )
85 j t y p e = − j t y p e
86 END SELECT
87

88 RETURN
89 CONTAINS
90

91 FUNCTION GetArea ( k s i )
92 REAL∗8 , INTENT ( IN ) : : k s i
93 REAL∗8 : : GetArea
94

95 GetArea = A1 + ( A2 − A1 ) ∗ GetX ( k s i ) / LENGTH
96

97 RETURN
98 END FUNCTION GetArea
99

100 FUNCTION GetX ( k s i )
101 REAL∗8 , INTENT ( IN ) : : k s i
102 REAL∗8 : : GetX
103

104 GetX = 0 . 5 D0 ∗ ( k s i + 1 . D0 ) ∗ Length
105 RETURN
106 END FUNCTION GetX
107

108 SUBROUTINE C a l c S t i f f n e s s ( )
109 REAL∗8 : : x , k s i , j a c o b i a n , w e i g h t
110

111 j a c o b i a n = l e n g t h / 2 . D0
112 b1 = −0.5D0
113 b2 = +0.5D0
114

115 k s i = 0 . D0
116 w e i g h t = 2 . D0
117

118 k11 = ( ( b1 ∗ b1 ) ∗ elMod ∗ GetArea ( k s i ) / j a c o b i a n ) ∗ w e i g h t
119 k12 = ( ( b1 ∗ b2 ) ∗ elMod ∗ GetArea ( k s i ) / j a c o b i a n ) ∗ w e i g h t
120 k22 = ( ( b2 ∗ b2 ) ∗ elMod ∗ GetArea ( k s i ) / j a c o b i a n ) ∗ w e i g h t
121

122 xk ( 1 , 1 ) = k11
123 xk ( 1 , 2 ) = 0 . D0
124 xk ( 1 , 3 ) = k12
125 xk ( 1 , 4 ) = 0 . D0
126

127 xk ( 2 , : ) = 0 . D0
128

129 xk ( 3 , 1 ) = k12
130 xk ( 3 , 2 ) = 0 . D0
131 xk ( 3 , 3 ) = k22
132 xk ( 3 , 4 ) = 0 . D0
133

134 xk ( 4 , : ) = 0 . D0
135

136 RETURN
137 END SUBROUTINE C a l c S t i f f n e s s
138

139 SUBROUTINE C a l c I n t e r n a l F o r c e ( k s i )
140 REAL∗8 , INTENT ( IN ) : : k s i
141

142 i n t e r n a l F o r c e I n c = s t r e s s I n c ∗ GetArea ( k s i )
143 i n t e r n a l F o r c e = s t r e s s ∗ GetArea ( k s i )
144

145 I F ( n c y c l e . GT . 0 ) THEN
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146 r ( 1 , 1 ) = + i n t e r n a l F o r c e
147 r ( 2 , 1 ) = 0 . D0
148 r ( 1 , 2 ) = − i n t e r n a l F o r c e
149 r ( 2 , 2 ) = 0 . D0
150 ELSE
151 r ( 1 , 1 ) = + i n t e r n a l F o r c e I n c
152 r ( 2 , 1 ) = 0 . D0
153 r ( 1 , 2 ) = − i n t e r n a l F o r c e I n c
154 r ( 2 , 2 ) = 0 . D0
155 END IF
156 RETURN
157 END SUBROUTINE C a l c I n t e r n a l F o r c e
158

159 SUBROUTINE C a l c S t r e s s S t r a i n ( )
160 s t r a i n I n c = ( d i s p I n c 2 − d i s p I n c 1 ) / l e n g t h
161 s t r a i n = ( d i s p T o t 2 − d i s p T o t 1 ) / l e n g t h
162 s t r e s s = elMod ∗ s t r a i n
163 s t r e s s I n c = elMod ∗ s t r a i n I n c
164

165 I F ( n c y c l e . GT . 0 ) THEN
166 de ( 1 , 1 ) = s t r a i n
167 e t o t a ( 1 , 1 ) = s t r a i n
168 g s i g s ( 1 , 1 ) = s t r e s s
169 s i g x x ( 1 , 1 ) = s t r e s s
170 ELSE
171 de ( 1 , 1 ) = s t r a i n I n c
172 e t o t a ( 1 , 1 ) = s t r a i n I n c
173 g s i g s ( 1 , 1 ) = s t r e s s I n c
174 s i g x x ( 1 , 1 ) = s t r e s s I n c
175 END IF
176 RETURN
177 END SUBROUTINE C a l c S t r e s s S t r a i n
178

179 END

Lines 1 to 90 carry out a similar job as the listing for the previous example. There are
two new internal functions in the current one: the GetArea and the GetX functions.
The GetArea function receives the abscissa in the natural coordinates (ksi) and returns
the cross sectional area of the element (lines 91 to 98). This function uses the GetX
function to transform the abscissa from natural to Cartesian coordinates (lines 100
to 106). In lines 118 to 120, the components of the element stiffness matrix are
calculated using the Gauss–Legendre numerical integration. Note that the Jacobian
is a constant scalar in this example but it can be replaced by a function for more
complicated examples.

Only one integration point is defined in the middle of the rod. Therefore, the
internal force is also calculated using the cross sectional area of this point which
corresponds to ξ = 0 in the natural coordinate (lines 142 and 143). The rest of the
calculations are the same as for the previous example.

The result of the analysis is illustrated in Fig. 4.14 which shows the displacement
of node 2 along the X -axis versus its reaction force.

Example 4.12 This example consists of two inclined truss elements as illustrated
in Fig. 4.15. The structure is modeled by means of 3 nodes and two truss elements,
i.e. two-node simple linear straight truss elements with a constant cross section
(E = 200 × 103, L = 100, and A = 100). However, element II is a type 9 standard
element, whereas element I is a user-defined element of type −9. Additionally, the
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Fig. 4.14 Result of using
the USELEM subroutine for
a horizontal rod with a
variable cross section
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Fig. 4.15 Axial loading of
two linear-elastic rods
defined by the USELEM
subroutine
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stiffness of element I is reduced by5% in each increment. The formulation of the latter
is implemented in the USELEM subroutine by the user. The total displacement u0 =
+10 is applied gradually in ten equal increments on node 2. The goal of this example
is to demonstrate the behavior of a user-defined element along with a standard one.

Since the rod element is inclined in this example, the local coordinate system
(x-y) and the global coordinate system (X -Y ) are not identical. Therefore, a relation
between these two coordinate systems must be established in order to transform
several quantities. This is done using the transformation matrix T :

T =
[

cosα sinα 0 0
0 0 cosα sinα

]

, (4.33)

where α is the angle by which the x-axis of the local coordinate is rotated with
respect to the X -axis of the global coordinates. The degrees of freedom in the local
coordinate system, i.e. uxy = [

u1x u2x
]T
, can be transformed to the global coordinate

system values, i.e. uXY = [

u1X u1Y u2X u2Y
]T
, using the following equation:

uXY = TTuxy . (4.34)



4.2 Examples 267

Similarly, the force vector f can be transformed from the local to the global coordi-
nate system:

f XY = TT f xy, (4.35)

or vice versa:
f xy = T f XY . (4.36)

The elemental stiffness matrix in the local coordinate system K e
xy can be transformed

to the global coordinate system using the following equation:

K e
XY = TTK e

xyT
T. (4.37)

These equations are useful in our example because all the input and output quantities
are specified in the global coordinate system. However, the calculations are carried
out in the local coordinate system.

The listing for the current example is as follows:
1 # i n c l u d e ’ MarcToo ls . f ’
2 SUBROUTINE UFCONN( j , i t y p e , lm , nnodmx )
3 IMPLICIT NONE
4 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
5 INTEGER i t y p e , j , lm , nnodmx
6 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
7 DIMENSION lm ( ∗ )
8

9 INTEGER : : i
10

11 I F ( j .EQ . 1 ) i t y p e = −9
12

13 RETURN
14 END
15

16 SUBROUTINE USELEM (m, xk , xm , nnode , ndeg , f , r ,
17 ∗ j t y p e , d i s p t , d i sp , nd i , nshear , j pass , n s t a t s , ngenel ,
18 ∗ i n t e l , coord , ncrd , i f l a g , i dss , t , d t , e t o t a , gs igs , de ,
19 ∗ geom , jgeom , s i g xx , ns t rmu )
20

21 USE MarcTools , ONLY : Ge tD i s tance
22 IMPLICIT NONE
23

24 INCLUDE ’ concom ’
25 INCLUDE ’ matdat ’
26 ! ∗∗ S t a r t o f gene ra ted t y p e s t a t e m e n t s ∗∗
27 REAL∗8 coord , de , d i sp , d i s p t , d t , e t o t a , f , geom , g s i g s
28 INTEGER idss , i f l a g , i n t e l , j pass , jgeom , j t y p e , m, ncrd , ndeg
29 INTEGER nd i , ngenel , nnode , nshear , n s t a t s , ns t rmu
30 REAL∗8 r , s i g xx , t , xk , xm
31 ! ∗∗ End o f gene ra ted t y p e s t a t e m e n t s ∗∗
32 DIMENSION xk ( i dss , i d s s ) , xm ( i dss , i d s s ) , d i s p t ( ndeg , ∗ ) , d i s p ( ndeg , ∗ )
33 DIMENSION t ( n s t a t s , ∗ ) , d t ( n s t a t s , ∗ ) , coord ( ncrd , ∗ )
34 DIMENSION e t o t a ( ngenel , ∗ ) , g s i g s ( ngenel , ∗ ) , de ( ngenel , ∗ )
35 DIMENSION f ( ndeg , ∗ ) , r ( ndeg , ∗ ) , s i g x x ( nstrmu , ∗ ) , geom ( ∗ ) , jgeom ( ∗ )
36

37 INTEGER : : i
38 REAL∗8 : : elMod , l e n g t h , k s i , s t r a i n , s t r e s s , i n t e r n a l F o r c e ,
39 & k11 , k12 , k22 , b1 , b2
40

41 REAL∗8 , DIMENSION ( 3 ) : : p o i n t 1 , p o i n t 2
42 REAL∗8 , DIMENSION ( nc rd ) : : c i j
43 REAL∗8 , DIMENSION ( 2 , 2 ) : : k L o c a l
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44 REAL∗8 , DIMENSION ( 4 , 4 ) : : k G l o b a l
45 REAL∗8 , DIMENSION ( 2 , 4 ) : : t r ansMat , tempMat
46 REAL∗8 , DIMENSION ( 4 , 2 ) : : t r ansMa tT
47 REAL∗8 , DIMENSION ( 4 ) : : d i s p G l o b a l , i n t F o r c e G L o b a l
48 REAL∗8 , DIMENSION ( 2 ) : : d i s p L o c a l , i n t F o r c e L o c a l
49

50 elMod = e t ( 3 )
51

52 CALL C a l c T r a n s M a t r i x ( )
53

54 I F ( ( i f l a g .EQ. 2 ) .OR. ( i f l a g .EQ. 4 ) ) THEN
55 I F ( n c y c l e .EQ. 0 ) THEN
56 d i s p G l o b a l ( 1 ) = d i s p ( 1 , 1 )
57 d i s p G l o b a l ( 2 ) = d i s p ( 2 , 1 )
58 d i s p G l o b a l ( 3 ) = d i s p ( 1 , 2 )
59 d i s p G l o b a l ( 4 ) = d i s p ( 2 , 2 )
60 ELSE
61 d i s p G l o b a l ( 1 ) = d i s p ( 1 , 1 ) + d i s p t ( 1 , 1 )
62 d i s p G l o b a l ( 2 ) = d i s p ( 2 , 1 ) + d i s p t ( 2 , 1 )
63 d i s p G l o b a l ( 3 ) = d i s p ( 1 , 2 ) + d i s p t ( 1 , 2 )
64 d i s p G l o b a l ( 4 ) = d i s p ( 2 , 2 ) + d i s p t ( 2 , 2 )
65 END IF
66 END IF
67

68 k s i = 0 . D0
69

70 SELECT CASE ( i f l a g )
71 CASE ( 1 )
72 j t y p e = − j t y p e
73 CASE ( 2 )
74 CALL C a l c S t i f f n e s s ( )
75 CALL C a l c S t r e s s S t r a i n ( )
76 CALL C a l c I n t e r n a l F o r c e ( k s i )
77 CASE ( 3 )
78 j t y p e = − j t y p e
79 CASE ( 4 )
80 CALL C a l c S t i f f n e s s ( )
81 CALL C a l c S t r e s s S t r a i n ( )
82 CALL C a l c I n t e r n a l F o r c e ( k s i )
83 CASE ( 5 )
84 j t y p e = − j t y p e
85 END SELECT
86

87 RETURN
88 CONTAINS
89 SUBROUTINE C a l c T r a n s M a t r i x ( )
90 p o i n t 1 = 0 . D0
91 p o i n t 2 = 0 . D0
92 DO i = 1 , nc rd
93 p o i n t 1 ( i ) = coord ( i , 1 )
94 p o i n t 2 ( i ) = coord ( i , 2 )
95 END DO
96 l e n g t h = Ge tD i s tance ( p o i n t 1 , p o i n t 2 )
97

98 DO i = 1 , nc rd
99 c i j ( i ) = ( coord ( i , 2 ) − coord ( i , 1 ) ) / l e n g t h
100 END DO
101 t r a n s M a t = 0 . D0
102 t r a n s M a t ( 1 , 1 ) = c i j ( 1 )
103 t r a n s M a t ( 1 , 2 ) = c i j ( 2 )
104 t r a n s M a t ( 2 , 3 ) = c i j ( 1 )
105 t r a n s M a t ( 2 , 4 ) = c i j ( 2 )
106

107 CALL GMTRA( t ransMat , t ransMatT , 2 , 4 )
108 RETURN
109 END SUBROUTINE C a l c T r a n s M a t r i x
110
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111 FUNCTION GetArea ( k s i )
112 REAL∗8 , INTENT ( IN ) : : k s i
113 REAL∗8 : : GetArea
114

115 GetArea = geom ( 1 )
116 RETURN
117 END FUNCTION GetArea
118

119 SUBROUTINE C a l c S t i f f n e s s ( )
120 REAL∗8 : : k s i , j a c o b i a n , w e i g h t
121

122 j a c o b i a n = l e n g t h / 2 . D0
123 b1 = −0.5D0
124 b2 = +0.5D0
125

126 k s i = 0 . D0
127 w e i g h t = 2 . D0
128

129 k11 = ( ( b1 ∗ b1 ) ∗ elMod ∗ GetArea ( k s i ) / j a c o b i a n ) ∗ w e i g h t
130 k12 = ( ( b1 ∗ b2 ) ∗ elMod ∗ GetArea ( k s i ) / j a c o b i a n ) ∗ w e i g h t
131 k22 = ( ( b2 ∗ b2 ) ∗ elMod ∗ GetArea ( k s i ) / j a c o b i a n ) ∗ w e i g h t
132

133 k L o c a l ( 1 , 1 ) = k11
134 k L o c a l ( 1 , 2 ) = k12
135 k L o c a l ( 2 , 1 ) = k12
136 k L o c a l ( 2 , 2 ) = k22
137

138 k L o c a l = k L o c a l ∗ ( 1 . D0 − i n c ∗ 0 .05 D0 )
139 CALL GMPRD ( kLoca l , t r ansMat , tempMat , 2 , 2 , 4 )
140 CALL GMPRD ( t ransMatT , tempMat , kG loba l , 4 , 2 , 4 )
141 xk = k G l o b a l
142 RETURN
143 END SUBROUTINE C a l c S t i f f n e s s
144

145 SUBROUTINE C a l c I n t e r n a l F o r c e ( k s i )
146 REAL∗8 , INTENT ( IN ) : : k s i
147

148 i n t e r n a l F o r c e = s t r e s s ∗ GetArea ( k s i )
149 i n t F o r c e L o c a l ( 1 ) = − i n t e r n a l F o r c e
150 i n t F o r c e L o c a l ( 2 ) = + i n t e r n a l F o r c e
151

152 CALL GMPRD ( t ransMatT , i n t F o r c e L o c a l , i n t F o r c e G L o b a l , 4 , 2 , 1 )
153

154 r ( 1 , 1 ) = i n t F o r c e G L o b a l ( 1 )
155 r ( 2 , 1 ) = i n t F o r c e G L o b a l ( 2 )
156 r ( 1 , 2 ) = i n t F o r c e G L o b a l ( 3 )
157 r ( 2 , 2 ) = i n t F o r c e G L o b a l ( 4 )
158 RETURN
159 END SUBROUTINE C a l c I n t e r n a l F o r c e
160

161 SUBROUTINE C a l c S t r e s s S t r a i n ( )
162 CALL GMPRD ( t ransMat , d i s p G l o b a l , d i s p L o c a l , 2 , 4 , 1 )
163 s t r a i n = ( d i s p L o c a l ( 2 ) − d i s p L o c a l ( 1 ) ) / l e n g t h
164 s t r e s s = elMod ∗ s t r a i n
165

166 de ( 1 , 1 ) = s t r a i n
167 e t o t a ( 1 , 1 ) = s t r a i n
168 g s i g s ( 1 , 1 ) = s t r e s s
169 s i g x x ( 1 , 1 ) = s t r e s s
170

171 RETURN
172 END SUBROUTINE C a l c S t r e s s S t r a i n
173

174 END
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Fig. 4.16 Results of using
the USELEM subroutine for
the user-defined element
versus the standard element
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In this listing, the MarcTools module is included to make use of the Distance function.
In lines 2 to 14, the UFCONN subroutine changes the type of the element I from the
standard type 9 to the user-defined type −9.

In lines 24 and 25 of the USELEM subroutine, the concom and the matdat common-
blocks are included to gain access to the number of cycles (ncycle), the cross sectional
area of the element (geom(1)) and the elastic modulus (et(3)). In lines 37 to 48,
the auxiliary variables of the subroutine are declared. The general structure of the
subroutine is as the previous examples but a transformation is required in this case.
The CalcTransMatrix is used to calculate the transformation matrix. All the global
displacements are acquired in lines 54 to 66 and in the following lines, a similar
CASE SELECT statement directs the flow of the program as before.

In the lines 90 to 100 of the CalcTransMatrix internal subroutine, the coordinates
of the nodes are used to calculate the cosine coefficients (cij). Then, in lines 101 to
105, the calculated values are transferred to the transformation matrix (transMat). In
line 107, the transpose of the transformation matrix (transMatT) is evaluated using
the GMTRA utility subroutine (see [23] for more information).

The GetArea subroutine returns the cross sectional area of the rod which is a
constant in this case.

TheCalcStiffness subroutine calculates the local elemental stiffnessmatrix (kLocal)
using Gauss–Legendre numerical integration (lines 122 to 136). In line 138, a 5%
reduction is applied to the stiffness matrix per increment. In lines 139 and 140, the
GMPRD utility subroutine is used to perform the matrix multiplication required for
transforming the stiffness matrix to the global coordinate system (see [23] for more
information).

In lines 138 to 150 of the CalcInternalForce subroutine, the internal force vector
is calculated in the local coordinate system (intForceLocal) and in line 152, it is
transferred to the global coordinate system using a matrix multiplication.

Finally, in the CalcStressStrain subroutine, the stresses and strains are calculated
as in the previous example.

The result of this analysis is shown in Fig. 4.16. In this graph, the stresses of
elements I and II are plotted versus the increment number.



Chapter 5
Listing of the Customized Modules

5.1 Overview

There is no unique way of handling a complicated modeling task. However, some
typical procedures are in common between various methods. In order to facilitate
these recurring procedures encountered during typical subroutine coding, some use-
ful subprograms are created. These customized subprograms are categorized in three
sets of modules, namely the MarcTools, FileTools, and MiscTools modules. These sub-
programs are listed alphabetically in Table5.1 along with a brief description of each.
In addition, the subroutines which use the Elmvar or Nodvar utility subroutines are
indicated. The subroutines using the Elmvar utility subroutine should be used in
element loops. These subroutines are marked with an asterisk. In contrast, the sub-
routines with the Nodvar utility subroutine can be utilized everywhere. However, the
user must understand that the nodal values may not be the final values of that incre-
ment. This depends on which stage of the analysis the Nodvar utility is executed.
These subroutines are marked with two asterisks.

In the following sections, further details concerning the subprograms are revealed.
One may get a better insight into the structure ofMarc by carefully investigating the
listings. This is why several subprograms are provided for some tasks. For instance,
both of the ExtractElmNodLst and ExtractElmNodLst2 subroutines are capable of
extracting the list of nodes for a particular element, but the mechanisms are different.

On the other hand, for those who are not concerned with specific details, the
signature of every subroutine is explained.

These subroutines are successfully tested for the examples in Chap. 4. However,
thiswouldnot guarantee the accuracyof themfor everypossiblemodel. Proper bench-
mark examples and validation of the outputs must be carried out prior to accepting
the output. However, to provide a good foundation for a keen user to further develop,
debug, and remove the limitations of these subprograms, their full listing is provided
in the current in this chapter.
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Table 5.1 Summary of the customized modules and subprograms

Subprogram Description Sects.

MarcTools module

CalcNodValb Calculates the values for nodal quantities 5.4.1

DelElmFreeEdge Removes the exterior edges of elements from a list of edges 5.4.2

ExtractElmEdgeLst Extracts the list of edges for an element 5.4.3

ExtractElmNodLst Extract the list of nodes for an element using a utility subroutine 5.4.4

ExtractElmNodLst2 Extract the list of nodes for an element using common blocks 5.4.5

ExtractNodCloseIPLstb Extracts the closest integration points to a node 5.4.6

ExtractSetItemLst Extracts the items in a set 5.4.7

GetElmAreab Returns the surface area of a 4-node quadrilateral element 5.4.8

GetElmAveVala Returns the average of an elemental value for an element 5.4.9

GetElmCenCoordb Returns the coordinates of the center of an element 5.4.10

GetElmEdgeVala Returns the calculated edge value for an elemental quantity 5.4.11

GetElmExtID Converts the element internal ID to external/user ID 5.4.12

GetElmIPCount Returns the number of integration points for an element 5.4.13

GetElmIntID Converts the element external/user ID to internal ID 5.4.14

GetIPCoord Returns the coordinates of the integration points 5.4.15

GetIPVala,b Evaluates the value of an elemental quantity on an integration
point

5.4.16

GetNodCoordb Returns the undeformed/deformed coordinates of a node 5.4.17

GetNodExtID Converts the node internal ID to external/user ID 5.4.18

GetNodExtraVal Extrapolates the integration point value to a node 5.4.19

GetNodIPVala Returns the value of an elemental quantity on the adjacent node 5.4.20

GetNodIntID Converts the node external/user ID to internal ID 5.4.21

IsElmIDValid Checks the existence of an element 5.4.22

IsItemInSet Checks the existence of an item in a list 5.4.23

IsNodIDValid Checks the existence of a node 5.4.24

MakeElmIDLst Makes a list of all the element IDs 5.4.25

MakeIPCoordLst Makes a list of integration point coordinates 5.4.26

MakeIPValLsta,b Makes a list of integration point values 5.4.27

MakeNodCoordLstb Makes a list of node coordinates 5.4.28

MakeNodIDLst Makes a list of all node external/user IDs 5.4.29

MakeNodValIPLsta Makes a list of elemental quantities on the neighboring node 5.4.30

MakeNodValLstb Makes a list of nodal values 5.4.31

PrintElmIDGroupedLst Prints the list of element IDs and their element groups 5.4.32

PrintElmIDLst Prints the list of user element IDs 5.4.33

PrintIPCoordLst Prints the list of integration point coordinates 5.4.34

PrintIPValLsta,b Prints the list of elemental quantities 5.4.35

PrintNodCoordLstb Prints the list of node coordinates 5.4.36

PrintNodIDLst Prints the list of node IDs 5.4.37

(continued)
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Table 5.1 (continued)

Subprogram Description Sects.

PrintNodValIPLsta Prints the list of nodal values obtained from the integration
points

5.4.38

PrintNodValLstb Prints the list of nodal quantities 5.4.39

PrintSetItemLstID Prints the information regarding a set ID 5.4.40

PrintSetItemLstName Prints the information regarding a set name 5.4.41

PrintSetLst Prints the general information on sets 5.4.42

FileTools module

AutoFilename Renames the trailing three digits of a file name 5.5.3

DeleteFile Deletes an existing file 5.5.2

FindFreeUnit Returns a free unit number 5.5.1

MiscTools module

DelRepeated Removes the recurring items of a 1D array 5.6.1

DelRepeated2D Removes the recurring items of a 2D array 5.6.2

ExtractIntersectLst Extracts the intersecting elements of two arrays 5.6.3

GetDistance Returns the distance between two points 5.6.4

GetIndex Returns the index of an element in a 1D array 5.6.5

GetRandNum Returns a random real number between −1 and +1 5.6.6

PrintElapsedTime Prints the elapsed time between two consecutive executions 5.6.7

PutSmallFirst Arranges a 2D array to have the smaller element as the first of
the pair

5.6.8

SwapInt Swaps two integers with each other 5.6.9

SwapReal Swaps two double precision real numbers with each other 5.6.10
aElmvar used
bNodvar used

5.2 Naming Rules and Abbreviations

A consistent naming of the entities is employed when developing the subprograms.
Table5.2 contains a list of the majority of the commonly used variables. This list
helps to better understand the construction of subprograms. Note that in addition to
the normal programming conventions (see Sect. 1.1.5), the limitation of the common
block variables has affected the selection of the names to avoid conflicts.

The following rules are considered in naming the subprograms:

1. All subprogram names start with a verb.
2. No plural nouns are used in the names.
3. To choose the name of a function:

• the Get prefix is used if the function returns a numerical value,
• the Is prefix is used if the function returns a logical value,

http://dx.doi.org/10.1007/978-3-319-47668-1_1
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Table 5.2 Summary of the variable names and their descriptions

Variable name Description

nodID User ID of the node

nodIDLst A list of node IDs

intNodID Internal ID of the node

elmID User ID of the element

elmIDLst List of the element IDs

intElmID Internal ID of the element

nodLst Array of nodes

elmLst Array of elements

nElm Number of elements

nNod Number of nodes

IP IP number

nIP Number of IPs

IPLst Array of IPs

setName Set name

itemID ID of an item in a set

lst A 1D array (items are general)

nlst Number of elements in the list

itemLst List of items (items are of type integer)

nItemLst Number of items in the list

tItemLst Temp list of items

tCoordLst Temporary list of coordinates

curElm Current element

curNod Current node

curIP Current integration point

distLst List of distances

curElmVal Current elemental value

curNodVal Current nodal value

curIPVal Current integration point value

totIPVal Total integration point value

curVal Current value

totVal Total value

meanVal Mean value

IPCoord Coordinates of the integration point

curIPCoord Current coordinates of the integration point

totIPCoord Total coordinates of the integration point

nodCoord Coordinates of the node

transVal Translated value

extraVal Extrapolated value
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Table 5.3 Summary of the
abbreviations used in naming
the entities

Abbreviation Description

Nod Node/nodal

Elm Element/elemental

IP Integration point

ID Identification

Lst List (1D array)

Ave Average/averaged

Dist Distance

Del Delete/remove

Int Internal

Ext External

Cen Center/central

Val Value

Calc Calculate/calculation

Coord Coordinates

Cur Current

Tot Total

Extra Extrapolated

Trans Translated

Num Number

Rand Random

Rep Repetition

n Number/count

t Temporary

Del Delete/remove

Print Print to output

Put Put/move

Extract Extract

Make Make/collect/gather

Meth Method

fName File name

fUnit File unit

Out Output

Inter Intersect/intersecting

4. To choose the name of a subroutine:

• the Calc prefix is used for complex calculations,
• the Print prefix is used if any output information is printed,
• the Make prefix is used if an array of data is collected for a range of nodes/ele-
ments (this group usually calls the subprograms with the Get prefix multiple
times), and
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• the Lst suffix is used if the output parameter is an array.

5. Three levels of subprograms are considered:

• those which operate on a single node/element, usually start with a Get prefix,
• the subroutines with the Make prefix are used to make a list of values using
the Get group, and

• the subroutines with the Print prefix create a proper output using the Make
group.

6. Checking the validity of the nodID or elmID is done in the Get functions which
are responsible for the single node/element handling.

7. Any critical errors detected by the subprograms will cause the analysis to stop
with an exit code of 1234.

In addition, the used naming abbreviations are listed in Table5.3.

5.3 Modules

The MarcTools module is the main package containing the majority of the subpro-
grams which are related to the finite element practice. These small tools are designed
to facilitate the interactions with the Marc/Mentat package. They mainly deal
with the operations involving sets, nodes, elements, edges, integration points, and
others. The other two modules, i.e. the MiscTools and the FileTools modules, are used
to facilitate various tasks. The MarcTools module uses these two modules by default.
In addition, since interacting with Marc requires the access to some of its prede-
fined common blocks, several INCLUDE statements are used to provide them. The
specification part of the MarcTools module consists of the following lines:

1 # i n c l u d e ’ MiscTools . f ’
2 # i n c l u d e ’ F i l e T o o l s . f ’
3

4 MODULE MarcTools
5 USE MiscTools
6 USE F i l e T o o l s
7 IMPLICIT NONE
8

9 INCLUDE " pnte lm "
10 INCLUDE " c rp rops "
11 INCLUDE ’ spaceivec ’
12 INCLUDE ’ spaceset ’
13 INCLUDE ’ ar ray2 ’
14 INCLUDE ’ cdominfo ’
15 INCLUDE ’ dimen ’
16 INCLUDE ’ elemdata ’
17 INCLUDE ’ elmcom ’
18 INCLUDE ’ heat ’
19 INCLUDE ’ space ’
20 INCLUDE ’ lass ’
21 INCLUDE ’ f a r ’
22 INCLUDE ’ b lnk ’
23 INCLUDE ’ prepro ’
24 INCLUDE ’ nzro1 ’
25 INCLUDE ’ i a u t c r ’
26 INCLUDE ’ creeps ’
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27 INCLUDE ’ concom ’
28

29 INTEGER , PARAMETER : : MAX_SET_ITEM = 1000
30 CONTAINS
31 . . .

Aside from the inevitable inclusion of the predefined common blocks, the use of
any global variable is generally avoided. The only exception is the MAX_SET_ITEM
constant which is used to indicate the maximum number of items in a set.

The FileTools module contains subprograms for typical I/O operations such as
deleting or renaming files. The MiscTools module contains subprograms covering
miscellaneous tasks such as operations on arrays, calculating the elapsed time of
operations, and generating random numbers. Note that not all of the provided sub-
programs will be used at the same time. Therefore, it is good practice to use the
ONLY option with the USE statement to avoid any possible naming conflicts (see
Sect. 1.6.1).

It is worthmentioning that these subroutines are not fully developed to cover every
possible circumstance. For instance, if the number of nodes is increased in a model,
some modifications may be required to maintain the stability of the subprograms in
terms of memory allocation. Additionally, certain modifications will be required for
models containingmultiple element types or those involved in parallel computations.
However, all of the modules are tested to run successfully by the examples in the
current chapter.

5.4 MarcTools Module

5.4.1 CalcNodVal

This subroutine extracts the nodal values of the specified nodal post code.

Input(s):

nodID INTEGER node user ID
nodCode INTEGER nodal post code

Example node post codes:
0 Coordinates
1 Displacement
2 Rotation
3 External Force
4 External Moment
5 Reaction Force
6 Reaction Moment
79 Total displacement

Output(s):

valLst REAL*8(:) list of values
nValLst INTEGER number of values in the list

http://dx.doi.org/10.1007/978-3-319-47668-1_1
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325 SUBROUTINE CalcNodVal ( nodID , nodCode , v a l L s t , nVa lLs t )
326 INTEGER , INTENT ( IN ) : : nodId , nodCode
327 REAL∗8 , ALLOCATABLE, INTENT (OUT) : : v a l L s t ( : )
328 INTEGER , INTENT (OUT) : : nVa lLs t
329

330 INTEGER : : dataType
331 REAL∗8 , DIMENSION ( 1 0 ) : : t V a l L s t
332

333 CALL NodVar ( nodCode , nodID , t V a l L s t , nValLs t , dataType )
334

335 IF ( nVa lLs t .NE. 0) THEN
336 ALLOCATE( v a l L s t , SOURCE = t V a l L s t ( 1 : nVa lLs t ) )
337 END IF
338

339 END SUBROUTINE CalcNodVal

This subroutine uses the NodVar utility subroutine to extract the nodal post codes.
The tValLst temporary array is used to hold the returned values from the utility
subroutine. After obtaining the number of retrieved values, i.e. nValLst, the output
array is allocated using the values as the source.

5.4.2 DelElmFreeEdge

This subroutine finds the free edges of an element (exterior edges) in a list and deletes
them.

Input(s):
edgeLst INTEGER(2,*) list of edges
nEdge INTEGER number of edges in the list

Output(s):
refinedEdgeLst INTEGER list of values

492 SUBROUTINE DelElmFreeEdge ( edgeLst , nEdge , re f i nedEdgeLs t )
493 INTEGER , DIMENSION ( 2 , ∗ ) , INTENT ( INOUT ) : : edgeLst
494 INTEGER , INTENT ( IN ) : : nEdge
495 INTEGER , ALLOCATABLE, INTENT (OUT) : : r e f i nedEdgeLs t ( : , : )
496

497 INTEGER : : edgeNod1 , nElmLstNod1 , edgeNod2 , nElmLstNod2
498 INTEGER : : i , n I n t e r L s t
499

500 LOGICAL , ALLOCATABLE, DIMENSION ( : ) : : aMask
501 INTEGER , ALLOCATABLE, DIMENSION ( : ) : : anIndex , i n t e r L s t ,
502 & elmLstNod1 , elmLstNod2
503

504 ALLOCATE ( aMask ( nEdge ) )
505 ALLOCATE ( elmLstNod1 ( maxnp ) )
506 ALLOCATE ( elmLstNod2 ( maxnp ) )
507

508 elmLstNod1 = 0
509 elmLstNod2 = 0
510 nElmLstNod1 = 0
511 nElmLstNod2 = 0
512

513 DO i = 1 , nEdge
514 edgeNod1 = edgeLst ( 1 , i )
515 edgeNod2 = edgeLst ( 2 , i )
516

517 CALL UT_ELEMENTS_AT_NODE ( edgeNod1 , elmLstNod1 , nElmLstNod1 )
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518 CALL UT_ELEMENTS_AT_NODE ( edgeNod2 , elmLstNod2 , nElmLstNod2 )
519

520 CALL E x t r a c t I n t e r s e c t L s t ( elmLstNod1 , nElmLstNod1 ,
521 & elmLstNod2 , nElmLstNod2 , i n t e r L s t , n I n t e r L s t )
522

523 aMask ( i ) = n I n t e r L s t .GT. 1
524 END DO
525

526 ALLOCATE( anIndex , source = PACK ( [ ( i , i = 1 , nEdge ) ] , aMask ) )
527 ALLOCATE( re f inedEdgeLs t , source = edgeLst ( : , anIndex ) )
528 RETURN
529 END SUBROUTINE DelElmFreeEdge

This subroutine receives an array of node couples. Each couple represents the edge
of an element. The UT_ELEMENTS_AT_NODE utility subroutine is used to extract the
elements connected to each other at the same node. These elements are put in two
separate lists. Next, the ExtractIntersectLst subroutine is used to find the intersection
of these two lists. Considering that the number of intersections for an exterior edge is
one, any two nodes with more than one common element do not belong to an exterior
edge. A mask array is used to mark the internal edges by the .TRUE. value. Finally,
the refined list of nodes is allocated using this mask.

5.4.3 ExtractElmEdgeLst

This subroutine extracts the list of edges for an element.

Input(s):
elmID INTEGER user element ID

Output(s):
edgeLst INTEGER(:,:) list of edges
nEdgeLst INTEGER number of edges in the list

562 SUBROUTINE Ext rac tE lmEdgeLst ( elmID , edgeLst , nEdgeLst )
563 INTEGER , INTENT ( IN ) : : elmID
564 INTEGER , ALLOCATABLE, DIMENSION ( : , : ) , INTENT (OUT) : : edgeLst
565 INTEGER , INTENT (OUT ) : : nEdgeLst
566

567 INTEGER , ALLOCATABLE, DIMENSION ( : ) : : nodLst
568 INTEGER : : nNodLst , i
569

570 CALL Ext rac tE lmNodLst ( elmID , nodLst , nNodLst )
571 nEdgeLst = nNodLst
572 ALLOCATE ( edgeLst ( 2 , nNodLst ) )
573 DO i = 1 , ( nNodLst − 1)
574 edgeLst ( 1 , i ) = nodLst ( i )
575 edgeLst ( 2 , i ) = nodLst ( i +1)
576 END DO
577 edgeLst ( 1 , nNodLst ) = nodLst ( nNodLst )
578 edgeLst ( 2 , nNodLst ) = nodLst ( 1 )
579 RETURN
580 END SUBROUTINE Ext rac tE lmEdgeLst

The ExtractElmEdgeLst subroutine returns the list of edges (edgeList) making up
the element (elID) and the number of edges (nEdge). It uses the ExtractElmNodLst
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subroutine to obtain the nodes of the element and then stores the edges in the 2D
array of edges.

5.4.4 ExtractElmNodLst

This subroutine extracts the nodes attached to an element using the ELNODES utility
subroutine. It returns zero for an unsuccessful execution as the number of nodes
(nNod).

Input(s):
elmID INTEGER user element ID

Output(s):
nodLst INTEGER(:) list of node user IDs
nNodLst INTEGER number of nodes in the list

1114 SUBROUTINE Ext rac tE lmNodLst ( elmID , nodLst , nNod )
1115 INTEGER , INTENT ( IN ) : : elmID
1116 INTEGER , ALLOCATABLE, DIMENSION ( : ) , INTENT (OUT) : : nodLst
1117 INTEGER , INTENT (OUT) : : nNod
1118

1119 INTEGER : : i , i n t E l I D
1120 INTEGER , ALLOCATABLE : : tNodLst ( : )
1121

1122 ALLOCATE( tNodLst ( nnodmx ) )
1123

1124 i n t E l I D = GetE lmIn t ID ( elmID )
1125 IF ( i n t E l I D .NE. 0) THEN
1126 CALL ElNodes ( i n t E l I D , nNod , tNodLst )
1127 ALLOCATE ( nodLst ( nNod ) )
1128 DO i = 1 , nNod
1129 nodLst ( i ) = GetNodExtID ( tNodLst ( i ) )
1130 END DO
1131 ELSE
1132 nNod = 0
1133 END IF
1134 END SUBROUTINE Ext rac tE lmNodLst

There are two subroutines which can extract the nodes of elements, i.e. the
ExtractElmNodLst and the ExtractElmNodLst2 subroutines. The ExtractElmNodLst sub-
routine extracts the nodes of an element (elmID) by means of the ELNODES utility
subroutine. The ELNODES subroutine receives the internal element ID (intElID) and
gives back the temporary list of nodes (tNodLst) along with the exact number of
retrieved nodes (nNod). Note that the tNodLst dynamic array must be large enough
to hold all the node IDs. It is the user’s responsibility to ensure this. To do so, the
nnodmx variable from the dimen common block is used. This variable indicates the
maximum number of nodes per element (see Table2.8).

After allocating the temporary node list, the element user ID is converted to
the internal ID by means of the GetElmIntID function. A successful execution of
this function is indicated by a non-zero return value. In such a case, the ELNODES
subroutine can be called. The exact number of nodes (nNod) is calculated by the

http://dx.doi.org/10.1007/978-3-319-47668-1_2
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subroutine. The temporary list of nodes (tNodLst) contains the internal IDs of the
nodes which are converted to the user IDs by means of the GetNodExtID function.

An unsuccessful execution usually happens when the elmID is not valid. This case
is pointed out by returning a zero value for the number of nodes (nNod).

5.4.5 ExtractElmNodLst2

This subroutine extracts the nodes, attached to an element, using the IELCON array
provided in the ELCOM common block. It returns zero for an unsuccessful execution
as the number of nodes (nNod).

Input(s):
elmID INTEGER user element ID

Output(s):
nodLst INTEGER(:) list of node user IDs
nNodLst INTEGER number of nodes in the list

1172 SUBROUTINE Ext rac tE lmNodLst2 ( elmID , nodLst , nNod )
1173 INTEGER , INTENT ( IN ) : : elmID
1174 INTEGER , ALLOCATABLE, INTENT (OUT) : : nodLst ( : )
1175 INTEGER , INTENT (OUT) : : nNod
1176

1177 INTEGER : : i , intElNum , da ta Index
1178

1179 nNod = 0
1180 IF ( n E l t y p .EQ. 1) THEN
1181 in tElNum = GetE lmIn t ID ( elmID )
1182 IF ( intElNum .NE. 0) THEN
1183 ALLOCATE ( nodLst ( nNode ) )
1184 data Index = nNode ∗ ( in tElNum − 1)
1185 DO i = 1 , nNode
1186 nodLst ( i ) = GetNodExtID ( iE lCon ( da ta Index + i ) )
1187 END DO
1188 nNod = nNode
1189 END IF
1190 END IF
1191 END SUBROUTINE Ext rac tE lmNodLst2

The second subroutine for extracting the nodes of an element is the ExtractElmNodLst2
subroutine. This subroutine is an alternative to the ExtractElmNodLst subroutine. Note
that it is not as powerful as the ExtractElmNodLst subroutine since it cannot be used
for models with various element types.

This subroutine uses the array of the element connectivity (iElCon) and the num-
ber of nodes per element (nNode) from the common blocks elmdata and elmcom,
respectively. The dataIndex variable indicates the preceding location of the first node
of the element in the array. Note that the nNode variable is in an element-based com-
mon block (see Table2.10) but it is obtained outside of an element-based subroutine.
Therefore, for amodelwith various types of elements, it only holds the number of data
for the current type which is the last group of elements by default (see Sect. 2.3.3).
Namely, the proper execution of this subroutine is limited to the models with only

http://dx.doi.org/10.1007/978-3-319-47668-1_2
http://dx.doi.org/10.1007/978-3-319-47668-1_2
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one type of element. The number of element types (nEltyp) is provided by the dimen
common block and it is checked in line 9 to ensure a proper execution. It is possible
to further develop the coverage of this subroutine by using additional information
from the elemdata common block, e.g. ielgroupinfo. The nNod variable returns zero
for an unsuccessful execution.

5.4.6 ExtractNodCloseIPLst

This subroutine extracts the closest integration points of the adjacent elements with
respect to a node.

Input(s):
nodID INTEGER external/user node ID

Output(s):
nLst INTEGER() number of items in elmLst and IPLst
elmLst INTEGER(:) list of user element IDs
IPLst INTEGER(:) list of integration point numbers

619 SUBROUTINE Ex t rac tNodClose IPLs t ( nodID , n I temLst , elmLst , I P L s t )
620 INTEGER , INTENT ( IN ) : : nodID
621 INTEGER , INTENT (OUT ) : : n I temLs t
622 INTEGER , ALLOCATABLE, INTENT (OUT ) : : e lmLst ( : ) , I P L s t ( : )
623

624 INTEGER , ALLOCATABLE : : tE lmLs t ( : )
625 INTEGER : : nTElmLst , i , cur IP , curElm
626

627 REAL∗8 , DIMENSION ( 3 ) : : nodCoord , IPCoord
628 REAL∗8 , ALLOCATABLE : : d i s t a n c e L s t ( : )
629

630 ALLOCATE ( tE lmLs t (maxNP ) )
631 CALL ut_e lements_at_node ( nodID , tE lmLs t , nTElmLst )
632 IF ( nTElmLst .EQ. 0) THEN
633 n I temLs t = 0
634 CALL QUIT (1234)
635 RETURN
636 ELSE
637 n I temLs t = nTElmLst
638 ALLOCATE ( e lmLst ( n I temLs t ) )
639 ALLOCATE ( I P L s t ( n I temLs t ) )
640

641 nodCoord = GetNodCoord ( nodID , 1)
642

643 ALLOCATE ( d i s t a n c e L s t ( n in tbmx ) )
644

645 DO i = 1 , n I temLs t
646 curElm = tE lmLs t ( i )
647 elmLst ( i ) = curElm
648 DO cur IP = 1 , n intbmx
649 IPCoord = GetIPCoord ( curElm , cu r IP )
650 d i s t a n c e L s t ( cu r IP ) = GetDis tance ( nodCoord , IPCoord )
651 END DO
652 I P L s t ( i ) = Min loc ( d i s t a n c e L s t , 1 )
653 END DO
654 END IF
655 END SUBROUTINE Ex t rac tNodClose IPLs t
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The ExtractNeighborIP subroutine receives the user ID of a node (nodID) and returns
two arrays and a number indicating the quantity of items in these arrays (nLst). The
IPLst array contains the list of adjacent integration pointswith respect to the node. The
elmLst array contains the element number corresponding to each of the mentioned
integration points. Those integration points are chosen which have the minimum
distance with respect to the position of the node. Note that both of the output arrays,
i.e. the elmLst and the IPList arrays, are of the ALLOCATABLE type because the number
of neighboring elements are not known a priori.

The two variables maxNP and nintbmx are used from the dimen common block
which indicate the maximum number of connections to a node and the maximum
number of integration points, respectively (Sect. 2.3.3). The maximum number of
connections is used as an estimated initial value for the number of neighboring
elements and are allocated in the tElmLst array. Alternatively, a constant could have
been used in the module to allocate a sufficiently large array. This array is used to call
the utility subroutine ut_elements_at_node in order to extract the connected elements
to the specified node. The exact number of neighbors is returned by this subroutine
via nTElmLst. If the call was unsuccessful, no value will be returned for this variable.
An unsuccessful call may be a result of asking for the information regarding a non-
existing user node. In such a case, depending on the user’s preference, the program
could either terminate with a specific error code (CALL QUIT(1234)) or return with a
zero value for the number of items.

In the case of a successful execution, the exact number of neighboring elements
(nItemLst) is used to allocate the dynamic output arrays (lines 20 and 21). The coordi-
nates of the node are extracted using the GetNodCoord function. The distanceLst array
is allocated using the nintbmx variable which holds the list of the distances between
the nodID node and each integration point (curIP) of the current element (curElm).
Note that lines 27 and 28 may look trivial but the curElm auxiliary variable increases
the readability of the code. Although one may think that using an extra variable will
be awaste ofmemory,most of the compilers use optimization techniques to eliminate
redundant computations [34].

The coordinates of the integration points (IPCoord) are extracted using the GetIP-
Coord function and the distance is calculated using the GetDistance function. Finally,
using the Minloc intrinsic function, the index of the minimum distance is obtained.
This index corresponds to the number of the integration point as well and it is
saved in the IPLst array in-parallel to the elmLst array which contains the respective
element IDs.

5.4.7 ExtractSetItemLst

This subroutine extracts the items in the set which is named as the setName
parameter.

http://dx.doi.org/10.1007/978-3-319-47668-1_2
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Input(s):
setName CHARACTER(*) the name of the set

Output(s):
itemLst INTEGER(:) list of items (either nodes or elements)
nItemLst INTEGER number of items in the list

689 SUBROUTINE E x t r a c t S e t I t e m L s t ( setName , i temLs t , n I temLs t )
690

691 CHARACTER(LEN=∗ ) , INTENT ( IN ) : : setName
692 INTEGER , INTENT (OUT) , ALLOCATABLE, DIMENSION ( : ) : : i t e m L s t
693 INTEGER , INTENT (OUT) : : n I temLs t
694

695 INTEGER : : t I t e m L s t (MAX_SET_ITEM ) , isFound , setType , i
696

697 CALL Marc_Set In f ( setName , isFound , t I t e m L s t , setType , n I temLs t )
698

699 IF ( isFound .EQ. 1) THEN
700 ALLOCATE ( i t e m L s t ( n I temLs t ) )
701 i t e m L s t = [ ( t I t e m L s t ( i ) , i = 1 , n I temLs t ) ]
702 ELSE
703 n I temLs t = 0
704 END IF
705

706 RETURN
707 END SUBROUTINE E x t r a c t S e t I t e m L s t

TheExtractSetItems subroutine is used to extract themembers of a set named setName.
A set name in Marc is generally a 32-character variable. However, to make the
unnamed constants strings acceptable as an argument of the subroutine, no length is
defined for the setName argument, i.e. theCHARACTER (LEN=*) declaration is used. It
returns the list of the items (itemLst) and the number of the items in the list (nItemLst).
The itemlst is a one-dimensional allocatable array to cover every case concerning the
unknown number of the members in any set. The subroutine is intended to deal with
nodes and elements but it can be modified to return two-dimensional arrays for the
sets defining edges, faces etc. Similar to the mechanism utilized in the IsItemInSet
function, the Marc_SetInfo utility subroutine is used in the current subroutine to deal
with the sets. A failed execution of the subroutine returns with a zero number of
items in the list, i.e. nItemLst is assigned a zero value.

5.4.8 GetElmArea

This function returns the surface area of a 4-node quadrilateral element based on its
original shape.

Input(s):
elmID INTEGER user element ID

Output(s):
REAL*8 area of the element
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746 FUNCTION GetElmArea ( elmID )
747 INTEGER , INTENT ( IN ) : : elmID
748 REAL∗8 : : GetElmArea
749

750 INTEGER , ALLOCATABLE : : nodLst ( : )
751 REAL∗8 , ALLOCATABLE : : nodCoord ( : , : )
752 REAL∗8 : : elmArea , x1 , x2 , y1 , y2
753 INTEGER : : nNodLst , iNod
754

755 CALL Ext rac tE lmNodLst ( elmID , nodLst , nNodLst )
756

757 IF ( nNodLst .EQ. 0) THEN
758 CALL QUIT (1234)
759 ELSE
760 ALLOCATE ( nodCoord ( nNodLst , 3 ) )
761 DO iNod = 1 , nNodLst
762 nodCoord ( iNod , : ) = GetNodCoord ( nodLst ( iNod ) , 1 )
763 END DO
764 elmArea = 0 .D0
765 DO iNod = 1 , nNodLst
766 x1 = nodCoord ( iNod , 1 )
767 y1 = nodCoord ( iNod , 2 )
768 IF ( iNod .EQ. nNodLst ) THEN
769 x2 = nodCoord ( 1 , 1 )
770 y2 = nodCoord ( 1 , 2 )
771 ELSE
772 x2 = nodCoord ( iNod +1 ,1)
773 y2 = nodCoord ( iNod +1 ,2)
774 END IF
775 elmArea = ( x1∗y2 ) − ( y1∗x2 ) + elmArea
776 END DO
777 GetElmArea = elmArea ∗ 0.5D0
778 END IF
779 END FUNCTION GetElmArea

This subroutine extracts the list of nodes for the element (elmID) by calling the
ExtractElmNodLst subroutine. Then, the original coordinates of the nodes are obtained
using the GetNodCoord function. It uses Heron’s formula to obtain the area of the
polygon.

5.4.9 GetElmAveVal

This function returns the average of an elemental value for an element.

Input(s):
elmID INTEGER user element ID
elmCode INTEGER element post code

Example elemental post codes:
1-6 Components of strain
11-16 Components of stress
17 von Mises stress

Output(s):
REAL*8 average value of the elemental value
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1224 FUNCTION GetElmAveVal ( elmID , elmCode )
1225 INTEGER , INTENT ( IN ) : : elmID , elmCode
1226 REAL∗8 : : GetElmAveVal
1227

1228 INTEGER : : nIP , IP , In tE lmID
1229 REAL∗8 : : curElmVal , t o tE lmVa l
1230

1231 curElmVal = 0 .D0
1232 t o tE lmVa l = 0 .D0
1233

1234 i n tE lm ID = GetE lmIn t ID ( elmID )
1235

1236 IF ( i n tE lm ID .EQ. 0) THEN
1237 CALL QUIT (1234)
1238 ELSE
1239 nIP = GetElmIPCount ( elmID )
1240

1241 DO IP = 1 , nIP
1242 CALL elmvar ( elmCode , elmID , IP , 0 , curElmVal )
1243 t o tE lmVa l = to tE lmVa l + curElmVal
1244 END DO
1245 GetElmAveVal = to tE lmVa l / nIP
1246 END IF
1247

1248 RETURN
1249 END FUNCTION GetElmAveVal

This subroutine uses theELMVAR utility subroutine to obtain the value of an elemental
quantity for each integration point of the element. To do so, first the user element
ID is transformed to the internal element ID using the GetElmIntID function. Next,
the number of integration points of the element is obtained using the GetElmIPCount
function. A loop is used to sum up the values and at the end the average of the values
is returned by the function.

5.4.10 GetElmCenCoord

This function returns the coordinates of the element center.

Input(s):
elmID INTEGER user element ID
calcMeth INTEGER calculation method for the center:

Example node post codes:
1 Average of the original node coordinates
2 Average of the deformed node coordinates
3 Average of the integration point coordinates

Output(s):
REAL*8(3) coordinates of the center

815 FUNCTION GetElmCenCoord ( elmID , ca lcMeth )
816 INTEGER , INTENT ( IN ) : : elmID , ca lcMeth
817 REAL∗8 , DIMENSION ( 3 ) : : GetElmCenCoord
818

819 INTEGER : : nIP , IP , In tE lmID , nNod , iNod
820 REAL∗8 , DIMENSION ( 3 ) : : curCoord , to tCoord
821 INTEGER , ALLOCATABLE : : nodLst ( : )
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822

823 curCoord = 0 .D0
824 t o tCoord = 0 .D0
825

826 i n tE lm ID = GetE lmIn t ID ( elmID )
827

828 IF ( i n tE lm ID .EQ. 0) THEN
829 CALL QUIT (1234)
830 ELSE
831 SELECT CASE ( calcMeth )
832 CASE ( 1 : 2 )
833 CALL Ext rac tE lmNodLst ( elmID , nodLst , nNod )
834 DO iNod = 1 , nNod
835 IF ( ca lcMeth .EQ. 1) THEN
836 curCoord = GetNodCoord ( nodLst ( iNod ) , 1 )
837 ELSE
838 curCoord = GetNodCoord ( nodLst ( iNod ) , 2 )
839 END IF
840 t o tCoord = to tCoord + curCoord
841 END DO
842 GetElmCenCoord = to tCoord / nNod
843 CASE( 3 )
844 nIP = GetElmIPCount ( elmID )
845

846 DO IP = 1 , nIP
847 curCoord = GetIPCoord ( elmID , IP )
848 t o tCoord = to tCoord + curCoord
849 END DO
850 GetElmCenCoord = to tCoord / nIP
851 END SELECT
852 END IF
853 RETURN
854 END FUNCTION GetElmCenCoord

In this function, three methods are used to obtain the center of the element: original
and deformed nodal coordinates and the integration point coordinates. The first two
methods use the ExtractElmNodLst subroutine and the GetNodCoord function with the
corresponding flag whereas the last method uses the GetElmIPCount and GetIPCoord
functions. All the acquired coordinates are summed up in the totCoord array and the
average of the values is returned as the coordinates of the center.

5.4.11 GetElmEdgeVal

This function returns the calculated edge value for an elemental quantity.

Input(s):
nodID1 INTEGER first external/user node ID of the edge
nodID2 INTEGER second external/user node ID of the edge
elmCode INTEGER element post code

Example elemental post codes:
1-6 Components of strain
11-16 Components of stress
17 von Mises stress
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calcMeth INTEGER calculation method
Possible methods:
1 Translation (unweighted averaging)
2 Extrapolation (unweighted averaging)
3 Average (unweighted averaging)
4 Translation (weighted averaging)
5 Extrapolation (weighted averaging)
6 Average (weighted averaging)

Output(s):
REAL*8 value of the requested quantity

901 FUNCTION GetElmEdgeVal ( nodID1 , nodID2 , elmCode , ca lcMeth )
902 INTEGER , INTENT ( IN ) : : nodID1 , nodID2 , elmCode , ca lcMeth
903 REAL∗8 : : GetElmEdgeVal
904

905 GetElmEdgeVal =
906 & ( GetNodIPVal ( nodID1 , elmCode , ca lcMeth ) +
907 & GetNodIPVal ( nodID2 , elmCode , ca lcMeth ) ) / 2 .D0
908

909 END FUNCTION GetElmEdgeVal

The GetElmEdgeVal function simply returns the stress of an edge comprising of
two nodes (nodID1 and nodID2). The stress on the edge of the element is defined
as the average stress of the nodes which is calculated by the GetNodIPVal function.
Therefore, it is possible to ask for the samemethods used in theGetNodIPVal function.

5.4.12 GetElmExtID

This function converts the internal ID of an element to its corresponding external/user
ID.

Input(s):
intElmID INTEGER internal element ID

Output(s):
INTEGER external/user element ID

951 INTEGER FUNCTION GetElmExtID ( i n tE lm ID )
952 INTEGER , INTENT ( IN ) : : i n tE lm ID
953

954 INTEGER : : i e l e x t , t I n t E l m I D
955

956 t I n t E l m I D = i e l e x t ( i n tE lm ID )
957

958 IF ( t I n t E l m I D . LE . 0) THEN
959 CALL QUIT (1234)
960 ELSE
961 GetElmExtID = t I n t E l m I D
962 END IF
963

964 END FUNCTION GetElmExtID
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The GetElmExtID function receives the internal element ID (intElmID) and returns the
external/user element number. The ielext utility function is used for this conversion.
An error code is issued in the case of a wrong conversion.

5.4.13 GetElmIPCount

This function returns the number of integration points for an element.

Input(s):
intElmID INTEGER internal element ID

Output(s):
INTEGER number of integration points

992 FUNCTION GetElmIPCount ( elmID )
993 INTEGER , INTENT ( IN ) : : elmID
994 INTEGER : : GetElmIPCount
995

996 INTEGER : : i n tE lm ID
997

998 GetElmIPCount = 0
999

1000 IF ( I sE lm IDVa l i d ( elmID ) .EQV. .TRUE . ) THEN
1001 i n tE lm ID = GetE lmIn t ID ( ElmID )
1002 IF ( i n tE lm ID .EQ. 0) THEN
1003 CALL QUIT (1234)
1004 ELSE
1005 CALL SetE l ( In tE lmID )
1006 GetElmIPCount = j i n t e l
1007 END IF
1008 ELSE
1009 CALL QUIT (1234)
1010 END IF
1011 RETURN
1012 END FUNCTION GetElmIPCount

This function returns the number of integration points for an element (elmID). The
default return value for the function is zero and in the case of an error the QUIT
subroutine is called with an error code of 1234. The SetEl utility subroutine is used
to set the current element and the number of integration points is obtained using the
jintel variable.

5.4.14 GetElmIntID

This function converts the external ID of an element to its corresponding internal ID.
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Input(s):
elmID INTEGER external element ID

Output(s):
INTEGER internal element ID

1068 INTEGER FUNCTION GetE lmIn t ID ( elmID )
1069 INTEGER , INTENT ( IN ) : : elmID
1070

1071 INTEGER : : i e l i n t , t E l m I n t I D
1072

1073 t E l m I n t I D = i e l i n t ( elmID )
1074

1075 IF ( t E l m I n t I D . LE . 0) THEN
1076 CALL QUIT (1234)
1077 ELSE
1078 GetElmIn t ID = t E l m I n t I D
1079 END IF
1080

1081 END FUNCTION GetE lmIn t ID

TheGetElmIntID functionmakes use of the ielint utility function to convert the external
element ID to the internal element number. An error code is issued in the case of a
wrong conversion.

5.4.15 GetIPCoord

This function returns the coordinates of the integration points of an element.

Input(s):
elmID INTEGER external/user element ID
IP INTEGER integration point number

Output(s):
REAL*8(3) coordinates of the integration

point

1308 FUNCTION GetIPCoord ( elmID , IP )
1309 INTEGER , INTENT ( IN ) : : elmID , IP
1310 REAL∗8 , DIMENSION ( 3 ) : : GetIPCoord
1311

1312 REAL∗8 : : tCoord
1313 INTEGER : : i , nEl InGroup , in tE lmID , dataIndex , n , e lmIndex
1314

1315 GetIPCoord = [ 0 . D0 , 0 .D0 , 0 .D0 ]
1316

1317 i n tE lm ID = GetE lmIn t ID ( elmID )
1318 iGroup = 0
1319 elmIndex = 0
1320 DO WHILE ( ( iGroup . LT . nELGroups ) .AND. ( elmIndex .EQ. 0 ) )
1321 iGroup = iGroup + 1
1322 CALL Setup_ElGroups ( iGroup , nElInGroup , 0 , 0 , 0 )
1323 elmIndex = GetIndex ( iElGroup_ElNum , nElInGroup , i n tE lm ID )
1324 END DO
1325

1326 IF ( e lmIndex .EQ. 0) THEN
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1327 CALL QUIT (1234)
1328 ELSE
1329 i t y p = i e l t y p e ( i n tE lm ID )
1330 CALL SetE l ( i n tE lm ID )
1331 CALL wrat3n ( VarsElem ( i e l s b n ) , n , elmIndex , iGroup , 0)
1332 l o f r = ( n − 1) ∗ n e l s t r
1333 data Index = i c r x p t + ( IP − 1) ∗ ncrdmx + l o f r
1334 DO i = 1 , ncrd
1335 tCoord = varselem ( da ta Index )
1336 GetIPCoord ( i ) = tCoord
1337 data Index = data Index + 1
1338 END DO
1339 END IF
1340

1341 END FUNCTION GetIPCoord

The GetIPCoord function returns the coordinates of the integration points (IP) of an
element (elmID). The function returns an array of three double precision floats and
the default values are three zeros. The element number is the user element ID which
will be converted to the internal user ID (intElmID). Then, a search will be conducted
in every element group, using the IndexArray function, to find this element ID (line
13–17). In line 19, if the elmIndex variable is zero, the element is not found in the
iElGroup_ElNum array. The function returns the (0, 0, 0) coordinates by default. It is
possible to use the QUIT subroutine ofMarc which stops the subroutine and returns
an error code. In this case, the code is 1234 (line 21). It is a personal preference to
choose between these two options. In any case, the whole listing is adapted from the
documentations of Marc [27] which can be referred to a detailed description.

5.4.16 GetIPVal

This function evaluates the value of an elemental quantity in an integration point.

Input(s):
elmID INTEGER external/user element ID
IP INTEGER integration point number
elmCode INTEGER element post code

Example elemental post codes:
1-6 Components of strain
11-16 Components of stress
17 von Mises stress

Output(s):
REAL*8 value of the requested quantity

1383 FUNCTION GetIPVal ( elmID , IP , elmCode )
1384 INTEGER , INTENT ( IN ) : : elmID , IP , elmCode
1385 REAL∗8 : : Get IPVal
1386

1387 REAL∗8 : : e lmIPVal
1388

1389 IF ( ( IP .EQ. 0) .OR. ( elmID .EQ. 0 ) )THEN
1390 CALL QUIT (1234)
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1391 ELSE
1392 CALL ElmVar ( elmCode , elmID , IP , 0 , e lmIPVal )
1393 GetIPVal = elmIPVAl
1394 END IF
1395 RETURN
1396 END FUNCTION GetIPVal

This function returns the scalar value for an integration point. It uses the Elmvar utility
subroutine to evaluate the quantity. In the case of an error, the QUIT subroutine is
called with an error code of 1234.

5.4.17 GetNodCoord

This function returns the undeformed/deformed coordinates of a node ID.

Input(s):
nodID INTEGER external/user nod ID
nodState INTEGER the state of the node (optional):

1 undeformed state (default)
2 deformed state

Output(s):
REAL*8(3) coordinates of the center

1435 FUNCTION GetNodCoord ( nodID , nodState )
1436 INTEGER , INTENT ( IN ) : : nodID
1437 INTEGER , OPTIONAL , INTENT ( IN ) : : nodState
1438 REAL∗8 , DIMENSION ( 3 ) : : GetNodCoord
1439

1440 INTEGER : : nComp , dataType , i
1441 REAL∗8 , DIMENSION ( 3 ) : : nodCoord , nodDisp
1442 INTEGER : : coo rdS ta te
1443

1444 nodCoord = [ 0 . 0 D0 , 0 .0D0 , 0 .0D0 ]
1445

1446 IF (PRESENT( nodState ) ) THEN
1447 coordS ta te = nodState
1448 ELSE
1449 coordS ta te = 1
1450 END IF
1451

1452 CALL NodVar ( 0 , nodID , nodCoord , nComp , dataType )
1453

1454 IF ( coordS ta te .EQ. 1) THEN
1455 GetNodCoord = nodCoord
1456 ELSE
1457 CALL NodVar ( 1 , nodID , nodDisp , nComp , dataType )
1458 GetNodCoord = nodCoord + nodDisp
1459 END IF
1460 IF (nComp .EQ. 2) GetNodCoord ( 3 ) = 0 .D0
1461 END FUNCTION GetNodCoord

The GetNodeCoord function returns either the original or the deformed coordinates of
a node based on the value of the nodState optional argument. A value of 1 indicates
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the original coordinates and a value of 2 is used for the deformed coordinates. If
the argument is not provided, the original coordinates are returned by default. The
return value of the function is an array of REAL items. This function uses the Nodvar
utility subroutine to extract the coordinates. The first argument is the nodal post code
which asks for the coordinates of the nodID node. The returned value is stored in a
temporary array (tCoordLst). The nComp and dataType variables return the number
of components and the returned data type, respectively (see [27]). Note that the node
number must be the user node ID. For a 2D analysis which is assumed to be in the
X–Y plane, the third dimension is filled with zero.

5.4.18 GetNodExtID

This function converts the internal ID of a node to its external/user ID.

Input(s):
intNodID INTEGER internal node ID

Output(s):
INTEGER external node ID

1502 INTEGER FUNCTION GetNodExtID ( in tNodID )
1503 INTEGER , INTENT ( IN ) : : in tNodID
1504

1505 INTEGER : : t In tNod ID , nodext
1506

1507 t I n t N o d I D = nodext ( in tNodID )
1508

1509 IF ( t I n t N o d I D . LE . 0) THEN
1510 CALL QUIT (1234)
1511 ELSE
1512 GetNodExtID = t I n t N o d I D
1513 END IF
1514

1515 END FUNCTION GetNodExtID

The GetNodExtID function accepts the internal node ID (intNodID) and returns the
user node number by means of the nodext utility subroutine. An error code is issued
for the case of a wrong conversion.

5.4.19 GetNodExtraVal

This function returns the extrapolated value of an integration point to the correspond-
ing nodes.
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Input(s):
elmID INTEGER external/user element ID
nodID INTEGER external/user node ID
IP INTEGER integration point number
elmCode INTEGER element post code

Example elemental post codes:
1-6 Components of strain
11-16 Components of stress
17 von Mises stress

Output(s):
REAL*8 extrapolated value of the quantity

1658 FUNCTION GetNodExtraVal ( elmID , nodID , IP , elmCode )
1659 INTEGER , INTENT ( IN ) : : elmID , nodID , IP , elmCode
1660 REAL∗8 : : GetNodExtraVal
1661

1662 REAL∗8 , ALLOCATABLE : : I P V a l L s t ( : )
1663 INTEGER : : nIP , i I P
1664

1665 nIP = GetElmIPCount ( elmID )
1666

1667 IF ( nIP .NE. 4) THEN
1668 CALL QUIT (1234)
1669 ELSE
1670 ALLOCATE ( I P V a l L s t ( nIP ) )
1671 DO i I P = 1 , nIP
1672 I P V a l L s t ( i I P ) = Get IPVal ( elmId , i I P , elmCode )
1673 END DO
1674

1675 SELECT CASE ( IP )
1676 CASE( 1 )
1677 GetNodExtraVal =
1678 & 0.25D0 ∗ ( ( 1 . D0 + 3 .D0 ∗ SQRT( 3 . D0 ) ) ∗ I P V a l L s t ( 1 ) +
1679 & ( 1 . D0 − 1 .D0 ∗ SQRT( 3 . D0 ) ) ∗ I P V a l L s t ( 2 ) +
1680 & ( 1 . D0 − 1 .D0 ∗ SQRT( 3 . D0 ) ) ∗ I P V a l L s t ( 3 ) +
1681 & ( 1 . D0 − 1 .D0 ∗ SQRT( 3 . D0 ) ) ∗ I P V a l L s t ( 4 ) )
1682 CASE( 2 )
1683 GetNodExtraVal =
1684 & 0.25D0 ∗ ( ( 1 . D0 − 1 .D0 ∗ SQRT( 3 . D0 ) ) ∗ I P V a l L s t ( 1 ) +
1685 & ( 1 . D0 + 3 .D0 ∗ SQRT( 3 . D0 ) ) ∗ I P V a l L s t ( 2 ) +
1686 & ( 1 . D0 − 1 .D0 ∗ SQRT( 3 . D0 ) ) ∗ I P V a l L s t ( 3 ) +
1687 & ( 1 . D0 − 1 .D0 ∗ SQRT( 3 . D0 ) ) ∗ I P V a l L s t ( 4 ) )
1688 CASE( 4 )
1689 GetNodExtraVal =
1690 & 0.25D0 ∗ ( ( 1 . D0 − 1 .D0 ∗ SQRT( 3 . D0 ) ) ∗ I P V a l L s t ( 1 ) +
1691 & ( 1 . D0 − 1 .D0 ∗ SQRT( 3 . D0 ) ) ∗ I P V a l L s t ( 2 ) +
1692 & ( 1 . D0 − 1 .D0 ∗ SQRT( 3 . D0 ) ) ∗ I P V a l L s t ( 3 ) +
1693 & ( 1 . D0 + 3 .D0 ∗ SQRT( 3 . D0 ) ) ∗ I P V a l L s t ( 4 ) )
1694 CASE( 3 )
1695 GetNodExtraVal =
1696 & 0.25D0 ∗ ( ( 1 . D0 − 1 .D0 ∗ SQRT( 3 . D0 ) ) ∗ I P V a l L s t ( 1 ) +
1697 & ( 1 . D0 − 1 .D0 ∗ SQRT( 3 . D0 ) ) ∗ I P V a l L s t ( 2 ) +
1698 & ( 1 . D0 + 3 .D0 ∗ SQRT( 3 . D0 ) ) ∗ I P V a l L s t ( 3 ) +
1699 & ( 1 . D0 − 1 .D0 ∗ SQRT( 3 . D0 ) ) ∗ I P V a l L s t ( 4 ) )
1700 END SELECT
1701 END IF
1702 END FUNCTION GetNodExtraVal

The extrapolationmethod used in this subroutine is only applicable for 4-node quadri-
lateral elements with linear interpolation functions. The integration point values are
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obtained using the GetIPVal function and they are used to calculate the extrapo-
lated values. The formulas are adapted from the stress smoothing method introduced
in [15].

5.4.20 GetNodIPVal

This function returns the equivalent value of an elemental quantity in the neighboring
node.

Input(s):
nodID INTEGER external/user node ID
elmCode INTEGER element post code

Example elemental post codes:
1-6 Components of strain
11-16 Components of stress
17 von Mises stress

calcMeth INTEGER calculation method
Possible methods:
1 Translation (unweighted averaging)
2 Extrapolation (unweighted averaging)
3 Average (unweighted averaging)
4 Translation (weighted averaging)
5 Extrapolation (weighted averaging)
6 Average (weighted averaging)

Output(s):
REAL*8 value of the requested quantity

1762 REAL∗8 FUNCTION GetNodIPVal ( nodID , elmCode , ca lcMeth )
1763 INTEGER , INTENT ( IN ) : : nodID , elmCode , ca lcMeth
1764

1765 INTEGER : : curElm , cur IP , n I temLst , i
1766 INTEGER , ALLOCATABLE : : e lmLst ( : ) , I P L s t ( : )
1767 REAL∗8 , ALLOCATABLE : : a reaLs t ( : )
1768 REAL∗8 : : curVal , t o t V a l , elmAve , elmCen ( 3 ) , curArea , t o t A r e a
1769

1770 t o t V a l = 0 .D0
1771 CALL Ex t rac tNodClose IPLs t ( nodID , n I temLst , elmLst , I P L s t )
1772

1773 IF ( n I temLs t .EQ. 0) THEN
1774 CALL QUIT (1234)
1775 ELSE
1776 ALLOCATE ( a reaLs t ( n I temLs t ) )
1777 t o t A r e a = 0 .D0
1778

1779 DO i = 1 , n I temLs t
1780 curElm = elmLst ( i )
1781 cu r IP = I P L s t ( i )
1782 SELECT CASE ( calcMeth )
1783 CASE ( 1 )
1784 cu rVa l = Get IPVal ( curElm , cu r Ip , elmCode )
1785 a r e a l s t ( i ) = 1 .D0
1786 CASE ( 2 )
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1787 cu rVa l = GetNodExtraVal ( curElm , nodID , cur IP , elmCode )
1788 a r e a l s t ( i ) = 1 .D0
1789 CASE ( 3 )
1790 cu rVa l = GetElmAveVal ( curElm , elmCode )
1791 a r e a l s t ( i ) = 1 .D0
1792 CASE ( 4 )
1793 cu rVa l = Get IPVal ( curElm , cu r Ip , elmCode )
1794 a r e a l s t ( i ) = GetElmArea ( curElm )
1795 CASE ( 5 )
1796 cu rVa l = GetNodExtraVal ( curElm , nodID , cur IP , elmCode )
1797 a r e a l s t ( i ) = GetElmArea ( curElm )
1798 CASE ( 6 )
1799 cu rVa l = GetElmAveVal ( curElm , elmCode )
1800 a r e a l s t ( i ) = GetElmArea ( curElm )
1801 END SELECT
1802 curArea = areaLs t ( i )
1803 t o t A r e a = t o t A r e a + curArea
1804 t o t V a l = t o t V a l + ( cu rVa l ∗ curArea )
1805 END DO
1806 GetNodIPVal = t o t V a l / t o t A r e a
1807 END IF
1808 END FUNCTION GetNodIPVal

TheGetNodIPVal function returns the nodal value of an elemental quantity. In general,
a node is a common entity between several elements. Therefore, a nodal value, which
represents an elemental quantity, is affected by all the neighboring elements. To be
more precise, the nodal value is affected by the closest integration point of each
element. Therefore, the very first thing to do, is to find the closest integration points
with respect to the node. This is done using the ExtractNodCloseIPLst subroutine.

Next, all the values obtained from the integration points are projected to the
node. All the contributions from elements are summed up and averaged to obtain
the nodal value. This projection can be done by several methods such as translation,
extrapolation, and averaging. The translation method is just copying the same values
of the integration points to the node. The extrapolation method is extrapolating the
average value of the element to the node. The average value is the average of the
integration point values in each element which is assigned to all of the nodes of that
particular element.

The threementionedmethods are providedbyMentat as standard. In the standard
method, the size of each element is not taken into account, i.e. the contribution of
elements with different sizes is assumed to be identical. Three additional methods
are provided by this subroutine which consider the area of each element as a weight
factor, and a weighted average is calculated for the contributions (calcMeth = 5, 6
and 7).

The GetIPVal, GetNodExtraVal and the GetElmAveVal functions are used to obtain
the translated, extrapolated, and the averaged values, respectively. For the cases
of weighted averaging the GetElmArea function is used to obtain the area of the
contributor elements.
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5.4.21 GetNodIntID

This function converts the external ID of a node to its internal ID.

Input(s):
nodID INTEGER external node ID

Output(s):
INTEGER internal node ID

1576 INTEGER FUNCTION GetNodInt ID ( nod In t ID )
1577 INTEGER , INTENT ( IN ) : : nod In t ID
1578

1579 INTEGER : : nod in t , t N o d I n t I D
1580

1581 t N o d I n t I D = n o d i n t ( nod In t ID )
1582

1583 IF ( t N o d I n t I D . LE . 0) THEN
1584 CALL QUIT (1234)
1585 ELSE
1586 GetNodInt ID = t N o d I n t I D
1587 END IF
1588

1589 END FUNCTION GetNodInt ID

The GetNodIntID function returns the internal node ID by means of the nodint utility
subroutine. An error code is issued for the case of a wrong conversion.

5.4.22 IsElmIDValid

This function returns a .TRUE. value for a valid (existing) element ID.

Input(s):
elmID INTEGER external/user element ID

Output(s):
LOGICAL .TRUE. for an existing element

2988 FUNCTION IsE lm IDVa l i d ( elmID )
2989 INTEGER , INTENT ( IN ) : : elmID
2990 LOGICAL : : I sE lm IDVa l i d
2991

2992 INTEGER , ALLOCATABLE, DIMENSION ( : ) : : e lmIDLst
2993

2994 CALL MakeElmIDLst ( e lmIDLst )
2995 IF ( GetIndex ( elmIDLst , numel , elmID ) .EQ. 0) THEN
2996 I sE lm IDVa l i d = . FALSE .
2997 ELSE
2998 I sE lm IDVa l i d = .TRUE.
2999 END IF
3000 RETURN
3001 END FUNCTION IsE lm IDVa l i d

This function creates a list of element IDs using the MakeElmIDLst and searches for
the elmID in the list. If the search is successful a .TRUE. value is returned.
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5.4.23 IsItemInSet

This function checks the existence of an item in a set.

Input(s):
setName CHARACTER(*) the name of the set
itemID INTEGER ID of the set item (node/element)
outUnit INTEGER output unit (optional)

default = 6

Output(s):
LOGICAL .TRUE. if the item is in the set

.FALSE. if the item is not in the set or the set is
not found

1843 LOGICAL FUNCTION I s I t e m I n S e t ( setName , i temID , o u t U n i t )
1844 CHARACTER(LEN=∗ ) , INTENT ( IN ) : : setName
1845 INTEGER , INTENT ( IN ) : : i temID
1846 INTEGER , INTENT ( IN ) , OPTIONAL : : o u t U n i t
1847

1848 INTEGER , DIMENSION (MAX_SET_ITEM ) : : i t e m L s t
1849 INTEGER : : isFound , setType , n I temLst , i , ou
1850

1851 IF ( Present ( o u t U n i t ) ) THEN
1852 ou = o u t U n i t
1853 ELSE
1854 ou = 6
1855 END IF
1856

1857 WRITE ( ou , ∗ ) ’∗∗ I s I t e m I n S e t SUBROUTINE ’
1858 I s I t e m I n S e t = . FALSE .
1859 CALL Marc_Set In f ( setName , isFound , i temLs t , setType , n I temLs t )
1860 IF ( isFound .EQ. 1) THEN
1861 WRITE( ou , ∗ ) ’∗ Set ’ , setName , ’ was found . ’
1862 DO i = 1 , n I temLs t
1863 IF ( i temID .EQ. i t e m L s t ( i ) ) THEN
1864 WRITE( ou , ∗ ) ’∗ I tem ’ , i temID , ’ was found . ’
1865 I s I t e m I n S e t = .TRUE.
1866 END IF
1867 END DO
1868 ELSE IF ( isFound .EQ. 0) THEN
1869 WRITE( ou , ∗ ) ’∗ setName = ’ , setName , ’ was not found . ’
1870 END IF
1871 RETURN
1872 END FUNCTION I s I t e m I n S e t

The IsItemInSet function checks if the itemID, referencing a node or an element, is a
member of the set named setName; a .TRUE. value is returned for a positive result.
The function uses the utility subroutine Marc_SetInfo which generally can work on
any type of sets, but here, only elements or nodes are a matter of concern. While
using this utility subroutine, it is required to make sure that the array containing the
items (itemLst) is large enough to hold the members of the set. This can be done
by assigning to the constant MAX_SET_ITEM a large enough number. The function
returns a .FALSE. value if either the set or the member in the set is not found.
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5.4.24 IsNodIDValid

This function returns a .TRUE. value for a valid (existing) node ID.

Input(s):
nodID INTEGER external/user node ID

Output(s):
LOGICAL .TRUE. for an existing element

2945 FUNCTION IsNod IDVa l id ( nodID )
2946 INTEGER , INTENT ( IN ) : : nodID
2947 LOGICAL : : I sNod IDVa l id
2948

2949 INTEGER , ALLOCATABLE, DIMENSION ( : ) : : nodIDLst
2950

2951 CALL MakeNodIDLst ( nodIDLst )
2952 IF ( GetIndex ( nodIDLst , numnp , nodID ) .EQ. 0) THEN
2953 I sNod IDVa l id = . FALSE .
2954 ELSE
2955 I sNod IDVa l id = .TRUE.
2956 END IF
2957 RETURN
2958 END FUNCTION IsNod IDVa l id

This function creates a list of node IDs using the MakeNodIDLst and searches for the
nodID in the list. If the search is successful, a .TRUE. value is returned.

5.4.25 MakeElmIDLst

This subroutine creates a list of all the element IDs of the model.

Input(s):
none

Output(s):
elmIDLst INTEGER(:) external/user element ID

2907 SUBROUTINE MakeElmIDLst ( e lmIDLst )
2908 INTEGER , ALLOCATABLE, DIMENSION ( : ) , INTENT (OUT) : : e lmIDLst
2909

2910 INTEGER : : i
2911

2912 ALLOCATE ( e lmIDLst ( numel ) )
2913 e lmIDLst = [ ( GetElmExtID ( i ) , i = 1 , numel ) ]
2914 RETURN
2915 END SUBROUTINE MakeElmIDLst

The allocatable output is allocated for the total number of elements in the model
(numel). The GetElmExtID subroutine is used to fill up the array with the user
element IDs.
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5.4.26 MakeIPCoordLst

This subroutine creates a list of coordinates for the integration points of all the
elements in a model or a list of specified elements.

Input(s):
elmIDLst INTEGER(:) list of external/user element ID (optional)
nElmIDLst INTEGER number of elements in the list (optional)

Output(s):
IPCoordLst REAL*8(:,:,:) array of integration point numbers and

coordinates
nIPCoordLst INTEGER number of integration points in the list

3142 SUBROUTINE MakeIPCoordLst ( IPCoordLst , nIPCoordLst ,
3143 & elmIDLst , nElmIDLst )
3144

3145 REAL∗8 , ALLOCATABLE, DIMENSION ( : , : , : ) , INTENT (OUT) : : IPCoordLst
3146 INTEGER , INTENT (OUT) : : n IPCoordLst
3147 INTEGER , DIMENSION ( ∗ ) , INTENT ( IN ) , OPTIONAL : : e lmIDLst
3148 INTEGER , INTENT ( IN ) , OPTIONAL : : nElmIDLst
3149

3150 INTEGER : : elmID , in tE lmID , i , j , nIP
3151

3152 IF ( Present ( e lmIDLst ) .AND. Present ( nElmIDLst ) ) THEN
3153

3154 ALLOCATE ( IPCoordLst ( nElmIDLst , nintbmx , 3 ) )
3155 IPCoordLst = 0 .D0
3156

3157 DO i = 1 , nElmIDLst
3158 elmID = elmIDLst ( i )
3159 nIP = GetElmIPCount ( elmID )
3160 DO j = 1 , nIP
3161 IPCoordLst ( i , j , : ) = GetIPCoord ( elmID , j )
3162 END DO
3163 END DO
3164

3165 nIPCoordLst = nElmIDLst
3166 ELSE
3167

3168 ALLOCATE ( IPCoordLst ( numel , nintbmx , 3 ) )
3169 IPCoordLst = 0 .D0
3170

3171 DO in tE lm ID = 1 , numel
3172 elmID = GetElmExtID ( i n tE lm ID )
3173 nIP = GetElmIPCount ( elmID )
3174 DO j = 1 , nIP
3175 IPCoordLst ( in tE lmID , j , : ) = GetIPCoord ( elmID , j )
3176 END DO
3177 END DO
3178

3179 nIPCoordLst = numel
3180 END IF
3181 RETURN
3182 END SUBROUTINE MakeIPCoordLst

This subroutine creates a 3D array containing the integration points of elements and
their coordinates. It can be done either for all the elements of the model or for a
specific set of elements indicated by the (elmIDLst) array. The GetIPCoord function
is used to obtain the coordinates for each individual integration point.
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5.4.27 MakeIPValLst

This subroutine makes a list of integration point values for all elements or a selected
list of elements of the model.

Input(s):
elmCode INTEGER element post code

Example elemental post codes:
1-6 Components of strain
11-16 Components of stress
17 von Mises stress

elmIDLst INTEGER(:) list of external/user element ID (optional)
nElmIDLst INTEGER number of elements in the list (optional)

Output(s):
IPValLst REAL*8(:,:) array of integration point numbers and coordi-

nates
nIPValLst INTEGER number of integration points in the list

3221 SUBROUTINE MakeIPValLst ( elmCode , IPVa lLs t , n IPVa lLs t ,
3222 & elmIDLst , nElmIDLst )
3223

3224 INTEGER , INTENT ( IN ) : : elmCode
3225 REAL∗8 , ALLOCATABLE, DIMENSION ( : , : ) , INTENT (OUT) : : I P V a l L s t
3226 INTEGER , INTENT (OUT) : : n IPVa lLs t
3227 INTEGER , DIMENSION ( ∗ ) , INTENT ( IN ) , OPTIONAL : : e lmIDLst
3228 INTEGER , INTENT ( IN ) , OPTIONAL : : nElmIDLst
3229

3230 INTEGER : : elmID , in tE lmID , i , nIP , IP
3231

3232 IF ( Present ( e lmIDLst ) .AND. Present ( nElmIDLst ) ) THEN
3233 ALLOCATE ( I P V a l L s t ( nElmIDLst , n in tbmx ) )
3234 I P V a l L s t = 0 .D0
3235

3236 DO i = 1 , nElmIDLst
3237 elmID = elmIDLst ( i )
3238 nIP = GetElmIPCount ( elmID )
3239 DO IP = 1 , nIP
3240 I P V a l L s t ( i , IP ) = Get IPVal ( elmID , IP , elmCode )
3241 END DO
3242 END DO
3243

3244 n IPVa lLs t = nElmIDLst
3245 ELSE
3246 ALLOCATE ( I P V a l L s t ( numel , n in tbmx ) )
3247 I P V a l L s t = 0 .D0
3248

3249 DO in tE lm ID = 1 , numel
3250 elmID = GetElmExtID ( i n tE lm ID )
3251 nIP = GetElmIPCount ( elmID )
3252 DO IP = 1 , nIP
3253 I P V a l L s t ( in tE lmID , IP ) = Get IPVal ( elmID , IP , elmCode )
3254 END DO
3255 END DO
3256

3257 n IPVa lLs t = numel
3258 END IF
3259 RETURN
3260 END SUBROUTINE MakeIPValLst
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This subroutine uses the GetIPVal function to obtain the elemental value for an inte-
gration point. The output is a list of these values which is obtained either for all of
the elements or for a group of elements indicated by the (elmIDLst) array.

5.4.28 MakeNodCoordLst

This subroutine makes a list of the coordinates for either a selected list of nodes or
all the nodes of the model.

Input(s):
nodState INTEGER the state of the node (optional):

1 undeformed state (default)
2 deformed state

nodLst INTEGER(:) list of selected nodes (optional)
nNodLst INTEGER number of selected nodes (optional)

Output(s):
nodCoordLst INTEGER(:,:) list of coordinates of the nodes
nNodCoordLst INTEGER number of nodes in the list

3053 SUBROUTINE MakeNodCoordLst ( nodCoordLst , nNodCoordLst , nodState ,
3054 & nodLst , nNodLst )
3055

3056 REAL∗8 , ALLOCATABLE, DIMENSION ( : , : ) , INTENT (OUT) : : nodCoordLst
3057 INTEGER , INTENT (OUT) : : nNodCoordLst
3058 INTEGER , DIMENSION ( ∗ ) , INTENT ( IN ) , OPTIONAL : : nodLst
3059 INTEGER , INTENT ( IN ) , OPTIONAL : : nNodLst
3060 INTEGER , INTENT ( IN ) , OPTIONAL : : nodState
3061

3062 INTEGER : : nodID , in tNodID , i , ns
3063

3064 IF ( Present ( nodState ) ) THEN
3065 ns = nodState
3066 ELSE
3067 ns = 1
3068 END IF
3069

3070 IF ( Present ( nodLst ) .AND. Present ( nNodLst ) ) THEN
3071 ALLOCATE ( nodCoordLst ( nNodLst , 3 ) )
3072 DO i = 1 , nNodLst
3073 nodID = nodLst ( i )
3074 nodCoordLst ( : , i ) = GetNodCoord ( nodID , ns )
3075 END DO
3076 nNodCoordLst = nNodLst
3077 ELSE
3078 ALLOCATE ( nodCoordLst ( numnp , 3 ) )
3079 DO in tNodID = 1 , numnp
3080 nodID = GetNodExtID ( in tNodID )
3081 nodCoordLst ( : , i n tNodID ) = GetNodCoord ( nodID , ns )
3082 END DO
3083 nNodCoordLst = numnp
3084 END IF
3085 RETURN
3086 END SUBROUTINE MakeNodCoordLst
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This subroutine makes a list of coordinates for all the nodes in the model or alterna-
tively, for the list of nodes provided by the nodLst array. The GetNodCoord function
is used to obtain the coordinates of a node. Depending on the optional nodState flag,
the original or the deformed state coordinates are returned. If the flag is not set, the
original state coordinates will be returned.

5.4.29 MakeNodIDLst

This subroutine makes a list of all node user IDs in a model.

Input(s):
none

Output(s):
nodLst INTEGER(:) list of the node user IDs

2869 SUBROUTINE MakeNodIDLst ( nodIDLst )
2870 INTEGER , ALLOCATABLE, DIMENSION ( : ) , INTENT (OUT) : : nodIDLst
2871

2872 INTEGER : : i
2873

2874 ALLOCATE ( nodIDLst ( numnp ) )
2875 nodIDLst = [ ( GetNodExtID ( i ) , i = 1 , numnp ) ]
2876 RETURN
2877 END SUBROUTINE MakeNodIDLst

This subroutine makes a list of all the nodes in the model using the GetNodExtID
function. The nodIDLst allocatable array is used to hold the elements of this list.

5.4.30 MakeNodValIPLst

This subroutine makes a list of the equivalent value of an elemental quantity on the
neighboring node. If no nodes are specified, this is done for all of the nodes in the
model.

Input(s):
elmCode INTEGER element post code

Example elemental post codes:
1-6 Components of strain
11-16 Components of stress
17 von Mises stress
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calcMeth INTEGER calculation method
Possible methods:
1 Translation (unweighted averaging)
2 Extrapolation (unweighted averaging)
3 Average (unweighted averaging)
4 Translation (weighted averaging)
5 Extrapolation (weighted averaging)
6 Average (weighted averaging)

nodLst INTEGER(:,:) list of selected nodes (optional)
nNodLst INTEGER number of selected nodes (optional)

Output(s):
nodValIPLst INTEGER(:) list of projected nodal values
nNodValIPLst INTEGER number of values in the list

3221 SUBROUTINE MakeIPValLst ( elmCode , IPVa lLs t , n IPVa lLs t ,
3222 & elmIDLst , nElmIDLst )
3223

3224 INTEGER , INTENT ( IN ) : : elmCode
3225 REAL∗8 , ALLOCATABLE, DIMENSION ( : , : ) , INTENT (OUT) : : I P V a l L s t
3226 INTEGER , INTENT (OUT) : : n IPVa lLs t
3227 INTEGER , DIMENSION ( ∗ ) , INTENT ( IN ) , OPTIONAL : : e lmIDLst
3228 INTEGER , INTENT ( IN ) , OPTIONAL : : nElmIDLst
3229

3230 INTEGER : : elmID , in tE lmID , i , nIP , IP
3231

3232 IF ( Present ( e lmIDLst ) .AND. Present ( nElmIDLst ) ) THEN
3233 ALLOCATE ( I P V a l L s t ( nElmIDLst , n in tbmx ) )
3234 I P V a l L s t = 0 .D0
3235

3236 DO i = 1 , nElmIDLst
3237 elmID = elmIDLst ( i )
3238 nIP = GetElmIPCount ( elmID )
3239 DO IP = 1 , nIP
3240 I P V a l L s t ( i , IP ) = Get IPVal ( elmID , IP , elmCode )
3241 END DO
3242 END DO
3243

3244 n IPVa lLs t = nElmIDLst
3245 ELSE
3246 ALLOCATE ( I P V a l L s t ( numel , n in tbmx ) )
3247 I P V a l L s t = 0 .D0
3248

3249 DO in tE lm ID = 1 , numel
3250 elmID = GetElmExtID ( i n tE lm ID )
3251 nIP = GetElmIPCount ( elmID )
3252 DO IP = 1 , nIP
3253 I P V a l L s t ( in tE lmID , IP ) = Get IPVal ( elmID , IP , elmCode )
3254 END DO
3255 END DO
3256

3257 n IPVa lLs t = numel
3258 END IF
3259 RETURN
3260 END SUBROUTINE MakeIPValLst

This subroutine calculates the elemental quantities in the nodes and returns them as a
list of values. It uses the GetNodIPVal to do the calculations for each node. If no node
list is specified, it is done for all the nodes of the model. The elemental quantity and
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the calculation method are selected using the elmCode and the calcMeth parameters,
respectively.

5.4.31 MakeNodValLst

This subroutine makes a list of nodal values for all the nodes of the model or the
specified list of nodes.

Input(s):

nodCode INTEGER nodal post code
Example node post codes:
0 Coordinates
1 Displacement
2 Rotation
3 External force
4 External moment
5 Reaction force
6 Reaction moment
79 Total displacement

nodLst INTEGER(*) list of nodes
nNodLst INTEGER number of nodes in the list

Output(s):

valLst REAL*8(:,:) list of values
nValLst INTEGER number of values in the list
nComp INTEGER number of components for each value

405 SUBROUTINE MakeNodValLst ( nodCode , v a l L s t , nValLs t , nComp ,
406 & nodLst , nNodLst )
407

408 INTEGER , INTENT ( IN ) : : nodCode
409 INTEGER , DIMENSION ( ∗ ) , INTENT ( IN ) , OPTIONAL : : nodLst
410 INTEGER , INTENT ( IN ) , OPTIONAL : : nNodLst
411 REAL∗8 , ALLOCATABLE, DIMENSION ( : , : ) , INTENT (OUT) : : v a l L s t
412 INTEGER , INTENT (OUT) : : nValLs t , nComp
413

414 INTEGER : : nodID , in tNodID , nTempValLst , i
415 REAL∗8 , ALLOCATABLE, DIMENSION ( : ) : : tempValLst
416

417 IF ( Present ( nodLst ) .AND. Present ( nNodLst ) ) THEN
418 DO i = 1 , nNodLst
419 nodID = nodLst ( i )
420 CALL CalcNodVal ( nodID , nodCode , tempValLst , nTempValLst )
421

422 IF ( nTempValLst .EQ. 0) THEN
423 CALL QUIT (1234)
424 ELSE
425 IF ( A l l o c a t e d ( v a l L s t ) .EQV. . FALSE . )
426 & ALLOCATE ( v a l L s t ( nNodLst , nTempValLst ) )
427 v a l L s t ( i , : ) = tempValLst ( : )
428 END IF
429 END DO
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430 nComp = nTempValLst
431 nVa lLs t = nNodLst
432 ELSE
433 DO in tNodID = 1 , numnp
434 nodID = GetNodExtID ( in tNodID )
435

436 CALL CalcNodVal ( nodID , nodCode , tempValLst , nTempValLst )
437

438 IF ( nTempValLst .EQ. 0) THEN
439 CALL QUIT (1234)
440 ELSE
441 IF ( A l l o c a t e d ( v a l L s t ) .EQV. . FALSE . )
442 & ALLOCATE( v a l L s t ( numnp , nTempValLst ) )
443 v a l L s t ( in tNodID , : ) = tempValLst ( : )
444 END IF
445 END DO
446 nComp = nTempValLst
447 nVa lLs t = numnp
448 END IF
449 RETURN
450

451 END SUBROUTINE MakeNodValLst

This subroutine creates a list of nodal values. Each nodal value is obtained using the
CalcNodVal subroutine. If no node list is specified, the list will be comprised of all
the nodes of the model.

5.4.32 PrintElmIDGroupedLst

This subroutine lists all of the elements of the model with the corresponding element
groups.

Input(s):
elmID INTEGER external element ID

Output(s):
INTEGER internal element ID

1970 SUBROUTINE Pr in tE lmIDGroupedLst ( o u t U n i t )
1971 INTEGER , OPTIONAL , INTENT ( IN ) : : o u t U n i t
1972

1973 INTEGER : : i , j , i n t E l I D , i n tE lType , nElInGroup , ou
1974

1975 100 FORMAT ( A30 ,1X , I 4 )
1976

1977 IF ( Present ( o u t U n i t ) ) THEN
1978 ou = o u t U n i t
1979 ELSE
1980 ou = 6
1981 END IF
1982

1983 WRITE ( ou , ∗ ) ’∗∗ Pr in tE lmIDGroupedLst SUBROUTINE ’
1984 WRITE ( ou , 1 0 0 ) ’No . o f Element Group ( s ) : ’ , nElGroups
1985 WRITE ( ou , ∗ )
1986 DO i = 1 , nElGroups
1987 CALL Setup_ElGroups ( i , nElInGroup , 0 , 0 , 0 )
1988 WRITE ( ou , 1 0 0 ) ’ Element Group No . : ’ , i
1989 WRITE ( ou , 1 0 0 ) ’No . o f nodes per element : ’ , nnode
1990 WRITE ( ou , 1 0 0 ) ’No . o f IPs per element : ’ , i n t e l
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1991 WRITE ( ou , 1 0 0 ) ’ Element c l a s s : ’ , l c l a s s
1992 WRITE ( ou , 1 0 0 ) ’ I n t e r n a l element type : ’ , i t y p
1993 WRITE ( ou , 1 0 0 ) ’ Element type : ’ , j t y p e
1994 WRITE ( ou , 1 0 0 ) ’No . o f c o o r d i n a t e s : ’ , n c r d e l
1995 WRITE ( ou , 1 0 0 ) ’No . o f DOFs per node : ’ , ndeg
1996 WRITE ( ou , 1 0 0 ) ’No . o f DOFs : ’ , ndegel
1997 WRITE ( ou , 1 0 0 ) ’No . o f e lements i n the group : ’ , nEl InGroup
1998 WRITE ( ou , ∗ ) ’ L i s t o f e lements i n the group : ’
1999 DO j = 1 , nEl InGroup
2000 i n t E l I D = iElGroup_ElNum ( j )
2001 i n t E l T y p e = iE lType ( i n t E l I D )
2002 WRITE ( ou , 1 0 0 ) ’ I n t e r n a l ID : ’ , i n t E l I D
2003 WRITE ( ou , 1 0 0 ) ’ User ID : ’ , GetElmExtID ( i n t E l I D )
2004 WRITE ( ou , 1 0 0 ) ’ I n t e r n a l Type : ’ , i n t E l T y p e
2005 END DO
2006 WRITE ( ou , ∗ )
2007 END DO
2008 END SUBROUTINE Pr in tE lmIDGroupedLst

This subroutine prints all the element groups and their element IDs. The
Setup_ElGroups utility subroutine is used to set the current element group (see
Sect. 2.3.3). Additionally, some other properties of the elements are printed, e.g. the
element class (lClass), number of integration points (intEl) etc.

5.4.33 PrintElmIDLst

This subroutine prints the list of user element IDs.

Input(s):
outUnit INTEGER output unit (optional)

Output(s):
none

1902 SUBROUTINE P r i n t E l m I D L s t ( o u t U n i t )
1903 INTEGER , OPTIONAL , INTENT ( IN ) : : o u t U n i t
1904

1905 INTEGER , ALLOCATABLE, DIMENSION ( : ) : : e lmIDLst
1906 INTEGER : : ou , i
1907

1908 100 FORMAT ( A19 ,1X , A19 )
1909 200 FORMAT ( I19 ,1X , I19 )
1910

1911

1912 IF ( Present ( o u t U n i t ) ) THEN
1913 ou = o u t U n i t
1914 ELSE
1915 ou = 6
1916 END IF
1917

1918 CALL MakeElmIDLst ( e lmIDLst )
1919

1920 DO i = 1 , numel
1921 WRITE ( ou , 1 0 0 ) ’ Element I n t e r n a l ID ’ , ’ Element E x t e r n a l ID ’
1922 WRITE ( ou , 2 0 0 ) i , e lmIDLst ( i )
1923 END DO
1924 RETURN
1925 END SUBROUTINE P r i n t E l m I D L s t

This subroutine prints the list of user element IDs.

http://dx.doi.org/10.1007/978-3-319-47668-1_2
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5.4.34 PrintIPCoordLst

This subroutine prints the coordinates of the integration points for either all elements
or a selected list of elements.

Input(s):
outUnit INTEGER output unit (optional)
elmIDLst INTEGER(:) list of external/user element ID (optional)
nElmIDLst INTEGER number of elements in the list (optional)

Output(s):
none

2152 SUBROUTINE P r i n t I P C o o r d L s t ( ou tUn i t , e lmIDLst , nElmIDLst )
2153 INTEGER , INTENT ( IN ) , OPTIONAL : : o u t U n i t
2154 INTEGER , DIMENSION ( ∗ ) , INTENT ( IN ) , OPTIONAL : : e lmIDLst
2155 INTEGER , INTENT ( IN ) , OPTIONAL : : nElmIDLst
2156

2157 INTEGER : : ou , elmID , in tE lmID , IP , nIP , nIPCoordLst , i
2158 REAL∗8 , ALLOCATABLE, DIMENSION ( : , : , : ) : : IPCoordLst
2159

2160 100 FORMAT ( A7 , X , A2 , X , 3 ( A15 , X ) )
2161 200 FORMAT ( I7 , X , I2 , X , 3 ( F15 . 4 ,X ) )
2162 300 FORMAT ( 5 9 ( ’ − ’ ) )
2163

2164 IF ( Present ( o u t U n i t ) ) THEN
2165 ou = o u t U n i t
2166 ELSE
2167 ou = 6
2168 END IF
2169

2170 WRITE ( ou , ∗ ) ’ I n t e g r a t i o n P o i n t Coord inates ’
2171 WRITE ( ou , 3 0 0 )
2172 WRITE ( ou , 1 0 0 ) ’ Element ’ , ’ IP ’ , ’X ’ , ’Y ’ , ’ Z ’
2173 WRITE ( ou , 3 0 0 )
2174

2175 IF ( Present ( e lmIDLst ) .AND. Present ( nElmIDLst ) ) THEN
2176 CALL MakeIPCoordLst ( IPCoordLst , nIPCoordLst ,
2177 & elmIDLst , nElmIDLst )
2178

2179 DO i = 1 , nIPCoordLst
2180 elmID = elmIDLst ( i )
2181 nIP = GetElmIPCount ( elmID )
2182 DO IP = 1 , n Ip
2183 WRITE ( ou , 200) elmID , IP , IPCoordLst ( i , IP , : )
2184 END DO
2185 WRITE ( ou , 3 0 0 )
2186 END DO
2187 ELSE
2188

2189 CALL MakeIPCoordLst ( IPCoordLst , n IPCoordLst )
2190

2191 DO in tE lm ID = 1 , nIPCoordLst
2192 elmID = GetElmExtID ( intELmID )
2193 nIP = GetElmIPCount ( elmID )
2194 DO IP = 1 , n Ip
2195 WRITE ( ou , 200) elmID , IP , IPCoordLst ( intELmID , IP , : )
2196 END DO
2197 WRITE ( ou , 3 0 0 )
2198 END DO
2199 END IF
2200 END SUBROUTINE P r i n t I P C o o r d L s t
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This subroutine prints the coordinates of the integration points. This can be done
either for all the elements of the model or for a selected list of elements (elmIDLst).

5.4.35 PrintIPValLst

This subroutine prints the elemental quantities in the integration points.

Input(s):
elmCode INTEGER element post code

Example elemental post codes:
1-6 Components of strain
11-16 Components of stress
17 von Mises stress

outUnit INTEGER output unit (optional)
elmIDLst INTEGER(:) list of external/user element ID (optional)
nElmIDLst INTEGER number of elements in the list (optional)

Output(s):
none

2054 SUBROUTINE P r i n t I P V a l L s t ( elmCode , ou tUn i t , e lmIDLst , nElmIDLst )
2055 INTEGER , INTENT ( IN ) : : elmCode
2056 INTEGER , INTENT ( IN ) , OPTIONAL : : o u t U n i t
2057 INTEGER , DIMENSION ( ∗ ) , INTENT ( IN ) , OPTIONAL : : e lmIDLst
2058 INTEGER , INTENT ( IN ) , OPTIONAL : : nElmIDLst
2059

2060 INTEGER : : ou , i , elmID , in tE lmID , IP , nIP , n IPVa lLs t
2061 REAL∗8 , ALLOCATABLE, DIMENSION ( : , : ) : : I P V a l L s t
2062

2063 100 FORMAT ( A13 , X , I 4 )
2064 200 FORMAT ( A7 , X , A2 , X , A16 , X)
2065 300 FORMAT ( I7 , X , I2 , X , F16 . 4 ,X)
2066 400 FORMAT ( 2 8 ( ’ − ’ ) )
2067

2068 IF ( Present ( o u t U n i t ) ) THEN
2069 ou = o u t U n i t
2070 ELSE
2071 ou = 6
2072 END IF
2073

2074 WRITE ( ou , 100) ’ Increment No . ’ , i n c
2075 WRITE ( ou , 100) ’ Element Post Code ’ , elmCode
2076 WRITE ( ou , 400)
2077 WRITE ( ou , 200) ’ Element ’ , ’ IP ’ , ’ Value ’
2078 WRITE ( ou , 400)
2079

2080 IF ( Present ( e lmIDLst ) .AND. Present ( nElmIDLst ) ) THEN
2081 CALL MakeIPValLst ( elmCode , IPVa lLs t , n IPVa lLs t ,
2082 & elmIDLst , nElmIDLst )
2083

2084 DO i = 1 , n IPVa lLs t
2085 elmID = elmIDLst ( i )
2086 nIP = GetElmIPCount ( elmID )
2087 DO IP = 1 , n Ip
2088 WRITE ( ou , 300) elmID , IP , I P V a l L s t ( i , IP )
2089 END DO
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2090 WRITE ( ou , 4 0 0 )
2091 END DO
2092 ELSE
2093 CALL MakeIPValLst ( elmCode , IPVa lLs t , n IPVa lLs t )
2094 DO in tE lm ID = 1 , n IPVa lLs t
2095 elmID = GetElmExtID ( intELmID )
2096 nIP = GetElmIPCount ( elmID )
2097 DO IP = 1 , n Ip
2098 WRITE ( ou , 300) elmID , IP , I P V a l L s t ( in tE lmID , IP )
2099 END DO
2100 WRITE ( ou , 4 0 0 )
2101 END DO
2102 END IF
2103

2104 END SUBROUTINE P r i n t I P V a l L s t

This subroutine prints the elemental quantities in the integration points of elements.
The elements can be a selected list (elmIDLst) or otherwise, all the elements of the
model are considered. The output unit is also optional and its default value is 6.

5.4.36 PrintNodCoordLst

This subroutine prints the coordinates of the nodes.

Input(s):
nodState INTEGER the state of the node (optional):

1 undeformed state (default)
2 deformed state

outUnit INTEGER output unit (optional)
nodLst INTEGER(*) list of nodes
nNodLst INTEGER number of nodes in the list

Output(s):
none

2235 SUBROUTINE Pr in tNodCoordLs t ( nodState , ou tUn i t , nodLst , nNodLst )
2236 INTEGER , INTENT ( IN ) , OPTIONAL : : nodState
2237 INTEGER , INTENT ( IN ) , OPTIONAL : : o u t U n i t
2238 INTEGER , DIMENSION ( ∗ ) , INTENT ( IN ) , OPTIONAL : : nodLst
2239 INTEGER , INTENT ( IN ) , OPTIONAL : : nNodLst
2240

2241 INTEGER : : i , ou , ns , nodID , nNodCoordLst
2242 REAL∗8 , ALLOCATABLE, DIMENSION ( : , : ) : : nodCoordLst
2243

2244 100 FORMAT ( A10 , X , 3 ( A15 , X ) )
2245 200 FORMAT ( I10 , X , 3 ( F15 . 4 ,X ) )
2246 300 FORMAT ( 5 9 ( ’ − ’ ) )
2247

2248

2249 IF ( Present ( o u t U n i t ) ) THEN
2250 ou = o u t U n i t
2251 ELSE
2252 ou = 6
2253 END IF
2254

2255 IF ( Present ( nodState ) ) THEN
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2256 ns = nodState
2257 ELSE
2258 ns = 1
2259 END IF
2260

2261 IF ( ns .EQ. 1) THEN
2262 WRITE( ou , ∗ ) ’ O r i g i n a l Nodal Coord inates ’
2263 ELSE
2264 WRITE( ou , ∗ ) ’ Deformed Nodal Coord inates ’
2265 END IF
2266

2267 WRITE ( ou , 3 0 0 )
2268 WRITE ( ou , 1 0 0 ) ’ Node ID ’ , ’X ’ , ’Y ’ , ’ Z ’
2269 WRITE ( ou , 3 0 0 )
2270

2271 IF ( Present ( nodLst ) .AND. Present ( nNodLst ) ) THEN
2272 CALL MakeNodCoordLst ( nodCoordLst , nNodCoordLst , ns ,
2273 & nodLst , nNod ls t )
2274

2275 DO i = 1 , nNodCoordLst
2276 nodID = nodLst ( i )
2277 WRITE ( ou , 200) nodID , nodCoordLst ( : , i )
2278 END DO
2279 ELSE
2280

2281 CALL MakeNodCoordLst ( nodCoordLst , nNodCoordLst , ns )
2282

2283 DO i = 1 , nNodCoordLst
2284 nodID = GetNodExtID ( i )
2285 WRITE ( ou , 200) nodID , nodCoordLst ( : , i )
2286 END DO
2287

2288 END IF
2289 WRITE ( ou , 3 0 0 )
2290 END SUBROUTINE Pr in tNodCoordLs t

This subroutine uses the MakeNodCoordLst subroutine to make a list of all the nodes
in the model and prints their coordinates. Alternatively, the same procedure can be
done for a selected group of nodes (nodLst). The coordinates can be selected via the
nodState flag to be the original or deformed ones. The output unit is unit 6 by default
but other file units can be used as the output as well.

5.4.37 PrintNodIDLst

This subroutine prints all of the nodes of the model along with their essential
properties.

Input(s):
setID INTEGER ID of the set
outUnit INTEGER output unit (optional)

default = 6

Output(s):
none
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2322 SUBROUTINE Pr in tNod IDLs t ( )
2323 INTEGER : : i
2324 100 FORMAT ( A35 , I 4 )
2325

2326 WRITE ( 6 , ∗ ) ’∗∗ Pr in tNod IDLs t SUBROUTINE ’
2327 WRITE (6 ,100 ) ’ T o t a l no . o f nodes : ’ , numnp
2328 WRITE (6 ,100 ) ’Max . No . o f DoF per node : ’ , ndegmx
2329 WRITE (6 ,100 ) ’Max . No . o f nodes per element : ’ , nnodmx
2330 WRITE (6 ,100 ) ’Max . No . o f c o o r d i n a t e s per node : ’ , ncrdmx
2331 WRITE (6 ,100 ) ’Max . No . o f connec t ions to a node : ’ , maxnp
2332 DO i = 1 , numnp
2333 WRITE (6 ,100 ) ’ I n t e r n a l node ID : ’ , i
2334 WRITE (6 ,100 ) ’ User node ID : ’ , GetNodExtID ( i )
2335 END DO
2336 END SUBROUTINE Pr in tNod IDLs t

This subroutine lists all the nodes of themodel alongwith some respective properties,
e.g. the maximum number of degrees of freedom (ndegmx), maximum number of
nodes per element (nnodmx). The subroutine can be used for debugging purposes or
to store the output for later uses.

5.4.38 PrintNodValIPLst

This subroutine prints all the nodal values obtained from the integration points.

Input(s):
elmCode INTEGER element post code

Example elemental post codes:
1-6 Components of strain
11-16 Components of stress
17 von Mises stress

outUnit INTEGER output unit (optional)
default = 6

nodLst INTEGER(:) list of node user IDs
nNodLst INTEGER number of nodes in the list

Output(s):
none

2597 SUBROUTINE P r i n t N o d V a l I P L s t ( elmCode , ou tUn i t , nodLst , nNodLst )
2598 INTEGER , INTENT ( IN ) : : elmCode
2599 INTEGER , INTENT ( IN ) , OPTIONAL : : o u t U n i t
2600 INTEGER , DIMENSION ( ∗ ) , INTENT ( IN ) , OPTIONAL : : nodLst
2601 INTEGER , INTENT ( IN ) , OPTIONAL : : nNodLst
2602

2603 INTEGER : : ou , nodID , i , nVal
2604 REAL∗8 , ALLOCATABLE, DIMENSION ( : ) : : uTransVal , uExt raVa l ,
2605 & uAveraVal , wTransVal , wExtraVal , wAveraVal
2606

2607 100 FORMAT ( A13 , X , I 4 )
2608 200 FORMAT ( A7 , X , 6 ( A16 , X ) )
2609 400 FORMAT ( 1 1 0 ( ’ − ’ ) )
2610 500 FORMAT (8X , A50 ,1X , A50 )
2611

2612 IF ( Present ( o u t U n i t ) ) THEN
2613 ou = o u t U n i t
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2614 ELSE
2615 ou = 6
2616 END IF
2617

2618 WRITE ( ou , 100) ’ Increment No . ’ , i n c
2619 WRITE ( ou , 100) ’ Element Post Code ’ , elmCode
2620 WRITE ( ou , 400)
2621 WRITE ( ou , 500) ’ Unweighted ’ , ’ Weighted ’
2622 WRITE ( ou , 200) ’ Node ’ , ’ T rans la ted ’ , ’ Ex t rapo la ted ’ , ’ Average ’ ,
2623 & ’ Trans la ted ’ , ’ Ex t rapo la ted ’ , ’ Average ’
2624 WRITE ( ou , 400)
2625

2626 IF ( Present ( nodLst ) .AND. Present ( nNodLst ) ) THEN
2627 CALL MakeNodValIPLst ( elmCode , 1 ,
2628 & uTransVal , nVal , nodLst , nNod ls t )
2629 CALL MakeNodValIPLst ( elmCode , 2 ,
2630 & uExt raVal , nVal , nodLst , nNod ls t )
2631 CALL MakeNodValIPLst ( elmCode , 3 ,
2632 & uAveraVal , nVal , nodLst , nNod ls t )
2633 CALL MakeNodValIPLst ( elmCode , 4 ,
2634 & wTransVal , nVal , nodLst , nNod ls t )
2635 CALL MakeNodValIPLst ( elmCode , 5 ,
2636 & wExtraVal , nVal , nodLst , nNod ls t )
2637 CALL MakeNodValIPLst ( elmCode , 6 ,
2638 & wAveraVal , nVal , nodLst , nNod ls t )
2639

2640 DO i = 1 , nVal
2641 nodID = nodLst ( i )
2642 CALL P r i n t V a l u e
2643 END DO
2644

2645 ELSE
2646

2647 CALL MakeNodValIPLst ( elmCode , 1 , uTransVal , nVal )
2648 CALL MakeNodValIPLst ( elmCode , 2 , uExt raVa l , nVal )
2649 CALL MakeNodValIPLst ( elmCode , 3 , uAveraVal , nVal )
2650 CALL MakeNodValIPLst ( elmCode , 4 , wTransVal , nVal )
2651 CALL MakeNodValIPLst ( elmCode , 5 , wExtraVal , nVal )
2652 CALL MakeNodValIPLst ( elmCode , 6 , wAveraVal , nVal )
2653

2654 DO i = 1 , nVal
2655 nodID = GetNodExtID ( i )
2656 CALL P r i n t V a l u e
2657 END DO
2658 END IF
2659

2660 WRITE ( ou , 400)
2661 RETURN
2662

2663 CONTAINS
2664

2665 SUBROUTINE P r i n t V a l u e ( )
2666 300 FORMAT ( I7 , X , 6 ( F16 . 4 ,X ) )
2667

2668 WRITE ( ou , 300) nodID , uTransVal ( i ) , uEx t raVa l ( i ) ,
2669 & uAveraVal ( i ) , wTransVal ( i ) , wExt raVal ( i ) , wAveraVal ( i )
2670 END SUBROUTINE P r i n t V a l u e
2671

2672 END SUBROUTINE P r i n t N o d V a l I P L s t

This subroutine prints all the elemental values which are evaluated in the nodes
using various methods. The output of all the methods used in the MakeNodValIPLst
subroutine are obtained and printed in the output unit. The default value for the output
is 6.
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5.4.39 PrintNodValLst

This subroutine prints the nodal quantities of the nodes.

Input(s):
nodCode INTEGER nodal post code

Example node post codes:
0 Coordinates
1 Displacement
2 Rotation
3 External force
4 External moment
5 Reaction force
6 Reaction moment
79 Total displacement

outUnit INTEGER output unit (optional)
default = 6

nodLst INTEGER(:) list of node user IDs
nNodLst INTEGER number of nodes in the list

Output(s):
none

2488 SUBROUTINE P r i n t N o d V a l L s t ( nodCode , nodLst , nNodLst , o u t U n i t )
2489 INTEGER , INTENT ( IN ) : : nodCode
2490 INTEGER , DIMENSION ( ∗ ) , INTENT ( IN ) , OPTIONAL : : nodLst
2491 INTEGER , INTENT ( IN ) , OPTIONAL : : nNodLst , o u t U n i t
2492

2493 INTEGER : : nodID , nValLs t , i , j , nComp , ou
2494 REAL∗8 , ALLOCATABLE, DIMENSION ( : , : ) : : v a l L s t
2495

2496 100 FORMAT ( A15 , X , I 2 )
2497 500 FORMAT ( I7 , X , 1 0 ( F16 . 4 ,X , : ) )
2498

2499 IF ( Present ( o u t U n i t ) ) THEN
2500 ou = o u t U n i t
2501 ELSE
2502 ou = 6
2503 END IF
2504

2505 WRITE ( ou , 100) ’ Increment No . ’ , i n c
2506 WRITE ( ou , 100) ’ Node Post Code ’ , NodCode
2507

2508 IF ( Present ( nodLst ) .AND. Present ( nNodLst ) ) THEN
2509 CALL MakeNodValLst ( nodCode , v a l L s t , nValLs t , nComp ,
2510 & nodLst , nNodLst )
2511 CALL Pr in tTab leHeader
2512 DO i = 1 , nVa lLs t
2513 WRITE ( ou , 500) nodLst ( i ) , [ ( v a l L s t ( i , j ) , j = 1 , nComp ) ]
2514 END DO
2515 ELSE
2516 CALL MakeNodValLst ( nodCode , v a l L s t , nValLs t , nComp)
2517 CALL Pr in tTab leHeader
2518 DO i = 1 , nVa lLs t
2519 WRITE ( ou , 500) GetNodExtID ( i ) , [ ( v a l L s t ( i , j ) , j = 1 , nComp ) ]
2520 END DO
2521 END IF
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2522 CALL P r i n t L i n e
2523 RETURN
2524

2525 CONTAINS
2526

2527 SUBROUTINE Pr in tTab leHeader ( )
2528 INTEGER : : j
2529

2530 200 FORMAT ( ’ Node ID ’ , 1 0 ( 5 X , ’ Component ’ , I3 , : ) )
2531

2532 CALL P r i n t L i n e
2533 WRITE ( ou , 200) [ ( j , j = 1 , nComp ) ]
2534 CALL P r i n t L i n e
2535

2536 END SUBROUTINE Pr in tTab leHeader
2537

2538 SUBROUTINE P r i n t L i n e ( )
2539 INTEGER : : j
2540

2541 400 FORMAT ( 8 ( ’ − ’ ) , 1 0 ( 1 7 A1 , : ) )
2542

2543 WRITE ( ou , 400) [ ( ’ − ’ , j = 1 , nComp∗1 7 ) ]
2544 END SUBROUTINE P r i n t L i n e
2545

2546 END SUBROUTINE P r i n t N o d V a l L s t

This subroutine uses the MakeNodValLst subroutine to create a list of nodal values
and prints them. The PrintTableHeader and PrintLine subroutines are used to print the
header of the table and horizontal lines, respectively.

5.4.40 PrintSetItemLstID

This subroutine prints the information regarding a specific set ID to a file.

Input(s):
setID INTEGER ID of the set
outUnit INTEGER output unit (optional)

default = 6

Output(s):
none

2700 SUBROUTINE P r i n t S e t I t e m L s t I D ( set ID , o u t U n i t )
2701 INTEGER , INTENT ( IN ) : : se t ID
2702 INTEGER , INTENT ( IN ) , OPTIONAL : : o u t U n i t
2703

2704 INTEGER : : ou
2705

2706 100 FORMAT ( A28 , 1X , I32 )
2707 101 FORMAT ( A28 , 1X , L32 )
2708 102 FORMAT ( A28 , 1x , A32 )
2709

2710 IF ( Present ( o u t U n i t ) ) THEN
2711 ou = o u t U n i t
2712 ELSE
2713 ou = 6
2714 END IF
2715
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2716 WRITE ( ou , ∗ ) ’∗∗ P r i n t S e t I t e m L s t I D SUBROUTINE ’
2717 WRITE ( ou , 1 0 0 ) ’ Set no . : ’ , se t ID
2718 WRITE ( ou , 1 0 2 ) ’ Set name : ’ , setnam ( s e t i d )
2719 WRITE ( ou , 1 0 0 ) ’ Set type : ’ , i s e t d a t ( 1 , s e t i d )
2720 WRITE ( ou , 1 0 0 ) ’No . o f i tem ( s ) : ’ , i s e t d a t ( 2 , s e t i d )
2721 WRITE ( ou , 1 0 1 ) ’ Sor ted l i s t : ’ , i s e t d a t ( 3 , s e t i d ) .EQ. 1
2722 WRITE ( ou , 1 0 1 ) ’B .C . f l a g : ’ , i s e t d a t ( 4 , s e t i d ) .EQ. 1
2723 WRITE ( ou , 1 0 0 ) ’No . o f i tem ( s ) ( f u l l mode ) : ’ , i s e t d a t ( 5 , s e t i d )
2724 WRITE ( ou , 1 0 1 ) ’ Updates i n remeshing : ’ , i s e t d a t ( 6 , s e t i d ) .EQ. 1
2725 WRITE ( ou , ∗ )
2726 RETURN
2727 END SUBROUTINE P r i n t S e t I t e m L s t I D

The PrintSetItemLstID subroutine prints the various information regarding a set to
an output file. The information is extracted from the spaceset common block of
Marc (see Table2.8). The optional outUnit argument is used to indicate the output of
the information. By default, the unit number 6 is used if no output unit is specified.
The same approach is used in other subroutines which handle a printing task.

5.4.41 PrintSetItemLstName

This subroutine prints the information regarding a specific set name to a file.

Input(s):
setName CHARACTER(*) the name of the set
outUnit INTEGER output unit (optional)

default = 6

Output(s):
none

2758 SUBROUTINE Pr in tSet I temLstName ( setName , o u t U n i t )
2759 CHARACTER(LEN=∗ ) , INTENT ( IN ) : : setName
2760 INTEGER , INTENT ( IN ) , OPTIONAL : : o u t U n i t
2761

2762 INTEGER : : i , ou
2763 LOGICAL : : notFound
2764

2765 IF ( Present ( o u t U n i t ) ) THEN
2766 ou = o u t U n i t
2767 ELSE
2768 ou = 6
2769 END IF
2770

2771 notFound = .TRUE.
2772 i = 1
2773 DO WHILE ( ( i . LE . ndSet ) .AND. ( notFound ) )
2774 IF ( setName .EQ. setNam ( i ) ) then
2775 CALL P r i n t S e t I t e m L s t I D ( i , ou )
2776 notFound = . FALSE .
2777 ELSE
2778 i = i + 1
2779 END IF
2780 END DO
2781 IF ( notFound .EQV. .TRUE . ) WRITE( ou , ∗ ) setName , ’ i s no t found . ’
2782 RETURN
2783 END SUBROUTINE Pr in tSet I temLstName

http://dx.doi.org/10.1007/978-3-319-47668-1_2
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The PrintSetByName subroutine uses a DO WHILE loop to find a set by its name. Then,
it prints the details of the set by using the PrintSetItemLstID subroutine. Note that a set
name is a variable of type CHARACTER with a length of 32. However, in this listing,
an assumed size character is used to cover every length of the setNam argument.

5.4.42 PrintSetLst

This subroutine prints the general information regarding all the sets of the model to
a file.

Input(s):
setName CHARACTER(*) the name of the set
outUnit INTEGER output unit (optional)

default = 6

Output(s):
none

2813 SUBROUTINE P r i n t S e t L s t ( o u t U n i t )
2814 INTEGER , INTENT ( IN ) , OPTIONAL : : o u t U n i t
2815

2816 INTEGER : : i , ou
2817 100 FORMAT ( A27 ,1X , I 4 )
2818

2819 IF ( Present ( o u t U n i t ) ) THEN
2820 ou = o u t U n i t
2821 ELSE
2822 ou = 6
2823 END IF
2824

2825 WRITE ( ou , 1 0 0 ) ’ T o t a l se ts : ’ , ndset
2826 WRITE ( ou , 1 0 0 ) ’Max . no . o f se ts : ’ , nsetmx
2827 WRITE ( ou , 1 0 0 ) ’Max . se t name c h a r a c t e r s : ’ , nchnam
2828 WRITE ( ou , 1 0 0 ) ’Max . no . o f se t i tems : ’ , mxi tmset
2829 WRITE ( ou , ∗ )
2830 DO i = 1 , ndset
2831 CALL P r i n t S e t I t e m L s t I D ( i , ou )
2832 END DO
2833 RETURN
2834 END SUBROUTINE P r i n t S e t L s t

The PrintSetLst subroutine prints the general information regarding the sets of the
model to a file. The output file is optional and if it is not specified, the default value
of 6 is used. The information is extracted from the spaceset Marc common block
(see Table2.8). Then, the specific data for each set of the model is printed using the
PrintSetItemLstID subroutine.

http://dx.doi.org/10.1007/978-3-319-47668-1_2
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5.5 FileTools Module

5.5.1 AutoFilename

This subroutine updates the chosen name of a existing file name.

Input(s):
fn CHARACTER(*) file name

Output(s):
fn CHARACTER(*) file name

59 SUBROUTINE AutoFi lename ( fName )
60 CHARACTER (LEN=∗ ) , INTENT ( INOUT ) : : fName
61

62 CHARACTER (LEN = LEN( fName ) + 8 ) : : tempfName
63 CHARACTER (LEN = 3) : : d i g i t
64 INTEGER : : i , j
65 LOGICAL : : f i l e E x i s t
66 90 FORMAT ( i 3 . 3 )
67

68 f i l e E x i s t = .TRUE.
69 i = 0
70 DO WHILE ( f i l e E x i s t .EQV. .TRUE . )
71 i = i + 1
72 WRITE ( d i g i t , 90) i
73 tempfName = t r i m ( fName ) / / ’ _ ’ / / d i g i t / / ’ . t x t ’
74

75 INQUIRE ( FILE = tempfName , EXIST= f i l e E x i s t )
76 END DO
77 fName = tempfName
78 RETURN
79

80 END SUBROUTINE AutoFi lename

The AutoFilename subroutine provides the user with a mechanism to prevent over-
writing the output files. This case usually happenswhen the result of a run is not saved
elsewhere and then rerunning the corresponding job overwrites the old results. This
subroutine avoids overwriting the existing files by adding a unique 3-digit trailing
number to the file name.

5.5.2 FindFreeUnit

This subroutine returns the first free file unit.

Input(s):
none

Output(s):
fn CHARACTER(*) file name
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18 SUBROUTINE F indFreeUn i t ( fName )
19 INTEGER , INTENT (OUT) : : fName
20 INTEGER , PARAMETER : : MINUNIT = 10 , MAXUNIT = 200
21 INTEGER : : i
22 LOGICAL : : uCon , found
23

24 found = . FALSE .
25 i = MINUNIT
26 DO WHILE ( ( i . LT . MAXUNIT) .AND. ( found .EQV. . FALSE . ) )
27 INQUIRE ( UNIT = i , OPENED = uCon )
28 IF ( uCon .EQV. . FALSE . ) THEN
29 found = .TRUE.
30 ELSE
31 i = i + 1
32 END IF
33 END DO
34 IF ( ( i .EQ. MAXUNIT) .AND. ( found .EQV. . FALSE . ) ) THEN
35 fName = −1
36 ELSE
37 fName = i
38 END IF
39 END SUBROUTINE F indFreeUn i t

The FindFreeUnit subroutine assigns the first free file unit number to its only argument.
It starts checking from the unit number MINUNIT up to MAXUNIT to find a free one.
If the search was unsuccessful, the subroutine returns −1 to state the error. With
this simple subroutine, any attempts to connect an already engaged file unit is easily
prevented. Such attempts will result in the Exit Message 7001 which indicates a
program crash due to the Fortran code. In this case, the Intel® compiler issues a
severe error 40 with the following message:

forrtl: severe (40): recursive I/O operation, unit 20, file unknown

The message indicates that the Fortran code is trying to connect a file unit, unit 20
in this case, which is already occupied in another process.

5.5.3 DeleteFile

This subroutine deletes a file.

Input(s):
fn CHARACTER(*) file name

Output(s):
none

43 SUBROUTINE D e l e t e F i l e ( fName )
44 CHARACTER(LEN=∗ ) , INTENT ( IN ) : : fName
45

46 INTEGER : : f U n i t
47 LOGICAL : : f e
48

49 CALL F indFreeUn i t ( f U n i t )
50 INQUIRE ( FILE = fName , EXIST= fe )
51 IF ( f e .EQV. .TRUE . ) THEN
52 OPEN ( UNIT = f U n i t , FILE = fName , STATUS = ’OLD ’ )
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53 CLOSE ( UNIT = f U n i t , STATUS = ’DELETE ’ )
54 END IF
55 END SUBROUTINE D e l e t e F i l e

The DeleteFile subroutine accepts one character argument (fn) containing the name
of an external file. The file, if existing, is deleted by the subroutine.

5.6 MiscTools Module

5.6.1 DelRepeated

This subroutine removes all the recurring items of a list but preserves one instance.

Input(s):
itemLst INTEGER(*) list of items to be searched
nItemLst INTEGER number of items in the list

Output(s):
outItemLst INTEGER(:) the output item list
nOutItemLst INTEGER number of items in the output list

135 SUBROUTINE DelRepeated ( i temLs t , n I temLst , ou t I t emLs t , nOut I temLst )
136 INTEGER , DIMENSION ( ∗ ) , INTENT ( IN ) : : i t e m L s t
137 INTEGER , INTENT ( IN ) : : n I temLs t
138 INTEGER , DIMENSION ( : ) , ALLOCATABLE, INTENT (OUT) : : o u t I t e m L s t
139 INTEGER , INTENT (OUT) : : nOut I temLst
140

141 LOGICAL , ALLOCATABLE, DIMENSION ( : ) : : l s tMask
142 INTEGER , ALLOCATABLE, DIMENSION ( : ) : : l s t I n d e x
143 INTEGER : : i
144

145 ALLOCATE ( ls tMask ( n I temLs t ) )
146 l s tMask = .TRUE.
147

148 DO i = nI temLst , 2 , −1
149 l s tMask ( i ) = .NOT. ( Any ( i t e m L s t ( : i −1) .EQ. i t e m L s t ( i ) ) )
150 END DO
151

152 ALLOCATE( l s t I n d e x , source = PACK ( [ ( i , i =1 , n I temLs t ) ] , l s tMask ) )
153 ALLOCATE( ou t I t emLs t , source = i t e m L s t ( l s t I n d e x ) )
154 nOut I temLst = Size ( o u t I t e m L s t )
155 END SUBROUTINE DelRepeated

The DelRepeated subroutine checks the 1D array (itemLst) for repeated items and
removes all, keeping only one instance. The refined list is returned via the outItemLst
allocatable array. The subroutine uses the Any intrinsic function to create a logical
array (lstMask) containing the occurrence status of every item. The final value of the
mask will be .FALSE. for a recurring element. In line 18, an index array (lstIndex) is
created containing the indices corresponding to the unique elements. The index is
used to create the final list.
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5.6.2 DelRepeated2D

This subroutine removes all the recurring items of a 2D array but preserves one
instance.

Input(s):
itemLst INTEGER(2,*) list of items to be searched
nItemLst INTEGER number of items in the list

Output(s):
outItemLst INTEGER(:,:) the output item list
nOutItemLst INTEGER number of items in the output list

190 SUBROUTINE DelRepeated2D ( i temLs t , n I temLst ,
191 & ou t I t emLs t , nOut I temLst )
192

193 INTEGER , DIMENSION ( 2 , ∗ ) , INTENT ( IN ) : : i t e m L s t
194 INTEGER , INTENT ( IN ) : : n I temLs t
195 INTEGER , DIMENSION ( : , : ) , ALLOCATABLE, INTENT (OUT) : : o u t I t e m L s t
196 INTEGER , INTENT (OUT) : : nOut I temLst
197

198 LOGICAL , ALLOCATABLE, DIMENSION ( : ) : : l s tMask
199 INTEGER , ALLOCATABLE, DIMENSION ( : ) : : l s t I n d e x
200 INTEGER : : i
201

202 ALLOCATE ( ls tMask ( n I temLs t ) )
203 l s tMask = .TRUE.
204

205 DO i = nI temLst , 2 , −1
206 l s tMask ( i ) = .NOT . ( Any ( i t e m L s t ( 1 , : i −1) .EQ. i t e m L s t ( 1 , i )
207 & .AND. i t e m L s t ( 2 , : i −1) .EQ. i t e m L s t ( 2 , i ) ) )
208 END DO
209

210 ALLOCATE( l s t I n d e x , source=PACK ( [ ( i , i =1 , n I temLs t ) ] , l s tMask ) )
211

212 ALLOCATE( ou t I t emLs t , source= i t e m L s t ( : , l s t I n d e x ) )
213 nOut I temLst = Size ( ou t I t emLs t , 2 )
214

215 END SUBROUTINE DelRepeated2D

The DelRepeated2D subroutine works in a similar way to its 1D version but considers
each pair of the 2D arrays.

5.6.3 ExtractIntersectLst

Returns the list of intersecting items for two lists (1D arrays).

Input(s):
itemLst1 INTEGER(*) first list of items
nItemLst1 INTEGER number of items in the first list
itemLst2 INTEGER(*) second list of items
nItemLst2 INTEGER number of items in the second list
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Output(s):
interLst INTEGER(:) the list of intersecting items
nInterLst INTEGER number of items in the intersecting list

76 SUBROUTINE E x t r a c t I n t e r s e c t L s t ( i temLst1 , n I temLst1 ,
77 & i temLst2 , n I temLst2 , i n t e r l s t , n I n t e r L s t )
78

79 INTEGER , DIMENSION ( ∗ ) , INTENT ( IN ) : : i temLst1 , i t emLs t2
80 INTEGER , INTENT ( IN ) : : n I temLst1 , n I temLst2
81 INTEGER , ALLOCATABLE, INTENT (OUT) : : i n t e r L s t ( : )
82 INTEGER , INTENT (OUT) : : n I n t e r L s t
83

84 INTEGER : : i , nLs t
85 LOGICAL , ALLOCATABLE, DIMENSION ( : ) : : l s tMask
86 INTEGER , ALLOCATABLE, DIMENSION ( : ) : : t L s t
87

88 ALLOCATE ( ls tMask ( n I temLst1 ) )
89

90 DO i = 1 , n I temLst1
91 l s tMask ( i ) = Any ( i t emLs t1 ( i ) .EQ. i t emLs t2 ( : n I temLst2 ) )
92 END DO
93

94 nLs t = Count ( l s tMask )
95

96 IF ( nLs t .NE. 0) THEN
97 ALLOCATE ( t L s t , SOURCE = Pack ( i t emLs t1 ( 1 : n I temLst1 ) ,
98 & MASK= ls tMask ) )
99 CALL DelRepeated ( t L s t , nLst , i n t e r L s t , n I n t e r L s t )
100 ELSE
101 n I n t e r L s t = nLs t
102 END IF
103

104 END SUBROUTINE E x t r a c t I n t e r s e c t L s t

This subroutine selects the intersecting items in two lists. To do so, every item of
the first list is compared to all the items of the second list and the Any intrinsic
function is used to obtain any .TRUE. values. The recurring items are deleted using
theDelRepeated subroutine. Therefore, the output list is createdwithout any recurring
items.

5.6.4 GetDistance

This function returns the distance between two points.

Input(s):
pointA REAL*8(3) coordinates of the first point
pointB REAL*8(3) coordinates of the second point

Output(s):
REAL*8 distance between two points

243 FUNCTION GetDis tance ( po in tA , po in tB )
244 REAL∗8 , DIMENSION ( 3 ) , INTENT ( IN ) : : po in tA , po in tB
245 REAL∗8 : : GetDis tance
246

247 GetDis tance = SQRT ( ( po in tA (1) − po in tB ( 1 ) ) ∗ ∗ 2 . D0 +
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248 & ( po in tA (2) − po in tB ( 2 ) ) ∗ ∗ 2 . D0 +
249 & ( po in tA (3) − po in tB ( 3 ) ) ∗ ∗ 2 . D0 )
250 END FUNCTION GetDis tance

The GetDistance function returns the distance between two geometrical coordinates,
i.e. the coordinates of the pointA and pointB points.

5.6.5 GetIndex

This function returns the index of an item in a list.

Input(s):
itemLst INTEGER(*) list of items
nItemLst INTEGER number of items in the list
searchItem INTEGER item to be searched

Output(s):
INTEGER the index of the searchItem in the itemLst

282 FUNCTION GetIndex ( i temLs t , n I temLst , search I tem )
283 INTEGER , INTENT ( IN ) , DIMENSION ( ∗ ) : : i t e m L s t
284 INTEGER , INTENT ( IN ) : : n I temLst , search I tem
285 INTEGER : : GetIndex
286

287 INTEGER : : i
288

289 GetIndex = 0
290

291 DO i = 1 , n I temLs t
292 IF ( i t e m L s t ( i ) .EQ. search I tem ) THEN
293 GetIndex = i
294 EXIT
295 END IF
296 END DO
297 END FUNCTION GetIndex

The GetIndex function returns the index of an item in a 1D array. If the item cannot
be found, the function returns a zero.

5.6.6 GetRandNum

This function returns a random number between −1 and +1.

Input(s):
none

Output(s):
REAL*8 a random number
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282 FUNCTION GetIndex ( i temLs t , n I temLst , search I tem )
283 INTEGER , INTENT ( IN ) , DIMENSION ( ∗ ) : : i t e m L s t
284 INTEGER , INTENT ( IN ) : : n I temLst , search I tem
285 INTEGER : : GetIndex
286

287 INTEGER : : i
288

289 GetIndex = 0
290

291 DO i = 1 , n I temLs t
292 IF ( i t e m L s t ( i ) .EQ. search I tem ) THEN
293 GetIndex = i
294 EXIT
295 END IF
296 END DO
297 END FUNCTION GetIndex

The GetRandNum function generates a random number with a random sign. It com-
bines the random_number and random_seed intrinsic functions to produce a random
number between 0 and 1. The random_seed function is required to just run once to
generate the first random number. After that, every subsequent number is generated
based on the previous one. Two random numbers are generated within the func-
tion (randNum1 and randNum2) and their subtraction will be the return value of the
function. This is done to generate a random sign as well as the random number.

5.6.7 PrintElapsedTime

This subroutine prints the elapsed time between its two executions.

Input(s):
outUnit INTEGER output unit (optional)

Output(s):
none

449 SUBROUTINE Pr in tE lapsedT ime ( o u t U n i t )
450 INTEGER , INTENT ( IN ) , OPTIONAL : : o u t U n i t
451

452 INTEGER : : ou
453 REAL : : s ta r tT ime , stopTime , elapsedTime
454 SAVE : : s t a r t T i m e
455 LOGICAL , SAVE : : f i r s t R u n = .TRUE.
456

457 100 FORMAT ( A22 , X , F8 . 3 , X , ’ seconds ’ )
458

459 IF ( Present ( o u t U n i t ) ) THEN
460 ou = o u t U n i t
461 ELSE
462 ou = 6
463 END IF
464

465 IF ( f i r s t R u n .EQV. .TRUE . ) THEN
466 f i r s t R u n = . FALSE .
467 CALL Cpu_time ( s t a r t T i m e )
468 WRITE ( ou , ’ ( A22 ) ’ ) ’ Stopwatch s t a r t e d . . . ’
469 ELSE
470 CALL Cpu_time ( stopTime )
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471 elapsedTime = stopTime − s t a r t T i m e
472 WRITE ( ou , 100) ’ Elapsed t ime : ’ , elapsedTime
473 f i r s t R u n = .TRUE.
474 END IF
475 END SUBROUTINE Pr in tE lapsedT ime

The PrintElapsedTime subroutine is used to calculate the approximate duration of a
process. Since the subroutine returns the elapsed time between its two executions, it
must be obviously executed twice; first at the beginning of the process and then at
its end. It uses the Cpu_time intrinsic function to record the time at each run and then
calculates the elapsed time in seconds. The output of the function is of type character
so it can be readily printed in the output. The default value for the output unit is 6.

5.6.8 PutSmallFirst

This subroutine compares the pairs of a 2D array, and removes the smaller component
to the first position of the array.

Input(s):
itemLst INTEGER(2,*) list of items
nItemLst INTEGER number of items in the list

Output(s):
itemLst INTEGER(*) sorted list of items

507 SUBROUTINE P u t S m a l l F i r s t ( i t emLs t , n I temLs t )
508 INTEGER , DIMENSION ( 2 , ∗ ) , INTENT ( INOUT ) : : i t e m L s t
509 INTEGER , INTENT ( IN ) : : n I temLs t
510

511 INTEGER : : i
512

513 DO i = 1 , n I temLs t
514 IF ( i t e m L s t ( 1 , i ) .GT. i t e m L s t ( 2 , i ) ) THEN
515 CALL SwapInt ( i t e m L s t ( 1 , i ) , i t e m L s t ( 2 , i ) )
516 END IF
517 END DO
518 END SUBROUTINE P u t S m a l l F i r s t

This subroutine compares the first and the second component of the array. If the first
one is larger, it is replaced by the second one.

5.6.9 SwapInt

This subroutine swaps the value of two integer numbers.
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Input(s):
num1 INTEGER first number
num2 INTEGER second number

Output(s):
num1 INTEGER second number
num2 INTEGER first number

550 SUBROUTINE SwapInt ( num1 , num2 )
551 INTEGER , INTENT ( INOUT ) : : num1 , num2
552

553 INTEGER : : tNum
554

555 tNum = num1
556 num1 = num2
557 num2 = tNum
558 END SUBROUTINE SwapInt

This subroutine simply swaps two integer numbers.

5.6.10 SwapReal

This subroutine swaps the value of two double precision numbers.

Input(s):
num1 REAL*8 first number
num2 REAL*8 second number

Output(s):
num1 REAL*8 second number
num2 REAL*8 first number

550 SUBROUTINE SwapInt ( num1 , num2 )
551 INTEGER , INTENT ( INOUT ) : : num1 , num2
552

553 INTEGER : : tNum
554

555 tNum = num1
556 num1 = num2
557 num2 = tNum
558 END SUBROUTINE SwapInt

This subroutine simply swaps two real numbers.
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Binary representation, 105, 116
Blank block, 86
Block data, 36, 37, 87

C
Cancellation of host assoication, 48
C/C++, 162, 177
Characteristic, see Exponent
Column-major order, 79
Comment, 4, 13, 24
Common block, 43, 44, 86, 87, 126

concom, 147, 270
creeps, 147
ctable, 137
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dimen, 147
elemdata, 151
iautcr, 147
marc_usdacm, 197
matdat, 270
prepro, 143
spaceset, 147

Compiler directive, 11, 145, 162
Complement representation, 56
Component keyword, 7
Component selector, 74
Conformable array, 76
Continuation line, 13, 72
CRAY pointer, 92

D
Data

block, 43
dictionary, 14
entity, 48, 52
environment, 8, 13, 36, 38, 44, 47, 51, 53
representation, 55

Debugging, 17, 20, 24, 33, 36, 46, 122, 130,
144, 154, 155, 158

Debugging mode, 161, 163, 165
Deferred-shape array, 78
Defintion status, 52
Delimiter, 5
Denormalized number, 59, 62, 63
Derived data type, 44, 51, 53, 73
Derived type definition, 13, 51, 74
Direct access, 97
Divided-by-zero exception, 62
Double precision, 70
Dummy argument, 6, 40, 42, 51, 72, 78, 87
Dynamic data entity, 90

E
Effective item list, 109
Encapsulation, 43, 50, 85
Encoding length, 59, 60
End-of-File control specifier, 102
End-of-File record, 97
End-of-Record control specifier, 102
End specifier, 117
Entity-oriented declaration, 46, 84
Error control specifier, 103
Exception, 60
Explicit

array, 77
formatting, 108
initialization, 88

interface, 95
type delcaration, 46

Exponent, 58
Expression, 72
External

file, 97, 99
function, 41
subprogram, 36, 43, 95
subroutine, 41

F
File position, 97

advancing, 97
non-advancing, 97

File specifier, 105
File unit, 96
Fixed format, 10, 13, 132, 134, 162
Fixed point number, 55, 58
Flag, 27
Floating point number, 55
Floating point represenation, 59
Flowchart, 18, 20

block, 26
Format specification, 105
Format specifier, 102, 108
Formatted record, 97
Fraction, seeMantissa
Free format, 2, 10, 132, 134
Function

result, 6, 38, 52

G
Global

entity, 47
scope, 51

GOTO-less program, see Structured pro-
gram

H
History defintion

CONTINUE, 131
CONTROL, 131
LOADCASE, 131
NEW, 130
PARAMETERS, 131

Host association, 48, 51

I
Identifier, see Name
Implicit

declaration, 95
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formatting, 108
interface, 94

Inexact exception, 60, 61
Initial point, 97
Initializing, 54
Interface, 39

block, 94
Internal

file, 97
subprogram, 39, 51

Interoperability, 177
Intinsic function, 81
Intrinsic

data type, 53, 66
logical, 72
real, 68

procedure, 41
Invalid exception, 62
Isotropic hardening, 224, 244

K
Keyword, 7, 13, 42

L
Label, 6
Least significant bit (LSB), 57
Lexical token, 5
Literal constant, 52, 84
Local

entity, 39, 47
scope, 51
variable, 16, 48, 51, 86

Logical planning, 18

M
Machine Epsilon, 61
Mantissa, 58
Marc subroutine

ELEVAR, 237
FORCDT, 146, 182
FORCEM, 184
HOOKLW, 192
IMPD, 230
MOTION, 199
ORIENT, 193
ORIENT2, 193
PLOTV, 189
SEPFOR, 199
UACTIVE, 197
UBGINC, 217, 219, 238
UBREAKGLUE, 205

UEDINC, 213, 217, 219, 223, 226, 234,
237

UFXORD, 217
UINSTR, 201
USDATA, 145, 197
USELELM, 254, 256, 261, 266
USHELL, 208
USPLIT_MESH, 220
USPRNG, 145, 213
UVSCPL, 241, 245, 247
WKSLP, 136, 186

Mixed mode expression, 69
Model definition

CONNECTIVITY, 130, 254
COORDINATES, 130, 132
DEFINE, 130, 141
END OPTION, 130
EXCLUDE, 143
EXTENDED, 133
FIXED DISP, 143
FORCDT, 183
GEOMETRY, 130
INCLUDE, 130
ISOTROPIC, 195, 242, 254
NO PRINT, 130
OPTIMIZE, 130
ORTHOTROPIC, 195, 242
POST, 130
PRINT, 130
PRINT ELEMENT, 130
PRINT NODE, 130
RESTART, 130
SOLVER, 125
SUMMARY, 130, 134
TABLE, 137
TYING, 143
UDUMP, 230
UFXORD, 217
USDATA, 145, 197
WORK HARD, 189

Modularization, 25
Modular programming, 34
Module, 43, 44

procedure, 36
reference, 45
subprogram, 36, 44, 95

Most significant bit (MSB), 56, 60
Multiplication factor, 137

N
Name, 5, 15, 16

abbreviation, 16, 273
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conflict, 45
Name association, 51
Named common block, 86
Named constant, 13, 52, 72, 84
Namelist specifier, 102
Nonlinear spring, 215
Normalized number, 60, 62, 63
Normalized scientific notation, 58
Not-a-Number (NaN), 64

O
Obsolescent feature, 1, 6
Operator, 13, 73
Out-of-bound exception, 76
Overflow exception, 62

P
Parameter

ALLOCATE, 130
DIST LOADS, 185
ELEMENTS, 129, 254
END, 130
EXTENDED, 130
LARGE STRAIN, 224
SIZING, 130
TABLE, 137, 187
TITLE, 129
VERSION, 130

Partial record, 114
Pointee, 93
Pointee array, 93
Pointer association, 51
Pointer status

associated, 91
defined, 91
disassociated, 91
undefined, 91

Pre-defined common block, 147
Procedural programming, 34
Procedure, see Subprogram
Procedure file, 122
Program database file, 161
Programming convention, 12
Pseudocode, 18, 20, 26

R
Radix, 55, 58
Record number specifier, 103
Required input/output, 146
Reserved word, 6, 53

S
Scientific notation, 58
Scope, 13, 47, 50
Scoping unit, 51, 95
Script

PyMentat, 176
PyPost, 176

Semantic error, 17
Sequence association, 51
Sequential access, 97
Side effect, 39
Sign bit, 56
Sign-magnitude representation, 56
Significant, seeMantissa
Significant figure, 58, 61, 62, 69
Size control specifier, 103
Size specifier, 115
Spaghetti code, 20
Specification expression, 77
Specifier, 96
Statement, 7
Statement keyword, 7
Static data entity, 90
Storage association, 51, 87
Structure

block, 21
nesting, 24
repetition, 22
selection, 22
sequence, 21
stacking, 24

Structured program, 20, 25, 112
Subobject, 52, 54
Subprogram, 35, 51
Subscript triplet, 83
Syntax error, 17

T
Table-driven input, 135
Terminal point, 97
Type

declaration, 17, 45, 46, 53, 66, 74
parameter, 53, 54

keyword, 7
kind, 66, 71
length, 66, 71

U
Unbiased exponent, 59
Underflow exception, 62
Unformatted record, 97
Unit specifier, 102, 105
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Unnamed entity, 47
Use association, 51
User-defined element, 255
User defined subprogram, 95
Utility subroutine

ELMVAR, 160, 234
GMPRD, 270
GMTRA, 270
NODVAR, 160, 224, 226, 230
QUIT, 223
SETEL, 154

SETUP_ELGROUPS, 151
TABVA2, 137, 188

V
Vector subscript, 83

Z
Zero-increment solution, 130
Zero-size array, 75
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